

**(12) STANDARD PATENT**  
**(19) AUSTRALIAN PATENT OFFICE**

**(11) Application No. AU 2014336135 B2**

(54) Title  
**Insecticidal active mixtures comprising carboxamide compound**

(51) International Patent Classification(s)  
**A01N 37/22** (2006.01)      **A01N 53/00** (2006.01)  
**A01N 43/90** (2006.01)      **A01N 65/00** (2006.01)  
**A01N 47/34** (2006.01)      **A01P 5/00** (2006.01)  
**A01N 51/00** (2006.01)      **A01P 7/00** (2006.01)

(21) Application No: **2014336135**      (22) Date of Filing: **2014.10.16**

(87) WIPO No: **WO15/055752**

(30) Priority Data

|                   |                   |              |
|-------------------|-------------------|--------------|
| (31) Number       | (32) Date         | (33) Country |
| <b>61/892,504</b> | <b>2013.10.18</b> | <b>US</b>    |
| <b>61/906,438</b> | <b>2013.11.20</b> | <b>US</b>    |

(43) Publication Date: **2015.04.23**  
(44) Accepted Journal Date: **2018.07.05**

(71) Applicant(s)  
**BASF Agrochemical Products B.V.**

(72) Inventor(s)  
**Sikuljak, Tatjana;Gewehr, Markus**

(74) Agent / Attorney  
**Watermark Intellectual Property Pty Ltd, L 1 109 Burwood Rd, Hawthorn, VIC, 3122, AU**

(56) Related Art  
**JP 2011-157294 A**

(12) INTERNATIONAL APPLICATION PUBLISHED UNDER THE PATENT COOPERATION TREATY (PCT)

(19) World Intellectual Property Organization

International Bureau



WIPO | PCT



(10) International Publication Number

WO 2015/055752 A1

(43) International Publication Date

23 April 2015 (23.04.2015)

(51) International Patent Classification:

*A01N 37/22* (2006.01) *A01N 53/00* (2006.01)  
*A01N 43/90* (2006.01) *A01N 47/34* (2006.01)  
*A01N 65/00* (2009.01) *A01P 5/00* (2006.01)  
*A01N 51/00* (2006.01) *A01P 7/00* (2006.01)

AO, AT, AU, AZ, BA, BB, BG, BH, BN, BR, BW, BY, BZ, CA, CH, CL, CN, CO, CR, CU, CZ, DE, DK, DM, DO, DZ, EC, EE, EG, ES, FI, GB, GD, GE, GH, GM, GT, HN, HR, HU, ID, IL, IN, IR, IS, JP, KE, KG, KN, KP, KR, KZ, LA, LC, LK, LR, LS, LU, LY, MA, MD, ME, MG, MK, MN, MW, MX, MY, MZ, NA, NG, NI, NO, NZ, OM, PA, PE, PG, PH, PL, PT, QA, RO, RS, RU, RW, SA, SC, SD, SE, SG, SK, SL, SM, ST, SV, SY, TH, TJ, TM, TN, TR, TT, TZ, UA, UG, US, UZ, VC, VN, ZA, ZM, ZW.

(21) International Application Number:

PCT/EP2014/072183

(22) International Filing Date:

16 October 2014 (16.10.2014)

(84) Designated States (unless otherwise indicated, for every kind of regional protection available): ARIPO (BW, GH, GM, KE, LR, LS, MW, MZ, NA, RW, SD, SL, ST, SZ, TZ, UG, ZM, ZW), Eurasian (AM, AZ, BY, KG, KZ, RU, TJ, TM), European (AL, AT, BE, BG, CH, CY, CZ, DE, DK, EE, ES, FI, FR, GB, GR, HR, HU, IE, IS, IT, LT, LU, LV, MC, MK, MT, NL, NO, PL, PT, RO, RS, SE, SI, SK, SM, TR), OAPI (BF, BJ, CF, CG, CI, CM, GA, GN, GQ, GW, KM, ML, MR, NE, SN, TD, TG).

(25) Filing Language:

English

(26) Publication Language:

English

(30) Priority Data:

61/892504 18 October 2013 (18.10.2013) US  
61/906438 20 November 2013 (20.11.2013) US

(71) Applicant: BASF SE [DE/DE]; 67056 Ludwigshafen (DE).

(72) Inventors: SIKULJAK, Tatjana; Sophien Strasse 18, 68165 Mannheim (DE). GEWEHR, Markus; Goethestr. 21, 56288 Kastellaun (DE).

(81) Designated States (unless otherwise indicated, for every kind of national protection available): AE, AG, AL, AM,

Published:

- with international search report (Art. 21(3))
- before the expiration of the time limit for amending the claims and to be republished in the event of receipt of amendments (Rule 48.2(h))



WO 2015/055752 A1

(54) Title: INSECTICIDAL ACTIVE MIXTURES COMPRISING CARBOXAMIDE COMPOUND

(57) Abstract: Pesticidal active mixtures comprising carboxamide compound The present invention relates to pesticidal mixtures comprising as active compound I an insecticidal active carboxamide derivative and at least one active compound II selected from a group M comprising acetylcholine esterase inhibitors, GABA-gated chloride channel antagonists, sodium channel modulators, nicotinic acetylcholine receptor agonists/antagonists, allosteric nicotinic acetylcholine receptor activators, chloride channel activators, juvenile hormone mimics, homop-teran feeding blockers, mit grow inhibitors, inhibitors of mitochondrial ATP synthase, uncouplers of the oxidative phosphorylation, inhibitors of the chitin biosynthesis, moulting disruptors, ecdy-son receptor agonists, octamin receptor agonists, inhibitors of the MET, voltage-dependent sodium channel blockers, inhibitors of the lipid synthesis and ryanodine receptor modulators in synergistically effective amounts. The invention relates further to methods and use of these mixtures for combating and controlling insects, arachnids or nematodes in and on plants, and for protecting such plants being infested with pests, especially also for protecting plant propagation material, such as seeds.

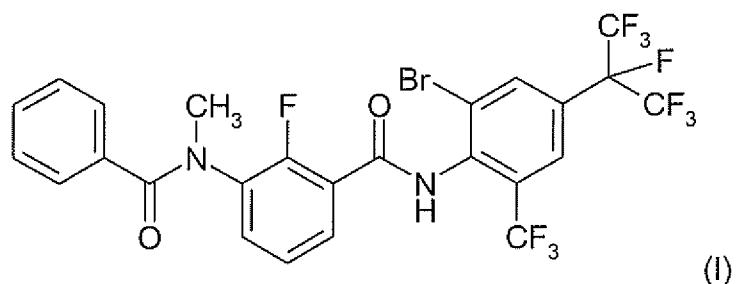
## Insecticidal active mixtures comprising carboxamide compound

The present invention relates to mixtures of active ingredients having synergistically enhanced action and to methods comprising applying said mixtures.

One typical problem arising in the field of pest control lies in the need to reduce the dosage rates of the active ingredient in order to reduce or avoid unfavorable environmental or toxicological effects whilst still allowing effective pest control.

Another problem encountered concerns the need to have available pest control agents which are effective against a broad spectrum of pests.

There also exists the need for pest control agents that combine knock-down activity with prolonged control, that is, fast action with long lasting action.


Another difficulty in relation to the use of pesticides is that the repeated and exclusive application of an individual pesticidal compound leads in many cases to a rapid selection of pests which have developed natural or adapted resistance against the active compound in question. Therefore there is a need for pest control agents that help prevent or overcome resistance.

It was therefore desirable for the present invention to provide pesticidal mixtures which solve at least one of the discussed problems such as reducing the dosage rate, enhancing the spectrum of activity or combining knock-down activity with prolonged control or resistance management.

The present invention therefore relates to pesticidal mixtures comprising as active compounds

30

1) at least one pesticidal active carboxamide compound I of formula (I):



or the tautomers, enantiomers, diastereomers or salts thereof,  
and

5 2) at least one pesticidal active compound II selected from group M  
consisting of

10 II-M.1 Acetylcholine esterase (AChE) inhibitors from the class of  
II-M.1B organophosphates, being acephate;

15 II-M.2 GABA-gated chloride channel antagonists, being:  
II-M.2B fiproles (phenylpyrazoles), being ethiprole;

II-M.3 Sodium channel modulators from the class of  
II-M.3A pyrethroids, selected from bifenthrin, lambda-cyhalothrin, alpha-  
cypermethrin and tefluthrin;

20 II-M.4 Nicotinic acetylcholine receptor agonists (nAChR) from the class  
of  
II-M.4A neonicotinoids, selected from acetamiprid and thiacloprid;

25 II-M.5 Nicotinic acetylcholine receptor allosteric activators from the class  
of spinosyns, being spinetoram;

II-M.6 Chloride channel activators from the class of avermectins and  
25 milbemycins, selected from, emamectin and abamectin;

II-M.13 Uncouplers of oxidative phosphorylation via disruption of the  
30 proton gradient, being chlorfenapyr;

II-M.15 Inhibitors of the chitin biosynthesis type 0, such as benzoylureas  
selected from, flufenoxuron, lufenuron, novaluron and  
35 teflubenzuron;

II-M.18 Ecdyson receptor agonists such as diacylhydrazines, being  
methoxyfenozide;

II-M.22 Voltage-dependent sodium channel blockers, being  
II-M.22B metaflumizone;

II-M.23 Inhibitors of the acetyl CoA carboxylase, being Tetronic and Tetramic acid derivatives, selected from spirodiclofen, spiromesifen or spirotetramat;

II-M.25 Mitochondrial complex II electron transport inhibitors, such as beta-ketonitrile derivatives, being cyflumetofen;

II-M.28 Ryanodine receptor-modulators from the class of diamides, being cyantraniliprole (cyazypyr®), or the phthalamide compounds

II-M.28.3: 3-bromo-N-{2-bromo-4-chloro-6-[(1-cyclopropylethyl)carbamoyl]phenyl}-1-(3-chloropyridin-2-yl)-1H-pyrazole-5-carboxamide (proposed ISO name: cyclaniliprole), or the compound

II-M.28.8a) 1-(3-Chloro-2-pyridinyl)-N-[4-cyano-2-methyl-6-[(methylamino)carbonyl]phenyl]-3-[[5-(trifluoromethyl)-2H-tetrazol-2-yl]methyl]-1H-pyrazole-5-carboxamide; or

II-M.28.8b) 1-(3-Chloro-2-pyridinyl)-N-[4-cyano-2-methyl-6-[(methylamino)carbonyl]phenyl]-3-[[5-(trifluoromethyl)-1H-tetrazol-1-yl]methyl]-1H-pyrazole-5-carboxamide

II-M.X insecticidal active compounds of unknown or uncertain mode of action, selected from afidopyropen, flupyradifurone, sulfoxaflor, tioxazafen, triflumezopyrim, or the compounds

II-M.X.6a: (E/Z)-N-[1-[(6-chloro-3-pyridyl)methyl]-2-pyridylidene]-2,2,2-trifluoro-acetamide; or

II-M.X.8: 8-chloro-N-[2-chloro-5-methoxyphenyl)sulfonyl]-6-trifluoromethyl)-imidazo[1,2-a]pyridine-2-carboxamide; or

II-M.Y Biopesticides, being pesticidal compounds of biological origin with insecticidal, acaricidal, molluscidal and/or nematicidal activity, being

II-M.Y-2) Biochemical pesticides: components of the ginkgo tree selected from the group consisting of bilobalide, ginkgolide A, ginkgolide B, ginkgolide C, ginkgolide J and ginkgolide M;

in synergistically effective amounts.

Moreover, it has been found that simultaneous, that is joint or separate, application of the active compound I and one or more compound(s) II or successive application (that is immediately one after another and thereby creating the mixture "in-situ" on the desired location, as e.g. the plant) of the active

5 compound I and one or more active compound(s) II allows enhanced control of pests compared to the control rates that are possible with the individual compounds.

The present invention also provides methods for the control of insects, acarids or

10 nematodes comprising contacting the insect, acarid or nematode or their food supply, habitat, breeding grounds or their locus with a pesticidally effective amount of mixtures of active compound I with at least one active compound II.

Moreover, the present invention also relates to a method of protecting plants from

15 attack or infestation by insects, acarids or nematodes comprising contacting the plant, or the soil or water in which the plant is growing, with a pesticidally effective amount of a mixture of active compound I with at least one active compound II.

2014336135 24 May 2018

THIS PAGE HAS BEEN LEFT BLANK INTENTIONALLY

2014336135 24 May 2018

THIS PAGE HAS BEEN LEFT BLANK INTENTIONALLY

2014336135 24 May 2018

THIS PAGE HAS BEEN LEFT BLANK INTENTIONALLY

2014336135 24 May 2018

THIS PAGE HAS BEEN LEFT BLANK INTENTIONALLY

2014336135

24 May 2018

THIS PAGE HAS BEEN LEFT BLANK INTENTIONALLY

The invention also provides a method for the protection of plant propagation material, preferably seeds, from soil insects and of the seedlings' roots and shoots from soil and foliar insects which comprises contacting the plant propagation material as e.g. the seeds before sowing and/or after pregermination with a pesticidally effective amount of a mixture of active compound I with at least one active compound II.

The invention also provides seeds comprising a mixture of active compound I with at least one active compound II.

10 The invention also relates to the use of a mixture of active compound I with at least one active compound II for combating insects, arachnids or nematodes.

Moreover, the simultaneous (that is joint or separate, application of one or more active compound(s) I and one or more compound(s) II), or successive application (that is immediately one after another and thereby creating the mixture "in-situ" on the desired location, as e.g. the plant, of one or more active compound(s) I and one or more active compound(s) II) with an additional fungicidal active compound III allows enhanced control of pests and fungi compared to the control rates that are possible with the individual compounds.

15 Thus, the present invention further includes mixtures comprising as an additional active compound III an fungicidal compound selected from the group F of fungicides.

20 The group F consists of:

F.I) Respiration inhibitors

25 F.I 1) Inhibitors of complex III at Q<sub>o</sub> site (e.g. strobilurins): azoxystrobin, coumoxystrobin, coumoxystrobin, dimoxystrobin, enestroburin, fenaminstrobin, fenoxyystrobin/flufenoxystrobin, fluoxastrobin, kresoxim-methyl, mandestrobine, metominostrobin, orysastrobin, picoxyystrobin, pyraclostrobin, pyrametystrobin, pyraoxystrobin, trifloxyystrobin and 2-(2-(3-(2,6-dichlorophenyl)-1-methyl-allylideneaminoxyethyl)-phenyl)-2-methoxyimino-N-methyl-acetamide, pyribencarb, 30 triclopyricarb/chlorodincarb, famoxadone, fenamidone;

F.I 2) inhibitors of complex III at Q<sub>i</sub> site: cyazofamid, amisulbrom, [(3S,6S,7R,8R)-8-benzyl-3-[(3-acetoxy-4-methoxy-pyridine-2-carbonyl)amino]-6-methyl-4,9-dioxo-1,5-dioxonan-7-yl] 2-methylpropanoate, [(3S,6S,7R,8R)-8-benzyl-3-[(3-(acetoxymethoxy)-4-methoxy-pyridine-2-carbonyl)amino]-6-methyl-4,9-dioxo-1,5-dioxonan-7-yl] 2-methylpropanoate, [(3S,6S,7R,8R)-8-benzyl-3-[(3-isobutoxycarbonyloxy-4-methoxy-pyridine-2-carbonyl)amino]-6-methyl-4,9-dioxo-1,5-dioxonan-7-yl] 2-methylpropanoate, [(3S,6S,7R,8R)-8-benzyl-3-[(3-(1,3-benzodioxol-5-ylmethoxy)-4-methoxy-pyridine-2-carbonyl)amino]-6-methyl-4,9-dioxo-1,5-dioxonan-7-yl] 2-methylpropanoate; (3S,6S,7R,8R)-3-[(3-hydroxy-4-methoxy-2-pyridinyl)carbonyl]amino]-6-methyl-4,9-dioxo-8-(phenylmethyl)-1,5-dioxonan-7-yl 2-methylpropanoate

35 F.I 3) inhibitors of complex II (e. g. carboxamides): benodanil, benzovindiflupyr, bixafen, boscalid, carboxin, fenfuram, fluopyram, flutolanil, fluxapyroxad, furametpyr, isofetamid, iso-

pyrazam, mepronil, oxycarboxin, penflufen, penthiopyrad, sedaxane, tecloftalam, thifluzamide, N-(4'-trifluoromethylthiobiphenyl-2-yl)-3-difluoromethyl-1-methyl-1H-pyrazole-4-carboxamide, N-(2-(1,3,3-trimethyl-butyl)-phenyl)-1,3-dimethyl-5-fluoro-1H-pyrazole-4-carboxamide, 3-(difluoromethyl)-1-methyl-N-(1,1,3-trimethylindan-4-yl)pyrazole-4-carboxamide,

5 3-(trifluoromethyl)-1-methyl-N-(1,1,3-trimethylindan-4-yl)pyrazole-4-carboxamide, 1,3-dimethyl-N-(1,1,3-trimethylindan-4-yl)pyrazole-4-carboxamide, 3-(trifluoromethyl)-1,5-dimethyl-N-(1,1,3-trimethylindan-4-yl)pyrazole-4-carboxamide, 1,3,5-trimethyl-N-(1,1,3-trimethylindan-4-yl)pyrazole-4-carboxamide, N-(7-fluoro-1,1,3-trimethyl-indan-4-yl)-1,3-dimethyl-pyrazole-4-carboxamide, N-[2-(2,4-dichlorophenyl)-2-methoxy-1-methyl-ethyl]-3-(difluoromethyl)-1-methyl-10 pyrazole-4-carboxamide, N-[2-(2,4-difluorophenyl)phenyl]-3-(trifluoromethyl)pyrazine-2-carboxamide;

F.I 4) other respiration inhibitors (e.g. complex I, uncouplers): diflumetorim, (5,8-difluoro-quinazolin-4-yl)-{2-[2-fluoro-4-(4-trifluoromethylpyridin-2-yloxy)-phenyl]-ethyl}-amine; nitrophenyl derivates: binapacryl, dinobuton, dinocap, fluazinam; ferimzone; organometal compounds: fentin salts, such as fentin-acetate, fentin chloride or fentin hydroxide; ametoctradin; and silthiofam;

15 F.II) Sterol biosynthesis inhibitors (SBI fungicides)

F.II 1) C14 demethylase inhibitors (DMI fungicides): triazoles: azaconazole, bitertanol, bromuconazole, cyeoconazole, difenoconazole, diniconazole, diniconazole-M, epoxiconazole, fenbuconazole, fluquinconazole, flusilazole, flutriafol, hexaconazole, imibenconazole, ipconazole, metconazole, myclobutanil, oxpoconazole, paclobutrazole, penconazole, propiconazole, 20 prothioconazole, simeconazole, tebuconazole, tetaconazole, triadimefon, triadimenol, triticonazole, uniconazole,

1-[*rel*-(2*S*;3*R*)-3-(2-chlorophenyl)-2-(2,4-difluorophenyl)-oxiranylmethyl]-5-thiocyanato-1*H*-[1,2,4]triazole, 2-[*rel*-(2*S*;3*R*)-3-(2-chlorophenyl)-2-(2,4-difluorophenyl)-oxiranylmethyl]-

25 2*H*-[1,2,4]triazole-3-thiol, 2-[2-chloro-4-(4-chlorophenoxy)phenyl]-1-(1,2,4-triazol-1-yl)pentan-2-ol, 1-[4-(4-chlorophenoxy)-2-(trifluoromethyl)phenyl]-1-cyclopropyl-2-(1,2,4-triazol-1-yl)ethanol, 2-[4-(4-chlorophenoxy)-2-(trifluoromethyl)phenyl]-1-(1,2,4-triazol-1-yl)butan-2-ol, 2-[2-chloro-4-(4-chlorophenoxy)phenyl]-1-(1,2,4-triazol-1-yl)butan-2-ol, 2-[4-(4-chlorophenoxy)-2-(trifluoromethyl)phenyl]-3-methyl-1-(1,2,4-triazol-1-yl)butan-2-ol, 2-[4-(4-chlorophenoxy)-2-(trifluoromethyl)phenyl]-1-(1,2,4-triazol-1-yl)propan-2-ol, 2-[2-chloro-4-(4-chlorophenoxy)phenyl]-3-methyl-1-(1,2,4-triazol-1-yl)butan-2-ol, 2-[4-(4-chlorophenoxy)-2-(trifluoromethyl)phenyl]-1-(1,2,4-triazol-1-yl)propan-2-ol; imidazoles: imazalil, pefurazoate, prochloraz, triflumizol; pyrimidines, 30 pyridines and piperazines: fenarimol, nuarimol, pyrifenoxy, triforine, [3-(4-chloro-2-fluoro-phenyl)-5-(2,4-difluorophenyl)isoxazol-4-yl]-3-pyridyl)methanol;

F.II 2) Delta14-reductase inhibitors: aldimorph, dodemorph, dodemorph-acetate, fenpropimorph, tridemorph, fenpropidin, piperalin, spiroxamine;

F.II 3) Inhibitors of 3-keto reductase: fenhexamid;

F.III) Nucleic acid synthesis inhibitors

40 F.III 1) phenylamides or acyl amino acid fungicides: benalaxyl, benalaxyl-M, kiralaxyl, metalaxyl, metalaxyl-M (mefenoxam), ofurace, oxadixyl;

F.III 2) others: hymexazole, octhilinone, oxolinic acid, bupirimate, 5-fluorocytosine, 5-fluoro-2-(p-tolylmethoxy)pyrimidin-4-amine, 5-fluoro-2-(4-fluorophenylmethoxy)pyrimidin-4-amine;

F.IV) Inhibitors of cell division and cytoskeleton

5 F.IV 1) tubulin inhibitors, such as benzimidazoles, thiophanates: benomyl, carbendazim, fuberidazole, thiabendazole, thiophanate-methyl; triazolopyrimidines: 5-chloro-7-(4-methylpiperidin-1-yl)-6-(2,4,6-trifluorophenyl)-[1,2,4]triazolo[1,5-a]pyrimidine

F.IV 2) other cell division inhibitors: diethofencarb, ethaboxam, pencycuron, fluopicolide, zoxamide, metrafenone, pyriofenone;

F.V) Inhibitors of amino acid and protein synthesis

10 F.V 1) methionine synthesis inhibitors (anilino-pyrimidines): cyprodinil, mepanipyrim, pyrimethanil;

F.V 2) protein synthesis inhibitors: blasticidin-S, kasugamycin, kasugamycin hydrochloride-hydrate, mildiomycin, streptomycin, oxytetracyclin, polyoxine, validamycin A;

F.VI) Signal transduction inhibitors

15 F.VI 1) MAP / histidine kinase inhibitors: fluoroimid, iprodione, procymidone, vinclozolin, fenpiclonil, fludioxonil;

F.VI 2) G protein inhibitors: quinoxyfen;

F.VII) Lipid and membrane synthesis inhibitors

20 F.VII 1) Phospholipid biosynthesis inhibitors: edifenphos, iprobenfos, pyrazophos, isoprothiolane;

F.VII 2) lipid peroxidation: dicloran, quintozene, tecnazene, tolclofos-methyl, biphenyl, chloroneb, etridiazole;

F.VII 3) phospholipid biosynthesis and cell wall deposition: dimethomorph, flumorph, mandipropamid, pyrimorph, benthiavalicarb, iprovalicarb, valifenalate and N-(1-(1-(4-cyano-phenyl)-ethanesulfonyl)-but-2-yl) carbamic acid-(4-fluorophenyl) ester;

25 F.VII 4) compounds affecting cell membrane permeability and fatty acids: propamocarb, propamocarb-hydrochlorid

F.VII 5) fatty acid amide hydrolase inhibitors: oxathiapiprolin;

F.VIII) Inhibitors with Multi Site Action

30 F.VIII 1) inorganic active substances: Bordeaux mixture, copper acetate, copper hydroxide, copper oxychloride, basic copper sulfate, sulfur;

