PCT

WORLD INTELLECTUAL PROPERTY ORGANIZATION
International Bureau

INTERNATIONAL APPLICATION PUBLISHED UNDER THE PATENT COOPERATION TREATY (PCT)

(51) International Patent Classification 6 : (11) International Publication Number: WO 95/04962
Al

GOGF 3/033 (43) International Publication Date: 16 February 1995 (16.02.95)

(21) International Application Number: PCT/US94/00005 | (81) Designated States: AT, AU, BB, BG, BR, BY, CA, CH, CN,

(22) International Filing Date: 3 January 1994 (03.01.94)
(30) Priority Data:
08/102,079 4 August 1993 (04.08.93) UsS

(71) Applicant: TALIGENT, INC. [US/US]; 10201 N. De Anza
Boulevard, Cupertino, CA 95014 (US).

(72) Inventors: PETERSON, John; 12 Bishop Lane, Menlo Park,
CA 94025 (US). JAIN, Rajiv; 1035 Aster Avenue #2211,
Sunnyvale, CA 94086 (US). SEIDL, Robert; 946 Colonial
Lane, Palo Alto, CA 94303 (US).

(74) Agent: STEPHENS, Keith; Taligent, Inc., 10201 N. De Anza
Boulevard, Cupertino, CA 95014 (US).

CZ, DE, DK, ES, Fl, GB, HU, JP, KP, KR, KZ, LK, LU,

LV, MG, MN, MW, NL, NO, NZ, PL, PT, RO, RU, SD,

SE, SK, UA, UZ, VN, European patent (AT, BE, CH, DE,
R,

DK, ES, FR, GB. GR, IE, IT, LU, MC, NL, PT, SE), OAPI
patent (BF, BJ, CF, CG, CL, CM, GA, GN, ML, MR, NE,
SN, TD, TG).

Published

With international search report.

(54) Title: OBJECT-ORIENTED GRAPHIC PICKING SYSTEM
(57) Abstract

A method and apparatus for defining customizable pick, hit or find detection criteria for geometric types and using the results of
the search as a basis for determining whether to perform an action. According to the inventive method, a search protocol is defined for
geometric types. The search criteria is compared with graphic objects to determine whether the object matches the criteria. Based on the
results of the comparison, an output is produced. In addition to allowing customized hit criteria for primitive geometric types, the hit object
framework allows hit criteria to be specified for geometric types created by the application developer.

applications under the PCT.

AT
AU
BB
BE
BF
BG
BJ
BR
BY
CA
CF
CcG
CH
CI
CM
CN
Cs
CZ
DE

$RARR

FOR THE PURPOSES OF INFORMATION ONLY

Codes used to identify States party to the PCT on the front pages of pamphlets publishing international

Austria
Australia
Barbados
Belgium
Burkina Faso
Bulgaria

Benin

Brazil

Belarus

Canada

Central African Republic
Congo
Switzerland
Céte d'Ivoire
Cameroon
China
Czechoslovakia
Czech Republic
Germany
Denmark
Spain

Finland

France

Gabon

United Kingdom
Georgia

Guinca

Greece

Hungary

Ircland

Italy

Japan

Kenya

Kyrgystan
Democratic People’s Republic
of Korea
Republic of Korea
Kazakhstan
Liechtenstein

Sri Lanka
Luxembourg
Latvia

Monaco

Republic of Moldova
Madagascar

Mali

Mongolia

Mauritania

Malawi

Niger

Netherlands

Norway

New Zealand .
Poland

Portugal

Romania

Russian Federation
Sudan

Sweden

Slovenia

Slovakia

Senegal

Chad

Togo

Tajikistan

Trinidad and Tobago
Ukraine

United States of America
Uzbekistan

Viet Nam

10

15

20

25

30

WO 95/04962 PCT/US94/00005

-1-

OBJECT-ORIENTED GRAPHIC PICKING SYSTEM
BACKGROUND OF THE INVENTION

The present invention generally relates to a mechanism for "hit" detection
and, more particularly, to a hit detection mechanism in an object oriented
programming (OOP) environment. The subject invention is a framework system
which allows a programmer or applications developer to customize the search
criteria for graphic objects so that an application can identify objects on which to
perform a specified action. The invention is disclosed in terms of a preferred
embodiment which uses a popular object oriented programming language, C++, but
the principles are applicable to other computer programming languages both object
oriented and procedural.

Description of the Prior Art

Object oriented programming (OOP) is the preferred environment for
building user-friendly, intelligent computer software. Key elements of OOP are data
encapsulation, inheritance and polymorphism. These elements may be used to
generate a graphical user interface (GUI), typically characterized by a windowing
environment having icons, mouse cursors and menus. While these three key
elements are common to OOP languages, most OOP languages implement the three
key elements differently.

