wo 2016/007371 A1 I 000N OO OO 0 R

(43) International Publication Date

(12) INTERNATIONAL APPLICATION PUBLISHED UNDER THE PATENT COOPERATION TREATY (PCT)

(19) World Intellectual Property Ny
Organization é
International Bureau -,

=

\

(10) International Publication Number

WO 2016/007371 Al

14 January 2016 (14.01.2016) WIPOI|PCT
(51) International Patent Classification: (74) Agents: VIGUET, Ross, R. et al.; Norton Rose Fulbright
GO6F 9/50 (2006.01) GO6F 11/10 (2006.01) US LLP, 2200 Ross Avenue, Suite 3600, Dallas, TX
(21) International Application Number: 75201-2784 (US).
PCT/US2015/038984 (81) Designated States (unless otherwise indicated, for every
. . kind of national protection available). AE, AG, AL, AM,
(22) International Filing Date: AO, 151", AU, Ag, BA, BB, BG, BH), BN, BR, BW, BY,
2 July 2015 (02.07.2015) BZ, CA, CH, CL, CN, CO, CR, CU, CZ, DE, DK, DM,
(25) Filing Language: English DO, DZ, EC, EE, EG, ES, FI, GB, GD, GE, GH, GM, GT,
. HN, HR, HU, ID, IL, IN, IR, IS, JP, KE, KG, KN, KP, KR,
(26) Publication Language: English KZ, LA, LC, LK, LR, LS, LU, LY, MA, MD, ME, MG,
(30) Priority Data: MK, MN, MW, MX, MY, MZ, NA, NG, NI, NO, NZ, OM,
62/022,499 9 July 2014 (09.07.2014) US PA, PE, PG, PH, PL, PT, QA, RO, RS, RU, RW, SA, SC,
14/567,203 11 December 2014 (11.12.2014) Us SD, SE, SG, SK, SL, SM, ST, 8V, 8Y, TH, TJ, TM, TN,
TR, TT, TZ, UA, UG, US, UZ, VC, VN, ZA, ZM, ZW.
(71) Applicant: QUALCOMM INCORPORATED [US/US]; o
Attn: International IP Administration, 5775 Morehouse (84) Designated States (uniess otherwise indicated, for every
Drive, San Diego, CA 92121-1714 (US). kind of regional protection available): ARIPO (BW, GH,
GM, KE, LR, LS, MW, MZ, NA, RW, SD, SL, ST, SZ,
(72) Inventor: LUBY, Michael, George; Qualcomm Incorpor- TZ, UG, ZM, ZW), Eurasian (AM, AZ, BY, KG, KZ, RU,

ated, Attn: International IP Administration, 5775 More-
house Drive, San Diego, CA 92121-1714 (US).

TJ, TM), European (AL, AT, BE, BG, CH, CY, CZ, DE,
DK, EE, ES, FL, FR, GB, GR, HR, HU, IE, IS, IT, LT, LU,
LV, MC, MK, MT, NL, NO, PL, PT, RO, RS, SF, SI, SK,

[Continued on next page]

(54) Title: SYSTEMS AND METHODS FOR RELIABLY STORING DATA USING LIQUID DISTRIBUTED STORAGE

(57) Abstract: Embodiments provide methodologies for reliably storing data

701

IMPLEMENT LIQUID DISTRIBUTED STORAGE CONTROL

DETERMINE THAT AT LEAST ONE FRAGMENT OF A
SOURCE OBJECT IS MISSING FROM A STORAGE SYSTEM
FOR WHICH THERE IS NO CORRESPONDING OBJECT
INSTANCE IN A REPAIR QUEUE

| 711

ADD A CORRESPONDING OBJECT INSTANCE TO THE
REPAIR QUEUE FOR THE SOURCE OBJECT OF THE
SOURCE DATA

| -712

SELECT THE OBJECT INSTANCE FROM THE REPAIR 713
QUEUE BASED ON PRIORITY OF THE OBJECT INSTANCE

READ A PLURALITY OF FRAGMENTS
CORRESPONDING TO THE SOURCE OBJECT OF
THE SELECTED OBJECT INSTANCE

I

| ERASURE DECODE THE CORRESPONDING SOURCE

|-714

kns

716

OBJECT FROM THE PLURALITY OF FRAGMENTS

]

ERASURE ENCODE ONE OR MORE ADDITIONAL
FRAGMENTS FROM THE DECODED SOURCE OBJECT

WRITE THE ONE OR MORE ADDITIONAL FRAGMENTS TO| 717
STORAGE NODES OF THE STORAGE SYSTEM
}/718

DELETE THE SELECTED OBJECT INSTANCE FROM THE
REPAIR QUEUE

FiIG. 7

N within a storage system using liquid distributed storage control. Such liquid
distributed storage control operates to compress repair bandwidth utilized
within a storage system for data repair processing to the point of operating in
a liquid regime. Liquid distributed storage control logic of embodiments
may employ a lazy repair policy, repair bandwidth control, a large erasure
code, and/or a repair queue. Embodiments of liquid distributed storage con-
l trol logic may additionally or alternatively implement a data organization ad-

apted to allow the repair policy to avoid handling large objects, instead
streaming data into the storage nodes at a very fine granularity.

WO 2016/007371 A1 WK 00T 00T R 0

SM, TR), OAPI (BF, BJ, CF, CG, CL, CM, GA, GN, GQ, __
GW, KM, ML, MR, NE, SN, TD, TG).

as to the applicant's entitlement to claim the priority of
the earlier application (Rule 4.17(iii))

Published:
— as to applicant’s entitlement to apply for and be granted
a patent (Rule 4.17(ii))

Declarations under Rule 4.17:

with international search report (Art. 21(3))

WO 2016/007371 PCT/US2015/038984

SYSTEMS AND METHODS FOR RELIABLY STORING DATA USING LIQUID
DISTRIBUTED STORAGE

CROSS-REFERENCE TO RELATED APPLICATIONS

[0001] The present application claims priority to co-pending U.S. Provisional Patent
Application Number 62/022,499, entitled “SYSTEMS AND METHODS FOR
RELIABLY STORING DATA USING LIQUID DISTRIBUTED STORAGE,” filed
July 9, 2014; and U.S. Patent Application Serial Number 14/567,203, entitled
“SYSTEMS AND METHODS FOR RELIABLY STORING DATA USING LIQUID
DISTRIBUTED STORAGE,” filed DECEMBER 11, 2014; and the present application
is related to co-pending U.S. Patent Application Serial Number 14/567,249, entitled
“SYSTEMS AND METHODS FOR RELIABLY STORING DATA USING LIQUID
DISTRIBUTED STORAGE,” filed DECEMBER 11, 201; concurrently herewith and
U.S. Patent Application Serial Number 14/567,303, entitled “SYSTEMS AND
METHODS FOR RELIABLY STORING DATA USING LIQUID DISTRIBUTED
STORAGE,” filed DECEMBER 11, 2014 filed concurrently herewith, the disclosures of

which are hereby incorporated herein by reference.

DESCRIPTION OF THE RELATED ART

[0002] The creation, management, storage, and retrieval of electronic data has become
nearly ubiquitous in the day-to-day world. Such electronic data may comprise various
forms of information, such as raw data (e.g., data collected from sensors, monitoring
devices, control systems, etc.), processed data (e.g., metrics or other results generated
from raw data, data aggregations, filtered data, etc.), produced content (e.g., program
code, documents, photographs, video, audio, etc.), and/or the like. Such data may be
generated by various automated systems (e.g., network monitors, vehicle on-board
computer systems, automated control systems, etc.), by user devices (e.g., smart phones,
personal digital assistants, personal computers, digital cameras, tablet devices, etc.),
and/or a number of other devices.

[0003] Regardless of the particular source or type of data, large quantities of electronic

data are generated, stored, and accessed every day. Accordingly sophisticated storage

WO 2016/007371 PCT/US2015/038984

systems, such as network attached storage (NAS), storage area networks (SANs), and
cloud based storage (e.g., Internet area network (IAN) storage systems), have been
developed to provide storage of large amounts of electronic data. Such storage systems
provide a configuration in which a plurality of storage nodes are used to store the
electronic data of one or more user/device, and which may be stored and retrieved via
one or More access server.

[0004] FIG. 1A shows an exemplary implementation of storage system 100A in which
access server 110 is in communication with end user (EU) device 120 to provide storage
services with respect thereto. Access server 110 may comprise one or more servers
operable under control of an instruction set to receive data from devices such as EU
device 120, and to control storage of the data and to retrieve data in response to requests
from devices such as EU device 120. Accordingly, access server 110 is further in
communication with a plurality, M, of storage nodes (shown here as storage nodes 130-1
through 130-M). Storage nodes 130-1 through 130-M may comprise a homogeneous or
heterogeneous collection or array (e.g., redundant array of independent disks (RAID)
array) of storage media (e.g., hard disk drives, optical disk drives, solid state drives,
random access memory (RAM), flash memory, etc.) providing persistent memory in
which the electronic data is stored by and accessible through access server 110. Each
such storage node may be, for example, a commodity web server. Alternatively, in some
deployments at least some storage nodes may be personal devices interconnected over
the Internet. EU device 120 may comprise any configuration of device which operates to
generate, manage, and/or access electronic data. It should be appreciated that although
only a single such device is shown, storage system 100A may operate to serve a plurality
of devices, some or all of which may comprise devices in addition to or in the alternative
to devices characterized as “end user” devices.

[0005] FIG. 1B shows an exemplary implementation of storage system 100B in which
access servers 110-1 through 110-14 may communicate with one or more EU device of
EU devices 120-1 through 120-3 to provide storage services with respect thereto. It
should be appreciated that storage system 100B shows an alternative configuration to
that of 100A discussed above wherein, although the access servers, EU devices, and

storage nodes may be embodied as described above, the storage nodes of storage system

WO 2016/007371 PCT/US2015/038984

110B are deployed in a cluster configuration, shown as storage node cluster 130. In
operation of storage system 100B, a cluster of access servers have access to the cluster of
storage nodes. Thus, the EU devices may connect in a variety of ways to various access
servers to obtain data services. In some cases, the access servers may be distributed
around the country such that no matter where the EU device is located it may access the
data stored in the storage node cluster. Storage nodes of such a configuration may be
distributed geographically as well.

[0006] Source blocks of electronic data are typically stored in storage systems such as
storage systems 100A and 100B as objects. Such source blocks, and thus the
corresponding objects stored by the storage systems, may comprise individual files,
collections of files, data volumes, data aggregations, etc. and may be quite large (e.g., on
the order of megabytes, gigabytes, terabytes, etc.). The objects are often partitioned into
smaller blocks, referred to as fragments (e.g., a fragment typically consisting of a single
symbol), for storage in the storage system. For example, an object may be partitioned
into k equal-sized fragments (i.e., the fragments comprise blocks of contiguous bytes
from the source data) for storage in storage systems 100A and 100B. Each of the &
fragments may, for example, be stored on a different one of the storage nodes.

[0007] In operation, storage systems such as storage systems 100A and 100B are to
provide storage of and access to electronic data in a reliable and efficient manner. For
example, in a data write operation, access server 110 may operate to accept data from EU
device 120, create objects from the data, create fragments from the objects, and write the
fragments to some subset of the storage nodes. Correspondingly, in a data read
operation, access server 110 may receive a request from EU device 120 for a portion of
stored data, read appropriate portions of fragments stored on the subset of storage nodes,
recreate the object or appropriate portion thereof, extract the requested portion of data,
and provide that extracted data to EU device 120. However, the individual storage nodes
are somewhat unreliable in that they can intermittently fail, in which case the data stored
on them is temporarily unavailable, or permanently fail, in which case the data stored on

them is permanently lost (e.g., as represented by the failure of storage node 130-2 in FIG.

10).

WO 2016/007371 PCT/US2015/038984

[0008] Erasure codes (e.g., tornado codes, low-density parity-check codes, Reed-
Solomon coding, and maximum distance separable (MDS) codes) have been used to
protect source data against loss when storage nodes fail. When using an erasure code,
such as MDS erasure codes, erasure encoding is applied to each source fragment (i.e., the
k fragments into which an object is partitioned) of an object to generate repair data for
that fragment, wherein the resulting repair fragments are of equal size with the source
fragments. In operation of the storage system, the source fragments and corresponding
repair fragments are each stored on a different one of the storage nodes.

[0009] The erasure code may provide r repair fragments for each source object, whereby
the total number of fragments, n, for a source object may be expressed as n =k + r.
Thus, the erasure code may be parameterized as (n; k; r) where & is the number of source
symbols in a source block, # is the total number of encoded symbols, and » = n — k is the
number of repair symbols. A property of MDS erasure codes is that all k source symbols
can be recovered from any & of the n encoded symbols (i.e., the electronic data of the
source block may be retrieved by retrieving any combination (source and/or repair
fragments) of k fragments. Although providing data reliability, it should be appreciated
that where desired data is not available (e.g., a fragment is unavailable due to a failed
storage node), to recreate the missing data k fragments must be accessed to recreate the
missing data (i.e., k times the amount of data must be accessed to recreate the desired but
missing data). This can result in inefficiencies with respect to the use of resources, such
as communication bandwidth, computing resources, etc.

[0010] In providing reliable storage of the electronic data, storage systems such as
storage systems 100A and 100B implementing erasure coding of the data (e.g., access
server 110 of FIG. 1C operational to provide repair server functionality) have a repair
process or policy running in the background to determine the number of fragments
available with respect to the objects (e.g., to detect objects which are missing one or
more fragments, such as due to a failed storage node). For objects with some level of
missing fragments (e.g., as the number of available fragments approaches &) logic of the
storage system repair process will read k remaining fragments for that object and recreate
the object and write additional fragments to the storage system (e.g., on other of the

storage nodes which remain available). Typically, the objects for which the fewest

WO 2016/007371 PCT/US2015/038984

fragments are available are the ones that are repaired first, before objects that have more
fragments available (assuming an equal number of fragments for the objects), according
to such repair policies.

[0011] It should be appreciated that, although the example of FIG. 1C illustrates a repair
server as being implemented by access server 110, repair servers operable to provide
repair services herein may be provided in various configurations. For example, one or
more repair servers may be provided separately from access servers of a storage system
according to embodiments. As another example, repair servers and or access servers
may be implemented by storage nodes 130-1 through 130-M.

[0012] The aforementioned intermittent node failures are far more typical than
permanent node failures (e.g., 90% of the node failures are intermittent), and the repair
policy is not needed to recover the data which is temporarily unavailable on these nodes
as eventually this data will become available again when the node comes back online.
Accordingly, when fragments become unavailable the repair process may detect and
delay repairing the data for some period of time, 7" (e.g., intermittent failure threshold
time), to determine whether the failure is intermittent or permanent.

[0013] The erasure code solutions which have been implemented with respect to storage
systems have been small erasure code solutions due to their suitability for relatively rapid
recreation of missing source data. An (n; k; r) erasure code solution is said to be a small
erasure code solution if n << M (i.e., for each source object there are fragments at a small
fraction of the storage nodes). Such a small erasure code configuration (e.g., k= 10)
generally comprises a correspondingly small number of repair fragments (e.g., r = 4, thus
n =14). Accordingly, for a small erasure code solution it is beneficial to use a reactive
repair policy (i.e., when a fragment of an object is lost due to a permanent node failure
then the repair policy immediately or as quickly as possible replaces the lost fragment
with another fragment in light of the total number of fragments, #, being so near the
minimum number of fragments, k, needed to recover the data). Because a large amount
of data is stored on each node (typically many terrabytes), and all data comprising
fragments stored on a node typically needs to be replaced when the node permanently
fails, the repair process reads and writes a large amount of data after a node permanently

fails. This reading and writing of large amounts of data generally results in the

WO 2016/007371 PCT/US2015/038984

consumption of large amounts of bandwidth in the storage system by the repair policy
and, when coupled with a reactive repair policy, can result in disruptive spikes in storage
system bandwidth utilization (e.g., delaying or preventing primary data access services
by the storage system). That is, the repair policy implemented with respect to a small
erasure code configuration may act somewhat erratically whereby it utilizes a large
amount of bandwidth for periods of time when attempting to repair data immediately
upon determining fragments are unavailable due to a permanently failed node.

[0014] Although it may be possible to increase the number of fragments, &, for a
particular source object, thereby decreasing the size of the fragments, this has generally
been thought not to be a satisfactory solution with respect to the small erasure code
implementations. As the number k of source fragments increases for the existing small
erasure code solutions, the total amount of data that needs repair grows proportionally to
k using a reactive repair policy, which has been considered undesirable.

[0015] Further compounding disadvantages associated with the typical use of small
erasure codes and their corresponding reactive repair policies, is that these solutions tend
to be highly sensitive to the intermittent failure threshold, 7, utilized in determining
intermittent unavailability and permanent unavailability of fragments. As 7 is decreased,
the repair policy is implemented with respect to a larger number of fragments (e.g., likely
including a larger number of fragments which will again become available on their own
in a short amount of time), thereby increasing storage system bandwidth consumption by
the repair process and leaving less bandwidth available for the primary operation of the
storage system. However, as 7 is increased, the resilience and reliability of the small
erasure code is at risk due to the relatively few fragments available in excess of the &
fragments required for data recovery (e.g., additional fragments may be lost in time 7,

thereby preventing recovery of the data).

SUMMARY

[0016] A method for repair of source data comprising one or more source objects stored
as multiple fragments distributed across multiple storage nodes of a storage system,
wherein one or more fragments of the multiple fragments includes redundant data for the
one or more source objects, is provided according to embodiments of the present

disclosure. The method of embodiments comprises determining a portion of a source

WO 2016/007371 PCT/US2015/038984

object of the one or more source objects to repair, wherein the portion of the source
object to repair comprises data of at least one fragment of the multiple fragments, and
reading data of a plurality of fragments of the multiple fragments from a plurality of
storage nodes of the multiple storage nodes. The method of embodiments further
includes processing the data of the plurality of fragments read from the plurality of
storage nodes to provide data of at least one additional fragment for the multiple
fragments and writing the data of the at least one additional fragment to at least one
storage node of the multiple storage nodes. The method of embodiments also includes
implementing liquid distributed storage control with respect to the reading data of the
plurality of fragments and writing the data of the at least one additional fragment to
control an average bandwidth for repair of source data within the storage system (R) as a
function of data redundancy of the storage system provided by the one or more
fragments including redundant data (/).

[0017] An apparatus for repair of source data comprising one or more source objects
stored as multiple fragments distributed across multiple storage nodes of a storage
system, wherein one or more fragments of the multiple fragments includes redundant
data for the one or more source objects, is provided according to further embodiments of
the present disclosure. The apparatus of embodiments comprises one or more data
processors and one or more non-transitory computer-readable storage media containing
program code configured to cause the one or more data processors to perform operations.
The operations of embodiments include determining a portion of a source object of the
one or more source objects to repair, wherein the portion of the source object to repair
comprises data of at least one fragment of the multiple fragments, and reading data of a
plurality of fragments of the multiple fragments from a plurality of storage nodes of the
multiple storage nodes. The operations of embodiments further include processing the
data of the plurality of fragments read from the plurality of storage nodes to provide data
of at least one additional fragment for the multiple fragments, and writing the data of the
at least one additional fragment to at least one storage node of the multiple storage
nodes. The operations of embodiments also include implementing liquid distributed
storage control with respect to reading the data of the plurality of fragments and writing

the data of the at least one additional fragment to control an average bandwidth for repair

WO 2016/007371 PCT/US2015/038984

of source data within the storage system (R) as a function of data redundancy of the
storage system provided by the one or more fragments including redundant data (5).
[0018] An apparatus for repair of source data comprising one or more source objects
stored as multiple fragments distributed across multiple storage nodes of a storage
system, wherein one or more fragments of the multiple fragments includes redundant
data for the one or more source objects, is provided according to still further
embodiments of the present disclosure. The apparatus of embodiments comprises means
for determining a portion of a source object of the one or more source objects to repair,
wherein the portion of the source object to repair comprises data of at least one fragment
of the multiple fragments, and means for reading data of a plurality of fragments of the
multiple fragments from a plurality of storage nodes of the multiple storage nodes. The
apparatus of embodiments further includes means for processing the data of the plurality
of fragments read from the plurality of storage nodes to provide data of at least one
additional fragment for the multiple fragments, and means for writing the data of the at
least one additional fragment to at least one storage node of the multiple storage nodes.
The apparatus of embodiments also includes means for implementing liquid distributed
storage control with respect to reading data of the plurality of fragments and writing data
of the at least one additional fragment to control an average bandwidth for repair of
source data within the storage system (R) as a function of data redundancy of the storage
system provided by the one or more fragments including redundant data ().

[0019] A non-transitory computer-readable medium comprising codes for repair of
source data comprising one or more source objects stored as multiple fragments
distributed across multiple storage nodes of a storage system, wherein one or more
fragments of the multiple fragments includes redundant data for the one or more source
objects, is provided according to embodiments of the present disclosure. The codes of
embodiments cause a computer to determine a portion of a source object of the one or
more source objects to repair, wherein the portion of the source object to repair
comprises data of at least one fragment of the multiple fragments and read data of a
plurality of fragments of the multiple fragments from a plurality of storage nodes of the
multiple storage nodes. The codes of embodiments further cause a computer to process

the data of the plurality of fragments read from the plurality of storage nodes to provide

WO 2016/007371 PCT/US2015/038984

data of at least one additional fragment for the multiple fragments, and write the data of
the at least one additional fragment to at least one storage node of the multiple storage
nodes. The codes of embodiments also cause a computer to implement liquid distributed
storage control with respect to reading data of the plurality of fragments and writing data
of the at least one additional fragment to control an average bandwidth for repair of
source data within the storage system (R) as a function of data redundancy of the storage
system provided by the one or more fragments including redundant data ().

BRIEF DESCRIPTION OF THE DRAWINGS

[0020] FIGS. 1A-1C show exemplary implementations of storage systems.

[0021] FIGS. 2A and 2B show a storage system adapted to provide liquid distributed
storage control according to aspects of the present disclosure.

[0022] FIG. 3A shows operation of an embodiment of lazy repair policy logic in
cooperation with repair bandwidth control logic providing lazy repair of source objects
when constraining the repair bandwidth to provide a steady repair rate according to
aspects of the present disclosure.

[0023] FIG. 3B shows repair rate spikes upon detection of a storage node failure in
association with repair processing which attempts to repair the data as soon as possible
after the storage node failure is detected.

[0024] FIG. 3C shows a comparison of operation of a reactive repair policy with
operation of a lazy repair policy according to aspects of the present disclosure.

[0025] FIGS. 4A and 4B show a representation of a source object partitioned into source
fragments, wherein each source fragment comprises a concatenation of symbols from
source blocks in the source object according to aspects of the present disclosure.

[0026] FIG. 4C shows a traditional data structure providing fragments comprised of
blocks of contiguous bytes from the source data.

[0027] FIG. 4D shows encoding and decoding of data using a data organization
according to aspects of the present disclosure.

[0028] FIG. 4E shows accessing and mapping data using a data organization according
to aspects of the present disclosure.

[0029] FIGS. 4F and 4G show operation utilizing a weaver data structure to provide

stream encoding according to aspects of the present disclosure.

WO 2016/007371 PCT/US2015/038984

[0030] FIGS. 4H and 4I show decoding operation to provide stream source data utilizing
a weaver data structure according to aspects of the present disclosure.

[0031] FIGS. 4] and 4K show access server recovery of source data utilizing a weaver
data structure according to aspects of the present disclosure.

[0032] FIGS. 4L-4N show stream generation of repair data facilitated by a weaver data
organization technique according to aspects of the present disclosure.

[0033] FIG. 40 shows traditional erasure encoding/decoding of source objects.

[0034] FIGS. 4P-4R show operation utilizing a weaver data structure to accommodate
changes with respect to the erasure code parameters according to aspects of the present
disclosure.

[0035] FIGS. 5A-5E show operation of a lazy repair policy implementing a large erasure
code according to aspects of the present disclosure.

[0036] FIGS. 6 and 7 show functional blocks adapted for implementing liquid
distributed storage control to facilitate repair of source data of a source object stored as
multiple fragments distributed across multiple storage nodes of a storage system
according to aspects of the present disclosure.

[0037] FIGS. 8 and 9 show operation employing the features of a data organization
technique allowing a repair policy to avoid handling large objects and instead stream
data into the storage nodes at a very fine granularity according to aspects of the present
disclosure.

[0038] FIG. 10 shows operation for providing repair data for source data stored in a
storage system as fragment data distributed across multiple storage nodes according to
aspects of the present disclosure.

[0039] FIG. 11 shows operation for redistributing repair data for source data redundantly
stored in a storage system as fragment data distributed across multiple storage nodes
according to aspects of the present disclosure.

[0040] FIGS. 12 and 13 show the results of simulations with respect to particular storage
system configurations to provide comparisons of operation of reactive repair policies
using small erasure codes and lazy repair policies using large erasure codes according to

aspects of the present disclosure.

10

WO 2016/007371 PCT/US2015/038984

[0041] FIGS. 14A-14F show accessing a portion of data by an EU device through
multiple connections according to aspects of the present disclosure.

[0042] FIG. 15 shows an embodiment of a peer-to-peer storage system implementing a
weaver data organization according to aspects of the present disclosure.

DETAILED DESCRIPTION

[0043] The word “exemplary” is used herein to mean “serving as an example, instance,
or illustration.” Any aspect described herein as “exemplary” is not necessarily to be
construed as preferred or advantageous over other aspects.

[0044] In this description, the term “application” may also include files having
executable content, such as: object code, scripts, byte code, markup language files, and
patches. In addition, an “application” referred to herein, may also include files that are
not executable in nature, such as documents that may need to be opened or other data
files that need to be accessed.

[0045] As used in this description, the terms “data” and “electronic data” may include
information and content of various forms, including raw data, processed data, produced
content, and/or the like, whether being executable or non-executable in nature. Such data
may, for example, include data collected from sensors, monitoring devices, control
systems, metrics or other results generated from raw data, data aggregations, filtered
data, program code, documents, photographs, video, audio, etc. as may be generated by
various automated systems, by user devices, and/or other devices.

[0046] As used in this description, the term “fragment” refers to one or more portions of
content that may be stored at a storage node. For example, the data of a source object
may be partitioned into a plurality of source fragments. The plurality of source
fragments may be erasure encoded to generate one or more corresponding repair
fragment, whereby the repair fragment comprises redundant data with respect to the
source fragments. The unit of data that is erasure encoded/decoded is a source block,
wherein k is the number of source symbols per source block, Bsize is the source block
size, Ssize is the symbol size (Bsize=k-Ssize), n is the number of encoded symbols
generated and stored per source block, and r is the number of repair symbols (r=n-k), and
wherein the symbol is the atomic unit of data for erasure encoding/decoding. Although

the symbol size (Ssize) may be different for different source blocks, the symbol size

11

WO 2016/007371 PCT/US2015/038984

generally remains the same for all symbols within a source block. Similarly, although
the number of source symbols (k), the number of repair symbols (r), and the number of
encoded symbols generated may be different for different source blocks, the values
generally remain the same for all source blocks of a particular object. Osize is the size of
the source object and Fisize is the size of the fragment. In accordance with embodiments,
k is both the number of source symbols per source block and the number of fragments
per source object (e.g., Osize = k-Fsize).

LTS

[0047] As used in this description, the terms “component,” “database,” “module,”
“system,” “logic” and the like are intended to refer to a computer-related entity, either
hardware, firmware, a combination of hardware and software, software, or software in
execution. For example, a component may be, but is not limited to being, a process
running on a processor, a processor, an object, an executable, a thread of execution, a
program, and/or a computer. By way of illustration, both an application running on a
computing device and the computing device may be a component. One or more
components may reside within a process and/or thread of execution, and a component
may be localized on one computer and/or distributed between two or more computers. In
addition, these components may execute from various computer readable media having
various data structures stored thereon. The components may communicate by way of
local and/or remote processes such as in accordance with a signal having one or more
data packets (e.g., data from one component interacting with another component in a
local system, distributed system, and/or across a network such as the Internet with other
systems by way of the signal).

b1

[0048] As used herein, the terms “user equipment,” “user device,” and “client device”
include devices capable of requesting and receiving content from a web server or other
type of server and transmitting information to a web server or other type of server. In
some cases, the “user equipment,” “user device,” or “client device” may be equipped
with logic that allows it to read portions or all of fragments from the storage nodes to
recover portions or all of source objects. Such devices can be a stationary devices or

mobile devices. The terms “user equipment,” “user device,” and “client device” can be

used interchangeably.

12

WO 2016/007371 PCT/US2015/038984

[0049] As used herein, the term “user” refers to an individual receiving content on a user
device or on a client device and transmitting information or receiving information from
to a website or other storage infrastructure.

[0050] Embodiments according to the concepts of the present disclosure provide
solutions to the problem of storing and accessing source data in a reliable and efficient
manner within a storage system of unreliable nodes (i.e., nodes that can store data but
that can intermittently fail, in which case the data stored on them is temporarily
unavailable, or permanently fail, in which case the data stored on them is permanently
lost). In particular, embodiments herein provide methodologies, as may be implemented
in various configurations of systems and methods, for reliably storing data within a
storage system using liquid distributed storage control. Such liquid distributed storage
control operates to compress repair bandwidth (i.e., the bandwidth utilized within a
storage system for data repair processing) to the point of operating in a liquid regime
(i-e., a queue of items needing repair builds up and the items are repaired as a flow).
[0051] It should be appreciated that there are various metrics by which to evaluate a
storage system solution. Embodiments herein utilize metrics such as reliability, storage
efficiency, repair bandwidth efficiency, and access efficiency.

[0052] Reliability provides a measure of the amount of time that all source data can be
stored without loss of any of the data. Reliability is usually measured as a mean time to
source data loss, and typically measured in years. The reliability metric used in
accordance with some embodiments herein is the mean time to loss of any source data,
abbreviated herein as MTTDL. MTTDL may be estimated, for example, by calculating a
mean time to loss of a particular piece of source data and multiplying that metric by the
number of pieces of source data in the storage system.

[0053] Storage efficiency provides a measure of the fraction of the available storage
within the storage system that can be used to store source data. The storage overhead or
storage redundancy (B) is the ratio of the total amount of repair data for all objects
divided by the total amount of source and repair data for all objects in the storage system.
Thus, the storage overhead is the fraction of the used storage that is not for source data.
The storage efficiency, being the fraction of storage usable for source data, may thus be

represented in terms of the storage overhead as 1- .

13

WO 2016/007371 PCT/US2015/038984

[0054] Repair bandwidth efficiency provides a measure of the amount of network
bandwidth used for repairing lost data from failed storage nodes. It should be
appreciated that repair bandwidth may be a shared resource with the access bandwidth
and/or storage bandwidth (e.g., each taken from the available data communication
bandwidth). Accordingly, an upper bound on the repair bandwidth (R) is provided
according to embodiments herein.