F.VIII 2) thio- and dithiocarbamates: ferbam, mancozeb, manebo, metam, metiram, propineb, thiram, zineb, ziram;

F.VIII 3) organochlorine compounds (e.g. phthalimides, sulfamides, chloronitriles): anilazine,

35 chlorothalonil, captan, folpet, dichlofluanid, dichlorophen, hexachlorobenzene, pentachlorphenole and its salts, phthalide, tolylfluanid, N-(4-chloro-2-nitro-phenyl)-N-ethyl-4-methylbenzenesulfonamide;

F.VIII 4) guanidines and others: guanidine, dodine, dodine free base, guazatine, guazatine-acetate, iminoctadine, iminoctadine-triacetate, iminoctadine-tris(albesilate), dithianon, 2,6-

40 dimethyl-1H,5H-[1,4]dithiino[2,3-c:5,6-c']dipyrrole-1,3,5,7(2H,6H)-tetraone;

F.IX) Cell wall synthesis inhibitors

F.IX 1) inhibitors of glucan synthesis: validamycin, polyoxin B;

F.IX 2) melanin synthesis inhibitors: pyroquilon, tricyclazole, carpropamid, dicyclomet, fenoxanil;

F.X) Plant defence inducers

F.X 1) acibenzolar-S-methyl, probenazole, isotianil, tiadinil, prohexadione-calcium;

5 F.X 2) phosphonates: fosetyl, fosetyl-aluminum, phosphorous acid and its salts, 4-cyclopropyl-N-(2,4-dimethoxyphenyl)thiadiazole-5-carboxamide;

F.XI) Unknown mode of action

bronopol, chinomethionat, cyflufenamid, cymoxanil, dazomet, debacarb, diclomezine, difenzoquat, difenzoquat-methylsulfate, diphenylamin, fenpyrazamine, flumetover, flusulfamide,

10 flutianil, methasulfocarb, nitrpyrin, nitrothal-isopropyl, oxathiapiprolin, picarbutrazox, tolprocarb, 2-[3,5-bis(difluoromethyl)-1H-pyrazol-1-yl]-1-[4-(4-{5-[2-(prop-2-yn-1-yloxy)phenyl]-4,5-dihydro-1,2-oxazol-3-yl}-1,3-thiazol-2-yl)piperidin-1-yl]ethanone, 2-[3,5-bis(difluoromethyl)-1H-pyrazol-1-yl]-1-[4-(4-{5-[2-fluoro-6-(prop-2-yn-1-yloxy)phenyl]-4,5-dihydro-1,2-oxazol-3-yl}-1,3-thiazol-2-yl)piperidin-1-yl]ethanone, 2-[3,5-bis(difluoromethyl)-1H-pyrazol-1-yl]-1-[4-(4-{5-[2-chloro-6-(prop-2-yn-1-yloxy)phenyl]-4,5-dihydro-1,2-oxazol-3-yl}-1,3-thiazol-2-yl)piperidin-1-yl]ethanone,

15 oxin-copper, proquinazid, tebufloquin, tecloftalam, triazoxide, 2-butoxy-6-iodo-3-propylchromen-4-one, N-(cyclopropylmethoxyimino-(6-difluoro-methoxy-2,3-difluoro-phenyl)-methyl)-2-phenyl acetamide, N'-(4-(4-chloro-3-trifluoromethyl-phenoxy)-2,5-dimethyl-phenyl)-N-ethyl-N-methyl formamidine, N'-(4-(4-fluoro-3-trifluoromethyl-phenoxy)-2,5-dimethyl-phenyl)-N-ethyl-N-methyl

20 formamidine, N'-(2-methyl-5-trifluoromethyl-4-(3-trimethylsilanyl-propoxy)-phenyl)-N-ethyl-N-methyl formamidine, N'-(5-difluoromethyl-2-methyl-4-(3-trimethylsilanyl-propoxy)-phenyl)-N-ethyl-N-methyl formamidine, methoxy-acetic acid 6-tert-butyl-8-fluoro-2,3-dimethyl-quinolin-4-yl ester, 3-[5-(4-methylphenyl)-2,3-dimethyl-isoxazolidin-3-yl]-pyridine, 3-[5-(4-chloro-phenyl)-2,3-dimethyl-isoxazolidin-3-yl]-pyridine (pyrisoxazole), N-(6-methoxy-pyridin-3-yl) cyclopropane-

25 carboxylic acid amide, 5-chloro-1-(4,6-dimethoxy-pyrimidin-2-yl)-2-methyl-1H-benzoimidazole, 2-(4-chloro-phenyl)-N-[4-(3,4-dimethoxy-phenyl)-isoxazol-5-yl]-2-prop-2-ynyl-oxo-phenyl-acetamide, ethyl (Z)-3-amino-2-cyano-3-phenyl-prop-2-enoate, pentyl N-[6-[(Z)-[(1-methyltetrazol-5-yl)-phenyl-methylene]amino]oxymethyl]-2-pyridyl]carbamate, 2-[2-[(7,8-difluoro-2-methyl-3-quinolyl)oxy]-6-fluoro-phenyl]propan-2-ol, 2-[2-fluoro-6-[(8-fluoro-2-methyl-3-

30 quinolyl)oxy]phenyl]propan-2-ol, 3-(5-fluoro-3,3,4,4-tetramethyl-3,4-dihydroisoquinolin-1-yl)quinoline, 3-(4,4-difluoro-3,3-dimethyl-3,4-dihydroisoquinolin-1-yl)quinoline, 3-(4,4,5-trifluoro-3,3-dimethyl-3,4-dihydroisoquinolin-1-yl)quinoline;

F.XII) Biopesticides

F.XII 1) Microbial pesticides with fungicidal, bactericidal, viricidal and/or plant defense activator

35 activity: *Ampelomyces quisqualis*, *Aspergillus flavus*, *Aureobasidium pullulans*, *Bacillus amyloliquefaciens*, *B. mojavensis*, *B. pumilus*, *B. simplex*, *B. solisalsi*, *B. subtilis*, *B. subtilis* var. *amyloliquefaciens*, *Candida oleophila*, *C. saitoana*, *Clavibacter michiganensis* (bacteriophages), *Coniothyrium minitans*, *Cryphonectria parasitica*, *Cryptococcus albidus*, *Dilophosphora alopecuri*, *Fusarium oxysporum*, *Clonostachys rosea* f. *catenulata* (also named *Gliocladium catenulatum*), *Gliocladium roseum*, *Lysobacter antibioticus*, *L. enzymogenes*, *Metschnikowia fructicola*, *Microdochium dimerum*, *Microsphaeropsis ochracea*, *Muscodor albus*, *Paenibacillus polymyxa*,

Pantoea vagans, Phlebiopsis gigantea, Pseudomonas sp., Pseudomonas chloraphis, Pseudozyma flocculosa, Pichia anomala, Pythium oligandrum, Sphaerodes mycoparasitica, Streptomyces griseoviridis, S. lydicus, S. violaceusniger, Talaromyces flavus, Trichoderma asperellum, T. atroviride, T. fertile, T. gamsii, T. harmatum, T. harzianum; mixture of T. harzianum and T. viride; mixture of T. polysporum and T. harzianum; T. stromaticum, T. virens (also named Gliocladium virens), T. viride, Typhula phacorrhiza, Ulocladium oudemansii, Verticillium dahlia, zucchini yellow mosaic virus (avirulent strain);  
5 F.XII 2) Biochemical pesticides with fungicidal, bactericidal, viricidal and/or plant defense activator activity: chitosan (hydrolysate), harpin protein, laminarin, Menhaden fish oil, natamycin, Plum  
10 pox virus coat protein, potassium or sodium bicarbonate, Reynoutria sachalinensis extract, salicylic acid, tea tree oil;

Compound I

15 Carboxamide derivatives showing generally pesticidal activity have been described previously. WO200573165 and WO2010018714 describe carboxamide compounds, their preparation and their use as pest control agents. WO2007013150, JP2011-157294, JP2011-157295 and JP2011-157296 describe mixtures of carboxamides with other active ingredients.  
Preparation of the compound of formula I can further be accomplished according to standard  
20 methods of organic chemistry, e.g. by the methods or working examples described in WO 2010/018857 without being limited to the routes given therein.

25 The prior art does not disclose pesticidal mixtures comprising such selective carboxamide compound according to the present invention showing unexpected and synergistic effects in combination with other pesticidically active compounds.

The compound I of formula (I) includes its tautomers, racemic mixtures, individual pure enantiomers and diastereomers and the optically active mixtures.

30 Compounds II

The above list M of pesticides, is grouped and numbered according the Mode of Action Classification of the Insecticide Resistance Action Committee (IRAC).

35 The commercially available compounds II of the group M listed above may be found in The Pesticide Manual, 15th Edition, C. D. S. Tomlin, British Crop Protection Council (2011) among other publications.

40 The neonicotinoid cycloxyprid is known from WO20120/069266 and WO2011/06946, and the neonicotinoid compound II-M.4A.2, sometimes also to be named as Guadipyr, is known from WO2013/003977, and the neonicotinoid compound II-M.4A.3. (approved as paichongding in

China) is known from WO2010/069266. The Metaflumizone analogue II-M.22B.1 is described in CN 10171577 and the analogue II-M.22B.2 in CN102126994. The phthalamides II-M.28.1 and II-M.28.2 are both known from WO 2007/101540. The anthranilamide II-M.28.3 has been described in WO2005/077934. The hydrazide compound II-M.28.4 has been described in WO

5 The anthranilamides II-M.28.5a) to II-M.28.5h) can be prepared as described in WO 2007/006670, WO2013/024009 and WO2013/024010, the anthranilamide compound II-M.28.5i) is described in WO2011/085575, the compound II-M.28.5j) in WO2008/134969, the compound II-M.28.5k) in US2011/046186 and the compound II-M.28.5l) in WO2012/034403. The diamide compounds II-M.28.6 and II-M.28.7 can be found in CN102613183. The anthranil-10 amide compounds II-M.28.8a) and II-M.28.8b) are known from WO2010/069502.

The quinoline derivative flometoquin is shown in WO2006/013896. The aminofuranone compounds flupyradifurone is known from WO 2007/115644. The sulfoximine compound sulfoxaflor is known from WO2007/149134. From the pyrethroids group momfluorothrin is known from

15 US6908945 and heptafluthrin from WO10133098. The oxadiazolone compound metoxadiazone can be found in JP13/166707. The pyrazole acaricide pyflubumide is known from WO2007/020986. The isoxazoline compounds have been described in following publications: fluralaner in WO2005/085216, afoxolaner in WO2009/002809 and in WO2011/149749 and the isoxazoline compound II-M.X.9 in WO2013/050317. The pyripyropene derivative afidopyropen 20 has been described in WO 2006/129714. The nematicide tioxazafen has been disclosed in WO09023721 and nematicide fluopyram in WO2008126922, nematicidal mixtures comprising flupyram in WO2010108616. The triflumezopyrim compound was described in WO2012/092115.

The spiroketal-substituted cyclic ketoenol derivative II-M.X.3 is known from WO2006/089633 25 and the biphenyl-substituted spirocyclic ketoenol derivative II-M.X.4 from WO2008/067911. The triazoylphenylsulfide II-M.X.5 has been described in WO2006/043635, and biological control agents on basis of *bacillus firmus* in WO2009/124707.

The compounds II-M.X.6a) to II-M.X.6i) listed under II-M.X.6 have been described in WO2012/029672 and compounds II-M.X.6j) and II-M.X.6k) in WO2013129688. The nematicide 30 compound II-M.X.8 in WO2013/055584 and the Pyridalyl-type analogue II-M.X.10 in WO2010/060379. The carboxamide compounds II-M.X.11.b) to II-M.X.11.h) can be prepared as described in WO 2010/018714 and the carboxamide II-M.X.11i) to M.X.11.p) are described WO2010/127926. The pyridylthiazoles II-M.X.12.a) to M.X.12.c) are known from WO2010/006713, II-M.X.12.c) and II-M.X.12.d) WO2012000896 and II-M.X.12.f) to II-M.X.12.m) 35 in WO2010129497. The malononitrile compound II-M.X.13 was described in WO2009/005110. The compounds II-M.X.14a) and II-M.X.14b) are known from WO2007/101369. The compound II-M.X.15 can be found in WO13192035.

The biopesticides of group II-M.Y. are disclosed further below in the paragraphs about biopesticides (from groups II-M.Y and F.XII).

The active compounds III mentioned above of groups F.I to F.XI are funicidal active pesticides of chemical nature described by common names . Their preparation and their activity against pests is known (cf.: <http://www.alanwood.net/pesticides/>); these pesticides are often commercially available.

5 The funicidal pesticides described by IUPAC nomenclature, their preparation and their pesticidal activity is also known (cf. Can. J. Plant Sci. 48(6), 587-94, 1968; EP-A 141 317; EP-A 152 031; EP-A 226 917; EP-A 243 970; EP-A 256 503; EP-A 428 941; EP-A 532 022; EP-A 1 028 125; EP-A 1 035 122; EP-A 1 201 648; EP-A 1 122 244, JP 2002316902; DE 19650197; DE 10021412; DE 102005009458; US 3,296,272; US 3,325,503; WO 98/46608; WO 99/14187; WO 10 99/24413; WO 99/27783; WO 00/29404; WO 00/46148; WO 00/65913; WO 01/54501; WO 01/56358; WO 02/22583; WO 02/40431; WO 03/10149; WO 03/11853; WO 03/14103; WO 03/16286; WO 03/53145; WO 03/61388; WO 03/66609; WO 03/74491; WO 04/49804; WO 04/83193; WO 05/120234; WO 05/123689; WO 05/123690; WO 05/63721; WO 05/87772; WO 05/87773; WO 06/15866; WO 06/87325; WO 06/87343; WO 07/82098; WO 07/90624, WO 15 11/028657, WO2012/168188, WO 2007/006670, WO 11/77514; WO13/047749, WO 10/069882, WO 13/047441, WO 03/16303, WO 09/90181, WO 13/007767, WO 13/010862, WO 13/024009 and WO 13/024010).

#### Biopesticides as Compound II or Compound III

20 The biopesticides from group II.M.Y or F.XII, their preparation and their pesticidal activity e.g. against harmful fungi or insects are known (e-Pesticide Manual V 5.2 (ISBN 978 1 901396 85 0) (2008-2011); <http://www.epa.gov/opp00001/biopesticides/>, see product lists therein; <http://www.omri.org/omri-lists>, see lists therein; Bio-Pesticides Database BPDB 25 <http://sitem.herts.ac.uk/aeru/bpdb/>, see A to Z link therein).

The biopesticides from group II.M.Y or F.XII. may also have insecticidal, fungicidal, acaricidal, molluscidal, viricidal, bactericidal, pheromone, nematicidal, plant defense activator, plant stress reducing, plant growth regulator, plant growth promoting, plant growth regulator and/or yield enhancing activity.

30 Many of these biopesticides are registered and/or are commercially available: aluminium silicate (Screen™ Duo from Certis LLC, USA), Agrobacterium radio-bacter K1026 (e.g. NoGall® from Becker Underwood Pty Ltd., Australia), A. radiobacter K84 (Nature 280, 697-699, 1979; e.g. GallTroll® from AG Biochem, Inc., C, USA), Ampelomyces quisqualis M-10 (e.g. AQ 10® from Intrachem Bio GmbH & Co. KG, Germany), Ascophyllum nodosum (Norwegian kelp, Brown 35 kelp) extract or filtrate (e.g. ORKA GOLD from Becker Underwood, South Africa; or Goemar® from Laboratoires Goemar, France), Aspergillus flavus NRRL 21882 isolated from a peanut in Georgia in 1991 by the USDA, National Peanut Research Laboratory (e.g. in Afla-Guard® from Syngenta, CH), mixtures of Aureobasidium pullulans DSM14940 and DSM 14941 (e.g. blastospores in BlossomProtect® from bio-ferm GmbH, Germany), Azospirillum brasilense XOH (e.g. 40 AZOS from Xtreme Gardening, USA or RTI Reforestation Technologies International; USA), Bacillus amyloliquefaciens FZB42 (e.g. in RhizoVital® 42 from AbiTEP GmbH, Berlin, Germa-

ny), *B. amyloliquefaciens* IN937a (J. Microbiol. Biotechnol. 17(2), 280– 286, 2007; e.g. in BioYield® from Gustafson LLC, TX, USA), *B. amyloliquefaciens* IT-45 (CNCM I-3800) (e.g. Rhizocell C from ITHEC, France), *B. amyloliquefaciens* subsp. *plantarum* MBI600 (NRRL B-50595, deposited at United States Department of Agriculture) (e.g. Integral®, Subtilex® NG from Becker Underwood, USA), *B. cereus* CNCM I-1562 (US 6,406,690), *B. firmus* CNCM I-1582 (WO 2009/126473, WO 2009/124707, US 6,406,690; Votivo® from Bayer Crop Science LP, USA), *B. pumilus* GB34 (ATCC 700814; e.g. in YieldShield® from Gustafson LLC, TX, USA), and *Bacillus pumilus* KFP9F (NRRL B-50754) (e.g. in BAC-UP or FUSION-P from Becker Underwood South Africa), *B. pumilus* QST 2808 (NRRL B-30087) (e.g. Sonata® and Ballad® Plus from AgraQuest Inc., USA), *B. subtilis* GB03 (e.g. Kodiak® or BioYield® from Gustafson, Inc., USA; or Companion® from Growth Products, Ltd., White Plains, NY 10603, USA), *B. subtilis* GB07 (Epic® from Gustafson, Inc., USA), *B. subtilis* QST-713 (NRRL B-21661 in Rhapsody®, Serenade® MAX and Serenade® ASO from AgraQuest Inc., USA), *B. subtilis* var. *amylolique-faciens* FZB24 (e.g. Taegro® from Novozyme Biologicals, Inc., USA), *B. subtilis* var. *amyloliquefaciens* D747 (e.g. 15 Double Nickel 55 from Certis LLC, USA), *B. thuringiensis* ssp. *aizawai* ABTS-1857 (e.g. in Xen-Tari® from BioFa AG, Münsingen, Germany), *B. t.* ssp. *aizawai* SAN 401 I, ABG-6305 and ABG-6346, *Bacillus t.* ssp. *israelensis* AM65-52 (e.g. in VectoBac® from Valent BioSciences, IL, USA), *Bacillus thuringiensis* ssp. *kurstaki* SB4 (NRRL B-50753; e.g. Beta Pro® from Becker Underwood, South Africa), *B. t.* ssp. *kurstaki* ABTS-351 identical to HD-1 (ATCC SD-1275; e.g. 20 in Dipel® DF from Valent BioSciences, IL, USA), *B. t.* ssp. *kurstaki* EG 2348 (e.g. in Lepinox® or Rapax® from CBC (Europe) S.r.l., Italy), *B. t.* ssp. *tenebrionis* DSM 2803 (EP 0 585 215 B1; identical to NRRL B-15939; Mycogen Corp.), *B. t.* ssp. *tenebrionis* NB-125 (DSM 5526; EP 0 585 215 B1; also referred to as SAN 418 I or ABG-6479; former production strain of Novo-Nordisk), *B. t.* ssp. *tenebrionis* NB-176 (or NB-176-1) a gamma-irradiated, induced high-yielding 25 mutant of strain NB-125 (DSM 5480; EP 585 215 B1; Novodor® from Valent BioSciences, Switzerland), *Beauveria bassiana* ATCC 74040 (e.g. in Naturalis® from CBC (Europe) S.r.l., Italy), *B. bassiana* DSM 12256 (US 200020031495; e.g. BioExpert® SC from Live Sytems Technology S.A., Colombia), *B. bassiana* GHA (BotaniGard® 22WGP from Laverlam Int. Corp., USA), *B. bassiana* PPRI 5339 (ARSEF number 5339 in the USDA ARS collection of entomopathogenic 30 fungal cultures; NRRL 50757) (e.g. BroadBand® from Becker Underwood, South Africa), *B. brongniartii* (e.g. in Melocont® from Agrifutur, Agrianello, Italy, for control of cockchafer; J. Appl. Microbiol. 100(5),1063-72, 2006), *Bradyrhizobium* sp. (e.g. Vault® from Becker Underwood, USA), *B. japonicum* (e.g. VAULT® from Becker Underwood, USA), *Candida oleophila* I-182 (NRRL Y-18846; e.g. Aspire® from Ecogen Inc., USA, Phytoparasitica 23(3), 231-234, 1995), 35 *C. oleophila* strain O (NRRL Y-2317; Biological Control 51, 403– 408, 2009),, *Candida saitoana* (e.g. Biocure® (in mixture with lysozyme) and BioCoat® from Micro Flo Company, USA (BASF SE) and Arysta), *Chitosan* (e.g. Armour-Zen® from BotriZen Ltd., NZ), *Clonostachys rosea* f. *catenulata*, also named *Gliocladium catenulatum* (e.g. isolate J 1446: Prestop® from Verdera Oy, Finland), *Chromobacterium subtsugae* PRAA4-1 isolated from soil under an eastern hemlock (*Tsuga canadensis*) in the Catoctin Mountain region of central Maryland (e.g. in GRANDE- 40 VO from Marrone Bio Innovations, USA), *Coniothyrium minitans* CON/M/91-08 (e.g. Contans®

WG from Prophya, Germany), *Cryphonectria parasitica* (e.g. *Endothia parasitica* from CNICM, France), *Cryptococcus albidus* (e.g. YIELD PLUS® from Anchor Bio-Technologies, South Africa), *Cryptophlebia leucotreta* granulovirus (CrleGV) (e.g. in CRYPTTEX from Adermatt Biocontrol, Switzerland), *Cydia pomonella* granulovirus (CpGV) V03 (DSM GV-0006; e.g. in MADEX 5 Max from Adermatt Biocontrol, Switzerland), CpGV V22 (DSM GV-0014; e.g. in MADEX Twin from Adermatt Biocontrol, Switzerland), *Delftia acidovorans* RAY209 (ATCC PTA-4249; WO 2003/57861; e.g. in BIOBOOST from Brett Young, Winnipeg, Canada), *Dilophosphora alopecuri* (Twist Fungus from Becker Underwood, Australia), *Ecklonia maxima* (kelp) extract (e.g. KEL-PAK SL from Kelp Products Ltd, South Africa), formononetin (e.g. in MYCONATE from Plant 10 Health Care plc, U.K.), *Fusarium oxysporum* (e.g. BIOFOX® from S.I.A.P.A., Italy, FUSAC-LEAN® from Natural Plant Protection, France), *Glomus intraradices* (e.g. MYC 4000 from ITH-EC, France), *Glomus intraradices* RTI-801 (e.g. MYKOS from Xtreme Gardening, USA or RTI Reforestation Technologies International; USA), grapefruit seeds and pulp extract (e.g. BC-1000 from Chemie S.A., Chile), harpin (alpha-beta) protein (e.g. MESSENGER or HARP-N-Tek 15 from Plant Health Care plc, U.K.; Science 257, 1– 132, 1992), *Heterorhabditis bacteriophaga* (e.g. Nemasys® G from Becker Underwood Ltd., UK), *Isaria fumosorosea* Apopka-97 (ATCC 20874) (PFR-97™ from Certis LLC, USA), cis-jasmone (US 8,221,736), laminarin (e.g. in VAC-CIPLANT from Laboratoires Goemar, St. Malo, France or Stähler SA, Switzerland), *Lecanicillium longisporum* KV42 and KV71 (e.g. VERTALEC® from Koppert BV, Netherlands), *L. muscarium* KV01 (formerly *Verticillium lecanii*) (e.g. MYCOTAL from Koppert BV, Netherlands), *Lyso- 20 bacter antibioticus* 13-1 (Biological Control 45, 288-296, 2008), *L. antibioticus* HS124 (Curr. Microbiol. 59(6), 608-615, 2009), *L. enzymogenes* 3.1T8 (Microbiol. Res. 158, 107-115; Biological Control 31(2), 145-154, 2004), *Metarhizium anisopliae* var. *acridum* IMI 330189 (isolated from *Ornithacris cavroisi* in Niger; also NRRL 50758) (e.g. GREEN MUSCLE® from Becker Under- 25 wood, South Africa), *M. a.* var. *acridum* FI-985 (e.g. GREEN GUARD® SC from Becker Underwood Pty Ltd, Australia), *M. anisopliae* FI-1045 (e.g. BIOCANE® from Becker Underwood Pty Ltd, Australia), *M. anisopliae* F52 (DSM 3884, ATCC 90448; e.g. MET52® Novozymes Biologicals BioAg Group, Canada), *M. anisopliae* ICIPE 69 (e.g. METATHRIPOL from ICIPE, Nairobi, Kenya), *Metschnikowia fructicola* (NRRL Y-30752; e.g. SHEMER® from Agrogreen, Israel, now 30 distributed by Bayer CropSciences, Germany; US 6,994,849), *Microdochium dimerum* (e.g. ANTIBOT® from Agrauxine, France), *Microsphaeropsis ochracea* P130A (ATCC 74412 isolated from apple leaves from an abandoned orchard, St-Joseph-du-Lac, Quebec, Canada in 1993; Mycologia 94(2), 297-301, 2002), *Muscodor albus* QST 20799 originally isolated from the bark of a cinnamon tree in Honduras (e.g. in development products Muscudor™ or QRD300 from 35 AgraQuest, USA), Neem oil (e.g. TRILOGY®, TRIACT® 70 EC from Certis LLC, USA), *Nomuraea rileyi* strains SA86101, GU87401, SR86151, CG128 and VA9101, *Paecilomyces fumosoroseus* FE 9901 (e.g. NO FLY™ from Natural Industries, Inc., USA), *P. lilacinus* 251 (e.g. in BioAct®/MeloCon® from Prophya, Germany; Crop Protection 27, 352-361, 2008; originally isolated from infected nematode eggs in the Philippines), *P. lilacinus* DSM 15169 (e.g. NEMATA® 40 SC from Live Systems Technology S.A., Colombia), *P. lilacinus* BCP2 (NRRL 50756; e.g. PL GOLD from Becker Underwood BioAg SA Ltd, South Africa), mixture of *Paenibacillus alvei*

