(57) Abstract: The invention relates to a converter comprising resonant circuit elements (S1, S2) for chopping a DC voltage (U1), in which switch-on phases of the circuit elements (S1, S2) are alternating, and comprising a circuit assembly (5) with resonant circuit elements (Cr, Lr) which is used for processing the chopped DC voltage (U3) and for producing an output voltage (U2). As a type of converter load monitoring that can be changed with the least possible circuit expenditure and the least possible measuring losses, there is proposed to compare in a dead time phase (Tdead) before a circuit element is switched on the voltage (U51) or (U52) applied to the circuit element with a threshold (Uth) and ascertain from this comparison result whether an inductive or capacitive converter load is present. As a second embodiment there is proposed to determine during a dead time phase (Tdead) the derived value (dU51/dt) of the voltage (U51) present on the circuit element and ascertain with the determined derived value (dU51/dt) whether an inductive or capacitive converter load is present.
For two-letter codes and other abbreviations, refer to the "Guidance Notes on Codes and Abbreviations" appearing at the beginning of each regular issue of the PCT Gazette.
Converter with resonant circuit elements

The invention relates to a converter comprising circuit elements for chopping a DC voltage, in which switch-on phases of the circuit elements are alternating, and comprising a circuit assembly with resonant circuit elements which is used for processing the chopped DC voltage and for producing an output voltage.

Such load resonant converters preferably represent switching power supplies which are used for supplying DC voltage to a load connected to the output of the switching power supply. In such switching power supplies is first rectified an AC voltage present on the input, to obtain a converter input DC voltage. However, the invention also relates to converters to whose inputs a DC voltage is supplied directly from a DC voltage source. Such a converter can also be used for operation of gas discharge lamps. The converter input DC voltage is chopped by means of a bridge circuit comprising circuit elements. The chopped DC voltage is applied to a circuit assembly with resonant circuit elements i.e. with inductive and capacitive reactance elements, so that a substantially sinusoidal AC current flows in the circuit assembly. At least one inductive and at least one capacitive resonant circuit element are to be available. To the output of the circuit assembly and thus to the output of the converter may be connected a load. By adapting the switching frequency, load changes and input voltage variations are adapted to. Converters with resonant circuit elements i.e. resonant converters, enable the circuit elements to operate with high switching frequencies and thus relatively small-volume and light devices compared to the possible power output can be realized. When resonant converters are used, also a so-called zero-voltage switching operation (ZVS) is enabled with little circuit expenditure. ZVS operation is here understood to mean that circuit elements are switched on (brought to the conducting state) with a lowest possible voltage of the circuit element, preferably close to zero volts. In the ZVS mode the circuit assembly with the resonant circuit elements has an inductive input impedance considered from the side of the circuit elements. In the case of a ZVS mode, MOSFET transistors are customarily used as circuit elements. With converters realized in this way the operation with a capacitive load is to be avoided. Such a converter mode leads to increased switching losses and may even cause the destruction of converter circuit elements. Therefore,
means are known to be provided for determining the type of converter load (inductive or capacitive) with such load resonant converters.

From EP 0 430 358 A1 is known a converter circuit arrangement for gas discharge lamps in which the type of converter load is determined in the way described above. The circuit arrangement includes a half bridge with circuit elements for chopping a DC voltage. On the output side of the half bridge is arranged a circuit assembly including resonant circuit elements, which assembly is used for supplying a voltage to a discharge lamp. Here too, operation with a capacitive converter load is to be avoided. For this reason the phase difference between the voltage applied to the circuit assembly and the current flowing into the circuit assembly is indirectly monitored by monitoring the current flowing into the circuit assembly.

It is an object of the invention for the converter defined in the opening paragraph to propose a further type of converter load monitoring, which type can be changed with the least possible circuit expenditure and the least possible measuring losses.

The object is achieved in that in a dead time phase before a circuit element is switched on, the voltage present on the circuit element is compared with a threshold and from the comparison result there is ascertained whether an inductive or capacitive converter load is present.

Expensive measurements of phase differences are avoided in this manner.

Furthermore, only voltage measurements are necessary and no current measurements linked with losses. If necessary, in case of an undesired type of converter load the normal converter operation may, for example, be broken off and a new start sequence may be made.

Determining the type of converter load may be effected very rapidly in this manner, so that undesired converter operating modes can be counteracted with counter measures very rapidly. Determining the type of converter load in accordance with the invention is also suitable for high switching frequencies.

In an embodiment of the invention the comparison with the threshold takes place in each dead time phase before either of the circuit elements is switched on. The time space up to the detection of an undesired converter operating mode is kept smallest possible in this manner.

