

(12) STANDARD PATENT
(19) AUSTRALIAN PATENT OFFICE

(11) Application No. AU 2011271046 B2

- (54) Title
Hybrid light chain mice
- (51) International Patent Classification(s)
C12N 15/85 (2006.01) **C07K 16/00** (2006.01)
A01K 67/027 (2006.01) **C07K 16/46** (2006.01)
- (21) Application No: **2011271046** (22) Date of Filing: **2011.06.22**
- (87) WIPO No: **WO11/163314**
- (30) Priority Data
- (31) Number (32) Date (33) Country
61/357,317 **2010.06.22** **US**
61/357,314 **2010.06.22** **US**
- (43) Publication Date: **2011.12.29**
(44) Accepted Journal Date: **2015.10.01**
- (71) Applicant(s)
Regeneron Pharmaceuticals, Inc.
- (72) Inventor(s)
Macdonald, Lynn; Stevens, Sean; Gurer, Cagan; Murphy, Andrew J.; Hosiawa, Karolina A.
- (74) Agent / Attorney
Phillips Ormonde Fitzpatrick, L 16 333 Collins St, Melbourne, VIC, 3000
- (56) Related Art
WO 2010/039900
WO 2009/143472
US 2005/0060763
US 2003/0217373
US 2006/0015957
POPOV, A. V. et al., Journal of Experimental Medicine, 1999, vol. 189, pages 1611-1619
WO 2000/026373

(12) INTERNATIONAL APPLICATION PUBLISHED UNDER THE PATENT COOPERATION TREATY (PCT)

(19) World Intellectual Property Organization
International Bureau

(43) International Publication Date
29 December 2011 (29.12.2011)

(10) International Publication Number
WO 2011/163314 A1

(51) International Patent Classification:
C12N 15/85 (2006.01) *C07K 16/00* (2006.01)
A01K 67/027 (2006.01) *C07K 16/46* (2006.01)

(74) Agents: POBURSKY, Kevin, J. et al.; Regeneron Pharmaceuticals, Inc., 777 Old Saw Mill River Road, Tarrytown, NY 10591 (US).

(21) International Application Number:
PCT/US2011/041370

(81) Designated States (unless otherwise indicated, for every kind of national protection available): AE, AG, AL, AM, AO, AT, AU, AZ, BA, BB, BG, BH, BR, BW, BY, BZ, CA, CH, CL, CN, CO, CR, CU, CZ, DE, DK, DM, DO, DZ, EC, EE, EG, ES, FI, GB, GD, GE, GH, GM, GT, HN, HR, HU, ID, IL, IN, IS, JP, KE, KG, KM, KN, KP, KR, KZ, LA, LC, LK, LR, LS, LT, LU, LY, MA, MD, ME, MG, MK, MN, MW, MX, MY, MZ, NA, NG, NI, NO, NZ, OM, PE, PG, PH, PL, PT, RO, RS, RU, SC, SD, SE, SG, SK, SL, SM, ST, SV, SY, TH, TJ, TM, TN, TR, TT, TZ, UA, UG, US, UZ, VC, VN, ZA, ZM, ZW.

(22) International Filing Date:
22 June 2011 (22.06.2011)

(84) Designated States (unless otherwise indicated, for every kind of regional protection available): ARIPO (BW, GH, GM, KE, LR, LS, MW, MZ, NA, SD, SL, SZ, TZ, UG, ZM, ZW), Eurasian (AM, AZ, BY, KG, KZ, MD, RU, TJ, TM), European (AL, AT, BE, BG, CH, CY, CZ, DE, DK, EE, ES, FI, FR, GB, GR, HR, HU, IE, IS, IT, LT, LU, LV, MC, MK, MT, NL, NO, PL, PT, RO, RS, SE, SI, SK, SM, TR), OAPI (BF, BJ, CF, CG, CI, CM, GA, GN, GQ, GW, ML, MR, NF, SN, TD, TG).

(25) Filing Language: English

Published:

(26) Publication Language: English

- with international search report (Art. 21(3))
- with amended claims (Art. 19(1))
- with sequence listing part of description (Rule 5.2(a))

(30) Priority Data:
61/357,317 22 June 2010 (22.06.2010) US
61/357,314 22 June 2010 (22.06.2010) US

(71) Applicant (for all designated States except US): **REGENERON PHARMACEUTICALS, INC.** [US/US]; 777 Old Saw Mill River Road, Tarrytown, NY 10591 (US).

(72) Inventors; and

(75) Inventors/Applicants (for US only): **MACDONALD, Lynn** [US/US]; 16 Gedney Way, White Plains, NY 10605 (US). **STEVENS, Sean** [US/US]; 355 Berry Street, # 413, San Francisco, CA 94158 (US). **GURER, Cagan** [TR/US]; 8 Pamela Lane, Valhalla, NY 10595 (US). **MURPHY, Andrew, J.** [US/US]; 10 Newton Court, Croton-on-Hudson, NY 10520 (US). **HOSIAWSA, Karolina, A.** [CA/US]; 14 Church Street, 2nd Floor, Tarrytown, NY 10591 (US).