NAS6G6 (NRRL B-50755), *Pantoea vagans* (formerly *agglomerans*) C9-1 (originally isolated in 1994 from apple stem tissue; BlightBan C9-1® from NuFrams America Inc., USA, for control of fire blight in apple; *J. Bacteriol.* 192(24) 6486– 6487, 2010), *Pasteuria* spp. ATCC PTA-9643 (WO 2010/085795), *Pasteuria* spp. ATCC SD-5832 (WO 2012/064527), *P. nishizawae* (WO 5 2010/80169), *P. penetrans* (US 5,248,500), *P. ramosa* (WO 2010/80619), *P. thornea* (WO 2010/80169), *P. usgae* (WO 2010/80169), *Penicillium bilaiae* (e.g. Jump Start® from Novozymes Biologicals BioAg Group, Canada, originally isolated from soil in southern Alberta; Fertilizer Res. 39, 97-103, 1994), *Phlebiopsis gigantea* (e.g. RotStop® from Verdera Oy, Finland), *Pichia anomala* WRL-076 (NRRL Y-30842; US 8,206,972), potassium bicarbonate (e.g. Ami-10 carb® from Stähler SA, Switzerland), potassium silicate (e.g. Sil-MATRIX™ from Certis LLC, USA), *Pseudozyma flocculosa* PF-A22 UL (e.g. Sporodex® from Plant Products Co. Ltd., Canada), *Pseudomonas* sp. DSM 13134 (WO 2001/40441, e.g. in PRORADIX from Sourcon Paderna GmbH & Co. KG, Hechinger Str. 262, 72072 Tübingen, Germany), *P. chloraphis* MA 342 (e.g. in CERALL or CEDEMON from BioAgri AB, Uppsala, Sweden), *P. fluorescens* CL 145A (e.g. in ZEQUANOX from Marrone BioInnovations, Davis, CA, USA; *J. Invertebr. Pathol.* 113(1):104-14, 2013), *Pythium oligandrum* DV 74 (ATCC 38472; e.g. POLYVERSUM® from Remeslo SSRO, Biopreparaty, Czech Rep. and GOWAN, USA; US 2013/0035230), *Reynoutria sachalinensis* extract (e.g. REGALIA® SC from Marrone BioInnovations, Davis, CA, USA), *Rhizobium leguminosarum* bv. *phaseolii* (e.g. RHIZO-STICK from Becker Underwood, USA), *R. I. trifolii* RP113-7 (e.g. DORMAL from Becker Underwood, USA; *Appl. Environ. Microbiol.* 44(5), 1096-1101), *R. I. bv. viciae* P1NP3Cst (also referred to as 1435; *New Phytol* 179(1), 224-235, 2008; e.g. in NODULATOR PL Peat Granule from Becker Underwood, USA; or in NODULATOR 20 XL PL bfrom Becker Underwood, Canada), *R. I. bv. viciae* SU303 (e.g. NODULAID Group E from Becker Underwood, Australia), *R. I. bv. viciae* WSM1455 (e.g. NODULAID Group F from 25 Becker Underwood, Australia), *R. tropici* SEMIA 4080 (identical to PRF 81; *Soil Biology & Biochemistry* 39, 867– 876, 2007), *Sinorhizobium meliloti* MSDJ0848 (INRA, France) also referred to as strain 2011 or RCR2011 (*Mol Gen Genomics* (2004) 272: 1– 17; e.g. DORMAL ALFALFA from Becker Underwood, USA; NITRAGIN® Gold from Novozymes Biologicals BioAg Group, Canada), *Sphaerodes mycoparasitica* IDAC 301008-01 (WO 2011/022809), *Steinernema car-* 30 *pocapsae* (e.g. MILLENIUM® from Becker Underwood Ltd., UK), *S. feltiae* (NEMASHIELD® from BioWorks, Inc., USA; NEMASYS® from Becker Underwood Ltd., UK), *S. kraussei* L137 (NEMASYS® L from Becker Underwood Ltd., UK), *Streptomyces griseoviridis* K61 (e.g. MY-COSTOP® from Verdera Oy, Espoo, Finland; *Crop Protection* 25, 468-475, 2006), *S. lydicus* WYEC 108 (e.g. Actinovate® from Natural Industries, Inc., USA, US 5,403,584), *S. vio-* 35 *laceusniger* YCED-9 (e.g. DT-9® from Natural Industries, Inc., USA, US 5,968,503), *Talaromyces flavus* V117b (e.g. PROTUS® from Prophyta, Germany), *Trichoderma asperellum* SKT-1 (e.g. ECO-HOPE® from Kumiai Chemical Industry Co., Ltd., Japan), *T. asperellum* ICC 012 (e.g. in TENET WP, REMDIER WP, BIOTEN WP from Isagro NC, USA, BIO-TAM from 40 AgraQuest, USA), *T. atroviride* LC52 (e.g. SENTINEL® from Agrimm Technologies Ltd, NZ), *T. atroviride* CNCM I-1237 (e.g. in Esquive WG from Agrauxine S.A., France, e.g. against pruning wound diseases on vine and plant root pathogens), *T. fertile* JM41R (NRRL 50759; e.g.

RICHPLUS™ from Becker Underwood Bio Ag SA Ltd, South Africa), *T. gamsii* ICC 080 (e.g. in TENET WP, REMDIER WP, BIOTEN WP from Isagro NC, USA, BIO-TAM from AgraQuest, USA), *T. harzianum* T-22 (e.g. PLANTSHIELD® der Firma BioWorks Inc., USA), *T. harzianum* TH 35 (e.g. ROOT PRO® from Mycontrol Ltd., Israel), *T. harzianum* T-39 (e.g. TRICHODEX®

5 and TRICHODERMA 2000® from Mycontrol Ltd., Israel and Makhteshim Ltd., Israel), *T. harzianum* and *T. viride* (e.g. TRICHOPEL from Agrimm Technologies Ltd, NZ), *T. harzianum* ICC012 and *T. viride* ICC080 (e.g. REMEDIER® WP from Isagro Ricerca, Italy), *T. polysporum* and *T. harzianum* (e.g. BINAB® from BINAB Bio-Innovation AB, Sweden), *T. stromaticum* (e.g. TRICOVAB® from C.E.P.L.A.C., Brazil), *T. virens* GL-21 (also named Gliocladium virens) (e.g.

10 SOILGARD® from Certis LLC, USA), *T. viride* (e.g. TRIECO® from Ecosense Labs. (India) Pvt. Ltd., Indien, BIO-CURE® F from T. Stanes & Co. Ltd., Indien), *T. viride* TV1 (e.g. *T. viride* TV1 from Agribiotec srl, Italy) and *Ulocladium oudemansii* HRU3 (e.g. in BOTRY-ZEN® from Botry-Zen Ltd, NZ).

Strains can be sourced from genetic resource and deposition centers: American Type Culture

15 Collection, 10801 University Blvd., Manassas, VA 20110-2209, USA (strains with ATCC prefic); CABI Europe - International Mycological Institute, Bakeham Lane, Egham, Surrey, TW20 9TYNRRL, UK (strains with prefices CABI and IMI); Centraalbureau voor Schimmelcultures, Fungal Biodiversity Centre, Uppsalaan 8, PO Box 85167, 3508 AD Utrecht, Netherlands (strains with prefic CBS); Division of Plant Industry, CSIRO, Canberra, Australia (strains with prefix CC);

20 Collection Nationale de Cultures de Microorganismes, Institut Pasteur, 25 rue du Docteur Roux, F-75724 PARIS Cedex 15 (strains with prefix CNCM); Leibniz-Institut DSMZ-Deutsche Sammlung von Mikroorganismen und Zellkulturen GmbH, Inhoffenstraße 7 B, 38124 Braunschweig, Germany (strains with prefix DSM); International Depository Authority of Canada Collection, Canada (strains with prefix IDAC); International Collection of Micro-organisms from

25 Plants, Landcare Research, Private Bag 92170, Auckland Mail Centre, Auckland 1142, New Zealand (strains with prefix ICMP); IITA, PMB 5320, Ibadan, Nigeria (strains with prefix IITA); The National Collections of Industrial and Marine Bacteria Ltd., Torry Research Station, P.O. Box 31, 135 Abbey Road, Aberdeen, AB9 8DG, Scotland (strains with prefix NCIMB); ARS Culture Collection of the National Center for Agricultural Utilization Research, Agricultural Research

30 Service, U.S. Department of Agriculture, 1815 North University Street, Peoria, Illinois 61604, USA (strains with prefix NRRL); Department of Scientific and Industrial Research Culture Collection, Applied Biochemistry Division, Palmerston North, New Zealand (strains with prefix NZP); FEPAGRO-Fundação Estadual de Pesquisa Agropecuária, Rua Gonçalves Dias, 570, Bairro Menino Deus, Porto Alegre/RS, Brazil (strains with prefix SEMIA); SARDI, Adelaide,

35 South Australia (strains with prefix SRDI); U.S. Department of Agriculture, Agricultural Research Service, Soybean and Alfalfa Research Laboratory, BARC-West, 10300 Baltimore Boulevard, Building 011, Room 19-9, Beltsville, MD 20705, USA (strains with prefix USDA: Beltsville Rhizobium Culture Collection Catalog March 1987 USDA-ARS ARS-30:

40 [http://pdf.usaid.gov/pdf\\_docs/PNAAW891.pdf](http://pdf.usaid.gov/pdf_docs/PNAAW891.pdf); and Murdoch University, Perth, Western Australia (strains with prefix WSM). Further strains may be found at the Global catalogue of Microorganisms: <http://gcm.wfcc.info/> and

<http://www.landcareresearch.co.nz/resources/collections/icmp> and further references to strain collections and their prefixes at <http://refs.wdcm.org/collections.htm>.

*Bacillus amyloliquefaciens* subsp. *plantarum* MBI600 (NRRL B-50595) is deposited under accession number NRRL B-50595 with the strain designation *Bacillus subtilis* 1430 (and identical

5 to NCIMB 1237). Recently, MBI 600 has been re-classified as *Bacillus amyloliquefaciens* subsp. *plantarum* based on polyphasic testing which combines classical microbiological methods relying on a mixture of traditional tools (such as culture-based methods) and molecular tools (such as genotyping and fatty acids analysis). Thus, *Bacillus subtilis* MBI600 (or MBI 600 or MBI-600) is identical to *Bacillus amyloliquefaciens* subsp. *plantarum* MBI600, formerly *Bacillus subtilis*

10 MBI600. *Bacillus amyloliquefaciens* MBI600 is known as plant growth-promoting rice seed treatment from *Int. J. Microbiol. Res.* 3(2) (2011), 120-130 and further described e.g. in US 2012/0149571 A1. This strain MBI600 is e.g. commercially available as liquid formulation product INTEGRAL® (Becker-Underwood Inc., USA).

15 *Bacillus subtilis* strain FB17 was originally isolated from red beet roots in North America (System Appl. Microbiol 27 (2004) 372-379). This *B. subtilis* strain promotes plant health (US 2010/0260735 A1; WO 2011/109395 A2). *B. subtilis* FB17 has also been deposited at ATCC under number PTA-11857 on April 26, 2011. *Bacillus subtilis* strain FB17 may be referred elsewhere to as UD1022 or UD10-22.

20 *Bacillus amyloliquefaciens* AP-136 (NRRL B-50614), *B. amyloliquefaciens* AP-188 (NRRL B-50615), *B. amyloliquefaciens* AP-218 (NRRL B-50618), *B. amyloliquefaciens* AP-219 (NRRL B-50619), *B. amyloliquefaciens* AP-295 (NRRL B-50620), *B. japonicum* SEMIA 5079 (e.g. Gelfix 5 or Adhere 60 from Niteral Urbana Laoboratories, Brazil, a BASF Company), *B. japonicum* SEMIA 5080 (e.g. GELFIX 5 or ADHERE 60 from Niteral Urbana Laoboratories, Brazil, a BASF Company), *B. mojavensis* AP-209 (NRRL B-50616), *B. solisalsi* AP-217 (NRRL B-50617), *B. pumilus* 25 strain INR-7 (otherwise referred to as BU-F22 (NRRL B-50153) and BU-F33 (NRRL B-50185)), *B. simplex* ABU 288 (NRRL B-50340) and *B. amyloliquefaciens* subsp. *plantarum* MBI600 (NRRL B-50595) have been mentioned i.a. in US patent appl. 20120149571, US 8,445,255, WO 2012/079073. *Bradyrhizobium japonicum* USDA 3 is known from US patent 7,262,151.

30 Jasmonic acid or salts (jasmonates) or derivatives include without limitation potassium jasmonate, sodium jasmonate, lithium jasmonate, ammonium jasmonate, dimethyl-ammonium jasmonate, isopropylammonium jasmonate, diolammonium jasmonate, diethetriethanolammonium jasmonate, jasmonic acid methyl ester, jasmonic acid amide, jasmonic acid methylamide, jasmonic acid-L-amino acid (amide-linked) conjugates (e.g., conjugates with L-isoleucine, L-valine, L-leucine, or L-phenylalanine), 12-oxo-phytodienoic acid, coronatine, coronafacoyl-L-

35 serine, coronafacoyl-L-threonine, methyl esters of 1-oxo-indanoyl-isoleucine, methyl esters of 1-oxo-indanoyl-leucine, coronalon (2-[(6-ethyl-1-oxo-indane-4-carbonyl) -amino]-3-methyl -pentanoic acid methyl ester), linoleic acid or derivatives thereof and cis-jasmone, or combinations of any of the above.

40 Bilobalide and the ginkgolides are known components of the ginkgo tree. Bilobalide is the common name for (3aS,5aR,8aS,9R,10aR)-9-tert-butyl-8,9-dihydroxydihydro-9H-furo[2,3-b]furo[3',2';2,3]cyclopenta[1,2-c]furan-2,4,7(3H,8H)-trione (CAS 33570-04-6) and the following

ginkgolides Ginkgolide (CAS 15291-75-5), Ginkgolide B (CAS 15291-77-7), Ginkgolide C (15291-76-6), Ginkgolide J (15291-79-9), Ginkgolide M (15291-78-8) have also been previously described and recorded. The compounds are commercially available, or can be obtained, preferably from ginkgo leaves by methods known in the art and described e.g. in US 5,700,468, EP-

5 A 360 556, EP-A 0 431 535 and JP-A 09-110713. Further, the compounds Bilobalide (in enantiopure form), Ginkgolide A (in its racemic form) and Ginkgolide B (in its racemic form) can be obtained by chemical synthesis, as disclosed e.g. in Tetrahedron Letters (1988), 29(28), 3423-6, Tetrahedron Letters (1988), 29(26), 3205-6 and Journal of the American Chemical Society (2000), 122(35), 8453-8463, respectively.

10

#### Mixtures with Biopesticides

According to one embodiment of the inventive mixtures, at least one biopesticide II is selected from the groups II-M.Y-1 to II-M.Y-2:

15 According to one embodiment of the inventive mixtures, the at least one biopesticide II is selected from group II-M.Y-1.

According to one embodiment of the inventive mixtures, the at least one biopesticide II is selected from II-M.Y-2.

20 According to one embodiment of the inventive mixtures, the at least one biopesticide II is *Bacillus amyloliquefaciens* subsp. *plantarum* MBI600. These mixtures are particularly suitable in soybean.

According to another embodiment of the inventive mixtures, the at least one biopesticide II is *B. pumilus* strain INR-7 (otherwise referred to as BU-F22 (NRRL B-50153) and BU-F33 (NRRL B-

25 50185; see WO 2012/079073). These mixtures are particularly suitable in soybean and corn.

According to another embodiment of the inventive mixtures, the at least one biopesticide II is *Bacillus pumilus*, preferably *B. pumilus* strain INR-7 (otherwise referred to as BU-F22 (NRRL B-50153) and BU-F33 (NRRL B-50185). These mixtures are particularly suitable in soybean and corn.

30 According to another embodiment of the inventive mixtures, the at least one biopesticide II is *Bacillus simplex*, preferably *B. simplex* strain ABU 288 (NRRL B-50340). These mixtures are particularly suitable in soybean and corn.

According to another embodiment of the inventive mixtures, the at least one biopesticide II is selected from *Trichoderma asperellum*, *T. atroviride*, *T. fertile*, *T. gamsii*, *T. harzatum*; mixture of *T. harzianum* and *T. viride*; mixture of *T. polysporum* and *T. harzianum*; *T. stromaticum*, *T. virens* (also named *Gliocladium virens*) and *T. viride*; preferably *Trichoderma* *fertile*, in particular *T. fertile* strain JM41R. These mixtures are particularly suitable in soybean and corn.

According to another embodiment of the inventive mixtures, the at least one biopesticide II is *Sphaerodes mycoparasitica*, preferably *Sphaerodes mycoparasitica* strain IDAC 301008-01

40 (also referred to as strain SMCD2220-01). These mixtures are particularly suitable in soybean and corn.

According to another embodiment of the inventive mixtures, the at least one biopesticide II is *Beauveria bassiana*, preferably *Beauveria bassiana* strain PPRI5339. These mixtures are particularly suitable in soybean and corn.

According to another embodiment of the inventive mixtures, the at least one biopesticide II is

5 *Metarhizium anisopliae* or *M. anisopliae* var. *acridum*, preferably selected from *M anisopliae* strain IMI33 and *M. anisopliae* var. *acridum* strain IMI 330189. These mixtures are particularly suitable in soybean and corn.

According to another embodiment of the inventive mixtures, *Bradyrhizobium* sp. (meaning any *Bradyrhizobium* species and/or strain) as biopesticide II is *Bradyrhizobium japonicum* (*B. japonicum*). These mixtures are particularly suitable in soybean. Preferably *B. japonicum* is not one of the strains TA-11 or 532c. *B. japonicum* strains were cultivated using media and fermentation techniques known in the art, e.g. in yeast extract-mannitol broth (YEM) at 27°C for about 5 days.

References for various *B. japonicum* strains are given e.g. in US 7,262,151 (*B. japonicum*

15 strains USDA 110 (= IITA 2121, SEMIA 5032, RCR 3427, ARS I-110, Nitragin 61A89; isolated from *Glycine max* in Florida in 1959, Serogroup 110; *Appl Environ Microbiol* 60, 940-94, 1994), USDA 31 (= Nitragin 61A164; isolated from *Glycine max* in Wisconsin in 1941, USA, Serogroup 31), USDA 76 (plant passage of strain USDA 74 which has been isolated from *Glycine max* in California, USA, in 1956, Serogroup 76), USDA 121 (isolated from *Glycine max* in

20 Ohio, USA, in 1965), USDA 3 (isolated from *Glycine max* in Virginia, USA, in 1914, Serogroup 6) and USDA 136 (= CB 1809, SEMIA 586, Nitragin 61A136, RCR 3407; isolated from *Glycine max* in Beltsville, Maryland in 1961; *Appl Environ Microbiol* 60, 940-94, 1994). USDA refers to United States Department of Agriculture Culture Collection, Beltsville, Md., USA (see e.g. Beltsville Rhizobium Culture Collection Catalog March 1987 ARS-30). Further suitable *B. japonicum*

25 strain G49 (INRA, Angers, France) is described in Fernandez-Flouret, D. & Cleyet-Marel, J. C. (1987) *C R Acad Agric Fr* 73, 163-171), especially for soybean grown in Europe, in particular in France. Further suitable *B. japonicum* strain TA-11 (TA11 NOD+) (NRRL B-18466) is i.a. described in US 5,021,076; *Appl Environ Microbiol* (1990) 56, 2399-2403 and commercially available as liquid inoculant for soybean (VAULT® NP, Becker Underwood, USA). Further *B. japonicum* strains as example for biopesticide II are described in US2012/0252672A. Further suitable and especially in Canada commercially available strain 532c (The Nitragin Company, Milwaukee, Wisconsin, USA, field isolate from Wisconsin; Nitragin strain collection No. 61A152; *Can J Plant Sci* 70 (1990), 661-666).

Other suitable and commercially available *B. japonicum* strains (see e.g. *Appl Environ Microbiol*

35 2007, 73(8), 2635) are SEMIA 566 (isolated from North American inoculant in 1966 and used in Brazilian commercial inoculants from 1966 to 1978), SEMIA 586 (= CB 1809; originally isolated in Maryland, USA but received from Australia in 1966 and used in Brazilian inoculants in 1977), CPAC 15 (= SEMIA 5079; a natural variant of SEMIA 566 used in commercial inoculants since 1992) and CPAC 7 (= SEMIA 5080; a natural variant of SEMIA 586 used in commercial inoculants since 1992). These strains are especially suitable for soybean grown in Australia or South America, in particular in Brazil. Some of the abovementioned strains have been re-classified as

a novel species *Bradyrhizobium elkanii*, e.g. strain USDA 76 (Can. J. Microbiol., 1992, 38, 501-505).

Another suitable and commercially available *B. japonicum* strain is E-109 (variant of strain USDA 138, see e.g. Eur. J. Soil Biol. 45 (2009) 28– 35; Biol Fertil Soils (2011) 47:81– 89, de-

5 posited at Agriculture Collection Laboratory of the Instituto de Microbiología y Zoología Agrícola (IMYZA), Instituto Nacional de Tecnología Agropecuaria (INTA), Castelar, Argentina). This strain is especially suitable for soybean grown in South America, in particular in Argentina.

10 The present invention also relates to mixtures, wherein the at least one biopesticide II is selected from *Bradyrhizobium elkanii* and *Bradyrhizobium liaoningense* (*B. elkanii* and *B. liaoningense*), more preferably from *B. elkanii*. These mixtures are particularly suitable in soybean. *B.*

*elkanii* and *liaoningense* were cultivated using media and fermentation techniques known in the art, e.g. in yeast extract-mannitol broth (YEM) at 27°C for about 5 days.