The object is achieved in that, during a dead time phase, the derived value of the voltage present on a circuit element is determined and with the aid of the determined derived value there is ascertained whether an inductive or a capacitive converter load is present.
Alternatively, it is possible to include a time-average value for the derived value of the voltage present on a circuit element and use this time-average value for the comparison. Expensive measurements of phase differences are avoided in this manner.

Furthermore, only voltage measurements are necessary and no current measurements linked with losses. If necessary, in case of an undesired type of converter load the normal converter operation may, for example, be broken off and a new start sequence may be made. Determining the type of converter load may be effected very rapidly in this manner, so that undesired converter operating modes can be counteracted with counter measures very rapidly. Determining the type of converter load in accordance with the invention is also suitable for high switching frequencies.

In an embodiment of the invention the evaluation of the derived value of the voltage present on a circuit element is made for each dead time phase and the comparison with the threshold is made before either of the circuit elements is switched on, i.e. the type of converter load is monitored cycle by cycle. The time space up to the detection of an undesired converter operation mode is kept shortest possible in this manner.

The invention also relates to an accordingly arranged control unit, more particularly an integrated circuit for controlling at least one of the converter circuit elements.

Examples of embodiment of the invention will be further explained with reference to the drawings in which:

Fig. 1 shows a block diagram for a circuit arrangement including a resonant converter,

Fig. 2 shows the circuit structure of a resonant converter in accordance with the invention,

Fig. 3 shows timing diagrams for an inductive load,

Fig. 4 shows timing diagrams for a capacitive load.

Fig. 5 shows a block diagram of a control circuit arrangement for controlling circuit elements,

Fig. 6 shows a transmission function relative to the load side of the resonant converter,

Fig. 7 shows a flow chart in explanation of a converter operation in accordance with the invention,

Fig. 8 shows a block diagram of a second embodiment of a control circuit arrangement for controlling circuit elements,
Fig. 9 shows a transmission function plotted against the frequency for a
cconstant load resistance for the second embodiment, and

Fig. 10 shows a flow chart in explanation of a converter operation in
accordance with the second embodiment of the invention.

The block diagram shown in Fig. 1 shows a load resonant converter – here a
switching power supply – with a circuit block 1 for converting an input DC voltage U1 into
an output voltage U2 – here a DC voltage – which output voltage U2 is used for supplying
power to a load represented by a block 3. The input voltage U1 is generated here by
rectifying an AC voltage of an AC voltage network which is the normal fashion for switching
power supplies.

Fig. 2 shows in a more detailed manner the essential elements of the converter
shown in Fig. 1. The input DC voltage U1 is here applied to a half bridge of series-arranged
circuit elements S1 and S2, which chop the DC voltage U1. The circuit elements S1 and S2
are in the present case MOSFET transistors which have so-called body diodes D1 and D2
which are represented as a respective diode lying in an anti-parallel arrangement with the
circuit elements S1 and S2. The circuit elements S1 and S2 are controlled by a control unit 4
which for this purpose also measures and evaluates the voltages U_{S1} and U_{S2} falling at the
circuit elements S1 and S2. The control unit 4 contains for each circuit element its own
control circuit, a first control circuit 10 being used for controlling the circuit element S1 and
a second control circuit 10' for controlling the circuit element S2. The control unit 4 may be
realized, for example, together with the control circuits 10 and 10' on a single integrated
circuit (IC). The control circuits 10 and 10', however, can also be realized by means of
separate ICs. By means of the control unit 4 or the control circuits 10 and 10', an automatic
adaptation of the length of dead time phases is ensured, which will be further explained in the
following.

Connected in parallel to the circuit element S2 is shown a capacitor C_p at
which, when the converter 1 is in operation, a chopped DC voltage U_3 falls. The capacitor
C_p particularly combines the parasitic capacitances of the circuit elements S1 and S2 when
they are realized as MOSFET transistors – like in the above example of embodiment. The
capacitance C_p, however, may also include further additional capacitors. The chopped DC
voltage U_3 is applied to a circuit assembly 5, which includes resonant circuit elements and
generates an output DC voltage U2. In the present case the circuit assembly 5 includes as
resonant circuit elements a capacitance C_r and an inductance L_r which are connected in
series. Between the series combination of the capacitance \(C_r \) and the inductance \(L_r \) and the capacitance \(C_p \), in the direction of the converter output, there is a rectifier arrangement 6 which rectifies a current \(I \) flowing through the resonant circuit elements \(C_r \) and \(L_r \) and, as is usual, applies it to a smoothing capacitor \(C \) arranged on the output, from which the output DC voltage \(U_2 \) can be tapped. In Fig. 2 the output DC voltage \(U_2 \) is present on a load \(R \), which is represented here as an ohmic resistance. Basically, the converter 1, however, could also be used for supplying an AC voltage instead of a DC voltage. In a case like that a rectification by a rectifier arrangement and a smoothing capacitor would not be necessary and the output voltage would be equal to the falling AC voltage at the rectifier arrangement 6 of the embodiment shown in Fig. 2.

