
US 2011 01 07078A1

(19) United States
(12) Patent Application Publication (10) Pub. No.: US 2011/0107078 A1

RESCH et al. (43) Pub. Date: May 5, 2011

(54)

(75)

(73)

(21)

(22)

(60)

ENCODED DATASLCE CACHING INA Publication Classification
DISTRIBUTED STORAGENETWORK (51) Int. Cl

G06F 2/14 (2006.01)
Inventors: JASON K. RESCH, CHICAGO, G06F 12/00 (2006.01)

G06F 2/08 (2006.01)
Essi, H04L 9/00 (2006.01)

MOTWANI, CHICAGO, IL (US) (52) U.S. C. .. 713/150; 711/118; 713/193; 7,292;

(57) ABSTRACT
Assignee: CLEVERSAFE, INC., CHICAGO, IL (US) A distributed storage processing unit encodes data objects

into multiple encoded data slices to prevent reconstruction of
the original data object using a single encoded data slice, but
to allow reconstruction using at least a threshold number of

Appl. No.: 12/817,208 encoded data slices. The distributed storage processing unit
can decide to whether and where to cache frequently

Filed: Jun. 17, 2010 requested data slices. When retrieving data slices related to a
particular data object, a check can be made to determine if the
data slices are cached in a temporary memory associated with

Related U.S. Application Data the distributed storage processing unit, or elsewhere in the
distributed storage network. This check can be facilitated by

Provisional application No. 61/256,419, filed on Oct. storing data slices and a hash table identifying the location of
30, 2009. stored data slices in the same temporary memory.

data file 38 &/or
data block 40

user device 12 DS processing unit 16

computing Core 26 Computing Core 26

DS DS processing 34 cope
processing 34

user device 14

EC slice 1 142 o O O EC slice 1 X44

".
EC slice Y 146 o O p EC slice Y X 48

C interface 33
computing
core 26

DS EC Slice 1142 EC Slice 1X44 managing
unit 18

ECslice Y. 146

DSN interface 32

Slices 35

Slices 45

DSN interface 32

Computing
core 26

Storage integrity
t tem10 processing unit 20 Computing SWStem

-

US 2011/010.7078 A1 May 5, 2011 Sheet 2 of 10 Patent Application Publication

US 2011/010.7078 A1 May 5, 2011 Sheet 3 of 10

08 ?Inpou SS920e

interface

Patent Application Publication

US 2011/010.7078 A1

!T?] • • • DETTET) • • • DOET© C O[T] • • •| ?q | sq |• • • [ET]

(ZOF5E |-+- -==

3 > Patent Application Publication

US 2011/010.7078 A1 May 5, 2011 Sheet 5 of 10

ZOT

Patent Application Publication

US 2011/010.7078 A1 May 5, 2011 Sheet 6 of 10 Patent Application Publication

00/

ET4,

5578uppeuq ss300 e 9?epdn

US 2011/010.7078 A1 May 5, 2011 Sheet 7 of 10

008

Patent Application Publication

US 2011/010.7078 A1 May 5, 2011 Sheet 8 of 10

??un SO

Patent Application Publication

US 2011/010.7078 A1 May 5, 2011 Sheet 9 of 10 Patent Application Publication

US 2011/010.7078 A1 May 5, 2011 Sheet 10 of 10 Patent Application Publication

US 2011/01 07078 A1

ENCODED DATASLCE CACHING INA
DISTRIBUTED STORAGE NETWORK

CROSS REFERENCE TO RELATED PATENTS

0001. This patent application is claiming priority under 35
USC S 119(e) to a provisionally filed patent application
entitled DISTRIBUTED STORAGE NETWORK DATA
ROUTING,” having a provisional filing date of Oct. 30, 2009
and a provisional Ser. No. 61/256,419, filed Oct. 30, 2009,
which is incorporated herein in its entirety by reference for all
purposes.

STATEMENT REGARDING FEDERALLY
SPONSORED RESEARCH ORDEVELOPMENT

0002 NOT APPLICABLE

INCORPORATION-BY-REFERENCE OF
MATERIAL SUBMITTED ON A COMPACT DISC

0003) NOT APPLICABLE

BACKGROUND OF THE INVENTION

0004. 1. Technical Field of the Invention
0005. This invention relates generally to computing and
more particularly to storage of information.
0006 2. Description of Related Art
0007 Computing systems are known to communicate,
process, and store data. Such computing systems range from
wireless Smartphones to data centers that Support millions of
web searches, Stock trades, or on-line purchases every day.
Computing processing is known to manipulate data from one
form into another. For instance, raw picture data from an
image sensor may be compressed, or manipulated, in accor
dance with a picture compression standard to produce a stan
dardized compressed picture that can be saved or shared with
others. Computer processing capability continues to advance
as processing speed advances and software applications that
perform the manipulation become more Sophisticated.
0008. With the advances in computing processing speed
and communication speed, computers manipulate real time
media from voice to streaming high definition video. Pur
pose-built communications devices, like the phone, are being
replaced by more general-purpose information appliances.
For example, Smartphones can Support telephony communi
cations but they are also capable of text messaging, and
accessing the internet to perform functions including email,
web browsing, remote applications access, and media com
munications. Media communications includes telephony
Voice, image transfer, music files, video files, real time video
streaming and more.
0009. Each type of computing system is constructed, and
hence operates, in accordance with one or more communica
tion, processing, and storage standards. With Such standards,
and with advances in technology, more and more of the global
information content is being converted into electronic for
mats. For example, more digital cameras are now being sold
than film cameras, thus producing more digital pictures. High
growth rates exist for web based programming that until
recently was all broadcast by just a few over the air television
stations and cable television providers. Digital content stan
dards, such as used in pictures, papers, books, video enter
tainment, home video, all enable this global transformation to

May 5, 2011

a digital format. Electronic content pervasiveness is produc
ing increasing demands on the storage function of computing
systems.
0010. A typical computer storage function includes one or
more memory devices to match the needs of the various
operational aspects of the processing and communication
functions. For example, a memory device may include Solid
state NAND flash, random access memory (RAM), read only
memory (ROM), a mechanical hard disk drive. Each type of
memory device has a particular performance range and nor
malized cost. The computing system architecture optimizes
the use of one or more types of memory devices to achieve the
desired functional and performance goals of the computing
system. Generally, the immediacy of access dictates what
type of memory device is used. For example, RAM memory
can be accessed in any random order with a constant response
time. By contrast, memory device technologies that require
physical movement Such as magnetic discs, tapes, and optical
discs, have a variable responses time as the physical move
ment can take longer than the data transfer.
0011 Each type of computer storage system is con
structed, and hence operates, in accordance with one or more
storage standards. For instance, computer storage systems
may operate in accordance with one or more standards
including, but not limited to network file system (NFS), flash
file system (FFS), disk file system (DFS), small computer
system interface (SCSI), internet small computer system
interface (iSCSI), file transfer protocol (FTP), and web-based
distributed authoring and versioning (WebDAV). An operat
ing systems (OS) and storage standard may specify the data
storage format and interface between the processing Sub
system and the memory devices. The interface may specify a
structure Such as directories and files. Typically a memory
controller provides an interface function between the pro
cessing function and memory devices. As new storage sys
tems are developed, the memory controller functional
requirements may change to adapt to new standards.
0012 Memory devices may fail, especially those that uti
lize technologies that require physical movement like a disc
drive. For example, it is not uncommon for a disc drive to
suffer from bit level corruption on a regular basis, or complete
drive failure after an average of three years of use. One com
mon solution is to utilize more costly disc drives that have
higher quality internal components. Another solution is to
utilize multiple levels of redundant disc drives to abate these
issues by replicating the data into two or more copies. One
Such redundant drive approach is called redundant array of
independent discs (RAID). Multiple physical discs comprise
an array where parity data is added to the original data before
storing across the array. The parity is calculated Such that the
failure of one or more discs will not result in the loss of the
original data. The original data can be reconstructed from the
other discs. RAID 5 uses three or more discs to protect data
from the failure of any one disc. The parity and redundancy
overhead reduces the capacity of what three independent
discs can store by one third (n-1-3-2-2 discs of capacity
using 3 discs). RAID 6 can recover from a loss of two discs
and requires a minimum of four discs with an efficiency of
n-2. Typical RAID systems utilize a RAID control to encode
and decode the data across the array.
0013 Drawbacks of the RAID approach include effective
ness, efficiency and security. As more discs are added, the
probability of one or two discs failing rises and is not negli
gible, especially if more desired less costly discs are used.

US 2011/01 07078 A1

When one disc fails, it should be immediately replaced and
the data reconstructed before a second drive fails. To provide
high reliability over along time period, and if the RAID array
is part of a national level computing system with occasional
site outages, it is also common to mirror RAID arrays at
different physical locations. Unauthorized file access
becomes a more acute problem when whole copies of the
same file are replicated, either on just one storage system site
or at two or more sites. In light of the effectiveness, the
efficiency of dedicating 1 to 2 discs per array for the RAID
overhead is an issue.
0014. Therefore, a need exists to provide a data storage
solution that provides more effective timeless continuity of
data, minimizes adverse affects of multiple memory elements
failures, provides improved security, can be adapted to a wide
variety storage system standards and is compatible with com
puting and communications systems.