Suitable and commercially available *B. elkanii* strains are SEMIA 587 and SEMIA 5019 (=29W) (see e.g. Appl Environ Microbiol 2007, 73(8), 2635) and USDA 3254 and USDA 76 and USDA

15 94. Further commercially available *B. elkanii* strains are U-1301 and U-1302 (e.g. product Nitrogin® Optimize from Novozymes Bio As S.A., Brazil or NITRASEC for soybean from LAGE y Cia, Brazil). These strains are especially suitable for soybean grown in Australia or South America, in particular in Brazil.

20 The present invention also relates to mixtures, wherein the at least one biopesticide II is selected from *Bradyrhizobium japonicum* (*B. japonicum*) and further comprises a compound III, wherein compound III is selected from jasmonic acid or salts or derivatives thereof including cis-jasmone, preferably methyl-jasmonate or cis-jasmone.

The present invention also relates to mixtures, wherein biopesticide II is selected from *Bradyrhizobium* sp. (*Arachis*) (*B. sp. Arachis*) which shall describe the cowpea miscellany cross-

25 inoculation group which includes inter alia indigenous cowpea bradyrhizobia on cowpea (*Vigna unguiculata*), siratro (*Macroptilium atropurpureum*), lima bean (*Phaseolus lunatus*), and peanut (*Arachis hypogaea*). This mixture comprising as biopesticide II *B. sp. Arachis* is especially suitable for use in peanut, Cowpea, Mung bean, Moth bean, Dune bean, Rice bean, Snake bean and Creeping vigna, in particular peanut.

30 Suitable and commercially available *B. sp. (Arachis)* strain is CB1015 (= IITA 1006, USDA 3446 presumably originally collected in India; from Australian Inoculants Research Group; see e.g. [http://www.qaseeds.com.au/inoculant\\_applic.php](http://www.qaseeds.com.au/inoculant_applic.php); Beltsville Rhizobium Culture Collection Catalog March 1987 USDA-ARS ARS-30). These strains are especially suitable for peanut grown in Australia, North America or South America, in particular in Brazil. Further suitable strain is *bradyrhizobium* sp. PNL01 (Becker Underwood; ISO Rep Marita McCreary, QC Manager Padma Somasageran; IDENTIFICATION OF RHIZOBIA SPECIES THAT CAN ESTABLISH NITROGEN-FIXING NODULES IN CROTALARIA LONGIROSTRATA. April 29, 2010, University of Massachusetts Amherst: [http://www.wpi.edu/Pubs/E-project/Available/E-project-042810-163614/unrestricted/Bisson.Mason.\\_Identification\\_of\\_Rhizobia\\_Species\\_That\\_can\\_Establish\\_Nitrogen-Fixing\\_Nodules\\_in\\_Crotalaria\\_Longirostrata.pdf](http://www.wpi.edu/Pubs/E-project/Available/E-project-042810-163614/unrestricted/Bisson.Mason._Identification_of_Rhizobia_Species_That_can_Establish_Nitrogen-Fixing_Nodules_in_Crotalaria_Longirostrata.pdf)).

Suitable and commercially available *Bradyrhizobium* sp. (*Arachis*) strains especially for cowpea and peanut but also for soybean are *Bradyrhizobium* SEMIA 6144, SEMIA 6462 (= BR 3267) and SEMIA 6464 (= BR 3262) (deposited at FEPAGRO-MIRCEN, R. Gonçalves Dias, 570 Porto Alegre - RS, 90130-060, Brazil; see e.g. FEMS Microbiology Letters (2010) 303(2), 123– 131;

5 5 Revista Brasileira de Ciencia do Solo (2011) 35(3);739-742, ISSN 0100-0683).

The present invention also relates to mixtures wherein the at least one biopesticide II is selected from *Bradyrhizobium* sp. (*Arachis*) and further comprises a compound III, wherein compound III is selected from jasmonic acid or salts or derivatives thereof including cis-jasmone, preferably methyl-jasmonate or cis-jasmone.

10 10 The present invention also relates to mixtures, wherein the at least one biopesticide II is selected from *Bradyrhizobium* sp. (*Lupine*) (also called *B. lupini*, *B. lupines* or *Rhizobium lupini*). This mixture is especially suitable for use in dry beans and lupins.

Suitable and commercially available *B. lupini* strain is LL13 (isolated from *Lupinus iuteus* nodules from French soils; deposited at INRA, Dijon and Angers, France;

15 15 <http://agriculture.gouv.fr/IMG/pdf/ch20060216.pdf>). This strain is especially suitable for lupins grown in Australia, North America or Europe, in particular in Europe.

Further suitable and commercially available *B. lupini* strains WU425 (isolated in Esperance, Western Australia from a non-Australian legume *Ornithopus compressus*), WSM4024 (isolated from lupins in Australia by CRS during a 2005 survey) and WSM471 (isolated from *Ornithopus* 20 20 *pinnatus* in Oyster Harbour, Western Australia) are described e.g. in Palta J.A. and Berger J.B. (eds), 2008, Proceedings 12th International Lupin Conference, 14-18 Sept. 2008, Fremantle, Western Australia. International Lupin Association, Canterbury, New Zealand, 47-50, ISBN 0-86476-153-8:

<http://www.lupins.org/pdf/conference/2008/Agronomy%20and%20Production/John%20Howieson%20and%20G%20OHara.pdf>; *Appl Environ Microbiol* (2005) 71, 7041-7052 and Australian J. Exp. Agricult. (1996) 36(1), 63-70.

The present invention also relates to mixtures wherein the at least one biopesticide II is selected from *Bradyrhizobium* sp. (*Lupine*) (*B. lupini*) and further comprises a compound III, wherein compound III is selected from jasmonic acid or salts or derivatives thereof including cis-jasmone, preferably methyl-jasmonate or cis-jasmone.

30 30 The present invention also relates to mixtures, wherein the at least one biopesticide II is selected from *Mesorhizobium* sp. (meaning any *Mesorhizobium* species and/or strain), more preferably *Mesorhizobium ciceri*. These mixtures are particularly suitable in cowpea.

Suitable and commercially available *M. sp.* strains are e.g. *M. ciceri* CC1192 (=UPM 848, CECT 35 35 5549; from Horticultural Research Station, Gosford, Australia; collected in Israel from *Cicer arietinum* nodules; *Can J Microbial* (2002) 48, 279-284) and *Mesorhizobium* sp. strains WSM1271 (collected in Sardinia, Italy, from plant host *Biserrula pelecinus*), WSM 1497 (collected in Mykonos, Greece, from plant host *Biserrula pelecinus*), *M. loti* strains CC829 (commercial inoculant for *Lotus pedunculatus* and *L. uliginosus* in Australia, isolated from *L. uliginosus* nodules in USA) 40 40 and SU343 (commercial inoculant for *Lotus corniculatus* in Australia; isolated from host nodules in USA) all of which are deposited at Western Australian Soil Microbiology (WSM) culture collec-

tion, Australia and/or CSIRO collection (CC), Canberra, Australian Capital Territory (see e.g. *Soil Biol Biochem* (2004) 36(8), 1309-1317; *Plant and Soil* (2011) 348(1-2), 231-243).

Suitable and commercially available *M. loti* strains are e.g. *M. loti* CC829 for *Lotus pedunculatus*.

5 The present invention also relates to mixtures wherein the at least one biopesticide II is selected from *Bradyrhizobium* sp. (Lupine) (*B. lupini*) and further comprises a compound III, wherein compound III is selected from jasmonic acid or salts or derivatives thereof including cis-jasmone, preferably methyl-jasmonate or cis-jasmone.

10 The present invention also relates to mixtures wherein the at least one biopesticide II is selected from *Mesorhizobium huakuii*, also referred to as *Rhizobium huakuii* (see e.g. *Appl. Environ. Microbiol.* 2011, 77(15), 5513-5516). These mixtures are particularly suitable in *Astragalus*, e.g. *Astalagus sinicus* (Chinese milkwetch), *Thermopsis*, e.g. *Thermopsis luinoides* (Goldenbanner) and alike.

15 Suitable and commercially available *M. huakuii* strain is HN3015 which was isolated from *Astragalus sinicus* in a rice-growing field of Southern China (see e.g. *World J. Microbiol. Biotechnol.* (2007) 23(6), 845-851, ISSN 0959-3993).

20 The present invention also relates to mixtures wherein the at least one biopesticide II is selected from *Mesorhizobium huakuii* and further comprises a compound III, wherein compound III is selected from jasmonic acid or salts or derivatives thereof including cis-jasmone, preferably methyl-jasmonate or cis-jasmone.

25 The present invention also relates to mixtures, wherein the at least one biopesticide II is selected from *Azospirillum amazonense*, *A. brasiliense*, *A. lipoferum*, *A. irakense*, *A. halopraeferens*, more preferably from *A. brasiliense*, in particular selected from *A. brasiliense* strains BR 11005 (SP 245) and AZ39 which are both commercially used in Brazil and are obtainable from EM-BRAPA, Brazil. These mixtures are particularly suitable in soybean.

30 Humates are humic and fulvic acids extracted from a form of lignite coal and clay, known as leonardite. Humic acids are organic acids that occur in humus and other organically derived materials such as peat and certain soft coal. They have been shown to increase fertilizer efficiency in phosphate and micro-nutrient uptake by plants as well as aiding in the development of plant root systems.

35 Salts of jasmonic acid (jasmonate) or derivatives include without limitation the jasmonate salts potassium jasmonate, sodium jasmonate, lithium jasmonate, ammonium jasmonate, dimethylammonium jasmonate, isopropylammonium jasmonate, diolammonium jasmonate, diethtriethanolammonium jasmonate, jasmonic acid methyl ester, jasmonic acid amide, jasmonic acid methylamide, jasmonic acid-L-amino acid (amide-linked) conjugates (e.g., conjugates with L-isoleucine, L-valine, L-leucine, or L-phenylalanine), 12-oxo-phytodienoic acid, coronatine, coronafacoyl-L-serine, coronafacoyl-L-threonine, methyl esters of 1 - oxo-indanoyl-isoleucine, methyl esters of 1-oxo-indanoyl-leucine, coronalon (2- [ (6- ethyl-1-oxo-indane-4-carbonyl) -amino] -3- methyl -pentanoic acid methyl ester), linoleic acid or derivatives thereof and cis-jasmone, or combinations of any of the above.

According to one embodiment, the microbial pesticides embrace not only the isolated, pure cultures of the respective micro-organism as defined herein, but also its cell-free extract, its suspensions in a whole broth culture or as a metabolite-containing supernatant or a purified metabolite obtained from a whole broth culture of the microorganism or microorganism strain.

5 According to a further embodiment, the microbial pesticides embrace not only the isolated, pure cultures of the respective micro-organism as defined herein, but also a cell-free extract thereof or at least one metabolite thereof, and/or a mutant of the respective micro-organism having all the identifying characteristics thereof and also a cell-free extract or at least one metabolite of the mutant.

10 "Whole broth culture" refers to a liquid culture containing both cells and media.  
"Supernatant" refers to the liquid broth remaining when cells grown in broth are removed by centrifugation, filtration, sedimentation, or other means well known in the art.  
The term "metabolite" refers to any compound, substance or byproduct produced by a microorganism (such as fungi and bacteria) that has improves plant growth, water use efficiency of the

15 plant, plant health, plant appearance, or the population of beneficial microorganisms in the soil around the plant activity.  
The term "mutant" refers a microorganism obtained by direct mutant selection but also includes microorganisms that have been further mutagenized or otherwise manipulated (e.g., via the introduction of a plasmid). Accordingly, embodiments include mutants, variants, and or derivatives of the respective microorganism, both naturally occurring and artificially induced mutants.

20 For example, mutants may be induced by subjecting the microorganism to known mutagens, such as N-methyl-nitrosoguanidine, using conventional methods.  
According to the invention, the solid material (dry matter) of the biopesticides (with the exception of oils such as Neem oil, Tagetes oil, etc.) are considered as active components (e.g. to be obtained after drying or evaporation of the extraction medium or the suspension medium in case of

25 liquid formulations of the microbial pesticides).  
In accordance with the present invention, the weight ratios and percentages used herein for biological extract such as Quillay extract are based on the total weight of the dry content (solid material) of the respective extract(s).

30 For microbial pesticides, weight ratios and/or percentages refer to the total weight of a preparation of the respective biopesticide with at least  $1 \times 10^6$  CFU/g ("colony forming units per gram total weight"), preferably with at least  $1 \times 10^8$  CFU/g, even more preferably from  $1 \times 10^8$  to  $1 \times 10^{12}$  CFU/g dry matter. Colony forming unit is measure of viable microbial cells, in particular fungal and bacterial cells. In addition, here CFU may also be understood as number of (juvenile)

35 individual nematodes in case of (entomo-pathogenic) nematode biopesticides, such as Steinernema feltiae.  
Herein, microbial pesticides may be supplied in any physiological state such as active or dormant. Such dormant active component may be supplied for example frozen, dried, or lyophilized or partly desiccated (procedures to produce these partly desiccated organisms are given in

40 WO2008/002371) or in form of spores.

Microbial pesticides used as organism in an active state can be delivered in a growth medium without any additional additives or materials or in combination with suitable nutrient mixtures. According to a further embodiment, microbial pesticides are delivered and formulated in a dormant stage, more preferably in form of spores.

5 The total weight ratios of compositions, which comprise a microbial pesticide as component 2, can be determined based on the total weight of the solid material (dry matter) of component 1 and using the amount of CFU of component 2) to calculate the total weight of component 2) with the following equation that  $1 \times 10^9$  CFU equals one gram of total weight of component 2). According to one embodiment, the compositions, which comprise a microbial pesticide, comprise between 0.01 and 90% (w/w) of dry matter (solid material) of component 1 and from  $1 \times 10^5$  CFU to  $1 \times 10^{12}$  CFU of component 2) per gram total weight of the composition.

10 According to another embodiment, the compositions, which comprise a microbial pesticide, comprise between 5 and 70% (w/w) of dry matter (solid material) of component 1 and from  $1 \times 10^6$  CFU to  $1 \times 10^{10}$  CFU of component 2) per gram total weight of the composition.

15 According to another embodiment, the compositions, wherein one component is a microbial pesticide, comprise between 25 and 70% (w/w) of dry matter (solid material) of component 1 and from  $1 \times 10^7$  CFU to  $1 \times 10^9$  CFU of component 2) per gram total weight of the composition. In the case of mixtures comprising a microbial pesticide, the application rates preferably range from about  $1 \times 10^6$  to  $5 \times 10^{15}$  (or more) CFU/ha. Preferably, the spore concentration is about  $1 \times 10^7$  to about  $1 \times 10^{11}$  CFU/ha. In the case of (entomopathogenic) nematodes as microbial pesticides (e.g. *Steinernema feltiae*), the application rates preferably range from about  $1 \times 10^5$  to  $1 \times 10^{12}$  (or more), more preferably from  $1 \times 10^8$  to  $1 \times 10^{11}$ , even more preferably from  $5 \times 10^8$  to  $1 \times 10^{10}$  individuals (e.g. in the form of eggs, juvenile or any other live stages, preferably in an infective juvenile stage) per ha.

20 25 the case of mixtures comprising microbial pesticides, the application rates with respect to plant propagation material preferably range from about  $1 \times 10^6$  to  $1 \times 10^{12}$  (or more) CFU/seed. Preferably, the concentration is about  $1 \times 10^6$  to about  $1 \times 10^{11}$  CFU/seed. In the case of microbial pesticides, the application rates with respect to plant propagation material also preferably range from about  $1 \times 10^7$  to  $1 \times 10^{14}$  (or more) CFU per 100 kg of seed, preferably from  $1 \times 10^9$  to about  $1 \times 10^{11}$  CFU per 100 kg of seed.

30

#### Embodiments of mixtures and preferred mixing partners

##### Preferred insecticidal active compounds II selected from group M:

35 With respect to their use in the pesticidal mixtures of the present invention, particular preference is given to the compounds II as listed in the paragraphs below.

With regard to the use in a pesticidal mixture of the present invention, the compound II selected from group M-II.1.A as defined above is preferably carbofuran, benfuracarb, methiocarb, thiodicarb or methomyl.

40 More preferably the compound II is methiocarb.

More preferably the compound II is thiodicarb.

With regard to the use in a pesticidal mixture of the present invention, the compound II selected from group M-II.1.B as defined above is preferably chlorpyrifos or acephate.

5 More preferably the compound II is chlorpyrifos.

More preferably the compound II is acephate.

With regard to the use in a pesticidal mixture of the present invention, the compound II selected from group M-II.2.B as defined above is preferably ethiprole.

10 More preferably the compound II is fipronil.

With regard to the use in a pesticidal mixture of the present invention, the compound II selected from group M-II.3A defined above is preferably acrinathrin, bifenthrin, cyfluthrin, lambda-cyhalothrin, cypermethrin, alpha-cypermethrin, beta-cypermethrin, zeta-cypermethrin, deltamethrin, esfenvalerate, etofenprox, fenpropathrin, flucythrinate, tau-fluvalinate, silafluofen, tefluthrin or tralomethrin.

15 More preferably the compound II is lambda-cyhalothrin, alpha-cypermethrin, bifenthrin, tefluthrin or deltamethrin.

More preferably the compound II is  $\alpha$ -cypermethrin.

More preferably the compound II is cypermethrin.

20 More preferably the compound II is tefluthrin.

More preferably the compound II is bifenthrin.

With regard to the use in a pesticidal mixture of the present invention, the compound II selected from group M-II.4A as defined above is preferably acetamiprid, chlothianidin, imidacloprid, nitopyram, thiacloprid and thiamethoxam.

25 More preferably the compound II is acetamiprid.

More preferably the compound II is clothianidine.

More preferably the compound II is imidacloprid.

More preferably the compound II is thiamethoxam.

30 More preferably the compound II is thiacloprid.

More preferably the compound II is dinotefuran.

With regard to the use in a pesticidal mixture of the present invention, the compound II selected from group M-II.5 as defined above is preferably spinetoram or spinosad.

35 More preferably the compound II is spinosad.

With regard to the use in a pesticidal mixture of the present invention, the compound II selected from group M-II.6 as defined above is preferably abamectin, emamectin benzoate, lepimectin or milbemectin.

40 More preferably the compound II is abamectin.

More preferably the compound II is emamectin.

With regard to the use in a pesticidal mixture of the present invention, the compound II selected from group II-M.10 as defined above is preferably etoxazole or flupyradifurone.

More preferably the compound II is flupyradifurone.

5 With regard to the use in a pesticidal mixture of the present invention, the compound II selected from group II-M.13 as defined above is preferably chlorfenapyr.

With regard to the use in a pesticidal mixture of the present invention, the compound II selected from group II-M.15 as defined above is preferably teflubenzuron.

10 With regard to the use in a pesticidal mixture of the present invention, the compound II selected from group II-M.16 as defined above is preferably buprofezin.

15 With regard to the use in a pesticidal mixture of the present invention, the compound II selected from group II-M.21.A as defined above is preferably pyridaben or tebufenpyrad.

With regard to the use in a pesticidal mixture of the present invention, the compound II selected from group M-II.22 as defined above is preferably indoxacarb or metaflumizone.

More preferably the compound II is metaflumizone.

20 With regard to the use in a pesticidal mixture of the present invention, the compound II selected from group M-II.23 as defined above is preferably spirodiclofen, spromesifen or spirotetramat.  
More preferably the compound II is spromesifen or spirotetramat.  
More preferably the compound II is spirotetramat.

25 With regard to the use in a pesticidal mixture of the present invention, the compound II selected from group M-II.28 as defined above is preferably flubendiamide, (R)-3-Chlor-N1-{2-methyl-4-[1,2,2,2 – tetrafluor-1-(trifluormethyl)ethyl]phenyl}-N2-(1-methyl-2-methylsulfonylethyl)phthalimid and (S)-3-Chlor-N1-{2-methyl-4-[1,2,2,2 – tetrafluor-1-(trifluormethyl)ethyl]phenyl}-N2-(1-methyl-2-methylsulfonylethyl)phthalimid, N-[4,6-dichloro-2-[(diethyl-lambda-4-sulfanylidene)carbamoyl]-phenyl]-2-(3-chloro-2-pyridyl)-5-(trifluoromethyl)pyrazole-3-carboxamide, N-[4-chloro-2-[(diethyl-lambda-4-sulfanylidene)carbamoyl]-6-methyl-phenyl]-2-(3-chloro-2-pyridyl)-5-(trifluoromethyl)pyrazole-3-carboxamide, N-[4-chloro-2-[(di-2-propyl-lambda-4-sulfanylidene)carbamoyl]-6-methyl-phenyl]-2-(3-chloro-2-pyridyl)-5-(trifluoromethyl)pyrazole-3-carboxamide or cyanthraniliprole.  
More preferably the compound II is flubendiamide or cyanthraniliprole.  
More preferably the compound II is flubendiamide.  
More preferably the compound II is cyanthraniliprole.  
More preferably the compound II is chloranthraniliprole.

More preferably the compound II is N-[4,6-dichloro-2-[(diethyl-lambda-4-sulfanylidene)carbamoyl]-phenyl]-2-(3-chloro-2-pyridyl)-5-(trifluoromethyl)pyrazole-3-carboxamide.

More preferably the compound II is N-[4-chloro-2-[(diethyl-lambda-4-sulfanylidene)carbamoyl]-6-

5 methyl-phenyl]-2-(3-chloro-2-pyridyl)-5-(trifluoromethyl)pyrazole-3-carboxamide.

More preferably the compound II is N-[4-chloro-2-[(di-2-propyl-lambda-4-sulfanylidene)carbamoyl]-6-methyl-phenyl]-2-(3-chloro-2-pyridyl)-5-(trifluoromethyl)pyrazole-3-carboxamide.

10 With regard to the use in a pesticidal mixture of the present invention, the compound II is selected from group M-II.X (compounds of unknown or uncertain mode of action) as defined above is preferably afidopyropene, bifenazate, piperonyl butoxide, pyridalyl, pyrifuquinazone, sulfoxaflor, triflumezopyrim, the compound 4-[5-(3,5-Dichloro-phenyl)-5-trifluoromethyl-4,5-dihydro-isoxazol-3-yl]-2-methyl-N-[(2,2,2-trifluoro-ethylcarbamoyl)-methyl]-benzamide, the compound carbonic acid-2-ethyl-3,7-dimethyl-6-(4-trifluoromethoxy-phenoxy)-quinolin-4-yl ester methyl ester.

15 More preferably the compound II is afidopyripene or 4-[(6-Chloropyrid-3-yl)methyl](2,2-difluoroethyl)amino)furan-2(5H)-one or carbonic acid-2-ethyl-3,7-dimethyl-6-(4-trifluoromethoxy-phenoxy)-quinolin-4-yl ester methyl ester.

20 More preferably the compound II is sulfoxaflor.

More preferably the compound II is triflumezopyrim.

With regard to the use in a pesticidal mixture of the present invention, the compound II is selected from group II-M.Y (biopesticides)

25 More preferably the compound II is especially one or more actives on basis of *bacillus firmus* (Votivo®, I-1582).

More preferably the compound II is especially one or more actives on basis of *Pasteuria nishizawae* (Clariva®)

More preferably the compound II is Votivo®, *bacillus firmus* strain I-1582.

30 More preferably the compound II is bilobalide, ginkgolide A and a mixture of bilobalide and ginkgolide A.

With regard to the use in a pesticidal mixture of the present invention, the mixture comprises optionally bilobalide and/or ginkgolide A and at least one further active compound from the ginkgo tree which is different from bilobalide and ginkgolide A.

35

Especially preferred are pesticidal mixtures containing alpha-cypermethrin as compound II.

Especially preferred are pesticidal mixtures containing clothianidin as compound II.

40 Especially preferred are pesticidal mixtures containing imidacloprid as compound II.

Especially preferred are pesticidal mixtures containing thiamethoxam as compound II.

Especially preferred are pesticidal mixtures containing pymetrozine as compound II.

5 Especially preferred are pesticidal mixtures containing flubendiamid as compound II.

Especially preferred are pesticidal mixtures containing spinetor as compound II.

Especially preferred are pesticidal mixtures containing spirotetramat as compound II.

