US 20230091941A1

a2y Patent Application Publication o) Pub. No.: US 2023/0091941 A1

a9y United States

Kipnis 43) Pub. Date: Mar. 23, 2023
(54) FLOW CONTROL INTEGRITY (52) US. CL
CPC GOG6F 21/52 (2013.01); GOGF 21/554
(71) Applicant: Mobileye Vision Technologies Ltd., (2013.01)
Jerusalem (IL)
(72) Inventor: Aviad Kipnis, Efrat (IL) (57) ABSTRACT
(21) Appl. No.: 17/439,125
A method for evaluating flow control integrity, the method
(22) PCT Filed: Mar. 31, 2021 may include detecting that a flow reached a flow change
command or is about to reach the flow change command,
(86) PCT No.: PCT/1B2021/000196 wherein the flow change command belongs to a current
software environment, wherein the current software envi-
§ 371 (©)(D), S . ar ®
’ ronment is identified by a current environment identifier;
(2) Date: Sep. 14, 2021
retrieving a shadow environment identifier that is a last
Related U.S. Application Data environment identifier stored in a shadow stack, wherein the
o o shadow environment identifier identifies a software envi-
(60) Provisional application No. 63/003,494, filed on Apr. ronment having an entry region that was a last entry region
1, 2020. accessed by the flow, wherein the entry region comprises a
A . . shadow stack update instruction that was executed by the
Publication Classification flow; comparing the shadow environment identifier to the
(51) Imt. ClL current environment identifier; and detecting a potential
GO6F 21/52 (2006.01) attack when the shadow environment identifier differs from
GO6F 21/55 (2006.01) the current environment identifier.
100
122 124 126
Y A VA
L — 4 S 7 ~—~70 Y o
[} b
160 ' :
/ ’ '
H 1
H 1
e
MAP DATABASE
180 125\ 190
Y S o
! 1 -~ 110
| 1
1
i APPLICATION IMAGE !
| PROCESSOR PROCESSOR |1
I i
1 1
[PRORY ERpRpEpER Sy Uy Y A J
MEMORY POSITION MEMORY
\ SENSOR \
140 \ 150
130

USER INTERFACE

\

170

Patent Application Publication

Mar. 23, 2023 Sheet 1 of 7 US 2023/0091941 A1

100
1922 194 196
§ ﬁ/ ﬁ/ ﬁ/f T
160 i 5'
] 1
/] [
MAP DATABASE
180 125\] 190
|t / """""""""""" 7/' '"E_, - 110
i1 APPLICATION IMAGE E
. | PROCESSOR PROCESSOR |1
S Y E S NS J
MEMORY POSITION MEMORY
\ SENSOR \
140 \ 150
130
USER INTERFACE
170
100 192 200

124

110

FIG. 2A

Patent Application Publication = Mar. 23, 2023 Sheet 2 of 7 US 2023/0091941 A1

100 200

122 ‘.(,,/
........ \'I' \<\ \

~__,______1________
&

5

100 200

210 110 124

FIG. 2C

100 200

- 192

— 124

\&\/_/é//

Nevmmmm— | —

FIG. 2D

R -
a, eSS \i\\
,
1{37 ~J 1%
L]
™~
L~
A\

Patent Application Publication = Mar. 23, 2023 Sheet 3 of 7 US 2023/0091941 A1

100 290
%
| THROTTLING SYSTEM
l 230 240
% %
BRAKING SYSTEM STEERING SYSTEM
HG. 21

170

.
D =

D [1 330

340

o) o7

Patent Application Publication = Mar. 23, 2023 Sheet 4 of 7 US 2023/0091941 A1

— 400

REACH A FLOW CHANGE COMMAND

l

RETRIEVE SHADOW ENVIRONMENT IDENTIFIER

. v

'

COMPARE SHADOW ENVIRONMENT IDENTIFIER [430
TO CURRENT ENVIRONMENT IDENTIFIER

410
[DETECT THAT FLOW REACHES OR IS ABOUT TO J/\/

440 ~_ 420

DETECT
POTENTIAL
ATTACK

RESPOND TO
DETECTION

460

EXECUTE THE FLOW CHANGE COMMAND

EXECUTE A RETURN COMMAND (4ol

RETRIEVE RETURN SOFTWARE o 162
ENVIRONMENT)

Y

JUMP TO RETURN SOFTWARE o 463
ENVIRONMENT)

EXECUTE A JUMP SUBROUTINE COMMAND N\ 464

' ™\

JUMP TO SUBROUTINE ™\ 465

\. /

Y

EXECUTE A SHADOW STACK UPDATE [\~ 460

EXECUTE AN INDIRECT JUMP COMMAND (M 467

FIG. 1

Patent Application Publication = Mar. 23, 2023 Sheet 5 of 7 US 2023/0091941 A1

p— 500
410
DETECT THAT FLOW REACHES OR IS ABOUT TO
REACH A FLOW CHANGE COMMAND
440 1 l)
RETRIEVE SHADOW ENVIRONMENT IDENTIFIER | %Y
DETECT - /
POTENTIAL l
ATTACK) .
COMPARE SHADOW ENVIRONMENT IDENTIFIER [\ 430
TO CURRENT ENVIRONMENT IDENTIFIER
RESPOND TO
DETECTION
400
[EXECUTE THE FLOW CHANGE COMMAND
Y

RECEIVE A PROGRAM AND CONVERT THE PROGRAM TO A 470
MACHINE LANGUAGE PROGRAM

FIG. 5

Patent Application Publication = Mar. 23, 2023 Sheet 6 of 7 US 2023/0091941 A1

p— 0610
FIRST ENTRY REGION ~ 611
,\/

UPDATE SHADOW STACK WITH ID(ENV1) 015
~_ 612

FIRST GADGET ~_ 621

JUMP TO SECOND SOFTWARE ENVIRONMENT f~_ 622

CHECK CONTROL FLOW INTEGRITY ~_ 694

SHADOW STACK ~_ 630

ID(ENV1) N\ 651

FIG. 6

Patent Application Publication = Mar. 23, 2023 Sheet 7 of 7 US 2023/0091941 A1

p— 610
SECOND ENTRY REGION o 6141
,\/
UPDATE SHADOW STACK WITH ID(ENV2) 013
I~ 612
SECOND GADGET ~_ 651
RETURN TO FIRST SOFTWARE ENVIRONMENT |~ 652
CHECK CONTROL FLOW INTEGRITY ~_ 654
SHADOW STACK ~_ 630
ID(ENV2) M\ 632
ID(ENVA) N\ 651

HG. 7

US 2023/0091941 Al

FLOW CONTROL INTEGRITY

CLAIM TO PRIORITY

[0001] This patent application claims the benefit of prior-
ity to U.S. Provisional Patent Application Ser. No. 63/003,
494, filed on Apr. 1, 2020, which is incorporated herein by
reference in its entirety.

BACKGROUND

[0002] Advanced driver assistance systems (ADAS), and
autonomous vehicle (AV) systems use cameras and other
sensors together with object classifiers, which are designed
to detect specific objects in an environment of a vehicle
navigating a road. Object classifiers are designed to detect
predefined objects and are used within ADAS and AV
systems to control the vehicle or alert a driver based on the
type of object that is detected its location, etc.

[0003] As ADAS and AV systems progress towards fully
autonomous operation, it would be beneficial to protect data
generated by these systems.

SUMMARY

[0004] The following detailed description refers to the
accompanying drawings. Wherever possible, the same ref-
erence numbers are used in the drawings and the following
description to refer to the same or similar parts. While
several illustrative embodiments are described herein, modi-
fications, adaptations and other implementations are pos-
sible. For example, substitutions, additions, or modifications
may be made to the components illustrated in the drawings,
and the illustrative methods described herein may be modi-
fied by substituting, reordering, removing, or adding steps to
the disclosed methods. Accordingly, the following detailed
description is not limited to the disclosed embodiments and
examples.