BRIEF DESCRIPTION OF THE SEVERAL
VIEWS OF THE DRAWING(S)

0015 FIG. 1 is a schematic block diagram of an embodi
ment of a computing system in accordance with the invention;
0016 FIG. 2 is a schematic block diagram of an embodi
ment of a computing core in accordance with the invention;
0017 FIG. 3 is a schematic block diagram of an embodi
ment of a distributed storage processing unit in accordance
with the invention;
0018 FIG. 4 is a schematic block diagram of an embodi
ment of a grid module in accordance with the invention;
0019 FIG. 5 is a diagram of an example embodiment of
error coded data slice creation in accordance with the inven
tion;
0020 FIG. 6 is a schematic block diagram of another
embodiment of a computing system in accordance with the
invention;
0021 FIG. 7 is a flowchart illustrating the retrieval of
distributedly stored data;
0022 FIG. 8 is a schematic block diagram of another
embodiment of a computing system in accordance with the
invention;
0023 FIG. 9 is a schematic block diagram of an embodi
ment of a distributed storage (DS) unit in accordance with the
invention;
0024 FIG. 10 is a flowchart illustrating the storing of
distributedly stored data;
0025 FIG. 11 is a schematic block diagram of another
embodiment of a computing system in accordance with the
invention;
0026 FIG. 12 is a block diagram of an embodiment of
layered message creation in accordance with the invention;
0027 FIG. 13 is a flowchart illustrating the creation of a
layered message; and
0028 FIG. 14 is a flowchart illustrating the processing of
a layered message.

DETAILED DESCRIPTION OF THE INVENTION

0029 FIG. 1 is a schematic block diagram of a computing
system 10 that includes one or more of a first type of user
devices 12, one or more of a second type of user devices 14,
at least one distributed storage (DS) processing unit 16, at
least one DS managing unit 18, at least one storage integrity
processing unit 20, and a distributed storage network (DSN)
memory 22 coupled via a network 24. The network 24 may

May 5, 2011

include one or more wireless and/or wire lined communica
tion systems; one or more private intranet systems and/or
public internet systems; and/or one or more local area net
works (LAN) and/or wide area networks (WAN).
0030. The DSN memory 22 includes a plurality of distrib
uted storage (DS) units 36 for storing data of the system. Each
of the DS units 36 includes a processing module and memory
and may be located at a geographically different site than the
other DS units (e.g., one in Chicago, one in Milwaukee, etc.).
The processing module may be a single processing device or
a plurality of processing devices. Such a processing device
may be a microprocessor, micro-controller, digital signal pro
cessor, microcomputer, central processing unit, field pro
grammable gate array, programmable logic device, state
machine, logic circuitry, analog circuitry, digital circuitry,
and/or any device that manipulates signals (analog and/or
digital) based on hard coding of the circuitry and/or opera
tional instructions. The processing module may have an asso
ciated memory and/or memory element, which may be a
single memory device, a plurality of memory devices, and/or
embedded circuitry of the processing module. Such a
memory device may be a read-only memory, random access
memory, Volatile memory, non-volatile memory, static
memory, dynamic memory, flash memory, cache memory,
and/or any device that stores digital information. Note that if
the processing module includes more than one processing
device, the processing devices may be centrally located (e.g.,
directly coupled together via a wired and/or wireless bus
structure) or may be distributedly located (e.g., cloud com
puting via indirect coupling via a local area network and/or a
wide area network). Further note that when the processing
module implements one or more of its functions via a state
machine, analog circuitry, digital circuitry, and/or logic cir
cuitry, the memory and/or memory element storing the cor
responding operational instructions may be embedded
within, or external to, the circuitry comprising the State
machine, analog circuitry, digital circuitry, and/or logic cir
cuitry. Still further note that, the memory element stores, and
the processing module executes, hard coded and/or opera
tional instructions corresponding to at least Some of the steps
and/or functions illustrated in FIGS. 1-14.

0031. Each of the user devices 12-14, the DS processing
unit 16, the DS managing unit 18, and the storage integrity
processing unit 20 may be a portable computing device (e.g.,
a social networking device, a gaming device, a cell phone, a
Smart phone, a personal digital assistant, a digital music
player, a digital video player, a laptop computer, a handheld
computer, a video game controller, and/or any other portable
device that includes a computing core) and/or a fixed com
puting device (e.g., a personal computer, a computer server, a
cable set-top box, a satellite receiver, a television set, a
printer, a fax machine, home entertainment equipment, a
Video game console, and/or any type of home or office com
puting equipment). Such a portable or fixed computing device
includes a computing core 26 and one or more interfaces 30,
32, and/or 33. An embodiment of the computing core 26 will
be described with reference to FIG. 2.

0032. With respect to the interfaces, each of the interfaces
30, 32, and 33 includes software and/or hardware to support
one or more communication linkS via the network 24 and/or
directly. For example, interfaces 30 Supporta communication
link (wired, wireless, direct, via a LAN, via the network 24,
etc.) between the first type of user device 14 and the DS
processing unit 16. As another example, DSN interface 32

US 2011/01 07078 A1

Supports a plurality of communication links via the network
24 between the DSN memory 22 and the DS processing unit
16, the first type of user device 12, and/or the storage integrity
processing unit 20. As yet another example, interface 33
Supports a communication link between the DS managing
unit 18 and any one of the other devices and/or units 12, 14,
16, 20, and/or 22 via the network 24.
0033. In general and with respect to data storage, the sys
tem 10 supports three primary functions: distributed network
data storage management, distributed data storage and
retrieval, and data storage integrity verification. In accor
dance with these three primary functions, data can be distrib
utedly stored in a plurality of physically different locations
and Subsequently retrieved in a reliable and secure manner
regardless of failures of individual storage devices, failures of
network equipment, the duration of storage, the amount of
data being stored, attempts at hacking the data, etc.
0034. The DS managing unit 18 performs distributed net
work data storage management functions, which include
establishing distributed data storage parameters, performing
network operations, performing network administration, and/
or performing network maintenance. The DS managing unit
18 establishes the distributed data storage parameters (e.g.,
allocation of virtual DSN memory space, distributed storage
parameters, security parameters, billing information, user
profile information, etc.) for one or more of the user devices
12-14 (e.g., established for individual devices, established for
a user group of devices, established for public access by the
user devices, etc.). For example, the DS managing unit 18
coordinates the creation of a vault (e.g., a virtual memory
block) within the DSN memory 22 for a user device (for a
group of devices, or for public access). The DS managing unit
18 also determines the distributed data storage parameters for
the vault. In particular, the DS managing unit 18 determines a
number of slices (e.g., the number that a data segment of a
data file and/or data block is partitioned into for distributed
storage) and a read threshold value (e.g., the minimum num
ber of slices required to reconstruct the data segment).
0035. As another example, the DS managing module 18
creates and stores, locally or within the DSN memory 22, user
profile information. The user profile information includes one
or more of authentication information, permissions, and/or
the security parameters. The security parameters may include
one or more of encryption/decryption scheme, one or more
encryption keys, key generation scheme, and data encoding/
decoding scheme.
0036. As yet another example, the DS managing unit 18
creates billing information for a particular user, user group,
vault access, public vault access, etc. For instance, the DS
managing unit 18 tracks the number of times user accesses a
private vault and/or public vaults, which can be used togen
erate a per-access bill. In another instance, the DS managing
unit 18 tracks the amount of data stored and/or retrieved by a
user device and/or a user group, which can be used to generate
a per-data-amount bill.
0037. The DS managing unit 18 also performs network
operations, network administration, and/or network mainte
nance. As at least part of performing the network operations
and/or administration, the DS managing unit 18 monitors
performance of the devices and/or units of the system 10 for
potential failures, determines the devices and/or unit's acti
Vation status, determines the devices and/or units loading,
and any other system level operation that affects the perfor
mance level of the system 10. For example, the DS managing

May 5, 2011

unit 18 receives and aggregates network managementalarms,
alerts, errors, status information, performance information,
and messages from the devices 12-14 and/or the units 16, 20.
22. For example, the DS managing unit 18 receives a simple
network management protocol (SNMP) message regarding
the status of the DS processing unit 16.
0038. The DS managing unit 18 performs the network
maintenance by identifying equipment within the system 10
that needs replacing, upgrading, repairing, and/or expanding.
For example, the DS managing unit 18 determines that the
DSN memory 22 needs more DS units 36 or that one or more
of the DS units 36 needs updating.
0039. The second primary function (i.e., distributed data
storage and retrieval) begins and ends with a user device
12-14. For instance, if a second type of user device 14 has a
data file 38 and/or data block 40 to store in the DSN memory
22, it send the data file 38 and/or data block 40 to the DS
processing unit 16 via its interface 30. As will be described in
greater detail with reference to FIG. 2, the interface 30 func
tions to mimic a conventional operating system (OS) file
system interface (e.g., network file system (NFS), flash file
system (FFS), disk file system (DFS), file transfer protocol
(FTP), web-based distributed authoring and versioning
(WebDAV), etc.) and/or a block memory interface (e.g., small
computer system interface (SCSI), internet small computer
system interface (iSCSI), etc.). In addition, the interface 30
may attach a user identification code (ID) to the data file 38
and/or data block 40.