(54) Title: HYBRID LIGHT CHAIN MICE

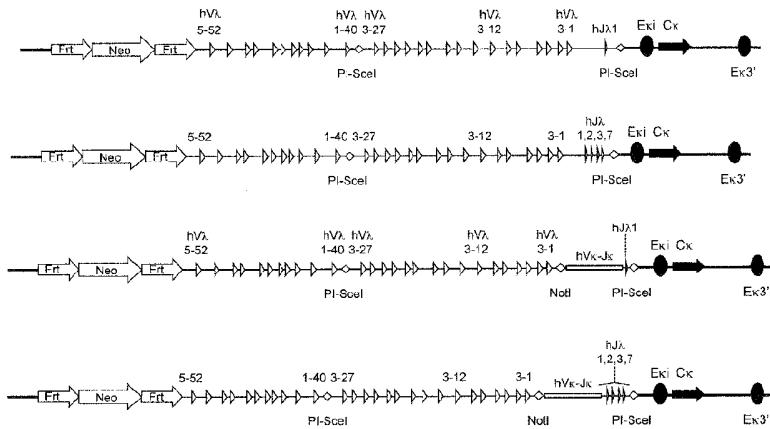


FIG. 7B

(57) Abstract: Genetically modified mice are provided that express human λ variable ($hV\lambda$) sequences, including mice that express $hV\lambda$ sequences from an endogenous mouse λ light chain locus, mice that express $hV\lambda$ sequences from an endogenous mouse κ light chain locus, and mice that express $hV\lambda$ sequences from a transgene or an episome wherein the $hV\lambda$ sequence is linked to a mouse constant sequence. Mice are provided that are a source of somatically mutated human λ variable sequences useful for making antigen-binding proteins. Compositions and methods for making antigen-binding proteins that comprise human λ variable sequences, including human antibodies, are provided.

WO 2011/163314 A1

HYBRID LIGHT CHAIN MICE

FIELD

[0001] Genetically modified mice that comprise a mouse or human lambda variable (V λ) light chain sequence operably linked with a mouse or human light chain constant region (λ or kappa(κ)). Genetically modified mice that express epitope-binding proteins that comprise an immunoglobulin light chain comprising a variable domain derived from a human lambda variable (hV λ) gene segment, a human lambda J (hJ λ) gene segment, and a mouse light chain constant (C_L) domain. Genetically modified mice, comprising an unarranged immunoglobulin lambda (λ) light chain variable nucleic acid sequence at an endogenous mouse light chain locus. Mice capable of rearranging and expressing a chimeric human λ /mouse C_L light chain from an endogenous light chain locus that comprises a replacement of all endogenous mouse light chain variable region gene segments with one or more hV λ gene segments and one or more hJ λ gene segments. Somatically mutated antibodies comprising hV λ domains and mouse C_L domains.

BACKGROUND

[0002] Mice that express antibodies that are fully human, or partly human and partly mouse, are known in the art. For example, transgenic mice that express fully human antibodies from transgenes containing human light and heavy chain immunoglobulin variable region genes have been reported. Genetically modified mice that comprise a replacement of the endogenous mouse heavy chain variable region (HCVR) gene segments and kappa (κ) light chain variable region (LCVR) gene segments with human HCVR and LCVR gene segments and that make chimeric antibodies with a chimeric human/mouse kappa chain are known as well.

[0003] Antibody light chains are encoded by one of two separate loci: kappa (κ) and lambda (λ). Mouse antibody light chains are primarily of the κ type. The ratio of κ to λ light chain usage in humans is about 60:40, whereas in mice it is about 95:5. Biased usage of κ light chains in mice is reportedly sustained in genetically modified mice capable of expressing fully or partly human antibodies. Thus, mice that express fully or partly human antibodies appear to be constrained in lambda variable usage.

[0004] There is a need in the art to generate lambda variable regions, whether mouse or human, for use in making epitope-binding proteins. There is a need in the art for mice that express fully or partly human antibodies, wherein the mice display an increased lambda variable (V λ) usage.

[0005] There is a need in the art for mice that express fully or partly human antibodies, wherein the mice display an increased λ variable ($V\lambda$) usage.

SUMMARY

[0006] Genetically modified mice, embryos, cells, tissues, as well as nucleic acid constructs for modifying mice, and methods and compositions for making and using them, are provided. Mice and cells that generate lambda (λ) variable regions (human or non-human) in the context of a kappa (κ) light chain are provided. Mice and cells that generate human λ variable regions in the context of a κ or a λ light chain, e.g., from an endogenous mouse light chain locus, are also provided. Also provided are methods for making antibodies that comprise lambda variable regions. Methods for selecting heavy chains that express with cognate lambda variable regions are also provided.

[0007] Chimeric and human antigen-binding proteins (e.g., antibodies), and nucleic acids encoding them, are provided that comprise somatically mutated variable regions, including antibodies that have light chains comprising a variable domain derived from a human $V\lambda$ and a human $J\lambda$ gene segment fused to a mouse light chain constant domain.

[0007a] In one aspect, the present invention provides a mouse, comprising:

an unarranged human immunoglobulin light chain variable ($V\lambda$) gene segment and an unarranged human λ immunoglobulin light chain joining ($J\lambda$) gene segment which are operably linked to a mouse κ constant ($C\kappa$) at an endogenous mouse κ immunoglobulin light chain locus, wherein the mouse expresses an antibody comprising a light chain that comprises a human λ variable sequence and a mouse κ constant domain.

[0007b] In another aspect, the present invention provides a mouse comprising:

(a) at least 12 to at least 40 unarranged human λ immunoglobulin light chain variable ($V\lambda$) gene segments and at least one unarranged human λ immunoglobulin light chain joining ($J\lambda$) gene segment that are operably linked to a mouse κ constant ($C\kappa$) gene at an endogenous mouse κ immunoglobulin light chain locus; and

(b) a human $V\kappa$ - $J\kappa$ intergenic sequence located between the at least 12 to at least 40 human $V\lambda$ gene segments and the at least one human $J\lambda$ gene segment;

wherein the mouse expresses an antibody that comprises an immunoglobulin light chain comprising a human $V\lambda$ domain and a mouse $C\kappa$ domain.

[0008] In one aspect, a mouse is provided that expresses a human λ variable region sequence on a light chain that comprises a mouse constant region. In one aspect, a mouse is provided that expresses a human λ variable region sequence on a light chain that comprises a κ constant region. In one aspect, a mouse is provided that expresses from an

endogenous mouse light chain locus a light chain that comprises a human λ variable region sequence. In one aspect, a mouse is provided that comprises a rearranged light chain gene that comprises a human λ variable sequence linked to a mouse constant region sequence; in one embodiment, the mouse constant region sequence is a λ constant sequence; in one embodiment, the mouse constant region sequence is a κ constant sequence.

