发明名称
橄榄叶多酚的提取方法

摘要
本发明提供了一种橄榄叶多酚的提取方法，包括以下步骤：1) 将橄榄叶粉碎，按料液比为1g:10～30ml的比例加入乙醇振荡提取，分离上清液；2) 将上清液过膜过滤装置进行过滤，得到澄清液；3) 将澄清液上大孔树脂柱，上样流速为0.4～0.6BV/h，上大孔树脂柱，水洗柱，然后用体积浓度为65～85%乙醇洗脱，收集乙醇洗脱液，浓缩，干燥，即得橄榄叶多酚。采用该方法制得的橄榄叶多酚纯度高。
1. 橄榄叶多酚的提取方法，其特征在于：包括以下步骤：
 1) 将橄榄叶粉碎，按料液比为 1g : 10～30mL 的比例加入乙醇振荡提取，分离上清液；
 2) 将上清液过膜过滤装置进行过滤，得到澄清液；
 3) 将澄清液上大孔树脂柱，上样流速为 0.4～0.6BV/h，上大孔树脂柱，水洗柱，然后用体积浓度为 65～85% 乙醇洗脱，收集乙醇洗脱液，浓缩，干燥，即得橄榄叶多酚。

2. 根据权利要求 1 所述的橄榄叶多酚的提取方法，其特征在于：步骤 1) 中，所述乙醇的体积浓度为 40～50%。

3. 根据权利要求 1 所述的橄榄叶多酚的提取方法，其特征在于：步骤 3) 中，水洗流速为 2.5～3BV/h，水的洗脱量为 5～6BV，乙醇的洗脱流速为 2～2.5BV/h，乙醇的洗脱量为 4～5BV。

4. 根据权利要求 1 所述的橄榄叶多酚的提取方法，其特征在于：步骤 2) 中，所述膜过滤装置为超滤、微滤或纳滤膜。
橄榄叶多酚的提取方法

技术领域
[0001] 本发明属于植物活性成分提取技术领域，具体涉及橄榄叶多酚的提取方法。

背景技术
[0002] 橄榄为橄榄科橄榄属常绿乔木，主要分布在福建、广东、广西、台湾等南方省份。橄榄自古就是我国常用中药材，据《本草纲目》记载，橄榄果皮、根、茎、叶、果、花、核均可入药，性味甘酸、涩、温、平、无毒，归肺、胃经，具有清热，利咽、祛痰、生津、健脾、解毒等功效，常用于咽喉肿痛、咳嗽、烦躁等症。橄榄果实时采收后，橄榄叶大多直接丢弃造成极大资源浪费。橄榄叶中含有的没食子酸类等多酚类化合物。

发明内容
[0003] 本发明要解决的技术问题是提供一种橄榄叶多酚的提取方法，该方法制得的橄榄叶多酚纯度高。
[0004] 本发明提供的技术方案是提供一种橄榄叶多酚的提取方法，包括以下步骤：
[0005] 1) 将橄榄叶粉碎，按料液比为 1g:10 ～ 30ml 的比例加入乙醇振荡提取，分离上清液；
[0006] 2) 将上清液过滤过滤装置进行过滤，得到澄清液；
[0007] 3) 将澄清液上大孔树脂柱，上样流速为 0.4 ～ 0.6BV/h，上大孔树脂柱，水洗柱，然后用体积浓度为 65 ～ 85%乙醇洗脱，收集乙醇洗脱液，浓缩，干燥，即得橄榄叶多酚。
[0008] 上述步骤 1) 中，绿茶茶叶中含有蛋白质和碳水化合物，采用乙醇为溶媒，不利于蛋白质和碳水化合物的溶解，可减少杂质成分的溶出，对后续纯化有益。乙醇体积浓度以 40 ～ 50%为佳，乙醇浓度过高会对蛋白质产生凝聚作用，使得蛋白质滞留在颗粒的内部孔道中，反而增加茶多酚的扩散阻力，降低终产品的收率。乙醇浓度过低则杂质含量较大，影响终产品的纯度。
[0009] 上述步骤 2) 中，所述滤过滤装置为超滤、微滤或纳滤膜。
[0010] 上述步骤 3) 中，水洗流速为 2.5 ～ 3BV/h，水的洗脱量为 5 ～ 6BV；乙醇的洗脱流速为 2 ～ 2.5BV/h，乙醇的洗脱液为 4 ～ 5BV。
[0011] 与现有技术相比，本发明制得的橄榄叶多酚的纯度在 98%以上。