0040. The DS processing unit 16 receives the data file 38
and/or data block 40 via its interface 30 and performs a
distributed storage (DS) process 34 thereon (e.g., an error
coding dispersal storage function). The DS processing 34
begins by partitioning the data file 38 and/or data block 40
into one or more data segments, which is represented as Y
data segments. For example, the DS processing 34 may par
tition the data file 38 and/or data block 40 into a fixed byte size
segment (e.g., 2 to 2" bytes, where n=>2) or a variable byte
size (e.g., change byte size from segment to segment, or from
groups of segments to groups of segments, etc.).
0041. For each of the Y data segments, the DS processing
34 error encodes (e.g., forward error correction (FEC), infor
mation dispersal algorithm, or error correction coding) and
slices (or slices then error encodes) the data segment into a
plurality of error coded (EC) data slices 42-48, which is
represented as X slices per data segment. The number of
slices (X) per segment, which corresponds to a number of
pillars n, is set in accordance with the distributed data storage
parameters and the error coding scheme. For example, if a
Reed-Solomon (or other FEC scheme) is used in an n/k sys
tem, then a data segment is divided into n slices, where k
number of slices is needed to reconstruct the original data
(i.e., k is the threshold). As a few specific examples, the n/k
factor may be 5/3; 6/4; 8/6: 8/5: 16/10.
0042. For each slice 42-48, the DS processing unit 16
creates a unique slice name and appends it to the correspond
ing slice 42-48. The slice name includes universal DSN
memory addressing routing information (e.g., virtual
memory addresses in the DSN memory 22) and user-specific
information (e.g., user ID, file name, data block identifier,
etc.).
0043. The DS processing unit 16 transmits the plurality of
EC slices 42-48 to a plurality of DS units 36 of the DSN
memory 22 via the DSN interface 32 and the network 24. The
DSN interface 32 formats each of the slices for transmission

US 2011/01 07078 A1

via the network 24. For example, the DSN interface 32 may
utilize an internet protocol (e.g., TCP/IP, etc.) to packetize the
slices 42-48 for transmission via the network 24.
0044) The number of DS units 36 receiving the slices
42-48 is dependent on the distributed data storage parameters
established by the DS managing unit 18. For example, the DS
managing unit 18 may indicate that each slice is to be stored
in a different DS unit 36. As another example, the DS man
aging unit 18 may indicate that like slice numbers of different
data segments are to be stored in the same DS unit 36. For
example, the first slice of each of the data segments is to be
stored in a first DS unit 36, the second slice of each of the data
segments is to be stored in a second DS unit 36, etc. In this
manner, the data is encoded and distributedly stored at physi
cally diverse locations to improved data storage integrity and
security. Further examples of encoding the data segments will
be provided with reference to one or more of FIGS. 2-9.
0045. Each DS unit 36 that receives a slice 42-48 for
storage translates the virtual DSN memory address of the
slice into a local physical address for storage. Accordingly,
each DS unit 36 maintains a virtual to physical memory
mapping to assist in the storage and retrieval of data.
0046. The first type of user device 12 performs a similar
function to store data in the DSN memory 22 with the excep
tion that it includes the DS processing. As such, the device 12
encodes and slices the data file and/or data block it has to
store. The device then transmits the slices 35 to the DSN
memory via its DSN interface 32 and the network 24.
0047. For a second type of user device 14 to retrieve a data

file or data block from memory, it issues a read command via
its interface 30 to the DS processing unit 16. The DS process
ing unit 16 performs the DS processing 34 to identify the DS
units 36 storing the slices of the data file and/or data block
based on the read command. The DS processing unit 16 may
also communicate with the DS managing unit 18 to verify that
the user device 14 is authorized to access the requested data.
0048 Assuming that the user device is authorized to
access the requested data, the DS processing unit 16 issues
slice read commands to at least a threshold number of the DS
units 36 storing the requested data (e.g., to at least IODS units
for a 16/10 error coding scheme). Each of the DS units 36
receiving the slice read command, Verifies the command,
accesses its virtual to physical memory mapping, retrieves the
requested slice, or slices, and transmits it to the DS processing
unit 16.
0049. Once the DS processing unit 16 has received a read
threshold number of slices for a data segment, it performs an
error decoding function and de-slicing to reconstruct the data
segment. When Y number of data segments has been recon
structed, the DS processing unit 16 provides the data file 38
and/or data block 40 to the user device 14. Note that the first
type of user device 12 performs a similar process to retrieve a
data file and/or data block.
0050. The storage integrity processing unit 20 performs
the third primary function of data storage integrity verifica
tion. In general, the storage integrity processing unit 20 peri
odically retrieves slices 45, and/or slice names, of a data file
or data block of a user device to verify that one or more slices
have not been corrupted or lost (e.g., the DS unit failed). The
retrieval process mimics the read process previously
described.
0051. If the storage integrity processing unit 20 deter
mines that one or more slices is corrupted or lost, it rebuilds
the corrupted or lost slice(s) in accordance with the error

May 5, 2011

coding scheme. The storage integrity processing unit 20
stores the rebuild slice, or slices, in the appropriate DS unit(s)
36 in a manner that mimics the write process previously
described.

0.052 FIG. 2 is a schematic block diagram of an embodi
ment of a computing core 26 that includes a processing mod
ule 50, a memory controller 52, main memory 54, a video
graphics processing unit 55, an input/output (10) controller
56, a peripheral component interconnect (PCI) interface 58,
at least one IO device interface module 62, a read only
memory (ROM) basic input output system (BIOS) 64, and
one or more memory interface modules. The memory inter
face module(s) includes one or more of a universal serial bus
(USB) interface module 66, a hostbus adapter (HBA) inter
face module 68, a network interface module 70, a flash inter
face module 72, a hard drive interface module 74, and a DSN
interface module 76.

0053. Note the DSN interface module 76 and/or the net
work interface module 70 may function as the interface 30 of
the user device 14 of FIG. 1. Further note that the IO device
interface module 62 and/or the memory interface modules
may be collectively or individually referred to as IO ports.
0054 The processing module 50 may be a single process
ing device or a plurality of processing devices. Such a pro
cessing device may be a microprocessor, micro-controller,
digital signal processor, microcomputer, central processing
unit, field programmable gate array, programmable logic
device, state machine, logic circuitry, analog circuitry, digital
circuitry, and/or any device that manipulates signals (analog
and/or digital) based on hard coding of the circuitry and/or
operational instructions. The processing module 50 may have
an associated memory and/or memory element, which may be
a single memory device, a plurality of memory devices, and/
or embedded circuitry of the processing module 50. Such a
memory device may be a read-only memory, random access
memory, Volatile memory, non-volatile memory, static
memory, dynamic memory, flash memory, cache memory,
and/or any device that stores digital information. Note that if
the processing module 50 includes more than one processing
device, the processing devices may be centrally located (e.g.,
directly coupled together via a wired and/or wireless bus
structure) or may be distributedly located (e.g., cloud com
puting via indirect coupling via a local area network and/or a
wide area network). Further note that when the processing
module 50 implements one or more of its functions via a state
machine, analog circuitry, digital circuitry, and/or logic cir
cuitry, the memory and/or memory element storing the cor
responding operational instructions may be embedded
within, or external to, the circuitry comprising the State
machine, analog circuitry, digital circuitry, and/or logic cir
cuitry. Still further note that, the memory element stores, and
the processing module 50 executes, hard coded and/or opera
tional instructions corresponding to at least Some of the steps
and/or functions illustrated in FIGS. 1-14.

0055 FIG. 3 is a schematic block diagram of an embodi
ment of a dispersed storage (DS) processing module 34 of
user device 12 and/or of the DS processing unit 16. The DS
processing module 34 includes a gateway module 78, an
access module 80, a grid module 82, and a storage module 84.
The DS processing module 34 may also include an interface
30 and the DSnet interface 32 or the interfaces 68 and/or 70
may be part of user 12 or of the DS processing unit 14. The DS