[0009] In one aspect, a genetically modified mouse is provided, wherein the mouse comprises an unarranged human λ light chain variable gene segment (hV λ) and a human λ joining gene segment (hJ λ). In one embodiment, the unarranged hV λ and hJ λ are at a mouse light chain locus. In one embodiment, the unarranged hV λ and unarranged hJ λ are on a transgene and operably linked to a human or mouse constant region sequence. In one embodiment, the unarranged hV λ and unarranged hJ λ are on an episome. In one embodiment, the mouse is capable of making an immunoglobulin that comprises a light chain that is derived from an unarranged hV λ sequence and a hJ λ sequence and a mouse light chain constant region (C_L) nucleic acid sequence. Methods and compositions for making and using genetically modified mice are also provided.

Antibodies are provided that comprise (a) a human heavy chain variable domain (hV_H) fused to a mouse heavy chain constant region, and (b) a human V λ fused to a mouse C_L domain; including wherein one or more of the variable domains are somatically mutated, e.g., during antibody or immune cell selection in a mouse of the invention. In one embodiment, the unarranged hV λ and unarranged hJ λ are operably linked with a human or mouse κ constant region (C κ). In one embodiment, the unarranged hV λ and unarranged hJ λ are operably linked with a human or mouse λ constant region (C λ).

[0010] In one aspect, a mouse is provided that comprises in its germline, at an endogenous mouse light chain locus, a human λ light chain variable region sequence, wherein the human lambda variable region sequence is expressed in a light chain that comprises a mouse immunoglobulin constant region gene sequence.

[0011] In one embodiment, the endogenous mouse light chain locus is a λ locus. In one embodiment, the endogenous mouse light chain locus is a κ locus.

[0012] In one embodiment, the mouse lacks an endogenous light chain variable sequence at the endogenous mouse light chain locus.

[0013] In one embodiment, all or substantially all endogenous mouse light chain variable region gene segments are replaced with one or more human λ variable region gene segments.

[0014] In one embodiment, the human λ light chain variable region sequence comprises a human J λ sequence. In one embodiment, the human J λ sequence is selected from the group consisting of J λ 1, J λ 2, J λ 3, J λ 7, and a combination thereof.

[0015] In one embodiment, the human λ light chain variable region sequence comprises a fragment of cluster A of the human light chain locus. In a specific embodiment, the fragment of cluster A of the human λ light chain locus extends from hV λ 3-27 through hV λ 3-1.

[0016] In one embodiment, the human λ light chain variable region sequence comprises a fragment of cluster B of the human light chain locus. In a specific embodiment, the fragment of cluster B of the human λ light chain locus extends from hV λ 5-52 through hV λ 1-40.

[0017] In one embodiment, the human λ light chain variable region sequence comprises a genomic fragment of cluster A and a genomic fragment of cluster B. In a one embodiment, the human λ light chain variable region sequence comprises at least one gene segment of cluster A and at least one gene segment of cluster B.

[0018] In one embodiment, more than 10% of the light chain naïve repertoire of the mouse is derived from at least two hV λ gene segments selected from 2-8, 2-23, 1-40, 5-45, and 9-49. In one embodiment, more than 20% of the light chain naïve repertoire of the

mouse is derived from at least three hV λ gene segments selected from 2-8, 2-23, 1-40, 5-45, and 9-49. In one embodiment, more than 30% of the light chain naïve repertoire of the mouse is derived from at least four hV λ gene segments selected from 2-8, 2-23, 1-40, 5-45, and 9-49.

[0019] In one aspect, a mouse is provided that expresses an immunoglobulin light chain that comprises a human λ variable sequence fused with a mouse constant region, wherein the mouse exhibits a κ usage to λ usage ratio of about 1:1.

[0020] In one embodiment, the immunoglobulin light chain is expressed from an endogenous mouse light chain locus.

[0021] In one aspect, a mouse is provided that comprises a λ light chain variable region sequence (V λ) and at least one J sequence (J), contiguous with a mouse κ light chain constant region sequence.

[0022] In one embodiment, the mouse lacks a functional mouse V κ and/or mouse J κ gene segment.

[0023] In one embodiment, the V λ is a human V λ (hV λ), and the J is a human J λ (hJ λ). In one embodiment, the hV λ and the hJ λ are unarranged gene segments.

[0024] In one embodiment, the mouse comprises a plurality of unarranged hV λ gene segments and at least one hJ λ gene segment. In a specific embodiment, the plurality of unarranged hV λ gene segments are at least 12 gene segments, at least 28 gene segments, or at least 40 gene segments.

[0025] In one embodiment, the at least one hJ λ gene segment is selected from the group consisting of J λ 1, J λ 2, J λ 3, J λ 7, and a combination thereof.

[0026] In one embodiment, an endogenous mouse λ light chain locus is deleted in whole or in part.

[0027] In one embodiment, the mouse κ light chain constant region sequence is at an endogenous mouse κ light chain locus.

[0028] In one embodiment, about 10% to about 45% of the B cells of the mouse express an antibody that comprises a light chain comprising a human λ light chain variable (V λ) domain and a mouse κ light chain constant (C κ) domain.

[0029] In one embodiment, the human λ variable domain is derived from a rearranged hV λ /hJ λ sequence selected from the group consisting of 3-1/1, 3-1/7, 4-3/1, 4-3/7, 2-8/1, 3-9/1, 3-10/1, 3-10/3, 3-10/7, 2-14/1, 3-19/1, 2-23/1, 3-25/1, 1-40/1, 1-40/2, 1-40/3, 1-40/7, 7-43/1, 7-43/3, 1-44/1, 1-44/7, 5-45/1, 5-45/2, 5-45/7, 7-46/1, 7-46/2, 7-46/7, 9-49/1, 9-49/2, 9-49/7 and 1-51/1.

[0030] In one embodiment, the mouse further comprises a human V κ -J κ intergenic region from a human κ light chain locus, wherein the human V κ -J κ intergenic region is

contiguous with the $V\lambda$ sequence and the J sequence. In a specific embodiment, the human $V\kappa$ - $J\kappa$ intergenic region is placed between the $V\lambda$ sequence and the J sequence.