[0005] Disclosed embodiments provide systems and meth-
ods that can be used as part of or in combination with
autonomous navigation/driving and/or driver assist technol-
ogy features. Driver assist technology refers to any suitable
technology to assist drivers in the navigation and/or control
of their vehicles, such as forward collision warning (FCW),
lane departure warning (LDW), and traffic sign recognition
(TSR), as opposed to fully autonomous driving. In various
embodiments, the system may include one, two or more
cameras mountable in a vehicle and an associated processor
that monitor the environment of the vehicle. In further
embodiments, additional types of sensors can be mounted in
the vehicle ad can be used in the autonomous navigation
and/or driver assist system. In some examples of the pres-
ently disclosed subject matter, the system may provide
techniques for processing images of an environment ahead
of a vehicle navigating a road for training a neural networks
or deep learning algorithms to estimate a future path of a
vehicle based on images. In yet further examples of the
presently disclosed subject matter, the system may provide
techniques for processing images of an environment ahead
of a vehicle navigating a road using a trained neural network
to estimate a future path of the vehicle.

[0006] There are provided systems, methods, as illustrated
in the claims and the specification.

[0007] Any combination of any subject matter of any
claim may be provided.

Mar. 23, 2023

[0008] Any combination of any method and/or method
step disclosed in any figure and/or in the specification may
be provided.

[0009] Any combination of any unit, device, and/or com-
ponent disclosed in any figure and/or in the specification
may be provided. Non-limiting examples of such units
include a gather unit, an image processor and the like.

BRIEF DESCRIPTION OF THE DRAWINGS

[0010] The subject matter regarded as the invention is
particularly pointed out and distinctly claimed in the con-
cluding portion of the specification. The invention, however,
both as to organization and method of operation, together
with objects, features, and advantages thereof, may best be
understood by reference to the following detailed descrip-
tion when read with the accompanying drawings in which:
[0011] FIG. 1 is a block diagram representation of a
system consistent with the disclosed embodiments;

[0012] FIG. 2Ais a diagrammatic side view representation
of an exemplary vehicle including a system consistent with
the disclosed embodiments;

[0013] FIG. 2B is a diagrammatic top view representation
of the vehicle and system shown in FIG. 2A consistent with
the disclosed embodiments;

[0014] FIG. 2C is a diagrammatic top view representation
of another embodiment of a vehicle including a system
consistent with the disclosed embodiments;

[0015] FIG. 2D is a diagrammatic top view representation
of yet another embodiment of a vehicle including a system
consistent with the disclosed embodiments;

[0016] FIG. 2E is a diagrammatic representation of exem-
plary vehicle control systems consistent with the disclosed
embodiments;

[0017] FIG. 3 is a diagrammatic representation of an
interior of a vehicle including a rearview mirror and a user
interface for a vehicle imaging system consistent with the
disclosed embodiments;

[0018] FIG. 4 illustrates an example of a method;
[0019] FIG. 5 illustrates another example of a method;
[0020] FIG. 6 illustrates an example of a first software

environment and a shadow stack; and
[0021] FIG. 7 illustrates an example of a second software
environment and a shadow stack.

DETAILED DESCRIPTION OF THE DRAWINGS

[0022] In the following detailed description, numerous
specific details are set forth in order to provide a thorough
understanding of the invention. However, it will be under-
stood by those skilled in the art that the present invention
may be practiced without these specific details. In other
instances, well-known methods, procedures, and compo-
nents have not been described in detail so as not to obscure
the present invention.

[0023] The subject matter regarded as the invention is
particularly pointed out and distinctly claimed in the con-
cluding portion of the specification. The invention, however,
both as to organization and method of operation, together
with objects, features, and advantages thereof, may best be
understood by reference to the following detailed descrip-
tion when read with the accompanying drawings.

[0024] It will be appreciated that for simplicity and clarity
of illustration, elements shown in the figures have not
necessarily been drawn to scale. For example, the dimen-

US 2023/0091941 Al

sions of some of the elements may be exaggerated relative
to other elements for clarity. Further, where considered
appropriate, reference numerals may be repeated among the
figures to indicate corresponding or analogous elements.

[0025] Because the illustrated embodiments of the present
invention may for the most part, be implemented using
electronic components and circuits known to those skilled in
the art, details will not be explained in any greater extent
than that considered necessary as illustrated above, for the
understanding and appreciation of the underlying concepts
of the present invention and in order not to obfuscate or
distract from the teachings of the present invention.

[0026] Any reference in the specification to a method
should be applied mutatis mutandis to a system capable of
executing the method and should be applied mutatis mutan-
dis to a non-transitory computer readable medium that stores
instructions that once executed by a computer result in the
execution of the method.

[0027] Any reference in the specification to a system and
any other component should be applied mutatis mutandis to
a method that may be executed by the memory device and
should be applied mutatis mutandis to a non-transitory
computer readable medium that stores instructions that may
be executed by the memory device. For example, there may
be provided a method and/or method steps executed by the
image processor described in any one of claims. For
example, there may be provided a method and/or method
steps executed by the image processor described in any one
of claims.

[0028] Any reference in the specification to a non-transi-
tory computer readable medium should be applied mutatis
mutandis to a system capable of executing the instructions
stored in the non-transitory computer readable medium and
should be applied mutatis mutandis to method that may be
executed by a computer that reads the instructions stored in
the non-transitory computer readable medium.

[0029] Any combination of any module or unit listed in
any of the figures, any part of the specification and/or any
claims may be provided. Especially any combination of any
claimed feature may be provided.

[0030] A pixel may be a picture element obtained by a
camera or may be a processed picture element.

[0031] Before discussing in detail examples of features of
the processing images of an environment ahead of a vehicle
navigating a road for training a neural networks or deep
learning algorithms to estimate a future path of a vehicle
based on images or feature of the processing of images of an
environment ahead of a vehicle navigating a road using a
trained neural network to estimate a future path of the
vehicle, there is provided a description of various possible
implementations and configurations of a vehicle mountable
system that can be used for carrying out and implementing
the methods according to examples of the presently dis-
closed subject matter. In some embodiments, various
examples of the system can be mounted in a vehicle, and can
be operated while the vehicle is in motion. In some embodi-
ments, the system can implement the methods according to
examples of the presently disclosed subject matter.

[0032] However, it would be appreciated that embodi-
ments of the present disclosure are not limited to scenarios
where a suspected upright object indication is caused by a
high-grade road. The suspected upright object indication can
be associated with various other circumstances, and can

Mar. 23, 2023

result from other types of image data and also from data that
is not image-based or is not exclusively image-based, as
well.

[0033] FIG. 1, to which reference is now made, is a block
diagram representation of a system consistent with the
disclosed embodiments. System 100 can include various
components depending on the requirements of a particular
implementation. In some examples, system 100 can include
a processing unit 110, an image acquisition unit 120 and one
or more memory units 140, 150. Processing unit 110 can
include one or more processing devices. In some embodi-
ments, processing unit 110 can include an application pro-
cessor 180, an image processor 190, or any other suitable
processing device. Similarly, image acquisition unit 120 can
include any number of image acquisition units and compo-
nents depending on the requirements of a particular appli-
cation. In some embodiments, image acquisition unit 120
can include one or more image capture devices (e.g., cam-
eras), such as image capture device 122, image capture
device 124, and image capture device 126. In some embodi-
ments, system 100 can also include a data interface 128
communicatively connecting processing unit 110 to image
acquisition unit 120. For example, data interface 128 can
include any wired and/or wireless link or links for transmit-
ting image data acquired by image acquisition unit 120 to
processing unit 110.

[0034] Both application processor 180 and image proces-
sor 190 can include various types of processing devices. For
example, either or both of application processor 180 and
image processor 190 can include one or more microproces-
sors, preprocessors (such as image preprocessors), graphics
processors, central processing units (CPUs), support cir-
cuits, digital signal processors, integrated circuits, memory,
or any other types of devices suitable for running applica-
tions and for image processing and analysis. In some
embodiments, application processor 180 and/or image pro-
cessor 190 can include any type of single or multi-core
processor, mobile device microcontroller, central processing
unit, etc. Various processing devices can be used, including,
for example, processors available from manufacturers such
as Intel®, AMD®, etc. and can include various architectures
(e.g., x86 processor, ARM®, etc.).