US 2011/01 07078 A1

processing module 34 may further include a bypass/feedback
path between the storage module 84 to the gateway module
T8.
0056. In an example of storing data, the gateway module
78 receives an incoming data object (e.g., a data file, a data
block, an EC data slice, etc.) that includes a user ID field 86,
an object name field 88, and the data field 40. The gateway
module 78 authenticates the user associated with the data
object by verifying the user ID 86 with the managing unit 18
and/or another authenticating unit. When the user is authen
ticated, the gateway module 78 obtains user information from
the management unit 18, the user device, and/or the other
authenticating unit. The user information includes a vault
identifier, operational parameters, and user attributes (e.g.,
user data, billing information, etc.). A vault identifier identi
fies a vault, which is a virtual memory space that maps to a set
of DS storage units 36. For example, vault 1 (i.e., user 1's
DSN memory space) includes eight DS storage units (X=8
wide) and vault 2 (i.e., user 2's DSN memory space) includes
sixteen DS storage units (X=16 wide). The operational
parameters may include an error coding algorithm, the width
n (number of pillars X or slices per segment for this vault), a
read threshold T, an encryption algorithm, a slicing param
eter, a compression algorithm, an integrity check method,
caching settings, parallelism settings, and/or other param
eters that may be used to access the DSN memory layer.
0057 The gateway module uses the user information to
assign a source name to the data.
0058. For instance, the gateway module 60 determines the
source name of the data object 40 based on the vault identifier
and the data object. For example, the Source name may con
tain a data name (block number or a file number), the vault
generation number, the reserved field, and the vault identifier.
The data name may be randomly assigned but is associated
with the user data object.
0059. The access module 62 receives the data object 40
and creates a series of data segments 1 through Y 90-92
therefrom. The number of segments Y may be chosen or
randomly assigned based on a selected segment size and the
size of the data object. For example, if the number of seg
ments is chosen to be a fixed number, then the size of the
segments varies as a function of the size of the data object. For
instance, if the data object is an image file of 4,194,304 eight
bit bytes (e.g., 33,554,432 bits) and the number of segments
Y=131,072, then each segment is 256 bits or 32 bytes. As
another example, if segment sized is fixed, then the number of
segments Y varies based on the size of data object. For
instance, if the data object is an image file of 4,194,304 bytes
and the fixed size of each segment is 4,096 bytes, the then
number of segments Y=1,024. Note that each segment is
associated with the source name.
0060. The grid module 82 may pre-manipulate (e.g., com
pression, encryption, cyclic redundancy check (CRC), etc.)
each of the data segments before performing an error coding
function of the error coding dispersal storage function to
produce a pre-manipulated data segment. The grid module 82
then error encodes (e.g., Reed-Solomon, Convolution encod
ing, Trellis encoding, etc.) the data segment or pre-manipu
lated data segment into X error coded data slices 42-44. The
grid module 64 determines a unique slice name for each error
coded data slice and attaches it to the data slice.

0061. In some embodiments, the slice name includes a
universal routing information field and a vault specific field.
In an embodiment, the universal routing information field is

May 5, 2011

24 bytes and the vault specific field is 24 bytes. The universal
routing information field contains a slice index, the vault ID,
the vault generation, and the reserved field. The slice index is
based on the pillar number n and the vault ID such that it is
unique for each pillar (e.g., slices of the same pillar for the
same vault for any segment will share the same slice index).
The vault specific field contains a data name that may include
the file ID and a segment number (e.g., a sequential number
ing of the data segments of a simple data objectora data block
number).
0062. The data name field may be the same for slice names
of slices for the same data segment and may vary for slice
names of different data segments. The file ID portion of data
name may not vary for any slice name of the same data object.
Note that the DS processing module 34 may modify the data
name field Such that the file ID is not transparent (e.g., pro
duce a data name from a hash of the source name to disguise
the file ID).
0063. The value X, or the number of pillars (e.g., X=16), is
chosen as a parameter of the error coding dispersal storage
function. Other parameters of the error coding dispersal func
tion include a read threshold T, a write threshold W., etc. The
read threshold (e.g., T=10, when X=16) corresponds to the
minimum number of error-free error coded data slices
required to reconstruct the data segment. In other words, the
DS processing module 34 can compensate for X-T (e.g.,
16-10–6) missing error coded data slices per data segment.
The write threshold W corresponds to a minimum number of
DS storage units that acknowledge proper storage of their
respective data slices before the DS processing module indi
cates proper storage of the encoded data segment. Note that
the write threshold is greater than or equal to the read thresh
old for a given number of pillars (X).
0064. The grid module 82 also determines which of the DS
storage units 36 will store the EC data slices based on a
dispersed storage memory mapping associated with the user's
vault and/or DS storage unit 36 attributes. The DS storage unit
attributes includes availability, self-selection, performance
history, link speed, link latency, ownership, available DSN
memory, domain, cost, a prioritization scheme, a centralized
selection message from another source, a lookup table, data
ownership, and/or any other factor to optimize the operation
of the computing system. Note that the number of DS storage
units 36 is equal to or greater than the number of pillars (e.g.,
X) so that no more than one error coded data slice of the same
data segment is stored on the same DS storage unit 36. Further
note that EC data slices of the same pillar number but of
different segments (e.g., EC data slice 1 of data segment 1 and
EC data slice 1 of data segment 2) may be stored on the same
or different DS storage units 36.
0065. The storage module 84 performs an integrity check
on the EC data slices and, when successful, transmits the EC
data slices 1 through X of each segment 1 throughY to the DS
Storage units. Each of the DS storage units 36 stores its EC
data slice and keeps a table to convert the virtual DSN address
of the EC data slice into physical storage addresses.
0066. In an example of a read operation, the user device 12
and/or 14 sends a read request to the DS processing unit 14,
which authenticates the request. When the request is authen
tic, the DS processing unit 14 sends a read message to each of
the DS storage units 36 storing slices of the data object being
read. The slices are received via the DSnet interface 32 and
processed by the storage module 84, which performs a parity
check and provides the slices to the grid module 82 when the

US 2011/01 07078 A1

parity check was successful. The grid module 82 decodes the
slices in accordance with the error coding dispersal storage
function to reconstruct the data segment. The access module
80 reconstructs the data object from the data segments and the
gateway module 78 formats the data object for transmission
to the user device.
0067 FIG. 4 is a schematic block diagram of an embodi
ment of a grid module 82 that includes a control unit 73, a
pre-data manipulator 75, an encoder 77, a slicer 79, a post
data manipulator 81, a pre-data de-manipulator 83, a decoder
85, a de-slicer 87, and/or a post-data de-manipulator 89. Note
that the control unit 73 may be partially or completely exter
nal to the grid module 82. For example, the control unit 73
may be part of the computing core at a remote location, part of
a user device, part of the DS managing unit 18, or distributed
amongst one or more DS storage units.
0068. In an example of write operation, the pre-data
manipulator 75 receives a data segment 90-92 and a write
instruction from an authorized user device. The pre-data
manipulator 75 determines if pre-manipulation of the data
segment 90-92 is required and, if so, what type. The pre-data
manipulator 75 may make the determination independently
or based on instructions from the control unit 73, where the
determination is based a computing system-wide predetermi
nation, a table lookup, Vault parameters associated with the
user identification, the type of data, Security requirements,
available DSN memory, performance requirements, and/or
other metadata.
0069. Once a positive determination is made, the pre-data
manipulator 75 manipulates the data segment 90-92 in accor
dance with the type of manipulation. For example, the type of
manipulation may be compression (e.g., Lempel–Ziv–Welch,
Huffman, Golomb, fractal, wavelet, etc.), signatures (e.g.,
Digital Signature Algorithm (DSA), Elliptic Curve DSA,
Secure Hash Algorithm, etc.), watermarking, tagging,
encryption (e.g., Data Encryption Standard, Advanced
Encryption Standard, etc.), adding metadata (e.g., time/date
stamping, user information, file type, etc.), cyclic redundancy
check (e.g., CRC32), and/or other data manipulations to pro
duce the pre-manipulated data segment.
0070 The encoder 77 encodes the pre-manipulated data
segment 92 using a forward error correction (FEC) encoder
(and/or other type of erasure coding and/or error coding) to
produce an encoded data segment 94. The encoder 77 deter
mines which forward error correction algorithm to use based
on a predetermination associated with the user's vault, a time
based algorithm, user direction, DS managing unit direction,
control unit direction, as a function of the data type, as a
function of the data segment 92 metadata, and/or any other
factor to determine algorithm type. The forward error correc
tion algorithm may be Golay, Multidimensional parity, Reed
Solomon, Hamming, Bose Ray Chauduri Hocquenghem
(BCH), Cauchy-Reed-Solomon, or any other FEC encoder.
Note that the encoder 77 may use a different encoding algo
rithm for each data segment 92, the same encoding algorithm
for the data segments 92 of a data object, or a combination
thereof.

0071. The encoded data segment 94 is of greater size than
the data segment 92 by the overhead rate of the encoding
algorithm by a factor of d(X/T), where d is size of the data
segment 92. X is the width or number of slices, and T is the
read threshold. In this regard, the corresponding decoding
process can accommodate at most X-T missing EC data slices
and still recreate the data segment 92. For example, if X=16