Examples of OOP languages are Smalltalk, Object Pascal and C++. Smalltalk
is actually more than a language; it might more accurately be characterized as a
programming environment. Smalltalk was developed in the Learning Research
Group at Xerox's Palo Alto Research Center (PARC) in the early 1970s. In Smalltalk,
a message is sent to an object to evaluate the object itself. Messages perform a task
similar to that of function calls in conventional programming languages. The
programmer does not need to be concerned with the type of data; rather, the
programmer need only be concerned with creating the right order of a message and
using the right message. Object Pascal is the language used for Apple's Macintosh®
computers. Apple developed Object Pascal with the collaboration of Niklaus Wirth,
the designer of Pascal. C++ was developed by Bjarne Stroustrup at the AT&T Bell
Laboratories in 1983 as an extension of C. The key concept of C++ is class, which is a
user-defined type. Classes provide object oriented programming features. C++
modules are compatible with C modules and can be linked freely so that existing C
libraries may be used with C++ programs. The most widely used object based and

10

15

20

25

30

WO 95/04962 ‘ PCT/US94/00005

-

object oriented programming languages trace their heritage to Simula developed in
the 1960s by O-J. Dahl, B. Myhrhaug and K. Nygrad of Norway. Further information
on the subject of OOP may be had by reference to Object Oriented Design with
Applications by Grady Booch, the Benjamin/Cummings Publishing Co., Inc.,
Redwood City, Calif. (1991).

There has been a long felt need in the art for a developer of an application to
be able to identify geometric objects, to define customized search criteria for each
geometric object and to specify the performance of an action based on the results of
the search. To date, no system has been developed which addresses this need.

SUMMARY OF THE INVENTION
It is therefore an object of the present invention to provide an object oriented
framework for.defining hit criteria for geometric types. The criteria can be
customized by the application developer and can specify the requirements for a hit
(pick) or a find, the extent of the search to be performed and the action to take when
a hit (pick) or find is successful.

According to the invention, there is provided a system for defining hit or
find criteria for geometric types. The system uses this criteria to directly manipulate
graphic objects which conform to the geometric type. The developer of an
application can also specify a specific hit criteria for two dimensional (2D) and three
dimensional (3D) graphic objects which they have created.

BRIEF DESCRIPTION OF THE DRAWINGS
The foregoing and other objects, aspects and advantages will be better
understood from the following detailed description of a preferred embodiment of
the invention with reference to the drawings, in which:

Figure 1 is a block diagram of a personal computer system of the type used in
the practice of the subject invention;

Figure 2 is a screen print of a display in accordance with a preferred
embodiment;

Figure 3 is an illustration of various MGraphics and their geometries in
accordance with a preferred embodiment;

10

15

20

25

30

WO 95/04962 PCT/US94/00005

3-

Figure 4 shows the combination of primitive geometries to form simple and
complex subclasses of MGraphic in accordance with a preferred embodiment;

Figure 5 illustrates an example of a graphic object, a bicycle, with many
instances of the same MGraphic, a wheel in accordance with a preferred
embodiment;

Figure 6 illustrates the use of a path to record the correct instance for a
hierarchical object in accordance with a preferred embodiment;

Figure 7 is a flowchart illustrating the detailed logic of a hit (picking)
operation in accordance with a preferred embodiment;

Figure 8 is a flowchart illustrating the detailed logic for a graphic find
operation in accordance with a preferred embodiment;

Figure 9 is a flowchart illustrating the detailed logic for a graphic search
operation in accordance with a preferred embodiment; and

Figure 10 and 11 illustrate various three dimensional (3D) objects in
accordance with a preferred embodiment.

DETAILED DESCRIPTION OF A PREFERRED
EMBODIMENT OF THE INVENTION

The invention is preferably practiced in the context of an operating system
resident on a personal computer such as the IBM ® PS/2 ® or Apple ® Macintosh ®
computer. A representative hardware environment is depicted in Figure 1, which
illustrates a typical hardware configuration of a workstation in accordance with the
subject invention having a central processing unit 10, such as a conventional
microprocessor, and a number of other units interconnected via a system bus 12.
The workstation shown in Figure 1 includes a Random Access Memory (RAM) 14,
Read Only Memory (ROM) 16, an I/O adapter 18 for connecting peripheral devices
such as disk units 20 to the bus, a user interface adapter 22 for connecting a keyboard
24, a mouse 26, a speaker 28, a microphone 32, and/or other user interface devices
such as a touch screen device (not shown) to the bus, a communication adapter 34
for connecting the workstation to a data processing network and a display adapter 36
for connecting the bus to a display device 38. The workstation has resident thereon
an operating system such as the Apple System/7 ® operating system.

10

15

20

25

30

35

WO 95/04962 PCT/US94/00005

-4-

In a preferred embodiment, the invention is implemented in the C++
programming language using object oriented programming techniques. As will be
understood by those skilled in the art, Object-Oriented Programming (OOP) objects
are software entities comprising data structures and operations on the data.
Together, these elements enable objects to model virtually any real-world entity in
terms of its characteristics, represented by its data elements, and its behavior,
represented by its data manipulation functions. In this way, objects can model
concrete things like people and computers, and they can model abstract concepts
like numbers or geometrical concepts. The benefits of object technology arise out of
three basic principles: encapsulation, polymorphism and inheritance.