The input DC voltage \(U_1 \) is converted into the chopped DC voltage \(U_3 \) by alternately switching the circuit elements \(S_1 \) and \(S_2 \) on (bringing into the conducting state) and off (bringing into the non-conducting state). If the switch \(S_1 \) is on, the switch \(S_2 \) is off. If the switch \(S_2 \) is on, the switch \(S_1 \) is off. Between the end of an on-phase of the switch \(S_1 \) and the beginning of the on-phase of switch \(S_2 \), there is always a dead time phase in which the two circuit elements \(S_1 \) and \(S_2 \) are off. Between an end of an "on" phase of the circuit element \(S_2 \) and the beginning of the next "on" phase of the circuit element \(S_1 \) there is always such a dead time phase. Providing such dead time phases enables ZVS operation (ZeroVoltage Switching). The length of the "on" and "off" time phases of the circuit elements \(S_1 \) and \(S_2 \) is then adjusted by means of the control unit 4, which will be further explained with reference to Fig. 5 and 8. By adapting the switching frequency, a constant output voltage is ensured even with load variations and variations of the input voltage.

The top diagram of the three shown in Fig. 3 represents the difference \(|U_{G1}| - |U_{G2}| \) of the value of the control voltage \(U_{G1} \) present on the circuit element \(S_1 \) and of the value of the control voltage \(U_{G2} \) present on the circuit element \(S_2 \). The control voltages used as control signals for controlling the circuit elements \(S_1 \) and \(S_2 \) represent respective gate voltages of the MOSFET transistors. If the plotted difference of the values of the control voltages equals zero, there is a dead time phase which is referred to as \(T_{dc} \). If the circuit element \(S_1 \) is set to the "on" state because a suitable control voltage \(U_{G1} \) is applied to the control input of the circuit element \(S_1 \), there are time spaces referred to as \(T_{on}(S1) \). In these time spaces the control voltage \(U_{G2} \) equals zero and thus the circuit element \(S_2 \) is switched off. The time spaces in which the circuit element \(S_2 \) is "on" and the circuit element \(S_1 \) is "off", are referred to as \(T_{on}(S2) \). During these time spaces the control input of the circuit element \(S_2 \) is supplied with a non-zero control voltage \(U_{G2} \), which causes the circuit element
S2 to be switched on. Within these time spaces, the control voltage \(U_{G1} \) is equal to zero. The middle diagram in Fig. 3, shows the waveform as a function of time of the current flowing through the resonant circuit elements \(C_r \) and \(L_r \). Finally, in the bottom diagram of Fig. 3 is shown the waveform as a function of time of the voltage \(U_3 \) applied to the parasitic capacitance \(C_p \). The time axes of the three diagrams with the time \(t \) shown have all the same scale.

In the following is explained by way of example the change between the on and off-states of the circuit elements S1 and S2 with respect to which states the operations during a switch between the respective switching cycles are elucidated. At the instant \(t_0 \) the control voltage \(U_{G2} \) is set to zero to cause the circuit element S2 to be switched "off". This leads to a discharge operation on the gate electrode of the MOSFET transistor used for realizing the circuit element S1. Until this discharging operation has ended, however, the circuit element S2 is still conducting, so that the negative current continues to flow through the circuit element S2 at this instant. From instant \(t_1 \) onwards the circuit element S2 is finally switched off, so that current can no longer flow through it. The current I flowing on because of the energy stored in the inductance \(L_r \) now causes from instant \(t_1 \) onwards the capacitance \(C_p \) to be charged and thus the voltage \(U_3 \) to rise. At the instant \(t_2 \) the voltage \(U_3 \) has finally reached the value of the input DC voltage \(U_1 \), so that the diode D1 starts being conductive. From this instant onwards it is ensured that the circuit element S1 is switched on with a switching voltage \(U_{S1} \) of about 0 volts (ZVS with the diode forward voltage). Shortly after the instant \(t_2 \) – at the instant \(t_4 \) – the circuit element S1 is switched on because a respective control voltage \(U_{G2} \) is applied thereto. Thus a time space \(T_{on}(S1) \) is commenced with a circuit element S1 that is switched on and a circuit element S2 that is switched off.

