一种连铸过程智能控制的系统方法

摘要

本发明公开了一种连铸过程智能控制的系统方法，先采集信号，形成数据中心；再设计温度场模型计算连铸关键工艺节点温度，并将其保存至数据中心；然后实现连铸过程物流跟踪，形成“铸坯-工艺参数及事件”关联数据库；再进行数据挖掘及人工专家经验来获取规则、获取调度指令信息并进行设备状态、过程运行状态、指令执行状态的虚拟现实动画展示；再搭建铸坯质量在线评级系统，实现铸坯评级；最后建立协调控制系统，优化能耗水耗，实现质量大闭环控制和底层回路控制。本发明在保障连铸坯质量稳定并持续提升品质的同时通过对能耗水耗相关参数的优化实施节能降耗，以提升产能和降低吨钢成本，持续降低综合生产成本，保障连铸的正常及高效运行。
1. 一种连铸过程智能控制的系统方法，其特征在于，包括如下步骤：

S1、采集底层实时信号并提取出过程运行状态，形成包括回转台子系统、中间包子系统、结晶器子系统、二冷段子系统、拉矫子系统、切割子系统等各环节的实时数据库及历史数据库，并将各环节数据节点融合成最终的数据中心，以实现现场数据的集中采集、存储、挖掘和分析、共享和管理；

S2、以能量守恒和凝固传热数据模型为方法对整个连铸过程从大包到切割结束的关键工艺环节的温度预设和温度场分布进行计算，并作为关键工艺参数保存至数据中心；

S3、以炉次跟踪、铸流跟踪和坯坯跟踪为依托，将炼钢过程、连铸过程和炼铁过程的工艺参数及事件同坯坯关联起来，形成“坯坯-工艺参数及事件”关联数据库；

S4、采用数据挖掘和人工专家经验录入的方法获取协调控制专家规则和“坯坯质量-工艺参数”关联规则，不断积累数据更新数据库，实现规则自适应、自学习；

S5、按照决策树模型技术从现场信号提取出的调整相关信号，并结合从外部系统接口获得的调度指令信息，以指导连铸过程智能控制系统的运作；

S6、以虚拟现实动画形式监控设备状态、过程运行状态和指令执行状态，并显示设备的当前状态，给出设备故障报警信号，并预测出可能的设备状态，以指导故障排除、优化设备维护以及备品备件的管理；

S7、以“坯坯-工艺参数及事件”关联数据库为基础，基于“坯坯质量-工艺参数”关联规则的坯坯质量在线评级系统，在连铸环节坯坯形成过程中时刻监控工艺参数的变动，对坯坯流中的质量缺陷进行精确定位跟踪，当出现工艺参数出格的情况时及时做出评估并将信息同步传递给协调控制系统，由其计算出最优的参数调整目标值协调相关控制系统做出及时调整；在切割结束后，对每块形成的坯坯进行最终的质量评级，并通过坯坯缺陷检测系统对坯坯质量在线评级系统进行修正，以不断提升评级的准确性和可靠性；

S8、基于协调控制专家规则的协调控制系统，以保证坯坯质量为基本前提和约束，以提高生产效率、降低能耗水耗、降低综合成本为目标，对整个连铸生产过程实施协同优化控制。

2. 根据权利要求1所述的一种连铸过程智能控制的系统方法，其特征在于，所述步骤S1中，底层实时信号包括设备状态类信息、工艺参数类信息、控制参数类信息、生产环境类信息、通讯传输类信息和调度执行类信息。

3. 根据权利要求1所述的一种连铸过程智能控制的系统方法，其特征在于，所述步骤S2中，温度预设和温度场分布包括大包温度预设、中间包温度预设、结晶器温度场分布和二冷铸流温度场分布，并通过现有温度传感器进行在线验证以提升模型温度预设、计算的准确性，最终取代现有温度传感器的功能，以达到减少温度传感器使用和维修成本的目的。

4. 根据权利要求3所述的一种连铸过程智能控制的系统方法，其特征在于，大包温度预测是对大包内钢液液面处单点的温度计算及预测，采用能量守恒定律为基本原理，以上连铸平台前最近的准确温度测量数据为输入，结合时间信息、大包散热系数、钢包输出流量等相关参数加以运算；所述大包散热系数需要对环境温度、绝热层厚度、材质、钢包尺寸、钢包性能、钢种、是否加水等，是否加保温剂进行综合考虑。