Objects hide, or encapsulate, the internal structure of their data and the
algorithms by which their functions work. Instead of exposing these
implementation details, objects present interfaces that represent their abstractions
cleanly with no extraneous information. Polymorphism takes encapsulation a step
further. The idea is many shapes, one interface. A software component can make a
request of another component without knowing exactly what that component is.
The component that receives the request interprets it and figures out according to
its variables and data, how to execute the request. The third principle is inheritance,
which allows developers to reuse pre-existing design and code. This capability
allows developers to avoid creating software from scratch. Rather, through
inheritance, developers derive subclasses that inherit behaviors, which the
developer then customizes to meet their particular needs.

A prior art approach is to layer objects and class libraries in a procedural
environment. Many application frameworks on the market take this design
approach. In this design, there are one or more object layers on top of a monolithic
operating system. While this approach utilizes all the principles of encapsulation,
polymorphism, and inheritance in the object layer, and is a substantial
improvement over procedural programming techniques, there are limitations to
this approach. These difficulties arise from the fact that while it is easy for a
developef to reuse their own objects, it is difficult to use objects from other systems
and the developer still needs to reach into the lower non-object layers with
procedural Operating System (OS) calls.

Another aspect of object oriented programming is a framework approach to-
application development. One of the most rational definitions of frameworks come
from Ralph E. Johnson of the University of Illinois and Vincent F. Russo of Purdue.

10

15

20

25

30

35

WO 95/04962 PCT/US94/00005

-5-

In their 1991 paper, Reusing Object-Oriented Designs, University of Ilinois tech
report UITUCDCS91-1696 they offer the following definition: “An abstract class is a
design of a set of objects that collaborate to carry out a set of responsibilities. Thus, a
framework is a set of object classes that collaborate to execute defined sets of
computing responsibilities.” From a programming standpoint, frameworks are
essentially groups of interconnected object classes that provide a pre-fabricated
structure of a working application. For example, a user interface framework might
provide the support and “default” behavior of drawing windows, scrollbars, menus,
etc. Since frameworks are based on object technology, this behavior can be inherited
and overridden to allow developers to extend the framework and create customized
solutions in a particular area of expertise. This is a major advantage over
traditional programming since the programmer is not changing the original code,
but rather extending the software. In addition, developers are not blindly working
through layers of code because the framework provides architectural guidance and
modeling but at the same time frees them to then supply the specific actions unique
to the problem domain.

From a business perspective, frameworks can be viewed as a way to
encapsulate or embody expertise in a particular knowledge area. Corporate
development organizations, Independent Software Vendors (ISV)s and systems
integrators have acquired expertise in particular areas, such as manufacturing,
accounting, or currency transactions as in our example earlier. This expertise is
embodied in their code. Frameworks allow organizations to capture and package the
common characteristics of that expertise by embodying it in the organization’s code.
First, this allows developers to create or extend an application that utilizes the
expertise, thus the problem gets solved once and the business rules and design are
enforced and used consistently. Also, frameworks and the embodied expertise
behind the frameworks have a strategic asset implication for those organizations
who have acquired expertise in vertical markets such as manufacturing, accounting,
or bio-technology would have a distribution mechanism for packaging, reselling,
and deploying their expertise, and furthering the progress and dissemination of
technology.

Historically, frameworks have only recently emerged as a mainstream
concept on personal computing platforms. This migration has been assisted by the
availability of object-oriented languages, such as C++. Traditionally, C++ was
found mostly on UNIX systems and researcher’s workstations, rather than on
Personal Computers in commercial settings. It is languages such as C++ and other

10

15

20

25

30

35

WO 95/04962 PCT/US94/00005

-6-

object-oriented languages, such as Smalltalk and others, that enabléd a number of
university and research projects to produce the precursors to today’s commercial
frameworks and class libraries. Some examples of these are InterViews from
Stanford University, the Andrew toolkit from Carnegie-Mellon University and
University of Zurich’s ET++ framework.

There are many kinds of frameworks depending on what level of the system
you are concerned with and what kind of problem you are trying to solve. The
types of frameworks range from application frameworks that assist in developing
the user interface, to lower level frameworks that provide basic system software
services such as communications, printing, file systems support, graphics, etc.
Commercial examples of application frameworks are MacApp (Apple), Bedrock
(Symantec), OWL (Borland), NeXTStep App Kit (NeXT), and Smalltalk-80 MVC
(ParcPlace) to name a few.

Programming with frameworks requires a new way of thinking for
developers accustomed to other kinds of systems. In fact, it is not like
“programming” at all in the traditional sense. In old-style operating systems such
as DOS or UNIX, the developer’s own program provides all of the structure. The
operating system provides services through system calls—the developer’s program
makes the calls when it needs the service and control returns when the service has
been provided. The program structure is based on the flow-of-control, which is
embodied in the code the developer writes.

When frameworks are used, this is reversed. The developer is no longer
responsible for the flow-of-control. The developer must forego the tendency to
understand programming tasks in term of flow of execution. Rather, the thinking
must be in terms of the responsibilities of the objects, which must rely on the
framework to determine when the tasks should execute. Routines written by the
developer are activated by code the developer did not write and that the developer
never even sees. This flip-flop in control flow can be a significant psychological
barrier for developers experienced only in procedural programming. Once this is
understood, however, framework programming requires much less work than
other types of programming.