[0055] Access efficiency provides a measure of the amount of data that needs to be read
from the storage system to retrieve a given portion of source data (e.g., f{A) is the amount
of read data from the storage nodes to access A bytes of source data, wherein when f{A)
is greater than A the data access is inefficient). It should be appreciated that the amount
of time to access source data is related to the access efficiency. Accordingly, when the
amount of data read from the storage nodes to access a particular portion of source data
is larger than that portion of source data, not only is more bandwidth than minimally
necessary used to access the data but the amount of time it takes to access the source data
can be longer than minimally necessary. Accordingly, embodiments herein are adapted
to provide implementations wherein f{lA)=A.

[0056] Permanent failure of the nodes is often modeled by a Poisson process
parameterized by A, which denotes the failure rate of each node according to an
exponential distribution. There are also intermittent failures of nodes (e.g., a node that is
not available for some small interval of time but which comes back online and is fully
available again). As previously mentioned, such intermittent node failures are far more
typical than permanent node failures. Accordingly, a repair policy is not needed to
recover the data temporarily unavailable on these nodes as eventually this data will
become available again when the node comes back online and thus when nodes fail there
is some period of time, as may be denoted by an intermittent failure threshold, 7, until it
is determined whether the failure is intermittent or permanent. Nodes can be added to
the storage system to replace nodes that have failed permanently. When replacement
nodes are available for permanently failed nodes, the repair policy can repair an object
that has lost fragments on failed nodes by reading fragments for the object from other
nodes, erasure decode the object from the read fragments, erasure encode additional

fragments from the object, and store these additional fragments on replacement nodes.

14

WO 2016/007371 PCT/US2015/038984

[0057] The repair bandwidth metric utilized according to embodiments of the present
disclosure is an amount of bandwidth provisioned to be used by the repair policy to
ensure a provided MTTDL, whereby the repair policy may use this amount of repair
bandwith at each point in time, or more generally the repair policy may use this amount
of repair bandwidth when averaged over a longer window of time. The repair bandwidth
provisioned to the repair process may be respected on an instantaneous basis (i.e., the
repair process may use repair bandwidth at a steady rate that is at or below the
provisioned repair bandwidth). Alternatively, the repair bandwidth provisioned to the
repair process may be considered as an average over a long window of time that is
sufficient for the repair process to achieve a provisioned MTTDL, and thus the repair
process may decide to use the repair bandwidth in, for example, a scheduled manner
independent of the timing of storage node failures. For example, the repair process may
be scheduled to run periodically for an hour or two each day, for a few hours each week,
or for a few hours each month or couple of months, such that the average repair
bandwidth used by the repair process over these windows of times averages to the
provisioned repair bandwidth.

[0058] The repair policy may use the provisioned repair bandwidth in a way that avoids
interference with other processes sharing the same bandwidth resources, such as an
access process that is accessing data stored on the storage nodes, or a storage process that
is storing data to the storage nodes. For example, the repair policy may detect that
another process needs to use a significant part of the shared bandwidth for some period
of time, and the repair process may suspend or significantly slow down its usage of
repair bandwidth during this period of time and then use more repair bandwidth again
after the other processes bandwidth needs have reduced. In this example, the repair
policy is essentially running as a background process with respect to bandwidth
consumption (e.g., the repair policy backs off on its usage of bandwidth in response to
other processes increased bandwidth usage). As another example, the repair policy may
have scheduled times when it uses repair bandwidth, and refrain from using repair
bandwidth at other times, wherein the scheduled times of repair bandwidth usage are for
example times when other processes that share the bandwidth resources are typically

quiescent (e.g., the repair process uses repair bandwidth from 1 A.M. to 3 A.M. each

15

WO 2016/007371 PCT/US2015/038984

morning when there is very little access or storage activity within the storage system). In
these cases, the usage of repair bandwidth by the repair server is largely independent of
the timing of data loss within the storage system (e.g., the timing of permanent or
intermittent storage node failures).

[0059] The repair bandwidth constraint metric may be considered a primary storage
system solution metric according to embodiments because, when the repair policy is so
constrained, there is a known guaranteed maximum impact on applications reading and
writing source data to/from the storage system. Another repair traffic metric, although
perhaps of secondary importance to the repair bandwidth metric in embodiments, is the
total amount of bytes transferred across the network over time by the repair policy over a
long period of time.

[0060] The access efficiency metric may be considered with respect to a plurality of
situations. Por example, the access efficiency metric may be considered with respect to
the case where there are no node failures (intermittent or permanent) amongst the storage
nodes that are used to store the source data, and the case where there are node failures
(intermittent or permanent) amongst the storage nodes that are used to store the source
data. The amount of data read from storage nodes in order to access a chunk of source
data is an important component of access efficiency because this largely determines the
speed at which a chunk can be accessed. Ideally, the amount of data read to access a
chunk should be equal to the size of the chunk.

[0061] Previous solutions for storing and accessing source data within a storage system
have primarily focused on using a reactive repair policy with respect to data determined
to be unavailable. In operation according to such reactive repair policies, data is
scheduled for repair as soon as any data is lost on a permanently failed node, and as
much bandwidth as necessary is used to perform the repair in a burst. A Markov chain
analysis is typically applied to individual objects in the storage system for the reliability
analysis of a reactive repair policy. The analysis assumes that the number of objects that
need repair is always nearly zero, which is justified if the repair policy can always work
quickly enough.

[0062] With a reactive repair policy, the overall amount of repair traffic generated is

proportional to at least k + 1 times the amount of data lost on permanently failed nodes,

16

WO 2016/007371 PCT/US2015/038984

where & is the number of source symbols used by the erasure code. This is because each
time a fragment of an object is lost on a permanently failed node, at least k fragments for
that object are read by the repair policy to generate at least one repair fragment that is
stored on replacement nodes.

[0063] Large erasure codes have generally not been considered with respect to solutions
for reliably and efficiently storing and accessing source data within a storage system of
unreliable nodes. The intuition that repair traffic increases as the value of k increases is
likely one of the primary reasons that large erasure codes have not been considered
viable for such storage system solutions. However, as will be shown herein, this
intuition is valid only when using a reactive repair policy. Accordingly, embodiments
implemented according to concepts herein utilize a lazy repair policy, rather than a
reactive repair policy, in combination with large erasure codes, rather than the small
erasure codes typically implemented with respect to storage system solutions. As shown
below, large erasure code solutions in combination with a lazy repair policy achieves
better trade-offs in storage efficiency, repair bandwidth efficiency, and reliability than is
possible for any small erasure code solution. Moreover, the analysis provided herein
shows quantitative trade-offs between feasible storage overhead, repair bandwidth, and
reliability parameters for large erasure codes.

[0064] Although the use of large erasure codes with a traditional data organization
generally results in a high cost of accessing source data that is not currently available
(e.g., due to an intermittent node failure or due to a permanent node failure that has not
yet been repaired), embodiments herein overcome this issue through the use of an
alternative data organization, as described in detail below, that allows efficient access to
all source data.

[0065] FIGS. 2A and 2B show storage system 200 adapted to provide liquid distributed
storage control according the concepts disclosed herein. The exemplary embodiment of
FIG. 2A shows access server 210, having liquid distributed storage control logic 250
according to the concepts herein, in communication with EU device 220 to provide
storage services with respect thereto. Source data for which storage services are
provided by storage systems of embodiments herein may comprise various

configurations of data including blocks of data (e.g., source blocks of any size) and/or

17

WO 2016/007371 PCT/US2015/038984

streams of data (e.g., source streams of any size). The source objects corresponding to
such source data as stored by storage systems of embodiments, may comprise individual
files, collections of files, data volumes, data aggregations, etc., as well as portions
thereof, as may be provided for storage processing (e.g., encoding, writing, reading,
decoding, etc.) as blocks of data, streams of data, and combinations thereof. Thus,
source objects herein may comprise application layer objects (e.g., with metadata), a
plurality of application layer objects, some portion of an application layer object, etc.
Such source objects may thus be quite small (e.g., on the order of hundreds or thousands
of bytes), quite large (e.g., on the order of megabytes, gigabytes, terabytes, etc.), or any
portion of data which may be separated into fragments or portions of fragments as
described herein.

[0066] Access server 210 may comprise one or more servers operable under control of
an instruction set to receive data from devices such as EU device 220, and to control
storage of the data and to retrieve data in response to requests from devices such as EU
device 220, wherein the HTTP 1.1 protocol using the GET and PUT and POST
command and byte range requests is an example of how an EU device can communicate
with an access server 210. Accordingly, access server 210 is further in communication
with a plurality, M, of storage nodes (shown here as storage nodes 230-1 through 230-
M), wherein the HT'TP 1.1 protocol using the GET and PUT and POST command and
byte range requests is an example of how an access server 210 can communicate with
storage nodes 230-1 through 230-M. The number of storage nodes, M, is typically very
large, such as on the order of hundreds, thousands, and even tens of thousands in some
embodiments. Storage nodes 230-1 through 230-M may comprise a homogeneous or
heterogeneous collection or array (e.g., RAID array) of storage media (e.g., hard disk
drives, optical disk drives, solid state drives, RAM, flash memory, high end commercial
servers, low cost commodity servers, personal computers, tablets, Internet appliances,
web servers, SAN servers, NAS servers, IAN storage servers, etc). providing persistent
memory in which the electronic data is stored by and accessible through access server
210. EU device 220 may comprise any configuration of device (e.g., personal computer,
tablet device, smart phone, personal digital assistant (PDA), camera, Internet appliance,

etc.) which operates to generate, manage, and/or access electronic data. It should be

18

WO 2016/007371 PCT/US2015/038984

appreciated that although only a single such device is shown, storage system 200 may
operate to serve a plurality of devices, some or all of which may comprise devices in
addition to or in the alternative to devices characterized as “end user” devices.

[0067] FIG. 2B shows additional detail with respect to access server 210 of
embodiments. Access server 210 of the illustrated embodiment comprises a plurality of
functional blocks, shown here as including processor 211, memory 212, and input/output
(I/O) element 213. Although not shown in the representation in FIG. 2B for simplicity,
access server 210 may comprise additional functional blocks, such as a user interface, a
radio frequency (RF) module, a display, etc., some or all of which may be utilized by
operation in accordance with the concepts herein. The foregoing functional blocks may
be operatively connected over one or more bus, such as bus 214. Bus 214 may
comprises the logical and physical connections to allow the connected elements,
modules, and components to communicate and interoperate.

[0068] Processor 111 of embodiments can be any general purpose or special purpose
processor capable of executing instructions to control the operation and functionality of
access server 210. Although shown as a single element, processor 211 may comprise
multiple processors, or a distributed processing architecture.

[0069] /O element 213 can include and/or be coupled to various input/output
components. For example, /O element 213 may include and/or be coupled to a display,
a speaker, a microphone, a keypad, a pointing device, a touch-sensitive screen, user
interface control elements, and any other devices or systems that allow a user to provide
input commands and receive outputs from access server 210. Additionally or
alternatively, I/O element 213 may include and/or be coupled to a disk controller, a
network interface card (NIC), a radio frequency (RF) transceiver, and any other devices
or systems that facilitate input and/or output functionality of client device 210. /O
element 213 of the illustrated embodiment provides interfaces (e.g., using one or more of
the aforementioned disk controller, NIC, and/or RF transceiver) for connections 201 and
202 providing data communication with respect to EU device 220 and storage nodes
230-1 through 230-M, respectively. It should be appreciated that connections 201 and
202 may comprise various forms of connections suitable for data communication herein,

such as provided by wireline links, wireless links, local area network (LAN) links, wide

19

WO 2016/007371 PCT/US2015/038984

area network (WAN) links, SAN links, Internet links, cellular communication system
links, cable transmission system links, fiber optic links, etc., including combinations
thereof.

[0070] Memory 212 can be any type of volatile or non-volatile memory, and in an
embodiment, can include flash memory. Memory 212 can be permanently installed in
access server 210, or can be a removable memory element, such as a removable memory
card. Although shown as a single element, memory 212 may comprise multiple discrete
memories and/or memory types.

[0071] Memory 212 may store or otherwise include various computer readable code
segments, such as may form applications, operating systems, files, electronic documents,
content, etc. Access server 210 is operable to provide reliable storage of data within
storage system 200 using liquid distributed storage control. Accordingly, memory 212
of the illustrated embodiments comprises computer readable code segments defining
liquid distributed storage control logic 250, which when executed by a processor (e.g.,
processor 211) provide logic circuits operable as described herein. In particular, liquid
distributed storage control logic 250 of access server 210 is shown in FIG. 2B as
including a plurality of functional blocks as may be utilized alone or in combination to
provide various aspects of liquid distributed storage for reliable storing data within
storage system 200. Liquid distributed storage control logic 250 of the illustrated
embodiment includes large erasure code logic 251, lazy repair policy 252, repair
bandwidth control logic 253, and weaver data organization logic 255. It should be
appreciated that embodiments may include a subset of the functional blocks shown
and/or functional blocks in addition to those shown.

[0072] The code segments stored by memory 212 may provide applications in addition
to the aforementioned liquid distributed storage control logic 250. For example, memory
212 may store applications such as a storage server, useful in arbitrating management,
storage, and retrieval of electronic data between EU device 210 and storage nodes 230-1
through 230-M according to embodiments herein. Such a storage server can be a web
server, a NAS storage server, a SAN storage server, an [AN storage server, and/or the

like.

20

WO 2016/007371 PCT/US2015/038984

[0073] In addition to the aforementioned code segments forming applications, operating
systems, files, electronic documents, content, etc., memory 212 may include or otherwise
provide various registers, buffers, caches, queues, and storage cells used by functional
blocks of access server 210. For example, memory 212 may comprise one or more
system map that is maintained to keep track of which fragments are stored on which
nodes for each source object. Additionally or alternatively, memory 212 may comprise
various registers storing operational parameters, such a erasure code parameters, utilized
according to embodiments. Likewise, memory 212 may comprise one or more repair
queue, such as repair queue 254, providing a hierarchy of source object instances for
repair processing.

[0074] In operation according to embodiments, the source blocks of electronic data are
stored in storage system 200 as objects. The source objects utilized herein may, for
example, be approximately equal-sized. Source blocks, and thus the corresponding
objects stored by the storage system, may comprise individual files, collections of files,
data volumes, data aggregations, etc. and may be quite large (e.g., on the order of
megabytes, gigabytes, terabytes, etc.). Access server 210 may operate to partition
arriving source data into source objects and to maintain mapping of the source data to the
source objects (e.g., Map: App-Obj comprising an application or source object map
providing mapping of source data to objects). Access server 210 may further operate to
erasure encode the source objects, divide the source objects into fragments, store each
fragment of a source object at a different storage node, and maintain a source object to
fragment map (e.g., Map:Obj-Frag comprising an object fragment map providing
mapping of objects to fragments). Accordingly, the objects are partitioned by logic of
access server 210 into fragments for storage in the storage system. For example, an
object may be partitioned into k fragments for storage in storage system 200. Each of the
k fragments may be of equal size according to embodiments. In operation according to
embodiments herein, and as will be better understood from the discussion which follows,
the aforementioned fragments may comprise a plurality of symbols.

[0075] In implementing such partitioned storage of source data according to
embodiments there can be a unique encoded symbol ID (ESI) associated with each of the

M storage nodes, and all fragments stored on the storage node are generated using the

21

WO 2016/007371 PCT/US2015/038984

ESI associated with that node. Thus a mapping may be maintained for each storage node
indicating the associated ESI and a mapping may be maintained for each source object
indicating which fragments are stored on which storage nodes (e.g., a Map:Obj-Frag map
indicating the encoded symbol ID (ESI) and the storage node ID for each fragment of
each source object). The foregoing mapping information may be updated for source
objects indicating which fragments are available when a storage node permanently fails.
Access server 210 may operate to determine which source object particular source data
(e.g., source data requested by EU device 220) is contained within (e.g., using a
Map:App-Obj map) and to read the data from the storage nodes storing the appropriate
fragments by determining which of the fragments contain relevant source or repair data
(e.g., using a Map:0Obj-Frag map).

[0076] In providing resilient and reliable storage of the data, access server 210 of
embodiments utilizes one or more erasure codes with respect to the source objects,
wherein repair fragments are generated to provide redundant data useful in recovering
data of the source object. For example, embodiments of liquid distributed storage
control logic implement maximum distance separable (MDS) erasure codes
parameterized as (n; k; r), where k is the number of source symbols in a source block, n
is the total number of encoded symbols, and r = n - k is the number of repair symbols. A
property of MDS erasure codes is that all k source symbols can be recovered from any &
of the n encoded symbols. In operation, each fragment (i.e., the source fragments and
repair fragments) of a source object is stored at a different storage node than the other
fragments of the source object. The storage overhead is the ratio of the total amount of
repair data for all objects divided by the total amount of source and repair data for all
objects in the storage system. Thus, the storage overhead is the fraction of the used
storage that is not for source data.

[0077] In some cases, source data is not directly stored in the storage system, only repair
data. In this case, there are n repair fragments stored in the storage system for each
object, where generally any k& (for some erasure codes slightly more than k is sometimes
utilized) of the n fragments can be used to recover the original object, and thus there is
still a redundant storage of r = n - k repair fragments in the storage system beyond the &

needed to recover the object. An alternative type of storage overhead is the ratio of the

22

WO 2016/007371 PCT/US2015/038984

total amount of repair data divided by the total amount of source data, i.e., the storage
overhead is r/k for this type. Generally herein #/n is used as the storage overhead, and
one skilled in the art can see that there is a conversion from one type of storage overhead
to the other type of storage overhead.

[0078] As discussed above, an (n; k; r) erasure code solution, wherein (n; k; r) are small
constants, is said to be a small erasure code solution if n << M. In utilizing such a small
erasure code, a source object is typically partitioned into k source fragments which are
erasure encoded to generate n encoded fragments, wherein r of the n fragments are repair
fragments. Of the M storage nodes in the storage system, n storage nodes may then be
chosen (e.g., storage nodes chosen randomly, storage nodes having independent failures
chosen, etc.) and the n fragments stored to the n chose storage nodes, one fragment per
storage node. The repair strategy traditionally implemented with respect to such small
erasure codes is a reactive repair policy.

[0079] In operation according to a reactive repair policy, the repair of missing fragments
is implemented at a high bandwidth when a storage node fails. That is, the repair policy
causes repair server functionality of an access server to attempt to repair fragments lost
on a storage node as soon as possible in order to repair a failed storage node before
another storage node fails and in order to avoid source objects having more than one
missing fragment (as is generally necessary in order to meet reliability targets in light of
the small number of repair fragments, or redundant data, available using a small erasure
code). Such reactive repair policies use a large amount of burst repair traffic at times
that are dictated by when nodes fail and not at scheduled times. Thus, the burst repair
traffic might occur at times when other processes that share the bandwidth are active,
such as access processes retrieving data from the storage system or storage processes
storing data to the storage system. Thus, if one of these other processes happens to be
actively using bandwidth in a period of time that overlaps with the burst repair traffic
triggered by a storage node failure, the performance of these other processes can be
negatively impacted (e.g., degraded, by the burst repair traffic).

[0080] Although small erasure codes, such as those described above (i.e., n << M), may
be utilized in some embodiments of a liquid distributed storage solution, the illustrated

embodiment of access server 210 implements a large erasure code solution (e.g., using

23

WO 2016/007371 PCT/US2015/038984

large erasure code logic 251) to provide additional benefits as will be appreciated from
the discussion which follows. In utilizing such a large erasure code according to
embodiments, a source object may be partitioned into k source fragments which are
erasure encoded to generate n encoded fragments, wherein r of the n fragments are repair
fragments. The n fragments may then be stored to the M storage nodes, one fragment per
storage node. Accordingly, it should be appreciated that an (n; k; r) erasure code
solution is a large erasure code solution if n = M (i.e., for each source object there are
fragments stored at all the storage nodes), if n is a significant fraction of M (e.g.,n>"2 -
M), or if n is large although perhaps chosen independently of M (e.g., n > 50, or n > 30).
An exemplary large erasure code such as may be utilized according to embodiments
herein include RAPTORAQ as specified in IETF RFC 6330, available from Qualcomm
Incorporated. Further examples of large erasure codes as may be utilized herein include
RAPTOR as specified in IETF RFC 5053, LDPC codes specified in IETF RFC 5170,
tornado codes, and Luby transform (L'T) codes.

[0081] Liquid distributed storage control logic 250 of embodiments implements a repair
policy in order to provide recovery of lost fragments and thereby facilitate resilient and
reliable storage of the source data. For example, a repair policy of liquid distributed
storage control 250 may run in the background (e.g., as a background task to a storage
server application) to monitor storage nodes to determine which storage nodes have
failed and provide operation to replace fragments stored on the failed storage node. In
operation according to embodiments, an object to fragment mapping (e.g., the
aforementioned Map:Obj-I'rag map) may be utilized to keep track of where fragments
are located such that when a storage node is determined to have permanently failed the
loss of the fragments stored thereby are identified (e.g., the fragments which are no
longer available due to failure of the storage node are determined). These fragments, or
some portion thereof, may be tracked in a repair queue for repair operations in
accordance with the repair policy.

[0082] Although it may be beneficial to use a reactive repair policy (i.e., when a
fragment of an object is lost due to a permanent node failure, the repair policy replaces
the lost fragment with another fragment as quickly as possible) for a small erasure code

solution, embodiments utilize a lazy repair policy (i.e., objects are allowed to accumulate

24

WO 2016/007371 PCT/US2015/038984

whereby they are repaired at a steady repair rate, R), such as through operation of lazy
repair policy logic 252. In implementing a lazy repair policy according to embodiments,
the repair rate, R, is designed to ensure a large mean time to loss of any source data
(MTTDL). Additionally or alternatively, repair bandwidth usage may be scheduled to
occur independent of the timing of node failures. For example, repair bandwidth may be
scheduled to be used for a couple of hours each night when other bandwidth activity,
such as access or storage of data, is quiescent. Thus, the repair process may use most or
all of the available bandwidth for a short period of time on a regular basis, to avoid
interrupting or disrupting other bandwidth intensive activities such as access or storage
of data. As another example, the repair process may be scheduled to occur only
occasionally when the storage system is powered up, and at other times the storage
system is powered down to save on energy consumption and costs. The scheduling of
the repair process to use repair bandwidth may also be on an irregular basis (i.e.,
scheduled when other processes such as reading or writing data to storage are relatively
inactive). In every case, the repair bandwidth usage can be crafted to avoid interrupting
other processes that send or receive data over some or parts of the same networking paths
as used by the repair process, and the repair bandwidth usage can be so crafted
independently of the timing of data loss events such as storage node failures.

[0083] It should be appreciated that embodiments may implement a repair policy other
than a lazy repair policy, such as a reactive repair policy. With a reactive repair policy,
however, the overall amount of repair traffic generated is proportional to at least & + 1
times the amount of data lost on permanently failed storage nodes. This is because each
time a fragment of a source object is lost on a permanently failed storage node, at least &
fragments for that object are read by the repair policy to generate at least one repair
fragment that is stored on replacement storage nodes. The intuition that repair traffic
increases as the value of k increases is likely one of the primary reasons that large erasure
codes have not been considered viable for a storage system. However, this intuition is
valid only when using a reactive repair policy and is not valid when using a lazy repair
policy in accordance with embodiments herein.

[0084] In operation, logic of the repair policy may, based on the aforementioned system

maps, determine for each source object which fragments are available and which are

25

WO 2016/007371 PCT/US2015/038984

missing. Repair processing is performed according to embodiments with respect to those
fragments which are determined to be permanently lost, such as due to permanent failure
of the storage node upon which the fragment is stored. Permanent failure of the storage
nodes is often modeled by a Poisson process parameterized by A, which denotes the
failure rate of each node according to an exponential distribution.

[0085] The repair policy of embodiments maintains a repair queue of object instances
(e.g., repair queue 254), wherein a source object instance is added to the repair queue for
a source object when it is possible to generate and store additional fragments for that
source object (e.g., when storage nodes that store fragments for that source object have
failed, when new or replacement storage nodes have been added to the storage system,
etc.). Embodiments implementing a large erasure code solution using a lazy repair
policy may operate to add a source object instance to the repair queue when a pre-
specified minimum number minQ > 1 of fragments for that source object are lost due to
node storage failures, such as to limit the overall amount of repair traffic. However,
analysis suggests that setting min() = 1 maximizes the reliability and minimizes the
repair network bandwidth used by the repair policy of both small erasure code solutions
and large erasure code solutions. Furthermore, analysis suggests that lazy repair policies
implemented according to embodiments described herein rarely process source objects
until many fragments are missing for the object for large erasure code solutions. Thus,
setting minQ) > 1 may, in practice, provide no different operation than setting minQ = 1.
All descriptions herein therefore assume minQ = 1.

[0086] Whenever there is at least one source object instance in the repair queue the
repair policy of embodiments works to repair the source objects corresponding to source
object instances in the repair queue. For example, logic implementing the repair policy
may linearly cycle through the object instances in the repair queue, read in at least k
fragments to recover a source object in need of repair, and generate and store additional
fragments for the source object on one or more replacement storage nodes.

[0087] Although all data stored on a storage node is lost when the storage node fails
permanently, storage nodes can intermittently fail, in which case the data stored on them
is only temporarily unavailable. It would be counterproductive for a repair policy to

repair data due to an intermittent storage node failure, as the network bandwidth cost for

26

WO 2016/007371 PCT/US2015/038984

the repairs would potentially be quite high and ultimately unnecessary. Accordingly,
repair policies implemented according to embodiments operate to implement logic for
avoiding repairing intermittently failed storage nodes.

[0088] Accordingly, logic of the repair policy may utilize an intermittent failure
threshold time, 7, to delay adding an instance of a source object to the repair queue for
avoiding repairing intermittently missing data. For example, an intermittent failure
threshold time, T, may establish a time between when a storage node fails and when the
repair policy can start repair of data lost on that storage node. In accordance with
embodiments the intermittent failure threshold time may be set to 30 minutes (i.e., 7= 30
minutes). This value in some systems provides a reasonable amount of time to
distinguish between a temporary and permanent failure, since typically more than 90% of
the time when a storage node fails it is only an intermittent failure and it comes back
online within a few minutes. Examples of reasons for intermittent storage node failures
include software or firmware upgrades, maintenance, intermittent issues, etc. In these
cases, even though permanent storage node failures may be detected within 30 minutes,
it may be considerably longer until storage nodes are replaced and the repair policy can
start storing fragments on replacement storage nodes. For example, it may be more cost
effective to replace permanently failed storage nodes on a less urgent basis (e.g., after a
permanent failure has been detected it may be days or even weeks before it is cost
effective or practical to replace the storage node).

[0089] It should be appreciated that, for small erasure code solutions, there may be spare
capacity on storage nodes that remain functioning that may be used to store additional
fragments for source objects to replace fragments on permanently failed storage nodes.
Thus, source objects that have lost fragments on a permanently failed storage node can
start to be repaired as soon as the storage node failure is determined to be permanent.
This approach does, however, require spare storage node capacity and does have some
mapping complexity and load balancing challenges. For example, replacement storage
nodes are typically added as storage nodes permanently fail, and using these replacement
storage nodes in a balanced way can be challenging. In contrast, for large erasure code
solutions implemented according to embodiments herein, since there is a fragment on

each storage node for each source object, when a storage node permanently fails the

27

WO 2016/007371 PCT/US2015/038984

fragments lost on that storage node are eventually replaced by fragments put onto the
replacement storage nodes.

[0090] In operation according to embodiments, source object instances within the repair
queue are prioritized by logic of the repair policy. For example, as to source objects
using the same level of partitioning (i.e., the same value of k), the source object instances
corresponding to source objects with the least amount of available fragments may be
provided the highest priority, and source object instances added earlier to the repair
queue than other source object instances may be provided higher priority if the
corresponding source objects have an equal number of available fragments. Additionally
or alternatively, particular source objects may be provided prioritized repair operation in
the repair queue, such as to provide a higher level of reliability (e.g., where the particular
source objects are deemed more important than other source objects, where a client
associated with the particular source objects is to receive a higher quality of service
(QoS), etc.). For example, the default can be that normal objects with same number of
available fragments have the same priority, but higher priority objects with a given
number f of available fragments can have the same priority within the repair policy as
normal priority objects with f” fragments available, where " < f. Priorities can be
indicated, for example, by providing a list of integers associated with each object (e.g., 0,
1, 2, 3, 4, etc. may provide the priority list for normal priority objects, whereas 100, 110,
111, 115, etc. may provide the priority list for higher priority objects, wherein these lists
may be provided either explicitly or implicitly computed based on a formula provided for
each such type of priority), whereby the interpretation is that when a first object has k+j
available fragments where the value j is in its associated list at position i then the first
object has the same priority in the repair policy as a second object that has k+;j available
fragments where the value j’ is in its associated list at position i. Such prioritization
levels can be fairly fine grain since there are so many fragments for large erasure code
solutions.

[0091] It should be appreciated that the prioritization according to embodiments herein
accommodates various relative situations with respect to the source objects. For
example, the foregoing prioritization scheme accommodates situations where some

source objects have more repair fragments associated therewith than do other source

28

WO 2016/007371 PCT/US2015/038984

objects as well as situations where certain source objects are preferred over other source
objects by the repair process, even though the source objects may have the same number
of available fragments at that point in time. As another example of different types of
priorities for different objects, objects may be classified for example into either being of
type 1 or type 2, wherein the total amount of provisioned repair bandwidth R is
partitioned into Ry and R; (e.g2., R = Ry + R;) and objects that are of type 1 are processed
in a repair queue using average repair bandwidth at most R; and objects that are of type 2
are processed in a repair queue using average repair bandwidth at most R,. Thus, if D is
the total size of objects of type 1 and D is the total size of objects of type 2, then the two
types of objects would have approximately equal priority if Ry = D1/(D1 + D;)-R, and
thus objects of type 1 will have higher priority (better MTTDL) than objects of type 2 if
R1 > D1/(D1+ D3)-R. The number of priorities can be naturally extended from two
priorities to any number of priorities according to embodiments herein.

[0092] In providing liquid distributed storage control, embodiments herein constrain the
repair bandwidth used by the repair policy to be a small fraction of an overall global
amount of bandwidth available or used by the storage system. For example, the repair
bandwidth is constrained to an extent that the queue of objects needing repair builds up
and the objects are repaired as a flow (i.e., to an extent the repair policy is operating in a
liquid regime and liquid analysis is applicable). Accordingly, as will be more fully
understood from the discussion which follows, the illustrated embodiment of liquid
distributed storage control 250 includes repair bandwidth control logic 253, such as may
operate in cooperation with repair policy logic such as lazy repair policy logic 252 to
constrain the repair bandwidth utilized in repair processing.