[0035] In some embodiments, application processor 180
and/or image processor 190 can include any of the EyeQ
series of processor chips available from Mobileye®. These
processor designs each include multiple processing units
with local memory and instruction sets. Such processors
may include video inputs for receiving image data from
multiple image sensors and may also include video out
capabilities. In one example, the EyeQ2® uses 90 nm-
micron technology operating at 332 Mhz. The EyeQ2®
architecture has two floating point, hyper-thread 32-bit
RISC CPUs (MIPS32® 34K® cores), five Vision Comput-
ing Engines (VCE), three Vector Microcode Processors
(VMP®), Denali 64-bit Mobile DDR Controller, 128-bit
internal Sonics Interconnect, dual 16-bit Video input and
18-bit Video output controllers, 16 channels DMA and
several peripherals. The MIPS34K CPU manages the five
VCEs, three VMP™ and the DMA, the second MIPS34K
CPU and the multi-channel DMA as well as the other
peripherals. The five VCEs, three VMP® and the MIPS34K
CPU can perform intensive vision computations required by
multi-function bundle applications. In another example, the
EyeQ3®, which is a third-generation processor and is six

US 2023/0091941 Al

times more powerful that the EyeQ2®, may be used in the
disclosed examples. In yet another example, the EyeQ4®,
the fourth-generation processor, may be used in the dis-
closed examples.

[0036] While FIG. 1 depicts two separate processing
devices included in processing unit 110, more or fewer
processing devices can be used. For example, in some
examples, a single processing device may be used to accom-
plish the tasks of application processor 180 and image
processor 190. In other embodiments, these tasks can be
performed by more than two processing devices.

[0037] Processing unit 110 can include various types of
devices. For example, processing unit 110 may include
various devices, such as a controller, an image preprocessor,
a central processing unit (CPU), support circuits, digital
signal processors, integrated circuits, memory, or any other
types of devices for image processing and analysis. The
image preprocessor can include a video processor for cap-
turing, digitizing, and processing the imagery from the
image sensors. The CPU can include any number of micro-
controllers or microprocessors. The support circuits can be
any number of circuits generally well known in the art,
including cache, power supply, clock, and input-output
circuits. The memory can store software that, when executed
by the processor, controls the operation of the system. The
memory can include databases and image processing soft-
ware, including a trained system, such as a neural network,
for example. The memory can include any number of
random access memories, read only memories, flash memo-
ries, disk drives, optical storage, removable storage, and
other types of storage. In one instance, the memory can be
separate from the processing unit 110. In another instance,
the memory can be integrated into the processing unit 110.
[0038] Each memory 140, 150 can include software
instructions that when executed by a processor (e.g., appli-
cation processor 180 and/or image processor 190), can
control operation of various aspects of system 100. These
memory units can include various databases and image
processing software. The memory units can include random
access memory, read only memory, flash memory, disk
drives, optical storage, tape storage, removable storage,
and/or any other types of storage. In some examples,
memory units 140, 150 can be separate from the application
processor 180 and/or image processor 190. In other embodi-
ments, these memory units can be integrated into application
processor 180 and/or image processor 190.

[0039] In some embodiments, the system can include a
position sensor 130. The position sensor 130 can include any
type of device suitable for determining a location associated
with at least one component of system 100. In some embodi-
ments, position sensor 130 can include a GPS receiver. Such
receivers can determine a user position and velocity by
processing signals broadcasted by global positioning system
satellites. Position information from position sensor 130 can
be made available to application processor 180 and/or image
processor 190.

[0040] In some embodiments, the system 100 can be
operatively connectible to various systems, devices, and
units onboard a vehicle in which the system 100 can be
mounted, and through any suitable interfaces (e.g., a com-
munication bus) the system 100 can communicate with the
vehicle’s systems. Examples of vehicle systems with which
the system 100 can cooperate include: a throttling system, a
braking system, and a steering system.

Mar. 23, 2023

[0041] In some embodiments, the system 100 can include
a user interface 170. User interface 170 can include any
device suitable for providing information to or for receiving
inputs from one or more users of system 100, including, for
example, a touchscreen, microphone, keyboard, pointer
devices, track wheels, cameras, knobs, buttons, etc. Infor-
mation can be provided by the system 100, through the user
interface 170, to the user.

[0042] In some embodiments, the system 100 can include
a map database 160. The map database 160 can include any
type of database for storing digital map data. In some
examples, map database 160 can include data relating to a
position, in a reference coordinate system, of various items,
including roads, water features, geographic features, points
of interest, etc. Map database 160 can store not only the
locations of such items, but also descriptors relating to those
items, including, for example, names associated with any of
the stored features and other information about them. For
example, locations and types of known obstacles can be
included in the database, information about a topography of
a road or a grade of certain points along a road, etc. In some
embodiments, map database 160 can be physically located
with other components of system 100. Alternatively, or
additionally, map database 160 or a portion thereof can be
located remotely with respect to other components of system
100 (e.g., processing unit 110). In such embodiments, infor-
mation from map database 160 can be downloaded over a
wired or wireless data connection to a network (e.g., over a
cellular network and/or the Internet, etc.).

[0043] Image capture devices 122, 124, and 126 can each
include any type of device suitable for capturing at least one
image from an environment. Moreover, any number of
image capture devices can be used to acquire images for
input to the image processor. Some examples of the pres-
ently disclosed subject matter can include or can be imple-
mented with only a single-image capture device, while other
examples can include or can be implemented with two,
three, or even four or more image capture devices. Image
capture devices 122, 124, and 126 will be further described
with reference to FIGS. 2A-2E, below.

[0044] It would be appreciated that the system 100 can
include or can be operatively associated with other types of
sensors, including for example: an acoustic sensor, a RF
sensor (e.g., radar transceiver), a LIDAR sensor. Such
sensors can be used independently of or in cooperation with
the image acquisition unit 120. For example, the data from
the radar system (not shown) can be used for validating the
processed information that is received from processing
images acquired by the image acquisition unit 120, e.g., to
filter certain false positives resulting from processing images
acquired by the image acquisition unit 120, or it can be
combined with or otherwise compliment the image data
from the image acquisition unit 120, or some processed
variation or derivative of the image data from the image
acquisition unit 120.

[0045] System 100, or various components thereof, can be
incorporated into various different platforms. In some
embodiments, system 100 may be included on a vehicle 200,
as shown in FIG. 2A. For example, vehicle 200 can be
equipped with a processing unit 110 and any of the other
components of system 100, as described above relative to
FIG. 1. While in some embodiments vehicle 200 can be
equipped with only a single-image capture device (e.g.,
camera), in other embodiments, such as those discussed in

US 2023/0091941 Al

connection with FIGS. 2A-2E, multiple image capture
devices can be used. For example, either of image capture
devices 122 and 124 of vehicle 200, as shown in FIG. 2A,
can be part of an ADAS (Advanced Driver Assistance
Systems) imaging set.

[0046] The image capture devices included on vehicle 200
as part of the image acquisition unit 120 can be positioned
at any suitable location. In some embodiments, as shown in
FIGS. 2A-2E and 3, image capture device 122 can be located
in the vicinity of the rearview mirror. This position may
provide a line of sight similar to that of the driver of vehicle
200, which can aid in determining what is and is not visible
to the driver.

[0047] Other locations for the image capture devices of
image acquisition unit 120 can also be used. For example,
image capture device 124 can be located on or in a bumper
of vehicle 200. Such a location can be especially suitable for
image capture devices having a wide field of view. The line
of sight of bumper-located image capture devices can be
different from that of the driver. The image capture devices
(e.g., image capture devices 122, 124, and 126) can also be
located in other locations. For example, the image capture
devices may be located on or in one or both of the side
mirrors of vehicle 200, on the roof of vehicle 200, on the
hood of vehicle 200, on the trunk of vehicle 200, on the sides
of'vehicle 200, mounted on, positioned behind, or positioned
in front of any of the windows of vehicle 200, and mounted
in or near light figures on the front and/or back of vehicle
200, etc. The image acquisition unit 120, or an image capture
device that is one of a plurality of image capture devices that
are used in an image acquisition unit 120, can have a
field-of-view (FOV) that is different than the FOV of a
driver of a vehicle, and not always see the same objects. In
one example, the FOV of the image acquisition unit 120 can
extend beyond the FOV of a typical driver and can thus
image objects which are outside the FOV of the driver. In yet
another example, the FOV of the image acquisition unit 120
is some portion of the FOV of the driver. In some embodi-
ments, the FOV of the image acquisition unit 120 corre-
sponding to a sector which covers an area of a road ahead of
a vehicle and possibly also surroundings of the road.
[0048] In addition to image capture devices, vehicle 200
can be include various other components of system 100. For
example, processing unit 110 may be included on vehicle
200 either integrated with or separate from an engine control
unit (ECU) of the vehicle. Vehicle 200 may also be equipped
with a position sensor 130, such as a GPS receiver and may
also include a map database 160 and memory units 140 and
150.