In the same way that an application framework provides the developer with
prefab functionality, system frameworks, such as those included in a preferred
embodiment, leverage the same concept by providing system level services, which

10

15

20

25

30

35

WO 95/04962 PCT/US94/00005

-

developers, such as system programmers, use to subclass/override to create
customized solutions. For example, consider a multi-media framework which
could provide the foundation for supporting new and diverse devices such as
audio, video, MIDI, animation, etc. The developer that needed to support a new
kind of device would have to write a device driver. To do this with a framework,
the developer only needs to supply the characteristics and behavior that is specific to
that new device.

The developer in this case supplies an implementation for certain member
functions that will be called by the multi-media framework. An immediate benefit
to the developer is that the generic code needed for each category of device is already
provided by the multi-media framework. This means less code for the device
driver developer to write, test, and debug. Another example of using systems
framework would be to have separate I/O frameworks for SCSI devices, NuBus
cards, and graphics devices. Because there is inherited functionality, each
framework provides support for common functionality found in its device category.
Other developers could then depend on these consistent interfaces to all kinds of
devices.

A preferred embodiment takes the concept of frameworks and applies it
throughout the entire system. For the commercial or corporate developer, systems
integrator, or OEM, this means all the advantages that have been illustrated for a
framework such as MacApp can be leveraged not only at the application level for
such things as text and user interfaces, but also at the system level, for services such
as graphics, multi-media, file systems, I/O, testing, etc. Application creation in the
architecture of a preferred embodiment will essentially be like writing domain-
specific puzzle pieces that adhere to the framework protocol. In this manner, the
whole concept of programming changes. Instead of writing line after line of code
that calls multiple API hierarchies, software will be developed by deriving classes
from the preexisting frameworks within this environment, and then adding new
behavior and/or overriding inherited behavior as desired.

Thus, the developer’s application becomes the collection of code that is
written and shared with all the other framework applications. This is a powerful
concept because developers will be able to build on each other’s work. This also
provides the developer the flexibility to customize as much or as little as needed.
Some frameworks will be used just as they are. In some cases, the amount of
customization will be minimal, so the puzzle piece the developer plugs in will be

10

15

20

25

30

35

WO 95/04962 ' PCT/US94/00005
-8-

small. In other cases, the developer may make very extensive modifications and
create something completely new. With the overview of OOP above in mind,
Figure 2 is an illustration of a display of the type produced by an object oriented
operating system. It includes a command bar 200, a selected menu item 210, a text
display window 220, and an overlying graphics display window 230. A selection of a
particular graphic object, a circle, within the graphics window 240 is shown by
means of the square dots 250 surrounding that object.

It is important to an appreciation of the nature of the invention to
understand the concept of a "framework" and the relationship of a framework to
"objects" and "object oriented programming". "MacApp: An Application
Framework" by Kurt A. Schmucker, published in Byte magazine in August 1986 is
an early article describing a framework and the basic concepts embodied therein,
which is hereby fully incorporated by reference. An important property of objects is
their ability to encapsulate data and methods for which the object is responsible.
That is, a generic command may be issued to an object without the need for any
other object to know the internal details of how the object will carry out the
command. By the same token, there is no need for global compatibility of
commands, data, file names and the like and thus objects may be freely associated
with one another. A framework is, in essence, a generic application comprising an
association of classes of objects with which other objects may be associated, as
necessary, to form a more specific application. The framework, as an association of
classes of objects with functional interrelationships between classes of objects
defined therein may provide any desired degree of general or specific functionality
of additional objects which may be associated with the framework.

A framework may thus be regarded as a system which provides an implied
network of responsibilities between objects, provides for inheritance between classes
of objects (e.g. data and methods of superclasses at higher hierarchical levels of
classes of objects), and provides for calling of libraries in response to events. A
system formed as a framework may also be customized by the addition of objects
which perform more specific functions and which may also override functions
provided by the framework. Machine-specific and device-specific objects in various
classes and subclasses of the framework allow the framework, itself, to be machine-
and device-independent and of generalized applicability. Further, a particular
framework is characterized by the interrelationships it establishes between objects
and classes of objects in terms of division of responsibilities and inheritance and the
functionality it thus achieves. A framework, itself, is also useful as a template for

10

15

20

25

30

35

WO 95/04962 PCT/US94/00005
9-

the development of specific applications in which customization and functional
overrides may be provided as specific objects therein.

The present invention, a hit detection framework provides a mechanism to
allow the application developer the flexibility to define the behavior for both
primitive and custom geometric types. Hit detection, enables an application to
directly manipulate graphic objects by defining a behavior for each geometric type.
The developer can specify criteria as to what determines a hit, the extent of the
search for a hit and the action to be performed in the event a hit occurs. The
framework provides a default search protocol for the primitive geometric types.
However, these default search protocols can be overridden and customized by the
user.