[0093] A repair bandwidth metric utilized in providing the aforementioned repair
bandwidth constraint according to embodiments is an amount of bandwidth provisioned
to be used by the repair policy, whereby the repair policy is constrained by this
provisioned bandwidth at each point in time. It should be appreciated that, although the
descriptions below assume this instantaneous definition of repair bandwidth, results
provided according to the concepts herein hold for the case when considering average
repair bandwidth over a relevant period of time instead of instantaneous repair

bandwidth. More generally, the repair bandwidth used by the repair process may be

29

WO 2016/007371 PCT/US2015/038984

varied according to a periodic schedule, in reaction to activity by other processes, or
according to various other criteria as long as the average repair bandwidth usage over
relevant windows of time is sufficient to achieve the provisioned MTTDL. The average
amount of provisioned repair bandwidth that is sufficient to achieve a provisioned
MTTDL may depend on the amount of source data stored in the storage system, the
storage overhead, the rate at which data is lost from the storage system, and other similar
parameters, and thus the average amount of provisioned repair bandwidth may be
adjusted slowly over time in response to changes to these parameters.

[0094] In operation according to embodiments, the amount of bandwidth provisioned to
be used by the repair policy may be automatically adjusted from time to time. For
example, the amount of bandwidth, and thus the repair rate, R, realized may be
periodically adjusted based on projected or actual data loss rate from the storage nodes
and/or the data redundancy provided by the repair policy solution implemented. In
accordance with embodiments, logic of repair bandwidth control logic 253 may operate
to make calculations to determine, based on the total amount of source data stored in the
storage system, a projected or actual data loss rate, a repair rate which assures that the
repair policy being implemented can process the queued source object instances to repair
the lost data before there is sufficient fragment loss resulting in permanent loss of data.
[0095] The graph of FIG. 3A illustrates operation of an embodiment of lazy repair policy
logic 252 in cooperation with repair bandwidth control logic 253 providing lazy repair of
source objects when constraining the repair bandwidth to provide a steady repair rate,

Ry azy, resulting in an acceptable known guaranteed maximum impact on applications
reading and writing source data to and from storage system 200. That is, although
storage nodes may fail at various instances in time (e.g., as designated along the time
axis in FIG. 3A), lazy repair policy logic 252 operates to implement repair of the source
objects using an amount of repair bandwidth as set by repair bandwidth control 253.
More generally, the amount of repair bandwidth used can be allocated by the repair
policy in a way that is largely independent of the timing of storage node failures.

[0096] The foregoing steady repair rate is in contrast to the bursty repair rate of a
reactive repair policy, as typically implemented with respect to a small erasure code,

where the timing of the burst of repair bandwidth usage depends on the timing of the

30

WO 2016/007371 PCT/US2015/038984

node failure, and may be at a time that interferes with operation of other processes such
as access or storage, or may occur at times of planned quiescent periods when for
example the storage system power usage is to be minimized. In analyzing the repair
traffic associated with operation of a reactive repair policy the failure rate of individual
storage nodes may be represented as A and thus the overall failure rate of the storage
nodes may be represented as A-M. The total size of source objects stored in the storage
system may be represented by Dsgc, and the total amount of data that might be stored in
the storage system for these storage objects, with n fragments per source object, may be
represented by Dar1 = Dsre * n/k. In determining the average repair traffic (Apast) for a
reactive repair policy, A-M is the average rate at which a storage node fails, Dy /M is the
average amount of data lost on a failed storage node, and the needed repair bandwidth to
restore data lost on a storage node is k+1 times the amount of data on a failed storage
node, thus providing Apasy= A Dary - (k+1), as represented in the graph of FIG. 3B.
However, also as illustrated in FIG. 3B, the repair rate spikes upon detection of a storage
node failure (i.e., the actual repair rates shown following the storage node failures as
designated along the time axis in FIG. 3B) in association with repair processing which
attempts to repair the data as soon as possible after the storage node failure is detected. It
should be appreciated that, although the bursts of repair bandwidth utilization illustrated
in FIG. 3B are illustrated as having a same magnitude for simplifying the figure, the
magnitude of such bursts may vary significantly in correspondence to the number of
source objects having fragments lost in association with a source node failure (i.e.,
Rpasti, Rrasta, Reasts, and Rpasry of the example may have different magnitudes). In
order to ensure reliability in a storage system implement a small erasure code and
reactive repair policy, the repair bandwidth, Rras7, must be greater (possibly significantly
greater) than the average repair traffic (e.2., Rrast > Arast). That is, the storage system
should implement repairs at a much higher rate than the average loss rate to ensure data
remains recoverable (e.g., at least k fragments are available with respect to each source
object) when there are multiple failures of storage nodes (e.g., over a short period of
time).

[0097] From the forgoing description of operation of a reactive repair policy with respect

to a small erasure code, it can be seen that the average repair traffic would be increased

31

WO 2016/007371 PCT/US2015/038984

where a large erasure code were utilized in place of a small erasure code. However,
utilization of a lazy repair policy in accordance with embodiments herein avoid such
undesirable or unacceptable repair traffic. In operation of a lazy repair policy, a modest
amount of repair bandwidth (e.g., that may be constrained at a predetermined level, such
as based upon one or more repair parameters) may be utilized in repairing the fragments
of source objects. For example, the repair bandwidth may be calculated and perhaps
slowly adjusted (and thus the lazy repair rate, Ry ozy, constrained), such as based on
projected or actual redundancy data loss. In operation of such a lazy repair process,
source objects are typically repaired only after a number, possibly large number (e.g.,
source object fragments numbering & r or more, wherein g = %2 for example), of
fragments for that source object are lost.

[0098] Implementation of a lazy repair policy according to embodiments operates to
constrain the repair bandwidth and provides a steady repair rate, Ry azy, approaching the
product of the redundancy of the erasure code and the rate of loss of data by the storage
system. Thatis Rpazy = ff - u, wherein /£ is the redundancy of the erasure code and the
storage overhead of the storage system (i.e., f/ = r/n) and u is the storage system data loss
rate. The time to repair all source objects by such a lazy repair process is at most the
total amount of possible data in the storage system, Dar;, divided by the repair rate,
Riazy, (Dar1/Riazy). The repair rate, Ry a7y, is thus selected so as to enable the repair
process to process the source objects before more than a number of source nodes
equaling the number of repair symbols, r, are lost. That is, no object will be lost if the
number of storage node failures over any period of duration ¢ is at most r = f-M. If LM ¢
= r then the expected number of storage node failures in time # is r. Solving this
equation, Ry azy= A M-Da11/r = Dag1/f. Thus, embodiments herein may set Ry azy =
0-A-Dar1/f, wherein & may be selected depending on a desired level of reliability (e.g., 6
> 1, wherein the MTTDL is high when ¢ is slightly greater than one because r is large
when a large erasure code is used). Such an implementation provides efficient repair
operation facilitating reliable and resilient data storage as the repair bandwidth utilized is
a near optimal function of the data loss rate and data redundancy.

[0099] The graph of FIG. 3C shows a comparison of operation of a reactive repair policy

using a small erasure code (as shown in FIG. 3B) with an embodiment of a lazy repair

32

WO 2016/007371 PCT/US2015/038984

policy using a large erasure code (as shown in FIG. 3A). As can be seen in the
illustrated example, the repair bandwidth utilized by the lazy repair policy (Rpazy) is not
only significantly less than the peak repair bandwidth of the reactive repair policy
(Rrast), and often even less than the average repair bandwidth of the reactive repair
policy (Azasy), but is constrained so as to avoid the busty repair traffic resulting from
operation of the reactive repair policy. Such lazy repair policy bandwidth utilization
works well with the storage system’s access and storage policies which each will attempt
to use an amount of the total available bandwidth for storage of and access to the data by
the client applications. The value of Ry azy may be an average repair bandwidth over a
relatively long period of time, and the actual usage of repair bandwidth over shorter
intervals of time may be adjusted or regulated based on a number of factors, such as
avoiding interference with periods of high bandwidth activity by other processes (e.g.,
access or storage processes, or avoiding repair bandwidth usage during periods of time
when the storage system is powered down to save power).

[00100] When utilizing traditional data organization schemes (i.e., dividing the
source object into blocks of contiguous data) there is a high cost of accessing source data
that is not currently available (e.g., due to an intermittent storage node failure or due to a
permanent storage node failure that has not yet been repaired). For example, the access
properties of a typical storage system, such as that provided by an AZURE cloud
platform available from Microsoft Corporation, provide for reading f{(1.) bytes from the
storage nodes to access L bytes of source data, wherein the value of f{1.) depends on the
state of the storage system. If the source data is within source fragments on available
storage nodes, the system may directly read the source data from the storage nodes, and
thus f{L) = L and the access is read efficient (although the read may be from one storage
node which, if that storage node is operating slowly for any reason, may dramatically
degrade the read performance). However, if the source data is within one or more source
fragment on failed storage nodes, direct reading of the data fails and the reads are slowed
down or even stalled (e.g., waiting on the read to resolve). The source data may be
recovered from k other fragments on available storage nodes, whereby f(1.) = k-L. and
thus the access is read inefficient by a factor of & (note that if . < NBsize then higher read

complexity is experienced with respect to all storage nodes). It should be appreciated

33

WO 2016/007371 PCT/US2015/038984

that the forgoing read inefficiency, wherein k& times the amount of data being accessed is
read for recovering data in the case of a failed storage node is particularly problematic
with respect to the use of a large erasure code, wherein & is quite large. Accordingly,
embodiments of liquid distributed storage control logic 250 implement an alternative
data organization (referred to herein as the weaver data organization), such as may be
implemented by weaver data organization logic 255, that allows efficient access to all
source data even when using a large erasure code.

[00101] The weaver data organization implemented according to embodiments
provides for concatenation of short source blocks from the source object for inclusion of
a symbol of each source block in each of a plurality of the generated source fragments.
In operation of the weaver data organization technique of embodiments, the source
object may be thought of as a stream, as opposed to an object of a particular size,
whereby the data of the stream is splayed into fragments (e.g., as if a rope into strands).
For example, a source object may be splayed into a plurality of strands, wherein data for
each of those strands is written to a different node as a fragment. In operation according
to embodiments implementing a weaver data organization, an object can be erasure
coded as it is arriving. In accordance with embodiments, the source block is a very small
fraction of the object, whereby the symbol size, Ssize, is set to a small value independent
of object size, Osize, each k-Ssize bytes is another source block, and the source block is
partitioned into k source symbols. In operation, r repair symbols may be erasure
encoded (n = k+r) for each source block. Symbol i from each source block may then be
added to fragment i according to embodiments of a weaver data organization, thereby
providing an interleaved pattern of source data of objects stored in each source fragment
wherein each fragment may be stored in a different storage node. This streaming type
concatenation of the source object allows the repair policy to avoid handling large
objects, instead streaming data into the storage nodes at a very fine granularity (e.g.,
Bsize is a small fraction of NBsize). Similarly, if a portion of the source data is lost, the
concatenated source block data structure of the weaver data organization facilitates
reading only small portions from other fragments which in the aggregate equal the size

of the missing data (i.e., the amount of data read to recover the missing data is the

34

WO 2016/007371 PCT/US2015/038984

original size of that missing data, as opposed to k times the size of the missing data as in
a traditional data organization scheme).

[00102] In an example of the use of the foregoing weaver data structure, stripe j
may be encoded, wherein the source object is being broken up into stripes which each
comprises a source block. In this example, source block j includes bytes j-k-Ssize . . .
(j+1)-k Ssize-1 of the source object. The encoded symbol may be represented as Enc(i,j),
wherein i is the source symbol number (e.g., the ESI or encoding symbol ID) and j is the
source block number. Thus, fragment i contains Enc(i,j) in bytes j-Ssize . . . (j+1)-Ssize-
1. The foregoing exemplary stripe j may be decoded given Enc(i,j) from fragment i for
at least k values of i (e.g., bytes j-k-Ssize . . . (j+1)-k-Size-1 of the source object can be
recovered).

[00103] FIGS. 4A, 4B, 4D-4N show a high level representation of operation
implementing a weaver data structure according to embodiments herein. The diagram of
FIG. 4A shows a representation of a source object partitioned into source blocks and
source fragments, wherein source fragment i comprises a concatenation of symbol i from
the source blocks in the source object according to an embodiment of the weaver data
organization. Referring to FIG. 4B, the i" symbol from source Fragment O (which has
ESI = 0), the i" symbol from source Fragment 1(which has ESI = 1), the i" symbol from
source Fragment 2 (which has ESI =2), . . . and the i symbol from source Fragment k-1
(which has ESI = k-1) are used to generate the i symbols for Fragments &, k+1, ..., n-1
(with corresponding ESIs =k, k+1, ..., n-1). This is repeated, using a next symbol of the
source Fragments 0, 1, ..., k-1 to generate a next symbol for each of the repair fragments
(e.g., Fragments k, k+1, ..., n-1). As can be appreciated from the foregoing, the i"
symbol from each source block is put into Fragment i.

[00104] In the embodiment of the weaver data structure illustrated in FIG. 4A, the
source object size is much greater than the source block size, where Bsize is the size of
the source block in bytes and Osize is the size of the object in bytes, and thus Bsize <<
Osize and the node block size (i.e., the size of a typical fast read) is much greater than the
number of bytes in a symbol, where Ssize is the size of a symbol in bytes and NBsize is

the size of a node block in bytes (the node block being the efficient read unit of data from

35

WO 2016/007371 PCT/US2015/038984

the storage nodes, e.g., 500 bytes to hundreds of kilobytes depending upon the particular
storage technology), and thus Ssize << NBsize.

[00105] In contrast to the concatenated configuration provided by the weaver data
structure, the traditional data structure provides fragments comprised of blocks of
contiguous bytes from the source data (e.g., source fragment 0 = symbol O from the
source block), as illustrated in the diagram of FIG. 4C. It should be appreciated that in
the data structure illustrated in FIG. 4C, the source object size and source block size are
equal (Bsize = Osize) while the number of bytes in a symbol is much greater than the
node block size (Ssize >> NBsize).

[00106] Encoding and decoding of data using the weaver data organization is
illustrated in FIG. 4D, wherein the number of source symbols per source block, k, is
represented as being 5 and each box contains Ssize bytes of data (i.e., each box contains
one symbol of data). As can be seen in the example of FIG. 4D, each column in the
source object represented on the left of the figure comprises a source block (i.e., a source
block comprising & source symbols). In FIG. 4D, the order of the data in the source
object is represented by the number label in each box (i.e.., the data in the box labeled O
comprises the first Ssize bytes of the source object, followed by each of the Ssize bytes of
data in the boxes labeled 1, 2, 3, ..., 29). Moving across the rows of the source object
represented on the left of the figure, the symbols of different source fragments are
utilized to generate each repair symbol of each corresponding repair fragment (e.g., using
RaptorQ encoding) shown on the right of the figure, when the object is first stored in the
storage system. For each source block, additional repair symbols are also generated
according to embodiments, as represented by Fragment 5 through Fragment 8 of the
illustrated embodiment (of which Fragment 5 and Fragment 8 are shown). In the
illustrated example, source symbols are indexed from 0 to k-1 and repair symbols are
indexed from k to n-1. Fragment O of FIG. 4D corresponds to the symbols from each of
the source bocks in the correct order with encoding of symbol ID as 0O (i.e., the first row
of source symbols in the source object shown on the left of the figure). For the
illustrated repair fragments, the first index value shown in the boxes representing the
symbols is the encoding symbol ID (e.g., 5 for Fragment 5) and the second index value is

the source block number (e.g.,0,1,2,3,...).

36

WO 2016/007371 PCT/US2015/038984

[00107] In the embodiment illustrated in FIG. 4E, the node block size, NBsize, is
the amount of data that can be efficiently read from the storage nodes in a single read
operation, the number of source symbols in a source block, k, is represented as being 5,
and each box representing a symbol contains Ssize bytes of data. As can be seen in the
example embodiment, the node block size, NBsize, may be appreciably larger than the
symbol size, in contrast to typical data structures in which the node block size is much
smaller than the source symbol size. Accordingly, in this example, 5 symbols of a
fragment may be read from the storage nodes at a time, whereby k - NBsize is the data
recovery block size.

[00108] As an example implementation of a weaver data structure, Ssize = 64
bytes is a suitable size for symbols in some embodiments, as then each symbol may be
operated on efficiently in some CPU architectures, as 64 bytes may be the size of a cache
line, or may be the amount of data that may fit conveniently in a CPU register. In this
case, if for example the number of source symbols k = 1024, then Bsize = k:Ssize = 64
Kilobytes. The value of Bsize is also convenient for some CPU architectures, as it is
often the case that 64 Kilobytes of data can easily fit into the fastest cache available to
the CPU, which expedites fast access to all symbols of the source block during the
encoding and decoding process, leading to very fast erasure encoding and decoding
speeds. For example, for an implementation of the RaptorQ) erasure code described in
IETF RFC 6330, encoding and decoding speeds in the range of several Gigabits per
second are achieved using a single CPU on a standard server architecture. For a FLASH
based storage node architecture, the value of NBsize might be 8 Kilobytes, and thus Ssize
<< NBsize, and the data recovery block size in this example is kNBsize = 8 Megabytes.
In this same example, the size of source objects, Osize, may be 1 Gigabyte, and thus
Bsize is a very small fraction of Osize (i.e., Bsize/Osize = 0.000061).

[00109] The access properties of a storage system, such as a storage system
configured in accordance with the above example referencing an implementation of an
AZURE cloud platform available from Microsoft Corporation, but which implements a
weaver data structure in accordance with the concepts herein provides for reading L
bytes of data from the storage nodes to access L bytes of source data, independent of the

state of the storage nodes. In particular, to recover data from any & fragments on

37

WO 2016/007371 PCT/US2015/038984

available storage nodes, L/k bytes may be read from at least k fragments and L bytes of
source data decoded (e.g., using RaptorQ decoding), whereby f(1)) = k-L/k = L.
Moreover, the read succeeds even if some fragments are unavailable (e.g., due to failed
storage nodes) or where some data is slow to arrive, such as by reading data from more
than k fragments according to embodiments (e.g., embodiments may operate to read the
L desired bytes from more than k fragments to facilitate successful, efficient reads even
when storage nodes have failed or data is otherwise delayed when returned).
Accordingly, implementation of a weaver data structure facilities operation in which read
speed is independent of storage node availability and provides more availability.
Additionally, data may be encoded/decoded incrementally (e.g., one source block at a
time). Such operation may reduce encode/decode latency (e.g., encode/decode latency
sometimes associated with large erasure codes, such as RaptorQ) and facilitates
optimized CPU/cache encoding/decoding workflow. Such incremental
encoding/decoding facilitates near immediate data availability.

[00110] FIG. 4F shows operation utilizing a weaver data structure according to
embodiments to provide stream encoding as described above. In the illustration of FIG.
4F, as the data of the source object moves from left to right the source blocks are erasure
encoded and written to the storage nodes. Because the source block is a relatively small
portion of the source object, this portion may be encoded and streamed to the different
fragments which may then be written to the storage nodes immediately (or perhaps
cached locally to collect a portion of each fragment which may be written to the storage
node efficiently). This stream encoding is shown in the context of an exemplary storage
system in the illustration of FIG. 4G, wherein the data is arriving from the EU device,
whereby each source block is erasure encoded into the different portions of the fragments
which are written to the storage nodes. It should be appreciated that, although a single
connection is shown between the access server and each of the storage nodes in FIG. 4G,
embodiments herein may utilize multiple connections between an access server and
storage node for uploading data of fragments to the storage node.

[00111] FIGS. 4H and 41 show decoding operation (corresponding to the
illustrations of FIGS. 4F and 4G, respectively) utilizing a weaver data structure

according to embodiments herein. In the illustrated decoding operation, data is being

38

WO 2016/007371 PCT/US2015/038984

accessed from the storage system and being provided to the EU device, thus the data in
the illustration is moving from the right to the left. The right of the illustration shows the
portions of the fragments being read from which the desired source data is erasure
decoded to generate source blocks. The source blocks may then be provided to the EU
device (e.g., as a source object or some portion thereof). As can be appreciated from the
illustration of FIG. 41, the source blocks are decoded from the data being read to provide
a stream of source data nearly immediately upon arrival of the data at the decoder logic
(e.g., as soon as at least a portion of k fragments has arrived the source data may be
decoded and streamed to the EU device). It should be appreciated that, although a single
connection is shown between the access server and the storage nodes in FIG. 41,
embodiments herein may utilize multiple connections between an access server and a
storage node for downloading data of fragments from the storage node.

[00112] FIG. 4], showing access server recovery of source data, illustrates the
aforementioned availability of source data as soon as at least a portion of k fragments has
arrived. In the embodiment illustrated in FIG. 4J, the number of source symbols in a
source block, k, is 5. Accordingly, only 5 fragments need to be read in order to recover
source data. In the embodiment illustrated in FIG. 4], the access server attempts to read
the desired data from 8 fragments (i.e., Fragments 0-7). The bars shown for each of the
fragments being read in FIG. 4] represent a prefix of how much data has arrived from the
fragment to the access server. In the illustrated example, the prefix has been received up
to at least the dotted line of data from the storage nodes for Fragment O, Fragment 1,
Fragment 5, Fragment 6, and Fragment 7. Accordingly, as soon as the data received for
Fragment 7 reaches the level of the dotted line (it being appreciated that the data of
Fragment 7 is the last of the 5 to reach this threshold level), the source data may be
decoded. FIG. 4K show the access server recovery of source data at a slightly later point
in time than represented in FIG. 4J. In the example illustrated in FIG. 4J, the receipt of
data for some of the fragments has sped up and/or for some other of the fragments has
slowed down. Nevertheless, at the point represented by the dotted line data from 5
fragments has been received (now Fragment O, Fragment 1, Fragment 3, Fragment 4, and
Fragment 6). The data from these 5 fragments may thus be used to recover the source

data. As can be appreciated from the foregoing, the availability of the data is not stopped

39

WO 2016/007371 PCT/US2015/038984

or stalled, and thus successful, efficient reading of the desired data is provided by
reading more than k fragments, even when storage nodes have failed (e.g., the storage
node storing Fragment 2) or data is otherwise delayed (e.g., the data of Fragments 3 and
4 in FIG. 4] or Pragments 5 and 7 in FIG. 4K). As the data for the different fragments
arrives, data for the first £ fragments may be used to decode the desired source data,
thereby providing good speed in terms of data recovery, even where storage nodes have
failed and/or data from one or more storage nodes is delayed.

[00113] FIG. 4L illustrates the stream generation of repair data facilitated by a
weaver data structure of embodiments. As can be seen from the graphical representation
of FIG. 4L, as the fragment streams are arriving to the repair process (strands 401), the
streams are erasure decoded to produce a source block portion of the source data stream
(source block 402) and then erasure encoded to produce additional portions of fragments
(strands 403) that can then be stored as fragment streams to the storage nodes. To
generate the repair data according to the illustrated embodiment, at least k fragment
streams are read from the storage nodes in order to repair that portion of the source
object. The data of the k fragments may be erasure decoded to generate a source block
and then immediately erasure encoded to generate the source and/or repair fragments
(e.g., up to r additional fragments) to be written to other storage nodes (e.g., newly added
storage nodes). Such reading and decoding of fragments to recover a source block is
illustrated with respect to the context of an exemplary storage system is shown in FIG.
4M. Correspondingly, an example of the encoding to generate source and/or repair
fragments and their storage by the storage nodes in the context of an exemplary storage
system is shown in FIG. 4N (e.g., in this illustration source Fragment 4 and repair
Fragment 6 are generated and written to storage nodes).

[00114] FIG. 40 illustrates traditional erasure encoding/decoding of source
objects, wherein the source objects are divided into blocks of contiguous data. As can be
appreciated from the graphical representation of FIG. 40, relatively large chunks of data,
as well as data in excess of the amount of data desired, must be accessed when a portion
of the source data is not available (e.g., due to an intermittent storage node failure or due
to a permanent storage node failure that has not yet been repaired). For example, where

a 1 Megabyte portion of source data from data fragment O is to be accessed, and data

40

WO 2016/007371 PCT/US2015/038984

fragment O is not available (e.g., because the storage node where it is stored has failed),
but data fragments 1 — 9 and 13 are available. Then, corresponding 1 Megabyte portions
of data from each of data fragments 1 — 9 and 13 can be read from the storage nodes and
erasure decoding applied to produce the 1 Megabyte portion of source data from data
fragment 0. However, this requires reading 10 Megabytes of data from the storage nodes
to access the 1 Megabyte portion of source data from data fragment . This results in a
high cost of accessing source data that is not currently available. This is in contrast to
the data access facilitated by the erasure encoding/decoding using a weaver data structure
as depicted in FIGS. 4A, 4B, and 4D-4N.

[00115] As can be appreciated from the foregoing, the weaver data organization
technique of embodiments both provides excellent access efficiency for any erasure code
solution, including large erasure code solutions, as well as enables streaming erasure
encoding of source data rather than the block encoding of typical data organization
techniques. Using a large erasure code solution with the weaver data organization
maintains all of the advantages of large erasure code solutions over small erasure code
solutions in terms of reliability, storage overhead, and repair bandwidth, while at the
same time providing excellent access efficiency.

[00116] Although operation of liquid distributed storage control of embodiments
has been described above with reference to providing repair of data loss within the
storage system, operation in accordance with the concepts herein may be applied to a
number of different situations. For example, the cooperation between the repair policy
logic and repair bandwidth control logic facilitates dynamically changing various storage
system parameters without experiencing disruptive results. As one example, the number
of storage nodes may be significantly changed in the storage system (e.g., expanding the
number of storage nodes, M, from 1,200 to 2,000) whereby the lazy repair policy
implementing a large erasure code (e.g., n = M, n > 3% M, etc.) constrained by a
provisioned repair bandwidth will operate to regenerate the fragments for each source
object, storing a fragment on each of the storage nodes, over time at a steady repair rate,
R, corresponding to the provisioned repair bandwidth. Changes with respect to any of
the erasure code parameters (n; k; r) may similarly be accommodated without disruptive

results according to embodiments herein.

41

WO 2016/007371 PCT/US2015/038984

[00117] FIG. 4P shows operation according to embodiments utilizing a weaver
data structure to accommodate changes with respect to the erasure code parameters. For
example, operation as illustrated in the example of FIG. 4P may be utilized to
redistribute data within the storage system using the stream decoding and encoding of a
weaver data structure according to the concepts herein. As an example of the repair
process accommodating changes with respect to the erasure code parameters, assume that
the storage system initially includes 1000 storage nodes (i.e., M = 1000) and that a large
erasure code is utilized with respect to the repair process (e.g., n =M = 1000). Thus, in
an initial state source objects may be divided into k source fragments (e.g., k = 750) and
erasure encoded to provide r repair fragments (e.g., ¥ = 250), such that a fragment of the
1000 total fragments (where n = k + r) is stored on each one of the 1000 storage nodes
with respect to any particular source object. Thereafter, the number of storage nodes
may be increased, such as to include 2000 storage nodes (i.e., M’ = 2000). Operation of
a repair process according to embodiments herein may be utilized to redistribute the
source data over the added storage nodes through changing one or more of the erasure
code parameters and applying the repair process to the data stored in the storage system.
For example, the data may be read and decoded by the repair process using the initial
erasure code parameters (7; k; r) and encoded and written by the repair process using
new erasure code parameters (n°; k’; r’). In the foregoing example, the total number of
fragments, n, for the source objects may be increased to 2000 (i.e., n’ = 2000 = M’), and
k and r correspondingly changed (e.g. &’ = 1500, #’ = 500, and n” =2000 =k’ + 7).
Thereafter, n° new fragments may be generated from the source data using erasure
encoding using the new erasure code parameters (n’; k’; ¥’). The generated new
fragments may be stored on each storage node (i.e., in this example n’ = M”). The
reading and decoding of fragments using the initial erasure code parameters is illustrated
with respect to the context of an exemplary storage system is shown in FIG. 4Q.
Correspondingly, the encoding to generate encoded fragments using the new erasure
code parameters and the storage of the generated fragments by the storage nodes in the
context of an exemplary storage system is shown in FIG. 4R. Having stored the new
fragments generated using the changed erasure code parameters, the storage space on the

storage nodes that was used to store the initial fragments the source object may be

42

WO 2016/007371 PCT/US2015/038984

released (e.g., marked for deletion). In operation of embodiments utilizing a weaver data
organization structure, the foregoing accessing data using initial erasure code parameters,
writing data using new erasure code parameters, and releasing the initial fragments of the
source object may be performed on an object by object basis, or even incrementally
within a source object (e.g., on a fragment by fragment basis, or by a corresponding
portion of each fragment basis), thereby minimizing the impact upon available storage
space while the redistribution of data is in process. It should be appreciated that the
foregoing operation in the example given results in %2 as much data from each source
object being stored on each storage node, although the same relative level of redundancy
is provided. Moreover, the data is spread over the new storage nodes without disruption
of the storage system operations, but rather as a background repair process operation. As
an alternative, a process different than the repair process may be used to execute this
redistribution and re-encoding of the of the source data in the storage system.

[00118] FIGS. 5A-5E illustrate operation of a lazy repair policy implementing a
large erasure code where n = M according to embodiments. In the example storage
system of FIGS. SA-5E, the number of storage nodes, M, is 20, the total number of
fragments stored for a source object, n, is 20, the number of source symbols, &, is 10, and
the number of repair symbols, r, is 10 in order to provide a simplified configuration to
aid in the understanding of the concepts herein. It should be appreciated that the
forgoing parameters may be significantly different (e.g., the number of storage nodes, M,
and correspondingly the total number of fragments stored for a source object, n, the
number of source symbols, &, and the number of repair symbols, , may be significantly
larger, such as M being on the order of 30, 50, 100, 1,000, or 10,000) in actual
implementations.

[00119] Process state graph 510 of FIG. 5A illustrates the state of lazy repair
policy operation by an access server (e.g., access server 210 of FIG. 2) providing a repair
service, such as may be provided by one or more repair servers, implementing the lazy
repair policy. Process state graphs 530-1 through 530-20 illustrate the state of lazy repair
operation by storage nodes (e.g., storage nodes 210-1 through 210-M of FIG. 2) in
accordance with the repair service implementing the lazy repair policy. The current

processing point for each of process state graphs 510 and 530-1 through 530-20 is

43

WO 2016/007371 PCT/US2015/038984

represented by the horizontal bar shown, wherein processing proceeds clockwise around
the circle of each processing state graph. The circle of process state graph 510 represents
the source objects stored by the storage system (e.g., individual source objects
represented by a corresponding portion of the circle, wherein the source objects in the
aggregate provide the complete circle). The circle of process state graphs 530-1 through
530-20 represent the fragments, of the source objects represented by process state graph
510, stored by each respective storage node (e.g., each individual fragment represented
by a corresponding portion of the circle). It should be appreciated, however, that not all
storage nodes are shown as including a full complement of fragments for all objects (i.e.,
the unshaded portions of the circles represents missing fragments for source objects
corresponding to that portion of the circle). The storage nodes associated with the
process state graphs of FIG. 5A having higher designation numbers (e.g., process state
graphs 530-12 through 530-20) may have been added to the storage system more
recently and thus fragments for all source objects may not yet have been stored to these
storage nodes.