At the instant \(t_5 \) this time space \(T_{on}(S1) \) is ended in that the control voltage \(U_{G1} \) is set to zero. This in turn leads to a discharge operation on the gate electrode of the MOSFET transistor used for realizing the circuit element S1. At the instant \(t_6 \) this discharge operation has been terminated so far that the circuit element S1 starts blocking, that is, goes to the off-state, so that the current I positive at this instant leads to discharging the capacitance \(C_p \) and thus to a falling voltage \(U_3 \). At the instant \(t_7 \) the voltage \(U_3 \) has reached the zero value, so that from this instant onwards the diode D2 starts being conductive and the circuit element S2 can be switched on with a switching voltage \(U_{S2} \) of about 0 volts (with the diode forward voltage), which really occurs at instant \(t_9 \), shortly afterwards, after a respective control voltage \(U_{G2} \) has been applied. From this instant onwards a time space \(T_{on}(S2) \) begins, in which the circuit element S2 is switched on and the circuit element S1 is switched off.
Both between the instants t₀ and t₄ and between the instants t₅ and t₉ there is a so-called dead time phase during which both the control voltage \(U_{G1} \) and the control voltage \(U_{G2} \) are equal to zero and thus control voltages acting as switch-off control signals are present. The dead time phases \(T_{ds} \) are set such that a ZVS operation is possible. In the \(I(t) \) diagram the hatched areas represent a measure for the energy available for charging/discharging the capacitance \(C_p \). In the case shown in Fig. 3 the available energy is enough.

The operating state shown by waveforms in Fig. 3 represents, for example, a case of inductive load i.e. the current \(I \) lags relative to the first harmonic of the voltage \(U_3 \). In such an operating state a ZVS operation (Zero Voltage Switching) of the converter 1 is possible.

Fig. 4 shows in contrast respective waveforms by way of example for a case of capacitive load. In such an operating state the current \(I \) leads relative to the first harmonic of the voltage \(U_3 \). In the case of a capacitive load a ZVS operation of the converter 1 is no longer possible. At the instant \(t₀ \) in Fig. 4 the circuit element \(S_2 \) is switched off. The current \(I \) is then positive, so that a gradual charging on the capacitance \(C_p \) up to the voltage \(U_1 \) (as is the case in Fig. 3 between the instants \(t_1 \) and \(t_2 \)) is impossible because of the current \(I \) continuously being transferred by the energy stored in the inductance \(L_r \). In that case, the voltage \(U_3 \) is abruptly increased from the zero value to the value \(U_1 \) at the instant \(t₄ \) at which the circuit element \(S_1 \) is switched on, that is to say, the full voltage \(U_1 \) is still applied to this circuit element when \(S_1 \) is switched on. Accordingly, switching the circuit element \(S_2 \) on in the case of a capacitive load is not effected without any voltage, because at instant \(t₉ \), at which the circuit element \(S_2 \) is switched on, the voltage \(U_3 \) still has the value \(U_1 \) and abruptly falls to the zero value. Since in the case of the capacitive load, high switching losses (correspondingly large values for the product from the current \(I \) and the circuit element voltages \(U_{S1} \) and \(U_{S2} \) respectively, at the instants \(t₄ \) and \(t₉ \)) develop in the circuit elements \(S_1 \) and \(S_2 \) arranged here as MOSFET transistors, which losses may even lead to the circuit elements being destroyed, this operating state is to be avoided. How this happens will be further explained hereinafter with reference to Fig. 7.

Fig. 5 shows as a block diagram the basic structure of the control circuit 10 used for controlling the circuit element \(S_1 \). A function block 11 combines the measuring and evaluation unit which transfers during the dead time phases \(T_{ds} \) which lie immediately before the switch-on phases \(T_{ds}(S1) \) of the circuit element \(S_1 \), the measured voltage \(U_{S1} \) or a signal equivalent to this voltage to a comparator device 12, which compares this applied signal with
a first threshold U_{th1}. When the first threshold is reached, a set signal corresponding to a logic "one" is applied to an OR gate 13.

The control circuit 10 further includes circuit elements combined by a function block 14, which circuit elements determine differential quotients of the circuit element voltage U_{S1} present during the dead time phases T_{tot} immediately preceding the switch-on phases $T_{on}(S1)$ and apply this voltage to a second comparator device 15 which compares the differential quotients dU_{S1}/dt with a second threshold U_{th2}. When the second threshold U_{th2} is reached, a set signal corresponding to a logic "one" is applied to the OR gate 13.

In addition, the control circuit 10 includes a timer 16 which starts at the beginning of a dead time phase T_{tot}, which immediately precedes a switch-on phase $T_{on}(S1)$ and applies a corresponding time signal to a comparator device 17 which compares this applied time signal with a predefinable maximum permissible dead time phase length $T_{tot,max}$. When this maximum dead time phase length is reached, the comparator device 17 applies a set signal that corresponds to a logic "one" to the OR gate 13.