[0031] In one aspect, a mouse is provided that comprises (a) at least 12 to at least 40 unarranged human λ light chain variable region gene segments and at least one human $J\lambda$ gene segment at an endogenous mouse light chain locus; (b) a human $V\kappa$ - $J\kappa$ intergenic sequence located between the at least 12 to at least 40 human light chain variable region gene segments and the at least one human $J\lambda$ sequence; wherein the mouse express an antibody that comprises a light chain comprising a human $V\lambda$ domain and a mouse $C\kappa$ domain.

[0032] In one aspect, a mouse is provided that expresses an antibody comprising a light chain that comprises a λ variable sequence and a κ constant sequence.

[0033] In one embodiment, the mouse exhibits a κ usage to λ usage ratio of about 1:1.

[0034] In one embodiment, a population of immature B cells obtained from bone marrow of the mouse exhibits a κ usage to λ usage ratio of about 1:1.

[0035] In one aspect, a genetically modified mouse is provided, wherein the mouse comprises an unarranged immunoglobulin $V\lambda$ and a $J\lambda$ gene segment operably linked to a mouse light chain locus that comprises a mouse C_L gene.

[0036] In one embodiment, the $V\lambda$ and/or $J\lambda$ gene segments are human gene segments. In one embodiment, the $V\lambda$ and/or $J\lambda$ gene segments are mouse gene segments, and the C_L is a mouse $C\kappa$.

[0037] In one embodiment, the endogenous mouse light chain locus is a κ light chain locus. In one embodiment, the endogenous mouse light chain locus is a λ light chain locus.

[0038] In one embodiment, the unarranged $V\lambda$ and $J\lambda$ gene segments are at an endogenous mouse light chain locus.

[0039] In one embodiment, the unarranged immunoglobulin $V\lambda$ and $J\lambda$ gene segments are on a transgene.

[0040] In one embodiment, the mouse further comprises a replacement of one or more heavy chain V , D , and/or J gene segments with one or more human V , D , and/or J gene segments at an endogenous mouse heavy chain immunoglobulin locus.

[0041] In one embodiment, the mouse comprises an unarranged immunoglobulin $V\lambda$ and a $J\lambda$ gene segment at an endogenous mouse κ light chain locus that comprises a mouse $C\kappa$ gene.

[0042] In one embodiment, the mouse comprises an unarranged human immunoglobulin λ light chain variable gene segment (V λ) and a λ joining gene segment (J λ) at an endogenous mouse λ light chain locus that comprises a mouse C λ gene.

[0043] In one embodiment, the light chain variable gene locus (the "V_L locus") comprises at least one human V λ (hV λ) gene segment. In one embodiment, the V_L locus comprises at least one human J λ (hJ λ) gene segment. In another embodiment, V_L locus comprises up to four hJ λ gene segments. In one embodiment, the V_L locus comprises a contiguous sequence comprising human λ and human κ genomic sequence.

[0044] In one embodiment, the κ light chain variable gene locus (the " κ locus") comprises at least one human V λ (hV λ) gene segment. In one embodiment, the κ locus comprises at least one human J λ (hJ λ) gene segment. In one embodiment, the κ locus comprises up to four hJ λ gene segments. In one embodiment, the κ locus comprises at least one hV λ and at least one hJ λ , and lacks or substantially lacks a functional V κ region gene segment and lacks or substantially lacks a functional J κ region gene segment. In one embodiment, the mouse comprises no functional V κ region gene segment. In one embodiment, the mouse comprises no functional J κ region gene segment.

[0045] In one embodiment, the λ light chain variable gene locus (the " λ locus") comprises at least one hV λ gene segment. In one embodiment, the λ locus comprises at least one human J λ (hJ λ) gene segment. In another embodiment, the λ locus comprises up to four hJ λ gene segments.

[0046] In one embodiment, the V_L locus comprises a plurality of hV λ s. In one embodiment, the plurality of hV λ s are selected so as to result in expression of a λ light chain variable region repertoire that reflects about 10%, about 20%, about 30%, about 40%, about 50%, about 60%, about 70%, about 80%, or about 90% or more of the V λ usage observed in a human. In one embodiment, the V_L locus comprises gene segments hV λ 1-40, 1-44, 2-8, 2-14, 3-21, and a combination thereof.

[0047] In one embodiment, the hV λ s include 3-1, 4-3, 2-8, 3-9, 3-10, 2-11, and 3-12. In a specific embodiment, the V_L locus comprises a contiguous sequence of the human λ light chain locus that spans from V λ 3-12 to V λ 3-1. In one embodiment, the V_L locus comprises at least 2, 3, 4, 5, 6, 7, 8, 9, 10, 11 or 12 hV λ s. In a specific embodiment, the hV λ s include 3-1, 4-3, 2-8, 3-9, 3-10, 2-11, and 3-12. In a specific embodiment, the V_L locus comprises a contiguous sequence of the human λ locus that spans from V λ 3-12 to V λ 3-1. In one embodiment, the V_L locus is at the endogenous κ locus. In a specific embodiment, the V_L locus is at the endogenous κ locus and the endogenous λ light chain locus is deleted in part or completely. In one embodiment, the V_L locus is at the

endogenous λ locus. In a specific embodiment, the V_L locus is at the endogenous λ locus and the endogenous κ locus is deleted in part or completely.

[0048] In one embodiment, the V_L locus comprises 13 to 28 or more h $V\lambda$ s. In a specific embodiment, the h $V\lambda$ s include 2-14, 3-16, 2-18, 3-19, 3-21, 3-22, 2-23, 3-25, and 3-27. In a specific embodiment, the κ locus comprises a contiguous sequence of the human λ locus that spans from $V\lambda$ 3-27 to $V\lambda$ 3-1. In one embodiment, the V_L locus is at the endogenous κ locus. In a specific embodiment, the V_L locus is at the endogenous κ locus and the endogenous λ light chain locus is deleted in part or completely. In another embodiment, the V_L locus is at the endogenous λ locus. In a specific embodiment, the V_L locus is at the endogenous λ locus and the endogenous κ locus is deleted in part or completely.