[00120] In this embodiment, in operation of the repair policy, the repair service of
the illustrated embodiment linearly cycles through each of the source objects, as
represented by the processing point of process state graph 510 proceeding clockwise
through the source objects, to implement repairs with respect to missing fragments.
Correspondingly, the storage nodes (or some portion thereof) having fragments for the
source object may be accessed (e.g., the storage nodes represented by process state
graphs 530-1 through 530-12, wherein the processing point is indicated as reading
fragments) to generate missing fragments (e.g., source and/or repair fragments) for
storage by the storage nodes missing fragments of the source object (e.g., the storage
nodes represented by process state graphs 530-13 through 530-20, wherein the
processing point is indicated as writing fragments). That is, in this example, the oldest
12 storage nodes (represented by process state graphs 530-1 through 530-12) have
fragments for all of the source data, and thus if & is at most 12 then all of the source
objects can be recovered from the fragments stored on these 12 storage nodes. The
remaining 8 storage nodes of this example (represented by process state graphs 530-13

through 530-20) have not been operable in the storage system for a full cycle of repair of

44

WO 2016/007371 PCT/US2015/038984

the source data, and thus have fragments for some but not all of the source objects. For
example, the storage node represented by process state graph 530-13 has some source
object fragments, and as the repair process continues for another short while (assuming
this storage node does not permanently fail) this storage node will soon also have
fragments for all of the source objects (e.g., another approximately 1/4 of a turn around
the circle will cause this). The storage node represented by process state graph 530-20
has been added to the storage system recently. Thus, this storage node only has
fragments for very recently repaired source objects, and it will be sometime before this
storage node has fragments for all of the source objects.

[00121] It should be appreciated that in the foregoing example that 12 storage
nodes (storage nodes represented by process state graphs 530-1 through 530-12) are
illustrated as capable of access to (reading) fragments from which a source object the
repair process is currently processing in order to generate fragments for the repair.
However, the example above provided the number of source symbols, k, as 10 and thus
any 10 of the storage nodes may be accessed for their respective fragments to generate
the fragments needed to complete the total number of fragments stored for a source
object, n, (i.e., 20 in the foregoing example) by the repair process.

[00122] In operation of a lazy repair policy according to embodiments herein,
source objects having missing fragments are allowed to accumulate whereby they are
repaired at a steady repair rate, R, through operation of a repair service, as represented by
the clockwise cycling through the source objects of process state graph 510. FIG. 5B
illustrates this in further detail. As previously mentioned, the circle of process state
graph 510 represents the source objects stored by the storage system. As also mentioned
previously, source objects are processed by the repair process in order of those source
objects having the least number of fragments available, and among source objects with
the same number of fragments available those objects that were repaired further in the
past have priority over objects repaired more recently. When n = M (i.e., when there is a
fragment for each source object on each storage node) it turns out that the order of
processing of source objects is the same order each time the source objects are processed.
Thus, the lazy repair policy operation of embodiments can be viewed as processing the

source objects always in the same order, as if though the source objects were arranged

45

WO 2016/007371 PCT/US2015/038984

around a circle and the lazy repair policy operation proceeds around the circle processing
the source objects in the corresponding order of their arrangement around the circle,
implementing a lazy repair policy in accordance with the concepts herein. Accordingly,
individual source objects are represented by a corresponding portion of the circle. For
example, those source objects having the most missing fragments (e.g., having a higher
priority for generating repair fragments) are those in the circle nearest to the processing
point measured with respect to the clockwise direction of processing, and those source
objects having the fewest missing fragments (e.g., having a lower priority for generating
repair fragments) are those in the circle furthest from the processing point measured with
respect to the clockwise direction of processing (i.e., these are the objects that are closest
to the processing point in the counter clockwise direction that will be processed furthest
in the future). In the particular example illustrated in FIG. 5B, the source objects
represented by portion 510-1 have 8 missing fragments, the source objects represented
by portion 510-2 have 7 missing fragments, the source objects represented by portion
510-3 have 6 missing fragments, the source objects represented by portion 510-4 have 5
missing fragments, the source objects represented by portion 510-5 have 4 missing
fragments, the source objects represented by portion 510-6 have 3 missing fragments, the
source objects represented by portion 510-7 have 2 missing fragments, and the source
objects represented by portion 510-8 have 1 missing fragment. The source objects
represented by portion 510-9, however, have all 20 fragments available (i.e., no missing
fragments), as may be the result of repair processing having recently been performed
with respect thereto (as indicated by the processing point being immediately adjacent
thereto in the clockwise direction) and no further storage nodes have failed since these
source object were repaired. In contrast, the source objects represented by portion 510-2
have only 12 available fragments, wherein 10 fragments are needed for recovery of the
data in the foregoing example, and thus present the most urgency with respect to repair
processing. Accordingly, these source objects are the next for repair processing (as
indicated by the processing point being immediately adjacent thereto in the
counterclockwise direction). Provided the cycling through each of the source objects, as
represented by the clockwise progression of the processing point around the circle of

process state graph 501, is at a repair rate, R, sufficient to process the queued source

46

WO 2016/007371 PCT/US2015/038984

objects before the loss rate of fragments results in fewer than 10 fragments being
available in the storage system, no data will be lost. Knowing the data loss rate statics
for the storage system, the rate for implementing such repair processing (perhaps with
some buffer for a variation in loss rate) may be determined and implemented by a lazy
repair policy of embodiments.

[00123] FIG. 5C illustrates operation of a lazy repair policy with respect to
intermittent storage node failures. In the example illustrated in FIG. 5C, the storage
nodes associated with process state graphs 530-13 and 530-15 have experienced an
intermittent failure (i.e., a temporary failure), whereby the storage node is unavailable for
access (e.g., for reading and writing fragment data) for some period of time (although, as
this is a temporary failure, they will each become available within a sufficiently short
time so as not to be declared permanently failed). That is, processing by the repair
policy at the immediate past processing points was unable to write fragments for the
source object then being processed to these storage nodes. Thus, the intermittent failure
is represented by the portion of the respective circles immediately adjacent the
processing point in the counterclockwise direction (i.e., portion 530-13a for process state
graph 530-13 and portion 530-15a for process state graph 530-15) having no fragments
associated therewith.

[00124] A repair service may implement an intermittent failure policy to
accommodate intermittent storage node failures, such as those illustrated in FIG. 5C. In
operation according to such an intermittent failure policy according to embodiments, the
repair policy may read in at least k fragments for the source object, erasure decode the
source object from the fragments as they arrive, and generate additional fragments for the
source object as it is decoded. The additional fragments may be written to the storage
nodes as they are generated. However, continuing with the intermittent storage node
failures of the example above, some storage nodes (e.g., the storage nodes associated
with process state graphs 530-13 and 530-15) are temporarily not available.
Accordingly, the repair service may operate to track which fragments (or portions
thereof) were successfully written and keep local copies of fragments (or portions
thereof) which were not written (e.g., the repair service stores the fragments, as

illustrated by fragments 530-13b and 530-15b stored by repair server functionality of

47

WO 2016/007371 PCT/US2015/038984

access server 110 of FIG. 5D). When a storage node which has experienced an
intermittent failure is detected as having recovered from the failure, the repair service
may schedule a write of the unwritten fragment (or portion thereof) meant for that now
recovered storage node (e.g., the repair service causes the fragments to be written to the
storage nodes, as illustrated by fragments 530-13b and 530-15b written to a respective
one of the storage nodes represented by process state graphs 530-13 and 530-15 of FIG.
SE).

[00125] The amount of storage utilized by a repair service to locally store
fragments to accommodate storage node intermittent failures as described above may
readily be accommodated by a repair server of embodiments herein. As an example, the
storage system may include 1000 storage nodes (i.e., M = 1000), the intermittent storage
node failure rate maybe % per month (i.e., &’ = 1/4 per month), and the time for
intermittent storage nodes to recover may be 30 minutes (i.e., 7= 30 minutes). In this
example, approximately 0.2 intermittent storage node failures may be expected within 30
minutes (i.e., 1000-3/365/48 = 0.2), reasoned as 1000-3 is the number of intermittent
failures per year, divide by 365 provides number of intermittent failures per day, divide
by 48 provides the number of intermittent failures per 30 minutes). An embodiment
implementing a 10 gigabit per second repair rate (i.e., R = 10 Gbps) experiencing 100
intermittent failures within 30 minutes (a level which is 500 times the foregoing expected
level of failures) would store at most 10% of the fragments to be written (i.e., 100/1000
stored over 30 minutes, wherein the repair service discards fragments after time 7, 30
minutes, due to the storage node being determined to be permanently failed).
Accordingly, the repair server of this example would utilize temporary storage capacity
of at most 225 GB (10 Gbps-30 minutes-10% = 225 GB).

[00126] Having generally described systems and apparatus adapted to provide
liquid distributed storage control according to embodiments herein, reference is now
made to FIGS. 6-9 showing flow diagrams of operation according to some embodiments.
It should be appreciated that the operations set forth in the flows of FIGS. 6-9 may be
performed by logic of liquid distributed storage control 212 as executed by processor 211

of access server 210.

48

WO 2016/007371 PCT/US2015/038984

[00127] FIG. 6 shows functional block 601 adapted for implementing liquid
distributed storage control to facilitate repair of source data comprising one or more
source object stored as multiple fragments distributed across multiple storage nodes of a
storage system according to embodiments. As discussed above, the multiple fragments
include redundant data (also referred to herein as repair data) for the source data.
Operation according to the illustrated embodiment determines at least one additional
fragment of the multiple fragments of a source object of the one or more source objects
to generate and store at block 611. Operation at block 612 of the illustrated embodiment
reads data of a plurality of fragments of the multiple fragments from a plurality of
storage nodes of the multiple storage nodes. The source object is erasure decoded from
data of the plurality of fragments in operation at block 613 as illustrated. Data of the
source object is then erasure encoded to provide data of at least one additional fragment
for the multiple fragments at block 614 of the illustrated embodiment. Data of the at
least one additional fragment is written to at least one storage node of the multiple
storage nodes in operation of block 615 as illustrated. As one skilled in the art will
recognize, the above embodiment can be modified to apply to portions of source objects
instead of apply to entire source objects.

[00128] In alternative embodiments, the operation of various ones of the foregoing
blocks may be combined. For example, a full RAPTORQ decoder implementation can
be operated in two steps, where the first step is to generate an intermediate block of data
from received encoding symbols, and the second step is to generate the (missing symbols
of the) source block from the intermediate block, and this is one way to operate the
RaptorQ decoder in block 613. Similarly, a full RAPTORQ encoder implementation can
be operated in two steps, where the first step is to generate an intermediate block from a
source block, and the second step is to generate repair symbols from the intermediate
block, and this is one way to operate the RAPTORQ encoder in block 614. However, the
operation of blocks 613 and 614 can be combined according to embodiments where the
combination of the operation of block 613 and block 614 can be more efficiently
achieved using the following method. In block 613, invoke the first step of the
RAPTORQ decoder to generate an intermediate block from received encoding symbols.

In block 614, invoke the second step of the RAPTORQ encoder applied directly to the

49

WO 2016/007371 PCT/US2015/038984

intermediate block generated in block 613 to generate the encoding symbols (source and
or repair symbols) corresponding to the at least one additional fragment. Thus, this
alternative method operates only the first step of the full RAPTORQ decoder and the
second step of the full RAPTORQ encoder, thus avoiding operating the second step of
the full RAPTORQ decoder and the first step of the full RAPTORQ encoder.

[00129] In implementing features of liquid distributed storage control by
functional block 601 of embodiments, liquid distributed storage control may be provided
with respect to the reading data of the plurality of fragments (block 612) and writing the
data of the at least one additional fragment (block 615) to control an average aggregate
reading and writing bandwidth (R) such that R - f = u, wherein R comprises an average
aggregate reading and writing bandwidth for repair of source data within the storage
system, f# comprises a fraction of data redundancy of the storage system provided by the
one or more fragments including redundant data, and ¢ comprises a rate at which data is
being lost from the multiple storage nodes of the storage system. Additionally or
alternatively, liquid distributed storage control may be provided with respect to the
reading data of the plurality of fragments (block 612) and writing the data of the at least
one additional fragment (block 615) to constrain a reading and writing bandwidth below
a value R that is a function of £ and u, wherein R comprises an average aggregate reading
and writing bandwidth for repair of source data within the storage system, /5 comprises a
fraction of data redundancy of the storage system provided by the one or more fragments
including redundant data, and x comprises a rate at which data is being lost from the
multiple storage nodes of the storage system. Likewise, implementing liquid distributed
storage control may be provided with respect to the reading data of the plurality of
fragments (block 612) and writing the data of the at least one additional fragment (block
615) to provide a repair time (") constrained such that /*** is at most a time for f-M
nodes to permanently fail, wherein X is the time to repair process each of the source
objects of the storage system once (i.e., REP is at most Da11/R), wherein ff comprises a
fraction of data redundancy of the storage system provided by the one or more fragments
including redundant data and M is a number of the multiple storage nodes of the storage

system.

50

WO 2016/007371 PCT/US2015/038984

[00130] Stated another way, the repair bandwidth R may be configured so that REP
is at most the time for - M nodes to permanently fail, wherein § comprises a fraction of
data redundancy of the storage system provided by the one or more fragments including
redundant data and M is the number of storage nodes of the storage system. Where R is
so configured then source data will not be lost from the storage system (i.e., there will
always be sufficient data stored in the storage nodes to ensure that each portion of source
data stored in the storage system can be erasure decoded). That is, since P is at most
Da11/R, if Dap1/R is at most the time for £-M nodes out of M nodes to permanently fail
then source data will not be lost from the storage system. Restating this, if R times Tray.
is at least Dar;. then source data will not be lost from the storage system, where Tray. is
the minimum amount of time in which M nodes permanently fail. For example, if
storage nodes permanently fail independently at rate A then the expected time till f-M
nodes permanently fail is /A (e.g., if 1/A = 3 years and f# = 0.33 then the expected time
till 5-M nodes permanently fail is one year, and Trap is less than one year). Since there
may be permanent node failures that are not replaced by new nodes for a period of time,
it may be impractical to ensure that all portions of source data are restored to M
fragments during the repair process, f-M can be more generally be replaced with X in this
paragraph, where X is the minimum over all portions of source data of the difference
between the number of fragments the portion of source data has available just after repair
and the number of source fragments for that portion of source data. There may also be
intermittent node failures, in which case X may be further reduced by the maximum
number (with high probability) of concurrent intermittent node failures. This
methodology also applies when n < M if Tpan is redefined to be the minimum amount of
time in which X nodes out of any n nodes permanently fail. Furthermore, 7roy. may be
defined as an amount of time for which it is improbable (instead of impossible) for X
nodes out of any n nodes to permanently fail in less than this amount of time. Thus if R
times Trap is at least Dapy then source data loss is unlikely from the storage system,
where Tray. is an amount of time for which it is unlikely that more than §-M nodes
permanently fail when nodes are replaced on a regular basis, or more generally Tpan is
an amount of time for which it is unlikely that more than X nodes permanently fail,

where X is as described above.

51

WO 2016/007371 PCT/US2015/038984

[00131] The provisioned value of R may be an average repair bandwidth needed
by the repair process over a long window of time, whereas the actual repair bandwidth
used by the repair process can be controlled to average to the provisioned value of R over
windows W of time, whereas over intervals of time shorter than W the repair bandwidth
can vary dramatically, independent of when data is lost (but source objects are not
necessarily lost, and preferably source objects are not lost) from the storage system (e.g.,
due to storage node failures). For example, a target MTTDL may be achieved if the
provisioned bandwidth is R = 1 Gbps when averaged over windows W of one month, and
thus the actual pattern of repair bandwidth usage by the lazy repair process operation
may be to use 48 Gbps for a three and a half hour period of time each Sunday, i.e., from
1 AM to 4:30 AM. Accordingly, the average aggregate reading and writing bandwidth
(R) provided by liquid distributed storage control of embodiments may be dynamically
adjusted. For example, implementing liquid distributed storage control may be provided
with respect to the reading data of the plurality of fragments (block 612) and writing the
data of the at least one additional fragment (block 615) to provide a dynamically adjusted
repair bandwidth, R, wherein R is dynamically adjusted based on an amount of repair
instances in a repair queue and a predicted data loss rate for the multiple storage nodes.
In general, the adjustment of the provisioned repair bandwidth R can be such that R W
changes gradually, where Wis a window of time over which the repair policy should use
an average of R bandwidth (if there are objects in the repair queue) to achieve a
provisioned MTTDL.

[00132] In the foregoing discussion of FIG. 6, the repair bandwidth is represented
as R, whereas in the discussion of FIGS. 3A and 3B the repair rate is represented as R. It
should be appreciated that, the repair rate is the actual rate at which the repair process is
using bandwidth, and the repair bandwidth is generally the repair rate, although the
repair bandwidth may be used to indicate an upper bound on the repair rate. However,
for the lazy repair policy of embodiments herein most of the time the repair rate and the
upper bound on the repair rate are the same (i.e., most of the time the repair policy uses
all of the repair bandwidth made available to the repair policy). Accordingly, the
aforementioned examples have used R to represent both the repair rate and the repair

bandwidth.

52

WO 2016/007371 PCT/US2015/038984

[00133] FIG. 7 shows functional block 701 adapted for implementing liquid
distributed storage control to facilitate repair of source data comprising one or more
source objects stored as multiple fragments distributed across multiple storage nodes of a
storage system according to embodiments. Operation according to the illustrated
embodiment determines that at least one fragment of the multiple fragments is missing
from the storage system for a source object for which there is no corresponding object
instance in a repair queue at block 711. A corresponding object instance is added to the
repair queue for the source object at block 712. It should be appreciated that the repair
queue may contain corresponding object instances for a large fraction of objects stored in
the storage system. For example, such a large fraction according to embodiments may
comprise a number of object instances greater than or equal to 1-c¢/r, wherein r is the
number of the multiple repair fragments of source objects of the one or more source
objects, ¢ is a positive, non-zero constant value (e.g., 1 < ¢ < 10 according to
embodiments). Additionally or alternatively, such a large fraction according to
embodiments may comprise 50% or greater of the source objects, 70% or greater of the
source objects, or 90% or greater of the source objects. At block 713 of the illustrated
embodiment the object instance is selected from the repair queue based on a priority of
the object instance relative to other object instances in the repair queue. Operation in
accordance with the illustrated embodiment at block 714 reads a plurality of fragments of
the multiple fragments corresponding to the selected object instance from a plurality of
storage nodes of the multiple storage nodes. Thereafter, a corresponding source object is
erasure decoded from the plurality of fragments (block 715) and one or more additional
fragments is erasure encoded from the decoded source object (block 716) according to
the illustrated embodiment. The one or more additional fragments are written to storage
nodes of the storage system (block 717) and the selected object instance is deleted from
the repair queue (block 718) as illustrated.

[00134] In alternative embodiments, the operation of various ones of the foregoing
blocks may be combined. For example, block 715 and block 716 can be combined,
operating only the first step of a full RAPTORQ decoder and the second step of a full
RAPTOrQ encoder, thus avoiding operating the second step of the full RAPTORQ

53

WO 2016/007371 PCT/US2015/038984

decoder and the first step of the full RAPTORQ encoder, similar to the alternative
embodiment of block 613 and 614 of FIG. 6 described herein.

[00135] As can be appreciated from the forgoing, embodiments implemented in
accordance with functional block 701 employ a repair queue. As can readily be
appreciated from the disclosure herein, this repair queue may be utilized in implementing
a lazy repair policy, a priority based hierarchy of source object instances for repair
processing, etc.

[00136] FIGS. 8 and 9 illustrate operation employing the features of a data
organization technique, such as the aforementioned weaver data organization, allowing a
repair policy to avoid handling large objects and instead stream data into the storage
nodes at a very fine granularity. It should be appreciated that, although not illustrated as
part of a functional block for implementing liquid distributed storage control, the
embodiments of FIGS. 8 and 9 may be utilized as part of liquid distributed storage
control to facilitate repair of source data comprising one or more source object stored as
multiple fragments distributed across multiple storage nodes of a storage system, if
desired.

[00137] In operation according to the embodiment of FIG. 8 a request to access a
portion of source data is received at block 801 that is stored using an (»; k; r) erasure
code. Data of a plurality of fragments of the multiple fragments is read from a plurality
of storage nodes of the multiple storage nodes to access the portion of data at block 802
of the illustrated embodiment. It should be appreciated that, due to the data organization
utilized, an amount of the data of the plurality of fragments read at block 802 of
embodiments is substantially equal to a size of the requested portion of the source data
independent of the pattern of which fragments are available and missing for all patterns
that include at least k available fragments. Operation at block 803 of the illustrated
embodiments provides erasure decoding of the portion of source data from the data of
the plurality of fragments read from the plurality of storage nodes. Thereafter, at block
804, the portion of the source data may be provided in response to the request.

[00138] FIG. 9 shows a flow adapted for generating repair data for source data of
a source object to be stored as multiple fragments distributed across multiple storage

nodes of a storage system according to concepts herein. The repair data may, for

54

WO 2016/007371 PCT/US2015/038984

example, be generated from the source data using an (n; k; r) erasure code. Operation at
block 901 of the illustrated embodiment provides for receiving the source data as a
stream of data. Through use of the features of the data organization utilized according to
embodiments, the stream of source data is erasure encoded to generate a stream of
encoded data as the stream of source data is arriving (block 902) and a plurality of output
fragment streams are produced from the stream of encoded data as the stream of encoded
data is being generated (block 903). Thereafter, using the data organization, each of the
plurality of output fragment streams are written to storage nodes as the output fragment
streams are being produced (block 904), wherein a first portion of each of the output
fragment streams corresponds to a first portion of the source object and are written to the
storage nodes before a second portion of the source object has been received.

[00139] FIG. 10 shows operation for providing repair data for source data stored
in a storage system as fragment data distributed across multiple storage nodes according
to embodiments. The illustrated embodiment comprises functional block 1001 adapted
for generating the fragment data for the source data using a repair process (e.g., a repair
process running on one or more servers) at block 1001. The erasure code from which the
repair data may, for example, comprise an (n; k; r) erasure code. The source data from
for which the repair data is generated is organized as consecutive source blocks of source
data, wherein a size of the source data is much greater than a size of the source blocks,
according to embodiments. In operation according to embodiments, the repair process
processes each of the source blocks of source data in order. The repair process flow of
the illustrated embodiment includes for each of at least k storage nodes, accessing a
portion of the fragment data stored on the storage node corresponding to the source block
of the source data (block 1011). The source block of the source data is recovered from
the accessed portions of the fragment data using erasure decoding at block 1012 of the
illustrated embodiment. At least one portion of fragment data is generated from the
source block of the source data using erasure encoding at block 1013 of the illustrated
embodiment. Thereafter, for each storage node for which a portion of fragment data is
generated, the generated portion of fragment data may be stored on the storage node
(block 1014). In operation according to embodiments, data of the source data stored on

each node of the multiple storage nodes is organized as consecutive portions of fragment

55

WO 2016/007371 PCT/US2015/038984

data, wherein the consecutive portions of fragment data are generated from the
consecutive source blocks of the source data.

[00140] In alternative embodiments, the operation of various ones of the foregoing
blocks, may be combined. For example, block 1012 and block 1013 can be combined,
operating only the first step of a full RAPTORQ decoder and the second step of a full
RAPTORQ encoder, thus avoiding operating the second step of the full RAPTORQ
decoder and the first step of the full RAPTORQ encoder, similar to the alternative
embodiment of block 613 and 614 of FIG. 6 described herein.

[00141] FIG. 11 shows operation for redistributing repair data for source data
redundantly stored in a storage system as fragment data distributed across multiple
storage nodes. The repair data is generated from the source data using an (n; k; r) erasure
code using a repair process (e.g., a repair process running on one or more servers). The
source data from which the repair data is generated is organized as consecutive existing
source blocks of source data, wherein a size of the source data is much greater than a size
of the existing source blocks, according to embodiments. The source data stored on each
storage node of the multiple storage nodes is organized as consecutive portions of
fragment data, wherein the consecutive portions of fragment data are generated from the
consecutive portions of source data, according to embodiments. The illustrated
embodiment comprises functional block 1101 adapted for redistributing repair data by a
repair process processing each of the existing source blocks of source data in order. The
processing by the repair process of the illustrated embodiment includes determining, for
an existing source block of source data, the parameters (n; k;) and the symbol size Ssize
of the erasure code used for generating and storing existing portions of the fragment data
from the existing source block (block 1111). The existing portions of fragment data
stored on the storage node corresponding to the existing source block of source data is
accessed for each of at least & nodes at block 1112 of the illustrated embodiment. The
existing source block of source data is recovered from the accessed existing portions of
fragment data using erasure decoding at block 1113 of the illustrated embodiment, and
the existing source block of size k-Ssize is placed into a FIFO (first-in first-out)
temporary buffer. Parameters (r’; k’; r’) and the symbol size Ssize’ for a new source

block of source data are determined for new portions of fragment data to be generated for

56

WO 2016/007371 PCT/US2015/038984

the new source block of source data at block 1114 of the illustrated embodiment. At
block 1115 of the illustrated embodiment, as long as there are at least k’-Ssize” bytes in
the FIFO temporary buffer, k™-Ssize” bytes of data are removed from the FIFO temporary
buffer to form a new source block, and »” new portions of fragment data are generated
from the new source block of source data using erasure encoding. In operation according
to embodiments, k* of the new portions of the fragment data comprise data from the new
source block of source data. The generated new portion of fragment data is stored on the
storage node for each storage node for which a new portion of fragment data is generated
at block 1116 of the illustrated embodiment. Thereafter, the storage space on storage
nodes that was used to store the existing portions of fragment data for the existing source
block of source data may be released (block 1117).

[00142] The foregoing discussion has provided description of operation of liquid
distributed storage control, and functional blocks thereof, according to embodiments
herein. The following discussion provides additional detail and analysis with respect to
various aspects of liquid distributed storage control and corresponding use of large
erasure codes, lazy repair policies, repair bandwidth control, and weaver data
organization.

[00143] The analysis below shows that there are tradeoffs for large erasure code
solutions between storage efficiency and repair bandwidth. In particular, using more
data redundancy allows using less repair bandwidth, and vice-versa. Moreover, a large
erasure code solution can use less repair bandwidth than a small erasure code solution for
the same storage efficiency, or alternatively, a large erasure code solution can be more
storage efficient than a small erasure code solution using the same or less repair
bandwidth. The analysis of the repair policy, analyzes the lower bounds on the repair
bandwidth required by the repair policy for both small erasure code solutions and large
erasure code solutions to be able to provide good reliability. For large erasure code
solutions the analysis shows the amount of repair bandwidth sufficient to provide good
reliability for a given storage overhead is relatively close to the lower bound. It should
be appreciated that the analysis applies when the repair bandwidth is compressed to the
point that the repair queue is seldom empty (e.g., there are nearly always multiple object

instances flowing through the repair queue in a coordinated way), and are thus the object

57

WO 2016/007371 PCT/US2015/038984

instances act as a liquid. The analysis is thus referred to herein a liquid analysis of the
repair policy.

[00144] The liquid analysis herein models the overall system behavior of the repair
policy, and in particular models how the size of the repair queue, populated with object
instances for objects that require repair, grows relative to how much the repair bandwidth
used by the repair policy is compressed. In contrast, a Markov chain analysis generally
assumes that object instances are treated independently and do not collect in a repair
queue (e.g., the object instances act like gas molecules that are repaired independently),
and thus such an analysis is referred to herein as a gas analysis. The liquid analysis of
repair policies provided here identify generally when the behavior of the repair policy
transitions from a gas regime to a liquid regime as the repair bandwidth is compressed,
which roughly identifies the range of repair bandwidths for which a gas analysis is
applicable. One of the findings provided by the liquid analysis for small erasure code
solutions is that, the repair policy behavior undergoes phase transitions as the assumed
repair bandwidth, R, allocated to the repair policy is lowered.

[00145] For simplicity in the following, there are M storage nodes in the system (i.e., a
new storage node is added to the system within a reasonable amount of time, such as
almost immediately, within one day or one week or one year, when a storage node
permanently fails). For small erasure code solutions the liquid analysis shows that there
are a sequence of decreasing repair bandwidth thresholds Rfm, Rgm, R?m, oy RI™ at
which the following phase transitions occur: If R is sufficiently above the threshold R?™
then the repair queue is generally close to empty and objects are repaired relatively
quickly (i.e., the repair policy is in the gas regime); As R is lowered below the threshold
R$™ a phase transition to the liquid regime occurs where the repair queue is filled with
an increasing fraction of objects with one fragment missing, and these objects remain in
the repair queue increasing durations in time until they are repaired or until they have
two missing fragments and are then repaired relatively quickly; As R is lowered below
the threshold R3™ a second phase transition occurs where the repair queue is filled with
so many objects with one fragment missing that they are never repaired until they have
two fragments missing, and the objects with two fragments missing either remain in the

repair queue for increasing periods of time until they are repaired or until they have three

58

WO 2016/007371 PCT/US2015/038984

missing fragments and are then repaired relatively quickly; and As R is lowered below
the threshold Rl-Sm an ™ phase transition occurs where the repair queue is filled with so
many objects with at most i - 1 fragments missing that they are never repaired until they
have i fragments missing, and the objects with i fragments missing either remain in the
repair queue for increasing periods of time until repaired or until they have i + 1 missing
fragments and are then repaired relatively quickly.

[00146] For large erasure codes the repair policy operates in the regime where the liquid
analysis is applicable for any reasonable amount of repair bandwidth, and the liquid
analysis provides a relatively tight analysis of the repair bandwidth that is sufficient for a
given storage overhead and reliability. The following expresses when repair bandwidth
R provides reliability with respect to the total size Dy;;. = Dsgpc/(1 —) of the
aggregate size of source and repair data stored in the system if all M fragments are
available for every stored object, wherein Dggc is the aggregate size of all source objects
stored in the storage system, as a function of the number r of repair fragments per object:

Source data is never lost if the number of failed storage nodes over periods of duration

Darr
R

Darr
R

is at most » = f-M. The duration is an upper bound on the amount of time to

repair all the objects in the storage system at the average repair bandwidth rate R, and r =
f-M is the maximum number of storage nodes that can fail before an object needs repair

since the last time it was repaired. This expression can be used to describe a relationship
between the repair bandwidth R, the storage overhead f = %, an upper bound on the the

amount of overall data D,y in the storage system, and the storage node failure rate A.