If the output of the OR gate 13 produces a logic "one", this effects the beginning of a switch-on phase $T_{on}(S1)$ or the end of the respective previous dead time phase T_{tot}. If there is a logic "one" on the output of the OR gate 13, the timer 16 is reset and circuit means combined by a function block 18 provide for a predefinable switch-on phase $T_{on}(S1)$ that the control signal U_{G1} acting as a switch-on signal is applied to the control input of the circuit element S1. Furthermore, the function block 18 combines switching means which activate the measuring and evaluation devices in the function blocks 11 and 14 and the timer 16 after a switch-on phase $T_{on}(S2)$ has ended. A respective activating signal, which is used as an enable signal for the measuring and evaluation devices of the function blocks 11 and 14 and as a trigger signal for the timer, is applied by the function block 18 to the respective function blocks 11, 14 and 16 at that instant. This happens at the instant at which a signal 19 is applied to the function block 18 at the end of a switch-on phase $T_{on}(S2)$, which signal 19 is generated by a second control circuit 10' which is used for controlling the circuit element and is arranged similarly to the control circuit 10. Accordingly, at the end of a switch-on phase $T_{on}(S1)$, also the function block 18 or the control circuit 10 respectively, generates signal 20 for the corresponding second control circuit 10'.

Fig. 6 shows a transmission function $A(s)$ which expresses the pattern of the quotient U_2/U_3 as a function of the frequency f. At the resonant frequency f_r of the converter 1, which frequency is determined, in essence, by the capacitance C_r and the inductance L_r, the transmission function $A(f)$ has its maximum. At frequencies f lower than f_r (area I) there
is a capacitive load. Frequencies higher than f_r (area II) on the other hand correspond to converter modes of operation with an inductive converter load. At frequencies f above the resonant frequency f_r the converter can accordingly be used. From Fig. 6 is apparent that the capacitive mode of operation (area I) is to be avoided also because the customarily used control mechanisms are no longer effective for controlling the converter output voltage U_2.

For in the area I, contrary to the area II, the value of $A(f)$ diminishes with a diminishing frequency, so that instead of a negative feedback like in area I (rising value of $A(f)$ with a falling frequency f), there is a positive feedback, which prevents a control of the output voltage U_2.

The flow chart shown in Fig. 7 shows how the control unit 4 monitors (by means of circuit arrangements not further shown) whether an inductive load or a capacitive load occurs when the converter 1 is used. The monitoring is preferably effected cycle by cycle to ensure as continuous a monitoring as possible. Block 30 represents one of the successive switch-on phases ($T_{on}(S1)$ or $T_{on}(S2)$) of the circuit elements $S1$ and $S2$. At the end of each dead time phase T_{tot} represented by block 31 and following a switch-on phase a test is made whether the voltage on the one of the two circuit elements that is to be switched on next is smaller than a predefinable threshold U_{th}. With the converter 1 shown in Fig. 2, the two switching voltages U_{S1} and U_{S2} (= $U3$) are measured. The switching voltage U_{S1}, however, could also be indirectly derived from the voltage $U1$ and from the voltage U_{S2} or $U3$ respectively as a difference $U1-U3$. The threshold is selected such that it lies between the forward voltage of the diodes $D1$ and $D2$ and the value of the voltage $U1$, because in case of an inductive load the voltage on the circuit elements $S1$ and $S2$ when the circuit elements are switched on is equal to the diode forward voltage of the respective parallel-arranged diode (see Fig. 3) and in the case of a capacitive load the respective switch-on voltage of the circuit element is equal to the value of the voltage $U1$. If in the step represented by block 32 it is established that the respective circuit element voltage is smaller than the threshold U_{th} (branch Y), the converter mode is continued with the next switch-on phase T_{on} (block 30). If in this step, however, it is established that the respective circuit element voltage exceeds a threshold U_{th} (branch N), which corresponds to the case of a capacitive load, the normal operation of the converter is broken off and a new starting sequence of the converter is carried out in normal fashion (block 33).

Fig. 8 shows as a block diagram the basic structure of a second embodiment of the control circuit 10 used for controlling the circuit element $S1$. A function block 11 combines the measuring and evaluation unit which transfers during the dead time phases T_{tot}
which lie immediately before the switch-on phases $T_{\text{tot}}(S1)$ of the circuit element $S1$, the measured voltage U_{S1} or a signal equivalent to this voltage to a comparator device 12, which compares this applied signal with a first threshold $U_{\text{th},1}$. When the first threshold is reached, a set signal corresponding to a logic "one" is applied to an OR gate 13.

In addition, the control circuit 10 includes a timer 16 which starts at the beginning of a dead time phase T_{tot}, which immediately precedes a switch-on phase $T_{\text{on}}(S1)$ and applies a corresponding time signal to a comparator device 17 which compares this applied time signal with a predefinable maximum permissible dead time phase length $T_{\text{tot, max}}$. When this maximum dead time phase length is reached, the comparator device 17 applies a set signal that corresponds to a logic "one" to the OR gate 13.