[0049] In one embodiment, the V_L locus comprises 29 to 40 h $V\lambda$ s. In a specific embodiment, the κ locus comprises a contiguous sequence of the human λ locus that spans from $V\lambda$ 3-29 to $V\lambda$ 3-1, and a contiguous sequence of the human λ locus that spans from $V\lambda$ 5-52 to $V\lambda$ 1-40. In a specific embodiment, all or substantially all sequence between h $V\lambda$ 1-40 and h $V\lambda$ 3-29 in the genetically modified mouse consists essentially of a human λ sequence of approximately 959 bp found in nature (e.g., in the human population) downstream of the h $V\lambda$ 1-40 gene segment (downstream of the 3' untranslated portion), a restriction enzyme site (e.g., PI-SceI), followed by a human λ sequence of approximately 3,431 bp upstream of the h $V\lambda$ 3-29 gene segment found in nature. In one embodiment, the V_L locus is at the endogenous mouse κ locus. In a specific embodiment, the V_L locus is at the endogenous mouse κ locus and the endogenous mouse λ light chain locus is deleted in part or completely. In another embodiment, the V_L locus is at the endogenous mouse λ locus. In a specific embodiment, the V_L locus is at the endogenous mouse λ locus and the endogenous mouse κ locus is deleted in part or completely.

[0050] In one embodiment, the V_L locus comprises at least one h $J\lambda$. In one embodiment, the V_L locus comprises a plurality of h $J\lambda$ s. In one embodiment, the V_L locus comprises at least 2, 3, 4, 5, 6, or 7 h $J\lambda$. In a specific embodiment, the V_L locus comprises four h $J\lambda$. In a specific embodiment, the four h $J\lambda$ s are h $J\lambda$ 1, h $J\lambda$ 2, h $J\lambda$ 3, and h $J\lambda$ 7. In one embodiment, the V_L locus is a κ locus. In a specific embodiment, the V_L locus is at the endogenous κ locus and the endogenous λ light chain locus is deleted in part or completely. In one embodiment, the V_L locus comprises one h $J\lambda$. In a specific embodiment, the one h $J\lambda$ is h $J\lambda$ 1. In one embodiment, the V_L locus is at the endogenous κ locus. In a specific embodiment, the V_L locus is at the endogenous κ locus and the endogenous λ light chain locus is deleted in part or completely. In another embodiment,

the V_L locus is at the endogenous λ locus. In a specific embodiment, the V_L locus is at the endogenous λ locus and the endogenous κ locus is deleted in part or completely.

[0051] In one embodiment, the V_L locus comprises at least one $hV\lambda$, at least one $hJ\lambda$, and a mouse $C\kappa$ gene. In one embodiment, the V_L locus comprises at least one $hV\lambda$, at least one $hJ\lambda$, and a mouse $C\lambda$ gene. In a specific embodiment, the mouse $C\lambda$ gene is $C\lambda 2$. In a specific embodiment, the mouse $C\lambda$ gene is at least 60%, at least 70%, at least 80%, at least 90%, at least 95%, 96%, 97%, 98%, or at least 99% identical to mouse $C\lambda 2$.

[0052] In one embodiment, the mouse comprises a replacement at the endogenous mouse κ locus of endogenous mouse $V\kappa$ gene segments with one or more $hV\lambda$ gene segments, wherein the $hV\lambda$ gene segments are operably linked to an endogenous mouse $C\kappa$ region gene, such that the mouse rearranges the human $V\lambda$ gene segments and expresses a reverse chimeric immunoglobulin light chain that comprises a human $V\lambda$ domain and a mouse $C\kappa$. In one embodiment, 90-100% of unrearranged mouse $V\kappa$ gene segments are replaced with at least one unrearranged $hV\lambda$ gene segment. In a specific embodiment, all or substantially all of the endogenous mouse $V\kappa$ gene segments are replaced with at least one unrearranged $hV\lambda$ gene segment. In one embodiment, the replacement is with at least 12, at least 28, or at least 40 unrearranged $hV\lambda$ gene segments. In one embodiment, the replacement is with at least 7 functional unrearranged $hV\lambda$ gene segments, at least 16 functional unrearranged $hV\lambda$ gene segments, or at least 27 functional unrearranged $hV\lambda$ gene segments. In one embodiment, the mouse comprises a replacement of all mouse $J\kappa$ gene segments with at least one unrearranged $hJ\lambda$ gene segment. In one embodiment, the at least one unrearranged $hJ\lambda$ gene segment is selected from $J\lambda 1$, $J\lambda 2$, $J\lambda 3$, $J\lambda 4$, $J\lambda 5$, $J\lambda 6$, $J\lambda 7$, and a combination thereof. In a specific embodiment, the one or more $hV\lambda$ gene segment is selected from a 3-1, 4-3, 2-8, 3-9, 3-10, 2-11, 3-12, 2-14, 3-16, 2-18, 3-19, 3-21, 3-22, 2-23, 3-25, 3-27, 1-40, 7-43, 1-44, 5-45, 7-46, 1-47, 5-48, 9-49, 1-50, 1-51, a 5-52 $hV\lambda$ gene segment, and a combination thereof. In a specific embodiment, the at least one unrearranged $hJ\lambda$ gene segment is selected from $J\lambda 1$, $J\lambda 2$, $J\lambda 3$, $J\lambda 7$, and a combination thereof.