5. 根据权利要求3所述的一种连铸过程智能控制的系统方法，其特征在于，中间包温度预测是对中间包浇铸区域内各流出口处各分散点的温度计算及预测，采用能量守恒定律为
基本原理，以大包温度测量或者预测数据为输入，结合中间包内钢液流场、中包散热系数、中包输入流量和中包输出流量的参数加以运算，所述中包散热系数需要对环境温度、绝热层厚度、材质、中包尺寸、中包性能、钢种、覆盖剂性能进行综合考虑。

6. 根据权利要求3所述的一种连铸过程智能控制的系统方法，其特征在于，结晶器温度场分布计算包括结晶器目标冷却水量计算、结晶器凝固传热过程计算和结晶器凝固坯壳厚度计算。

7. 根据权利要求3所述的一种连铸过程智能控制的系统方法，其特征在于，二冷铸流温度场分布计算包括二冷各段目标喷水量的计算、二冷铸流凝固传热过程计算和二冷铸流凝固末端的计算，二冷段内温度场计算主要体现在对铸流坯壳表面温度、凝固厚度、凝固末端的计算，并以计算结果为依据，合理控制二次冷却水各段的用量。

8. 根据权利要求1所述的一种连铸过程智能控制的系统方法，其特征在于，所述步骤S3中，所述炉次跟踪是以钢包到达连铸钢包回转台为起始点，以钢包离开回转台为结束点，包括对每一包钢水的浇次号、炉次号、钢种、化验成分、到达时间、离开时间、重量、温度、开浇时间、浇完时间、是否为保护浇铸、下渣检测、滑动水口开度、氧气流量、长水口是否漏钢、长水口是否破损、滑动水口是否漏钢，并通过炉次号反推其在炼钢各工序、炼铁各工序的工艺事件及时间区间的跟踪。

9. 根据权利要求1所述的一种连铸过程智能控制的系统方法，其特征在于，所述步骤S3中，所述铸流跟踪包括从中包、结晶器、铸流本体到板坯切割前的整个过程的生产信息，包括对中包重量、过热度、钢种、时间、中间包使用炉数、中间包覆盖剂性能、在线换中间包及时间、铸流长度、炉次接缝位置、塞棒位置、浸入式水口深度、在线换浸入式水口及时间、结晶器保护渣性能、保护渣厚度、结晶器厚度、结晶器厚度、结晶器冷却水、结晶器铸流温度分布、结晶器坯壳厚度、结晶器过钢量、结晶器尺寸、电磁搅拌、电磁制动、二次冷却水、二冷铸流温度分布、凝固末端位置、设备冷却水、夹送辊张下量、拉速、铸流表面质量及位置、铸流内部质量及位置、浸入式水口是否破损及漏钢预报的跟踪。

10. 根据权利要求1所述的一种连铸过程智能控制的系统方法，其特征在于，所述步骤S3中，所述铸坯跟踪以切割完成作为起始点，离开切割辊道为结束点，包括对切割开始时间、切割结束时间、铸坯号、所属炉次号、是否为接缝处铸坯、铸坯截面尺寸、铸坯尺寸、铸坯定重、铸坯对应铸流中位置、首坯长度、尾坯长度、是否补切、铸坯温度分布、切割损耗、铸坯评级和铸坯去向的跟踪。
一种连铸过程智能控制的系统方法

技术领域
[0001] 本发明属于先进工业制造控制技术领域，尤其涉及一种连铸过程智能控制的系统方法。

背景技术
[0002] 连铸生产仍然是一个粗放、劳动力相对集中的生产过程，其控制还沿用多年前的技术，控制策略基本上是分段分立控制。现有温度场模型的计算准确度不高，应用效果不好；数据融合和数据挖掘应用尚需；生产过程需要频密沟通、沟通效率低且速度缓慢，加之人为操作干预，连续无故障运行时间不长；生产过程可视化差，对设备状态和过程运行的把控能力差；连铸过程形成的高波动性，整体能耗高，水耗高；缺乏有效的在线质量分析、质量干预手段，铸坯质量波动大。
[0003] 随着国内钢铁供给侧结构性改革以及钢铁去产能以及人工智能和大数据时代来临，通过连铸过程的智能化控制，实现连铸过程的精益生产，降低企业用工成本，提高产品质量，降低能耗，实现连铸过程可移动的可视化是钢铁业发展发展的趋势和必然选择。