[0049] FIG.2A s a diagrammatic side view representation
of a vehicle imaging system according to examples of the
presently disclosed subject matter. FIG. 2B is a diagram-
matic top view illustration of the example shown in FIG. 2A.
As illustrated in FIG. 2B, the disclosed examples can
include a vehicle 200 including in its body a system 100 with
a first image capture device 122 positioned in the vicinity of
the rearview mirror and/or near the driver of vehicle 200, a
second image capture device 124 positioned on or in a
bumper region (e.g., one of bumper regions 210) of vehicle
200, and a processing unit 110.

[0050] As illustrated in FIG. 2C, image capture devices
122 and 124 may both be positioned in the vicinity of the
rearview mirror and/or near the driver of vehicle 200.
Additionally, while two image capture devices 122 and 124

Mar. 23, 2023

are shown in FIGS. 2B and 2C, it should be understood that
other embodiments may include more than two image
capture devices. For example, in the embodiment shown in
FIG. 2D, first, second, and third image capture devices 122,
124, and 126, are included in the system 100 of vehicle 200.

[0051] As shown in FIG. 2D, image capture devices 122,
124, and 126 may be positioned in the vicinity of the
rearview mirror and/or near the driver seat of vehicle 200.
The disclosed examples are not limited to any particular
number and configuration of the image capture devices, and
the image capture devices may be positioned in any appro-
priate location within and/or on vehicle 200.

[0052] It is also to be understood that disclosed embodi-
ments are not limited to a particular type of vehicle 200 and
may be applicable to all types of vehicles including auto-
mobiles, trucks, trailers, motorcycles, bicycles, self-balanc-
ing transport devices and other types of vehicles.

[0053] The first image capture device 122 can include any
suitable type of image capture device. Image capture device
122 can include an optical axis. In one instance, the image
capture device 122 can include an Aptina M9V024 WVGA
sensor with a global shutter. In another example, a rolling
shutter sensor can be used. Image acquisition unit 120, and
any image capture device which is implemented as part of
the image acquisition unit 120, can have any desired image
resolution. For example, image capture device 122 can
provide a resolution of 1280x960 pixels and can include a
rolling shutter.

[0054] Image acquisition unit 120, and any image capture
device which is implemented as part of the image acquisi-
tion unit 120, can include various optical elements. In some
embodiments one or more lenses can be included, for
example, to provide a desired focal length and field of view
for the image acquisition unit 120, and for any image capture
device which is implemented as part of the image acquisi-
tion unit 120. In some examples, an image capture device
which is implemented as part of the image acquisition unit
120 can include or be associated with any optical elements,
such as a 6 mm lens or a 12 mm lens, for example. In some
examples, image capture device 122 can be configured to
capture images having a desired (and known) field-of-view
(FOV).

[0055] The first image capture device 122 may have a scan
rate associated with acquisition of each of the first series of
image scan lines. The scan rate may refer to a rate at which
an image sensor can acquire image data associated with each
pixel included in a particular scan line.

[0056] FIG. 2E is a diagrammatic representation of
vehicle control systems, according to examples of the pres-
ently disclosed subject matter. As indicated in FIG. 2E,
vehicle 200 can include throttling system 220, braking
system 230, and steering system 240. System 100 can
provide inputs (e.g., control signals) to one or more of
throttling system 220, braking system 230, and steering
system 240 over one or more data links (e.g., any wired
and/or wireless link or links for transmitting data). For
example, based on analysis of images acquired by image
capture devices 122, 124, and/or 126, system 100 can
provide control signals to one or more of throttling system
220, braking system 230, and steering system 240 to navi-
gate vehicle 200 (e.g., by causing an acceleration, a turn, a
lane shift, etc.). Further, system 100 can receive inputs from
one or more of throttling system 220, braking system 230,

US 2023/0091941 Al

and steering system 240 indicating operating conditions of
vehicle 200 (e.g., speed, whether vehicle 200 is braking
and/or turning, etc.).

[0057] As shown in FIG. 3, the vehicle may also include
a user interface 170 for interacting with a driver or a
passenger of vehicle. For example, user interface 170 in a
vehicle application may include a touch screen 320, knobs
330, buttons 340, and a microphone 350. A driver or
passenger of the vehicle may also use handles (e.g., located
on or near the steering column of the vehicle including, for
example, turn signal handles), buttons (e.g., located on the
steering wheel of the vehicle), and the like, to interact with
system 100. In some embodiments, microphone 350 may be
positioned adjacent to a rearview mirror 310. Similarly, in
some embodiments, image capture device 122 may be
located near rearview mirror 310. In some embodiments,
user interface 170 may also include one or more speakers
360 (e.g., speakers of a vehicle audio system). For example,
system 100 may provide various notifications (e.g., alerts)
via speakers 360.

[0058] As will be appreciated by a person skilled in the art
having the benefit of this disclosure, numerous variations
and/or modifications may be made to the foregoing dis-
closed embodiments. For example, not all components are
essential for the operation of system 100. Further, any
component may be located in any appropriate part of system
100 and the components may be rearranged into a variety of
configurations while providing the functionality of the dis-
closed embodiments. Therefore, the foregoing configura-
tions are examples and, regardless of the configurations
discussed above, system 100 can provide a wide range of
functionality to analyze the surroundings of the vehicle and,
in response to this analysis, navigate and/or otherwise con-
trol and/or operate the vehicle. Navigation, control, and/or
operation of the vehicle may include enabling and/or dis-
abling (directly or via intermediary controllers, such as the
controllers mentioned above) various features, components,
devices, modes, systems, and/or subsystems associated with
vehicle 200. Navigation, control, and/or operation may
alternately or additionally include interaction with a user,
driver, passenger, passerby, and/or other vehicle or user,
which may be located inside or outside the vehicle, for
example by providing visual, audio, haptic, and/or other
sensory alerts and/or indications.

[0059] As discussed below in further detail and consistent
with various disclosed embodiments, system 100 may pro-
vide a variety of features related to autonomous driving,
semi-autonomous driving and/or driver assist technology.
For example, system 100 may analyze image data, position
data (e.g., GPS location information), map data, speed data,
and/or data from sensors included in the vehicle. System 100
may collect the data for analysis from, for example, image
acquisition unit 120, position sensor 130, and other sensors.
Further, system 100 may analyze the collected data to
determine whether or not the vehicle should take a certain
action, and then automatically take the determined action
without human intervention. It would be appreciated that in
some cases, the actions taken automatically by the vehicle
are under human supervision, and the ability of the human
to intervene adjust abort or override the machine action is
enabled under certain circumstances or at all times. For
example, when vehicle 200 navigates without human inter-
vention, system 100 may automatically control the braking,
acceleration, and/or steering of the vehicle (e.g., by sending

Mar. 23, 2023

control signals to one or more of throttling system 220,
braking system 230, and steering system 240). Further,
system 100 may analyze the collected data and issue warn-
ings, indications, recommendations, alerts, or instructions to
a driver, passenger, user, or other person inside or outside of
the vehicle (or to other vehicles) based on the analysis of the
collected data. Additional details regarding the various
embodiments that are provided by system 100 are provided
below.

[0060] Return-oriented programming (ROP) (also referred
to as Jump oriented programming (JOP)) is a computer
security exploit technique that allows an attacker to execute
code in the presence of security defenses such as executable
space protection and code signing.