MGraphic is a utility class for applications. It holds geometry related data
including geometric objects, attributes (in a bundle) and hierarchies. Figure 3 shows
various MGraphics and their corresponding geometries. These primitive geometric
types can be combined by the user to create simple and complex subclasses of
MGraphic, as shown in Figure 4. The hit object framework allows customized hit
criteria to be specified for any MGraphic subclass. Criteria can be defined for each
primitive and self-defined geometric class. The MGraphic subclass then calls the
appropriate method for the geometric types which they contain.

TGrafSearch & TGrafSearch3D are the principal objects containing the
definitions of the criteria for hit detection and the action to be taken in the event a
hit occurs. This information is used by the MGraphic::Find method to conduct the
hit detection. When an application wants to perform hit detection on a group of
MGraphics, the application creates a subclass of TGrafSearch, an object which
defines (1) what constitutes a "hit" for each primitive geometric type; (2) the extent
of the search, i.e. find one that satisfies or all that satisfy the criteria; and (3) the
action to be performed if a successful hit occurs. The action to be performed if a
successful hit occurs is application specific, but could include deleting, selecting or
copying the selected object.

The first factor of TGrafSearch, hit criteria, is defined by the Find methods.

- The Find methods take the primitive geometry transformation matrix and the

bundle of attributes as parameters and the methods can be defined as required by the
application. Some examples of Find methods include testing a point against the
bounding box of the geometry or determining whether a geometry is completely
enclosed by a polygon and whether its bundle has a particular color.

10

15

20

25

30

35

WO 95/04962 PCT/US94/00005

-10-

The second type of information included in TGrafSearch defines the extent of
the search for geometric objects which meet the hit criteria. An application may
want to find all graphic objects which satisfy the search criteria or may want to find
only the first occurrence which satisfies the criteria. For example, an application
may wish to find all circles located within a rectangle or to find only the first line

which intersects a circle.

The third element of TGrafSearch hit object framework is the definition of
the desired action to be performed when the search criteria is satisfied. Examples‘ of
such desired actions include the collection of MGraphics which satisfy the search
criteria for processing, performance of an application specific action, or generation
of a value which summarizes the results of the search.

As an example of how hit objects are used, the code below shows TMySearch
performing an application defined action on the first MGraphic which satisfies the
criteria of intersection with a circle defined about the cursor.

// TMySearch is a subclass of TGrafSearch
TMySearch searcher(GetMousePosition(), kHitRadius);

for (myGraphic = graphicList->First();

(myGraphic && myGraphic->Find(searcher) !=
TGrafSeach!:kDoneSearching);

myGraphic = graphicList->Next())

TGrafSearch defines many routines of the form

virtual EFindResult Find(const TGSomethingé& geometry, const
GrafMatrix&, ... matrix, const TGrafBundle& b)

for each type of primitive geometry. These methods define the criteria the
TGrafSearch uses to determine if a hit has occurred. They return a result,
EFindResult, which has one of two values, kDoneSearching, which indicates that
the search can be stopped or kContinueSearching, which indicates that the search
must continue. Two other routines, PushGraphic and PopGraphic are defined in
TGrafSearch and both routines are used to regulate the behavior of the MGraphic as
a whole. PushGraphic is a method which is used both to start the search within a
specific MGraphic and to implement hierarchical MGraphics (to be discussed infra).
PopGraphic returns the search status for the entire MGraphic. For example, if the
application should search all MGraphics in the database, then PopGraphic is set to
always return kContinueSearching.

10

15

20

25

30

35

40

45

WO 95/04962 PCT/US94/00005
-11-

A further example demonstrates the use of the second factor defined by
TGrafSearch regarding the extent of the search to be performed. The code that
follows is an example of both the routines used within MGraphics and those used
to regulate the behavior of the MGraphic as a whole. The first TGrafSearch subclass,
TIntersectsGrafSearch, finds first the item which intersect a rectangle, TGRect, while
the second subclass, TContainsGrafSearch, finds all of the items which are
completely contained within a rectangle, TGRect.

The pseudo code for TIntersectsGrafSearch is as follows:

class TIntersectsGrafSearch : public TGrafSearch

{
TIntersectsGrafSearch(const TGRect& bounds)

{
fBoundsRect = bounds;
initialize list of intersecting MGraphics to empty

}

EFindResult Find(const TGRect& const TGrafMatrix&, const
TGrafBundle&)
{
// As soon as an intersection is found, return “done”, because the rest
of the
/ / MGraphic need not be searched.
if (fBoundsRect.Intersects(r))
{ .
if fGraphic != NIL, add fGraphic to list of intersecting
objects
fGraphic = NIL; // Soitisn't added twice
return kDoneSearching;
}
else
return kContineSearching;

}

// Other geometric primitives are defined similarly...

void PushGraphic(MGraphic * graphic)
{

}

EFindResult PopGraphic()
{

fGraphic = graphic;

// Pop Graphic stack & Return kContineSearching so the client
will search all MGraphics
return kContineSearching;
)

10

15

20

25

30

35

40

45

WO 95/04962 PCT/US94/00005
-12-

}

The pseudo code for TContainsGrafSearch is as follows:

class TContainsGrafSearch : public TGrafSearch

{
TContainsGrafSearch (const TGRect& bounds)