Darl, . AM-Darp

Since the expected number of node failures in time s ————, the expression

implies that:
R B = A-Day
(1
One way to interpret Equation (1) is that the product of the repair bandwidth R and
storage overhead f should be at least as large as the rate u = A - Dy at which the storage
system loses data.
[00147] Turning now to liquid analysis of (n; k; r) small erasure codes, the analysis

demonstrates a relationship between the repair bandwidth constraint R and the fullness of

59

WO 2016/007371 PCT/US2015/038984

the repair queue. For i =0 to r, let f; be the fraction of objects for which # - i fragments
are available. Suppose that f; = 1 (i.e., all fragments for all objects are available) and

thus the repair queue is empty. Then the rate at which repair traffic is being added to the

_ (k+1)-n-A-Dar1,
n

repair queue is at least RY™ = (k+1)- A - Dupy,since at least k + 1

of n fragments are to be either read or written to repair an object, and each object with n
fragments available is being added to the repair queue at rate n - A, and D,y is the total
size of all fragments for objects for which all # fragments are available.

[00148] The first phase transition occurs at the threshold value R3™. When R > R3™
the repair queue is filled slower than it is emptied and thus it can be empty most of the
time, when R = R}™ the repair queue is filled at the same rate it is emptied and thus it is
in an unstable state where it can sometimes be empty but other times quite full due to
random fluctuations, and when R < R3™ the repair queue is filled faster than it is

emptied and thus it starts filling up.

(k+1)- A- DarL .

yi-1_ 1
n Z,:on_j

[00149] In general, fori=1to r, an i phase transition occurs at Rl-Sm =

To appreciate this, suppose the rate R is such that for j = 1 to i-1, objects are added to and
removed from f; at a balanced rate so that f; is not changing, and the rate repair traffic is

being added to f; is R. Then, the relative ratio of the transition rate of objects from

(n-(j-1))- fj-1.

hich
-p-r; e

fi — 1 to f; to the transition rate of objects from f; to f;,4 is

. .) - (n—(i— -

implies n- fo = (n— 1) fy =+ = (= ([=) iy, R = LD Dt
fi—1,and f; = fi.q1 = -+ = f,, = 0. These constraints imply that the phase transition is at
R = RF™. Note that S22 Palk 12D o psm o (4D 2 D,

i n i

[00150] The foregoing liquid analysis illustrates some consequences of implementing
liquid distributed storage control, especially for small erasure code solutions, according
to embodiments. For example, when R < R$™ the mean time to repair for even a single
fragment loss for an object will generally be much larger than 7', where T is the time

between when a storage node fails and when the storage node failure is determined to be
(k+1)-S

either permanent or intermittent, and even much larger than for processing all the

objects affected by the loss of a single node, where S is the amount of data stored on the

60

WO 2016/007371 PCT/US2015/038984

failed storage node. This is because there will be a large number of object instances for

other objects in the repair queue that will be competing for the R network bandwidth that

Sm
R115 then at least 33% of the

the repair policy can use for repair. For example, if R =

objects will be in the repair queue. Since the object instance for an object has lowest
priority when it is first placed in the repair queue, according to embodiments, unless
there is another fragment loss for that object that raises the priority of the object instance,

the average amount of time the repair policy takes to generate one or more repair

2:(k+1)-M-S

fragments for the object is at least -

, which is approximately 67% of the time it

takes to read all source data in the storage system at rate R. This is because object
instances for objects with one fragment missing are moving at a rate of R/2 to missing
two fragments, and object instances for objects missing two fragments are higher priority
than object instances for objects missing one fragment, and thus object instances for
objects with one fragment missing are being repaired and removed from the repair queue
at a rate of only R/2.

[00151] The foregoing amount of time is significantly longer than the repair time
assumed in the usual Markov chain analysis used to determine MTTDL. Furthermore,
when a storage node fails it is likely that a large fraction of the fragments it stores are
objects that already had one fragment missing before the node failed. Thus, it will take
some significant amount of time to repair these objects with two fragments missing on
the failed storage node. This analysis indicates that generally such a Markov chain
analysis is not directly applicable when R < R3™, and the actual MTTDL is much larger
when R is restricted as described.

[00152] For small erasure code solutions, where each of the r = n - k repair symbols is a
relatively significant portion of the protection provided for an object, when R < R{™ the
resulting high average repair time of objects significantly degrades the reliability
protection provided by the storage system solution. Even when R is less than the
threshold R$™ but close to RP™, the repair queue will intermittently grow to a significant
level for extended periods of time, due to random variation in the rate of storage node

failures, putting at risk the protection provided by small erasure code solutions. Thus,

61

WO 2016/007371 PCT/US2015/038984

for small erasure code solutions the repair bandwidth R is generally significantly greater
than the threshold R}™.
[00153] Turning now to liquid analysis of (n; k; r) = (M; (1 — B) - M; B+ M) large

erasure codes, where f = % < 1 is the storage overhead, the analysis shows that a large

erasure code solution can provide high reliability and use significantly less repair

bandwidth R than a small erasure code solution. In the case of such a large erasure code,
each of the r = i - M repair symbols is a relatively small % portion of the overall

protection. In providing the large erasure code liquid analysis it should be observed that
the time between when an object instance is added to the repair queue for an object and

when the repair policy restores all M fragments for the object (i.e., the repair time) is at

DarL

most —=. This observation may be justified as follows: Assume that an object instance

start

O-instance for object O is added to the repair queue at time £ and processing of O-

end

instance by the repair policy concludes at time ™. The analysis shows that O-instance

start

is processed before any object instances added to the repair queue after time ¢ are
processed.

[00154] Now consider an object instance O -prior for object O’ that is in the repair

start

queue at time ¢

start

. Assume processing of O’-prior concludes at time ¢’, where £ < t’ <

™, and thus all fragments of O are available on all storage nodes that have not failed at

end

time ¢’. It can be seen that from time ¢’ to time ¢ there will be a fragment stored for O’

on each storage node for which there is a fragment stored for O (and O’ possibly also has
fragments stored on storage nodes for which no fragments are stored for (), and thus
during this interval of time the number of available fragments for O’ is at least the
number of available fragments for O.

[00155] Assume an object instance O -after for object O’ is added to the repair queue at

end

. Because O’ between time ¢’ and time ¢

end

<t'<t’'<ft

start

time ¢’’, where ¢ has as
many available fragments as O, and because O’-after is added to the repair queue after
O-instance, the priority of O-instance in the repair queue should always be higher than
that of O’-after, and thus O-instance will be processed before O’-after. Similarly,

start

consider any object instance O’-after for O’ that is not in the repair queue at time £,

62

WO 2016/007371 PCT/US2015/038984

end

and before ¢

start

but is added to the repair queue after time ¢ . By similar arguments to
those above, O-instance will be processed before O’-after.

[00156] From the foregoing, the time to complete processing of O-instance is in the
worst case the amount of time it takes to repair the object instances in the repair queue at

start

time . In the worst case there is an object instance for every object in the repair

start

queue at time " and O-instance is the lowest priority amongst these. The total traffic

: . , D
used to repair every object once is bounded by Da;. Thus, te7¢ — ¢St < %.

[00157] An upper bound on the probability that source data is lost by the storage system
can be determined from the probability of the following failure event, since the
aforementioned observation shows that source data loss can occur only if the failure

event occurs. Assume a failure event in which there are more than r = ff - M storage node
. . L . D

failures in a time interval of duration %.

[00158] To evaluate the failure event probability, let X be a Poisson random variable

with E[X] = A" =

A-M-D C .
TALL. That is, 4’ is the expected number of node failures over a

. . D
time interval of duration %.

(0.0)

[00159] Let Poisson(a,b) = e ¢ > Cil—'lbe the probability that a Poisson
i=b+1"

random variable with mean a is at least . Then Pr[X = r] = Poisson (1', 7).
[00160] Permanent node failure events occur at a rate 1- M. A permanent node failure

at time ¢ can cause data loss only if in the window of duration % prior to ¢ there are at

least r permanent node failures. Thus, using a union bound, the frequency of data loss is

at most A+ M - Poisson (X', r), and thus the MTTDL is at least ——————— Tet m be a
A-M-Poisson (A',r)

target MTTDL. If Poisson (4, r) < m then the MTTDL will be at least m. The smallest

l.
& > 1 may be found so that Poisson (%, r) < m If R were set to RS = % then 1’ =

M =r(ie., E[X] =7r) for this value of R. Thus,R =6 - R implies ' = % and
guarantees that the MTTDL is at least m. This value of R is conservative, as it assumes

that all # fragments of an object are either accessed or stored during the repair, when

generally less than n fragments are accessed or stored during the repair. From this it can

63

WO 2016/007371 PCT/US2015/038984

be seen that if the amount of data either read or written by the repair process is at least D, over

every window of duration at least % then the MTTDL. is at least m. Stated differently, if the

average repair bandwidth is at least R over every window of duration at least % then the

MTTDL is at least m. For a fixed MTTDL target m, a fixed value § and a fixed rate of
individual storage node failures A, the value of ¢ approaches one as a function of an increasing

number M of storage nodes in the system. Thus, the average amount of repair bandwidth R that

A:Dar1,

is sufficient approaches and the window duration approaches % as a function of an

increasing number M of storage nodes in the system.
[00161] A slightly optimistic value of R can be imputed as follows: When the repair happens

on objects missing % fragments, the network traffic overall to repair all objects once is

r

. +5 . . .
proportional to Dy - ng, since k fragments are read and % fragments are written to repair an
. . 8§ k+ .
object with n fragments. If R = Tr - R"8 then the expected number of storage node failures

-
over a time interval of duration % : kTJrE is g, in which case the upper bounds on the probability
of the failure event apply. It should be appreciated that the actual value of R that guarantees the
MTTDL is at least m is somewhere between the conservative and the slightly optimistic value of
R.

[00162] The usage of repair bandwidth can be considered as two separate components: the
amount of bandwidth used to read data from storage nodes to access servers, hereafter referred to
as the read repair bandwidth, and the amount of bandwidth used to write data from access servers
to storage nodes, hereafter referred to as the write repair bandwidth. Depending on the network
architecture, it is often the case that the read repair bandwidth used by a repair process and the
bandwidth used by an access process to access source objects or portions of source objects for
EU devices use shared network resources. Similarly, it is often the case that the write repair
bandwidth used by a repair process and the bandwidth used by a storage process to store source
objects or portions of source objects for EU device use shared network resources. Thus, it can be
useful to bound separately the amount of read repair bandwidth and the amount write repair
bandwidth needed by a repair process to achieve a given MTTDL for a storage system.

[00163] For a small code solution using a reactive repair policy, the amount of write repair
bandwidth used averaged over long periods of time is A - Dy, since generally for a small code
solution all » fragments are available for storage objects most of the time, and thus amount of

data stored on the storage nodes is typically close to Day, and data on average is being written at

64

WO 2016/007371 PCT/US2015/038984

the rate A - Dy, that it is being lost. On the other hand, as described herein, over short periods at
unpredictable times the write repair bandwidth for a small code solution can be much higher. For
a liquid distributed storage system using a large code and a lazy repair policy, the amount of
write repair bandwidth used is at most A - Dy, and at least A - Dggc, since the amount of data
stored in the storage system is between Dy, and Dgpe when using a lazy repair policy. Thus, the
average write repair bandwidth for a liquid distributed storage solution is at most that of a small
code solution. Furthermore, similar to the overall repair bandwidth, the usage of the write repair
bandwidth can be flexibly scheduled independent of the storage node failure events.

[00164] For a small code solution using a reactive repair policy, the amount of read repair
bandwidth used averaged over long periods of time is A - kg, * Dap, = A - gy - Dgpe» Since
generally for a small code solution at least kg, fragments are read for each fragment written,
where (Mg, ; Ksm; Tsm) are the small code parameters. On the other hand, as described herein,
over short periods at unpredictable times the read repair bandwidth for a small code solution can

be much higher. For a liquid distributed storage system using a large code and a lazy repair

A:Dspc

policy, the amount of read repair bandwidth used is at most Rppap = 0 - . 'This is because,

using similar reasoning to that used to bound the overall repair bandwidth, if the amount of data

£
52

the MTTDL is at least m. Stated differently, if the average repair bandwidth is at least Rrpap

that is read by the repair process is at least Dgpc over every window of duration at least — then

over every window of duration at least % then the MTTDL. is at least m. For a fixed MTTDL

target m, a fixed value §§ and a fixed rate of individual storage node failures A, the value of 6

approaches one as a function of an increasing number M of storage nodes in the system. Thus,

A'D
SRE and the

the average amount of read repair bandwidth Rrrap that is sufficient approaches

window duration approaches % as a function of an increasing number M of storage nodes in the

system. Furthermore, similar to the overall repair bandwidth, the usage of the read repair

bandwidth can be flexibly scheduled independent of the storage node failure events. Note that

, Anig-Dsre

the read repair bandwidth is Rpgap = 6 for the liquid distributed storage solution,

TLg
where (ng; kyg; 11) are the code parameters for the large code, and if the two solutions use the

. r . . .
same relative storage overhead § = —£ = = then the read repair bandwidth for the liquid

nLg Nsm

 Angy Dspe

distributed storage solution can be expressed as Rppap = & , which is smaller by a

¥sm

factor of TSTI“ than the read repair bandwidth used by a small code solution using a reactive repair

65

WO 2016/007371 PCT/US2015/038984

policy, and is smaller by a factor approaching 7i;, as 6 approaches one as a function of an
increasing number of M of storage nodes in the system. The analysis immediately above
when R is the read repair bandwidth is a small modification of the analysis provided
above when R is the aggregate read and write bandwidth. Similar modifications of other
portions of the analysis provided above when R is the aggregate read and write
bandwidth can also provide an analysis when R is the read repair bandwidth. For
example, when R is the read repair bandwidth then the modified analysis shows that if R
times Tgar is at least Dggrc then source data loss is unlikely from the storage system,
where Trar. is an amount of time for which it is unlikely that more than £-M nodes
permanently fail when nodes are replaced on a regular basis, or more generally Tpan is
an amount of time for which it is unlikely that more than X nodes permanently fail,
where X is as described previously. As another example, when R is the read repair
bandwidth then the modified analysis shows that the product of R and the storage
overhead ff should be at least as large as the rate L = A - Dgpc at which the storage system
loses source data.

[00165] In considering large erasure code solutions, for i = 0 to r let Oy,; be the set of
objects with k + i fragments available at time ¢. It can be seen that all objects in Oy
have exactly the same fragments available on the same set of k + i storage nodes My,
associated with a set of k + i ESIs ESIi,;. Furthermore, it can be seen that M;, € My, C
-+ C My, and thus ESI, € ESI, 4 C «-- C ESIj,,. It should be appreciated that the
following are consequences independent of whether or not the large erasure code is
MDS: For all i =0 to r, the set of k + i ESIs ESI;, ; determine the recoverability of all
objects in Oy, ;, thus either all objects or none of the objects in O,; are recoverable, and
the terminology “Oy.; is recoverable” is used herein if all objects in Oy,; are recoverable.
For all i = 1 to r, if Oy4;.; is recoverable then Oy, is recoverable, thus all objects are
recoverable if O,y is recoverable where iy y = min{i: Oy ; # @} (i.e., ipyy is the
minimum index of i such that the set of objects O,; contains at least one object, or
equivalently is not the empty set). Thus, at each point in time there is one set of k + iyy
ESIs ESI.ivn that determines decodability of all objects.

[00166] The repair policy interaction with storage node failures has a relatively simple

pattern. The repair policy is repairing objects in Oy, and after repair the objects

66

WO 2016/007371 PCT/US2015/038984

moves to Oi= O,. Thus, the repair policy can be viewed as moving objects at rate R
from Osipn 10 Opsr= O,

[00167] Assume that there is a storage node failure at time ¢. Then, Oy, is empty, (i.e.,
contains no objects) just after f and for all i = r— 1 to 0, Oy, just after ¢ is equal to O,y g
just before £. Note that if Oy is not empty (i.e., contains at least one object) just before ¢
then all objects in Oy, just before ¢ are lost at time ¢.

[00168] From the foregoing it can be appreciated that, at time #, O, is the set of objects
that were repaired since the first node failure prior to ¢, O, is the set of objects that
were repaired between the first and second storage node failures prior to ¢, and in general
Og+r-i 18 the set of objects that were repaired between node failures i and i + 1 prior to z.

[00169] Assume that iy does not change. Let Dy, = (n — iyy) * Fsize * |04l
where |0y ;| is the number of objects in Oy,,;. Then % reflects the amount of time

between storage node failures i and i+1 prior to ¢, because the network traffic when
object O was added to Or.,; was (n - iyy) - Fsize. For example, if the time between
consecutive storage node failures is equal, then Dy,; will be the same for all i =r -1 to
imv +1, while the repair policy is concurrently emptying Oy.igv and filling Oy, at rate
R. If the repair rate R is doubled and the failure rate A remains unchanged then generally
r - iygy is halved and Dy, is doubled for all i = r — 1 to iyyy + 1. If instead the repair rate
R remains unchanged and the failure rate A doubles then generally 7 - i3y is doubled and
Dy.iis halved forall i=r—1 to iy + 1.

[00170] The above analysis of the repair policy provides information useful in
providing dynamic adjustment of the repair rate, R, based on ongoing measurements of
relevant parameters. It should be appreciated that the repair bandwidth that is
appropriate for the repair policy can depend on many parameters that can be difficult to
determine a priori, including the storage node failure and replacement rates and the
amount of source data stored in the storage system. Accordingly, one approach is to
estimate the relevant parameters conservatively. However, this can cause the repair
bandwidth to be set too high and needlessly consume network bandwidth. Alternatively,
if the relevant parameters are estimated too aggressively then the repair bandwidth can

be set too low and compromise reliability. Thus, embodiments are operable to

67

WO 2016/007371 PCT/US2015/038984

dynamically and continuously adjust the repair bandwidth by small increments based on
continual measurements of the relevant parameters.

[00171] In providing dynamic adjustment of the repair bandwidth, consider the situation

A-M-D

attime 7. Let A’ ki = % be the expected number of storage node failures

during the repair of the objects in Og+ipv using repair bandwidth R. Similarly, for i =

. ’ _ A'M'Z;":iMIN Dy j .
v+ 1tor,let A’y = = be the expected number of storage node failures

during the repair of the objects in Oipy to Oy using repair bandwidth R.
[00172] Fori=iygyto r, let X;,; be a Poisson random variable with mean 1°;,;, and let
Pr+i = Pr{Xyq; > i]. If Xy <ifor i = iyyy to r then no objects will be lost before all
objects are repaired once subsequent to time ¢. Thus, the probability that at least one
object is lost before all objects are repaired once subsequent to time £ is at most pgym =

T
_ Z Pr+i- Similarly to how the target value f can be set as described previously, a
L= IMiN
target value for the MTTDL can be used to deduce a target value for pgy,, which in turn
can be used to determine a value of R that achieves this value for pg,,, and thus achieves
the target MTTDL.
[00173] The repair bandwidth R can be adjusted periodically according to embodiments
to a minimal value that ensures py,,, is at most a target failure probability.
[00174] From the foregoing liquid analysis, the following observations can readily be
appreciated: For a small erasure code solution and a large erasure code solution using
the same relative storage overhead, the large erasure code solution uses significantly less
repair bandwidth; and For a small erasure code solution and a large erasure code solution
using the same repair bandwidth, the large erasure code solution uses significantly less
storage overhead.
[00175] For example, consider a small (16; 12; 4) erasure code solution and a large

(1600; 1200; 400) erasure code solution. These two solutions have the same storage
Sm
overhead % = %. The ratio of the bounds for repair bandwidth satisfy }:;—Lg =
r-(k+1)-A-DprL _r (k+1) _
n-A:DalL B B

3.25.

68

WO 2016/007371 PCT/US2015/038984

[00176] If R were set to the threshold R"€ for the large erasure code solution then A’ = r

=400, and thus § may be set as § = 1.5 so that R = § - R€ and so that E[X] = % = 266.7.

Then, using a standard Poisson calculation, Pr[X > r = 400] ~ 10~ which leads to a
MTTDL of over 200 billion years for an average failure rate A - M of one storage node
per day. Thus, a repair bandwidth R that is only 50% higher than the threshold R"®
achieves a MTTDL that is many times the lifetime of the universe in this example. In
contrast, the repair bandwidth for the small erasure code solution is likely much larger
than the threshold R$™ (e.g., more than three times larger than the threshold R“®) in order
to achieve the same level of reliability as the large erasure code solution.

[00177] FIGS. 12 and 13 show the results of simulations with respect to particular
storage system configurations to provide comparisons of operation of reactive repair
policies using small erasure codes and lazy repair policies using large erasure codes
according to embodiments herein. In particular, FIG. 12 provides a cloud based storage
system configuration, such as may be implemented by the AZURE cloud platform
available from Microsoft Corporation, while FIG. 13 provides an application service
provider storage system configuration, such as may be implemented by the FACEBOOK
social networking application available from Facebook, Inc.

[00178] In the storage system configuration of the simulations of FIG. 12, the storage
system includes 400 storage nodes with each storage node having 16 terabytes of
storage. The mean time between loss of a storage node for these simulations is assumed
to be 3 years, and thus A=1/3 (1/3 storage node failure per year). The time between
storage node failure and determining that the storage node has permanently failed is 30
minutes (i.e., 7=30 minutes). The simulations of FIG. 12 were for 10 million years of
operation of the storage system.

[00179] As can be seen in the table of results provided in FIG. 12, for the simulation of
the reactive repair policy with small erasure code where the repair bandwidth was limited
to 40 Gbps, the repair policy is performing repairs slightly less than 10% of the time (i.e.,
in bursts up to 40 Gbps of repair bandwidth), with a mean time to loss of any source data
(MTTDL) of 2,200 years for 100 MB source objects or 9,800 years for 2 GB source
objects (i.e., Osize = 100 MB or Osize = 2GB). Por the simulation of the reactive repair

policy with small erasure code where the repair bandwidth was limited to 80 Gbps, the

69

WO 2016/007371 PCT/US2015/038984

repair policy is performing repairs slightly less than 5% of the time (i.e., in bursts up to
80 Gbps of repair bandwidth), with a mean time to loss of any source data (MTTDL) of
4,800 years for 100 MB source objects or 22,000 years for 2 GB source objects. For the
simulation of the reactive repair policy with small erasure code where the repair
bandwidth was limited to 100 Gbps, the repair policy is performing repairs slightly less
than 4% of the time (i.e., in bursts up to 100 Gbps of repair bandwidth), with a mean
time to loss of any source data (MTTDL) of 6,000 years for 100 MB source objects or
27,000 years for 2GB source objects. For the reactive repair policy with small erasure
code, the bursts of repair traffic immediately follow a storage node failure, and thus the
bursts are dictated by the arbitrary timing of failure events that are unpredictable, and
which may coincide with times when access to or storage of source data at high speed,
using the share bandwidth resource, is crucial.

[00180] In contrast, for the simulation of the lazy repair policy with large erasure code,
providing for 267 source fragments and 133 repair fragments (a configuration providing
a repair overhead matching that of the reactive repair policies simulated), where the
repair bandwidth was limited to 2.44 Gbps, the repair policy is performing repairs
continuously (i.e., at a steady rate of 2.44 Gbps of repair bandwidth), with a mean time to
loss of any source data (MTTDL) of 10,000,000 years for both 100 MB and 2 GB source
objects (i.e., the MTTDL exceeded the duration of the simulation). For the simulation of
the lazy repair policy with large erasure code, providing 336 source fragments and 64
repair fragments (i.e., utilizing a significantly smaller repair overhead than the reactive
repair policies simulated), where the repair bandwidth was limited to 7.61 Gbps, the
repair policy is performing repairs continuously (i.e., at a steady rate of 7.61 Gbps of
repair bandwidth), with a mean time to loss of any source data (MTTDL) 10,000,000
years for both 100 MB and 2 GB source objects (i.e., the MTTDL again exceeded the
duration of the simulation). For the lazy repair policy with large erasure codes, the
scheduling of the repair traffic is much more flexible (e.g., it can be scheduled
independently of the timing of failure events, and can be spread evenly or unevenly over
larger periods of time, such as to be scheduled to occur one hour each day when access
and storage activities are largely quiescent, or the repair processing can be temporarily

suspended when high levels of access or storage or other activities that consume the

70

WO 2016/007371 PCT/US2015/038984

shared bandwidth occur and then repair processing can resume when the other activities
subside). Furthermore, the amount of provisioned repair bandwidth sufficient to achieve
a given MTTDL is largely insensitive to how much time 7 there is between when a node
fails and when the failure is determined to be a permanent failure, and to how much time
there is between when a node permanently fails and when a new storage node is added to
the storage system to replace the lost storage capacity from the failed node, wherein this
is not the case for the immediate repair policy with the small erasure code. For example,
when 7'is increased from 30 minutes to 24 hours, for the simulation of the reactive repair
policy with small erasure code where the repair bandwidth was limited to 40 Gbps, mean
time to loss of any source data (MTTDL) decreases to around 8.5 months for 100 MB
source objects and just under 2 years for 2 GB source objects, whereas for the simulation
of the lazy repair policy with large erasure code, providing for 267 source fragments and
133 repair fragments (a configuration providing a repair overhead matching that of the
reactive repair policies simulated), where the repair bandwidth was limited to 2.44 Gbps,
the mean time to loss of any source data (MTTDL) remains at 10,000,000 years for both
100 MB and 2 GB source objects (i.e., the MTTDL exceeded the duration of the
simulation).

[00181] In the storage system configuration of the simulations of FIG. 13, the storage
system includes 3000 storage nodes with each storage node having 10 TB (terabytes) of
storage. The mean time between loss of a storage node for these simulations is assumed
to be 4 years, and thus A=1/4 (1/4 storage node failure per year). The time between
storage node failure and determining that the storage node has permanently failed is 30
minutes (i.e., 7=30 minutes). The simulations of FIG. 13 were again for 10 million years
of operation of the storage system. As can be seen in the table of results provided in
FIG. 13, for the simulation of the reactive repair policy with small erasure code where
the repair bandwidth was limited to 8.42 Gbps, the repair policy is performing repairs
100% of the time (i.e., the repair bandwidth is below Rlsm), and thus the mean time to
loss of any source data (MTTDL) is 0.037 year for 100 MB source objects or 0.077 year
for 2 GB source objects (i.e., Osize = 100 MB or Osize = 2GB). For the simulation of
the reactive repair policy with small erasure code where the repair bandwidth was limited

to 28.5 Gbps, the repair policy is performing repairs slightly less than 75% of the time

71

WO 2016/007371 PCT/US2015/038984

(i-e., in bursts up to 28.5 Gbps of repair bandwidth), with a mean time to loss of any
source data (MTTDL) of 160,000 years for 100 MB source objects or 1,600,000 years
for 2 GB source objects. In contrast, for the simulation of the lazy repair policy with
large erasure code, providing for 2143 source fragments and 857 repair fragments (a
configuration providing a repair overhead matching that of the reactive repair policies
simulated), where the repair bandwidth was limited to 7.96 Gbps, the repair policy is
performing repairs continuously (i.e., at a steady rate of 7.96 Gbps of repair bandwidth),
with a mean time to loss of any source data (MTTDL) of 10,000,000 years for both 100
MB and 2 GB source objects (i.e., the MTTDL exceeded the duration of the simulation).
For the simulation of the lazy repair policy with large erasure code, providing 2625
source fragments and 375 repair fragments (i.e., utilizing a significantly smaller repair
overhead than the reactive repair policies simulated), where the repair bandwidth was
limited to 20.8 Gbps, the repair policy is performing repairs continuously (i.e., at a
steady rate of 20.8 Gbps of repair bandwidth), with a mean time to loss of any source
data (MTTDL) 10,000,000 years for both 100 MB and 2 GB source objects (i.e., the
MTTDL again exceeded the duration of the simulation).

[00182] From the foregoing simulations it can be readily seen that, even allowing for a
large amount of burst bandwidth to facilitate reactive repair of the source objects, none
of the reactive repair policies simulated provide a solution which meets the reliability
provided by the lazy repair policies simulated. In operation, a lazy repair policy using a
large erasure code consumes a fixed amount of bandwidth from the available bandwidth
for the repairs, or an amount of repair bandwidth that averages over a window of time to
at most the fixed amount of bandwidth, wherein this smooth consumption, or flexible
consumption, of bandwidth has little impact on data access within the storage system,
since the average amount is a small portion of the available bandwidth, or the bandwidth
is used at times when it does not have a negative impact on other processes sharing the
bandwidth such as access or storage processes. Moreover, there are no variations in the
impact from repair bandwidth utilization from different storage node failure patterns or
timing of node failures. In contrast, the reactive repair policy using a small erasure code
consumes large bursts of bandwidth at unpredictable times (e.g., dictated by the timing

of failure events). This bandwidth is a shared resource (e.g., shared by storage and

72

WO 2016/007371 PCT/US2015/038984

access operations within the storage system), and thus the bursts can have a negative
impact on data access, wherein the impact on such data access varies depending on the
storage node failure pattern. Moreover, it can be seen from the above simulations that,
although the reliability of the reactive repair policies is appreciably affected by the size
of the source object, the reliability provided by the lazy repair policies simulated is not
affected by the size of the source object.

[00183] The table below describes some of the qualitative differences between a small
erasure code solution with a reactive repair policy and a large erasure code solution with
a lazy repair policy. A small erasure code solution is sensitive to increases in the value
of the intermittent failure threshold 7. If 7'is increased by a factor of x then typically the
MTTDL decreases by a factor of X Thus, for example, if 7' is increased from 30
minutes to 24 hours for a small erasure code solution with r = 4, then the corresponding
decrease in the MTTDL is by a factor of over 100,000. In contrast, for a large erasure
code solution using a lazy repair policy in accordance with concepts herein, the impact of
increasing 7" from 30 minutes to 24 hours is minimal.

[00184] Further, a small erasure code solution is sensitive to the number of objects in
the storage system. 'This is because the fragments for each object are stored on a
randomly selected small set of nodes independently of other objects. Thus, for the same
total amount of source data stored, using smaller and more numerous objects scatters the
fragments more amongst the nodes than using larger and less numerous objects.
Accordingly, when there are more objects there is a larger chance that there is an object
with fragments on each of a particular small set of nodes that fail, causing permanent
loss of that object. For small erasure code solutions, there is therefore a trade-off
between the object size and the MTTDL, whereby more numerous small objects lead to
smaller MTTDL but allows more granular repair and access to source data. Large
erasure code solutions, however, are not sensitive to the number or size of objects in the
storage system.