[0061] In this technique, an attacker gains control of the
call stack (hereinafter “stack™) to hijack program control
flow and then executes carefully chosen machine instruction
sequences that are already present in the machine’s memory,
called “gadgets”. Each gadget typically ends in a return
instruction and is located in a subroutine within the existing
program and/or shared library code. Chained together, these
gadgets allow an attacker to perform arbitrary operations on
a machine employing defenses that thwart simpler attacks.

[0062] Return-oriented programming is an advanced ver-
sion of a stack smashing attack. Generally, these types of
attacks arise when an adversary manipulates the call stack
by taking advantage of a bug in the program, often a buffer
overrun. In a buffer overrun, a function that does not perform
proper bounds checking before storing user-provided data
into memory will accept more input data than it can store
properly. If the data is being written onto the stack, the
excess data may overflow the space allocated to the func-
tion’s variables (e.g., “locals” in the stack) and overwrite the
return address. This address will later be used by the
function to redirect control flow back to the caller. If it has
been overwritten, control flow will be diverted to the loca-
tion specified by the new return address.

[0063] In a standard buffer overrun attack, the attacker
would simply write attack code (the “payload”) onto the
stack and then overwrite the return address with the location
of these newly written instructions. Until the late 1990s,
major operating systems did not offer any protection against
these attacks. For instance, Microsoft Windows provided no
buffer-overrun protections until 2004.

[0064] Eventually, operating systems began to combat the
exploitation of buffer overflow bugs by marking the memory
where data is written as non-executable, a technique known
as executable space protection. With this enabled, the
machine would refuse to execute any code located in user-
writable areas of memory, preventing the attacker from
placing payload on the stack and jumping to it via a return
address overwrite. Hardware support later became available
to strengthen this protection.

[0065] With data execution prevention, an adversary can-
not execute maliciously injected instructions because a
typical buffer overflow overwrites contents in the data
section of memory, which is marked as non-executable. To
defeat this, a return-oriented programming attack does not
inject malicious code, but rather uses instructions that are
already present, called “gadgets”, by manipulating return
addresses. A typical data execution prevention cannot
defend against this attack because the adversary did not use
malicious code but rather combined “good” instructions by

US 2023/0091941 Al

changing return addresses; therefore, the code used would
not be marked non-executable.

[0066] Return-oriented programming builds on the bor-
rowed code chunks approach and extends it to provide
Turing complete functionality to the attacker, including
loops and conditional branches.

[0067] Put another way, return-oriented programming pro-
vides a fully functional “language” that an attacker can use
to make a compromised machine perform any operation
desired. It has been demonstrated how all the important
programming constructs can be simulated using return-
oriented programming against a target application linked
with the C standard library and containing an exploitable
buffer overrun vulnerability.

[0068] A return-oriented programming attack is superior
to the other attack types discussed both in expressive power
and in resistance to defensive measures. None of the coun-
ter-exploitation techniques mentioned above, including
removing potentially dangerous functions from shared
libraries altogether, are effective against a return-oriented
programming attack.

[0069] There may be provided a system, a method, and a
non-transitory computer readable medium that maintain
flow control integrity by detecting return-oriented program-
ming attacks.

[0070] While the return-oriented programming attempts to
jump between gadgets following a flow that differs from the
original flow of a program, the method verifies that the
original (also referred to as proper or non-compromised)
flow is maintained.

[0071] When executing instructions of a software envi-
ronment, the method checks whether the flow passed
through the entry region of the software environment and
blocks flows that jumped to a gadget without passing
through the entry region.

[0072] The entry region may be modified (for example by
a compiler) to include a shadow stack update instruction that
updates the shadow stack with a shadow environment iden-
tifier that identifies the software environment of the entry
region.

[0073] When an attempt to change a flow (from a current
software environment) is made (or is about to be made), the
method checks whether the shadow environment identifier
equals a current environment identifier (that identifies the
current software environment).

[0074] A mismatch indicates that the flow did not pass
through the entry region of the current environment identi-
fier—and a return-oriented programming attack is detected.
[0075] FIG. 4 illustrates an example of method 400 for
evaluating flow control integrity. Method 400 may start by
step 410 of detecting that a flow reached a flow change
command or is about to reach the flow change command.
The flow change command belongs to a current software
environment. The current software environment is identified
by a current environment identifier.

[0076] Examples of a flow change command include a
return command (for returning from a direct jump com-
mand), an indirect jump command (that may jump to an
address within the current software environment), and a
jump subroutine command.

[0077] The operation of detecting that a flow is about to
reach the flow change command may include searching for
the flow change command in a command stack even before
the program counter points to the flow change command.

Mar. 23, 2023

The flow change command may be searched within a
distance (for example, in proximity—such as between 1 and
10 entries or any other value) from the entry pointed by the
program counter.
[0078] Step 410 may be followed by step 420 of retrieving
a shadow environment identifier that is a last environment
identifier stored in a shadow stack. The last environment
identifier may be the most updated environment identifier
stored in the shadow stack.
[0079] The shadow environment identifier identifies a
software environment having an entry region that was the
last entry region that was passed by the flow. The entry
region includes a shadow stack update instruction that was
executed by the flow.
[0080] Step 420 may be followed by step 430 of compar-
ing the shadow environment identifier to the current envi-
ronment identifier.
[0081] When the shadow environment identifier differs
from the current environment identifier, then step 430 may
be followed by step 440 of detecting a potential attack. The
potential attack may be a return-oriented programming
attack.
[0082] Step 440 may be followed by step 450 of respond-
ing to the detecting of the potential attack. The responding
may include generating an alert, stopping the execution of
the flow, rebooting a processor, and the like.
[0083] When the shadow environment identifier equals the
current environment identifier then step 430 may be fol-
lowed by step 460 of executing the flow change command.
[0084] Step 460 may include at least one of the following
steps:

[0085] 1) Step 461 of executing a return command.

[0086] 2) Step 464 of executing a jump subroutine

command.
[0087] 3) Step 467 of executing an indirect jump com-
mand.

[0088] Step 461 may include steps 462 and 463.
[0089] Step 462 may include retrieving, from the shadow
stack, a return environment identifier that identifies a return
software environment. Step 462 may be followed by step
463 of jumping to (returning to) the return software envi-
ronment.
[0090] Step 464 may include steps 465 and 466. Step 465
may include jumping to the subroutine. Step 466 may
include executing a shadow stack update included in the
entry region of the subroutine. Step 466 may include storing
in the shadow stack a shadow environment identifier that
identifies the subroutine.
[0091] FIG. 5 is another example of method 500. Method
500 differs from method 400 by including step 470 of
receiving a program (for example a high level program) and
converting, by a complier, the program to a machine lan-
guage program (also referred to as code). The converting
may include modifying an entry region of at least one
software environment of the machine language program to
include a shadow stack update instruction that updates the
shadow stack with a shadow environment identifier that
identifies the software environment that includes the entry
region.
[0092] In addition, FIG. 5 does not illustrate (for simplic-
ity of explanation) steps 461-467.
[0093] FIG. 6 illustrates an example of a first software
environment 610 and a shadow stack 630. The first software
environment 610 includes a first entry region 611 and one or

US 2023/0091941 Al

more other parts 612 that include a first gadget 621, a flow
change command such as “jump to second software envi-
ronment” command 622, and a check control flow integrity
command 624. The jump command may be a direct or
indirect jump command.

[0094] If the flow executed the first software environment
610 in a proper manner, starting from executing instructions
of the first entry region 611, then the flow will execute a
shadow stack update instruction such as “update shadow
stack with ID(ENV1)” 613, where ID(ENV1) identifies the
first software environment 610.

[0095] If the flow arrives to the first software environment
610 as result of a return-oriented programming attack,
without passing through the first entry region 611, then the
shadow stack will not be updated with ID(ENV1).

[0096] The instructions within the one or more other parts
612 are executed until reaching (or before reaching) the
control flow integrity command 624 that will compare
ID(ENV1) to a shadow environment identifier stored in the
shadow stack 630 and respond according to the outcome of
the comparison.