If the output of the OR gate 13 produces a logic "one", this effects the beginning of a switch-on phase $T_{\text{on}}(S1)$ or the end of the respective previous dead time phase T_{tot}. If there is a logic "one" on the output of the OR gate 13, the timer 16 is reset and circuit means combined by a function block 18 provide for a predefinable switch-on phase $T_{\text{on}}(S1)$ that the control signal U_{G1} acting as a switch-on signal is applied to the control input of the circuit element $S1$. Furthermore, the function block 18 combines switching means which activate the measuring and evaluation devices in the function blocks 11 and 14 and the timer 16 after a switch-on phase $T_{\text{on}}(S2)$ has ended. A respective activating signal, which is used as an enable signal for the measuring and evaluation devices of the function blocks 11 and 14 and as a trigger signal for the timer, is applied by the function block 18 to the respective function blocks 11, 14 and 16 at that instant. This happens at the instant at which a signal 19 is applied to the function block 18 at the end of a switch-on phase $T_{\text{on}}(S2)$, which signal 19 is generated by a second control circuit 10' which is used for controlling the circuit element and is arranged similarly to the control circuit 10. Accordingly, at the end of a switch-on phase $T_{\text{on}}(S1)$, also the function block 18 or the control circuit 10 respectively, generates signal 20 for the corresponding second control circuit 10'.

Fig. 9 shows a transmission function $A(s)$ which expresses the pattern of the quotient U_2/U_3 as a function of the frequency f. At the resonant frequency f_r of the converter 1, which frequency is determined, in essence, by the capacitance C_r and the inductance L_r, the transmission function $A(f)$ has its maximum. At frequencies f lower than f_r (area I) there is a capacitive load. Frequencies higher than f_r (area II) on the other hand correspond to converter modes of operation with an inductive converter load. At frequencies f above the resonant frequency f_r the converter can accordingly be used. From Fig. 6 is apparent that the capacitive mode of operation (area I) is to be avoided also because the customarily used
control mechanisms are no longer effective for controlling the converter output voltage U2. For in the area I, contrary to the area II, the value of $A(f)$ diminishes with a diminishing frequency, so that instead of a negative feedback like in area I (rising value of $A(f)$ with a falling frequency f), there is a positive feedback, which prevents a control of the output voltage U2.

The flow chart shown in Fig. 10 shows how the control unit 4 monitors (by means of circuit arrangements not further shown) whether an inductive load or a capacitive load occurs when the converter 1 is used. The monitoring is preferably effected cycle by cycle to ensure as continuous a monitoring as possible. Block 30 represents one of the successive switch-on phases ($T_{on}(S1)$ or $T_{on}(S2)$) of the circuit elements S1 and S2. During a dead time phase T_{on} shown by block 31 the derived value (differential quotient) of the voltage present on a circuit element, more particularly for each dead time phase and accordingly for each renewed switching on of a circuit element S1 or S2. From Figs. 3 and 4 it becomes apparent that with an inductive load (Fig. 3) the pattern of this derived value deviates from the pattern with a capacitive load (Fig. 4) during the time spaces in the dead time phases in which both circuit elements S1 and S2 are non-conducting (i.e. here in the time spaces, for example, from t0 to t4 and from t5 to t9). This is used for detecting whether an inductive or a capacitive load is present. The threshold U_{th} is accordingly set to a value from the range between the derived voltage values to be expected of the circuit elements for inductive or capacitive load respectively, during these time spaces.

Particularly the characteristic fall or rise respectively of the voltage U3 can be used in the time spaces between t0 and t1 or between t5 and t6 respectively (and the respective preceding and following time spaces) in the case of the capacitive load (Fig. 4). This leads to a very fast detection of the type of load. Another possibility consists of evaluating the characteristic rise or fall respectively of the voltage U3 in the time spaces between t1 and t2 or between t6 and t7 respectively (and the respective preceding and following time spaces) that occurs with an inductive load (Fig. 3).

To counteract erroneous measurement results due to high frequency voltage components, the measured derived value is also low-pass filtered while the time constant of the filter is to be low compared to the length of the dead time phase.

Alternatively, in lieu of the direct comparison of the derived value of circuit element voltages with a threshold U_{th}, there could also be made a comparison of a threshold U_{th} with a time-average value of the respective switch element voltage in dead time phases. The formation of an average value is linked with a signal smoothing. More particularly the
average value is evaluated for the time spaces between t1 and t2 and between t6 and t7 respectively (and the respective preceding and following time spaces). The average value, however, could also be formed for respective segments of these time spaces.