发明内容
[0004] 为了克服现有技术的不足，本发明提供一种可解决上述连铸生产过程存在的各种问题的连铸过程智能控制的系统方法。
[0005] 为此，本发明公开了一种连铸过程智能控制的系统方法，包括如下步骤：
[0006] S1. 采集底层实时信号并提取出过程运行状态，形成包括回转台子系统、中间包系统、结晶器子系统、二冷段子系统、拉矫子系统、切割子系统等各环节的实时数据库及历史数据库，并将各环节数据节点融合成最终的数据中心，以实现现场数据的集中采集、存储、分析和管理；
[0007] S2. 以能量守恒和凝固传热数据模型为方法对整个连铸过程从大包包到切割结束的关键工艺环节的温度预测和温度场分布进行计算，并作为关键工艺参数保存至数据中心；
[0008] S3. 以炉次跟踪、铸流跟踪和铸坯跟踪为依托，将炼铁过程、连铸过程和炼铁过程的工艺参数及事件同铸坯关联起来，形成“铸坯-工艺参数及事件”关联数据库；
[0009] S4. 采用数据挖掘和人工专家经验录入的方法获取协调控制专家规则和“铸坯质量-工艺参数”关联规则，不断积累数据更新数据库，实现规则自适应、自学习；
[0010] S5. 按照决策树模型技术从现场信号提取出的调度相关信号，并结合从外部系统接口所获取的调度指令信息，以指导连铸过程智能控制系统的运行；
[0011] S6. 以虚拟现实动画形式监控设备状态、过程运行状态和设备状态，显示设备的当前状态，给出设备故障报警信号，并预测出可能的设备状态，以指导设备判断、优化设备维修以及备品备件的管理；
[0012] S7. 以“铸坯-工艺参数及事件”关联数据库为基础，基于“铸坯质量-工艺参数”关联规则的铸坯质量在线评级系统，在连铸环节铸坯形成过程中适时监控工艺参数的变动，
对铸流中的质量缺陷进行精确定位跟踪，当出现工艺参数出格的情况时及时做出评估并将信息同步传送给协调控制系统，由其计算出最优的参数调整目标值协调相关控制系统做出及时调整；在切割结束后，对每块形成的铸坯进行最终的质量评级，并通过铸坯缺陷检测系统对铸坯质量在线评级系统进行修正，以不断提升评级的准确性和可靠性；

S8. 基于协调控制专家规则的协调控制系统，以保证铸坯质量为基本前提和约束，以提高生产效率、降低能耗水耗、降低综合成本为目标，对整个连铸生产过程实施协调优化控制。

进一步地，所述步骤S1中，底层实时信号包括设备状态类信息、工艺参数类信息、控制参数类信息、生产环境类信息、通讯传输类信号和调度执行类信号。

进一步地，所述步骤S2中，温度预测和温度场分布包括大包温度预测、中间包温度预测、结晶器温度场分布和二冷铸流温度场分布，并通过现有温度传感器进行在线验证以提升模型温度预测、计算的准确性，最终取代现有温度传感器的功能，以达到减少温度传感器使用和维修成本的目的。

大包温度预测是对大包内钢液质处点的温度计算及预测，采用能量守恒定律为基本原理，以上连铸平台前最近的准确温度测量数据为输入，结合时间信息、大包散热系数、钢包输出流量等相关参数加以运算；所述大包散热系数需要对环境温度、凝固层厚度、材质、钢包尺寸、钢包性能、钢种、是否加盖、是否加保温剂进行综合考虑。

中间包温度预测是对中间包浇铸区域内各出入口处各分散点的温度计算及预测，采用能量守恒定律为基本原理，以大包温度测量或者预测数据为输入，结合中间包内钢液流场、中包散热系数、中包输入流量和中包输出流量的参数加以运算，所述中包散热系数需要对环境温度、凝固层厚度、材质、中包尺寸、中包性能、钢种、覆盖剂性能进行综合考虑。

结晶器温度场分布计算包括结晶器目标冷却水量计算、结晶器凝固传热过程计算和结晶器凝固坯壳厚度计算。

二冷铸流温度场分布计算包括二冷各段目标喷水量的计算、二冷铸流凝固传热过程计算和二冷铸流凝固末端的计算，二冷段内温度场计算主要体现在对铸流坯壳表面温度、凝固层厚度、凝固末端的计算，并以计算结果为依据，合理控制二次冷却水各段的用量。

进一步地，所述步骤S3中，所述炉次跟踪是以钢包到达连铸钢包回转台为始点，以钢包离开回转台为结束点；包括对每一包钢水的浇次号、炉次号、钢种、化验成份、到达时间、离开时间、重量、温度、开浇时间、浇完时间、是否为保护浇注、下渣检测、滑动水口开启、氩气流量、长水口是否漏钢、长水口是否破损、滑动水口是否漏钢，并通过炉次号反推其在炼钢各工序、炼铁各工序的工艺事件及时间间的跟踪。