{

fBoundsRect = bounds;
initialize list of contained MGraphics to empty

J

EFindResult Find(const TGRect& r, const TGrafBundle&)

{
if (! fGraphic) return kDoneSearching; // Graphic is not

contained

// Stop the search if a geometry outside fBoundsRect is found,
since
// to qualify everything must be contained within it.
if (fBoundsRect.Contains(r))
return kContineSearching;
else

{
fGraphic = NIL // Flag graphic as not contained

return kDoneSearching;
)
} |
// Other geometric primitives are defined similarly...

void PushGraphic(MGraphic * graphic)
{

J

EFindResult PopGraphic()
{

fGraphic = graphic;

if fGraphic != NIL, add fGraphic to list of contained objects
fGraphic = NIL; // Soitisn’t added twice
// Return kContineSearching so the client will search all
MGraphics
return kContineSearching;
)

)

The framework also provides mechanisms to overcome the problems
associated with hit testing of hierarchical data, the use of an MGraphic in multiple
instances in an object. Figure 5 shows a bicycle, with multiple instances of the

10

15

20

25

30

35

WO 95/04962 PCT/US94/00005
13-

wheel MGraphic. This type of data presents a problem because the return of only a
pointer to a wheel will not uniquely identify the particular wheel on which the user
has actuated (i.e. "clicked") the pointer. Therefore, it is necessary to distinguish
between multiple instances of the same MGraphic. The framework accomplishes
this by recording the path to the particular instance of the MGraphic which is
desired. Figure 6 illustrates how a path is used to identify the selected wheel on the
bicycle. For example, to hit the rear wheel (object D), the path would be A, B, D.

The framework implements the hit testing of hierarchical MGraphics using
the PushGraphic and PopGraphic methods of the TGrafSearch class. These methods
take as parameters the MGraphic pointer, the bundle and the matrix for the
particular group. If a hit occurs, PushGraphic can record the accumulated path
which is a collection of transforms and pointers to groups. The following pseudo
code illustrates a find routine for a TGroup, a group of MGraphics.

TGraphicGroup::Find(const TGrafSearch& h)
{
h.PushGraphic(*this, fMatrix, GetBundle());
for (each child node &&
(child->Find(TGrafSearch) == TGrafSearch::kContinueSearching)
h.PopGraphic();
}

In addition to the subclasses of TGrafSearch which define the hit criteria, the
extent of the search and the action to be taken for a hit, TGrafSearch can have
subclasses which store information regarding the geometrically important features
of the hit object. The information can be used by the application in a variety of
ways, for example in defining "snap to" behavior.

Figure 7 is a flowchart illustrating the detailed logic of a hit (picking)
operation in accordance with a preferred embodiment. Processing commences at
terminal 700 and immediately passes to function block 710 to obtain the next
graphic. Then, a test is performed at decision block 720 to determine if the graphic is
nil. If so, then hit data is obtained from the grafsearch object as shown in function
block 750, the command associated with the graphic hit/pick is executed as shown
in function block 760, and processing is completed at terminal 770. If the graphic
tests negative at decision block 720, then at function block 730, a function call to the
graphic search routine is invoked as shown in function block 730 and detailed in
Figure 8. Value is set as a result of the function call and a test is performed at
decision block 740 to determine if searching should continue based on value. If
searching should not continue, then processing passes to function block 750 and hit

10

15

20

25

WO 95/04962 PCT/US94/00005
-14-

data is obtained from the grafsearch object, then, the command associated with the
graphic hit/pick is executed as shown in function block 760, and processing is
completed at terminal 770.

Figure 8 is a flowchart illustrating the detailed logic for a graphic find
operation in accordance with a preferred embodiment. Processing commences at
function block 800, where the graphic is pushed onto a stack. Then, at function
block 810, geometries of the search are defined to grafsearch, a function call to locate
the graphic is made at function block 820, and detailed in Figure 9; and a test is
performed at decision block 830 to determine if the value returned from the
function call indicates that the graphic was located. If so, then processing is
resumed by passing control via label 850 to Figure 7, label 788. If not, then value is
set equal to the value of the graphic on the stack, and control is passed via label 850
to Figure 7, label 788.

Figure 9 is a flowchart illustrating the detailed logic for a graphic search
operation in accordance with a preferred embodiment. Processing commences at
function block 900 where hit detection is performed. Then, at decision block 910, a
test is performed to determine if a graphic was hit. If not, then control is returned
to label 888 of Figure 8. If a graphic was hit, then another test is performed at
decision block 920 to determine if the search should continue. If so, then value is
set equal to a value indicative of continue searching. If not, then value is set equal
to a value indicative of done searching. In either case, control is returned from the
function to the calling routine. Figure 10 and 11 illustrate various two dimensional
(2D) objects in accordance with a preferred embodiment. 3D surfaces are shown at
label 1000, 3D curves are presented at 1010, 3D line and polyline are presented at
1020 and a 3D box is presented at 1030. In Figure 11, an example of a 2D font 1100
and a graphic area 1110 are illustrated.