[0053] In one embodiment, the mouse comprises a replacement of endogenous mouse $V\lambda$ gene segments at the endogenous mouse λ locus with one or more human $V\lambda$ gene segments at the endogenous mouse λ locus, wherein the $hV\lambda$ gene segments are operably linked to a mouse $C\lambda$ region gene, such that the mouse rearranges the $hV\lambda$ gene segments and expresses a reverse chimeric immunoglobulin light chain that comprises a $hV\lambda$ domain and a mouse $C\lambda$. In a specific embodiment, the mouse $C\lambda$ gene is $C\lambda 2$. In a specific embodiment, the mouse $C\lambda$ gene is at least 60%, at least 70%, at least 80%, at

least 90%, at least 95%, or at least 98% identical to mouse C λ 2. In one embodiment, 90-100% of unarranged mouse V λ gene segments are replaced with at least one unarranged hV λ gene segment. In a specific embodiment, all or substantially all of the endogenous mouse V λ gene segments are replaced with at least one unarranged hV λ gene segment. In one embodiment, the replacement is with at least 12, at least 28, or at least 40 unarranged hV λ gene segments. In one embodiment, the replacement is with at least 7 functional unarranged hV λ gene segments, at least 16 functional unarranged hV λ gene segments, or at least 27 functional unarranged hV λ gene segments. In one embodiment, the mouse comprises a replacement of all mouse J λ gene segments with at least one unarranged hJ λ gene segment. In one embodiment, the at least one unarranged hJ λ gene segment is selected from J λ 1, J λ 2, J λ 3, J λ 4, J λ 5, J λ 6, J λ 7, and a combination thereof. In a specific embodiment, the one or more hV λ gene segment is selected from a 3-1, 4-3, 2-8, 3-9, 3-10, 2-11, 3-12, 2-14, 3-16, 2-18, 3-19, 3-21, 3-22, 2-23, 3-25, 3-27, 1-40, 7-43, 1-44, 5-45, 7-46, 1-47, 5-48, 9-49, 1-50, 1-51, a 5-52 hV λ gene segment, and a combination thereof. In a specific embodiment, the at least one unarranged hJ λ gene segment is selected from J λ 1, J λ 2, J λ 3, J λ 7, and a combination thereof.

[0054] In one aspect, a genetically modified mouse is provided that comprises a human V κ -J κ intergenic region sequence located at an endogenous mouse κ light chain locus.

[0055] In one embodiment, the human V κ -J κ intergenic region sequence is at an endogenous κ light chain locus of a mouse that comprises a hV λ and hJ λ gene segment, and the human V κ -J κ intergenic region sequence is disposed between the hV λ and hJ λ gene segments. In a specific embodiment, the hV λ and hJ λ gene segments are capable of recombining to form a functional human λ light chain variable domain in the mouse.

[0056] In one embodiment, a mouse is provided that comprises a plurality of hV λ 's and one or more hJ λ 's, and the human V κ -J κ intergenic region sequence is disposed, with respect to transcription, downstream of the proximal or 3' most hV λ sequence and upstream or 5' of the first hJ λ sequence.

[0057] In one embodiment, the human V κ -J κ intergenic region is a region located about 130 bp downstream or 3' of a human V κ 4-1 gene segment, about 130 bp downstream of the 3' untranslated region of the human V κ 4-1 gene segment, and spans to about 600 bp upstream or 5' of a human J κ 1 gene segment. In a specific embodiment, the human V κ -J κ intergenic region is about 22.8 kb in size. In one embodiment, the V κ -J κ intergenic region is about 90% or more, 91% or more, 92% or more, 93% or more, 94% or

more, or about 95% or more identical with a human $V\kappa$ - $J\kappa$ intergenic region extending from the end of the 3' untranslated region of a human $V\kappa 4-1$ gene segment to about 600 bp upstream of a human $J\kappa 1$ gene segment. In one embodiment, the $V\kappa$ - $J\kappa$ intergenic region comprises SEQ ID NO:100. In a specific embodiment, the $V\kappa$ - $J\kappa$ intergenic region comprises a functional fragment of SEQ ID NO:100. In a specific embodiment, the $V\kappa$ - $J\kappa$ intergenic region is SEQ ID NO:100.

[0058] In one aspect, a mouse, a mouse cell (e.g., a mouse embryonic stem cell), a mouse embryo, and a mouse tissue are provided that comprise the recited human $V\kappa$ - $J\kappa$ intergenic region sequence, wherein the intergenic region sequence is ectopic. In a specific embodiment, the ectopic sequence is placed at a humanized endogenous mouse immunoglobulin locus.

[0059] In one aspect, an isolated nucleic acid construct is provided that comprises the recited human $V\kappa$ - $J\kappa$ intergenic region sequence. In one embodiment, the nucleic acid construct comprises targeting arms to target the human $V\kappa$ - $J\kappa$ intergenic region sequence to a mouse light chain locus. In a specific embodiment, the mouse light chain locus is a κ locus. In a specific embodiment, the targeting arms target the human $V\kappa$ - $J\kappa$ intergenic region to a modified endogenous mouse κ locus, wherein the targeting is to a position between a $hV\lambda$ sequence and a $hJ\lambda$ sequence.

[0060] In one aspect, a genetically modified mouse is provided, wherein the mouse comprises no more than two light chain alleles, wherein the light chain alleles comprise (a) an unarranged immunoglobulin human $V\lambda$ and a $J\lambda$ gene segment at an endogenous mouse light chain locus that comprises a mouse C_L gene; and, (b) an unarranged immunoglobulin V_L and a J_L gene segment at an endogenous mouse light chain locus that comprises a mouse C_L gene.

[0061] In one embodiment, the endogenous mouse light chain locus is a κ locus. In another embodiment, the endogenous mouse light chain locus is a λ locus.

[0062] In one embodiment, the no more than two light chain alleles are selected from a κ allele and a λ allele, two κ alleles, and two λ alleles. In a specific embodiment, one of the two light chain alleles is a λ allele that comprises a $C\lambda 2$ gene.

[0063] In one embodiment, the mouse comprises one functional immunoglobulin light chain locus and one nonfunctional light chain locus, wherein the functional light chain locus comprises an unarranged immunoglobulin human $V\lambda$ and a $J\lambda$ gene segment at an endogenous mouse κ light chain locus that comprises a mouse $C\kappa$ gene.