进一步地，所述步骤S3中，所述转流跟踪包括从中包、结晶器、转流本体到板坯切割前的整个过程的生产信息，包括对中包重量、过热度、钢种、时间、中间包使用炉数、中间包覆盖剂性能、在线换中间包及时间、转流长度、炉次接缝位置、塞棒位置、浸入式水口深度、在线换浸入式水口及时间、结晶器保护渣性能、保护渣厚度、结晶器液位、结晶器振动、结晶器冷却水、结晶器铸流温度分布、结晶器坯壳厚度、结晶器过钢量、结晶器尺寸、电磁搅拌、电磁制动、二次冷却水、二冷铸流温度分布、凝固末端位置、设备冷却水、夹送棍压下量、拉速、铸流表面质量及位置、铸流内部质量及位置、浸入式水口是否破损及漏钢预报的跟踪。
[0022] 进一步地，所述步骤S3中，所述铸坯跟踪以切割完成作为起始点，离开切割锥道为结束点，包括对切割开始时间、切割结束时间、铸坯号、所属炉次号、是否为接缝处铸坯、铸坯截面尺寸、铸坯定尺、铸坯定重、铸坯对应铸流中位置、首坯长度、尾坯长度、是否补切、铸坯温度分布、切割损耗、铸坯评级和铸坯去向的跟踪。

[0023] 与现有技术相比，本发明具有以下效果：

[0024] 1、根据连铸现场存在的各种实际问题的现实需要，依据工艺约束条件、规则以及人工智能技术和大数据技术为手段，提出了一种连铸过程智能控制的系统方法的整体解决方案，该方案设计思路清晰，便于升级和扩展；

[0025] 2、采用的规则库是通过数据挖掘或者专家经验获取的，是基于对连铸工艺及约束的充分理解基础上实现的，一方面规则的适应性较强，另一方面规则的扩展能力较强，尤其对连铸环节复杂的动态环境有较强适应能力；

[0026] 3、通过对连铸生产过程中影响质量、效率、能耗、成本的本质因素进行深度挖掘，找出可控对象及可调因子，并通过协调优化控制系统加以控制，最终实现铸坯质量的稳定和提升，并同步提供生产效率，降低能耗水耗，实现综合生产成本的降低。

附图说明

[0027] 图1为本发明提供的所述连铸过程智能控制的系统方法的流程图。

具体实施方式

[0028] 下面结合附图对本发明的实施例进行详述。

[0029] 请参阅图1，本发明提供一种连铸过程智能控制的系统方法，包括如下步骤：

[0030] S1、采集底层实时信号并提取出过程运行状态，形成包括回转台子系统、中间包子系统、结晶器子系统、二冷段子系统、拉矫子系统、切割子系统等各环节的实时数据库及历史数据库，并将各环节数据节点融合成最终的数据中心，以实现现场数据的集中采集、存储、挖掘和分析、共享和管理；

[0031] S2，以能量守恒和凝固传热数据模型为方法对整个连铸过程从大包到切割结束的关键工艺环节的温度预测和温度场分布进行计算，并作为关键工艺参数保存至数据中心；

[0032] S3，以炉次跟踪、铸流跟踪和铸坯跟踪为依托，将炼钢过程、连铸过程和炼铁过程的工艺参数及事件同铸坯关联起来，形成“铸坯-工艺参数及事件”关联数据库；

[0033] S4，采用数据挖掘和人工专家经验录入的方法获取协调控制专家规则和“铸坯质量-工艺参数”关联规则，不断积累数据更新数据库，实现规则自适应、自学习；

[0034] S5，按决策树模型技术从现场信号提取出的调度相关信号，并结合从外部系统接口获得的调度指令信息，以指导连铸过程智能控制系统的运行；

[0035] S6，以虚拟现实动画形式监控设备状态、过程运行状和指令执行状态，并显示设备的当前状态，给出设备故障报警信号，并预测出可能的设备状态，以指导故障排除、优化设备维护以及备品备件的管理；

[0036] S7，以“铸坯-工艺参数及事件”关联数据库为基础，基于“铸坯质量-工艺参数”关联规则的铸坯质量在线评级系统，在连铸环节铸坯形成过程中时刻监控工艺参数的变动，对铸流中的质量缺陷进行精确定位跟踪，当出现工艺参数出格的情况时及时做出评估并将
信息同步传递给协调控制系统，由其计算出最优的参数调整目标值，协调相关控制系统做出及时调整；在切割结束后，对每块形成的铸坯进行最终的质量评级，并通过铸坯缺陷检测系统对铸坯质量在线评级系统进行修正，以不断提升评级的准确性和可靠性。