While the invention has been described in terms of a single preferred
embodiment, those skilled in the art will recognize that the invention can be
practiced with modification within the spirit and scope of the appended claims.

g N U W N =

[

WO 95/04962 PCT/US94/00005

-15-

CLAIMS

Having thus described our invention, what we claim as new, and desire to

secure by Letters Patent is:

1.

(a)
(b)
(c)

(d)

An object based framework, comprising:

means for defining a search protocol for a geometric type;

means for detecting a graphic object;

means for automatically generating, based on a comparison of the search
protocol defined by the search protocol defining means and a detection of the
graphic object by the detecting means, a result; and

means for producing an output in accordance with the result.

An object based framework as recited in claim 1, including means for
modifying an image of the graphic object.

An object based framework as recited in claim 1, including means for
calculating a value based on whether the graphic object satisfies the search
protocol.

An object based framework as recited in claim 1, including means for
selecting the graphic object for processing.

An object based framework as recited in claim 1, including means for
defining a search protocol based on geometric attributes of an object.

An object based framework as recited in claim 5, wherein the geometric
attributes are a point.

An object based framework as recited in claim 5, wherein the geometric
attributes are a line.

WO 95/04962 PCT/US94/00005

16
8. An object based framework as recited in claim 5, wherein the geometric
attributes are a rectangle.
9. An object based framework as recited in claim 5, wherein the geometric

attributes are a cube.

10. An object based framework as recited in claim 5, wherein the geometric
attributes are a sphere.

11. An object based framework as recited in claim 5, wherein the geometric
attributes are a plurality of geometric figures.

12. An object based framework as recited in claim 1, including means for tuning
the search to optimize precision.

13. An object based framework as recited in claim 1, including means for
adjusting the search to detect relationships between a plurality of geometric
figures.

14. An object based framework as recited in claim 1, including means for tuning
the search to optimize speed.

15. An object based framework as recited in claim 13, including means for
detecting a hit when a first geometric figure and a second geometric figure are
within a predefined distance.

16. An object based framework as recited in claim 13, including means for
detecting a hit when a first geometric figure is located behind a second
geometric figure.

SUBSTITUTE SHEET (RULE 26)

NN N

fory

WO 95/04962 _ PCT/US94/00005

17.

18.

(a)
®)
(c)

(@)

19.

20.

21.

24.

25.

26.

17

An object based framework as recited in claim 1, including means for '
dynamically forming a new search based on the search policy.

A method for manipulating graphic objects, the method comprising the steps
of:

defining a search protocol for a geometric type;

detecting a graphic object;

automatically generating, based on a comparison of the search protocol
defining and a detection of the graphic object, a result; and

producing an output in accordance with the result.

A method as recited in claim 18, wherein the output producing step includes
modifying an image of the graphic object.

A method as recited in claim 18, wherein the output producing step includes
calculating a value based on whether the graphic object satisfies the search

protocol.

A method as recited in claim 18, wherein the output producing step includes
the step of selecting the graphic object for processing.

A method as recited in claim 18, including the step of defining a search
protocol based on geometric attributes of an object.

A method as recited in claim 22, wherein the geometric attributes are a point.
A method as recited in claim 22, wherein the geometric attributes are a line.

A method as recited in claim 22, wherein the geometric attributes are a
rectangle.

A method as recited in claim 22, wherein the geometric attributes are a cube.

SUBSTITUTE SHEET (RULE 26)

WO 95/04962 PCT/US94/00005

27.

28.

29.

30.

31.

32.

18

A method as recited in claim 22, wherein the geometric attributes are a
sphere.

A method as recited in claim 22, wherein the geometric attributes are a
plurality of geometric figures.

A method as recited in claim 22, including the step of tuning the search to
optimize speed or precision.

A method as recited in claim 22, including the step of adjusting the search to
detect relationships between a plurality of geometric figures.

A method as recited in claim 30, including the step of detecting a hit when a
first geometric figure and a second geometric figure are within a predefined
distance.

A method as recited in claim 30, including the step of detecting a hit when a
first geometric figure is located behind a second geometric figure.

A method as recited in claim 22, including the step of dynamically forming a
new search based on the search policy.

SUBSTITUTE SHEET (RULE 26)

PCT/US94/00005

WO 95/04962

1711

8¢ 9¢
L J4NOI e
8€E It]
431dvav 431dvav _
AVdSId JOV4YILNI b7
(x4
142 W02 21
8L
1504
0/I1 Wvd WOY Ndad
—1
vl 91 ol /
Ll
LZ

0¢

WO 95/04962 PCT/US94/00005

2/11
" & I Edit Layout Arrange Pen Font Size Style
210 200
hit object
1643 {wjsescc | B 2| U)o
EEElEEEE=EE
0 o Z B
————————h————— 220
embodiment will essentiallybe like writing domain)
that adhere to the framework protocol. In this men
programming changes. Instead of writing line after|
mul List - 5/30/93
the pf¥ TarcentTimes | 1P B G [P
behavs Hormal I MEEINEE - -
[T r— 3 Hit Object »
£ O FIGURE o
D fige 2 - Saven bump [
writt D tiqures hit abjects
powe AS OF June 30, 1993 D hit object i
work D Hit dbjects €S [
Vi 7w o & 0 BN] () 2. {}
oras FIGURE | ~Layer¥1
cases, o e Save drawing as:
oy T —
o KEI : 22 FIGURE 1
verys ;24 '
the o . : INTERFACE ® Drawing O Stationery
i OPICT O Color PICT2