May 5, 2011

and T=10, then the data segment 92 will be recoverable as
long as 10 or more EC data slices per segment are not cor
rupted.
0072 The slicer 79 transforms the encoded data segment
94 into EC data slices in accordance with the slicing param
eter from the vault for this user and/or data segment 92. For
example, if the slicing parameter is X=16, then the slicer
slices each encoded data segment 94 into 16 encoded slices.
0073. The post-data manipulator 81 performs, if enabled,
post-manipulation on the encoded slices to produce the EC
data slices. If enabled, the post-data manipulator 81 deter
mines the type of post-manipulation, which may be based on
a computing system-wide predetermination, parameters in
the vault for this user, a table lookup, the user identification,
the type of data, security requirements, available DSN
memory, performance requirements, control unit directed,
and/or other metadata. Note that the type of post-data
manipulation may include slice level compression, signa
tures, encryption, CRC, addressing, watermarking, tagging,
adding metadata, and/or other manipulation to improve the
effectiveness of the computing system.
0074. In an example of a read operation, the post-data
de-manipulator 89 receives at least a read threshold number
of EC data slices and performs the inverse function of the
post-data manipulator 81 to produce a plurality of encoded
slices. The de-slicer 87 de-slices the encoded slices to pro
duce an encoded data segment 94. The decoder 85 performs
the inverse function of the encoder 77 to recapture the data
segment 90-92. The pre-data de-manipulator 83 performs the
inverse function of the pre-data manipulator 75 to recapture
the data segment.
0075 FIG. 5 is a diagram of an example of slicing an
encoded data segment 94 by the slicer 79. In this example, the
encoded data segment includes thirty-two bits, but may
include more or less bits. The slicer 79 disperses the bits of the
encoded data segment 94 across the EC data slices inapattern
as shown. As such, each EC data slice does not include con
secutive bits of the data segment 94 reducing the impact of
consecutive bit failures on data recovery. For example, if EC
data slice 2 (which includes bits 1, 5, 9, 13, 17, 25, and 29) is
unavailable (e.g., lost, inaccessible, or corrupted), the data
segment can be reconstructed from the other EC data slices
(e.g., 1, 3 and 4 for a read threshold of 3 and a width of 4).
0076 FIG. 6 is a schematic block diagram of another
embodiment of a computing system 102 that may provide
access to slices from a cache memory in addition to a DSN
memory. The computing system 102 includes a plurality of
user devices 1-U, a DS processing unit 16, a cache memory
103, and the DSN memory 22.
0077 One of the user devices 1-U may from time to time
request retrieval of a data object by sending a retrieval request
message to the DS processing unit 16. The DS processing unit
16 determines where to retrieve the slices to reconstruct the
data object. The slices may be located in the cache memory
103. The DS processing unit 16 may have previously stored
the slices in the cache memory 103. In another embodiment,
at least two DS processing units may communicate with each
other to locate and retrieve slices stored in cache memory 103.
Note that more than one cache memory may be utilized in the
system.
0078. The cache memory 103 includes a slice memory 104
and a distributed hash table (DHT) 106, and may be imple
mented with one or more of a magnetic hard disk, NAND
flash, read only memory, optical disk, and/or any other type of

US 2011/01 07078 A1

read-only, or read/write memory. In an embodiment, the
cache memory 103 may be implemented as part of the DS
processing unit.
0079. The slice memory 104 stores EC data slices received
as slices from the DS processing unit 16. The slice memory
sends the slices to the DS processing unit 16 upon retrieval.
Note that the speed of slice retrieval may be faster retrieving
slices from the slice memory 104 as compared to retrieving
the same slices from the DSN memory.
0080. The DHT 106 lists slice name locations for slices
stored in the slice memory. In another embodiment, the DHT
106 lists slice name locations for slices stored in at least one
other cache memory.
0081. In an example of operation, the DS processing unit
16 tracks the frequency of retrievals of the same data object
from the DSN memory 22. The DS processing unit stores the
retrieved slices in the cache memory 103 and updates the
DHT 106 when the frequency of retrievals reaches a thresh
old. The DS processing unit 16 queries the DHT 106 to
determine if the slices are stored in the cache memory 103
when receiving a retrieval request from a user device 1-U. The
DS processing unit 16 retrieves the slices, reconstructs the
data object, and sends the data object to the requesting user
device when the DHT query indicates that the slices are stored
in the cache memory.
0082 In another example of operation, the DS processing
unit 16 deletes slices from the cache memory when the DS
processing unit 16 determines that the frequency of retrievals
for the slices has fallen below a threshold.
0083. The method to determine when to store slices to the
cache memory 103 will be discussed in greater detail with
reference to FIG. 7.
I0084 FIG. 7 is a flowchart illustrating the retrieval of
distributedly stored data where the DS processing unit deter
mines if slices are stored in cache memory before retrieving
the slices.

I0085. The method 700 begins with block 701, where the
DS processing unit receives a data object retrieval request
from a requester (e.g., a user device or other system element).
The request may include the data object name and a retrieve
request message. As illustrated by block 703, the DS process
ing unit updates access tracking by saving a record of the
retrieval with a timestamp in the user vault or other storage
area. The DS processing unit may determine the frequency of
previous retrievals by averaging the time between the saved
time stamps.
I0086. As illustrated by blocks 705 and 707, the DS pro
cessing unit determines if the slices corresponding to the data
object retrieval request are in the cache memory by accessing
the DHT and searching for the slice names. Note that DS
processing unit can determine the slice names based on the
data object name as discussed previously.
I0087. As illustrated by block 709, the DS processing unit
retrieves the slices from the cache memory when the DS
processing unit determines that the slices corresponding to
the data object retrieval request are in the cache memory. The
DS processing unit may verify the integrity of the slices
before decoding the slices by comparing previously stored
checksums to stored checksums. As shown by block 711, the
DS processing unit de-slices and decodes the slices to pro
duce the data object in accordance with the operational
parameters as previously discussed. The DS processing unit
sends the data object to the requester, as illustrated by block
T13.

May 5, 2011

I0088. As illustrated by block 715, the DS processing unit
retrieves the slices from the DSN memory when the DS
processing unit determines that the slices corresponding to
the data object retrieval request are not in the cache memory.
The DS processing unit may verify the integrity of the slices
before decoding the slices by comparing previously stored
checksums to stored checksums. As illustrated by block 717.
the DS processing unit de-slices and decodes the slices to
produce the data object in accordance with the operational
parameters as previously discussed.
I0089. As illustrated by blocks 719 and 721, the DS pro
cessing unit determines whether to store the slices in the
cache memory based on one or more of a comparison of the
access tracking to a threshold (e.g., the retrieval frequency is
greater than the threshold), a security level, a priority level, a
predetermination, and/or a network loading level. As illus
trated by block 723, the DS processing unit sends the data
object to the requester when the DS processing unit deter
mines not to store the slices in the cache memory.
(0090. As illustrated by block 725, the DS processing unit
stores the slices in the cache memory and updates the DHT, as
illustrated by block 727, with the slice names and cache
memory location when the DS processing unit determines to
store the slices in the cache memory. As illustrated by block
729, the DS processing unit sends the data object to the
requester.
0091. Note that the DS processing unit may determine
whether to delete slices in the cache memory based on one or
more of a comparison of the access tracking to a threshold
(e.g., the retrieval frequency is less than the threshold), the
security level, the priority level, the predetermination, and/or
the networkloading level. The DS processing unit deletes the
slices from the cache memory and removes the slice names
from the DHT when the DS processing unit determines to
delete slices in the cache memory.
0092 FIG. 8 is a schematic block diagram 800 of another
embodiment of a computing system where two or more DS
unit storage sets are utilized to concurrently store and retrieve
EC data slices in parallel for the same data object. As used
herein the term concurrently and parallel can be considered
interchangeable unless otherwise specified, and refer gener
ally to the concept of beginning storage or retrieval of one EC
data slice before a previous data slice has finished being
stored retrieved.
0093. The computing system includes a DS processing
unit 16, a storage set A, and a storage set B. The DS process
ing unit 16 stores and retrieves EC data slices to/from the
storage sets A and B. Note that two or more storage sets may
be utilized. A storage set includes DS units that comprise the
pillars for one or more vaults. For example, in a 4/3 vault, DS
units 1-4 comprise the storage set A. The corresponding sec
ond of the two or more storage sets includes DS units 5-8 in
storage set B. Both storage sets may be utilized to store slices
for the same vault. Note that the two or more storage sets may
be in the same or different DSN memories.

(0094. In another embodiment of a 16/10 DSN system,
storage set A includes DS units 1-16 and storage set B
includes DS units 17-32. In yet another embodiment, the
number of DS units in the storage sets A and B are different.
For example, storage set A includes DS units 1-16 for a 16/10
approach and storage set B includes DS units 17-20 for a 4/3
approach.
0.095 The DS processing unit 16 may determine how to
implement parallelism based on a data type, a priority level, a

US 2011/01 07078 A1

security level, a request, a command, a predetermination, a
desired performance level, a system loading indicator, and/or
a system configuration. For example, the DS processing unit
16 may utilize two storage sets when the DS processing unit
determines that two storage sets will meet the desired level of
performance (e.g., retrieval times).
0096. To implement parallelism, the DS processing unit
16 may operate in one of several embodiments. In a first
embodiment, the DS processing unit 16 creates slices for each
pillar of a data segment and sends the slices for storage to
storage set A Substantially in parallel, or concurrently, with
creating slices for each pillar of the next data segment and
sending the slices for storage to storage set B. In other words,
with two storage sets the DS processing unit 16 sends slices
for odd data segment numbers to storage set A while in
parallel sending slices for even data segment numbers to
storage set B. The DS processing unit 16 subsequently
retrieves the data object by retrieving slices for each pillar of
a data segment from storage set A Substantially in parallel
with retrieving slices for each pillar of the next data segment
from storage set B.
0097. In a second embodiment, the DS processing unit 16
creates slices for each pillar of a series of data segments 1
through X and sends the slices for storage to storage set A
substantially in parallel with creating slices for each pillar of
the next series of data segments X-1 through Y and sending
the slices for storage to storage set B. In other words, with two
storage sets the DS processing unit 16 sends slices for a first
series of data segment numbers to storage set A while in
parallel sending slices for a second series of data segment
numbers to storage set B. The DS processing unit 16 subse
quently retrieves the data object by retrieving slices for each
pillar of a first series of data segments from storage set A
substantially in parallel with retrieving slices for each pillar of
the next series of data segments from storage set B.
0098. In a third embodiment, the DS processing unit 16
divides the data object into two or more sub-files, labeling
them with the same filename but with different vault genera
tions, creating slices for each pillar of the first sub-file and
sending the slices for storage to storage set A Substantially in
parallel, or concurrently, with creating slices for each pillar of
the next Sub-file (e.g., different vault generation) and sending
the slices for storage to storage set B. In other words, with two
storage sets the DS processing unit 16 sends slices for a first
Sub-file (e.g., vault gen 1) to storage set A while in parallel
sending slices for a second Sub-file (e.g., vault gen 2) to
storage set B. The DS processing unit 16 subsequently
retrieves the data object by retrieving slices for each pillar of
the first Sub-file (e.g., vaultgen 1) from storage set A Substan
tially in parallel with retrieving slices for each pillar of the
second sub-file (e.g., vault gen2) from storage set B. The DS
processing unit then combines the Sub-files to recreate the
data object.
0099 FIG. 9 is a schematic block diagram of an embodi
ment of a distributed storage (DS) unit 36 that includes a
storage unit control module 109 and a plurality of memories
that includes memory 1 through memory m. The storage unit
control module 109 may be implemented with the computing
core of FIG. 2. The memories may be one or more of a
magnetic hard disk, NAND flash, read only memory, optical
disk, and/or any other type of read-only, or read/write
memory. The memories may be implemented as part of or
outside of the DS unit 36. For example, memory 1 may be
implemented in the DS unit 36 and memory 2 may be imple