[00185] Additionally, a small erasure code solution is sensitive to future failures of
storage nodes, since the failure of just a few storage nodes can cause permanent source
data loss. Thus, the reactive repair policy may operate to abruptly raise the amount of

repair bandwidth used for short periods of time to recover data and protect against future

73

WO 2016/007371

PCT/US2015/038984

source data loss. For example, the number of source objects needing repair is often zero

or quite low for a majority of the time until there is a node failure detected, at which

point the repair bandwidth is quite high for a period of time. The repair bandwidth for

large erasure code solutions can be adjust much more smoothly (e.g., adjusting the repair

bandwidth in accordance with the concepts and techniques described herein).

Metric Small Erasure Code Solution | Large Erasure Code Solution
Changes in T Sensitive Not Sensitive
Number of Source Objects Sensitive Not Sensitive
Intermittent Failures Sensitive Not Sensitive

Repair bandwidth usage

Abrupt large bursts triggered

by failure events

Slow changes in a moderate

average, flexibility of

scheduling independent of

failure events

[00186] As previously discussed, embodiments providing liquid distributed storage
control implement a data organization, referred to as the weaver data organization, that
allows efficient access to all source data even when using a large erasure code. To aid in
understanding the weaver data organization of embodiments, it is described in further
detail below with respect to an (n; k; r) erasure code. The exemplary erasure code uses a

small symbol size (e.g., Ssize = 64 bytes) wherein the size of a source block is Bsize = k -
Ssize. A source object of size Osize may be partitioned into N = % source blocks, and

each such source block is independently erasure encoded into n source symbols
according to embodiments. Each of the n fragments generated from the object may be
associated with an ESI, and for simplicity suppose that the ESIs are O to k— 1
corresponding to the &k source fragments and k& to n — 1 corresponding to the r=n - k
repair fragments. For each i =0to n - 1, fragment i of embodiments comprises the
concatenation of the N symbols with ESI i generated from each of the N consecutive
source blocks of the object.

[00187] The weaver data organization utilized according to embodiments herein has
several relevant properties. For example, fragments for an object can be generated on-
the-fly, as the object arrives. In particular, when the next Bsize bytes of the object arrive

to form the next source block, the erasure encoding can be applied to this source block to

74

WO 2016/007371 PCT/US2015/038984

generate n symbols, and the symbol with ESI i is appended to fragment i in operation
according to embodiments.

[00188] Similarly, a source block sized chunk of an object can be accessed efficiently
by reading the appropriate symbols from at least k of the » fragments associated with the
object. Thus, the amount of data to be read to access a chunk of an object is the size of
the chunk, at least when the chunk size is at least Bsize.

[00189] It should be appreciated that chunks can be accessed efficiently, both in terms
of time and amount of data read, as long as k fragments for the object of which the chunk
is part are available. Furthermore, the access speed can be increased by reading from
more than & fragments and recovering as soon as the first & arrive.

[00190] Suppose, for example, a chunk of bytes [s; s + 1 to ¢] of an object is requested
by an application, where C = ¢ - s + 1 is the size of the chunk in bytes. To fulfill this

request, the source blocks [i; to i.] of the object can be recovered from the storage

system, where i; = lﬁJ and i, = lﬁJ To recover source blocks [i; to i.] of the

object, the bytes [i; - Ssize to (i, + 1) - Ssize - 1] can be read from each of at least k
fragments for the object.

[00191] From the foregoing, it can be appreciated that the weaver data organization is
useful for implementation of storage systems, such as storage systems 100 and 200
described herein. Moreover, the weaver data organization is useful in a number of other
applications, such as peer-to-peer file sharing and streaming applications, etc.

[00192] It should be appreciated that there are many variants which may be employed
with respect to the exemplary embodiments described herein. For example, more than
one ESI may be used per fragment (e.g., a fragment may have more than one symbol
from each source block, such as where the same number G of symbols with different
ESIs may be associated with each fragment per source block or an object or data stream).
Such an embodiment may be advantageous to reduce relative code overhead, to improve
resiliency of the erasure code to particular node loss patterns, etc.

[00193] As an example of another variant, the fragments associated with an object or
data stream may be of variable size (i.e., different fragments carry different numbers of
symbols from each of the source blocks). Such an embodiment may be useful to load

balance data across storage nodes. For example, large capacity storage nodes can be

75

WO 2016/007371 PCT/US2015/038984

assigned fragments with more symbols per source block than smaller capacity storage
nodes (e.g., the number of symbols per source block assigned to the fragment may be
proportional to the storage capacity of the storage node upon which the fragment is to be
stored). Additionally or alternatively, all fragments associated with an object or data
stream may be assigned the same number of symbols per source block, and then a
varying number of fragments are stored on storage nodes depending on the relative
capacity of the storage node. For example, a storage node with capacity 4 terrabytes may
store two fragments per object or data stream, a storage node with capacity 8 terrabytes
may store four fragments, and a storage node with capacity 14 terrabytes may store seven
fragments.

[00194] In still another variant, an (n; k; r) erasure code can be used where »n is not
equal to M. For example, a cluster of M storage nodes may be partitioned into sub-
clusters of fewer nodes, such as where sub-clusters of s = 100 nodes out of a cluster of M
= 3000 storage nodes are formed, wherein the sub-clusters are treated independently of
other sub-clusters. In the foregoing example, M = 3000 storage nodes may be partitioned
into 30 sub-clusters of s = 100 nodes each, and each object may be assigned to a sub-
cluster and uses 100 fragments distributed to the 100 storage nodes of the sub-cluster.
Alternatively, the sub-clusters may use overlapping sets of storage nodes (e.g., each sub-
cluster of the foregoing example may be assigned to 100 storage nodes, but the assigned
storage nodes may overlap with the storage nodes assigned to other sub-clusters). For
example, the storage system may be designed so that each storage node participates in d
sub-clusters, and each sub-cluster uses s of the M storage nodes. If d =3 and s = 100 and
M = 3000 then there are 90 sub-clusters and each storage node is in d = 3 sub-clusters.
The number of sub-clusters that a storage node participates in may depend on the storage
capacity of the storage node (e.g., more capacity implies participating in more sub-
clusters) according to embodiments.

[00195] In yet another variant, each source object may define its own sub-cluster (e.g., n
= 100 fragments for each source object which are randomly distributed amongst M =
3000 storage nodes independent of other source objects). Such an implementation may,
however, experience higher book-keeping costs and may be harder to design a good

repair policy using a given amount of repair bandwidth that guarantees a target MTTDL.

76

WO 2016/007371 PCT/US2015/038984

[00196] When using a design with sub-clusters according to some embodiments, the
repair bandwidth may be assigned per sub-cluster. Alternatively, the repair bandwidth
may be assigned globally and shared by repair processes for each of the sub-clusters.
Whether using sub-clusters or not, there may be many repair processes that are working
concurrently in a distributed fashion to provide the overall repair policy for the cluster.
[00197] As an example of another variant, chunks of source data that are accessed
frequently, or generally at the same time, by applications, may be organized so that they
are consecutive with an object or a data stream. This allows larger amounts of
consecutive fragments to be read from the storage nodes when accessing multiple
consecutive chunks of such data. Thus, chunks of data that are frequently accessed may
remain in cache and avoid subsequent reading of fragments from storage nodes when
they are accessed again.

[00198] In another variant, an EU device may utilize multiple connections with respect
to one or more access server for data access and/or storage. In accordance with some
embodiments, functionality for encoding and/or decoding the data may be disposed in
the EU device. In such embodiments, the erasure encoding and/or erasure decoding of
data may thus be shifted to the EU device from the access server of exemplary
embodiments described above. Such a configuration may be utilized to facilitate the use
of the aforementioned multiple connections between the EU device and one or more
access servers of the storage network. The access servers of such configurations may
provide a multiplex/demultiplex role with respect to the communication of data between
the EU device and the storage nodes. For example, an access server may support
communication with hundreds or even thousands of storage nodes, whereas an EU
device may support communication with an access server via on the order of 10
connections. In operation, an EU device may use multiple connections (e.g., multiple
TCP connections) to a single access server to make byte range requests (e.g., HI'TP 1.1
byte range requests) for data to reconstruct an object, such as to provide increased
download speed using parallel connections. Likewise, an EU device may use
connections to multiple access servers, such as using connections providing different
data speeds and/or requesting different amounts of data with respect to the various access

servers, to provide a higher aggregate bandwidth and reduce access times. Such an EU

77

WO 2016/007371 PCT/US2015/038984

device may, for example, have multiple interfaces (e.g., WiFi, LTE, etc.), whereby the
EU device connects to different access servers over a different one of each such
interface.

[00199] In operation according to an embodiment wherein an EU device utilizes
multiple connections to one or more access server, the EU device may make requests to
the access server(s), similar to embodiments described above. However, the EU device
may request different fragments over different connections, multiple fragments over the
same connection, chunks of fragments over different connections, etc. The EU device
may thus include multiplex functionality operable to combine the responses for
providing data to the erasure decoder. The access server in such an embodiment may
accept the requests from the EU device, form and make requests for portions of
fragments from the storage nodes, multiplex the responses from the storage nodes to
form responses to the EU device requests, and provide the responses to the EU device.
Rather than the source data coming to the EU device as a stream in response to a request,
multiple responses may be provided to the EU device over multiple connections
according to this exemplary embodiment.

[00200] FIGS. 14A-14D show accessing a portion of data by an EU device through
multiple connections according to embodiments. In the illustrated example, the desired
source data may be a portion of an overall object (e.g., the object may comprise the data
of symbols 0-59 whereas the desired data comprises the data of symbols 10-44, wherein
each symbol is of size Ssize). In accordance with an implementation of the weaver data
structure of embodiments, each column of symbols in the example illustrated in FIG.
14A comprises a source block (i.e., in the illustrated example a source block comprises 5
source symbols (k=5), wherein the 3 additional symbols of the columns comprise repair
symbols generated from the source block of source symbols in the corresponding
column). In the illustrated example, because the EU device is only interested in the
portion of data from symbols 10-44, only the data that was generated from that portion of
the source object is requested, which includes the data of symbols 10-44 as well as repair
symbols corresponding to each of the requested source blocks (i.e., repair symbols (5,2),
(6,2), (7,2), (5,3), (6,3), (7,3), (5.4), (6,4), (7,4), (5.5), (6,5), (7,5) (5,6), (6,6), (7,6), (5,7),
(6,7, (1,7), (5,8), (6,8), and (7,8)). In operation, the EU device may request all the

78

WO 2016/007371 PCT/US2015/038984

source data for that portion of the object that goes from symbol 10 to symbol 44 (i.e., the
portions of the B2 through B8 columns associated with ESIs O, 1, 2, 3, and 4 in the
illustration of FIG. 14) and all the repair data that is available in this example (i.e., the
portions of the B2 through B8 columns associated with ESIs 5, 6, and 7). Assuming in
this example that the EU device is utilizing 2 connections, the EU device may break up
the requests into 2 requests (e.g., requesting portions of the fragments associated with
ESIs 0, 1, 2, and 3 through a first connection, and requesting portions of the fragments
associated with ESIs 4, 5, 6, and 7 through a second connection).

[00201] FIG. 14B illustrates downloading and decoding of the requested data by the EU
device using multiple connections (i.e., 2 connections in the illustrated example, shown
as connections 1401 and 1402) to a same access server. As can be seen in the example
illustrated in FIG. 14B, the EU device requests the portion of the fragments with
encoding symbol IDs 0-3 through connection 1401 and the portion of the fragments with
encoding symbol IDs 4-7 through connection 1402. The access server in turn makes
requests of the particular storage nodes for the appropriate portions of the fragments.
However, in this example the storage node storing Fragment 1 and the storage node
storing Fragment 5 have failed. Thus, the access server receives the data for Fragments
0, 2-4, 6, and 7 from the storage nodes and aggregates that data to provide responses to
the requests from the EU device (e.g., the appropriate portions of data from Fragments 0,
2, and 3 is aggregated and provided through connection 1401 and the appropriate
portions of data from Fragments 4, 6, and 7 is aggregated and provided through
connection 1402).

[00202] FIG. 14C illustrates downloading and decoding of the requested data by the EU
device using multiple connections (i.e., 2 connections in the illustrated example, shown
as connections 1403 and 1404) to different access servers. As can be seen in the
example illustrated in FIG. 14C, the EU device requests the portion of the fragments
with encoding symbol IDs 0-3 through connection 1403 and the portion of the fragments
with encoding symbol IDs 4-7 through connection 1404. The access servers in turn
make requests of the particular storage nodes for the appropriate portions of the
fragments. In this example the storage node storing Fragment 1 and the storage node

storing Fragment 5 have failed. Thus, access server 110-1 receives the data for

79

WO 2016/007371 PCT/US2015/038984

Fragments 0, 2, 3 from the storage nodes and aggregates that data to provide a response
to the request from the EU device (e.g., the appropriate portions of data from Fragments
0, 2, and 3 is aggregated and provided through connection 1403). Likewise, access
server 110-2 receives the data for Fragments 4, 6, and 7 from the storage nodes and
aggregates that data to provide a response to the request from the EU device (e.g., the
appropriate portions of data from Fragments 4, 6, and 7 is aggregated and provided
through connection 1404).

[00203] FIG. 14D shows an example of the responses provided by the access server(s)
over the 2 connections of the above examples. Continuing with the aforementioned
example, the source data to be reconstructed comprises the data of symbols 10-44,
wherein each symbol is of size Ssize. As can be seen in the illustrated example, because
the source node storing Fragment 1 failed, the response provided through the first
connection (e.g., connection 1401 of FIG. 14B or connection 1403 of FIG. 14C) includes
only symbols with the encoding symbol IDs 0, 2, and 3. Similarly, because the source
node storing Fragment 5 failed, the response provided through the second connection
(e.g., connection 1402 of FIG. 14B or connection 1404 of FIG. 14C) includes only
symbols with the encoding symbol IDs 4, 6, and 7. Nevertheless, the repair data
provided in these responses facilitates recovery of the desired source data from the
respective responses.

[00204] Operation of an EU device storing data to the storage system through multiple
connections is analogous to the foregoing multiple connection data access examples
according to embodiments. An EU device may, for example, use multiple connections to
a single access server for storing data to the storage network, such as to provide
increased speed of data upload. For example, an EU device may utilize multiple TCP
connections to an access server to make HT'TP 1.1 byte range posts of data for a source
object. Additionally or alternatively, an EU device may use multiple connections to
different access servers for storing data to the storage network, such as to provide a
higher aggregate bandwidth to reduce storage time. In accordance with embodiments,
the speed of a connection to any such different access server may be different than other
access servers, and thus the amount of data posted to each such access servers may

differ. In providing the aforementioned multiple connections, the EU device may utilize

80

WO 2016/007371 PCT/US2015/038984

multiple interfaces (e.g., WiFi, LTE, etc.), whereby the EU device may connect to
different access servers using a different one of such interfaces.

[00205] As with embodiments of an EU device accessing data from the storage system
using multiple connections, embodiments of an EU device storing data to the storage
system using multiple connections functionality for encoding and/or decoding the data
may be disposed in the EU device. Accordingly, the EU device may operate to erasure
encode the source data and form multiple posts to upload the encoded data over multiple
connections (e.g., one or more fragment streams may be uploaded over each connection).
In operation according to embodiments, the EU device partitions the data from the
erasure encoder according to the connections being used. The EU device may, for
example, post different fragments over different connections, post multiple fragments
over a same connection, include chunks of a fragment in different posts, etc.
Correspondingly, the application server(s) may operate to accept posts from the EU
device and form and make posts for portions of fragments to the various storage nodes.
[00206] In another variant of the foregoing, there may be a hierarchy of access servers.
For example, there may be two levels of access servers, wherein an EU device makes a
request for a portion of a source object to a first level access server, and wherein the first
level access server makes requests to multiple second level access servers, wherein each
request from the first level access server to a second level access server includes a
request for a plurality of portions of fragments corresponding to the requested portion of
the source object, and wherein the second level access server makes a request to each
storage node that stores the portion of a fragment amongst the plurality of portions of
fragments. Thus, when each storage node provides the portion of fragment in response
to a request from a second level access server, the second level access server combines
the responses it receives and provides them as a response to the first level access server.
The first level access server receives the responses from the second level access servers,
erasure decodes if necessary to recover the portion of the requested source object, and
provides the requested portion of the source object to the EU device in response to the
original request from the EU device. As an example, consider a storage system a first
level access server and with 30 racks of servers, and within each rack there are 40

storage nodes and at least one second level access server (which may coincide with a

81

WO 2016/007371 PCT/US2015/038984

storage node). The first level access server can establish 30 connections, one connection
for each of the second level access servers within each of the 30 racks of servers, and can
make the requests to a second level access server for (portions of) fragments that are
stored at storage nodes within the same rack as the second level access server. In turn,
each second level access server can establish 40 connections, one connection for each of
the 40 storage nodes within the same rack as the second level access server, and can
make request to a storage node for portions of fragments stored on the storage node that
were requested by the first level access server to the second level access server. With
this embodiment, the first level access server communicates over only 30 connections,
and the second level access servers each communicate over 40 connections, as opposed
to a flat hierarchy embodiment described herein wherein an access server establishes
1200 connections, one for each of the storage nodes of the storage system. As one
skilled in the art will recognize, there are many variants of this embodiment, including
more than two levels of hierarchy, including first level access server establishing
connections with more than one second level access server within each rack, including
other possible topologies of connections, etc.

[00207] In another variant, a liquid distributed storage solution can be used in
conjunction with a complementary storage system, referred to herein as a hot storage
system. Por example, as illustrated in FIG. 14FE, the liquid distributed storage solution,
comprising storage nodes 130-1 through 130-M and access servers 110-1, has network
connectivity with a hot storage system, comprising hot storage nodes 1420-1 through
1420-N. In this embodiment, the hot storage nodes 1420-1 through 1420-N of the hot
storage system store source objects in their original unmodified form, (e.g., each source
object is stored contiguously on one of the hot storage nodes 1420-1 through 1420-N).
EU devices (not shown) can store and access source objects stored on hot storage nodes
of the hot storage system. The hot storage system may have high bandwidth connectivity
to EU devices, and thus EU devices can quickly access or store data within the hot
storage system. In addition, individual jobs can be executed in a distributed fashion
across the hot storage nodes 1420-1 through 1420-N operating on the data of the original
source objects. For example, the individual jobs might be part of a distributed MAP

REDUCE process running across the entire hot storage system, for example as

82

WO 2016/007371 PCT/US2015/038984

exemplified by such processes in a Hadoop distributed storage system. In this case,
running a distributed MAP REDUCE process is straightforward since the hot storage
nodes 1420-1 through 1420-N store the unmodified versions of the source objects that
the MAP REDUCE jobs can process directly.

[00208] The hot storage system can store reliable backup copies of source objects in the
liquid distributed storage system, (e.g., a hot storage node can provide a copy of a source
object it stores to an access server to create a reliable backup copy of the source object
within the liquid distributed storage system, in which case the liquid distributed storage
system creates and stores fragments for the source object that are stored in the storage
nodes 130-1 through 130-M). Similarly, a hot storage node of the hot storage system can
access a backup copy of a source object previously stored in the liquid distributed
storage system, (e.g., by requesting a copy of the source object from an access server,
wherein the access server retrieves enough fragments from the storage nodes 130-1
through 130-M to recover the source object and provide it to the requesting hot storage
node). The hot storage system can delete a source object from the hot storage system
after a backup copy of the source object has been reliably stored in the liquid distributed
storage system, thereby freeing up storage space in the hot storage system for storage of
other source objects. If a hot storage node fails, either temporarily or permanently, then
previously backed up source objects lost from the failed hot storage node can be
recovered from the liquid distributed storage system. For example, a hot storage node
failure might trigger a hot storage node recovery process to determine which source
objects are lost, and then to contact one or more access servers to provide copies of those
lost source objects to hot storage nodes designated by the recovery process. The
recovered copies of the lost source objects may be spread evenly across the hot storage
nodes, (e.g., each recovered source object may be stored on a single hot storage node, but
the different recovered source objects may be stored on different hot storage nodes). A
depiction of such an example is shown in FIG. 14E, wherein as shown Access Server
110-1 is reading in fragments from storage nodes 130-1 through 130-M of the liquid
distributed storage system to recover and send restored objects to hot storage nodes

1420-5 and 1420-6, while concurrently Access Server 110-2 is reading in fragments from

83

WO 2016/007371 PCT/US2015/038984

storage nodes 130-1 through 130-M of the liquid distributed storage system to recover
and send restored objects to hot storage nodes 1420-3 and 1420-N.

[00209] The advantages of such a combination of a liquid distributed storage system
and a hot storage system are many. For example, the liquid distributed storage system
provides highly reliable backup of source objects, and thus the hot storage system does
not need to provide completely reliable storage for the objects it stores. The liquid
distributed storage system also provides long term storage of source objects that are
never needed or are no longer needed for immediate processing within the hot storage
systems, such as MAP REDUCE processing, and thus these objects are never or no
longer stored in the hot storage system. On the other hand, the hot storage system
provides immediate distributed access to the unmodified source objects, including access
for distributed processing such as MAP REDUCE processing, without requiring reliable
storage of source objects, since the liquid distributed storage system offers reliable
storage of and access to source objects as a service to the hot storage system.

[00210] Although embodiments implementing a complementary storage system have
been discussed above with reference to a combination of a liquid distributed storage
system and the complementary storage system, it should be appreciated that the concepts
of such a combined storage system are not limited to application with respect to liquid
distributed storage systems. Such combined storage systems may be provided utilizing
various configurations providing storage of portions of redundant data for the one or
more source objects, such as may implement different kinds of erasure codes, for
example small erasure codes, large erasure codes, tornado codes, low-density parity-
check codes, Reed-Solomon coding, MDS codes, etc., and such as may implement
different kinds of repair policies, for example reactive repair policies, lazy repair
policies, etc.

[00211] In still another variant, a weaver data organization in accordance with the
concepts discussed above may be utilized with respect to a peer-to-peer storage network
configuration. For example, a weaver data organization may be utilized with a peer-to-
peer storage system as illustrated in FIG. 15, wherein EU device 120 is in
communication with peer devices (e.g., also EU devices) 1520-1 through 1520-14. Such

a peer-to-peer storage system may be configured to deliver source objects to the peer

84

WO 2016/007371 PCT/US2015/038984

devices, for example, by using a first erasure coding process (e.g., a first forward error
correction (FEC) coding process), applied to the source object to generate fragments, and
then distributing the fragments among the peers using a second erasure coding process.
Correspondingly, the peer-to-peer storage system may be configured so that a first peer
device can concurrently download data generated from a fragment from multiple other
peer devices. For example, each of the other peer devices applies a second erasure
encoding to the fragment to generate and deliver data to the first peer device in such a
way that all data delivered to the first peer device from all the other peer devices is
additive in the recovery of the fragment. For example, each of the other peer devices can
choose and use an ESI range to generate erasure encoded symbols from the fragment
such that the ESI ranges of all of the other peer devices are disjoint. (Using a fountain
erasure code, such as the RaptorQ code, makes it easy for each peer device to choose and
use an ESI range that doesn’t intersect with ESI ranges chosen by other peer devices.)
An example of such a peer-to-peer data distribution technique is described in
“RaptorQP2P: Maximize the Performance of P2P File Distribution with RaptorQ
Coding”, submitted to ICC 2015 (herein referred to as “Daigle™).

[00212] In the example illustrated in FIG. 15, EU device 120, currently operating as a
data receiver device in the peer-to-peer storage network, is attempting to recover
Fragment O (Fragment O having already been distributed to the peer devices for storage
in this example). In the illustrated operation, EU device 120 establishes connections
with peer devices 1520-8, 1520-10, and 1520-13 to retrieve the desired fragment.
However, instead of providing the fragments (or portions thereof) as stored, the peer
devices erasure encode the data for providing it to the EU device 120, as described
above, for example using a fountain code such as RaptorQ. Thus, using a fountain
property of the encoded data, it does not matter to the EU device 120 where the symbols
are coming from and as soon as the received device receives enough symbols from any
combination of the peer devices Fragment O can be recovered.

[00213] In Daigle, the first erasure coding process utilizes a traditional data
organization scheme. Operation of the foregoing data access may be made efficient
using a weaver data organization with respect to the first erasure coding process in such a

peer-to-peer storage system. Suppose the first erasure coding process uses a weaver data

85

WO 2016/007371 PCT/US2015/038984

organization scheme and an erasure code with parameters (#; k;), and suppose EU
device 120 has recovered and stored in local storage at least & fragments for the source
object. EU device 120 may then be instructed to recover all or portions of the source
object from the locally stored fragments. For example, EU device 120 may be instructed
to sequentially access the source object from the beginning to the end of the object (e.g.,
because an the source object comprises a video file and the end user wants to view the
playback of the video file on the screen of EU device 120). EU device 120 can read
sequential portions of at least k recovered fragments and erasure decode corresponding
sequential portions of the source object using a small amount of memory in the decoding
(e.g., an amount of memory that is proportional to the source block size used in the
weaver data organization scheme) and reading a total amount of fragment data that is
proportional to the size of the portion of source object recovered, independent of which k&
of the n fragments are used for decoding. In this case, the EU device 120 may not write
the recovered portions of the source object to local storage, because the recovered
portions of the source object can be fed directly into the video player for playback. If it
is desired to store the recovered source object in local storage, the EU device 120 may
addtionally or alternatively write the recovered source object sequentially as it is
recovered to the local storage device.

[00214] The usage of the weaver data organization with the first erasure coding process
also allows EU device 120 to reconstruct arbitrary portions of the source object quickly
and efficiently, thus enabling efficient play of video content at EU device 120 if the
source object is comprised of video content. In contrast, if a traditional data organization
scheme is used, EU device 120 would be required to read in portions of fragments that
are k times the size of the portion of source object recovered if the portion of source
object to be recovered is part of a source fragment that was not received and stored
locally by the EU device 120. Thus, enabling EU device 120 to sequentially recover and
playback a source object comprising a video file, or to sequentially recover and write to
local storage a source object, or to recover arbitrary portions of a source object, is less
efficient when using a traditional data organization scheme than when using a weaver

data organization scheme. Accordingly, implementation of a weaver data organization

86

WO 2016/007371 PCT/US2015/038984

with respect to a peer-to-peer storage network, such as that illustrated in FIG. 15,

provides multiple advantages over traditional data organization schemes.

87

WO 2016/007371 PCT/US2015/038984

CLAIMS

What is claimed is:

1. A method for repair of source data comprising one or more source objects
stored as multiple fragments distributed across multiple storage nodes of a storage
system, wherein one or more fragments of the multiple fragments includes redundant
data for the one or more source objects, the method comprising:

determining a portion of a source object of the one or more source objects to
repair, wherein the portion of the source object to repair comprises data of at least one
fragment of the multiple fragments;

reading data of a plurality of fragments of the multiple fragments from a plurality
of storage nodes of the multiple storage nodes;

processing the data of the plurality of fragments read from the plurality of storage
nodes to provide data of at least one additional fragment for the multiple fragments;

writing the data of the at least one additional fragment to at least one storage node
of the multiple storage nodes; and

implementing liquid distributed storage control with respect to the reading data of
the plurality of fragments and writing the data of the at least one additional fragment to
control an average bandwidth for repair of source data within the storage system (R) as a
function of data redundancy of the storage system provided by the one or more

fragments including redundant data (/).

2. The method of claim 1, wherein the average bandwidth is an average

reading bandwidth for repair of source data within the storage system.

3. The method of claim 1, wherein the average bandwidth is an average

reading and writing bandwidth for repair of source data within the storage system.

4. The method of claim 1, wherein repair bandwidth used averages to at
most R over long periods of time and the repair bandwidth used is varied over time

independent of a timing of storage node failures.

88

WO 2016/007371 PCT/US2015/038984

5. The method of claim 1, wherein only repair fragments are stored in the

storage system.

6. The method of claim 1, wherein controlling R as a function of f provides
a repair rate with respect to the one or more source objects to repair which is determined
to provide completion of a repair policy process cycle through all source objects of the
one or more source objects to repair without loss of source data from any of the one or

more source objects to repair.

7. The method of claim 6, further comprising:

determining the repair rate based on a target minimum mean time to loss of any
source object of the one or more source objects, wherein a source object is lost if the
source object cannot be erasure decoded from the data comprising the plurality of

fragments stored on the plurality of storage nodes.

8. The method of claim 6, wherein controlling R as a function of f
comprises:
controlling R as a function of f and y, wherein u comprises a rate at which data is

being lost from the multiple storage nodes of the storage system.

0. The method of claim 8, wherein controlling R as a function of f and u

comprises constraining R such that R - ff = u.

10. The method of claim 8, wherein ¢ = A - Dy 1, wherein R comprises an
aggregate read and write repair bandwidth, wherein A comprises a failure rate of
individual storage nodes of the multiple storage nodes, whereby each storage node is
assumed to fail independently of other nodes at same rate &, and wherein Dsgc comprises

a total amount of source data stored in the storage system and Daj1= Dsrc/(1- f3).

11. The method of claim 8, wherein ¢ = A - Dsgrc, wherein R comprises a read
repair bandwidth, wherein A comprises a failure rate of individual storage nodes of the
multiple storage nodes, whereby each storage node is assumed to fail independently of
other nodes at same rate A, and wherein Dsgc comprises a total amount of source data

stored in the storage system.

89

WO 2016/007371 PCT/US2015/038984

12. The method of claim 8, wherein ¢ = X; A; - D;, wherein the sum (X;) is
over all storage nodes of the multiple storage nodes, where A; comprises the failure rate
of storage node i, whereby each storage node is assumed to fail independently of other

nodes, and D; comprises a total amount of data stored at storage node i.

13. The method of claim 6, wherein R comprises an aggregate read and write
repair bandwidth, wherein controlling R as a function of £ comprises:

constraining R such that R times Traq. is at least Dagy. (R - Tramm. = Dary), wherein
Trar. comprises an amount of time for which it is unlikely that more than f-M storage
nodes fail, and wherein M comprises the number of storage nodes, and Dsgc comprises a

total amount of source data stored in the storage system and Day 1= Dsrc/(1- f).

14. The method of claim 6, wherein R comprises a read repair bandwidth,
wherein controlling R as a function of f comprises:

constraining R such that R times Trax. is at least Dgre (R © Tran. = Dsre), wherein
Tran. comprises an amount of time for which it is unlikely that more than f-M storage
nodes fail, and wherein M comprises the number of storage nodes, and Dsgc comprises a

total amount of source data stored in the storage system.

15. The method of claim 6, further comprising:
dynamically adjusting R based on an amount of repair instances in a repair queue

and a predicted data loss rate for the multiple storage nodes.

16. The method of claim 15, wherein the repair policy process providing the
reading data of a plurality of fragments of the multiple fragments and writing the data of
the at least one additional fragment dynamically produces predictions of a time to data
loss from failed storage nodes of the storage system and operates to adjust R based on the

predictions.