With the converter 1 shown in Fig. 2 the two switching voltages U_{S1} and U_{S2} (= U_3) are evaluated. The switching voltage U_{S1}, however, could also be determined indirectly from the voltage U_1 and the voltage $U_{S2} = U_3$ as a difference $U_1 - U_3$.

If in the step represented in block 32 it is established that the respective switch element voltage is smaller than the threshold U_{th} (branch Y), the converter mode is continued with the next switch-on phase T_{on} (block 30). If in this step, however, it is established that the respective switch element voltage exceeds the threshold U_{th} (branch M), which correspond to the case of capacitive load, the normal operation of the converter is terminated and the new starting sequence of the converter is carried out in normal fashion (block 33).
CLAIMS:

1. A converter comprising circuit elements (S1, S2) for chopping a DC voltage (U1), in which switch-on phases of the circuit elements (S1, S2) are alternating, and comprising a circuit assembly (5) with resonant circuit elements (Cr, Lr) which is used for processing the chopped DC voltage (U3) and for producing an output voltage (U2), characterized in that in a dead time phase (T_{de}) before a circuit element is switched on, the voltage (U_{S1}, U_{S2} respectively) present on the circuit element is compared with a threshold (U_{th}) and from the comparison result there is ascertained whether an inductive or capacitive converter load is present.

2. A converter as claimed in claim 1, characterized in that the comparison with the threshold is made in each dead time phase (T_{de}) before either of the circuit elements (S1 or S2 respectively) is switched on.

3. A control unit (4), more particularly an integrated circuit, for controlling at least one of the circuit elements (S1, S2) of a converter (1) which are used for chopping a direct voltage (U1), in which converter switch-on phases of the circuit elements (S1, S2) are alternating and which converter includes a circuit assembly (5) with resonant circuit elements (Cr, Lr) which is used for processing the chopped direct voltage (U3) and for producing an output voltage (U2), characterized in that the control unit (4) is provided for comparing in a dead time phase (T_{de}) before the circuit element is switched on the voltage (U_{S1} or U_{S2} respectively) present on the circuit element with a threshold (U_{th}) and ascertaining from the comparison result whether an inductive or capacitive converter load occurs.

4. A converter comprising circuit elements (S1, S2) for chopping a DC voltage (U1), in which switch-on phases of the circuit elements (S1, S2) are alternating, and
comprising a circuit assembly (5) with resonant circuit elements (Cr, Lr) which is used for processing the chopped DC voltage (U3) and for producing an output voltage (U2), characterized in that during a dead time phase (T_{tot}) the derived value (dU_{S1}/dt) of the voltage (U_{S1}) present on a circuit element is determined and with the aid of the determined derived value (dU_{S1}/dt) there is ascertained whether an inductive or a capacitive converter load is present.

5. A converter as claimed in claim 4, characterized in that the determined derived value (dU_{S1}/dt) is compared with a threshold (U_{th}) by means of a comparator (15) and from the comparison result there is ascertained whether an inductive or capacitive converter load is present.

6. A converter as claimed in claim 4, characterized in that during a dead time phase (T_{tot}) a time-average value is determined for the derived value (dU_{S1}/dt) of the voltage (U_{S1}) present on a circuit element and a comparison with a threshold (U_{th}) is made by means of a comparator (15) and from the result there is ascertained whether an inductive or capacitive converter load is present.

7. A converter as claimed in claim 5 or 6, characterized in that the comparison with the threshold (U_{th}) is made each time before either of the circuit elements (S1, S2 respectively) is switched on.

8. A control unit (4), more particularly an integrated circuit, for controlling at least one of the circuit elements (S1, S2) of a converter (1) which are used for chopping a DC voltage (U1), in which converter the switch-on phases of the circuit elements (S1, S2) are alternating and which converter comprises a circuit assembly (5) with resonant circuit elements (Cr, Lr) which assembly is used for processing the chopped DC voltage (U3) and for producing an output voltage (U2), characterized in that the control unit (4) is provided for determining during a dead time phase (T_{tot}) the derived value (dU_{S1}/dt) of the voltage (U_{S1}) present on a circuit element and with the aid of the
determined derived value (dU(t)/dt) ascertaining whether an inductive or capacitive converter load is present.
FIG. 7
FIG. 10
INTERNATIONAL SEARCH REPORT

A. CLASSIFICATION OF SUBJECT MATTER

IPC 7 H02M3/337

According to International Patent Classification (IPC) or to both national classification and IPC.