10

Especially preferred are pesticidal mixtures containing pyrifluquinazon as compound II.

Especially preferred are pesticidal mixtures containing chlorfenapyr as compound II.

15

Especially preferred are pesticidal mixtures containing cyantraniliprole as compound II.

Especially preferred are pesticidal mixtures containing sulfoxaflor as compound II.

Especially preferred are pesticidal mixtures containing flupyradifurone as compound II.

20

Especially preferred are pesticidal mixtures containing cyflumetofen as compound II.

Especially preferred are pesticidal mixtures containing the compound afidopyropene as compound II.

25

Especially preferred are pesticidal mixtures containing the compound PONCHO®/VOTiVO™ as compound II.

Preferred fungicidal active compounds III selected from group F:

30

With respect to their additional use in the pesticidal mixtures of the present invention, particular preference is given to certain fungicidal active compounds III listed in the paragraphs below.

With regard to the use in a pesticidal mixture of the present invention, the compound III selected from group F.I.1.

35

More preferably the compound II is azoxystrobin, fluoxastrobin, picoxystrobin, pyraclostrobin or trifloxystrobin.

Most preferably the compound III is pyraclostrobin.

40 With regard to the use in a pesticidal mixture of the present invention, the compound III selected from group F.I.3.

More preferably the compound III is bixafen, boscalid, fluopyram, fluxapyroxad, isopyrazam, penflufen, penthiopyrad or sedaxane.

More preferably the compound III is fluxapyroxad.

5 With regard to the use in a pesticidal mixture of the present invention, the compound III selected from group F.II.1.

More preferably the compound III is epoxiconazol.

More preferably the compound III is triticonazole.

10 More preferably the compound III is selected from the group consisting of 2-[2-chloro-4-(4-chlorophenoxy)phenyl]-1-(1,2,4-triazol-1-yl)pentan-2-ol, 1-[4-(4-chlorophenoxy)-2-(trifluoromethyl)phenyl]-1 cyclopropyl-2-(1,2,4-triazol-1-yl)ethanol, 2-[4-(4-chlorophenoxy)-2-(trifluoromethyl)phenyl]-1-(1,2,4-triazol-1-yl)butan-2-ol, 2-[2-chloro-4-(4-chlorophenoxy)phenyl]-1-(1,2,4-triazol-1-yl)butan-2-ol, 2-[4-(4-chlorophenoxy)-2-(trifluoromethyl)phenyl]-3-methyl-1-(1,2,4-triazol-1-yl)butan-2-ol, 2-[4-(4-chlorophenoxy)-2-(trifluoromethyl)phenyl]-1-(1,2,4-triazol-1-yl)propan-2-ol, 2-[2-chloro-4-(4-chlorophenoxy)phenyl]-3-methyl-1-(1,2,4-triazol-1-yl)butan-2-ol, 2-[4-(4-chlorophenoxy)-2-(trifluoromethyl)phenyl]-1-(1,2,4-triazol-1-yl)pentan-2-ol or 2-[4-(4-fluorophenoxy)-2-(trifluoromethyl)phenyl]-1-(1,2,4-triazol-1-yl)propan-2-ol.

15 More preferably the compound III is 2-[2-chloro-4-(4-chlorophenoxy)phenyl]-1-(1,2,4-triazol-1-yl)pentan-2-ol.

More preferably the compound III is 1-[4-(4-chlorophenoxy)-2-(trifluoromethyl)phenyl]-1 cyclopropyl-2-(1,2,4-triazol-1-yl)ethanol.

More preferably the compound III is 2-[4-(4-chlorophenoxy)-2-(trifluoromethyl)phenyl]-1-(1,2,4-triazol-1-yl)butan-2-ol.

20 More preferably the compound III is 2-[2-chloro-4-(4-chlorophenoxy)phenyl]-1-(1,2,4-triazol-1-yl)butan-2-ol.

More preferably the compound III is 2-[4-(4-chlorophenoxy)-2-(trifluoromethyl)phenyl]-3-methyl-1-(1,2,4-triazol-1-yl)butan-2-ol.

25 More preferably the compound III is 2-[4-(4-chlorophenoxy)-2-(trifluoromethyl)phenyl]-1-(1,2,4-triazol-1-yl)propan-2-ol.

More preferably the compound III is 2-[2-chloro-4-(4-chlorophenoxy)phenyl]-3-methyl-1-(1,2,4-triazol-1-yl)butan-2-ol.

30 More preferably the compound III is 2-[4-(4-chlorophenoxy)-2-(trifluoromethyl)phenyl]-1-(1,2,4-triazol-1-yl)pentan-2-ol.

More preferably the compound III is 2-[2-chloro-4-(4-chlorophenoxy)phenyl]-3-methyl-1-(1,2,4-triazol-1-yl)butan-2-ol.

More preferably the compound III is 2-[4-(4-chlorophenoxy)-2-(trifluoromethyl)phenyl]-1-(1,2,4-triazol-1-yl)pentan-2-ol.

35 More preferably the compound III is 2-[4-(4-fluorophenoxy)-2-(trifluoromethyl)phenyl]-1-(1,2,4-triazol-1-yl)propan-2-ol.

With regard to the use in a pesticidal mixture of the present invention, the compound III selected from group F.III 1).

40 More preferably the compound III is metalaxyl or metalaxyl-M.

More preferably the compound III is metalaxyl.

With regard to the use in a pesticidal mixture of the present invention, the compound III selected from group F.IV 1).

More preferably the compound III is thiophanate-methyl.

## 5 Pests

The mixtures of the active compounds I and II, or the active compounds I and II used simultaneously, that is jointly or separately, exhibit outstanding action against pests from the following orders:

10 insects from the order of **Lepidoptera**, for example *Achroia grisella*, *Acleris* spp. such as *A. fimbriana*, *A. gloverana*, *A. variana*; *Acrolepiopsis assectella*, *Acronicta major*, *Adoxophyes* spp. such as *A. cyrtosema*, *A. orana*; *Aedia leucomelas*, *Agrotis* spp. such as *A. exclamationis*, *A. fucosa*, *A. epsilon*, *A. orthogoma*, *A. segetum*, *A. subterranea*; *Alabama argillacea*, *Aleurodicus dispersus*, *Alsophila pometaria*, *Ampelophaga rubiginosa*, *Amyelois transitella*, *Anacampsis sarcitella*, *Anagasta kuehniella*, *Anarsia lineatella*, *Anisota senatoria*, *Anthraea pernyi*, *Anticarsia* (=Thermesia) spp. such as *A. gemmatalis*; *Apamea* spp., *Aproaerema modicella*, *Archips* spp. such as *A. argyrospila*, *A. fuscocupreanus*, *A. rosana*, *A. xyloseanus*; *Argyresthia conjugella*, *Argyroploce* spp., *Argyrotaenia* spp. such as *A. velutinana*; *Athetis mindara*, *Astroasca viridigrisea*, *Autographa gamma*, *Autographa nigrisigna*, *Barathra brassicae*, *Bedellia* spp., *Bonagota salubricola*, *Borbo cinnara*, *Bucculatrix thurberiella*, *Bupalus piniarius*, *Busseola* spp., *Cacoecia* spp. such as *C. murinana*, *C. podana*; *Cactoblastis cactorum*, *Cadra cautella*, *Calingo brasiliensis*, *Caloptilis theivora*, *Capua reticulana*, *Carposina* spp. such as *C. niponensis*, *C. sasakii*; *Cephus* spp., *Chaetocnema aridula*, *Cheimatobia brumata*, *Chilo* spp. such as *C. Indicus*, *C. suppressalis*, *C. partellus*; *Choreutis pariana*, *Choristoneura* spp. such as *C. conflictana*, *C. fumiferana*, *C. longicellana*, *C. murinana*, *C. occidentalis*, *C. rosaceana*; *Chrysodeixis* (=Pseudoplusia) spp. such as *C. eriosoma*, *C. includens*; *Cirphis unipuncta*, *Clysia ambiguella*, *Cnaphalocerus* spp., *Cnaphalocrois medinalis*, *Cnephasia* spp., *Cochylis hospes*, *Coleophora* spp., *Colias eurytheme*, *Conopomorpha* spp., *Conotrachelus* spp., *Copitarsia* spp., *Corcyra cephalonica*, *Crambus caliginosellus*, *Crambus teterrellus*, *Crocidosema* (=Epinotia) *aporema*, *Cydalima* (=Diaphania) *perspectalis*, *Cydia* (=Carpocapsa) spp. such as *C. pomonella*, *C. latiferreana*; *Dalaca noctuides*, *Datana integerrima*, *Dasychira pinicola*, *Dendrolimus* spp. such as *D. pini*, *D. spectabilis*, *D. sibiricus*; *Desmia funeralis*, *Diaphania* spp. such as *D. nitidalis*, *D. hyalinata*; *Diatraea grandiosella*, *Diatraea saccharalis*, *Diphthera festiva*, *Earias* spp. such as *E. insulana*, *E. vittella*; *Ecdytolopha aurantianu*, *Egira* (=Xylomyges) *curialis*, *Elasmopalpus lignosellus*, *Eldana saccharina*, *Endopiza viteana*, *Ennomos subsignaria*, *Eoreuma loftini*, *Ephestia* spp. such as *E. cautella*, *E. elutella*, *E. kuehniella*; *Epinotia aporema*, *Epiphyas postvittana*, *Erannis tiliaria*, *Erionota thrax*, *Etiella* spp., *Eulia* spp., *Eupoecilia ambiguella*, *Euproctis chrysorrhoea*, *Euxoa* spp., *Evetria bouliana*, *Faronta albilinea*, *Feltia* spp. such as *F. subterranean*; *Galleria mellonella*, *Gracillaria* spp., *Grapholita* spp. such as *G. funebrana*, *G. molesta*, *G. inopinata*; *Halysidota* spp., *Harrisina americana*, *Hedylepta* spp., *Helicoverpa* spp. such as *H.*

armigera (=*Heliothis armigera*), *H. zea* (=*Heliothis zea*); *Heliothis* spp. such as *H. assulta*, *H. subflexa*, *H. virescens*; *Hellula* spp. such as *H. undalis*, *H. rogatalis*; *Helocoverpa gelotopoeon*, *Hemileuca oliviae*, *Herpetogramma licarsialis*, *Hibernia defoliaria*, *Hofmannophila pseudospretella*, *Homoeosoma electellum*, *Homona magnanima*, *Hypena scabra*, *Hyphantria cunea*,

5 *Hyponomeuta padella*, *Hyponomeuta malinellus*, *Kakivoria flavofasciata*, *Keiferia lycopersicella*, *Lambdina fiscellaria fiscellaria*, *Lambdina fiscellaria lugubrosa*, *Lamprosema indicata*, *Laspeyresia molesta*, *Leguminivora glycinivorella*, *Lerodea eupala*, *Leucinodes orbonalis*, *Leucoma salicis*, *Leucoptera* spp. such as *L. coffeella*, *L. scitella*; *Leuminivora lycinivorella*, *Lithocletis blancardella*, *Lithophane antennata*, *Llattia octo* (=*Amyna axis*), *Lobesia botrana*,

10 *Lophocampa* spp., *Loxagrotis albicosta*, *Loxostege* spp. such as *L. sticticalis*, *L. cereralis*; *Lymantria* spp. such as *L. dispar*, *L. monacha*; *Lyonetia clerkella*, *Lyonetia prunifoliella*, *Malacosoma* spp. such as *M. americanum*, *M. californicum*, *M. constrictum*, *M. neustria*; *Mamestra* spp. such as *M. brassicae*, *M. configurata*; *Mamstra brassicae*, *Manduca* spp. such as *M. quinquemaculata*, *M. sexta*; *Marasmia* spp., *Marmara* spp., *Maruca testulalis*, *Megalopyge lanata*,

15 *Melanchra picta*, *Melanitis leda*, *Mocis* spp. such as *M. lapites*, *M. repanda*; *Mocis latipes*, *Monochroa fragariae*, *Mythimna separata*, *Nemapogon cloacella*, *Neoleucinodes elegantalis*, *Nepytia* spp., *Nymphula* spp., *Oiketicus* spp., *Omiodes indicata*, *Omphisa anastomosalis*, *Operophtera brumata*, *Orgyia pseudotsugata*, *Oria* spp., *Orthaga thyrinalis*, *Ostrinia* spp. such as *O. nubilalis*; *Oulema oryzae*, *Paleacrita vernata*, *Panolis flammea*, *Parnara* spp., *Papaipema nebris*, *Papilio cresphontes*, *Paramyelois transitella*, *Paranthrene regalis*, *Paysandisia archon*, *Pectinophora* spp. such as *P. gossypiella*; *Peridroma saucia*, *Perileucoptera* spp., such as *P. coffeella*; *Phalera bucephala*, *Phryganidia californica*, *Phthorimaea* spp. such as *P. operculella*; *Phyllocnistis citrella*, *Phyllonorycter* spp. such as *P. blancardella*, *P. crataegella*, *P. issikii*, *P. ringoniella*; *Pieris* spp. such as *P. brassicae*, *P. rapae*, *P. napi*; *Pilocrocis tripunctata*, *Plathyptena scabra*, *Platynota* spp. such as *P. flavedana*, *P. idaeusalis*, *P. stultana*; *Platyptilia carduidactyla*, *Plebejus argus*, *Plodia interpunctella*, *Plusia* spp., *Plutella maculipennis*, *Plutella xylostella*, *Pontia protodica*, *Prays* spp., *Prodenia* spp., *Proxenus lepigone*, *Pseudaletia* spp. such as *P. sequax*, *P. unipuncta*; *Pyrausta nubilalis*, *Rachiplusia nu*, *Richia albicosta*, *Rhizobius ventralis*, *Rhyacionia frustrana*, *Sabulodes aegrotata*, *Schizura concinna*, *Schoenobius* spp.,

20 *Schreckensteinia festaliella*, *Scirpophaga* spp. such as *S. incertulas*, *S. innotata*; *Scotia segetum*, *Sesamia* spp. such as *S. inferens*, *Seudyra subflava*, *Sitotroga cerealella*, *Sparganothis pilleriana*, *Spilonota lechriaspis*, *S. ocellana*, *Spodoptera* (=*Lamphygma*) spp. such as *S. eridania*, *S. exigua*, *S. frugiperda*, *S. latisfascia*, *S. littoralis*, *S. litura*, *S. omithogalli*; *Stigmella* spp., *Stomopteryx subsecivella*, *Strymon bazochii*, *Sylepta derogata*, *Synanthedon* spp. such as

25 *S. exitiosa*, *Tecia solanivora*, *Telehin licus*, *Thaumatopoea pityocampa*, *Thaumatotibia* (=*Cryptophlebia*) *leucotreta*, *Thaumetopoea pityocampa*, *Thecla* spp., *Theresimima ampelophaga*, *Thyrinteina* spp., *Tildenia inconspicuella*, *Tinea* spp. such as *T. cloacella*, *T. pelionella*; *Tineola bisselliella*, *Tortrix* spp. such as *T. viridana*; *Trichophaga tapetzella*, *Trichoplusia* spp. such as *T. ni*; *Tuta* (=*Scrobipalpula*) *absoluta*, *Udea* spp. such as *U. rubigalis*, *U. rubigalis*; *Virachola* spp., *Yponomeuta padella*, and *Zeiraphera canadensis*.

insects from the order of **Coleoptera**, for example *Acalymma vittatum*, *Acanthoscelides obtectus*, *Adoretus* spp., *Agelastica alni*, *Agrilus* spp. such as *A. anxius*, *A. planipennis*, *A. sinuatus*; *Agriotes* spp. such as *A. fuscicollis*, *A. lineatus*, *A. obscurus*; *Alphitobius diaperinus*, *Amphimallon solstitialis*, *Anisandrus dispar*, *Anisoplia austriaca*, *Anobium punctatum*, *Anomala corpulenta*,

5 *Anomala rufocuprea*, *Anoplophora* spp. such as *A. glabripennis*; *Anthonomus* spp. such as *A. eugenii*, *A. grandis*, *A. pomorum*; *Anthrenus* spp., *Aphthona euphoridae*, *Apion* spp., *Apogonia* spp., *Athous haemorrhoidalis*, *Atomaria* spp. such as *A. linearis*; *Attagenus* spp., *Aulacophora femoralis*, *Blastophagus piniperda*, *Blitophaga undata*, *Bruchidius obtectus*, *Bruchus* spp. such as *B. latus*, *B. pisorum*, *B. rufimanus*; *Byctiscus betulae*, *Callidiellum rufipenne*, *Callopistria floridensis*, *Callosobruchus chinensis*, *Cameraria ohridella*, *Cassida nebulosa*, *Cerotoma trifurcata*, *Cetonia aurata*, *Ceuthorhynchus* spp. such as *C. assimilis*, *C. napi*; *Chaetocnema tibialis*, *Cleonus mendicus*, *Conoderus* spp. such as *C. vespertinus*; *Conotrachelus nenuphar*, *Cosmopolites* spp., *Costelytra zealandica*, *Crioceris asparagi*, *Cryptolestes ferrugineus*, *Cryptorhynchus lapathi*, *Ctenicera* spp. such as *C. destructor*; *Curculio* spp., *Cylindrocopturus* spp., *Cyclocephala* spp., *Dactylispa balyi*, *Decodes texanus*, *Dermestes* spp., *Diabrotica* spp. such as *D. undecimpunctata*, *D. speciosa*, *D. longicornis*, *D. semipunctata*, *D. virgifera*; *Diaprepes abbreviatus*, *Dichocrocis* spp., *Dicladispa armigera*, *Diloboderus abderus*, *Diocalandra frumenti* (*Diocalandra stigmaticollis*), *Enaphalodes rufulus*, *Epilachna* spp. such as *E. varivestis*, *E. vigintioculata*; *Epitrix* spp. such as *E. hirtipennis*, *E. similaris*; *Eutheola humilis*, *Eutinobothrus brasiliensis*, *Faustinus cubae*, *Gibbium psylloides*, *Gnathocerus cornutus*, *Hellula undalis*, *Heteronychus arator*, *Hylamorpha elegans*, *Hylobius abietis*, *Hylotrupes bajulus*, *Hypera* spp. such as *H. brunneipennis*, *H. postica*; *Hypomeces squamosus*, *Hypothenemus* spp., *Ips typographus*, *Lachnostenra consanguinea*, *Lasioderma serricorne*, *Latheticus oryzae*, *Lathridius* spp., *Lema* spp. such as *L. bilineata*, *L. melanopus*; *Leptinotarsa* spp. such as *L. decemlineata*; *Lepisipa pygmaea*, *Limonius californicus*, *Lissorhoptrus oryzophilus*, *Lixus* spp., *Luperodes* spp., *Lyctus* spp. such as *L. bruneus*; *Liogenys fuscus*, *Macrodactylus* spp. such as *M. subspinosus*; *Maladera matrida*, *Megaplatypus mutatus*, *Megascelis* spp., *Melanotus communis*, *Meligethes* spp. such as *M. aeneus*; *Melolontha* spp. such as *M. hippocastani*, *M. melolontha*; *Metamasius hemipterus*, *Microtheca* spp., *Migdolus* spp. such as *M. fryanus*, *Monochamus* spp. such as *M. alternatus*; *Naupactus xanthographus*, *Niptus hololeucus*, *Oberia brevis*, *Oemona hirta*, *Oryctes rhinoceros*, *Oryzaephilus surinamensis*, *Oryzaphagus oryzae*, *Otiorrhynchus sulcatus*, *Otiorrhynchus ovatus*, *Otiorrhynchus sulcatus*, *Oulema melanopus*, *Oulema oryzae*, *Oxycetonia jucunda*, *Phaedon* spp. such as *P. brassicae*, *P. cochleariae*; *Phoracantha recurva*, *Phyllobius pyri*, *Phyllopertha horticola*, *Phyllophaga* spp. such as *P. helleri*; *Phyllotreta* spp. such as *P. chrysocephala*, *P. nemorum*, *P. striolata*, *P. vittula*; *Phyllopertha horticola*, *Popillia japonica*, *Premnotrypes* spp., *Psacothea hilaris*, *Psylliodes chrysocephala*, *Prostephanus truncatus*, *Psylliodes* spp., *Ptinus* spp., *Pulga saltona*, *Rhizopertha dominica*, *Rhynchophorus* spp. such as *R. billineatus*, *R. ferrugineus*, *R. palmarum*, *R. phoenicis*, *R. vulneratus*; *Saperda candida*, *Scolytus schevyrewi*, *Scyphophorus acupunctatus*, *Sitona lineatus*, *Sitophilus* spp. such as *S. granaria*, *S. oryzae*, *S. zeamais*; *Sphenophorus* spp. such as *S. levis*; *Stegobium paniceum*, *Sternechus* spp. such as *S. subsignatus*; *Strophomorphus ctenotus*, *Symplyctes* spp., *Tanymecus* spp.,

*Tenebrio molitor*, *Tenebrioides mauretanicus*, *Tribolium* spp. such as *T. castaneum*; *Trogoderma* spp., *Tychius* spp., *Xylotrechus* spp. such as *X. pyrrhoderus*; and, *Zabrus* spp. such as *Z. tenebrioides*,

5 insects from the order of **Diptera** for example *Aedes* spp. such as *A. aegypti*, *A. albopictus*, *A. vexans*; *Anastrepha ludens*, *Anopheles* spp. such as *A. albimanus*, *A. crucians*, *A. freeborni*, *A. gambiae*, *A. leucosphyrus*, *A. maculipennis*, *A. minimus*, *A. quadrimaculatus*, *A. sinensis*; *Bac-  
10 trocera invadens*, *Bibio hortulanus*, *Calliphora erythrocephala*, *Calliphora vicina*, *Ceratitis capitata*, *Chrysomyia* spp. such as *C. bezziana*, *C. hominivorax*, *C. macellaria*; *Chrysops atlanticus*, *Chrysops discalis*, *Chrysops silacea*, *Cochliomyia* spp. such as *C. hominivorax*; *Contarinia* spp. such as *C. sorghicola*; *Cordylobia anthropophaga*, *Culex* spp. such as *C. nigripalpus*, *C. pipiens*, *C. quinquefasciatus*, *C. tarsalis*, *C. tritaeniorhynchus*; *Culicoides furens*, *Culiseta inornata*, *Culiseta melanura*, *Cuterebra* spp., *Dacus cucurbitae*, *Dacus oleae*, *Dasineura brassicae*, *Dasineura oxycoccana*, *Delia* spp. such as *D. antique*, *D. coarctata*, *D. platura*, *D. radicum*;  
15 *Dermatobia hominis*, *Drosophila* spp. such as *D. suzukii*, *Fannia* spp. such as *F. canicularis*; *Gastraphilus* spp. such as *G. intestinalis*; *Geomyza tipunctata*, *Glossina* spp. such as *G. fuscipes*, *G. morsitans*, *G. palpalis*, *G. tachinoides*; *Haematobia irritans*, *Haplodiplosis equestris*, *Hippelates* spp., *Hylemyia* spp. such as *H. platura*; *Hypoderma* spp. such as *H. lineata*; *Hypo-  
20 bosca* spp., *Hydrellia philippina*, *Leptoconops torrens*, *Liriomyza* spp. such as *L. sativae*, *L. trifolii*; *Lucilia* spp. such as *L. caprina*, *L. cuprina*, *L. sericata*; *Lycoria pectoralis*, *Mansonia titillans*, *Mayetiola* spp. such as *M. destructor*; *Musca* spp. such as *M. autumnalis*, *M. domestica*; *Musci-  
25 na stabulans*, *Oestrus* spp. such as *O. ovis*; *Opomyza florum*, *Oscinella* spp. such as *O. frit*; *Orseolia oryzae*, *Pegomya hysocyami*, *Phlebotomus argentipes*, *Phorbia* spp. such as *P. antiqua*, *P. brassicae*, *P. coarctata*; *Phytomyza gymnostoma*, *Prosimulium mixtum*, *Psila rosae*, *Psorophora columbiae*, *Psorophora discolor*, *Rhagoletis* spp. such as *R. cerasi*, *R. cingulata*, *R. indifferens*, *R. mendax*, *R. pomonella*; *Rivellia quadrifasciata*, *Sarcophaga* spp. such as *S. haemorrhoidalis*; *Simulium vittatum*, *Sitodiplosis mosellana*, *Stomoxys* spp. such as *S. calcitrans*; *Tabanus* spp. such as *T. atratus*, *T. bovinus*, *T. lineola*, *T. similis*; *Tannia* spp., *Thecodiplosis japonensis*, *Tipula oleracea*, *Tipula paludosa*, and *Wohlfahrtia* spp.