SUBSTITUTE SHEET (RULE 26)

WO 95/04962 PCT/US94/00005

3/11

TPolygon TCurve TLoop TPolyline TEllipse

MGRAPHIC REPRESENTATION

/ GEOMETRY
TGPolygon TGCurve TGLoop TGPolyline TGEllipse
Figure 3

SUBSTITUTE SHEET (RULE 26)

WO 95/04962 PCT/US94/00005
411

- m

THouse TArrow TGraphicFolder

Figure 4

WO 95/04962 "~ PCT/US94/00005

511

Figure 5

WO 95/04962 PCT/US94/00005

6/11

Complex MGraphic
(TGraphicGroup)

O

Simple MGraphic

Figure 6

PCT/US94/00005
WO 95/04962 7111

(START) 700
f ~

GET NEXT GRAPHIC | 710

GET HIT DATA
FROM 750
GRAFSEARCH
OBJECT

ALUE = *
MGRAPHIC::FIND (E:)éEl\fhbJZIEID 760
(GRAFSEARCH)

'

IS VALUE =
KCONTINUE
SEARCHING

NO

YES

FIGURE 7

WO 95/04962 PCT/US94/00005
8/

PUSH GRAPHIC 800

|

|$EFINE GEOMETRIES

O GRAFSEARCH | 810

l_ 888

VALUE =

GRAFSEARCH::
FIND(GEOMETRY, | 820
BUNDLE, MATRIX)

840

VALUE = (POP
GRAPHIC)

FIGURE 8

WO 95/04962 PCT/US94/00005

9/11

PERFORM

HIT 900
DETECTION

IS
GRAPHIC
HIT?

920 930

940
vES SHOULD RETURN
RETURN SEARCH KDONE
KCONTINUE CONTINUE SEARCHING
SEARCHING ?

FIGURE 9

PCT/US94/00005

WO 95/04962

10/11

T~1020

1030

FIGURE 10

WO 95/04962

PCT/US94/00005

11/11

//1100
FY

1110

FIGURE 11

INTERNATIONAL SEARCH REPORT

54 1uonal Applicaton No

PCT/US 94/00005

. ELASSIFKCATION OF SUBJECT MATTER

e e GO6F3/033

According to International Patent Classificanon (IPC) or to both natonal classificaton and [PC

B. FIELDS SEARCHED

IPC 6 GO6F

Minimum documentation searched (classificanon system followed by clasaificaton symbols)

Documentauon searched other than mintmum documentaton to the extent that such documents are included in the fields searched

Electronic data base consulted during the mtematonal search (name of data base and, where pracucal, search terms used)

C. DOCUMENTS CONSIDERED TO BE RELEVANT

Category * | Citation of document, with indication, where appropnate, of the relevant passages

April 1993
see abstract

see page 4, line 37 - page 3, line 30
see page 6, line 22 - line 26

A EP,A,0 536 894 (XEROX CORPORATION) 14 1-5,12,

18-22,29

D Further documents are listed in the contnuatgon of box C.

Patent family members are listed in annex.

* Special categories of cited documents :

“A” document defining the general state of the art which is not
considered to be of particuiar relevance

E eariier documnent but published on or after the international
filing date)

"L’ document which may throw doubts on prionty ciaim(s) or
which 15 cited to establish the publicauon date of another
citation or other special reason (as specified)

*O° document refernng to an oral disclosure, use, exfubiton or
other means

P document published prior to the internatonal filing date but
later than the prionty date claimed

“T* later documnent published after the international filing date
or prionty date and not in conilict with the applicauon but
Gted to understand the principle or theory underlying the
invention

"X’ document of particular relevance; the claimed invention
cannot be considered novel or cannot be considered %o
involve an inventive step when the document is taken alone

“Y* document of particular relevance; the claimed invention
cannot be considered to involve an inventive step when the
document is combined with one or more other such docu-
ments, such combination being obvious to a person skilled
in the art,

“&" document member of the same patent family

Date of the actual completion of the international search

17 October 1994

Date of mailing of the internationai search report

10 11 94

Name and mailing address of the [SA
European Patent Office, P.B. 5818 Patentaan 2
NL - 2280 HV Rijswijk
Tel. (+31-70) 340-2040, Tx. 31 651 epo nl,
Fax: (+ 31-70) 340-3016

Authorized officer

Bravo, P

Form PCT/ISA/10 (second sheet) (July 1992)

Relevaat to claim No.

INTERNATIONAL SEARCH REPORT

Intern. _aal Application No

Information on patent family members PCT/US 94/00005
Patent document Publication Patent family Publication
cited in search report date member(s) date
EP-A-0536894 14-04-93 CA-A- 2077324 18-04-93

Form PCT/ISA/210 (patent family annex) (July 1992)

	Abstract
	Bibliographic
	Description
	Claims
	Drawings
	Search_Report