B. FIELDS SEARCHED

Minimum documentation searched (classification system followed by classification symbols)

IPC 7 H02M

Documentation searched other than minimum documentation to the extent that such documents are included in the fields searched

Electronic database consulted during the international search (name of database and, where practical, search terms used)

WPI Data, PAJ, INSPEC, EPO-Internal

C. DOCUMENTS CONSIDERED TO BE RELEVANT

<table>
<thead>
<tr>
<th>Category</th>
<th>Citation of document, with indication, where appropriate, of the relevant passages</th>
<th>Relevant to claim No.</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>EP 0 430 358 A (PHILIPS NV) 5 June 1991 (1991-06-05) cited in the application column 4, line 25-28; 49-53; figure 1</td>
<td>1, 3, 4, 8</td>
</tr>
<tr>
<td>A</td>
<td>US 5 140 512 A (O`SULLIVAN DERMOT) 18 August 1992 (1992-08-18) column 6, line 30 - line 37; figure 2</td>
<td>1, 3, 4, 8</td>
</tr>
</tbody>
</table>

X Further documents are listed in the continuation of box C. **X** Patent family members are listed in annex.

* Special categories of cited documents:

A document defining the general state of the art which is not considered to be of particular relevance.

A earlier document but published on or after the international filing date

L document which may throw doubts on priority claim(s) or which is cited to establish the publication date of another invention or other special reason as specified

L document referring to an oral disclosure, use, exhibition or other means

P document published prior to the international filing date but later than the priority date claimed

T later document published after the international filing date or priority date and not in conflict with the application but cited to understand the principle or theory underlying the invention

X document of particular relevance: the claimed invention cannot be considered novel or cannot be considered to involve an inventive step when the document is taken alone

Y document of particular relevance: the claimed invention cannot be considered to involve an inventive step when the document is combined with one or more other such documents, such combination being obvious to a person skilled in the art

S document member of the same patent family

Date of the actual completion of the international search: 30 April 2001

Date of mailing of the international search report: 11/05/2001

Name and mailing address of the ISA

European Patent Office, P.B. 5818 Patentlaan 2 NL – 2280 HV Rijswijk Tel. (+31-70) 340-2040, Tx. 31 661 eipo nl, Fax: (+31-70) 340-3016

Authorized officer

Roider, A
<table>
<thead>
<tr>
<th>Category</th>
<th>Citation of document, with indication, where appropriate, of the relevant passages</th>
<th>Relevant to claim No.</th>
</tr>
</thead>
</table>
| A | PATENT ABSTRACTS OF JAPAN
vol. 015, no. 490 (E-1144),
11 December 1991 (1991-12-11)
& JP 03 212163 A (MATSUSHITA ELECTRIC WORKS LTD), 17 September 1991 (1991-09-17)
abstract | 1, 3, 4, 8 |
<table>
<thead>
<tr>
<th>Patent document cited in search report</th>
<th>Publication date</th>
<th>Patent family member(s)</th>
<th>Publication date</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>DE 69017601 T</td>
<td>14-09-1995</td>
</tr>
<tr>
<td></td>
<td></td>
<td>DE 69023205 D</td>
<td>30-11-1995</td>
</tr>
<tr>
<td></td>
<td></td>
<td>DE 69023205 T</td>
<td>30-05-1996</td>
</tr>
<tr>
<td></td>
<td></td>
<td>HU 55934 A</td>
<td>28-06-1991</td>
</tr>
<tr>
<td></td>
<td></td>
<td>HU 55935 A</td>
<td>28-06-1991</td>
</tr>
<tr>
<td></td>
<td></td>
<td>JP 3176997 A</td>
<td>31-07-1991</td>
</tr>
<tr>
<td></td>
<td></td>
<td>JP 3246892 A</td>
<td>05-11-1991</td>
</tr>
<tr>
<td></td>
<td></td>
<td>KR 210178 B</td>
<td>15-07-1999</td>
</tr>
<tr>
<td></td>
<td></td>
<td>KR 210548 B</td>
<td>15-07-1999</td>
</tr>
<tr>
<td></td>
<td></td>
<td>US 5075602 A</td>
<td>24-12-1991</td>
</tr>
<tr>
<td></td>
<td></td>
<td>US 5075599 A</td>
<td>24-12-1991</td>
</tr>
<tr>
<td></td>
<td></td>
<td>CA 2036624 A</td>
<td>21-08-1991</td>
</tr>
<tr>
<td></td>
<td></td>
<td>CA 2036624 C</td>
<td>23-08-1994</td>
</tr>
<tr>
<td></td>
<td></td>
<td>JP 2017124 C</td>
<td>19-02-1996</td>
</tr>
<tr>
<td></td>
<td></td>
<td>JP 4317561 A</td>
<td>09-11-1992</td>
</tr>
<tr>
<td></td>
<td></td>
<td>JP 7048948 B</td>
<td>24-05-1995</td>
</tr>
</tbody>
</table>