May 5, 2011

mented in a remote server (e.g., a different DS unit operably
coupled to the DS unit 36 via the network).
0100. The storage unit control module 109 may be oper
ably coupled to the computing system utilizing the DSnet
interface 111 via the network. The storage unit control mod
ule 109 may receive a EC data slice to store via the DSnet
interface 111. Note that the slice may be received as part of a
batch of slices (e.g., slices of the same pillar for the same data
segment). In an embodiment, the storage unit control module
109 determines where (e.g., which address on which of the
memories) to store the received EC data slices. The determi
nation may be based on one or more of number of slices in the
batch, slice sizes, metadata associated with the slices, a type
of data indicator, a priority indicator, available memory,
memory performance data, memory cost data, and/or any
other parameter to facilitate desired levels of efficiency and
performance.
0101 The storage unit control module 109 may determine
to utilize one or more memories 1-m for the slice batch. The
storage unit control module 109 may determine to evenly
distribute the slice batch across the selected memories or the
storage unit control module 109 may determine to vary the
number of slices of the slice batch stored in each of the
selected memories. For example, the storage unit control
module 109 may select memory 2 to store all of the received
slice batch since the number of slices in the slice batch was
below a threshold (e.g., a relatively small batch). In another
example, the storage unit control module 109 may select
memories 1-4 to evenly distribute the received slice batch
since the number of slices in the slice batch was above a
threshold (e.g., a relatively large batch). The storage unit
control module 109 maintains a local virtual DSN address to
physical location table to keep track of the locations of the
slices upon storage such that the slices may be retrieved from
the proper memory upon Subsequent retrievals. In other
words, the table lists the memory number and memory loca
tion for each slice name. Note that Subsequent retrievals may
enjoy a more favorable net retrieval time since memories 1-4
can simultaneously retrieve slices. The method to determine
the memories is discussed in greater detail with reference to
FIG 10.

0102 FIG. 10 is a flowchart illustrating the storing of
distributedly stored data where the storage unit control mod
ule of the DS storage unit receives slices, determines which
memories to select for storage of the slices, and stores the
slices in the selected memories.

(0103) The method 1010 begins at block 1013, where the
storage unit control module receives the slice from one or
more of the DS processing unit, the storage integrity process
ing unit, the DS managing unit, and/or the user device. Note
that the slice may be received as part of a batch of slices (e.g.,
slices of the same pillar for the same data segment). The
storage unit control module may count the number of slices to
determine the number of slices in the slice batch. The slice
may have an appended metadata indicating a priority, a data
type, a userID, a security level, a speed of retrieval require
ment, a performance requirement, a reliability requirement,
and/or a cost requirement.
0104. As illustrated by blocks 1015 and 1017, the storage
unit control module determines a memory utilization method
based on one or more of number of slices in the slice batch,
slice sizes, metadata appended and/or associated with the
slices, a performance requirement, a type of data indicator, a
priority indicator, available memory, memory performance

US 2011/01 07078 A1

data, memory cost data, and/or any other parameter to facili
tate desired levels of efficiency and performance.
0105. In an embodiment, the storage unit control module
determines the memory utilization method to select one
memory or more than one memory based in part on the
number of slices in the batch. For example, the storage unit
control module may select one memory when the number of
slices in the slice batch is below a threshold, and more than
one memory when the number of slices in the slice batch is
above a threshold. As illustrated by block 1019, the storage
unit control module stores the slices in the one memory and
updates the local virtual DSN address to physical location
table when storage unit control module determines the
memory utilization method to be one memory.
0106. As illustrated by block 1021, the storage unit control
module determines the distribution method when the storage
unit control module determines the memory utilization
method to be more than one memory. The storage unit control
module may determine the distribution method by selecting
the number of memories based on one or more of the number
of slices in the slice batch, the slice sizes, the priority, the
performance requirements, and/or the memory performance
data. For example, the storage unit control module may select
a higher number of memories when the performance require
ments are more demanding (e.g., faster retrieval time as com
pared to the average required retrieval time). The storage unit
control module may select an uneven distribution of the slices
between the memories based on the memory performance
data (e.g., actual capabilities) of each memory. As illustrated
by block 1023, the storage unit control module stores the
slices Substantially in parallel in the memories and updates
the local virtual DSN address to physical location table.
0107. Note that the storage unit control module references
the local virtual DSN address to physical location table to
determine which memories the slices are located in upon
receiving a retrieval request from a requester (e.g., from DS
processing). The storage unit control module may retrieve the
slices Substantially in parallel across two or more memories
when the slices for a segment are stored in the two or more
memories. The storage unit control module sends the
retrieved slices to the requester. Further note that the retrieval
time performance of the DS unit may be improved when the
slices are substantially retrieved in parallel from the memo
1S.

0108 FIG. 11 is a schematic block diagram of another
embodiment of a computing system that may provide
improved security by utilizing onion routing to communicate
EC data slices.
0109 The computing system includes the DS processing
unit 16, an onion layer of DS units 5-10, and a storage set 1110
of DS units 1-4. In another embodiment, the DS processing
unit may be replaced with the DS processing in any one or
more of the user device, the storage integrity processing unit,
and/or the DS managing unit. The storage set 1110 may
include any number of DS units that comprise the pillars for
one or more vaults. For example, in a 16/10 DSN system the
storage set includes 16 DS units while in a 4/3 DSN system
the storage set includes 4 DS units as shown.
0110. The DS processing unit 16 creates a layer 1 package
to communicate through the onion layer to the storage set.
The layer 1 package includes one or more of a message to be
communicated to the storage set and slices to be stored in the
storage set. The message may include a command Such as
store, retrieve, status, and delete along with a slice name. For

May 5, 2011

example, the layer 1 package may include a store command
and pillar 1 slices to store in DS unit 1, pillar 2 slices to store
in DS unit 2, pillar 3 slices to store in DS unit 3, and pillar 4
slices to store in DS unit 4.
0111. The DS processing unit 16 creates the layer 1 pack
age based on a determination of a number of layers of a route,
and a determination of which DS units (e.g., route nodes) are
along the route, or in the chain of DS units. The DS processing
unit 16 performs the determination of the number of route
layers and which DS unit nodes based on one or more of a
security requirement, a retrieval performance requirement, a
random number, a timer, a predetermined sequence, a userID,
a vault ID, a type of data indicator, DS unit availability, DS
unit performance history, a network loading indicator, a
regional path requirement, and/or a priority indicator. For
example, the DS processing unit may select three layers and
DS units 5, 6, and 8 to serve as the nodes in the onion layer
when a moderate security requirement and a moderate
retrieval performance requirement is indicated. The DS pro
cessing unit may select more layers when the security
requirement is for greater security. Note that each of the DS
units in the onion layer can also be considered to part of a
chain of DS units, with the first DS unit representing the first
layer, the first link, etc., and the end DS unit representing the
innermost onion layer, the last link in the chain, and so on.
0112 Note that the route, or chain, may traverse any num
ber of one or more DS unit nodes in the onion layer. The DS
processing unit 16 sends the layer 1 package to an entry node
DS unit in the onion layer. The entry node DS unit may pass
the package to an intermediate node which may pass the
package through a series of intermediate nodes. Note that the
route may repeat DS unit nodes. The last intermediate node
may pass the package to an exit node. In an embodiment, the
entry node and the exit node may be the same DS unit (e.g., no
intermediate nodes).
0113. In another embodiment, the DS processing unit 16
may create two or more packages with two or more selections
of layers and nodes for the same data segment or data object
to send slices through the onion layer to the storage set. In
other words, the DS processing unit 16 may select more than
one route where some of the slices are split in a first route
while other slices traverse a different route. In an embodi
ment, the DS processing unit may send the two or more
packages to two or more entry nodes as the first layer in the
onion layer. For example, the DS processing unit 16 may send
a first package of data segment 100 to entry node DS unit 7
and a second package of data segment 100 to entry node DS
unit 10. In another embodiment, the DS processing unit 16
may send the two or more packages bundled as one initial
package to one entry node as the first layer in the onion layer
followed by an intermediate node that may split out the two or
more packages and forward the two or more packages to other
nodes. For example, intermediate node DS unit 5 may split
out a first package of data segment 100 and send it to exit node
DS unit 8 and DS unit 5 may split out a second package of data
segment 100 and send it to exit node DS unit 10. In yet another
embodiment, the intermediate node may combine packages
and forward a combined package.
0114. The DS processing unit 16 creates the layer 1 pack
age by creating a series of nested onion layer packages. The
DS processing unit 16 starts with creating final layer package
(e.g., the layer 3 package in the example). The DS processing
unit 16 creates the message for the target storage set (e.g., the
command and/or EC data slices for storage), appending the