30 insects from the order of **Thysanoptera** for example, *Baliothrips biformis*, *Dichromothrips corbetti*, *Dichromothrips* spp., *Echinothrips americanus*, *Enneothrips flavens*, *Frankliniella* spp. such as *F. fusca*, *F. occidentalis*, *F. tritici*; *Heliothrips* spp., *Hercinothrips femoralis*, *Kakothrips* spp., *Microcephalothrips abdominalis*, *Neohydatothrips samayunkur*, *Pezothrips kellyanus*, *Rhipiphorothrips cruentatus*, *Scirtothrips* spp. such as *S. citri*, *S. dorsalis*, *S. perseae*; *Stenchaetothrips* spp., *Taeniothrips cardamoni*, *Taeniothrips inconsequens*, *Thrips* spp. such as *T. imagines*, *T. hawaiiensis*, *T. oryzae*, *T. palmi*, *T. parvispinus*, *T. tabaci*.

35 insects from the order of **Hemiptera** for example, *Acizzia jamatonica*, *Acrosternum* spp. such as *A. hilare*; *Acyrthosipon* spp. such as *A. onobrychis*, *A. pisum*; *Adelges laricis*, *Adelges tsugae*, *Adelphocoris* spp., such as *A. rapidus*, *A. superbus*; *Aeneolamia* spp., *Agonoscena* spp., *Au-*

*Iacorthum solani*, *Aleurocanthus woglumi*, *Aleurodes* spp., *Aleurodicus disperses*, *Aleurolobus barodensis*, *Aleurothrixus* spp., *Amrasca* spp., *Anasa tristis*, *Antestiopsis* spp., *Anuraphis cardui*, *Aonidiella* spp., *Aphanostigma piri*, *Aphidula nasturtii*, *Aphis* spp. such as *A. craccivora*, *A. fabae*, *A. forbesi*, *A. gossypii*, *A. grossulariae*, *A. maidiradicis*, *A. pomi*, *A. sambuci*, *A. schneideri*, *A. spiraecola*; *Arboridia apicalis*, *Arilus critatus*, *Aspidiella* spp., *Aspidiotus* spp., *Atanus* spp., *Aulacaspis yasumatsui*, *Aulacorthum solani*, *Bactericera cockerelli* (*Paratrioza cockerelli*), *Bemisia* spp. such as *B. argentifolii*, *B. tabaci* (*Aleurodes tabaci*); *Blissus* spp. such as *B. leucophaeus*; *Brachycaudus* spp. such as *B. cardui*, *B. helichrysi*, *B. persicae*, *B. prunicola*; *Brachycolus* spp., *Brachycorynella asparagi*, *Brevicoryne brassicae*, *Cacopsylla* spp. such as *C. fulgoralis*, *C. pyricola* (*Psylla piri*); *Callipypona marginata*, *Calocoris* spp., *Campylomma livida*, *Captophorus horni*, *Carneocephala fulgida*, *Cavelerius* spp., *Ceroplastes* spp., *Ceratovacuna lanigera*, *Ceroplastes ceriferus*, *Cerosiphia gossypii*, *Chaetosiphon fragaefolii*, *Chionaspis tegalensis*, *Chlorita onukii*, *Chromaphis juglandicola*, *Chrysomphalus ficus*, *Cicadulina mbila*, *Cimex* spp. such as *C. hemipterus*, *C. lectularius*; *Coccomytilus halli*, *Coccus* spp. such as *C. hesperidum*, *C. pseudomagnoliarum*; *Corythucha arcuata*, *Creontiades dilutus*, *Cryptomyzus ribis*, *Chrysomphalus aonidum*, *Cryptomyzus ribis*, *Ctenarytaina spatulata*, *Cyrtopeltis notatus*, *Dalbulus* spp., *Dasynus piperis*, *Dialeurodes* spp. such as *D. citrifolii*; *Dalbulus maidis*, *Diaphorina* spp. such as *D. citri*; *Diaspis* spp. such as *D. bromeliae*; *Dichelops furcatus*, *Diconocoris hewitti*, *Doralis* spp., *Dreyfusia nordmanniana*, *Dreyfusia piceae*, *Drosicha* spp., *Dysaphis* spp. such as *D. plantaginea*, *D. pyri*, *D. radicola*; *Dysaulacorthum pseudosolani*, *Dysdercus* spp. such as *D. cingulatus*, *D. intermedius*; *Dysmicoccus* spp., *Edessa* spp., *Geocoris* spp., *Empoasca* spp. such as *E. fabae*, *E. solana*; *Epidiaspis leperii*, *Eriosoma* spp. such as *E. lanigerum*, *E. pyricola*; *Erythroneura* spp., *Eurygaster* spp. such as *E. integriceps*; *Euscelis bilobatus*, *Euschistus* spp. such as *E. heros*, *E. impictiventris*, *E. servus*; *Fiorinia theae*, *Geococcus coffeae*, *Glycaspis brimblecombei*, *Halyomorpha* spp. such as *H. halys*; *Heliozelitis* spp., *Homalodisca vitripennis* (=*H. coagulata*), *Horcias nobilellus*, *Hyalopterus pruni*, *Hyperomyzus lactucae*, *Icerya* spp. such as *I. purchase*; *Idiocerus* spp., *Idioscopus* spp., *Laodelphax striatellus*, *Lecanium* spp., *Lecanoideus floccissimus*, *Lepidosaphes* spp. such as *L. ulmi*; *Leptocoris* spp., *Leptoglossus phyllopus*, *Lipaphis erysimi*, *Lygus* spp. such as *L. hesperus*, *L. lineolaris*, *L. pratensis*; *Macrolenis* spp., *Macrolenis hirsutus*, *Marchalina hellenica*, *Macropes excavatus*, *Macrosiphum* spp. such as *M. rosae*, *M. avenae*, *M. euphorbiae*; *Macrosteles quadrilineatus*, *Mahanarva fimbriolata*, *Megacopta cribraria*, *Megoura viciae*, *Melanaphis pyrarius*, *Melanaphis sacchari*, *Melanocallis* (=*Tinocallis*) *caryaefoliae*, *Metcalfiella* spp., *Metopolophium dirhodum*, *Monellia costalis*, *Monelliopsis pecanis*, *Myzocallis coryli*, *Murgantia* spp., *Myzus* spp. such as *M. ascalonicus*, *M. cerasi*, *M. nicotianae*, *M. persicae*, *M. varians*; *Nasonovia ribis-nigri*, *Neotoxoptera formosana*, *Neomegalotomus* spp., *Nephrotettix* spp. such as *N. malayanus*, *N. nigropictus*, *N. parvus*, *N. virescens*; *Nezara* spp. such as *N. viridula*; *Nilaparvata lugens*, *Nysius huttoni*, *Oebalus* spp. such as *O. pugnax*; *Oncometopia* spp., *Orthezia praelonga*, *Oxycaraenus hyalinipennis*, *Parabemisia myricae*, *Parlatoria* spp., *Parthenolecanium* spp. such as *P. corni*, *P. persicae*; *Pemphigus* spp. such as *P. bursarius*, *P. populivenae*; *Peregrinus maidis*, *Perkinsiella saccharicida*, *Phenacoccus* spp. such as *P. aceris*, *P. gossypii*; *Phloeomyzus passerinii*, *Phorodon humuli*, *Phylloxer-*

ra spp. such as *P. devastatrix*, *Piesma quadrata*, *Piezodorus* spp. such as *P. guildinii*; *Pinnaspis aspidistrae*, *Planococcus* spp. such as *P. citri*, *P. ficus*; *Prosapia bicincta*, *Protopulvinaria pyriformis*, *Psallus seriatus*, *Pseudacysta perseae*, *Pseudaulacaspis pentagona*, *Pseudococcus* spp. such as *P. comstocki*; *Psylla* spp. such as *P. mali*; *Pteromalus* spp., *Pulvinaria amygdali*, *Pyrilla*

5 *spp.*, *Quadraspidiotus* spp., such as *Q. perniciosus*; *Quesada gigas*, *Rastrococcus* spp., *Reduvius senilis*, *Rhizoecus americanus*, *Rhodnius* spp., *Rhopalomyzus ascalonicus*, *Rhopalosiphum* spp. such as *R. pseudobrassicas*, *R. insertum*, *R. maidis*, *R. padi*; *Sagatodes* spp., *Sahlbergella singularis*, *Saissetia* spp., *Sappaphis mala*, *Sappaphis mali*, *Scaptocoris* spp., *Scaphoides titanus*, *Schizaphis graminum*, *Schizoneura lanuginosa*, *Scotinophora* spp., *Sele-*  
10 *naspidus articulatus*, *Sitobion avenae*, *Sogata* spp., *Sogatella furcifera*, *Solubea insularis*, *Spis-*  
*sistilus festinus* (=*Stictocephala festina*); *Stephanitis nashi*, *Stephanitis pyrioides*, *Stephanitis*  
15 *takeyai*, *Tenalaphara malayensis*, *Tetraleurodes perseae*, *Theroaphis maculate*, *Thyanta* spp. such as *T. accerra*, *T. perditor*; *Tibraca* spp., *Tomaspis* spp., *Toxoptera* spp. such as *T. aurantii*; *Trialeurodes* spp. such as *T. abutilonea*, *T. ricini*, *T. vaporariorum*; *Triatoma* spp., *Trioza* spp., *Typhlocyba* spp., *Unaspis* spp. such as *U. citri*, *U. yanonensis*; and *Viteus vitifolii*,

Insects from the order **Hymenoptera** for example *Acanthomyops interjectus*, *Athalia rosae*, *Atta* spp such as *A. capiguara*, *A. cephalotes*, *A. cephalotes*, *A. laevigata*, *A. robusta*, *A. sexdens*, *A. texana*, *Bombus* spp., *Brachymyrmex* spp., *Camponotus* spp such as *C. floridanus*, *C. pennsyl-*

20 *vanicus*, *C. modoc*; *Cardiocondyla nuda*, *Chalibion* sp, *Crematogaster* spp., *Dasymutilla occi-*  
*dentalis*, *Diprion* spp., *Dolichovespula maculata*, *Dorymyrmex* spp, *Dryocosmus kuriphilus*, *Formica* spp, *Hoplocampa* spp. such as *H. minuta*, *H. testudinea*; *Iridomyrmex humilis*, *Lasius* spp. such as *L. niger*, *Linepithema humile*, *Liometopum* spp, *Leptocybe invasa*, *Monomorium* spp such as *M. pharaonis*, *Monomorium*, *Nylandria fulva*, *Pachycondyla chinensis*, *Paratre-*  
25 *china longicornis*, *Paravespula* spp such as *P. germanica*, *P. pennsylvanica*, *P. vulgaris*; *Phe-*  
*doile* spp such as *P. megacephala*; *Pogonomyrmex* spp such as *P. barbatus*, *P. californicus*, *Polistes rubiginosa*, *Prenolepis impairs*, *Pseudomyrmex gracilis*, *Schelipron* spp, *Sirex cyaneus*, *Solenopsis* spp such as *S. geminata*, *S. invicta*, *S. molesta*, *S. richteri*, *S. xyloni*, *Sphecius spe-*  
30 *ciosus*, *Sphex* spp, *Tapinoma* spp such as *T. melanocephalum*, *T. sessile*; *Tetramorium* spp such as *T. caespitum*, *T. bicarinatum*, *Vespa* spp. such as *V. crabro*; *Vespula* spp such as *V. squamosal*; *Wasmannia auropunctata*, *Xylocopa* sp

Insects from the order **Orthoptera** for example *Acheta domesticus*, *Calliptamus italicus*, *Chor-*  
35 *toicetes terminifera*, *Ceuthophilus* spp, *Diastrammena asynamora*, *Dociostaurus maroccanus*, *Gryllotalpa* spp such as *G. africana*, *G. gryllotalpa*; *Gryllus* spp, *Hieroglyphus daganensis*, *Kraussaria angulifera*, *Locusta* spp. such as *L. migratoria*, *L. pardalina*; *Melanoplus* spp such as *M. bivittatus*, *M. femur-rubrum*, *M. mexicanus*, *M. sanguinipes*, *M. spretus*; *Nomadacris septem-*  
*fasciata*, *Oedaleus senegalensis*, *Scapteriscus* spp, *Schistocerca* spp such as *S. americana*, *S. gregaria*, *Stemopelmatus* spp, *Tachycines asynamorus*, and *Zonozerus variegatus*

Pests from the Class **Arachnida** for example **Acari**, e.g. of the families Argasidae, Ixodidae and Sarcoptidae, such as *Amblyomma* spp. (e.g. *A. americanum*, *A. variegatum*, *A. maculatum*), *Argas* spp. such as *A. persicus*), *Boophilus* spp. such as *B. annulatus*, *B. decoloratus*, *B. microplus*, *Dermacentor* spp such as *D. silvarum*, *D. andersoni*, *D. variabilis*, *Hyalomma* spp. such as *H. truncatum*, *Ixodes* spp. such as *I. ricinus*, *I. rubicundus*, *I. scapularis*, *I. holocyclus*, *I. pacificus*, *Rhipicephalus sanguineus*, *Ornithodoros* spp. such as *O. moubata*, *O. hermsi*, *O. turicata*), *Ornithonyssus bacoti*, *Otobius megnini*, *Dermanyssus gallinae*, *Psoroptes* spp such as *P. ovis*, *Rhipicephalus* spp such as *R. sanguineus*, *R. appendiculatus*, *Rhipicephalus evertsii*), *Rhizoglyphus* spp; *Sarcoptes* spp. such as *S. Scabiei*; and Family **Eriophyidae** including *Aceria* spp such as *A. sheldoni*, *A. anthocoptes*, *Acalitus* spp; *Aculops* spp. such as *A. lycopersici*, *A. pelekassi*; *Aculus* spp such as *A. schlechtendali*; *Colomerus vitis*, *Epitrimerus pyri*, *Phyllocoptura oleivora*; *Eriophyes ribis* and *Eriophyes* spp such as *Eriophyes sheldoni*; Family **Tarsonemidae** including *Hemitarsonemus* spp., *Phytonemus pallidus* and *Polyphagotarsonemus latus*, *Stenotarsonemus* spp. *Steneotarsonemus spinki*; Family **Tenuipalpidae** including *Brevipalpus* spp. such as *B. phoenicis*; Family **Tetranychidae** including *Eotetranychus* spp., *Eutetranychus* spp., *Oligonychus* spp., *Petrobia latens*, *Tetranychus* spp such as *T. cinnabarinus*, *T. evansi*, *T. kanzawai*, *T. pacificus*, *T. phaseulus*, *T. telarius* and *T. urticae*; *Bryobia praetiosa*; *Panonychus* spp. such as *P. ulmi*, *P. citri*, *Metatetranychus* spp. and *Oligonychus* spp. such as *O. pratensis*, *O. perseae*), *Vasates lycopersici*; *Raoiella indica*, Family **Carpoglyphidae** including *Carpoglyphus* spp; *Penthaleidae* spp such as *Halotydeus destructor*; Family **Demodicidae** with species such a *Demodex* spp; Family **Trombicula** spp; Family **Macrogyssidae** including *Ornothonyssus* spp; Family **Pyemotidae** including *Pyemotes tritici*; *Tyrophagus putrescentiae*; Family **Acaridae** including *Acarus siro*; Family **Araneida** including *Latrodectus mactans*, *Tegenaria agrestis*, *Chiracanthium* sp, *Lycosa* sp *Achaeearanea tepidariorum* and *Loxosceles reclusa*.

Pests from the Phylum **Nematoda**, for example, plant parasitic nematodes such as root-knot nematodes, *Meloidogyne* spp. such as *M. hapla*, *M. incognita*, *M. javanica*; cyst-forming nematodes, *Globodera* spp. such as *G. rostochiensis*; *Heterodera* spp. such as *H. avenae*, *H. glycines*, *H. schachtii*, *H. trifolii*; Seed gall nematodes, *Anguina* spp.; Stem and foliar nematodes, *Aphelenchoides* spp. such as *A. besseyi*; Sting nematodes, *Belonolaimus* spp. such as *B. longicaudatus*; Pine nematodes, *Bursaphelenchus* spp. such as *B. lignicolus*, *B. xylophilus*; Ring nematodes, *Criconema* spp.; *Criconemella* spp. such as *C. xenoplax* and *C. ornata*; and, *Criconemoides* spp. such as *Criconemoides informis*; *Mesocriconema* spp.; Stem and bulb nematodes, *Ditylenchus* spp. such as *D. destructor*, *D. dipsaci*; Awl nematodes, *Dolichodorus* spp.; Spiral nematodes, *Helicotylenchus multicinctus*; Sheath and sheathoid nematodes, *Hemicyclophora* spp. and *Hemicriconemoides* spp.; *Hirshmanniella* spp.; Lance nematodes, *Hoplolaimus* spp.; False rootknot nematodes, *Nacobbus* spp.; Needle nematodes, *Longidorus* spp. such as *L. elongatus*; Lesion nematodes, *Pratylenchus* spp. such as *P. brachyurus*, *P. neglectus*, *P. penetrans*, *P. curvitatus*, *P. goodeyi*; Burrowing nematodes, *Radopholus* spp. such as *R. similis*; *Rhadopholus* spp.; *Rhodopholus* spp.; Reniform nematodes, *Rotylenchus* spp. such as

5 *R. robustus*, *R. reniformis*; *Scutellonema* spp.; Stubby-root nematode, *Trichodorus* spp. such as *T. obtusus*, *T. primitivus*; *Paratrichodorus* spp. such as *P. minor*; Stunt nematodes, *Tylenchorynchus* spp. such as *T. claytoni*, *T. dubius*; Citrus nematodes, *Tylenchulus* spp. such as *T. semipenetrans*; Dagger nematodes, *Xiphinema* spp.; and other plant parasitic nematode species.

10 Insects from the order **Isoptera** for example *Calotermes flavigollis*, *Coptotermes* spp such as *C. formosanus*, *C. gestroi*, *C. acinaciformis*; *Cornitermes cumulans*, *Cryptotermes* spp such as *C. brevis*, *C. cavifrons*; *Globitermes sulfureus*, *Heterotermes* spp such as *H. aureus*, *H. longiceps*, *H. tenuis*; *Leucotermes flavipes*, *Odontotermes* spp., *Incisitermes* spp such as *I. minor*, *I. Snyder*, *Marginitermes hubbardi*, *Mastotermes* spp such as *M. darwiniensis* *Neocapritermes* spp such as *N. opacus*, *N. parvus*; *Neotermes* spp, *Procornitermes* spp, *Zootermopsis* spp such as *Z. angusticollis*, *Z. nevadensis*, *Reticulitermes* spp. such as *R. hesperus*, *R. tibialis*, *R. speratus*, *R. flavipes*, *R. grassei*, *R. lucifugus*, *R. santonensis*, *R. virginicus*; *Termes natalensis*,

15 Insects from the order **Blattaria** for example *Blatta* spp such as *B. orientalis*, *B. lateralis*; *Blattella* spp such as *B. asahinae*, *B. germanica*; *Leucophaea maderae*, *Panchlora nivea*, *Periplaneta* spp such as *P. americana*, *P. australasiae*, *P. brunnea*, *P. fuligginosa*, *P. japonica*; *Supella longipalpa*, *Parcoblatta pennsylvanica*, *Eurycotis floridana*, *Pycnoscelus surinamensis*.

20 Insects from the order **Siphonoptera** for example *Cediopsylla simples*, *Ceratophyllus* spp., *Ctenocephalides* spp such as *C. felis*, *C. canis*, *Xenopsylla cheopis*, *Pulex irritans*, *Trichodectes canis*, *Tunga penetrans*, and *Nosopsyllus fasciatus*,

25 Insects from the order **Thysanura** for example *Lepisma saccharina*, *Ctenolepisma urbana*, and *Thermobia domestica*,

30 Pests from the class **Chilopoda** for example *Geophilus* spp., *Scutigera* spp. such as *Scutigera coleoptrata*;

35 Pests from the class **Diplopoda** for example *Blaniulus guttulatus*, *Julus* spp, *Narceus* spp.,

40 Pests from the class **Sympyla** for example *Scutigerella immaculata*.

35 Insects from the order **Dermoptera**, for example *Forficula auricularia*,

45 Insects from the order **Collembola**, for example *Onychiurus* spp. such as *Onychiurus armatus*.

50 Pests from the order **Isopoda** for example, *Armadillidium vulgare*, *Oniscus asellus*, *Porcellio scaber*.

Insects from the order **Phthiraptera**, for example *Damalinia* spp., *Pediculus* spp. such as *Pediculus humanus capitis*, *Pediculus humanus corporis*, *Pediculus humanus humanus*; *Pthirus pubis*, *Haematopinus* spp. such as *Haematopinus eurysternus*, *Haematopinus suis*; *Linognathus* spp. such as *Linognathus vituli*; *Bovicola bovis*, *Menopon gallinae*, *Menacanthus stramineus* and *Solenopotes capillatus*, *Trichodectes* spp.,

Examples of further pest species which may be controlled by compounds of formula (I) include: from the Phylum **Mollusca**, class **Bivalvia**, for example, *Dreissena* spp.; class **Gastropoda**, for example, *Arion* spp., *Biomphalaria* spp., *Bulinus* spp., *Deroceras* spp., *Galba* spp., *Lymnaea* spp., *Oncomelania* spp., *Pomacea canaliculata*, *Succinea* spp.; from the class of the **helminths**, for example, *Ancylostoma duodenale*, *Ancylostoma ceylanicum*, *Acylostoma braziliensis*, *Ancylostoma* spp., *Ascaris lubricoides*, *Ascaris* spp., *Brugia malayi*, *Brugia timori*, *Bunostomum* spp., *Chabertia* spp., *Clonorchis* spp., *Cooperia* spp., *Dicrocoelium* spp., *Dictyocaulus filaria*, *Diphyllobothrium latum*, *Dracunculus medinensis*, *Echinococcus granulosus*, *Echinococcus multilocularis*, *Enterobius vermicularis*, *Faciola* spp., *Haemonchus* spp. such as *Haemonchus contortus*; *Heterakis* spp., *Hymenolepis nana*, *Hyostrongylus* spp., *Loa Loa*, *Nematodirus* spp., *Oesophagostomum* spp., *Opisthorchis* spp., *Onchocerca volvulus*, *Ostertagia* spp., *Paragonimus* spp., *Schistosomen* spp., *Strongyloides fuelleborni*, *Strongyloides stercora lis*, *Strongyloides* spp., *Taenia saginata*, *Taenia solium*, *Trichinella spiralis*, *Trichinella nativa*, *Trichinella britovi*, *Trichinella nelsoni*, *Trichinella pseudospiralis*, *Trichostrongylus* spp., *Trichuris trichuria*, *Wuchereria bancrofti*;

#### Formulations

25 The mixtures according to the present invention can be converted into the customary formulations, for example solutions, emulsions, suspensions, dusts, powders, pastes and granules. The use form depends on the particular intended purpose; in each case, it should ensure a fine and even distribution of the compounds according to the invention.

30 Therefore the invention also relates to agrochemical compositions comprising an auxiliary and a mixture of at least one compound I of formula I and of at least one compound II (and optionally one compound III) according to the present invention.