[0097] FIG. 6 illustrates the scenario in which the flow
executed the first software environment 610 in a proper
manner and executed “update shadow stack with
ID(ENV1)” 613, so that the shadow environment identifier
631 that is stored in the shadow stack 630 equals ID(ENV1).
In this case, the flow continues with the execution of a jump
to second software environment command.

[0098] Otherwise, the shadow stack 630 will not store
ID(ENV1) and an attack is detected.

[0099] FIG. 7 illustrates an example of a second software
environment 640, and a shadow stack 630.

[0100] The second software environment 640 includes a
second entry region 641 and one or more other parts 642 that
include a second gadget 651, a flow change command such
as return 652 (return to the first software environment), and
a check control flow integrity command 654.

[0101] When the flow successfully jumped from the first
software environment to the second entry region 641 of the
second software environment, it executed an update shadow
stack with ID(ENV2) command 643, and the shadow stack
630 stores ID(ENV2) 632. The shadow stack 630 also stores,
as a return environment identifier ID(ENV1) 631.

[0102] In this case, the execution of check control flow
integrity command 654 will indicate that the return com-
mand may be executed, and the flow will use return envi-
ronment identifier ID(ENV1) 631 for returning to the first
software environment.

[0103] If second gadget 651 was reached without passing
through the second entry region 641, then the check control
integrity command 654 will find that ID(ENV?2) differs from
the shadow environment identifier (for example ID(ENV1))
and an attack is detected.

[0104] Any machine language program mentioned above
may be executed by the processing unit 110 of FIGS. 2A-2D,
or by any processor that may include one or more processing
circuits. A processing circuit may include one or more field
programmable gate arrays (FPGAs), one of more graphical
processing units (GPUs), one of more general purpose units,
one of more central processing units (CPUs), one or more
hardware accelerators, one or more integrated circuits, and
the like.

[0105] Any of method describing steps may include more
steps than those illustrated in the figure, only the steps

Mar. 23, 2023

illustrated in the figure or substantially only the steps
illustrated in the figure. The same applies to components of
a device, processor or system and to instructions stored in
any non-transitory computer readable storage medium.
[0106] The invention may also be implemented in a com-
puter program for running on a computer system, at least
including code portions for performing steps of a method
according to the invention when run on a programmable
apparatus, such as a computer system or enabling a pro-
grammable apparatus to perform functions of a device or
system according to the invention. The computer program
may cause the storage system to allocate disk drives to disk
drive groups.

[0107] A computer program is a list of instructions such as
a particular application program and/or an operating system.
The computer program may for instance include one or more
of: a subroutine, a function, a procedure, an object method,
an object implementation, an executable application, an
applet, a servlet, a source code, an object code, a shared
library/dynamic load library and/or other sequence of
instructions designed for execution on a computer system.
[0108] The computer program may be stored internally on
a non-transitory computer readable medium. All or some of
the computer program may be provided on computer read-
able media permanently, removably or remotely coupled to
an information processing system. The computer readable
media may include, for example and without limitation, any
number of the following: magnetic storage media including
disk and tape storage media; optical storage media such as
compact disk media (e.g., CD-ROM, CD-R, etc.) and digital
video disk storage media; nonvolatile memory storage
media including semiconductor-based memory units such as
flash memory, EEPROM, EPROM, ROM; ferromagnetic
digital memories; MRAM; volatile storage media including
registers, buffers or caches, main memory, RAM, etc.
[0109] A computer process typically includes an executing
(running) program or portion of a program, current program
values and state information, and the resources used by the
operating system to manage the execution of the process. An
operating system (OS) is the software that manages the
sharing of the resources of a computer and provides pro-
grammers with an interface used to access those resources.
An operating system processes system data and user input,
and responds by allocating and managing tasks and internal
system resources as a service to users and programs of the
system.

[0110] The computer system may for instance include at
least one processing unit or processing circuitry, associated
memory and a number of input/output (I/0) devices. When
executing the computer program, the computer system pro-
cesses information according to the computer program and
produces resultant output information via /O devices.

Examples

[0111] Example 1 is a system comprising a processing
circuit that is configured to: detect that a flow reached a flow
change command or is about to reach the flow change
command, wherein the flow change command belongs to a
current software environment, wherein the current software
environment is identified by a current environment identi-
fier; retrieve a shadow environment identifier that is a last
environment identifier stored in a shadow stack, wherein the
shadow environment identifier identifies a software envi-
ronment having an entry region that was a last entry region

US 2023/0091941 Al

accessed by the flow, wherein the entry region comprises a
shadow stack update instruction that was executed by the
flow; compare the shadow environment identifier to the
current environment identifier; and detect a potential attack
when the shadow environment identifier differs from the
current environment identifier.

[0112] In Example 2, the subject matter of Example 1
includes, wherein the current environment identifier is
stored in proximity to the flow change command.

[0113] In Example 3, the subject matter of Examples 1-2
includes, wherein the detecting of the potential attack is
followed by stopping an execution of the flow.

[0114] In Example 4, the subject matter of Examples 1-3
includes, wherein the entry region was amended by a
complier to include the shadow stack update instruction.
[0115] In Example 5, the subject matter of Examples 1-4
includes, amending, by a complier, the entry region to
include the shadow stack update instruction.

[0116] In Example 6, the subject matter of Examples 1-5
includes, executing the flow change command when the
shadow environment identifier equals the current environ-
ment identifier.

[0117] In Example 7, the subject matter of Example 6
includes, wherein the flow change command is a return
command; and wherein the executing of the return command
comprises: (i) retrieving, from the shadow stack, a return
environment identifier that identifies a return software envi-
ronment; and (ii) jumping to the return software environ-
ment.

[0118] In Example 8, the subject matter of Examples 6-7
includes, wherein the flow change command is a jump
subroutine command for jumping to a subroutine; and
wherein the executing of the jump subroutine command
comprises: jumping to the subroutine and executing a
shadow stack update included in the entry region of the
subroutine; wherein the executing of the shadow stack
update comprises storing in the shadow stack a shadow
environment identifier that identifies the subroutine.

[0119] In Example 9, the subject matter of Examples 6-8
includes, wherein the flow change command is a jump
indirect command for jumping to an address that is stored in
a memory element; wherein the address belongs to the
current software environment.

[0120] In Example 10, the subject matter of Examples 1-9
includes, wherein the flow change command is a jump
subroutine command.

[0121] In Example 11, the subject matter of Examples
1-10 includes, wherein the flow change command is a return
command.

[0122] In Example 12, the subject matter of Examples
1-11 includes, wherein the flow change command is jump
indirect command.

[0123] Example 13 is a method for evaluating flow control
integrity, the method comprises: detecting that a flow
reached a flow change command or is about to reach the flow
change command, wherein the flow change command
belongs to a current software environment, wherein the
current software environment is identified by a current
environment identifier; retrieving a shadow environment
identifier that is a last environment identifier stored in a
shadow stack, wherein the shadow environment identifier
identifies a software environment having an entry region that
was a last entry region accessed by the flow, wherein the
entry region comprises a shadow stack update instruction

Mar. 23, 2023

that was executed by the flow; comparing the shadow
environment identifier to the current environment identifier;
and detecting a potential attack when the shadow environ-
ment identifier differs from the current environment identi-
fier.

[0124] In Example 14, the subject matter of Example 13
includes, wherein the current environment identifier is
stored in proximity to the flow change command.

[0125] In Example 15, the subject matter of Examples
13-14 includes, wherein the detecting of the potential attack
is followed by stopping an execution of the flow.

[0126] In Example 16, the subject matter of Examples
13-15 includes, wherein the entry region was amended by a
complier to include the shadow stack update instruction.
[0127] In Example 17, the subject matter of Examples
13-16 includes, amending, by a complier, the entry region to
include the shadow stack update instruction.

[0128] In Example 18, the subject matter of Examples
13-17 includes, executing the flow change command when
the shadow environment identifier equals the current envi-
ronment identifier.

[0129] In Example 19, the subject matter of Example 18
includes, wherein the flow change command is a return
command; and wherein the executing of the return command
comprises: (i) retrieving, from the shadow stack, a return
environment identifier that identifies a return software envi-
ronment; and (ii) jumping to the return software environ-
ment.