US 2011/01 07078 A1

exit node designation (e.g., DS unit 8) and encrypting all that
using the public key for the exit node (e.g., DS unit 8) to
produce the layer 3 package. Next, the DS processing unit 16
creates the next-to-last layer package (e.g., the layer 2 pack
age in the example). In the example, the DS processing unit 16
creates the layer 2 package by appending the intermediate
node designation (e.g., DS unit 5) to the layer 3 package and
encrypting all that using the public key for the intermediate
node (e.g., DS unit 5) to produce the layer 2 package. Next,
the DS processing unit 16 creates the entry node layer pack
age (e.g., the layer 1 package in the example). In the example,
the DS processing unit 16 creates the layer 1 package by
appending the entry node designation (e.g., DS unit 6) to the
layer 2 package and encrypting all that using the public key
for the entry node (e.g., DS unit 6) to produce the layer 1
package. The flow described above is depicted graphically in
FIG. 12. The DS processing unit 16 method to create pack
ages is discussed in greater detail with reference to FIG. 13.
0115 The DS units may store, delete, and retrieve data
slices as previously discussed. In an embodiment, the DS
units of the onion layer may operate in accordance with one or
more roles including the entry node, intermediate node, and/
or exit node. The DS unit determines the role based on
decrypting and inspecting a received package. The DS unit
decrypts the received package utilizing its private key (e.g.,
the private key is paired with the public key as utilized pre
viously by the DS processing unit to create the package). The
DS unit inspects the decrypted package to determine if it
contains the end message or a forwarding address designation
(e.g., of the next node) appended to yet another encrypted
package. Note that the DS unit may not be able to decrypt the
next encrypted package since that encrypted package utilizes
encryption of the next node.
0116. The DS unit sends the message to the targeted stor
age set when the DS unit determines its role is the exit node.
The DS unit sends the message to the next targeted onion
layer node when the DS unit determines its role is the entry or
intermediate node. The DS unit method to process packages
is discussed in greater detail with reference to FIG. 14.
0117 FIG. 12 is a block diagram of an embodiment of
layered message creation where the DS processing unit com
bines one or more of a command and/or EC data slices from
a data object into a message that is wrapped in a series of
encrypted layer packages. The graphical illustration depicts
the route example of FIG. 11 as was previously discussed.
0118 FIG. 13 is a flowchart illustrating the creation of a
layered message where the DS processing unit prepares the
package to send through the onion layer to the storage set.
0119) The method begins with the step 1363, where the DS
processing unit creates the message. The message may
include the command (e.g., store, retrieve, delete, status, etc.)
and may include EC data slices (e.g., created from a data
object) for one or more pillars and/or Supplementary infor
mation (e.g., metadata about the data object).
0120. As illustrated by block 1365, the DS processing unit
determines the number of route layers based on one or more
of a security requirement, a retrieval performance require
ment, a random number, a timer, a predetermined sequence, a
userID, a vault ID, a type of data indicator, DS unit availabil
ity, DS unit performance history, a networkloading indicator,
a regional path requirement, and/or a priority indicator for
one or more of the other factors. For example, the DS pro
cessing unit may select one layer when the retrieval perfor

May 5, 2011

mance requirement indicates a faster than average required
retrieval time and the retrieval performance requirement has a
high priority indicator.
I0121. As illustrated by block 1367, the DS processing unit
determines the route based on one or more of a security
requirement, a retrieval performance requirement, a random
number, a timer, a predetermined sequence, a userID, a vault
ID, a type of data indicator, DS unit availability, DS unit
performance history, a network loading indicator, a regional
path requirement, and/or a priority indicator for one or more
of the other factors. The route may include one or more entry
nodes, intermediate nodes, and exit nodes. The route may
change from data segment to data segment or for each slice.
For example, the DS processing unit may select a route
through three different geographic regions when the regional
path requirement requires that the route traverse at least three
regions and the regional path requirement has a high priority
indicator. In another embodiment, the DS processing unit
may select two routes and divide the package into two pack
ages as previously discussed.
I0122. As illustrated by block 1369, the DS processing unit
creates the package starting with the exit node. As illustrated
by block 1371, the DS processing unit creates the package for
a layer by appending the address of the target layer node to the
message (or previous package for Subsequent loops) and
encrypting that together utilizing the public key for that layer.
(0123. As illustrated by blocks 1373 and 1375, the DS
processing unit determines if all layers are done by compar
ing the just completed layer with the entry node layer. The
method branches back to block 1371, where the DS process
ing unit creating the package for a layer (the next layer
towards the entry node) when the DS processing unit deter
mines that all layers are not done.
0.124. As illustrated by block 1377, the DS processing unit
sends the package to the entry node(s) when the DS process
ing unit determines that all layers are done.
0.125 FIG. 14 is a flowchart illustrating the processing of
a layered message where the DS unit processes an incoming
received package in accordance with the DS unit onion layer
role. The DS unit onion layer roles include the entry node, the
intermediate node, and/or the exit node. The DS unit deter
mines the role based on decrypting and inspecting a received
package.
I0126. As illustrated by block 1479, the DS unit receives
the package from the DS processing unit or another DS unit
(e.g., and intermediate node). As illustrated by block 1481,
the DS unit decrypts the received package utilizing its private
key (e.g., the private key is paired with the public key as
utilized previously by the DS processing unit to create the
package).
I0127. As illustrated by blocks 1483 and 1485, the DS unit
determines if it is the exit node by inspecting the decrypted
package. The determination may be based on the package
contents including the end message or a forwarding address
designation (e.g., of the next node) appended to yet another
encrypted package.
I0128. As illustrated by block 1491, the DS unit determines
the target DS unit(s) of the storage set when the DS unit
determines it is the exit node. The determination may be
based on inspecting the message to read the DSN addresses.
As illustrated by block 1493, the DS unit sends the message to
the targeted DS unit(s) of the storage set.
I0129. As illustrated by block 1487, the DS unit determines
the next layer destination when the DS unit determines it is

US 2011/01 07078 A1

not the exit node (e.g., it is an intermediate node or the entry
node). The determination may be based on inspecting the
message to read the designation of the next layer node. As
illustrated by block 1489, the DS unit sends the message to
the next layer node. The process repeats as described above
until the package reaches the exit node.
0130. In addition to the method described previously with
regards to sending an outbound message from an originator
node to the endpoint distributed storage unit as encoded mul
tiple nested layers through a plurality of intermediate distrib
uted storage units, the methods described below may be uti
lized to send a response message inbound from the endpoint
distributed storage unit to the originator node. The method
begins with the step where a processing module of the inter
mediate distributed storage unit saves the outbound informa
tion from the outbound message as it passes through the
intermediate distributed storage unit.
0131 The outbound information may include a distributed
storage unit identifier corresponding to the distributed Storage
unit that the outbound message was received from, a distrib
uted storage unit identifier corresponding to the distributed
storage unit that the outbound message was sent to next, a
message identifier, and/or a decoded key. Note that the pro
cessing module may produce the decoded key by decrypting
at least a portion of the outbound message utilizing a private
key associated with the distributed Storage unit. In some
embodiments, the processing module can obtain the out
bound information from one or more of a lookup, a list, a
predetermination a command, a message, or another suitable
SOUC.