35 An agrochemical composition comprises a pesticidally effective amount of a compound I. The term "effective amount" denotes an amount of the composition or of the compounds I, which is sufficient for controlling harmful fungi and/or harmful pests on cultivated plants or in the protection of materials and which does not result in a substantial damage to the treated plants. Such an amount can vary in a broad range and is dependent on various factors, such as the fungal species and/or the pest species to be controlled, the treated cultivated plant or material, the 40 climatic conditions and the specific compound I used.

The active compounds I and II (and optionally III), their N-oxides and salts can be converted into customary types of agrochemical compositions, e. g. solutions, emulsions, suspensions, dusts, powders, pastes, granules, pressings, capsules, and mixtures thereof. Examples for composition types are suspensions (e.g. SC, OD, FS), emulsifiable concentrates (e.g. EC), emulsions

5 (e.g. EW, EO, ES, ME), capsules (e.g. CS, ZC), pastes, pastilles, wettable powders or dusts (e.g. WP, SP, WS, DP, DS), pressings (e.g. BR, TB, DT), granules (e.g. WG, SG, GR, FG, GG, MG), insecticidal articles (e.g. LN), as well as gel formulations for the treatment of plant propagation materials such as seeds (e.g. GF). These and further compositions types are defined in the " Catalogue of pesticide formulation types and international coding system" , Technical

10 Monograph No. 2, 6th Ed. May 2008, CropLife International.

The compositions are prepared in a known manner, such as described by Mollet and Grubemann, Formulation technology, Wiley VCH, Weinheim, 2001; or Knowles, New developments in crop protection product formulation, Agrow Reports DS243, T&F Informa, London, 2005.

15 Suitable auxiliaries are solvents, liquid carriers, solid carriers or fillers, surfactants, dispersants, emulsifiers, wetters, adjuvants, solubilizers, penetration enhancers, protective colloids, adhesion agents, thickeners, humectants, repellents, attractants, feeding stimulants, compatibilizers, bactericides, anti-freezing agents, anti-foaming agents, colorants, tackifiers and binders.

20 Suitable solvents and liquid carriers are water and organic solvents, such as mineral oil fractions of medium to high boiling point, e.g. kerosene, diesel oil; oils of vegetable or animal origin; aliphatic, cyclic and aromatic hydrocarbons, e. g. toluene, paraffin, tetrahydronaphthalene, alkylated naphthalenes; alcohols, e.g. ethanol, propanol, butanol, benzylalcohol, cyclohexanol; glycols; DMSO; ketones, e.g. cyclohexanone; esters, e.g. lactates, carbonates, fatty acid esters, gamma-butyrolactone; fatty acids; phosphonates; amines; amides, e.g. N-methylpyrrolidone, fatty acid dimethylamides; and mixtures thereof.

25 Suitable solid carriers or fillers are mineral earths, e.g. silicates, silica gels, talc, kaolins, limestone, lime, chalk, clays, dolomite, diatomaceous earth, bentonite, calcium sulfate, magnesium sulfate, magnesium oxide; polysaccharides, e.g. cellulose, starch; fertilizers, e.g. ammonium sulfate, ammonium phosphate, ammonium nitrate, ureas; products of vegetable origin, e.g. cereal meal, tree bark meal, wood meal, nutshell meal, and mixtures thereof.

30 35 Suitable surfactants are surface-active compounds, such as anionic, cationic, nonionic and amphoteric surfactants, block polymers, polyelectrolytes, and mixtures thereof. Such surfactants can be used as emulsifier, dispersant, solubilizer, wetter, penetration enhancer, protective colloid, or adjuvant. Examples of surfactants are listed in McCutcheon' s, Vol.1: Emulsifiers & Detergents, McCutcheon' s Directories, Glen Rock, USA, 2008 (International Ed. or North American Ed.).

Suitable anionic surfactants are alkali, alkaline earth or ammonium salts of sulfonates, sulfates, phosphates, carboxylates, and mixtures thereof. Examples of sulfonates are alkylaryl-sulfonates, diphenylsulfonates, alpha-olefin sulfonates, lignine sulfonates, sulfonates of fatty acids and oils, sulfonates of ethoxylated alkylphenols, sulfonates of alkoxylation arylphenols,

5 sulfonates of condensed naphthalenes, sulfonates of dodecyl- and tridecylbenzenes, sulfonates of naphthalenes and alkyl-naphthalenes, sulfosuccinates or sulfosuccinamates. Examples of sulfates are sulfates of fatty acids and oils, of ethoxylated alkylphenols, of alcohols, of ethoxylated alcohols, or of fatty acid esters. Examples of phosphates are phosphate esters. Examples of carboxylates are alkyl carboxylates, and carboxylated alcohol or alkylphenol ethoxylates.

10 Suitable nonionic surfactants are alkoxylates, N-substituted fatty acid amides, amine oxides, esters, sugar-based surfactants, polymeric surfactants, and mixtures thereof. Examples of alkoxylates are compounds such as alcohols, alkylphenols, amines, amides, arylphenols, fatty acids or fatty acid esters which have been alkoxylated with 1 to 50 equivalents. Ethylene oxide and/or propylene oxide may be employed for the alkoxylation, preferably ethylene oxide. Examples of N-substituted fatty acid amides are fatty acid glucamides or fatty acid alkanolamides. Examples of esters are fatty acid esters, glycerol esters or monoglycerides. Examples of sugar-based surfactants are sorbitans, ethoxylated sorbitans, sucrose and glucose esters or alkylpolyglucosides. Examples of polymeric surfactants are homo- or copolymers of vinylpyrrolidone, vinylalcohols, or vinylacetate.

15 Suitable cationic surfactants are quaternary surfactants, for example quaternary ammonium compounds with one or two hydrophobic groups, or salts of long-chain primary amines. Suitable amphoteric surfactants are alkylbetsains and imidazolines. Suitable block polymers are block polymers of the A-B or A-B-A type comprising blocks of polyethylene oxide and polypropylene oxide, or of the A-B-C type comprising alkanol, polyethylene oxide and polypropylene oxide. Suitable polyelectrolytes are polyacids or polybases. Examples of polyacids are alkali salts of polyacrylic acid or polyacid comb polymers. Examples of polybases are polyvinylamines or polyethyleneamines.

20 Suitable adjuvants are compounds, which have a neglectable or even no pesticidal activity themselves, and which improve the biological performance of the compound I on the target. Examples are surfactants, mineral or vegetable oils, and other auxiliaries. Further examples are listed by Knowles, Adjuvants and additives, Agrow Reports DS256, T&F Informa UK, 2006, chapter 5.

25 Suitable thickeners are polysaccharides (e.g. xanthan gum, carboxymethylcellulose), anorganic clays (organically modified or unmodified), polycarboxylates, and silicates.

30 Suitable bactericides are bronopol and isothiazolinone derivatives such as alkylisothiazolinones and benzisothiazolinones.

Suitable anti-freezing agents are ethylene glycol, propylene glycol, urea and glycerin.

Suitable anti-foaming agents are silicones, long chain alcohols, and salts of fatty acids.

5 Suitable colorants (e.g. in red, blue, or green) are pigments of low water solubility and water-soluble dyes. Examples are inorganic colorants (e.g. iron oxide, titan oxide, iron hexacyanoferate) and organic colorants (e.g. alizarin-, azo- and phthalocyanine colorants).

10 Suitable tackifiers or binders are polyvinylpyrrolidons, polyvinylacetates, polyvinyl alcohols, polyacrylates, biological or synthetic waxes, and cellulose ethers.

15 The agrochemical compositions generally comprise between 0.01 and 95%, preferably between 0.1 and 90%, and in particular between 0.5 and 75%, by weight of active substance. The active substances are employed in a purity of from 90% to 100%, preferably from 95% to 100% (according to NMR spectrum).

20 Solutions for seed treatment (LS), Suspoemulsions (SE), flowable concentrates (FS), powders for dry treatment (DS), water-dispersible powders for slurry treatment (WS), water-soluble powders (SS), emulsions (ES), emulsifiable concentrates (EC) and gels (GF) are usually employed for the purposes of treatment of plant propagation materials, particularly seeds. The compositions in question give, after two-to-tenfold dilution, active substance concentrations of from 0.01 to 60% by weight, preferably from 0.1 to 40% by weight, in the ready-to-use preparations. Application can be carried out before or during sowing. Methods for applying compound I and compositions thereof, respectively, on to plant propagation material, especially seeds include dressing, coating, pelleting, dusting, soaking and in-furrow application methods of the propagation material. Preferably, compound I or the compositions thereof, respectively, are applied on to the plant propagation material by a method such that germination is not induced, e. g. by seed dressing, pelleting, coating and dusting.

25 30 When employed in plant protection, the amounts of active substances applied are, depending on the kind of effect desired, from 0.001 to 2 kg per ha, preferably from 0.005 to 2 kg per ha, more preferably from 0.05 to 0.9 kg per ha, and in particular from 0.1 to 0.75 kg per ha. In treatment of plant propagation materials such as seeds, e. g. by dusting, coating or drenching seed, amounts of active substance of from 0.1 to 1000 g, preferably from 1 to 1000 g, more 35 preferably from 1 to 100 g and most preferably from 5 to 100 g, per 100 kilogram of plant propagation material (preferably seeds) are generally required. In some cases the amount for seed treatment may be up to 100 kilogram per 100 kilogram of seeds, or may even exceed the seed weight.

40 When used in the protection of materials or stored products, the amount of active substance applied depends on the kind of application area and on the desired effect. Amounts customarily

applied in the protection of materials are 0.001 g to 2 kg, preferably 0.005 g to 1 kg, of active substance per cubic meter of treated material.

Various types of oils, wetters, adjuvants, fertilizer, or micronutrients, and further pesticides (e.g.

5 herbicides, insecticides, fungicides, growth regulators, safeners) may be added to the active substances or the compositions comprising them as premix or, if appropriate not until immediately prior to use (tank mix). These agents can be admixed with the compositions according to the invention in a weight ratio of 1:100 to 100:1, preferably 1:10 to 10:1.

The user applies the composition according to the invention usually from a predosage device, a

10 knapsack sprayer, a spray tank, a spray plane, or an irrigation system. Usually, the agrochemical composition is made up with water, buffer, and/or further auxiliaries to the desired application concentration and the ready-to-use spray liquor or the agrochemical composition according to the invention is thus obtained. Usually, 20 to 2000 liters, preferably 50 to 400 liters, of the ready-to-use spray liquor are applied per hectare of agricultural useful area.

15 According to one embodiment, individual components of the composition according to the invention such as parts of a kit or parts of a binary or ternary mixture may be mixed by the user himself in a spray tank and further auxiliaries may be added, if appropriate.

20 In a further embodiment, either individual components of the composition according to the invention or partially premixed components, e. g. components comprising active compound I and active compounds II (and optionally active compounds III), may be mixed by the user in a spray tank and further auxiliaries and additives may be added, if appropriate.

25 In a further embodiment, either individual components of the composition according to the invention or partially premixed components, e. g. components comprising active compound I and active compounds II (and optionally active compounds III), can be applied jointly (e.g. after tank mix) or consecutively.

### Applications

30 The compound I and the one or more compound(s) II (and optionally compounds III) can be applied simultaneously, that is jointly or separately, or in succession, that is immediately one after another and thereby creating the mixture "in-situ" on the desired location, as e.g. the plant, the sequence, in the case of separate application, generally not having any effect on the result of the control measures.

35 The mixtures of the invention are employed as such or in form of compositions by treating the insects or the plants, plant propagation materials, such as seeds, soil, surfaces, materials or rooms to be protected from insecticidal attack with a insecticidally effective amount of the active compounds. The application can be carried out both before and after the infection of the plants, 40 plant propagation materials, such as seeds, soil, surfaces, materials or rooms by the insects.

The compound I and the one or more compound(s) II are usually applied in a weight ratio of from 500:1 to 1:100, preferably from 20:1 to 1:50, in particular from 5:1 to 1:20.

Depending on the desired effect, the application rates of the mixtures according to the invention are from 5 g/ha to 2000 g/ha, preferably from 50 to 1500 g/ha, in particular from 50 to 750 g/ha.

5

The mixtures according to the invention are effective through both contact and ingestion.

According to a preferred embodiment of the invention, the mixtures according to the present invention are employed via soil application. Soil application is especially favorable for use

10 against ants, termites, crickets, or cockroaches.

According to another preferred embodiment of the invention, for use against non crop pests such as ants, termites, wasps, flies, mosquitoes, crickets, locusts, or cockroaches the mixtures according to the present invention are prepared into a bait preparation.

15

The bait can be a liquid, a solid or a semisolid preparation (e.g. a gel).

Another aspect of the present invention is when preparing the mixtures, it is preferred to employ the pure active compounds I and II, to which further active compounds, e.g. against harmful 20 fungi or having herbicidal activity, or growth-regulating agents or fertilizers can be added.

Compositions of this invention may further contain other active ingredients than those listed above. For example fungicides, herbicides, fertilizers such as ammonium nitrate, urea, potash, and superphosphate, phytotoxicants and plant growth regulators and safeners. These additional 25 ingredients may be used sequentially or in combination with the above-described compositions, if appropriate also added only immediately prior to use (tank mix). For example, the plant(s) may be sprayed with a composition of this invention either before or after being treated with other active ingredients.

30 The mixtures according to the invention can be applied to any and all developmental stages, such as egg, larva, pupa, and adult. The pests may be controlled by contacting the target pest, its food supply, habitat, breeding ground or its locus with a pesticidally effective amount of the inventive mixtures or of compositions comprising the mixtures.

35 "Locus" means a plant, seed, soil, area, material or environment in which a pest is growing or may grow.

In general, "pesticidally effective amount" means the amount of the inventive mixtures or of compositions comprising the mixtures needed to achieve an observable effect on growth, in-

40 including the effects of necrosis, death, retardation, prevention, and removal, destruction, or otherwise diminishing the occurrence and activity of the target organism. The pesticidally effective

amount can vary for the various mixtures and/or compositions used in the invention. A pesticidally effective amount of the mixtures and/or compositions will also vary according to the prevailing conditions such as desired pesticidal effect and duration, weather, target species, locus, mode of application, and the like.

5 The inventive mixtures or compositions of these mixtures can also be employed for protecting plants from attack or infestation by insects, acarids or nematodes comprising contacting a plant, or soil or water in which the plant is growing.

10 The inventive mixtures are effective through both contact (via soil, glass, wall, bed net, carpet, plant parts or animal parts), and ingestion (bait, or plant part) and through trophallaxis and transfer.

15 Preferred application methods are into water bodies, via soil, cracks and crevices, pastures, manure piles, sewers, into water, on floor, wall, or by perimeter spray application and bait.

According to another preferred embodiment of the invention, for use against non crop pests such as ants, termites, wasps, flies, mosquitoes, crickets, locusts, or cockroaches the inventive mixtures are prepared into a bait preparation.

20 The bait can be a liquid, a solid or a semisolid preparation (e.g. a gel). The bait employed in the composition is a product which is sufficiently attractive to incite insects such as ants, termites, wasps, flies, mosquitoes, crickets etc. or cockroaches to eat it. This attractant may be chosen from feeding stimulants or para and / or sex pheromones readily known in the art.

25 Methods to control infectious diseases transmitted by insects (e.g. malaria, dengue and yellow fever, lymphatic filariasis, and leishmaniasis) with the inventive mixtures and their respective compositions also comprise treating surfaces of huts and houses, air spraying and impregnation of curtains, tents, clothing items, bed nets, tsetse-fly trap or the like. Insecticidal compositions 30 for application to fibers, fabric, knitgoods, non-wovens, netting material or foils and tarpaulins preferably comprise a composition including the inventive mixtures, optionally a repellent and at least one binder.

35 The inventive mixtures and the compositions comprising them can be used for protecting wooden materials such as trees, board fences, sleepers, etc. and buildings such as houses, out-houses, factories, but also construction materials, furniture, leathers, fibers, vinyl articles, electric wires and cables etc. from ants and/or termites, and for controlling ants and termites from doing harm to crops or human being (e.g. when the pests invade into houses and public facilities).

40

In the case of soil treatment or of application to the pests dwelling place or nest, the quantity of active ingredient(s) ranges from 0.0001 to 500 g per 100 m<sup>2</sup>, preferably from 0.001 to 20 g per 100 m<sup>2</sup>.

5 Customary application rates in the protection of materials are, for example, from 0.01 g to 1000 g of active compound(s) per m<sup>2</sup> treated material, desirably from 0.1 g to 50 g per m<sup>2</sup>.

Insecticidal compositions for use in the impregnation of materials typically contain from 0.001 to 10 95 weight %, preferably from 0.1 to 45 weight %, and more preferably from 1 to 25 weight % of at least one repellent and / or insecticide.

For use in bait compositions, the typical content of active ingredient(s) is from 0.0001 weight % to 15 weight %, desirably from 0.001 weight % to 5% weight % of active compound. The composition used may also comprise other additives such as a solvent of the active material, a flavoring agent, a preserving agent, a dye or a bitter agent. Its attractiveness may also be enhanced by a special color, shape or texture. 15

For use in spray compositions, the content of the mixture of the active ingredients is from 0.001 to 80 weights %, preferably from 0.01 to 50 weight % and most preferably from 0.01 to 15 20 weight %.

For use in treating crop plants, the rate of application of the mixture of the active ingredients of this invention may be in the range of 0.1 g to 4000 g per hectare, desirably from 25 g to 600 g per hectare, more desirably from 50 g to 500 g per hectare.

25 The method of treatment according to the invention can also be used in the field of protecting stored products or harvest against attack of animal pests, fungi and microorganisms. According to the present invention, the term "stored products" is understood to denote natural substances of plant or animal origin and their processed forms, which have been taken from the natural life 30 cycle and for which long-term protection is desired. Stored products of crop plant origin, such as plants or parts thereof, for example stalks, leafs, tubers, seeds, fruits or grains, can be protected in the freshly harvested state or in processed form, such as pre-dried, moistened, comminuted, ground, pressed or roasted, which process is also known as post-harvest treatment. Also falling 35 under the definition of stored products is timber, whether in the form of crude timber, such as construction timber, electricity pylons and barriers, or in the form of finished articles, such as furniture or objects made from wood. Stored products of animal origin are hides, leather, furs, hairs and the like. The combinations according the present invention can prevent 40 disadvantageous effects such as decay, discoloration or mold. Preferably "stored products" is understood to denote natural substances of plant origin and their processed forms, more preferably fruits and their processed forms, such as pomes, stone fruits, soft fruits and citrus fruits and their processed forms.

In the context of the present invention, the term plant refers to an entire plant, a part of the plant or the plant propagation material.

The mixtures of the present invention and the compositions comprising them are particularly important in the control of a multitude of insects on various cultivated plants.

5 Plants which can be treated with the inventive mixtures include all genetically modified plants or transgenic plants, e.g. crops which tolerate the action of herbicides or fungicides or insecticides owing to breeding, including genetic engineering methods, or plants which have modified characteristics in comparison with existing plants, which can be generated for example by traditional breeding methods and/or the generation of mutants, or by recombinant procedures.

10 The term "plant propagation material" is to be understood to denote all the generative parts of the plant such as seeds and vegetative plant material such as cuttings and tubers (e. g. potatoes), which can be used for the multiplication of the plant. This includes seeds, roots, fruits,

15 tubers, bulbs, rhizomes, shoots, sprouts and other parts of plants. Seedlings and young plants, which are to be transplanted after germination or after emergence from soil, may also be mentioned. These young plants may also be protected before transplantation by a total or partial treatment by immersion or pouring.

20 The term "cultivated plants" is to be understood as including plants which have been modified by breeding, mutagenesis or genetic engineering. Genetically modified plants are plants, which genetic material has been so modified by the use of recombinant DNA techniques that under natural circumstances cannot be obtained by cross breeding, mutations or natural recombination. Typically, one or more genes have been integrated into the genetic material of a genetically modified plant in order to improve certain properties of the plant.

25 The term "cultivated plants" is to be understood also including plants that have been rendered tolerant to applications of specific classes of herbicides, such as hydroxy-phenylpyruvate dioxygenase (HPPD) inhibitors; acetolactate synthase (ALS) inhibitors, such as sulfonyl ureas (see e.

30 g. US 6,222,100, WO 01/82685, WO 00/26390, WO 97/41218, WO 98/02526, WO 98/02527, WO 04/106529, WO 05/20673, WO 03/14357, WO 03/13225, WO 03/14356, WO 04/16073) or imidazolinones (see e. g. US 6,222,100, WO 01/82685, WO 00/26390, WO 97/41218, WO

35 98/02526, WO 98/02527, WO 04/106529, WO 05/20673, WO 03/14357, WO 03/13225, WO 03/14356, WO 04/16073); enolpyruvylshikimate-3-phosphate synthase (EPSPS) inhibitors, such as glyphosate (see e. g. WO 92/00377); glutamine synthetase (GS) inhibitors, such as

40 glufosinate (see e. g. EP-A-0242236, EP-A-242246) or oxynil herbicides (see e. g. US 5,559,024) as a result of conventional methods of breeding or genetic engineering. Several cultivated plants have been rendered tolerant to herbicides by conventional methods of breeding (mutagenesis), for example Clearfield® summer rape (Canola) being tolerant to imidazolinones, e. g. imazamox. Genetic engineering methods have been used to render cultivated plants, such as soybean, cotton, corn, beets and rape, tolerant to herbicides, such as glyphosate and

glufosinate, some of which are commercially available under the trade names RoundupReady® (glyphosate) and LibertyLink® (glufosinate).

The term "cultivated plants" is to be understood also including plants that are by the use of recombinant DNA techniques capable to synthesize one or more insecticidal proteins, especially those known from the bacterial genus *Bacillus*, particularly from *Bacillus thuringiensis*, such as  $\alpha$ -endotoxins, e. g. CryIA(b), CryIA(c), CryIF, CryIF(a2), CryIIA(b), CryIIIA, CryIIIB(b1) or Cry9c; vegetative insecticidal proteins (VIP), e. g. VIP1, VIP2, VIP3 or VIP3A; insecticidal proteins of bacteria colonizing nematodes, for example *Photorhabdus* spp. or *Xenorhabdus* spp.; toxins produced by animals, such as scorpion toxins, arachnid toxins, wasp toxins, or other insect-specific neurotoxins; toxins produced by fungi, such *Streptomycetes* toxins, plant lectins, such as pea or barley lectins; agglutinins; proteinase inhibitors, such as trypsin inhibitors, serine protease inhibitors, patatin, cystatin or papain inhibitors; ribosome-inactivating proteins (RIP), such as ricin, maize-RIP, abrin, luffin, saporin or bryodin; steroid metabolism enzymes, such as 3-hydroxysteroid oxidase, ecdysteroid-IDP-glycosyl-transferase, cholesterol oxidases, ecdysone inhibitors or HMG-CoA-reductase; ion channel blockers, such as blockers of sodium or calcium channels; juvenile hormone esterase; diuretic hormone receptors (helicokinin receptors); stilben synthase, bibenzyl synthase, chitinases or glucanases. In the context of the present invention these insecticidal proteins or toxins are to be understood expressly also as pre-toxins, hybrid proteins, truncated or otherwise modified proteins. Hybrid proteins are characterized by a new combination of protein domains, (see, for example WO 02/015701). Further examples of such toxins or genetically-modified plants capable of synthesizing such toxins are disclosed, for example, in EP-A 374 753, WO 93/007278, WO 95/34656, EP-A 427 529, EP-A 451 878, WO 03/018810 und WO 03/052073. The methods for producing such genetically modified plants are generally known to the person skilled in the art and are described, for example, in the publications mentioned above. These insecticidal proteins contained in the genetically modified plants impart to the plants producing these proteins tolerance to harmful pests from all taxonomic groups of insects, especially to beetles (Coleoptera), two-winged insects (Diptera), and butterflies (Lepidoptera).