[0064] In one embodiment, the mouse comprises one functional immunoglobulin light chain locus and one nonfunctional light chain locus, wherein the functional light chain locus comprises an unarranged immunoglobulin human $V\lambda$ and a $J\lambda$ gene segment at an

endogenous mouse λ light chain locus that comprises a mouse $C\lambda$ gene. In one embodiment, the $C\lambda$ gene is $C\lambda2$. In a specific embodiment, the mouse $C\lambda$ gene is at least 60%, at least 70%, at least 80%, at least 90%, at least 95%, or at least 98% identical to mouse $C\lambda2$.

[0065] In one embodiment, the mouse further comprises at least one immunoglobulin heavy chain allele. In one embodiment, the at least one immunoglobulin heavy chain allele comprises a human V_H gene segment, a human D_H gene segment, and a human J_H gene segment at an endogenous mouse heavy chain locus that comprises a human heavy chain gene that expresses a human/mouse heavy chain. In a specific embodiment, the mouse comprises two immunoglobulin heavy chain alleles, and the mouse expresses a human/mouse heavy chain.

[0066] In one embodiment, the mouse comprises a first light chain allele that comprises an unrearranged $hV\kappa$ and an unrearranged $hJ\kappa$, at an endogenous mouse κ locus that comprises an endogenous $C\kappa$ gene; and a second light chain allele that comprises an unrearranged $hV\lambda$ and an unrearranged $hJ\lambda$, at an endogenous mouse λ locus that comprises an endogenous $C\lambda$ gene. In a specific embodiment, the first and the second light chain alleles are the only functional light chain alleles of the genetically modified mouse. In a specific embodiment, the mouse comprises a nonfunctional λ locus. In one embodiment, the genetically modified mouse does not express a light chain that comprises a λ constant region.

[0067] In one embodiment, the mouse comprises a first light chain allele that comprises an unrearranged $hV\kappa$ and an unrearranged $hJ\kappa$, at an endogenous mouse κ locus that comprises an endogenous $C\kappa$ gene; and a second light chain allele that comprises an unrearranged $hV\lambda$ and an unrearranged $hJ\lambda$, at an endogenous mouse λ locus that comprises an endogenous $C\lambda$ gene. In a specific embodiment, the first and the second light chain alleles are the only functional light chain alleles of the genetically modified mouse. In one embodiment, the endogenous $C\lambda$ gene is $C\lambda2$. In a specific embodiment, the mouse $C\lambda$ gene is at least 60%, at least 70%, at least 80%, at least 90%, at least 95%, or at least 98% identical to mouse $C\lambda2$.

[0068] In one embodiment, the mouse comprises six immunoglobulin alleles, wherein the first allele comprises an unrearranged immunoglobulin $V\lambda$ and $J\lambda$ gene segment at an endogenous mouse λ light chain locus that comprises a mouse $C\lambda$ gene, the second comprises an unrearranged immunoglobulin $V\kappa$ and $J\kappa$ gene segment at an endogenous mouse κ light chain locus that comprises a mouse $C\kappa$ gene, the third comprises an unrearranged immunoglobulin $V\lambda$ and $J\lambda$ gene segment at an endogenous mouse λ light

chain locus that comprises a mouse $C\lambda$ gene, the fourth and fifth each independently comprise an unarranged V_H and D_H and J_H gene segment at an endogenous mouse heavy chain locus that comprises a mouse heavy chain gene, and the sixth comprises either (a) an unarranged immunoglobulin $V\lambda$ and $J\lambda$ gene segment at an endogenous mouse λ light chain locus that comprises a mouse $C\lambda$ gene, (b) a λ locus that is nonfunctional, or (c) a deletion in whole or in part of the λ locus.

[0069] In one embodiment, the first allele comprises an unarranged $hV\lambda$ and $hJ\lambda$. In one embodiment, the second allele comprises an unarranged $hV\kappa$ and $hJ\kappa$. In one embodiment, the third allele comprises an unarranged $hV\lambda$ and $hJ\lambda$. In one embodiment, the fourth and fifth each independently comprise an unarranged hV_H and hD_H and hJ_H . In one embodiment, the sixth allele comprises an endogenous mouse λ locus that is deleted in whole or in part.

[0070] In one embodiment, the mouse comprises six immunoglobulin alleles, wherein the first allele comprises an unarranged immunoglobulin $V\lambda$ and $J\lambda$ gene segment at an endogenous mouse λ light chain locus that comprises a mouse $C\lambda$ gene, the second comprises an unarranged immunoglobulin $V\lambda$ and $J\lambda$ gene segment at an endogenous mouse λ light chain locus that comprises a mouse $C\lambda$ gene, the third comprises an unarranged immunoglobulin $V\kappa$ and $J\kappa$ gene segment at an endogenous mouse κ light chain locus that comprises a mouse $C\kappa$ gene, the fourth and fifth each independently comprise an unarranged V_H and D_H and J_H gene segment at an endogenous mouse heavy chain locus that comprises a mouse heavy chain gene, and the sixth comprises either (a) an unarranged immunoglobulin $V\kappa$ and $J\kappa$ gene segment at an endogenous mouse κ light chain locus that comprises a mouse $C\kappa$ gene, (b) a κ locus that is nonfunctional, or (c) a deletion of one or more elements of the κ locus.

[0071] In one embodiment, the first allele comprises an unarranged $hV\lambda$ and $hJ\lambda$ gene segment. In one embodiment, the second allele comprises an unarranged $hV\lambda$ and $hJ\lambda$ gene segment. In one embodiment, the third allele comprises an unarranged $hV\kappa$ and $hJ\kappa$ gene segment. In one embodiment, the fourth and fifth each independently comprise an unarranged hV_H and hD_H and hJ_H gene segment. In one embodiment, the sixth allele comprises an endogenous mouse κ locus that is functionally silenced.