0132) The method continues with the step where the pro
cessing module of the intermediate distributed storage unit
receives the inbound message (e.g., a response message to a
previous message). The processing module determines where
to forward the response message based on a response message
identifier, a distributed storage unit identifier corresponding
to the distributed Storage unit that the inbound message was
received from, and the outbound information. For example,
the processing module determines to forward the message to
DS unit 5 when the response message identifier correlates to
a message identifier of the outbound information indicating
that the distributed storage unit previously forwarded the
outbound message from DS unit 5 to DS unit 2 and the
inbound message was received from DS unit 2. The process
ing module determines the decoded key based on the out
bound information (e.g., the previously stored decoded key).
The processing module encrypts at least a portion of the
inbound message utilizing the decoded key.
0133. The above method repeats such that the inbound
message may traverse a plurality of intermediate distributed
storage units where each of the plurality of distributed storage
units determines where to forward the inbound message,
encrypts the inbound message, and forwards the inbound
message. Some embodiments of the method end when the
inbound message reaches the originator node (e.g., a DS
processing unit that sent the original outbound message
including each of the plurality of keys utilized by each of the
intermediate distributed storage units).
0134. The following method describes the decoding of a
received inbound message by a processing module where the
inbound message contains a plurality of layers. The process
ing module may be implemented in a user device, a DS
processing unit, the storage integrity processing unit, a DS
managing unit, and/or a DS unit. For example, the processing

May 5, 2011

module can be implemented in a DS processing unit that
originated an outbound message that corresponds to the
received inbound message when the inbound message con
tains a response message to a message contained in the out
bound message.
0.135 The method begins with the step where the process
ing module receives an inbound message from an intermedi
ate distributed Storage unit. The processing module deter
mines a message to which the response message corresponds
based on a response message identifier that can be included
within the inbound message, a lookup table that correlates
message identifiers and response message identifiers, and/or
the distributed storage unit identifier of the distributed storage
unit from which the inbound message was received. The
processing module determines a plurality of keys and an order
in which the plurality of keys is to be applied to the message
based on the message identifier and a lookup table that cor
relates message identifiers with keys.
0.136 The method continues with the step where the pro
cessing module decrypts the inbound message utilizing one
of the plurality of keys in accordance with the order deter
mined for the plurality of keys. The method repeats the step to
decrypt the inbound message utilizing each of the plurality of
keys in accordance with the plurality of keys order to produce
an unencrypted inbound message. The processing module
determines the response message based on the unencrypted
inbound message.
0.137 As may be used herein, the terms “substantially'
and “approximately provides an industry-accepted tolerance
for its corresponding term and/or relativity between items.
Such an industry-accepted tolerance ranges from less than
one percent to fifty percent and corresponds to, but is not
limited to, component values, integrated circuit process varia
tions, temperature variations, rise and fall times, and/or ther
mal noise. Such relativity between items ranges from a dif
ference of a few percent to magnitude differences. As may
also be used herein, the term(s) “coupled to and/or “cou
pling” and/or includes direct coupling between items and/or
indirect coupling between items via an intervening item (e.g.,
an item includes, but is not limited to, a component, an ele
ment, a circuit, and/or a module) where, for indirect coupling,
the intervening item does not modify the information of a
signal but may adjust its current level, Voltage level, and/or
power level. As may further be used herein, inferred coupling
(i.e., where one element is coupled to another element by
inference) includes direct and indirect coupling between two
items in the same manner as “coupled to. As may even
further be used herein, the term “operable to indicates that an
item includes one or more of power connections, input(s),
output(s), etc., to perform one or more its corresponding
functions and may further include inferred coupling to one or
more other items. As may still further be used herein, the term
“associated with', includes direct and/or indirect coupling of
separate items and/or one item being embedded within
another item. As may be used herein, the term “compares
favorably, indicates that a comparison between two or more
items, signals, etc., provides a desired relationship. For
example, when the desired relationship is that signal 1 has a
greater magnitude than signal 2, a favorable comparison may
be achieved when the magnitude of signal 1 is greater than
that of signal 2 or when the magnitude of signal 2 is less than
that of signal 1.
0.138. The present invention has also been described above
with the aid of method steps illustrating the performance of

US 2011/01 07078 A1

specified functions and relationships thereof. The boundaries
and sequence of these functional building blocks and method
steps have been arbitrarily defined herein for convenience of
description. Alternate boundaries and sequences can be
defined so long as the specified functions and relationships
are appropriately performed. Any such alternate boundaries
or sequences are thus within the scope and spirit of the
claimed invention.
0.139. The present invention has been described above
with the aid of functional building blocks illustrating the
performance of certain significant functions. The boundaries
of these functional building blocks have been arbitrarily
defined for convenience of description. Alternate boundaries
could be defined as long as the certain significant functions
are appropriately performed. Similarly, flow diagram blocks
may also have been arbitrarily defined herein to illustrate
certain significant functionality. To the extent used, the flow
diagram block boundaries and sequence could have been
defined otherwise and still perform the certain significant
functionality. Such alternate definitions of both functional
building blocks and flow diagram blocks and sequences are
thus within the scope and spirit of the claimed invention. One
of average skill in the art will also recognize that the func
tional building blocks, and other illustrative blocks, modules
and components herein, can be implemented as illustrated or
by discrete components, application specific integrated cir
cuits, processors executing appropriate Software and the like
or any combination thereof.
What is claimed is:
1. A method for use in a distributed storage processing unit,

the method comprising:
receiving a request to retrieve requested information stored

as encoded data slices in a distributed processing sys
tem, each encoded data slice including a data object
encoded to prevent reconstruction of the data object
using a single encoded data slice, and to permit recon
struction of the data object using at least a threshold
number of encoded data slices;

determining whether relevant encoded data slices corre
sponding to at least part of the requested information are
cached in temporary storage associated with a distrib
uted Storage processing unit;

if the relevant encoded data slices are cached in the tem
porary storage, retrieving the relevant encoded data
slices from the temporary storage; and

if the relevant encoded data slices are not cached in the
temporary storage, retrieving the relevant encoded data
slices from a dispersed storage network unit.

2. The method of claim 1, further comprising:
if the relevant encoded data slices are not cached in the

temporary storage, determining whether to cache the
relevant encoded data slices in the temporary storage;
and

if the determining indicates that the encoded data slices are
to be cached:
storing the relevant encoded data slices in the temporary

storage; and
storing names of the encoded data slices in a hash table.

3. The method of claim 2, further comprising:
determining whether to cache the relevant encoded data

slices in the temporary storage based on access tracking
information associated with the relevant encoded data
slices.

May 5, 2011

4. The method of claim 3, wherein the access tracking
information, on which the decision to cache is based, is
selected from a group consisting essentially of

a frequency of accessing data slices associated with the
information, networkloading levels, a priority level, and
a security level.

5. The method of claim 2, further comprising:
limiting Storage of the relevant encoded data slices in the

temporary storage to a read threshold number of
encoded data slices per data object.

6. The method of claim 1, further comprising:
de-slicing and decoding the relevant encoded data slices to

produce the data object; and
sending the data object to a requestor.
7. The method of claim 1, further comprising:
verifying that at least a read threshold number of relevant

encoded data slices that have been retrieved are valid.
8. The method of claim 1, further comprising:
removing data slices from the temporary storage in

response to a frequency of access dropping below a
threshold value.

9. The method of claim 1, further comprising:
removing data slices from the temporary storage in

response to at least one of a security level of the
requested information, a priority level of the requested
information, a network loading level, and a memory
loading level.

10. A distributed Storage processing unit comprising:
an interface to receive a request to retrieve a data object

stored as a plurality of data slices in a distributed pro
cessing system, each of the plurality of data slices
including an instance of the data object encoded to pre
vent reconstruction of the data object using a single data
slice, and to permit reconstruction of the data object
using at least a threshold number of data slices;

a processor to:
determine whether data slices corresponding to the data

object are cached in a temporary storage;
retrieve the data slices from the temporary storage if the

data slices are cached in the temporary storage; and
retrieve the data slices from a dispersed storage network

unit if the data slices are not cached in the temporary
Storage.

11. The distributed storage processing unit of claim 10, the
processor further to:

determine whether to cache the data slices in the temporary
storage if the data slices are not cached in the temporary
storage; and

if the processor determines that the encoded data slices are
to be cached:
store the relevant encoded data slices in the temporary

storage; and
store names of the encoded data slices in a hash table.

12. The distributed storage processing unit of claim 11, the
processor further to:

determine whether to cache the data slices based on access
tracking information associated with the data slices.

13. The distributed storage processing unit of claim 12,
wherein the access tracking information used by the proces
sor determine whether to cache the data slices is selected from
a group consisting essentially of a frequency of accessing
data slices associated with the information, network loading
levels, a priority level, and a security level.

US 2011/01 07078 A1

14. The distributed storage processing unit of claim 10,
further comprising:

a grid module to de-slice and decode the data slices to
produce the data object; and

an interface to send the data object to a requestor.
15. The distributed storage processing unit of claim 10, the

processor further to:
verify a validity of the data slices.
16. The distributed storage processing unit of claim 10,

further comprising:
a temporary storage including a slice memory and a hash

table.
17. A method comprising:
tracking a retrieval frequency of encoded data slices asso

ciated with a requested data object, each encoded data
slice including an instance of the data object encoded to
prevent reconstruction of the data object using a single
encoded data slice, and to permit reconstruction of the
data object using at least a read threshold number of data
slices;

caching at least the read threshold number of encoded data
slices in a local storage based, at least in part, on the
retrieval frequency comparing favorably to a frequency
threshold;

in response to caching an encoded data slice, updating a
hash table stored in the local storage;

May 5, 2011

accessing the hash table in response to receiving a request
for the requested data object, to determine if encoded
data slices associated with the requested data object are
cached in the local storage; and

retrieving the encoded data slices from the local storage if
the hash table indicates that the encoded data slices are
cached.

18. The method of claim 17, further comprising:
retrieving the encoded data slices from a memory associ

ated with a dispersed storage network unit if the hash
table indicates that the encoded data slices are not
cached locally.

19. The method of claim 17, further comprising:
caching at least the read threshold number of encoded data

slices in the local storage based, at least in part, on access
tracking information.

20. The method of claim 19, wherein the access tracking
information is selected from a group consisting essentially of
network loading levels, a priority level, and a security level.

21. The method of claim 17, further comprising:
de-slicing and decoding the relevant encoded data slices to

produce the requested data object; and
sending the data object to a requestor.
22. The method of claim 17, further comprising:
removing data slices from the local storage in response to

a frequency of access dropping below a threshold value.
c c c c c