[0130] In Example 20, the subject matter of Examples
18-19 includes, wherein the flow change command is a jump
subroutine command for jumping to a subroutine; and
wherein the executing of the jump subroutine command
comprises: jumping to the subroutine and executing a
shadow stack update included in the entry region of the
subroutine; wherein the executing of the shadow stack
update comprises storing in the shadow stack a shadow
environment identifier that identifies the subroutine.

[0131] In Example 21, the subject matter of Examples
18-20 includes, wherein the flow change command is a jump
indirect command for jumping to an address that is stored in
a memory element; wherein the address belongs to the
current software environment.

[0132] In Example 22, the subject matter of Examples
13-21 includes, wherein the flow change command is a jump
subroutine command.

[0133] In Example 23, the subject matter of Examples
13-22 includes, wherein the flow change command is a
return command.

[0134] In Example 24, the subject matter of Examples
13-23 includes, wherein the flow change command is jump
indirect command.

[0135] Example 25 is a non-transitory computer readable
medium that stores instructions, which when executed on a
processing circuit, causes the processing circuit to perform
operations comprising: detecting that a flow reached a flow
change command or is about to reach the flow change
command, wherein the flow change command belongs to a
current software environment, wherein the current software
environment is identified by a current environment identi-
fier; retrieving a shadow environment identifier that is a last
environment identifier stored in a shadow stack, wherein the
shadow environment identifier identifies a software envi-
ronment having an entry region that was a last entry region
accessed by the flow, wherein the entry region comprises a

US 2023/0091941 Al

shadow stack update instruction that was executed by the
flow; comparing the shadow environment identifier to the
current environment identifier; and detecting a potential
attack when the shadow environment identifier differs from
the current environment identifier.

[0136] In Example 26, the subject matter of Example 25
includes, wherein the current environment identifier is
stored in proximity to the flow change command.

[0137] In Example 27, the subject matter of Examples
25-26 includes, wherein the detecting of the potential attack
is followed by stopping an execution of the flow.

[0138] In Example 28, the subject matter of Examples
25-27 includes, wherein the entry region was amended by a
complier to include the shadow stack update instruction.
[0139] In Example 29, the subject matter of Examples
25-28 includes, that stores instructions for amending, by a
complier, the entry region to include the shadow stack
update instruction.

[0140] In Example 30, the subject matter of Examples
25-29 includes, that stores instructions for executing the
flow change command when the shadow environment iden-
tifier equals the current environment identifier.

[0141] In Example 31, the subject matter of Example 30
includes, wherein the flow change command is a return
command; and wherein the executing of the return command
comprises: (i) retrieving, from the shadow stack, a return
environment identifier that identifies a return software envi-
ronment; and (ii) jumping to the return software environ-
ment.

[0142] In Example 32, the subject matter of Examples
30-31 includes, wherein the flow change command is a jump
subroutine command for jumping to a subroutine; and
wherein the executing of the jump subroutine command
comprises: jumping to the subroutine and executing a
shadow stack update included in the entry region of the
subroutine; wherein the executing of the shadow stack
update comprises storing in the shadow stack a shadow
environment identifier that identifies the subroutine.

[0143] In Example 33, the subject matter of Examples
30-32 includes, wherein the flow change command is a jump
indirect command for jumping to an address that is stored in
a memory element; wherein the address belongs to the
current software environment.

[0144] In Example 34, the subject matter of Examples
25-33 includes, wherein the flow change command is a jump
subroutine command.

[0145] In Example 35, the subject matter of Examples
25-34 includes, wherein the flow change command is a
return command.

[0146] In Example 36, the subject matter of Examples
25-35 includes, wherein the flow change command is jump
indirect command.

[0147] Example 37 is at least one machine-readable
medium including instructions that, when executed by pro-
cessing circuitry, cause the processing circuitry to perform
operations to implement of any of Examples 1-36.

[0148] Example 38 is an apparatus comprising means to
implement of any of Examples 1-36.

[0149] Example 39 is a system to implement of any of
Examples 1-36.

[0150] Example 40 is a method to implement of any of
Examples 1-36.

[0151] In the foregoing specification, the invention has
been described with reference to specific examples of

Mar. 23, 2023

embodiments of the invention. It will, however, be evident
that various modifications and changes may be made therein
without departing from the broader spirit and scope of the
invention as set forth in the appended claims.

[0152] Moreover, the terms “front,” “back,” “top,” “bot-
tom,” “over,” “under” and the like in the description and in
the claims, if any, are used for descriptive purposes and not
necessarily for describing permanent relative positions. It is
understood that the terms so used are interchangeable under
appropriate circumstances such that the embodiments of the
invention described herein are, for example, capable of
operation in other orientations than those illustrated or
otherwise described herein.

[0153] The connections as discussed herein may be any
type of connection suitable to transfer signals from or to the
respective nodes, units or devices, for example via interme-
diate devices. Accordingly, unless implied or stated other-
wise, the connections may for example be direct connections
or indirect connections. The connections may be illustrated
or described in reference to being a single connection, a
plurality of connections, unidirectional connections, or bidi-
rectional connections. However, different embodiments may
vary the implementation of the connections. For example,
separate unidirectional connections may be used rather than
bidirectional connections and vice versa. Also, plurality of
connections may be replaced with a single connection that
transfers multiple signals serially or in a time multiplexed
manner. Likewise, single connections carrying multiple sig-
nals may be separated out into various different connections
carrying subsets of these signals. Therefore, many options
exist for transferring signals.

[0154] Although specific conductivity types or polarity of
potentials have been described in the examples, it will be
appreciated that conductivity types and polarities of poten-
tials may be reversed.

[0155] Each signal described herein may be designed as
positive or negative logic. In the case of a negative logic
signal, the signal is active low where the logically true state
corresponds to a logic level zero. In the case of a positive
logic signal, the signal is active high where the logically true
state corresponds to a logic level one. Note that any of the
signals described herein may be designed as either negative
or positive logic signals. Therefore, in alternate embodi-
ments, those signals described as positive logic signals may
be implemented as negative logic signals, and those signals
described as negative logic signals may be implemented as
positive logic signals.

[0156] Furthermore, the terms ‘“assert” or “set” and
“negate” (or “deassert” or “clear”) are used herein when
referring to the rendering of a signal, status bit, or similar
apparatus into its logically true or logically false state,
respectively. If the logically true state is a logic level one, the
logically false state is a logic level zero. And if the logically
true state is a logic level zero, the logically false state is a
logic level one.

[0157] Those skilled in the art will recognize that the
boundaries between logic blocks are merely illustrative and
that alternative embodiments may merge logic blocks or
circuit elements or impose an alternate decomposition of
functionality upon various logic blocks or circuit elements.
Thus, it is to be understood that the architectures depicted
herein are merely exemplary, and that in fact many other
architectures may be implemented which achieve the same
functionality.

13 33

US 2023/0091941 Al

[0158] Any arrangement of components to achieve the
same functionality is effectively “associated” such that the
desired functionality is achieved. Hence, any two compo-
nents herein combined to achieve a particular functionality
may be seen as “associated with” each other such that the
desired functionality is achieved, irrespective of architec-
tures or intermedial components. Likewise, any two com-
ponents so associated can also be viewed as being “operably
connected,” or “operably coupled,” to each other to achieve
the desired functionality.

[0159] Furthermore, those skilled in the art will recognize
that boundaries between the above described operations
merely illustrative. The multiple operations may be com-
bined into a single operation, a single operation may be
distributed in additional operations and operations may be
executed at least partially overlapping in time. Moreover,
alternative embodiments may include multiple instances of
a particular operation, and the order of operations may be
altered in various other embodiments.

[0160] Also for example, in one embodiment, the illus-
trated examples may be implemented as circuitry located on
a single integrated circuit or within a same device. Alterna-
tively, the examples may be implemented as any number of
separate integrated circuits or separate devices intercon-
nected with each other in a suitable manner.

[0161] Also for example, the examples, or portions
thereof, may implemented as soft or code representations of
physical circuitry or of logical representations convertible
into physical circuitry, such as in a hardware description
language of any appropriate type.