【0037】S8: 基于协调控制专家规则的协调控制系统，以保证铸坯质量为基本前提和约束，以提高生产效率、降低能耗水耗、降低综合成本为目标，对整个连铸生产过程实施协调优化控制。

【0038】所述连铸过程智能控制的系统方法包含多个内容，具体内容与内容间以及和目前的关系为：

【0039】内容a：建立数据中心是其他内容实现的基础，提供统一的数据平台。

【0040】内容b：连铸过程温度预测与温度场的算法，可提供准确、核心的工艺参数-温度，这是掌握连铸热固进展的关键，是保持连铸板质量稳定并持续提升板质、提高生产效率、节约能耗水耗、降低综合成本的基本要素，为后续其他内容的实现提供数据。

【0041】内容c：“铸坯-工艺参数及事件”关联数据库，以内容a、b的数据内容为基础，将铸坯与其关联的工艺参数及事件作映射，主要因素是质量提升和平板的角度考虑，为内容d、g 做铺垫。

【0042】内容d：规则获取，是系统实现的核心内容及难点，是内容g、h性能有效实现的关键，是所有目标能否达到及达到的效果的保证。

【0043】由于连铸过程不是独立运行的系统，受上、下游连轧工艺和下游轧制工艺的影响和制约，同时连铸过程运行的好坏也受自身各功能段的影响，这些因素都是智能调度的逻辑，因此：

【0044】内容e：调度信息的获取，主要是基于上述考虑，为内容g提供指导。

【0045】而对连铸运行效果或者进展的表达，最有效的方式之一就是虚拟动画展示，这是内容f的动机。

【0046】内容g：铸坯质量在线评级系统，更多的是从质量的角度出发，及时发现连铸过程中质量缺陷并做跟踪，同步找出缺陷诱因交由内容h处理，该部分内容主要由内容c、d作支撑。

【0047】内容h：协调控制系统的协调控制，一方面关注对质量的改善和提高，另一方面从全局出发做协调处理，以优化连铸效率、降低能耗水耗，实现综合成本降低。

【0048】所述连铸过程智能控制的系统方法的整体设计内容之数据中心，主要实现现场数据的集中采集、存储、挖掘和分析、共享和管理。

【0049】步骤S1中，底层实时信号包括设备状态类信息，工艺参数类信息，控制参数类信息，生产环境类信息，通讯传输类信息和调度执行类信息。

【0050】所述的回转包系统包括以下设备及系统：回转台、包、包滑动水口、滑板液压缸、长水口、长水口操作臂、回转台部分的液压系统，回转台部分的润滑系统。

【0051】所述的中间包系统包括以下设备及系统：中间包、中间包车、备用中间包、备用中间包、主烘烤装置、备用烘烤装置、塞棒机构、浸入式水口、备用浸入式水口、浸入式水口的卸装设备，中间包部分的液压系统。

【0052】所述的结晶器系统包括以下设备及系统：结晶器、振动台、冷却水系统、电磁搅拌装置、电磁制动装置、结晶器部分的液压系统，结晶器部分的润滑系统。

【0053】所述的二冷段系统包括以下设备及系统：支撑导向辊、二次冷却水系统、电磁搅拌装置。
说明书

拌设备、箱体形、二冷段部分的液压系统。二冷段部分的润滑系统。

【0054】所述的矫直子系统包括以下设备及系统：矫直机、引锭杆、脱锭装置、存放装置、拉矫部分的液压系统、拉矫部分的润滑系统。

【0055】所述的切割子系统包括以下设备及系统：切割小车、切割枪、定尺装置、称重装置、切割部分的液压系统、切割部分的润滑系统。

【0056】所述步骤S2中，温度预测和温度场分布包括大包温度预测、中间包温度预测、结晶器温度场分布和二冷铸流温度场分布。并通过现有温度传感器进行在线验证以提升模型温度预测、计算的准确度，最终取代现有温度传感器的功能，以达到减少温度传感器使用和维修成本的目的。

【0057】大包温度预测是对大包内钢液质心距单点的温度计算及预测，采用能量守恒定律为基本原理，以上连铸平台前最近的准确温度测量数据为输入，结合时间信息、大包散热系数、钢包输出流量等相关参数进行计算。所述大包散热系数需要对环境温度、绝热层厚度、材质、钢包尺寸、钢包性能、钢种、是否加盖、是否加保温剂进行综合考虑。

【0058】中包温度预测是对中包内钢水区各冷却点的温度计算及预测，采用能量守恒定律为基本原理，以大包温度测量或预测数据为输入，结合中包内钢液插入中冷钢包温度、中包散热系数、中包插入温度和中包插入输出温度的参数进行计算。所述中包散热系数需要对环境温度、绝热层厚度、材质、中包尺寸、中包性能、钢种、覆盖剂性能进行综合考虑。