The term "cultivated plants" is to be understood also including plants that are by the use of recombinant DNA techniques capable to synthesize one or more proteins to increase the resistance or tolerance of those plants to bacterial, viral or fungal pathogens. Examples of such proteins are the so-called "pathogenesis-related proteins" (PR proteins, see, for example EP-A 0 392 225), plant disease resistance genes (for example potato cultivars, which express resistance genes acting against *Phytophthora infestans* derived from the mexican wild potato *Solanum bulbocastanum*) or T4-lyso-zym (e. g. potato cultivars capable of synthesizing these proteins with increased resistance against bacteria such as *Erwinia amylovora*). The methods for producing such genetically modified plants are generally known to the person skilled in the art and are described, for example, in the publications mentioned above.

The term "cultivated plants" is to be understood also including plants that are by the use of recombinant DNA techniques capable to synthesize one or more proteins to increase the productivity (e. g. bio mass production, grain yield, starch content, oil content or protein content), tolerance to drought, salinity or other growth-limiting environmental factors or tolerance to pests and 5 fungal, bacterial or viral pathogens of those plants.

The term "cultivated plants" is to be understood also including plants that contain by the use of recombinant DNA techniques a modified amount of substances of content or new substances of content, specifically to improve human or animal nutrition, for example oil crops that produce 10 health-promoting long-chain omega-3 fatty acids or unsaturated omega-9 fatty acids (e. g. Nextra® rape).

The term "cultivated plants" is to be understood also including plants that contain by the use of recombinant DNA techniques a modified amount of substances of content or new substances of 15 content, specifically to improve raw material production, for example potatoes that produce increased amounts of amylopectin (e. g. Amflora® potato).

Some of the inventive mixtures have systemic action and can therefore be used for the protection of the plant shoot against foliar pests as well as for the treatment of the seed and roots 20 against soil pests.

#### Seed treatment

The mixtures according to the present invention are therefore suitable for the treatment of seeds 25 in order to protect the seed from insect pest, in particular from soil-living insect pests and the resulting plant's roots and shoots against soil pests and foliar insects.

The protection of the resulting plant's roots and shoots is preferred.

More preferred is the protection of resulting plant's shoots from piercing and sucking insects.

30 The present invention therefore comprises a method for the protection of seeds from insects, in particular from soil insects and of the seedlings' roots and shoots from insects, in particular from soil and foliar insects, said method comprising contacting the seeds before sowing and/or after pregermination with mixtures according to the present invention. Particularly preferred is a method, wherein the plant's roots and shoots are protected, more preferably a method, wherein the plants shoots are protected from piercing and sucking insects, most preferably a method, 35 wherein the plants shoots are protected from aphids.

The term seed embraces seeds and plant propagules of all kinds including but not limited to 40 true seeds, seed pieces, suckers, corms, bulbs, fruit, tubers, grains, cuttings, cut shoots and the like and means in a preferred embodiment true seeds.

The term seed treatment comprises all suitable seed treatment techniques known in the art, such as seed dressing, seed coating, seed dusting, seed soaking and seed pelleting.

The present invention also comprises seeds coated with or containing the active compound(s).

5 The term "coated with and/or containing" generally signifies that the active ingredient(s) are for the most part on the surface of the propagation product at the time of application, although a greater or lesser part of the ingredient may penetrate into the propagation product, depending on the method of application. When the said propagation product are (re)planted, it may absorb the active ingredient.

10 Suitable seeds are seeds of cereals, root crops, oil crops, vegetables, spices, ornamentals, for example seed of durum and other wheat, barley, oats, rye, maize (fodder maize and sugar maize / sweet and field corn), soybeans, oil crops, crucifers, cotton, sunflowers, bananas, rice, oilseed rape, turnip rape, sugarbeet, fodder beet, eggplants, potatoes, grass, lawn, turf, fodder  
15 grass, tomatoes, leeks, pumpkin/squash, cabbage, iceberg lettuce, pepper, cucumbers, melons, Brassica species, melons, beans, peas, garlic, onions, carrots, tuberous plants such as potatoes, sugar cane, tobacco, grapes, petunias, geranium/pelargoniums, pansies and impatiens.

20 In addition, the mixtures according to the invention may also be used for the treatment seeds from plants, which tolerate the action of herbicides or fungicides or insecticides owing to breeding, including genetic engineering methods.

25 For example, the active mixtures can be employed in treatment of seeds from plants, which are resistant to herbicides from the group consisting of the sulfonylureas, imidazolinones, glufosinate-ammonium or glyphosate-isopropylammonium and analogous active substances (see for example, EP-A-0242236, EP-A-242246) (WO 92/00377) (EP-A-0257993, U.S. Pat. No. 5,013,659) or in transgenic crop plants, for example cotton, with the capability of producing *Bacillus thuringiensis* toxins (Bt toxins) which make the plants resistant to certain pests (EP-A-0142924, EP-A-0193259),

30 Furthermore, the mixtures according to the present invention can be used also for the treatment of seeds from plants, which have modified characteristics in comparison with existing plants consist, which can be generated for example by traditional breeding methods and/or the generation of mutants, or by recombinant procedures). For example, a number of cases have been  
35 described of recombinant modifications of crop plants for the purpose of modifying the starch synthesized in the plants (e.g. WO 92/11376, WO 92/14827, WO 91/19806) or of transgenic crop plants having a modified fatty acid composition (WO 91/13972).

40 The seed treatment application of the mixtures is carried out by spraying or by dusting the seeds before sowing of the plants and before emergence of the plants.

In the treatment of seeds the corresponding formulations are applied by treating the seeds with an effective amount of the mixture according to the present invention. Herein, the application rates of the active compound(s) are generally from 0,1 g to 10 kg per 100 kg of seed, preferably from 1 g to 5 kg per 100 kg of seed, in particular from 1 g to 2,5 kg per 100 kg of seed. For specific crops such as lettuce the rate can be higher.

5 Compositions, which are especially useful for seed treatment are e.g.:

- 10 A Soluble concentrates (SL, LS)
- D Emulsions (EW, EO, ES)
- E Suspensions (SC, OD, FS)
- F Water-dispersible granules and water-soluble granules (WG, SG)
- G Water-dispersible powders and water-soluble powders (WP, SP, WS)
- H Gel-Formulations (GF)
- 15 I Dustable powders (DP, DS)

Conventional seed treatment formulations include for example flowable concentrates FS, solutions LS, powders for dry treatment DS, water dispersible powders for slurry treatment WS, water-soluble powders SS and emulsion ES and EC and gel formulation GF. These formulations 20 can be applied to the seed diluted or undiluted. Application to the seeds is carried out before sowing, either directly on the seeds or after having pregerminated the latter

In a preferred embodiment a FS formulation is used for seed treatment. Typically, a FS formulation may comprise 1-800 g/l of active ingredient(s), 1-200 g/l Surfactant, 0 to 200 g/l antifreezing 25 agent, 0 to 400 g/l of binder, 0 to 200 g/l of a pigment and up to 1 liter of a solvent, preferably water.

Preferred FS formulations of compounds of formula I for seed treatment usually comprise from 0.1 to 80% by weight (1 to 800 g/l) of the active ingredient(s), from 0.1 to 20 % by weight (1 to 30 200 g/l) of at least one surfactant, e.g. 0.05 to 5 % by weight of a wetter and from 0.5 to 15 % by weight of a dispersing agent, up to 20 % by weight, e.g. from 5 to 20 % of an anti-freeze agent, from 0 to 15 % by weight, e.g. 1 to 15 % by weight of a pigment and/or a dye, from 0 to 40 % by weight, e.g. 1 to 40 % by weight of a binder (sticker /adhesion agent), optionally up to 5 % by weight, e.g. from 0.1 to 5 % by weight of a thickener, optionally from 0.1 to 2 % of an anti-foam 35 agent, and optionally a preservative such as a biocide, antioxidant or the like, e.g. in an amount from 0.01 to 1 % by weight and a filler/vehicle up to 100 % by weight.

Seed Treatment formulations may additionally also comprise binders and optionally colorants.

40 Binders can be added to improve the adhesion of the active materials on the seeds after treatment. Suitable binders are block copolymers EO/PO surfactants but also polyvinylalcohols,

polyvinylpyrrolidones, polyacrylates, polymethacrylates, polybutenes, polyisobutylenes, polystyrene, polyethyleneamines, polyethyleneamides, polyethyleneimines (Lupasol®, Polymin®), polyethers, polyurethans, polyvinylacetate, tylose and copolymers derived from these polymers.

5     Optionally, also colorants can be included in the formulation. Suitable colorants or dyes for seed treatment formulations are Rhodamin B, C.I. Pigment Red 112, C.I. Solvent Red 1, pigment blue 15:4, pigment blue 15:3, pigment blue 15:2, pigment blue 15:1, pigment blue 80, pigment yellow 1, pigment yellow 13, pigment red 112, pigment red 48:2, pigment red 48:1, pigment red 57:1, pigment red 53:1, pigment orange 43, pigment orange 34, pigment orange 5, pigment green 36, pigment green 7, pigment white 6, pigment brown 25, basic violet 10, basic violet 49, acid red 51, acid red 52, acid red 14, acid blue 9, acid yellow 23, basic red 10, basic red 108.

10

15     The invention also relates to seed comprising mixtures according to the present invention. The amount of the compound I or the agriculturally useful salt thereof will in general vary from 0.1 g to 100 kg per 100 kg of seed, preferably from 1 g to 5 kg per 100 kg of seed, in particular from 1 g to 1000 g per 100 kg of seed. For specific crops, e.g. such as lettuce, the rate can be higher. Also in some other cases the amount for seed treatment may be up to 100 kilogram of the active compound(s) per 100 kilogram of seeds, or may even exceed the seed weight.

20     Examples

B.     Biology

25     Synergism can be described as an interaction where the combined effect of two or more compounds is greater than the sum of the individual effects of each of the compounds. The presence of a synergistic effect in terms of percent control, between two mixing partners (X and Y) can be calculated using the Colby equation (Colby, S. R., 1967, Calculating Synergistic and Antagonistic Responses in Herbicide Combinations, *Weeds*, 15, 20-22):

30     
$$E = X + Y - \frac{XY}{100}$$

When the observed combined control effect is greater than the expected combined control effect (E), then the combined effect is synergistic.

35     The following tests demonstrate the control efficacy of compounds, mixtures or compositions of this invention on specific pests. However, the pest control protection afforded by the compounds, mixtures or compositions is not limited to these species. In certain instances, combinations of a compound of this invention with other invertebrate pest control compounds or agents are found to exhibit synergistic effects against certain important invertebrate pests.

40     The analysis of synergism or antagonism between the mixtures or compositions was determined using Colby's equation.

## Biological Examples of the Invention

Test B.1 Control of Vetch Aphid (*Megoura viciae*)

5 For evaluating control of vetch aphid (*Megoura viciae*) through contact or systemic means the test unit consisted of 24-well-microtiter plates containing broad bean leaf disks.

10 The compounds or mixtures were formulated using a solution containing 75% (v/v) water and 25% (v/v) DMSO. Different concentrations of formulated compounds or mixtures were sprayed onto the leaf disks at 2.5µl, using a custom built micro atomizer, at two replications.

15 For the experimental mixtures in this test identical volumes of both mixing partners at the desired concentrations respectively, were mixed together.

After application, the leaf disks were air-dried and 5 – 8 adult aphids placed on the leaf disks inside the microtiter plate wells. The aphids were then allowed to suck on the treated leaf disks and incubated at  $23 \pm 1^\circ\text{C}$ ,  $50 \pm 5\%$  RH for 5 days.

15 Aphid mortality and fecundity was then visually assessed. The results are listed in table B.1.

Table B.1: Results

| Vetch Aphid                                       | ppm       | Average Control % |
|---------------------------------------------------|-----------|-------------------|
| Test B.1.1.                                       |           |                   |
| carboxamide compound of formula I                 | 0.5       | 0                 |
| Teflubenzuron                                     | 2         | 0                 |
| Teflubenzuron + carboxamide compound of formula I | 2 + 0.5   | 100*              |
| Test B.1.2.                                       |           |                   |
| carboxamide compound of formula I                 | 0.02      | 0                 |
| Bilobalid                                         | 25        | 0                 |
| Bilobalid + carboxamide compound of formula I     | 25 + 0.02 | 75*               |

\*synergistic control effect according to Colby' s equation

20 Test B.2 Control of Boll Weevil (*Anthonomus grandis*)

For evaluating control of boll weevil (*Anthonomus grandis*) the test unit consisted of 24-well-microtiter plates containing an insect diet and 20-30 *A. grandis* eggs.

25 The compounds or mixtures were formulated using a solution containing 75% (v/v) water and 25% (v/v) DMSO. Different concentrations of formulated compounds or mixtures were sprayed onto the insect diet at 20µl, using a custom built micro atomizer, at two replications.

For the experimental mixtures in this test identical volumes of both mixing partners at the desired concentrations respectively, were mixed together.

After application, microtiter plates were incubated at  $23 \pm 1^\circ\text{C}$ ,  $50 \pm 5\%$  RH for 5 days.

Egg and larval mortality was then visually assessed. The results are listed in table B.2.

5

Table B.2.: Results

| Boll Weevil                                         | ppm    | Average (Control %) |
|-----------------------------------------------------|--------|---------------------|
| carboxamide compound of formula I                   | 0.5    | 0                   |
| Imidacloprid                                        | 10     | 0                   |
| Imidacloprid +<br>carboxamide compound of formula I | 10+0.5 | 75*                 |
|                                                     |        |                     |

\*synergistic control effect according to Colby' s equation

Test B.3 Control of Yellow fever mosquito (*Aedes aegypti*)

10

Test principle: Curative ultrasonic spraying of larvae in liquid diet

15

For evaluating control of yellow fever mosquito (*Aedes aegypti*) the test unit consisted of 96-well-microtiter plates containing 200 $\mu\text{l}$  of tap water per well and 5-15 freshly hatched *A. aegypti* larvae.

The compounds or mixtures were formulated using a solution containing 75% (v/v) water and 25% (v/v) DMSO. Different concentrations of formulated compounds or mixtures were sprayed onto the insect diet at 2.5 $\mu\text{l}$ , using a custom built micro atomizer, at two replications.

20

For the experimental mixtures in this test identical volumes of both mixing partners at the desired concentrations respectively, were mixed together.

After application, microtiter plates were incubated at  $28 \pm 1^\circ\text{C}$ ,  $80 \pm 5\%$  RH for 2 days.

Larval mortality was then visually assessed. The results are listed in table B.3.

Table B.3: Results:

| Yellow Fever Mosquito                             | ppm    | Average Control % |
|---------------------------------------------------|--------|-------------------|
| carboxamide compound of formula I                 | 0+0.5  | 0                 |
| Bifenthrin                                        | 40+0   | 0                 |
| Bifenthrin +<br>carboxamide compound of formula I | 40+0.5 | 100*              |
|                                                   |        |                   |

25

\*synergistic control effect according to Colby' s equation

Test B.4 Control of Tobacco Budworm (*Heliothis virescens*)

For evaluating control of tobacco budworm (*Heliothis virescens*) the test unit consisted of 96-well-microtiter plates containing an insect diet and 15-25 *H. virescens* eggs.

The compounds or mixtures were formulated using a solution containing 75% (v/v) water and 25% (v/v) DMSO. Different concentrations of formulated compounds or mixtures were sprayed onto the insect diet at 10 $\mu$ l, using a custom built micro atomizer, at two replications.

For the experimental mixtures in this test identical volumes of both mixing partners at the desired concentrations respectively, were mixed together.

After application, microtiter plates were incubated at 28  $\pm$  1°C, 80  $\pm$  5 % RH for 5 days.

Egg and larval mortality was then visually assessed. The results are listed in table B.4.

10

Table B.4: Results

| <i>Tobacco budworm</i>                               | ppm     | Average Control % |
|------------------------------------------------------|---------|-------------------|
| Test B.6.1.:                                         |         |                   |
| carboxamide compound of formula I                    | 0.1     | 0                 |
| Teflubenzuron                                        | 50      | 0                 |
| Teflubenzuron +<br>carboxamide compound of formula I | 50+0.1  | 50*               |
| Test B.6.2.:                                         |         |                   |
| carboxamide compound of formula I                    | 0.5     | 50                |
| Imidacloprid                                         | 0.4     | 0                 |
| Imidacloprid +<br>carboxamide compound of formula I  | 0.4+0.5 | 100*              |
|                                                      |         |                   |
|                                                      |         |                   |

\*synergistic control effect according to Colby's equation

#### Test B.5 Control of Mediterranean fruitfly (*Ceratitis capitata*)

15

For evaluating control of Mediterranean fruitfly (*Ceratitis capitata*) the test unit consisted of 96-well-microtiter plates containing an insect diet and 50-80 *C. capitata* eggs.

The compounds and respective mixtures were formulated using a solution containing 75% (v/v) water and 25% (v/v) DMSO. Different concentrations of formulated compounds and mixtures

20 were sprayed onto the insect diet at 5 $\mu$ l, using a custom built micro atomizer, at two replications.

For the experimental mixtures in this test identical volumes of both mixing partners at the desired concentrations respectively, were mixed together.

After application, microtiter plates were incubated at 28  $\pm$  1°C, 80  $\pm$  5 % RH for 5 days.

Egg and larval mortality was then visually assessed. The results are listed in table B.5.

25

Table B.5: Results

| <i>Mediterranean fruitfly</i>                       | ppm    | Average (Control %) |
|-----------------------------------------------------|--------|---------------------|
| carboxamide compound of formula I                   | 0      | 0                   |
| Imidacloprid                                        | 10     | 25                  |
| Imidacloprid +<br>carboxamide compound of formula I | 10+0.1 | 75*                 |
|                                                     |        |                     |

\*synergistic control effect according to Colby's equation

#### Test B.6 Control of Southern Green Stink Bug (*Nezara viridula*)

5 The compounds and respective mixtures were formulated using a solution containing 50:50 water : acetone with 0.01 wt% Kinetic ®. Whole Green Beans were rinsed in a 1% bleach solution, triple rinsed with DI water, and allowed to air dry at least 30 minutes in the fume hood. They were dipped in treatment solutions for approximately 5 seconds and allowed to air dry for another 30 minutes in the fume hood. For maximum exposure, Southern Green Stink Bugs

10 (SGSB, 4th instar) were dipped in treatment solution for approximately 3 seconds and allowed to air dry in a cup lined with filter paper and closed with a vented lid for approximately 10 minutes in the fume hood. Three beans were placed in cups with a dry filter paper in the bottom and a portion cup with a cotton wick for water (= assay arena), and were infested with 4 SGSB per cup. Each treatment was replicated 3-fold (1 replicate = 3 beans with 4 SGSB). The assays

15 arenas were held at 27°C and 45% room humidity. Data were recorded after 5 days as number of insects alive and dead. *Nezara viridula* mortality (%) was calculated as: [(pre-treatment count – post treatment count)/pre-treatment count] x 100. The results are listed in table B.6.

Table B.6: Results

| <i>Nezara viridula</i>                            | ppm    | Average Control %<br>[observed mortality] |
|---------------------------------------------------|--------|-------------------------------------------|
| Test B.8.1.:                                      |        |                                           |
| carboxamide compound of formula I                 | 10     | 88                                        |
| Bilobalid                                         | 5      | 19                                        |
| Bilobalid+<br>carboxamide compound of formula I   | 5 + 10 | 100                                       |
| Test B.8.2.:                                      |        |                                           |
| carboxamide compound of formula I                 | 1      | 13                                        |
| carboxamide compound of formula I                 | 10     | 88                                        |
| Ginkolide A                                       | 5      | 13                                        |
| Ginkolide A+<br>carboxamide compound of formula I | 5 + 10 | 94                                        |

|                                                   |       |    |
|---------------------------------------------------|-------|----|
| Ginkolide A+<br>carboxamide compound of formula I | 5 + 1 | 44 |
|                                                   |       |    |

The following tests may further demonstrate the control efficacy of compounds, mixtures or compositions of this invention on specific pests:

5    Test BP.1   Control of Green Peach Aphid (*Myzus persicae*)

For evaluating control of green peach aphid (*Myzus persicae*) through systemic means the test unit consists of 96-well-microtiter plates containing liquid artificial diet under an artificial membrane.

10   The compounds or mixtures are formulated using a solution containing 75% v/v water and 25% v/v DMSO. Different concentrations of formulated compounds or mixtures are pipetted into the aphid diet, using a custom built pipetter, at two replications.

For experimental mixtures in these tests identical volumes of both mixing partners at the desired concentrations respectively, are mixed together.

15   After application, 5 – 8 adult aphids are placed on the artificial membrane inside the microtiter plate wells. The aphids are then allowed to suck on the treated aphid diet and incubated at about  $23 \pm 1^\circ\text{C}$  and about  $50 \pm 5\%$  RH for 3 days. Aphid mortality and fecundity is then visually assessed.

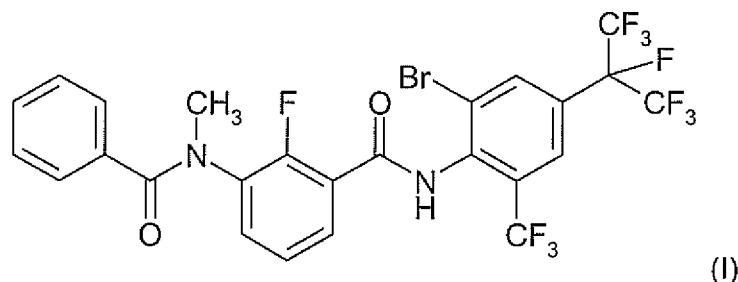
20   Test BP.2   Control of *Caenorhabditis elegans*

Test principle: Curative ultrasonic spraying of nematodes in liquid diet

25   For evaluating control of *Caenorhabditis elegans* the test unit consists of microtiter plates (MTP), wherein each well is filled with 0.18 ml of a *C. Elegans* suspension containing 60 to 100 individuals of *C. elegans* at mixed life stages in a liquid diet.

30   The compounds are formulated at desired concentration using a solution containing 75% v/v water and 25% v/v DMSO. Different concentrations of formulated compounds are applied at 5  $\mu\text{l}$  by ultrasonic spraying onto the liquid diet, at two replications.

After application, the treated microtiterplates are incubated in a climatized test chamber at temperature of about  $18 \pm 1^\circ\text{C}$  and  $70 \pm 5\%$  RH in the dark.


Assessment is made 4 days after treatment (DAT) using as criterion movement of nematodes.

35   Valid assessment values are at level 0, 50 and 100, wherein 100 indicates no movement, 50 indicates few movement and 0 indicates moderate to high movement.

CLAIMS:

1. Pesticidal mixtures comprising as active compounds

1) at least one pesticidal active carboxamide compound I of formula (I):



or the tautomers, enantiomers, diastereomers or salts thereof,

and

2) teflubenzuron;

in synergistically effective amounts.

2. Pesticidal mixtures according to claim 1, comprising the active compound I of the formula I and the active compound II in a weight ratio of from 500:1 to 1:100.
3. Pesticidal mixtures according to claim 1, comprising the active compound I of the formula I and the active compound II in a weight ratio of from 20:1 to 1:50.
4. Pesticidal mixtures according to any one of claims 1 to 3, comprising at least one further active compound.
5. A method for protecting plants from attack or infestation by insects, acarids or nematodes comprising contacting the plant, or the soil or water in which the plant is growing, with a mixture according to any one of claims 1 to 4 in pesticidally effective amounts.
6. A method for controlling insects, arachnids or nematodes comprising contacting an insect, acarid or nematode or their food supply, habitat, breeding grounds or their locus with a mixture according to any one of claims 1 to 4 in pesticidally effective amounts.

7. A method for protection of plant propagation material comprising contacting the plant propagation material with a mixture as defined in any one of claims 1 to 4 in pesticidally effective amounts.
8. Seed, comprising the mixture according to any one of claims 1 to 4 in an amount of from 0.1 g to 100 kg per 100 kg of seeds.
9. The use of a mixture according to any one of claims 1 to 4 for combating insects, arachnids or nematodes.
10. A pesticidal composition, comprising a liquid or solid carrier and a mixture according to any one of claims 1 to 4.

BASF AGROCHEMICAL PRODUCTS B.V.

WATERMARK INTELLECTUAL PROPERTY PTY LTD

P41755AU00