[0162] Also, the invention is not limited to physical
devices or units implemented in non-programmable hard-
ware but can also be applied in programmable devices or
units able to perform the desired device functions by oper-
ating in accordance with suitable program code, such as
mainframes, minicomputers, servers, workstations, personal
computers, notepads, personal digital assistants, electronic
games, automotive and other embedded systems, cell phones
and various other wireless devices, commonly denoted in
this application as ‘computer systems’.

[0163] However, other modifications, variations and alter-
natives are also possible. The specifications and drawings
are, accordingly, to be regarded in an illustrative rather than
in a restrictive sense.

[0164] In the claims, any reference signs placed between
parentheses shall not be construed as limiting the claim. The
word ‘comprising’ does not exclude the presence of other
elements or steps then those listed in a claim. Furthermore,
the terms “a” or “an,” as used herein, are defined as one or
more than one. Also, the use of introductory phrases such as
“at least one” and “one or more” in the claims should not be
construed to imply that the introduction of another claim
element by the indefinite articles “a” or “an” limits any
particular claim containing such introduced claim element to
inventions containing only one such element, even when the
same claim includes the introductory phrases “one or more”
or “at least one” and indefinite articles such as “a” or “an.”
The same holds true for the use of definite articles. Unless
stated otherwise, terms such as “first” and “second” are used
to arbitrarily distinguish between the elements such terms
describe. Thus, these terms are not necessarily intended to
indicate temporal or other prioritization of such elements.
The mere fact that certain measures are recited in mutually

Mar. 23, 2023

different claims does not indicate that a combination of these
measures cannot be used to advantage.
[0165] While certain features of the invention have been
illustrated and described herein, many modifications, sub-
stitutions, changes, and equivalents will now occur to those
of ordinary skill in the art. It is, therefore, to be understood
that the appended claims are intended to cover all such
modifications and changes as fall within the true spirit of the
invention.
1.-38. (canceled)
39. A system comprising a processing circuit that is
configured to:
detect that a flow reached a flow change command or is
about to reach the flow change command, wherein the
flow change command belongs to a current software
environment, wherein the current software environ-
ment is identified by a current environment identifier;

retrieve a shadow environment identifier that is a last
environment identifier stored in a shadow stack,
wherein the shadow environment identifier identifies a
software environment having an entry region that was
a last entry region accessed by the flow, wherein the
entry region comprises a shadow stack update instruc-
tion that was executed by the flow;

compare the shadow environment identifier to the current

environment identifier; and

detect a potential attack when the shadow environment

identifier differs from the current environment identi-
fier.

40. The system according to claim 39, wherein to detect
that the flow is about to reach the flow change command, the
processing circuit is configured to search the flow change
command in proximity to an entry pointed by a program
counter.

41. The system according to claim 39, wherein the detect-
ing of the potential attack is followed by stopping an
execution of the flow.

42. The system according to claim 39, wherein the pro-
cessing circuitry is configured to amend, by a complier, the
entry region to include the shadow stack update instruction.

43. The system according to claim 39, wherein the entry
region was amended, by a complier, to include the shadow
stack update instruction.

44. The system according to claim 39, wherein the pro-
cessing circuit is configured to execute the flow change
command when the shadow environment identifier equals
the current environment identifier.

45. The system according to claim 44, wherein the flow
change command is a return command; and wherein the
executing of the return command comprises:

retrieving, from the shadow stack, a return environment

identifier that identifies a return software environment;
and jumping to the return software environment.

46. The system according to claim 44, wherein the flow
change command is a jump subroutine command for jump-
ing to a subroutine; and wherein the executing of the jump
subroutine command comprises: jumping to the subroutine
and executing a shadow stack update included in the entry
region of the subroutine; wherein the executing of the
shadow stack update comprises storing in the shadow stack
a shadow environment identifier that identifies the subrou-
tine.

47. The system according to claim 44, wherein the flow
change command is a jump indirect command for jumping

US 2023/0091941 Al

to an address that is stored in a memory element; wherein the
address belongs to the current software environment.
48. The system according to claim 39, wherein the flow
change command is a jump subroutine command.
49. The system according to claim 39, wherein the flow
change command is a return command.
50. The system according to claim 39, wherein the flow
change command is jump indirect command.
51. The system according to claim 39, wherein the current
software environment comprises a current software envi-
ronment entry region that comprises a shadow stack update
instruction for updating the shadow stack with the current
environment identifier.
52. The system according to claim 39, wherein the pro-
cessing circuit is configured to detect the potential attack
before executing the flow change command.
53. The system according to claim 52, wherein the pro-
cessing circuit is configured to respond to a detection of the
potential attack before executing the flow change command.
54. The system according to claim 53, wherein the pro-
cessing circuit is configured to respond by preforming at
least one of: generating an alert, stopping the execution of
the flow, or rebooting a processor.
55. A method for evaluating flow control integrity, com-
prising:
detecting that a flow reached a flow change command or
is about to reach the flow change command, wherein
the flow change command belongs to a current software
environment, wherein the current software environ-
ment is identified by a current environment identifier;

retrieving a shadow environment identifier that is a last
environment identifier stored in a shadow stack,
wherein the shadow environment identifier identifies a
software environment having an entry region that was
a last entry region accessed by the flow, wherein the
entry region comprises a shadow stack update instruc-
tion that was executed by the flow;

comparing the shadow environment identifier to the cur-

rent environment identifier; and

detecting a potential attack when the shadow environment

identifier differs from the current environment identi-
fier.

56. The method according to claim 55, wherein the
detecting that the flow is about to reach the flow change
command comprises searching the flow change command in
proximity to an entry pointed by a program counter.

57. The method according to claim 55, wherein the
detecting of the potential attack is followed by stopping an
execution of the flow.

58. The method according to claim 55, wherein the entry
region was amended by a complier to include the shadow
stack update instruction.

59. The method according to claim 55, comprising
amending, by a complier, the entry region to include the
shadow stack update instruction.

60. The method according to claim 55, comprising
executing the flow change command when the shadow
environment identifier equals the current environment iden-
tifier.

61. The method according to claim 60, wherein the flow
change command is a return command; and wherein the

Mar. 23, 2023

executing of the return command comprises: retrieving,
from the shadow stack, a return environment identifier that
identifies a return software environment; and jumping to the
return software environment.
62. The method according to claim 60, wherein the flow
change command is a jump subroutine command for jump-
ing to a subroutine; and wherein the executing of the jump
subroutine command comprises: jumping to the subroutine
and executing a shadow stack update included in the entry
region of the subroutine; wherein the executing of the
shadow stack update comprises storing in the shadow stack
a shadow environment identifier that identifies the subrou-
tine.
63. The method according to claim 60, wherein the flow
change command is a jump indirect command for jumping
to an address that is stored in a memory element; wherein the
address belongs to the current software environment.
64. The method according to claim 55, wherein the flow
change command is a jump subroutine command.
65. The method according to claim 55, wherein the flow
change command is a return command.
66. The method according to claim 55, wherein the flow
change command is jump indirect command.
67. The method according to claim 55, wherein the
current software environment comprises a current software
environment entry region that comprises a shadow stack
update instruction for updating the shadow stack with the
current environment identifier.
68. The method according to claim 55, wherein the
detecting of the potential attack occurs before executing the
flow change command.
69. The method according to claim 68, comprising
responding to the detecting of the potential attack before
executing the flow change command.
70. The method according to claim 69, wherein the
responding comprises at least one of: generating an alert,
stopping the execution of the flow, or rebooting a processor.
71. A non-transitory computer readable medium that
stores instructions, which when executed on a processing
circuit, causes the processing circuit to perform operations
comprising:
detecting that a flow reached a flow change command or
is about to reach the flow change command, wherein
the flow change command belongs to a current software
environment, wherein the current software environ-
ment is identified by a current environment identifier;

retrieving a shadow environment identifier that is a last
environment identifier stored in a shadow stack,
wherein the shadow environment identifier identifies a
software environment having an entry region that was
a last entry region accessed by the flow, wherein the
entry region comprises a shadow stack update instruc-
tion that was executed by the flow;

comparing the shadow environment identifier to the cur-

rent environment identifier; and

detecting a potential attack when the shadow environment

identifier differs from the current environment identi-
fier.