17. The method of claim 1, wherein the processing the plurality of fragments
read from the plurality of storage nodes to provide data of at least one additional
fragment for the multiple fragments comprises:

generating an intermediate block from the data of the plurality of fragments read

90

WO 2016/007371 PCT/US2015/038984

from the plurality of storage nodes; and
generating data of at least one additional fragment for the multiple fragments

from the intermediate block.

18. The method of claim 1, wherein the processing the plurality of fragments
read from the plurality of storage nodes to provide data of at least one additional
fragment for the multiple fragments comprises:

erasure decoding the portion of the source object to repair from the data of the
plurality of fragments read from the plurality of storage nodes; and

erasure encoding data from the decoded portion of source object to the provide

data of at least one additional fragment for the multiple fragments.

19. The method of claim 18, wherein the erasure decoding and the erasure
encoding comprises:

utilizing an erasure code with parameters (n; k; r), wherein k is a number of
source fragments per source object, wherein r is a number of repair fragments per source
object, and wherein # is the total number of fragments per source object whereby n =

k+r, and f = r/n, wherein n is selected to provide a large erasure code configuration.

20. The method of claim 19, wherein a number of the multiple storage nodes
of the storage system is M, and wherein n = M, whereby there is a fragment of the one or

more source objects stored on each storage node of the storage system.

21. The method of claim 19, wherein a number of the multiple storage nodes
of the storage system is M, and wherein 7 is a significant fraction of M, whereby there is
a fragment of the one or more source objects stored on a significant fraction of the

storage nodes of the storage system.

22. The method of claim 19, wherein a number of the multiple storage nodes

of the storage system is M, and wherein 7 is a constant independent of M and at least 30.

23. The method of claim 19, wherein a number of the multiple storage nodes

of the storage system is M, and wherein 7 is at least 30 determined independently of M.

91

WO 2016/007371 PCT/US2015/038984

24. The method of claim 1, wherein a repair process providing the reading
data of a plurality of fragments of the multiple fragments and writing the data of the at
least one additional fragment is distributed across multiple servers, and wherein R is an

aggregate bandwidth used by the repair process across all the servers.

25. The method of claim 1, further comprising:
maintaining a repair queue, wherein an identifying instance for the source object
is added to the repair queue in response to the determining a portion of the source object

to repair.

26. The method of claim 25, wherein source objects are processed from the
queue by a repair policy process providing the reading data of a plurality of fragments of
the multiple fragments and writing the data of the at least one additional fragment in
priority order, wherein source objects that have a least amount of available fragments
have a highest priority, and wherein among those source objects with a same number of
available fragments those source objects added to the repair queue earlier have priority

over those added to the repair queue later.

27. The method of claim 25, wherein particular source objects of the one or
more source objects are provided prioritized repair operation in the repair queue to

provide a higher level of reliability with respect to the particular source objects.

28. The method of claim 25, wherein particular source objects of the one or
more source objects are provided prioritized repair operation in the repair queue to
provide a higher quality of service to a client associated with the particular source

objects.

29. The method of claim 1, wherein a repair process providing the reading
data of a plurality of fragments of the multiple fragments and writing the data of the at
least one additional fragment implements a lazy repair policy such that there is
significant time between when data is lost for a source object and when the data of the at
least one additional fragment for the source object is written to the at least one storage

node of the multiple storage nodes.

92

WO 2016/007371 PCT/US2015/038984

30. The method of claim 1, wherein the data of the at least one fragment of
the multiple fragments is stored by the at least one storage node of the multiple storage
nodes using a data organization that concatenates multiple source blocks from the source
object for inclusion of a symbol of each source block in each of a plurality of the

multiple fragments of the source object.

31. The method of claim 30, wherein the reading data of a plurality of
fragments of the multiple fragments from a plurality of storage nodes of the multiple
storage nodes comprises:

reading data of a plurality of fragments of the multiple fragments from a plurality
of storage nodes of the multiple storage nodes to access the portion of data, wherein an
amount of the data read by the reading data of a plurality of fragments is substantially

equal to a size of a requested portion of the source data.

32. The method of claim 31, wherein the writing the data of the at least one
additional fragment comprises:

writing a plurality of output fragment streams to storage nodes as the output
fragment streams are being produced, wherein a first portion of each of the output
fragment streams corresponds to a first portion of the source object and are written to the
storage nodes before a second portion of the source object has been processed by a repair

policy process controlling the reading and writing.

33. The method of claim 30, further comprising:

accessing data of the one or more fragments of the multiple fragments from the
storage system by an end user (EU) device, wherein the EU device comprises a plurality
connections and operates to download at least a portion of the one or more fragments of
the multiple fragments through the plurality of connections, and wherein the EU device
comprises erasure decoding logic and operates to erasure decode the downloaded at least

a portion of the one or more fragments to obtain data of the source object therefrom.

34. The method of claim 30, further comprising:
storing data of the one or more fragments of the multiple fragments to the storage

system by an end user (EU) device, wherein the EU device comprises a plurality

93

WO 2016/007371 PCT/US2015/038984

connections and operates to upload at least a portion of the one or more fragments of the
multiple fragments through the plurality of connections, and wherein the EU device
comprises erasure encoding logic and operates to erasure encode data of the source

object to provide the one or more fragment uploaded for storage to the storage system.

35. The method of claim 30, further comprising:

accessing data of the one or more fragments of the multiple fragments from the
storage system using a first access server, wherein the first access server comprises a first
plurality of connections to a plurality of second access servers and operates to download
at least a portion of the one or more fragments of the multiple fragments through the first
plurality of connections, and wherein the plurality of second access servers comprise a
second plurality of connections to storage nodes and operates to download at least a
portion of the one or more fragments of the multiple fragments through the second
plurality of connections from the storage nodes and provide the downloaded portions to
the first access server through the first plurality of connections, and wherein the first
access server comprises erasure decoding logic and operates to erasure decode the
downloaded at least a portion of the one or more fragments to obtain data of the source

object therefrom.

36. The method of claim 30, further comprising:

storing data of the one or more fragments of the multiple fragments to the storage
system using a first access server, wherein the first access server comprises a first
plurality of connections to a plurality of second access servers and operates to upload at
least a portion of the one or more fragments of the multiple fragments through the first
plurality of connections to the plurality of second access servers, and wherein the
plurality of second access servers comprise a second plurality of connections to storage
nodes and operates to upload at least a portion of the one or more fragments of the
multiple fragments through the second plurality of connections to the storage nodes in
response to the uploaded portions from the first access server through the first plurality
of connections, and wherein the first access server comprises erasure encoding logic and
operates to erasure encode data of the source object to provide the one or more fragment

uploaded for storage to the storage system.

94

WO 2016/007371 PCT/US2015/038984

37. An apparatus for repair of source data comprising one or more source
objects stored as multiple fragments distributed across multiple storage nodes of a
storage system, wherein one or more fragments of the multiple fragments includes
redundant data for the one or more source objects, the apparatus comprising:

one or more data processors; and

one or more non-transitory computer-readable storage media containing program
code configured to cause the one or more data processors to perform operations
including:

determining a portion of a source object of the one or more source objects
to repair, wherein the portion of the source object to repair comprises data of at least one
fragment of the multiple fragments;

reading data of a plurality of fragments of the multiple fragments from a
plurality of storage nodes of the multiple storage nodes;

processing the data of the plurality of fragments read from the plurality of
storage nodes to provide data of at least one additional fragment for the multiple
fragments;

writing the data of the at least one additional fragment to at least one
storage node of the multiple storage nodes; and

implementing liquid distributed storage control with respect to reading the
data of the plurality of fragments and writing the data of the at least one additional
fragment to control an average bandwidth for repair of source data within the storage
system (R) as a function of data redundancy of the storage system provided by the one or

more fragments including redundant data (f3).

38. The apparatus of claim 37, wherein repair bandwidth used averages to at
most R over long periods of time and the repair bandwidth used is varied over time

independent of a timing of storage node failures.

39. The apparatus of claim 37, wherein the implementing the liquid
distributed storage control to control R as a function of f provides a repair rate with
respect to the one or more source objects to repair which is determined to provide

completion of a repair policy process cycle through all source objects of the one or more

95

WO 2016/007371 PCT/US2015/038984

source objects to repair without loss of source data from any of the one or more source

objects to repair.

40. The apparatus of claim 39, wherein the implementing the liquid
distributed storage control to control R as a function of controls R as a function of
and u, wherein g comprises a rate at which data is being lost from the multiple storage

nodes of the storage system.

41. The apparatus of claim 40, wherein R comprises an aggregate read and
write repair bandwidth, wherein ¢ = A - Dy, wherein A comprises a failure rate of
individual storage nodes of the multiple storage nodes, whereby each storage node is
assumed to fail independently of other nodes at same rate &, and wherein Dsgc comprises

a total amount of source data stored in the storage system and Daj1= Dsrc/(1- f3).

42. The apparatus of claim 40, wherein R comprises a read repair bandwidth,
wherein g = A - Dsre, wherein A comprises a failure rate of individual storage nodes of
the multiple storage nodes, whereby each storage node is assumed to fail independently
of other nodes at same rate A, and wherein Dsgc comprises a total amount of source data

stored in the storage system.

43. The apparatus of claim 39, wherein R comprises an aggregate read and
write repair bandwidth, wherein the implementing the liquid distributed storage control
to control R as a function of P constrains R such that R times Tgaq is at least Dayp (R -
Tran > Dax1), wherein Tran, comprises an amount of time for which it is unlikely that
more than f-M storage nodes fail, and wherein M comprises the number of storage nodes,

and Dsrc comprises a total amount of source data stored in the storage system and Dayy=

Dsrc/(1- p).

44. The apparatus of claim 39, wherein R comprises a read repair bandwidth,
wherein the implementing the liquid distributed storage control to control R as a function
of B constrains R such that R times Tgay is at least Dsgre (R - Tram = Dsrc), wherein Trap,

comprises an amount of time for which it is unlikely that more than f-M storage nodes

96

WO 2016/007371 PCT/US2015/038984

fail, and wherein M comprises the number of storage nodes, and Dsgc comprises a total

amount of source data stored in the storage system.

45. The apparatus of claim 39, wherein the operations performed by the one
or more data processors further includes:
dynamically adjusting R based on an amount of repair instances in a repair queue

and a predicted data loss rate for the multiple storage nodes.

46. The apparatus of claim 37, wherein the processing the plurality of
fragments read from the plurality of storage nodes to provide data of at least one
additional fragment for the multiple fragments comprises:

utilizing an erasure code with parameters (n; k; r), wherein k is a number of
source fragments per source object, wherein r is a number of repair fragments per source
object, and wherein # is the total number of fragments per source object whereby n =

k+r, and f = r/n, wherein n is selected to provide a large erasure code configuration.

47. The apparatus of claim 37, wherein a repair process providing the reading
data of a plurality of fragments of the multiple fragments and writing the data of the at
least one additional fragment is distributed across multiple servers, and wherein R is an

aggregate bandwidth used by the repair process across all the servers.

48. The apparatus of claim 37, wherein the operations performed by the one
or more data processors further includes:

maintaining a repair queue, wherein an identifying instance for the source object
is added to the repair queue in response to determining a portion of the source object to

repair.

49. The apparatus of claim 48, wherein source objects are processed from the
queue by a repair policy process providing the reading of the data of a plurality of
fragments of the multiple fragments and the writing of the data of the at least one
additional fragment in priority order, wherein source objects that have a least amount of

available fragments have a highest priority, and wherein among those source objects with

97

WO 2016/007371 PCT/US2015/038984

a same number of available fragments those source objects added to the repair queue

earlier have priority over those added to the repair queue later.

50. The apparatus of claim 37, wherein a repair process providing the reading
of the data of a plurality of fragments of the multiple fragments and the writing of the
data of the at least one additional fragment implements a lazy repair policy such that
there is significant time between when data is lost for a source object and when the data
of the at least one additional fragment for the source object is written to the at least one

storage node of the multiple storage nodes.

51. The apparatus of claim 37, wherein the data of the at least one fragment of
the multiple fragments is stored by the at least one storage node of the multiple storage
nodes using a data organization that concatenates multiple source blocks from the source
object for inclusion of a symbol of each source block in each of a plurality of the

multiple fragments of the source object.

52. The apparatus of claim 51, wherein the reading the data of a plurality of
fragments of the multiple fragments from a plurality of storage nodes of the multiple
storage nodes comprises:

reading data of a plurality of fragments of the multiple fragments from a plurality
of storage nodes of the multiple storage nodes to access the portion of data, wherein an
amount of the data read is substantially equal to a size of a requested portion of the

source data.

53. The apparatus of claim 52, wherein the writing the data of the at least one
additional fragment comprises:

writing a plurality of output fragment streams to storage nodes as the output
fragment streams are being produced, wherein a first portion of each of the output
fragment streams corresponds to a first portion of the source object and are written to the
storage nodes before a second portion of the source object has been processed by a repair

policy process controlling the reading and writing.

98

WO 2016/007371 PCT/US2015/038984

54. An apparatus for repair of source data comprising one or more source
objects stored as multiple fragments distributed across multiple storage nodes of a
storage system, wherein one or more fragments of the multiple fragments includes
redundant data for the one or more source objects, the apparatus comprising:

means for determining a portion of a source object of the one or more source
objects to repair, wherein the portion of the source object to repair comprises data of at
least one fragment of the multiple fragments;

means for reading data of a plurality of fragments of the multiple fragments from
a plurality of storage nodes of the multiple storage nodes;

means for processing the data of the plurality of fragments read from the plurality
of storage nodes to provide data of at least one additional fragment for the multiple
fragments;

means for writing the data of the at least one additional fragment to at least one
storage node of the multiple storage nodes; and

means for implementing liquid distributed storage control with respect to reading
data of the plurality of fragments and writing data of the at least one additional fragment
to control an average bandwidth for repair of source data within the storage system (R) as
a function of data redundancy of the storage system provided by the one or more

fragments including redundant data (/).

55. The apparatus of claim 54, wherein the means for processing the plurality
of fragments read from the plurality of fragments comprises:

means for utilizing an erasure code with parameters (#; k;), wherein k is a
number of source fragments per source object, wherein r is a number of repair fragments
per source object, and wherein 7 is the total number of fragments per source object
whereby n = k+r, and ff = r/n, wherein n is selected to provide a large erasure code

configuration.

56. The apparatus of claim 54, wherein a repair process utilizing the means
for reading of the data of a plurality of fragments of the multiple fragments and the
means for writing of the data of the at least one additional fragment implements a lazy

repair policy such that there is significant time between when data is lost for a source

99

WO 2016/007371 PCT/US2015/038984

object and when the data of the at least one additional fragment for the source object is

written to the at least one storage node of the multiple storage nodes.

57. The apparatus of claim 54, wherein the data of the at least one fragment of
the multiple fragments is stored by the at least one storage node of the multiple storage
nodes using a data organization that concatenates multiple source blocks from the source
object for inclusion of a symbol of each source block in each of a plurality of the

multiple fragments of the source object.

58. A non-transitory computer-readable medium comprising codes for repair
of source data comprising one or more source objects stored as multiple fragments
distributed across multiple storage nodes of a storage system, wherein one or more
fragments of the multiple fragments includes redundant data for the one or more source
objects, the codes causing a computer to:

determine a portion of a source object of the one or more source objects to repair,
wherein the portion of the source object to repair comprises data of at least one fragment
of the multiple fragments;

read data of a plurality of fragments of the multiple fragments from a plurality of
storage nodes of the multiple storage nodes;

process the data of the plurality of fragments read from the plurality of storage
nodes to provide data of at least one additional fragment for the multiple fragments;

write the data of the at least one additional fragment to at least one storage node
of the multiple storage nodes; and

implement liquid distributed storage control with respect to reading data of the
plurality of fragments and writing data of the at least one additional fragment to control
an average bandwidth for repair of source data within the storage system (R) as a
function of data redundancy of the storage system provided by the one or more

fragments including redundant data (/).

59. The non-transitory computer-readable medium of claim 58, wherein the
codes causing the computer to process the plurality of fragments read from the plurality
of fragments comprise codes causing the computer to:

utilize an erasure code with parameters (#; k; r), wherein k is a number of source

100

WO 2016/007371 PCT/US2015/038984

fragments per source object, wherein 7 is a number of repair fragments per source object,
and wherein r is the total number of fragments per source object whereby n = k+r, and ff

= r/n, wherein 7 is selected to provide a large erasure code configuration.

60. The non-transitory computer-readable medium of claim 58, wherein a
repair process of the codes causing the computer to read the data of a plurality of
fragments of the multiple fragments and write the data of the at least one additional
fragment implements a lazy repair policy such that there is significant time between
when data is lost for a source object and when the data of the at least one additional
fragment for the source object is written to the at least one storage node of the multiple

storage nodes.

61. The non-transitory computer-readable medium of claim 58, wherein the
data of the at least one fragment of the multiple fragments is stored by the at least one
storage node of the multiple storage nodes using a data organization that concatenates
multiple source blocks from the source object for inclusion of a symbol of each source

block in each of a plurality of the multiple fragments of the source object.

101

PCT/US2015/038984

WO 2016/007371

1/42

Vi 9l4

01T

| ¥anuas

) JAON
W-0ET ~35v01s
<>,
8
] JAON
P0ET ~139vi01s
<>
TN
) JAON
€01 ~135vu01s[
S
S—
TN
) JAON
COET ~135v4015[*
<
S~—
) JAON
10T ~35vw015
<>

V1va d3dODN3 FJ4NSvyd

“| sS300V

ONIAODAA FINSYHI ANV
ONIAOIONT FdNSvdd

30IA3d
N3

~0¢T

V00T

PCT/US2015/038984

WO 2016/007371

2/42

8-0TT

6-0T T~

0T-0TT~—

TT-0TT

£-0TT

Sv

I\

Sv

J

Sv

Sv

CI-0TT

gl "9l4

Sv 9-0TT Sy S-0TT Sy
S D D
0cT
SNS JO J81snD
Sv €1-0TT Sy bT-0TT Sy
O 4> D

|

|
) ()

SV

SV

N3
b-0TT
4
£-02T
l——————
~—€-0T1 .
/
-0zt
l——————
~—Z-0T1
—> N3
ot H-o\NH
g00T

PCT/US2015/038984

WO 2016/007371

3/42

I} Ol

(NS) 3AoN

W-0ET OVI0LS [INTWOvS
(NS) 3AoN
v-0€T OVI0LS [INTWOvS
(NS) 3AoN
€01 OVI0LS [INTWOVS
1507 SINFWOVHL TV
3dON a3 1Iv4 TNINOV

(NS) 3AoN

JOVHOLS | INIWOVYS

(SY) Y3IAY3AS
uIvd3ay

0Tt

PCT/US2015/038984

WO 2016/007371

4/42

W-0€¢

P-0€C ~

€-0€C ~—

C-0€C ~

1-0€C ~—

3AON

ldl

3OVIOLS|”

)

3AON

A

[eJe o]

39Vd01S

J

3AON

A

ve ‘Ol4

39Vd01S

O

3AON
39Vd01S

3AON _

mw<mOFm_

301A3d
N3

~0¢¢

012
\
REINES
< [SSIOvE———
20¢ 10¢
TOYINOD 3OVHOLS | ez
Q31N9r41SIa AINDIT

00¢

PCT/US2015/038984

WO 2016/007371

5/42

8¢ 94

0S¢

c0¢

124

S3AON FOVHOLS WOHH/O1«)

104102 anand
€57 ~{ HLAIMANVE AIVdI
AIVdT —
557 25T H 152
N N y N
NOLLYZINVOHO ADTT0d 3009
VIVA b dIVdId b JUNSVYT
HIAVIM AZV 30UV
T0YINOD IOVIOLS AALNGTILSIA AINDIT
AdOWIW
/ R
r4xd
H\r N F\r
b1z
F\mmw_m_m | €12 117~ 14085300ud

S30IA3A N3 NOYH4/OL <« 7
10¢

d3AY3S SS3D00V

0T1¢

PCT/US2015/038984

WO 2016/007371

6/42

g¢ Ol4

FANTIV4d FANTIv4 Eb[ARINE! Eb[ARINE!
J4dON 3AON J4dON J4dON
ADVH01S IADVAHOILS AOVAOILS A9VA01S
< JINIL & 4_~ &
Fmidﬁﬁ_ % ,/,f, % M/
ﬁ 5 N N
NN N
N N \
N N N N
5 e N H._.m<u_N_ N
bISYHy E1SVy AN H1AIMANYd
dIvd3ay
FANTIV4d FANTIv4 Eb[ARINE! Eb[ARINE!
J4dON 3AON J4dON J4dON
ADVH01S IADVAHOILS AOVAOILS A9VA01S

AWIL ﬁ ﬁ ﬁ

T

HLAIMANVvd
dIvd3d

WO 2016/007371 PCT/US2015/038984

7142

L
=
::::: 2 —
N7 _
; (%))
N7 -
-
(%))
o o2 B &
NN R < a5 g
. D = &
5 L - L
i W o W L o
o’ = =] & = ~
@] ﬂ - [o
=z < [7a) o)
L
@) @)
=2 28
o & C ™
T X T en
p oy F LD
L
% W oz 5 é 5 '-L
I a>s < <
e o 2 & Y g5
s e = E (a4 <C (a4
X &
D < < <
N7 S § 3
e :: a4 a4 [a'4
R o = = >
RS (<fE) (<fz) N
RN S\\TF %
_]] % s ‘C\\ (7
R R RRRREBLIIILS " o L]
B R R IR e W
Pl e e N o>
—oZ=
Z <
L

Arpst —P
Riazy —»

Reast —»
REPAIR
BANDWIDTH

PCT/US2015/038984

WO 2016/007371

8/42

gv "Ol4

0Ig 924n0S 1 L)

/ 104 S|OqWIAS Jleday

T-U INJWOVHS

000

A INJWOVHS

WVIYLS V SV 103090 40 ONIAOINT mmzmémﬂ

T4 INFWOVS
ZINGWOVYHd ! |
T INIWOV
0 INIWOV
173r90
r 30|g 204N0S |
0 TOgWAS Yy Ol4
~
o |1 t|lzlo |t |lz|o]| 1]z
\ AN
N %
02079 I X079 200719 € %0079
. 30unos 30UN0S 30UN0S 304N0S
153r90 32WN0S

PCT/US2015/038984

WO 2016/007371

9/42

o7 "Ol4

0 109IWAS = 0 LNIWOVIH I2dN0S
4 \

-

U209 32dN0S = 153190 32d4N0S

PCT/US2015/038984

WO 2016/007371

10/42

¢ AdTd1S

I

08| 18|78 | cs|+'s| s'8
(8 = 1S3 HLIM STOGINAS) 8 INJNOVHAS
[o]

o]
o

os | 1's | s | €s | +'s | g's
(S = 1S3 HLIM STOGINAS) S INJNOVHAS

ar O

¢ 0019 324N0S

> v 6 | ¥T | 6T | b2 | 6C

y | e [o1 |61 | vz | 62 ONIAOOAd c 18 e | ot | ez | a2
(¥ = 1S3 HLIM STOGINAS) ¥ INTFWOVHS Z . |zt | a0 | zz | 2z
g T o []or]| 12| o

T 9 | IT | 91 | T2 | 9¢) ONIAOON3 0 S | o1 | st | o | Sc

(1 = 1S3 HLIM STOGINAS) | INJWOVHAS

0 q oT | st | oz | S¢
(0 = 1S3 HLIM STOGNAS) 0 INTJNOVHAS

123190 40 NOILJOd

S

A

PCT/US2015/038984

WO 2016/007371

11/42

2019 IAON dr Ol
N
80| 8T | 8¢ | 8'c | 8 | 8's
8 INJWOVY4
0| ST |ST|¢se| sy | SS i i
i€ >
5 INJIWOV | D079 AIA0DTY VIVA |
SNIGO93 > v 6 | ¥1 | 61 | v | 6C
14 6 | ¥T | 61 | bC | 6C 3 8 [er | g1 | sc | 82
¥ INJWOVYS 4 L 4 5 BVA S B A VA4
S - T 9 [1t | ot | 12| 9C
I 9 1 o1 12 | 9t ONIAOON3 0 S 0t GT | 0C | S¢
i T INJWOVYA i 123r490 40 NOILLIOd
< >
" 20179 IAON |
0 S |or | st | oc| st
0 INIWOVYS

S

A

PCT/US2015/038984

WO 2016/007371

12/42

syuswbely Bunm Jo Japlo buissanoid

| P i il il il i ol ki il i il i il i il il il i il i i i il Wil

e o o o 3 et oo o b i pe e o e e a oe a

el g g o o " et G G g et g g g gt et g g g g g o b g G o

| AN T TN rr Ty

| A i i A i AN Oy

| P T Ll L L, e
SNS U 0] sweans
uswbely LM

syuswbe.y
u jo suon.od
pa)eJauan)

47 "Ol4

o9pPO0dUD aJnse.j

109[qo Jo Jop.Jo buissanold

MON aJmn4

300|q 924n0g

<

109[qo Jo uopod
SAIINJASUOD)

PCT/US2015/038984

WO 2016/007371

13/42

oy "9l4

juswbedy M

301A2d N3

//////////

AR

SvY
)
<
o G GG G P gl A G g G G g gl A g g G G gl L P o
/ Juswbely
)
<
G A A i A i T TR T
9 juswbe.
)
<
TEEE TEEE TEEE TEEE TEEE TEEE TEEE
G Juawbe.
< w_ooucm
L A A i o A A A A i A A A L o i A A LT ST mx_Dmm‘_mfffv
uswbe. N
B 2 ,,,7 /,,/,,/
< V,_uo_g
b L T T T T T Far QUx_Dom
uswbe.
€1 4
‘R T TN TN TN FrrrrErN.rrre e i
uawbe.
[4
<
R T S B P S B P S B P S B P S B A B P
T Juswbe.q
<
O T AT R A A A A AT T, F A
SNS 8 = 0 uswbe.q
0] swea.ns 7z
A N %30|q 324N0s woly <] I

papodus sjuswbely u Jo suorpod —

ejep uoned|ddy

PCT/US2015/038984

14/42

WO 2016/007371

Hy "9l4

syuswbely Buipead Jo sapJo Buissanold uonoNIsuodal eyep dde jo Jspao buisssnold
D e D GEEC T TP e PR e
24nyn4 MON MON 1sed

| P i il il il i ol ki il i il i il i il il il i il i i i il Wil

300|q 924n0g

e o o o 3 et oo o b i pe e o e e a oe a

9p0d9p aJnse.]

el g g o o " et G G g et g g g gt et g g g g g o b g G o | v

| AN T TN rr Ty

ejep dde jo uojuod

T Tt 7 T T 7 7 AT s i AT T T T SAIINDASUOD)

| o o A L A . Srrre
SNS Y 15e3| 18 WoJ) Sweds
Juswbely peay

syuswbe.y

X ises| je

JO suonod
pesd

PCT/US2015/038984

WO 2016/007371

15/42

Iy "9l4

Sv
)
>
o G GG G P gl A G g G G g gl A g g G G gl L P o
uswbe.
LY 4
>
G A A i A i T TR T
uswbe.
91 4
>
TEEE TEEE TEEE TEEE TEEE TEEE i
S Juswbe.d 1A NI
)
N
L A A i o A A A A i A A A L o i A A LT ST w_UOUQ_U ?//;//W/////{}/f//;/«/{}///;/«/{}///f
uswbe. ainseld N,
— 3 3 B R R R Y
g_ eyep uonediddy
b L T T T T T i QU_jom
¢ Juawbe.y
N
T
>
R T B S B P S B P S B P S B A B P
T Juswbe.q
>
O T AT R A A A A AT T, F A
SNSY 1ses| 0 judswbeld
/
18 Woly siieads sjuswbey y 1seajje Jo k= E—

uswbely peay

suoiiod wo.y papodap 3o0|q 324nos —/

WO 2016/007371 PCT/US2015/038984

16/42

Y,
%0

prefix
recoverable
attime ty

App Data

Pt R e o P g e e M M R e e

FIG. 4J

Fragment Fragment Fragment Fragment Fragment Fragment Fragment Fragment

SV 1e paAllie sey jey)
Juswbely passnbal JO X1yaud

WO 2016/007371 PCT/US2015/038984

17/42

1
1
1
1
1
i)
- B .5,
/ / / / / o X © —
o >
- /:7 A fff? i fff? i fff? i fff? 41853 =+
| < 0
-
1
1
! I
H)]
! e e e e g ~
! o
1 o
1 L
H)
- 5
!
L\M“k“'ﬁ\“\\\M“'ﬁ“‘ﬁ\“\\\M“k“'ﬁ\“\\\&“&‘%\“\\\‘%‘%“‘ﬁ\“\\\& g (o)
1
I ©
: (T
1 -+
1 C
1 (O]
: boa i m e N R e e N T T T Nt T T T N e e T g LN
1
- ©
! L
' 2
1
! 2 X
e © < <+
1 [@)]
] E < L]
1
- L Q)
1 2 [
1 C
1 () l
= .Eﬁ—;dii\\' T T T T T e T e, T T T T, T P T T TR T T T i T T T T | g o
I
1 [48]
1 _
1 L
! =
1 C
: ()
] S
1 [@)] N
1 [48]
1 _
1 L
1 =
1 C
: ()
, 1 E —~
[@)]
1 [48]
1 o
1 L
! i)
H c
. 2
R s s e s N CDO
! [40]
1 g
1 L.
1
1
1
1
< 1

SV 1e paAllie sey jey)
Juswbely passnbal JO X1yaud

PCT/US2015/038984

WO 2016/007371

18/42

30}

syuswbely Bunm Jo Japlo buissanoid

7 "Ol4

No¢

IIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIII lv
1sed MON
—
L ey ey ey ey ey
apooud
e e T T T T T T e T T T T T N Ty m._jmm_m

AH

| e e e e

e

//ﬁ

syuawbely buipeal Jo Joplo Buissano.ud

B T T T e e T e e T T e T e T T T T e e e e T T T T T T e T T T e

SNS 01 swea.]s juswbely
4 01 dn jo [euoiippe S}IM

|

syuswbe.y

4 01dnjo
suojuod [euonippy

300|q 924n0S

................................. >
MON aJmn4

N Al A T i Al AT |

P PP, PRI PFFTEIIIIFTEIIPFFFEINIFFFFE

O_UOUQ_U RN FLETT NN T EEEET.EEE NN EEFEFFG

mL:mmLm_

A i ot gt T A A T G g A)

NI i i A i Ty |

ST BB T T T T PP T T T T E PR

300|q 924n0s
9p0o29p 0}

SNS WoJy sweauns juswbely
¥ 1ses| Je peay

pasn sjuswbe.ly

¥ 1589

1e JO suonod

PCT/US2015/038984

WO 2016/007371

19/42

Ay "9ld

g— e
JOAIDS Jleday

>
o7 7 Al G gl A G 5 gl Gl G 5 gl
/ Juswbe.y
>
TEEE TEEE TEEE TEEE TEEE TEE TEEE
G Juawbe.
S
ainse.3 ,,,“_//
=
P 201G
T T T T T R T
22.4n0
¢ Juawbe.y S
>
S B P S B P S B P S B P S B P TR S B
T Juawbe.lq
>

o B S B BB i B B e

T

SNS¥ 1se9] 0 Judwbeld
18 WOoJ) sweans
Juswbely peay

syuswbely y 1ses| 1e Jo
SUOIHOd WOy PaPOIIP XI0|g DIINO

—1 ——
m|\

PCT/US2015/038984

WO 2016/007371

20/42

dl
)

N7y “9l4

\

—_—

JOAIDS Jleday

o N T g T S

S

9 juswbe.q

<

< N T T T EEE O EE T E

Y

TS
—

SNS-/ 0}
dn 01 sweals
uswbely 1M

¥ Juswbely

300|q 924N0S Wo.}

S

Tt OPOOUD f//%
alnse.g f%
32019
30.n0S
i —

papodua sjuswbely.s 0] dn Jo suorpod —/

PCT/US2015/038984

WO 2016/007371

21/42

dil 00€ — 9N 00T

Or "9l4

M/3ZI1SO = 9zIS [0qWIAS = 32IS Juawbe.]