【0059】结晶器温度场分布计算包括结晶器目标冷却水量计算、结晶器凝固传热过程计算和结晶器凝固坯壳厚度计算。结晶器内钢液热量绝大部分通过与结晶器内冷却水的间接热交换过程散失，以实现铸流凝固坯壳的均匀生长，根据能量守恒，单位时间内钢液能量减少量等于冷却水能量增量。钢液能量变化过程通过钢液与周围热交换实现。

【0060】二冷铸流温度场分布计算包括二冷各段目标喷水量的计算、二冷铸流凝固传热过程计算和二冷铸流凝固末段的计算，二冷段内温度场计算主要体现在对铸流坯壳表面温度、凝固厚度、凝固末端的计算，并以计算结果为依据，合理控制二次冷却水各段的用量。

【0061】步骤S3中，“铸坯—工艺参数及事件”关联数据库的建立，主要实现对连铸过程、炼钢过程甚至是炼铁过程的工艺参数及事件的跟踪，并以铸坯作为主键将这些工艺参数及事件联系起来。

【0062】所述炉次跟踪是以钢包到达连铸钢包回转台为起始点，以钢包离开回转台为结束点；包括对每一包钢水的浇次号、炉次号、钢种、化验成分、到达时间、离开时间、重量、温度、浇注时间、浇注时间、是否为保护浇注、下渣检测、滑动水口开度、氩气流量、长水口是否漏钢、长水口是否破损、滑动水口是否漏钢，并通过炉次号反推其在炼钢各工序、炼铁各工序的工艺事件及时间区间的跟踪。

【0063】所述铸流跟踪包括从中包、结晶器、铸流本体到板坯切割前的整个过程的生产信息，包括对中包重量、过热度、钢种、时间、中间包使用数、中间包覆盖剂性能、在线换中间包时间、铸流长度、炉次接缝位置、塞棒位置、浸入式水口深度、在线换入水流口时间、结晶器保护渣性能、保护渣厚度、结晶器液位、结晶器振动、结晶器冷却水、结晶器铸流温度分布、结晶器坯壳厚度、结晶器过钢量、结晶器尺寸、电磁搅拌、磁场制式、二次冷却水、二冷铸流温度分布、凝固末端位置、设备冷却水、夹送辊压下量、拉速、铸流表面质量及位置、铸流内部质量及位置、浸入式水口是否破损及漏钢预报的跟踪。
所述铸坯跟踪以切割完成作为起始点，离开切割输送为结束点，包括对切割开始时间、切割结束时间、铸坯号、所属炉次号、是否为接缝处铸坯、铸坯截面尺寸、铸坯重量、铸坯重量和铸坯对应炉流中位置、首尾长度、尾部长度、是否补切、铸坯温度分布、切割损耗、铸坯评级和铸坯去向跟踪。

所述连铸过程智能控制的系统方法的整体设计内容之规则获取，在系统运行初期主要通过人工专家经验进行规则的录入到规则库中，当系统得到大量生产过程数据后，则通过数据挖掘和大数据技术进行规则的发现和抽取，逐步提升规则库的精度和发掘未知或模糊的规则并逐渐形成标准规则库，以实现规则的自适应和自学习。

所述规则主要包括：铸坯质量-工艺参数关联规则、设备控制规则、非稳工况识别规则、非稳工况控制规则、动态二冷配水规则、轻压下控制规则；铸坯质量在线评级规则、协调控制规则、状态-操作匹配规则、振动-拉速匹配规则、优化切割规则、智能调度规则、无人开浇自动控制规则、液位自适应控制规则、质量成本综合优化规则、接续计算优化规则、最优拉速规则、电磁搅拌优化规则、电磁制动优化规则、能耗水耗优化控制规则等连铸过程优化控制规则、调度规则和参数优化规则。

所述连铸过程智能控制的系统方法的整体设计内容之调度信息的获取，一方面通过决策树模型从连铸现场发现连铸层调调值信息，另一方面通过与炼钢环节、轧钢环节智能调度系统或者ERP/MES系统做接口获取上下工序的调度信息及连铸层上层调度信息，以指导连铸过程控制，并将实际运行结果反馈给相关接口系统以实现调度系统依据实际情况的动态调整。

所述连铸过程智能控制的系统方法的整体设计内容之虚拟现实动画展示，包括两个方向：全局动画展示、局部动画展示。

所述全局动画展示主要从全局角度出发，实时再现展示连铸生产中最核心的工艺参数、控制参数、设备性能，而只有当设备状态或者过程状态出问题或者预测出问题，给出相应的报警或者预警提示，以实现有针对性、高效的调度和指挥，保证连铸生产安全、高效、顺畅。