具体实施方式
[0012] 以下具体实施例对本发明作进一步阐述，但不作为对本发明的限定。
[0013] 实施例 1
[0014] 1) 将橄榄叶粉碎，按料液比为 1g:10ml 的比例加入 40%乙醇振荡提取，分离上清液；
[0015] 2) 将上清液过滤过滤装置进行过滤，得到澄清液；
[0016] 3) 将澄清液上大孔树脂柱，上样流速为 0.4BV/h，上大孔树脂柱，水洗柱，水洗流速
为 2.5BV/h, 水的洗脱量为 5BV; 然后用体积浓度为 65%乙醇洗脱, 乙醇的洗脱流速为 2BV/h, 乙醇的洗脱量为 4BV, 收集乙醇洗脱液, 浓缩, 干燥, 即得橄榄叶多酚。经 HPLC 检测, 成品中橄榄叶多酚的纯度为 98.2%。

实施例 2
1) 将橄榄叶粉碎, 按料液比为 1g:30ml 的比例加入 50%乙醇振荡提取, 分离上清液;
2) 将上清液过微滤膜过滤装置进行过滤, 得到澄清液;
3) 将澄清液上大孔树脂柱, 上样流速为 0.6BV/h, 上大孔树脂柱, 水洗柱, 水洗流速为 3BV/h, 水的洗脱量为 6BV; 然后用体积浓度为 85%乙醇洗脱, 乙醇的洗脱流速为 2.5BV/h, 乙醇的洗脱量为 5BV, 收集乙醇洗脱液, 浓缩, 干燥, 即得橄榄叶多酚。经 HPLC 检测, 成品中橄榄叶多酚的纯度为 98.0%。

实施例 3
1) 将橄榄叶粉碎, 按料液比为 1g:20ml 的比例加入 45%乙醇振荡提取, 分离上清液;
2) 将上清液过纳滤膜过滤装置进行过滤, 得到澄清液;
3) 将澄清液上大孔树脂柱, 上样流速为 0.5BV/h, 上大孔树脂柱, 水洗柱, 水洗流速为 2.8BV/h, 水的洗脱量为 5.5BV; 然后用体积浓度为 75%乙醇洗脱, 乙醇的洗脱流速为 2.2BV/h, 乙醇的洗脱量为 4.5BV, 收集乙醇洗脱液, 浓缩, 干燥, 即得橄榄叶多酚。经 HPLC 检测, 成品中橄榄叶多酚的纯度为 98.4%。

实施例 4
1) 将橄榄叶粉碎, 按料液比为 1g:10ml 的比例加入 50%乙醇振荡提取, 分离上清液;
2) 将上清液过滤、微滤或纳滤膜过滤装置进行过滤, 得到澄清液;
3) 将澄清液上大孔树脂柱, 上样流速为 0.4BV/h, 上大孔树脂柱, 水洗柱, 水洗流速为 3BV/h, 水的洗脱量为 5BV; 然后用体积浓度为 85%乙醇洗脱, 乙醇的洗脱流速为 2BV/h, 乙醇的洗脱量为 5BV, 收集乙醇洗脱液, 浓缩, 干燥, 即得橄榄叶多酚。经 HPLC 检测, 成品中橄榄叶多酚的纯度为 98.1%。