€71 uswbely Jiedoy

000

0T Juswbe.y Jieday

S|OQWIAS 924N0S QT = Y

Buipodap aunsesd

6 uswbe.y ejeq

v

A

Buipoous aunsesd

000

T Juswbely ejeq

>20|q SpPON

>

0 uswbely ejeq

0 |0qWAs 32.4nos = (Juawbely exeq

T [oqwAs 204nos = T juawbel) eyeq

Z |10qWAs 224nos = g juawbely exeq
000

6 |0QWAS 224n0S = § Juawbely exeq

H >20|q SpON

(g9€ - g97) 300|q d24nos = P3(q0

PCT/US2015/038984

WO 2016/007371

22/42

dv Ol4

UM UD3q aAeY syuawbel) mau Jo suondod Bulpuodsaliod
90U0 SNS wouy syuswbel) bunsixe Jo suoiod aselq

syuswbely mau Bunlum Jo Japuo Buissanold

syuawbely bunsixe Buipead Jo JapJo Buissatold

................................. >
MON aimn4
gt gt gt gt gt G G ¢ g e b e g T o G g g gt gt b b g

199([qo Jo uonod
papOoJ3P JO Jayng

N\

S R L L R R

E:.n_ .

L S S S S et]

IIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIII nv
15ed MON
—
| 59 ey ey ey ey ey
L= Y Y Y Y Y
| PR e e e e e e e e e e PR
| & N N N Ty N
D e P e T T e T T T T T e e e T g e e e e B
| RN RN RN RN RN T
| AN o " o " o " o PR
| T TN TN TN N N
o o e e e N e e e P P e i e e e e e e e e T P e i]
| RN RN RN RN RN T
| —

(4 ‘X ",u) Buisn SNS
0} swea)s juswbely ,u LM

320|q 924N0S
W0} papodud
syuswbe.y

(A*",u) Buisn

,9ZISS puy mN_mm pue

(4 3‘u) Buisn

320|q 924N0S
9podUd
aJnse.3

9pooap
alnse.q

300|q 924n0s

Wy

e e e S

syuswbe.y

SNS WoJy sweans juswbely
Bunsixs y 1ses| 1e peay

Bunsixa y 1se9|
1e JO SuonIod

M3U ,U JO Suopiod

PCT/US2015/038984

WO 2016/007371

23/42

Added SNs

Existing SNs

Ov '9l4

J

>

WA AN XN AN RN TN T AT, e

uswbely bunsixg

[

)

AT e e e EEEEEEEEEEEEEEEEESL ENEEEEEr

uswbely bunsixg

T T TSN LN L Ea Tl e |

SNSY 1ses| juswbeuy bunsix3y

JOAIDS Jledoy

1099([qo Jo uonod
pPopPO23P JO Jayng

alnse.q f/ /mﬁ// /,ﬁy /MW

9zISS pue

¥ Uo paseq
papoJap

300|q 224n0g

| —

Juswbeuy peay suood wolj papodap ojq 0unos —/

PCT/US2015/038984

WO 2016/007371

24/42

&y “Ol4

uanIM U3q aAeY Syuswbel) mau Jo suoiiod Buipuodssulod
90UO0 SNS wody syuswbely bunsixs Jo suon.od ase.q

Added SNs

Existing SNs

AN

\}

i

P

W e T

Ll A L

juswbely maN

)
l
Juswbely maN
—
i
P o S P S P i P o P S
juswbely maN
.
<
WA AN F N TN .FEEEEEN.EEE W T .
juswbely maN
—
<
il il TN TN .FEEEEFEEEEF] T ETEe.rrr
1uswbely MoN
—
<
rd P P P P NEEEELS A TEEEEE, raE

—.

1uswbel) MaN

T

Juswbely MoN

O.F.me\::mmf:g:mmﬁ:g:mmf\.}:m

<

R T T TR P EEE R EEEE:

SNS ,u
0] swea.ls
uswbely ajlm

EmEmmt >>mz

PapOodUR SyuswWbey U JO suonod —/

300|q 924N0S Wo.}

JOAIDS Jledoy

109[qo Jo uopod
papo2aP JO Jayng

&%ﬂ%ﬁ%f
ITIIIINT
o pase:

papooud

320|q 924N0S

PCT/US2015/038984

WO 2016/007371

syuawbely buissin —

3|ge|leAy sjuswbel emmED

syuswbe.y bunm ulod Buissadold ezzzz
syuawbe.y buipeal juiod Buissaold =S

qui0d Buiss00.d ez

PCT/US2015/038984

WO 2016/007371

26/42

g9 Ol4

(8 buissiw) syuswbely 71

1-01S

ananb Jiedau ul juiod buisseno.d

6-01S

(Buissiw auou) syuswbel) 0z

8-01S
(1 Buissiw) syuswbely 61

(z Buissiw) syuswbely g1
L-0TS

(g Buissiw) syuswbely g1
#-01S

(y Buissiw) syuswbely 91
S-01S

(¢ Buissiw) syuswbely /1

PCT/US2015/038984

WO 2016/007371

27142

‘\@ﬂ

N
oo\

syuawbely buissin —

3|ge|leAy sjuswbel ez

syuswbe.y bunm ulod Buissadold ezzzz
syuawbe.y buipeal juiod Buissaold =S

qui0d Buiss00.d ez

PCT/US2015/038984

WO 2016/007371

28/42

PCT/US2015/038984

WO 2016/007371

29/42

Eg
N

"

w\j
@

WO 2016/007371 PCT/US2015/038984

30/42

601
N

IMPLEMENT LIQUID DISTRIBUTED STORAGE CONTROL

DETERMINE AT LEAST ONE ADDITIONAL FRAGMENT OF | ~611
A SOURCE OBIJECT TO GENERATE AND STORE

y
READ DATA OF A PLURALITY OF FRAGMENTS FROM A [-612
PLURALITY OF STORAGE NODES

A 4

ERASURE DECODE THE SOURCE OBJECT FROM DATA OF [_-613
THE PLURALITY OF FRAGMENTS

y

ERASURE ENCODE DATA FROM THE DECODED SOURCE
OBJECT TO PROVIDE DATA OF AT LEAST ONE
ADDITIONAL FRAGMENT

| _-614

WRITE DATA OF THE AT LEAST ONE ADDITIONAL | ~615
FRAGMENT TO AT LEAST ONE STORAGE NODE

FIG. 6

WO 2016/007371 PCT/US2015/038984

31/42

701
N

IMPLEMENT LIQUID DISTRIBUTED STORAGE CONTROL

DETERMINE THAT AT LEAST ONE FRAGMENT OF A

SOURCE OBJECT IS MISSING FROM A STORAGE SYSTEM | -711

FOR WHICH THERE IS NO CORRESPONDING OBJECT
INSTANCE IN A REPAIR QUEUE

A

ADD A CORRESPONDING OBJECT INSTANCE TO THE
REPAIR QUEUE FOR THE SOURCE OBIJECT OF THE
SOURCE DATA

| -712

y
SELECT THE OBJECT INSTANCE FROM THE REPAIR | ~713
QUEUE BASED ON PRIORITY OF THE OBJECT INSTANCE

y

READ A PLURALITY OF FRAGMENTS
CORRESPONDING TO THE SOURCE OBIJECT OF
THE SELECTED OBJECT INSTANCE

| 714

y

ERASURE DECODE THE CORRESPONDING SOURCE | _~715
OBJECT FROM THE PLURALITY OF FRAGMENTS

4
ERASURE ENCODE ONE OR MORE ADDITIONAL | _-716
FRAGMENTS FROM THE DECODED SOURCE OBJECT

A 4

WRITE THE ONE OR MORE ADDITIONAL FRAGMENTS TO| ~717
STORAGE NODES OF THE STORAGE SYSTEM

A
DELETE THE SELECTED OBJECT INSTANCE FROM THE | ~718
REPAIR QUEUE

FIG. 7

WO 2016/007371 PCT/US2015/038984

32/42

RECEIVE A REQUEST TO ACCESS A PORTION OF SOURCE DATA | 801

A

READ DATA IN AN AMOUNT THAT IS SUBSTANTIALLY THE
SAME SIZE AS THE REQUESTED PORTION OF SOURCE DATA
FROM A PLURALITY OF FRAGMENTS

| _-802

A
ERASURE DECODE THE PORTION OF THE SOURCE DATA FROM | ~803
THE DATA READ FROM THE PLURALITY OF FRAGMENTS

PROVIDE THE PORTION OF SOURCE DATA IN RESPONSE TO | -804
THE REQUEST

FIG. 8

RECEIVE SOURCE DATA AS A STREAM | ~901

A 4
ERASURE ENCODE THE STREAM OF SOURCE DATA TO
GENERATE A STREAM OF ENCODED DATA AS THE STREAM OF
SOURCE DATA IS ARRIVING

| 902

A 4
PRODUCE A PLURALITY OF OUTPUT FRAGMENT STREAMS
FROM THE STREAM OF ENCODED DATA AS THE STREAM OF
ENCODED DATA IS BEING GENERATED

| -903

A 4

WRITE EACH OF THE PLURALITY OF OUTPUT FRAGMENT
STREAMS TO STORAGE NODES AS THE OUTPUT FRAGMENT
STREAMS ARE BEING PRODUCED

FIG. 9

| 904

WO 2016/007371 PCT/US2015/038984

33/42

1001
N

GENERATE FRAGMENT DATA FOR SOURCE
DATA USING A REPAIR PROCESS

ACCESS A PORTION OF THE FRAGMENT DATA STORED

ON THE STORAGE NODE CORRESPONDING TO THE | ~-1011

SOURCE BLOCK OF THE SOURCE DATA FOR EACH OF AT
LEAST k STORAGE NODES

y

RECOVER THE SOURCE BLOCK OF THE SOURCE DATA
FROM THE ACCESSED PORTIONS OF THE FRAGMENT
DATA USING ERASURE DECODING

| 1012

A 4

GENERATE AT LEAST ONE PORTION OF FRAGMENT DATA

FROM THE SOURCE BLOCK OF THE SOURCE DATA USING
ERASURE ENCODING

| _-1013

A
STORE THE GENERATED PORTION OF FRAGMENT DATA
ON THE STORAGE NODE FOR EACH STORAGE NODE FOR
WHICH A PORTION OF FRAGMENT DATA IS GENERATED

| _-1014

FIG. 10

WO 2016/007371 PCT/US2015/038984

34/42

1101
N

REPAIR PROCESS PROCESSING EACH OF THE
SOURCE BLOCKS OF SOURCE DATA IN ORDER

DETERMINE THE PARAMETERS (n; k; r) AND THE SYMBOL SIZE

Ssize OF THE ERASURE CODE USED FOR GENERATINGAND | 1111

STORING EXISTING PORTIONS OF FRAGMENT DATA FOR AN
EXISTING SOURCE BLOCK OF SOURCE DATA

y

ACCESS THE EXISTING PORTIONS OF FRAGMENT DATA STORED
ON THE STORAGE NODE CORRESPONDING TO THE EXISTING | -1112
SOURCE BLOCK OF SOURCE DATA FOR EACH OF AT LEAST

k NODES

y

RECOVER THE EXISTING SOURCE BLOCK OF SOURCE DATA
FROM THE ACCESSED EXISTING PORTIONS OF FRAGMENT DATA| ~-1113
USING ERASURE DECODING AND PLACE THE EXISTING SOURCE

BLOCK INTO A TEMPORARY BUFFER

A
DETERMINE PARAMETERS (n’; k'; r) AND THE SYMBOL SIZE | -1114
Ssize’ FOR THE NEW SOURCE BLOCK OF SOURCE DATA

A

REMOVE A NEW SOURCE BLOCK FROM THE TEMPORARY BUFFER

AND GENERATE n" NEW PORTIONS OF FRAGMENT DATA FROM | _~1115

THE NEW SOURCE BLOCK OF SOURCE DATA USING ERASURE
ENCODING

\ 4
STORE THE GENERATED NEW PORTION OF FRAGMENT DATA ON
THE STORAGE NODE FOR EACH STORAGE NODE FOR WHICH A |—1116

NEW PORTION OF FRAGMENT DATA IS GENERATED

4

RELEASE THE STORAGE SPACE ON STORAGE NODES THAT WAS

USED TO STORE THE EXISTING PORTIONS OF FRAGMENT DATA| -1117

FOR THE EXISTING PORTIONS OF FRAGMENT DATA FOR THE
EXISTING SOURCE BLOCK OF SOURCE DATA

FIG. 11

PCT/US2015/038984

WO 2016/007371

35/42

¢l Ol

X 9ZIS JO 3Je $103[qo usym (sJeaA ul) s10a[qo Aue Jo ssO| 0] awn ueaw S (X) LI
SIN220 31 Joye aJn|ie) usuewlad NS e 109)9p 0] awn 9yl SI |

93e.d ainjies usueulsd NS 941 SI Y

NS Jad Ajpeded abeuols ayy si S

SNS JO Joquinu 3yl SI W

pUSbIT
[+ 0T [+ 0T 0'00T 19°L 09T 9 oce Aze|+ab.e
[+ 0T [+ 0T 0'00T 12X £ee X £9¢C Aze|+ab.e
P+o LT £€+9 09 6'¢ 00°00T £ee 3 9 1Sel+([lews
P+ ¢ £E+o9 8% 8t 00°08 £ee 3 9 1Sel+([lews
£+98'6 E+9¢'¢C L6 00°0v £ee 3 9 1Sel+([lews
R EE e EN I R

uoReinNuis 1eaA /+o O'T ‘sanuil gs = |

Upahiad g/T =Y 'ql 9T =S 00t = W

PCT/US2015/038984

WO 2016/007371

36/42

€L "9l

X 9ZIS JO 3Je $103[qo usym (sJeaA ul) s10a[qo Aue Jo ssO| 0] awn ueaw S (X) LI
SIN220 31 Joye aJn|ie) usuewlad NS e 109)9p 0] awn 9yl SI |

93e.d ainjies usueulsd NS 941 SI Y

NS Jad Ajpeded abeuols ayy si S

SNS JO Joquinu 3yl SI W

puSbIT
[+30°T [+30'T 0'00T 8'0¢ Sz s 5297 | Azel+obier
[+30'T [+30'T 0'00T 96, 9'87 LS8 €pT7 | Azel+obier
9+39'T G+ 9'T L'¥L 582 9'87 b 0T 15e)-+][RUS
oL A WA 0'00T w's 9'87 b 0T 15e)-+][RUS
T | S | Sihey |Gt | | esey | aames | 29 vommos

uoReinuwys 1eaA /+9o Q'I ‘sepnuil g = |

Upaf 1ad /T =Y gL 0T = S 000 = W

WO 2016/007371 PCT/US2015/038984

37142

o ~ AN [ap] < (o] «© M~
n O N N n O N »
L L L L L L L L
o o o
wloe |Nfolo|lsla]| S f/ k\
= - e e e e /':;, :&‘\Q\
A7 A, 1 1 N St T T [
o — o ™ < o i o o i |
— — — — — S IH o ~E o <
_ _ * Mo Hy o [~ Hoo - .
VA W A S NN oo o e 2 &
AL A, A 7 NN ot e et I I
'Y EY R EYEY R Y R
1~ i i — — :mgiko N~ m
@*jj/f*a{;f \‘\4{ R A DR Cp Cp
. EEEF. XSS 4 L o~ N
A A A A, NN T T Pt s @
oW =Moo <]~ <l X X
N JHN N N AN Wi o [~ Hoo 8 8
p y 2 E
A AN 2 S
P Wt T Py NN R VR 1) @ ®
oo oW el ¢ ¢
AN THAN FHN TN AN H iy H o [N oo =] 2 <
.] i \ o o
< L P ﬁ\‘\ AR AN A @ @ <
Y T 8 TR \\\\l‘;\% &\\ =) -— =~
oo tolsflaellaefalfe T T .
L MO [HO O O e [o P~ o o o (D
] L RO weant At N s s o
i - R ST A KN > D LL
wn [Ho B~ T o '\\\'J'*'\;'\ E c
IO HIO MO HO O Hn [s o S S
P e S SRNR Nl oot
[- VT RN (NN NI N & &
SH=HaWots el flale £ &
iKs ~ < [H < < o ~ Hen © ©
P i A RN S N oo © ©
o o
wjlolnjola|a]|o] o §e] -
S I A I w || L 8
1) 1)
(<) (<)
g &
2la|®|R (5|33 & &
Nl RCE N r
i i i
2858|8233
LN N} N~

PCT/US2015/038984

WO 2016/007371

38/42

Y
C D, / Juswbely
40 8g9-¢d

\}
< 93uswbey arl Old

40 8d-¢94 /-p Syuswbely
v - A J0 89-74d 1sanbay
PN 20%T

\I]
AT — Sy \A 301AQ N3
(£-v) syuswbely Jo —
7 vaswbey | L —— w%w%:mcm& ﬂ(v uorod pXRIdINN_| 5posap
40 8d-¢d
AT a|ge|ieae A\ (6-0) SIWBE] 1o aJnse.
x3|dRINIW uorpod paxa|diyniy — p1Rp
) ¢uswbey J—— /A POIG 9NOS 6oy dety
40 8d-¢d [

) TN ww N
C Y zuswbey 0Tt €-0 syuswbedy 0ct
M J0 8d-¢4 J0 89-z4d 1senbay
m 0 uswbe.y

SNS Y 1Ses| Je wouy 40 89-¢4d
sweau]s uswbel) peay

PCT/US2015/038984

39/42

WO 2016/007371

, a7l ‘Ol
C > / Juswbely
J0 89-74 A

\} b

TSV
C Y 93uowbely syuswbedy

J0 89-79 pa1senbau /- SJUBWBE
olqejiene 0 89-79 1sonboy

> xa|dRINI 40 8d-c8
N
AT — 21A9a N3

¢-01T _
C D b wcmEmmt 5p023p

40 8d-¢d alnse.g
20|q 924n0 1P

¢ wcmEmmt J— 10(9 S uoneoyddy
. 40 89-¢4d

0Sv N

_ paisonbal 0 gg-7g 159nbo
40 89-¢4d S1q8|IeAL 40 89-¢ s
xa|din 0148
\lj
0 swbe.y

SNS.Y 1se9| je wo.y 40 89-¢4d
sweau]s uswbel) peay

PCT/US2015/038984
40/42

WO 2016/007371

"

29 £9 va 59 98 (8 8

T . 4] & | iy’ ¥ piliimiiniind” 1 1]
2153 m 'L mmm L YL S c W 9L i L g7 8L I

Bl S B bl bl b ¢ Tt
9183429 mm c'g mm +'9 _Nmn G9 [H] 9'9 m .9 mu 8'9 ¢ UOI3O2UUOD PUOIIS WO} elep 3suodsal paxa|diyiniy

G 2 7 e 2 2 i U 7 i 71 12 e 7 1 o
¥ 1S3 wﬁm mm. \M\ ¢mm\WmNh®%¢m m%mm h\ iﬂm

. q Q] T o :

€153 mﬁmwffﬁﬁﬂm SIS N NN NN

xmf. T M..rxmf#r Nm;fr###;mzfr####fx”##frxm##ff ﬁ_ ﬁ_

| 01309UU0d 1S 0.} eje

¢ 153 NH/M_ DQM?NN M? LC wu,:mm Mmm N¢ uoIOBUUOD 1Sl WO elep asuodsad paxa|diyniy
01s3 WS RS TR 0T bl STRS OE R SERIN Ot Y

PCT/US2015/038984

WO 2016/007371

41/42

37} "Ol4

W-0ET~

L-0ET~

9-0€T~

S-0€T~

P-0ET~

€-0ET~

C-0€ET~

T-0ET~

3
=

apou

abe.031s 10H

wa)sAs sg1 ue Jo sapou abeuols
Ul paJ03s $393(qo Jo4 syuswbely

m N-OZvT
JONIDS I
SS90y apou
abe.031s 10H
Z-0TT [-0TPT
apou
abe.031s 10H
9-0¢¥T
JETNETS
$Sa00Y apou
abe.o)s 10H
\l]

apou
abe.01s 10H

P-0¢vl

apou

abe.01s 10H

€-0¢vt

apou
abe.01s 10H

[41144!

apou
abe.01s 10H

1-0¢P1

Wid)sAs 2be103s J0H JO Sapou
obel0)s uj palols s1algo payipowun

wsAs sq1

Wwi21sAs abelols 10H

PCT/US2015/038984
42/42

WO 2016/007371

P| I°0d [¢&——» OO0 [&—p| 1o°d

<
K;, 14 | K * [t-ug k;FE _ %
/-0TST 9-02ST 5-02ST

199d f-mmmmmmmmmm . ——————»| 199d [————

[04] m]
R H 04 Jo Buipodus ! b-025T H
8-0¢51 D34 puodas |
| > «—————
199d m ! 1994
R “ K T4 [od |
6-07ST e »{ 91A9Q NI j&——— €-07ST —————{ 90.n0S
o D | 0d4.0/0091 0] BN N e Lod [14 [ed|[r-ud]
Apusanouod 04! OCT 199(qo Jo Buipooud
K 04 _ J0 sbuipooud K 04 _ D34 15414
0T-0¢sT 04 Jo Buipooud SOAIRIDY Z-025T
D34 puodss

1994

aE_

]
]
]
]
1
!
H | 199d j¢——m88
“
]
]
]
]

aE

N
N

11-0¢St 1-0¢ST

> 199 |[———>»| 195d [——>»] 154 [«

K T-ud | K 04 | /f T-ud |
Z1-02ST €T-07ST 04 40 vT1-02ST
Buipooud

J34 puodss

INTERNATIONAL SEARCH REPORT

International application No

PCT/US2015/038984

A. CLASSIFICATION OF SUBJECT MATTER

INV. GO6F9/50 GO6F11/10
ADD.

According to International Patent Classification (IPC) or to both national classification and IPG

B. FIELDS SEARCHED

GO6F

Minimum documentation searched (classification system followed by classification symbols)

Documentation searched other than minimum documentation to the extent that such documents are included in the fields searched

EPO-Internal, INSPEC, WPI Data

Electronic data base consulted during the international search (name of data base and, where practicable, search terms used)

C. DOCUMENTS CONSIDERED TO BE RELEVANT

Category*

Citation of document, with indication, where appropriate, of the relevant passages

Relevant to claim No.

the whole document

the whole document

X EP 2 365 439 AL (LSI CORP [US])
14 September 2011 (2011-09-14)

X US 6 647 514 B1 (UMBERGER DAVID K [US] ET
AL) 11 November 2003 (2003-11-11)

1-61

1-61

_/__

Further documents are listed in the continuation of Box C.

See patent family annex.

* Special categories of cited documents :

"A" document defining the general state of the art which is not considered
to be of particular relevance

"E" earlier application or patent but published on or after the international
filing date

"L" document which may throw doubts on priority claim(s) or which is
cited to establish the publication date of another citation or other
special reason (as specified)

"Q" document referring to an oral disclosure, use, exhibition or other
means

"P" document published prior to the international filing date but later than
the priority date claimed

"T" later document published after the international filing date or priority
date and not in conflict with the application but cited to understand
the principle or theory underlying the invention

"X" document of particular relevance; the claimed invention cannot be
considered novel or cannot be considered to involve an inventive
step when the document is taken alone

"Y" document of particular relevance; the claimed invention cannot be
considered to involve an inventive step when the document is
combined with one or more other such documents, such combination
being obvious to a person skilled in the art

"&" document member of the same patent family

Date of the actual completion of the international search

15 September 2015

Date of mailing of the international search report

28/09/2015

Name and mailing address of the ISA/

European Patent Office, P.B. 5818 Patentlaan 2
NL - 2280 HV Rijswik

Tel. (+31-70) 340-2040,

Fax: (+31-70) 340-3016

Authorized officer

Kielhdfer, Patrick

Form PCT/ISA/210 (second sheet) (April 2005)

page 1 of 2

INTERNATIONAL SEARCH REPORT

International application No

PCT/US2015/038984

C(Continuation). DOCUMENTS CONSIDERED TO BE RELEVANT

Category* | Citation of document, with indication, where appropriate, of the relevant passages

Relevant to claim No.

X SRINIVASAN A ET AL: "Response time
analysis of fault tolerant systems using
primary site approach with LCFS repair
service",

TENCON '94. ITEEE REGION 10'S NINTH ANNUAL
INTERNATIONAL CONFERENCE. TH EME:
FRONTIERS OF COMPUTER TECHNOLOGY.
PROCEEDINGS OF 1994 SINGAPORE 22-26 AUG.
1994, NEW YORK, NY, USA,IEEE,

22 August 1994 (1994-08-22), pages
623-627, XP010126867,

DOI: 10.1109/TENCON.1994.369145

ISBN: 978-0-7803-1862-5

the whole document

A MARK SILBERSTEIN ET AL: "Lazy Means
Smart",

PROCEEDINGS OF INTERNATIONAL CONFERENCE ON
SYSTEMS AND STORAGE, SYSTOR 2014,

1 June 2014 (2014-06-01), pages 1-7,
XP055213180,

New York, New York, USA

DOI: 10.1145/2611354.2611370

ISBN: 978-1-45-032920-0

the whole document

1-61

1-61

Form PCT/ISA/210 (continuation of second sheet) (April 2005)

page 2 of 2

INTERNATIONAL SEARCH REPORT

Information on patent family members

International application No

PCT/US2015/038984
Patent document Publication Patent family Publication
cited in search report date member(s) date
EP 2365439 Al 14-09-2011 CN 102193746 A 21-09-2011
EP 2365439 Al 14-09-2011
JP 5479265 B2 23-04-2014
JP 2011192257 A 29-09-2011
KR 20110102798 A 19-09-2011
W 201131351 A 16-09-2011
US 2011225453 Al 15-09-2011
US 6647514 Bl 11-11-2003 JP 4922496 B2 25-04-2012
JP 2001290746 A 19-10-2001
us 6647514 Bl 11-11-2003
US 2004059958 Al 25-03-2004

Form PCT/ISA/210 (patent family annex) (April 2005)

	Page 1 - front-page
	Page 2 - front-page
	Page 3 - description
	Page 4 - description
	Page 5 - description
	Page 6 - description
	Page 7 - description
	Page 8 - description
	Page 9 - description
	Page 10 - description
	Page 11 - description
	Page 12 - description
	Page 13 - description
	Page 14 - description
	Page 15 - description
	Page 16 - description
	Page 17 - description
	Page 18 - description
	Page 19 - description
	Page 20 - description
	Page 21 - description
	Page 22 - description
	Page 23 - description
	Page 24 - description
	Page 25 - description
	Page 26 - description
	Page 27 - description
	Page 28 - description
	Page 29 - description
	Page 30 - description
	Page 31 - description
	Page 32 - description
	Page 33 - description
	Page 34 - description
	Page 35 - description
	Page 36 - description
	Page 37 - description
	Page 38 - description
	Page 39 - description
	Page 40 - description
	Page 41 - description
	Page 42 - description
	Page 43 - description
	Page 44 - description
	Page 45 - description
	Page 46 - description
	Page 47 - description
	Page 48 - description
	Page 49 - description
	Page 50 - description
	Page 51 - description
	Page 52 - description
	Page 53 - description
	Page 54 - description
	Page 55 - description
	Page 56 - description
	Page 57 - description
	Page 58 - description
	Page 59 - description
	Page 60 - description
	Page 61 - description
	Page 62 - description
	Page 63 - description
	Page 64 - description
	Page 65 - description
	Page 66 - description
	Page 67 - description
	Page 68 - description
	Page 69 - description
	Page 70 - description
	Page 71 - description
	Page 72 - description
	Page 73 - description
	Page 74 - description
	Page 75 - description
	Page 76 - description
	Page 77 - description
	Page 78 - description
	Page 79 - description
	Page 80 - description
	Page 81 - description
	Page 82 - description
	Page 83 - description
	Page 84 - description
	Page 85 - description
	Page 86 - description
	Page 87 - description
	Page 88 - description
	Page 89 - description
	Page 90 - claims
	Page 91 - claims
	Page 92 - claims
	Page 93 - claims
	Page 94 - claims
	Page 95 - claims
	Page 96 - claims
	Page 97 - claims
	Page 98 - claims
	Page 99 - claims
	Page 100 - claims
	Page 101 - claims
	Page 102 - claims
	Page 103 - claims
	Page 104 - drawings
	Page 105 - drawings
	Page 106 - drawings
	Page 107 - drawings
	Page 108 - drawings
	Page 109 - drawings
	Page 110 - drawings
	Page 111 - drawings
	Page 112 - drawings
	Page 113 - drawings
	Page 114 - drawings
	Page 115 - drawings
	Page 116 - drawings
	Page 117 - drawings
	Page 118 - drawings
	Page 119 - drawings
	Page 120 - drawings
	Page 121 - drawings
	Page 122 - drawings
	Page 123 - drawings
	Page 124 - drawings
	Page 125 - drawings
	Page 126 - drawings
	Page 127 - drawings
	Page 128 - drawings
	Page 129 - drawings
	Page 130 - drawings
	Page 131 - drawings
	Page 132 - drawings
	Page 133 - drawings
	Page 134 - drawings
	Page 135 - drawings
	Page 136 - drawings
	Page 137 - drawings
	Page 138 - drawings
	Page 139 - drawings
	Page 140 - drawings
	Page 141 - drawings
	Page 142 - drawings
	Page 143 - drawings
	Page 144 - drawings
	Page 145 - drawings
	Page 146 - wo-search-report
	Page 147 - wo-search-report
	Page 148 - wo-search-report