所述局部动画展示主要展示的对象：回转台、中间包、结晶器、二冷段、拉矫设备、引锭设备、切割设备。对于各展示对象其展示的内容，关键的生产过程状态、设备状态、工艺参数、控制参数、操作数据等的展示，并对这些数据进行统计和分析，得到有价值的信息，使相关责任者能够及时准确掌握各系统的运行状态，并提供友好的介入方式，如报警、操作指导、指令下达等。

所述故障排除、优化设备维修以及备品备件的管理，指的是建立连铸设备生命周期管理系统，对在线使用的关键设备进行寿命统计，当快达到设备寿命上限时提示并指导其下线操作。设计智能故障诊断系统，对核心设备进行实时监控，当预测出某点可能会出现故障时指导维修人员进行精确定点维修，尽量做到视情维修，当不能完全预测出所有的故障时也要能够在出现故障时及时发现故障，并给出报警信息，以指导故障的排除；通过对设备状态、设备间的关联关系的精准把控的基础上结合调度计划，制定出高效优化的维修计划，使综合维修成本最低。通过对大量备件使用情况数据的综合分析，得到各备件的性能指标，结合成本因素、库存信息、消耗速率，制定合理的采购计划，实现备品备件的优化解管。
所述连铸过程智能控制的系统方法的整体设计内容之搭建铸坯质量在线评级系统，根据“铸坯-工艺参数-事件”关联数据库，结合神经元和模糊控制技术、数据挖掘技术提取的“铸坯质量-工艺参数”关联规则，对关键工艺参数划分不同的打分区间和打分权值，综合各环节关键工艺参数的打分结果，形成铸坯在线评级结果，包括存在哪些缺陷及缺陷程度，以及铸坯的去向（包括：直接上轧机、下线精整、降级、报废处理）。通过不断比较计算结果与检测结果（铸坯缺陷在线检测系统和离线检测系统的反馈值）的偏差，以不断优化和调整关键工艺参数的打分区间、打分权值，使其能够适应不同的连铸现场，建立标准统一精确的铸坯质量在线评级系统，并最后淘汰铸坯缺陷在线检测系统，以节约系统使用和维修成本。

所述铸坯缺陷在线检测系统主要包括：铸坯表面质量缺陷检测、铸坯内部质量缺陷检测、铸坯形状质量缺陷检测。

所述铸坯表面质量缺陷检测包括：表面纵裂纹、表面横裂纹、表面呈形裂纹、表面夹渣、角部横裂纹、角部纵裂纹、皮下气泡、表面增碳和偏析、凹坑和重皮、切割断面缺陷、振痕、重结、划伤、黑线。

所述铸坯内部质量缺陷检测包括：角部裂纹、中间裂纹、三角区裂纹、中心裂纹、皮下裂纹、铸直和压下裂纹、断面裂纹、中心处裂纹、疏松孔洞、中心偏析、树状晶间偏析、内部夹杂、结构缺陷、内部增碳。

所述铸坯形状质量缺陷检测包括：方坯的菱变、圆坯的形状缺陷、板坯的鼓肚。

所述连铸过程智能控制的系统方法的整体设计内容之协调控制系统，是基于模型预测控制框架，采用铸坯质量反馈（通过铸坯质量在线评级系统或者铸坯缺陷检测系统实现）和铸流温度前馈（通过能控守恒和温度热力学模型实现）的控制方案，以提高产量、节水降耗为综合优化目标，以铸坯质量指标和参数边界为约束，实现连铸过程优化运行。包括四个层次的内容：以铸坯质量为参考指标的大闭环控制、过程环节间各控制系统的协同控制、各控制系统的控制参数的优化计算、底层小闭环控制。

所述以铸坯质量为参考指标的大闭环控制是一生产高质量无缺陷铸坯为设定值，以实际生产的铸坯质量为反馈值，如果当前生产的实际铸坯质量不能达到设定值要求，通过铸坯质量在线评级系统或者铸坯缺陷检测系统，寻找到铸坯缺陷内容、缺陷强度、位置，以及逆向追踪并锁定导致缺陷的精确原因；工艺参数出格、设备状态异常、控制参数异常、通讯异常、传感器故障。

所述过程环节间各控制系统的协同控制是在以铸坯质量为参考指标的大闭环控制锁定缺陷的成因后，根据将缺陷成因消除最小功耗原则，协调相关控制系统做出联动调整的控制逻辑，包括；时间上是否进行顺行控制、是否连锁等。

所述各控制系统的控制参数的优化计算是为达到最经济地消除缺陷的目的，在当前连铸过程状态的情况下，需要对相关控制系统的控制参数进行优化计算并予以修正，其中典型的代表为优化切割控制。优化算法包括：遗传算法、粒子群优化算法等启发式算法和二次规划算法。

所述优化切割控制是：现有的铸坯质量在线评级系统依据影响铸流质量的因素（这些因素包括：头坯、更换中间包、调宽、工艺参数出格、钢液成分出格、铸流停浇、控制参数异常、设备状态异常、漏钢预报、长水口破损、浸入式水口破损、氩气流量异常等），对每流
的不同缺陷作精确跟踪，并确定合格铸流段的精确位置，并将合格铸流段细分成不同质量分段；切割时，考虑切割损失（切缝长度）和收缩因子，在满足切割条件下，以提高产品档次、提高订单匹配率、提高收得率和降低综合生产成本为优化目标，计算并确定出每流铸流切割成铸坯的时间及切割位置，并下发至底层PLC实现闭环控制。

[0082] 所述闭环控制是在各控制系统得到最优控制参数作为设定值下发给底层控制模块进行单回路控制，存在的控制算法包括：PID、无约束MPC（模型预测控制）、Fuzzy控制、神经网络。

[0083] 综上，本发明根据连铸现场存在的各种实际问题的现实需要，依据工艺约束条件、规则以及人工智能技术和大数据技术为手段，提出了一种连铸过程智能控制的系统方法的整合解决方案，该方案设计思路清晰，便于升级和扩展；采用的规则库是通过数据挖掘或者专家经验获取的，是基于对连铸工艺及约束的充分理解基础上实现的，一方面规则的适应性较强，另一方面规则的扩展能力较强，尤其对连铸环境复杂多变的动态环境具有较强适应能力；通过对连铸生产过程中影响质量、效率、能耗、成本的本质因素进行深度挖掘，找出可控对象及可调因子，并通过协调优化控制系统的最终实现连铸坯质量的稳定和提升，并同步提供生产效率，降低能耗水耗，实现综合生产成本的降低。

[0084] 以上所述，仅为本发明较佳的具体实施方式，但本发明的保护范围并不局限于此，任何熟悉本技术领域的技术人员在本发明揭露的技术范围内，根据本发明的技术方案及其发明构思加以等同替换或改变，都应涵盖在本发明的保护范围之内。
采集底层实时信号并提取出过程运行状态，形成包括回转台子系统、中间包子系统、结晶器子系统、二冷段子系统、拉矫子系统、切割子系统等各环节的实时数据库及历史数据库，并将各环节数据节点融合成最终的数据中心，以实现现场数据的集中采集、存储、挖掘和分析、共享和管理

以能量守恒和凝固传热数据模型为方法对整个连铸过程从大包到切割结束的关键工艺环节的温度预测和温度场分布进行计算，并作为关键工艺参数保存至数据中心

以炉次跟踪、铸流跟踪和铸坯跟踪为依托，将炼钢过程、连铸过程和炼铁过程的工艺参数及事件同铸坯关联起来，形成“铸坯-工艺参数及事件”关联数据库

采用数据挖掘和专家知识录入的方法获取协调控制专家规则和“铸坯质量-工艺参数”关联规则，不断积累数据更新数据库，实现规则自适应、自学习

按照决策树模型技术从现场信号提取出的调度相关信号，并结合从外部系统接口获得的调度指令信息，以指导连铸过程智能控制系统的运作

以虚拟现实动画形式监控设备状态、过程运行状态和指令执行状态，并显示设备的当前状态，给出设备故障报警信号，并预测出可能的设备状态，以指导故障排除、优化设备维修以及备品备件的管理

以“铸坯-工艺参数及事件”关联数据库为基础，基于“铸坯质量-工艺参数”关联规则的铸坯质量在线评级系统，在连铸环节铸坯形成过程中时刻监控工艺参数的变动，对铸流中的质量缺陷进行精确定位跟踪，当出现参数出格的情况时及时做出评估并按信息同步传递给协调控制系统，由其计算出最优的参数调整目标值协调相关控制系统做出及时调整；在切割结束后，对每块形成的铸坯进行最终的质量评级，并通过铸坯缺陷检测系统对铸坯质量在线评级系统进行修正，以不断提升评级的准确性和可靠性

基于协调控制专家规则的协调控制系统，以保证铸坯质量为基本前提和约束，以提高生产效率、降低能耗水耗、降低综合成本为目标，对整个连铸生产过程实施协调优化控制

图1