[0072] In one embodiment, the genetically modified mouse comprises a B cell that comprises a rearranged antibody gene comprising a rearranged $hV\lambda$ domain operably linked to a mouse C_L domain. In one embodiment, the mouse C_L domain is selected from a mouse $C\kappa$ and a mouse $C\lambda$ domain. In a specific embodiment, the mouse $C\lambda$ domain is derived from a $C\lambda 2$ gene. In a specific embodiment, the mouse $C\lambda$ domain is derived from

a C λ domain that is at least 60%, at least 70%, at least 80%, at least 90%, at least 95%, or at least 98% identical to mouse C λ 2.

[0073] In one aspect, a genetically modified mouse is provided that expresses a V λ region on a C ι that is a C κ . In one aspect, a genetically modified mouse is provided that expresses a hV λ region on a C ι selected from a human C κ , a human C λ , or a mouse C κ . In one aspect, a genetically modified mouse is provided that expresses a hV λ region on a mouse C κ .

[0074] In one embodiment, about 10-50% of the splenocytes of the mouse are B cells (i.e., CD19-positive), or which about 9-28% express an immunoglobulin light chain comprising a hV λ domain fused to a mouse C κ domain.

[0075] In a specific embodiment, about 23-34% of the splenocytes of the mouse are B cells (i.e., CD19-positive), or which about 9-11% express an immunoglobulin light chain comprising a hV λ domain fused to a mouse C κ domain.

[0076] In a specific embodiment, about 19-31% of the splenocytes of the mouse are B cells (i.e., CD19-positive), or which about 9-17% express an immunoglobulin light chain comprising a hV λ domain fused to a mouse C κ domain.

[0077] In a specific embodiment, about 21-38% of the splenocytes of the mouse are B cells (i.e., CD19-positive), or which about 24-27% express an immunoglobulin light chain comprising a hV λ domain fused to a mouse C κ domain.

[0078] In a specific embodiment, about 10-14% of the splenocytes of the mouse are B cells (i.e., CD19-positive), or which about 9-13% express an immunoglobulin light chain comprising a hV λ domain fused to a mouse C κ domain.

[0079] In a specific embodiment, about 31-48% of the splenocytes of the mouse are B cells (i.e., CD19-positive), or which about 15-21% express an immunoglobulin light chain comprising a hV λ domain fused to a mouse C κ domain. In a specific embodiment, about 30-38% of the splenocytes of the mouse are B cells (i.e., CD19-positive), of which about 33-48% express an immunoglobulin light chain comprising a hV λ domain fused to a mouse C κ domain.

[0080] In one embodiment, about 52-70% of the bone marrow of the mouse are B cells (i.e., CD19-positive), or which about 31-47% of the immature B cells (i.e., CD19-positive/B220-intermediate positive/IgM-positive) express an immunoglobulin light chain comprising a hV λ domain fused to a mouse C κ domain.

[0081] In one embodiment, about 60% of the bone marrow of the mouse are B cells (i.e., CD19-positive), or which about 38.3% of the immature B cells (i.e., CD19-positive/B220-intermediate positive/IgM-positive) express an immunoglobulin light chain comprising a hV λ domain fused to a mouse C κ domain.

[0082] In one embodiment, the mouse expresses an antibody comprising a light chain that comprises a variable domain derived from a human V and a human J gene segment, and a constant domain derived from a mouse constant region gene. In one embodiment, the mouse constant region gene is a C κ gene. In another embodiment, the mouse constant region gene is a C λ gene. In a specific embodiment, the C λ region is C λ 2. In a specific embodiment, the mouse C λ gene is derived from a C λ gene that is at least 60%, at least 70%, at least 80%, at least 90%, at least 95%, or at least 98% identical to mouse C λ 2. In a specific embodiment, the antibody further comprises a heavy chain comprising a variable domain derived from a human V, a human D and a human J gene segment, and a heavy chain constant domain derived from a mouse heavy chain constant region gene. In one embodiment, the mouse heavy chain constant region gene comprises a hinge-CH₂-CH₃ sequence of a heavy chain constant domain. In another embodiment, the mouse heavy chain constant region gene comprises a CH₁-hinge-CH₂-CH₃ sequence of a heavy chain constant domain. In another embodiment, the mouse heavy chain constant region gene comprises a CH₁-CH₂-CH₃-CH₄ sequence of a heavy chain constant domain. In another embodiment, the mouse heavy chain constant region gene comprises a CH₂-CH₃-CH₄ sequence of a heavy chain constant domain.

[0083] In one embodiment, the mouse expresses an antibody comprising a light chain that comprises a rearranged human V λ -J λ sequence and a mouse C κ sequence. In one embodiment, the rearranged human V λ -J λ sequence is derived from a rearrangement of hV λ gene segments selected from a 3-1, 4-3, 2-8, 3-9, 3-10, 2-14, 3-19, 2-23, 3-25, 1-40, 7-43, 1-44, 5-45, 7-46, 1-47, 9-49, and a 1-51 gene segment. In one embodiment, the rearranged human V λ -J λ sequence is derived from a rearrangement of hJ λ gene segments selected from J λ 1, J λ 2, J λ 3, and a J λ 7 gene segment.

[0084] In one embodiment, the mouse expresses an antibody comprising a light chain that comprises a rearranged immunoglobulin λ light chain variable region comprising a human V λ /J λ sequence selected from 3-1/1, 3-1/7, 4-3/1, 4-3/7, 2-8/1, 3-9/1, 3-10/1, 3-10/3, 3-10/7, 2-14/1, 3-19/1, 2-23/1, 3-25/1, 1-40/1, 1-40/2, 1-40/3, 1-40/7, 7-43/1, 7-43/3, 1-44/1, 1-44/7, 5-45/1, 5-45/2, 5-45/7, 7-46/1, 7-46/2, 7-46/7, 9-49/1, 9-49/2, 9-49/7 and 1-51/1. In a specific embodiment, the B cell expresses an antibody comprising a human immunoglobulin heavy chain variable domain fused with a mouse heavy chain constant domain, and a human immunoglobulin λ light chain variable domain fused with a mouse κ light chain constant domain.

[0085] In one aspect, a mouse is provided that expresses an antibody comprising (a) a heavy chain comprising a heavy chain variable domain derived from an unarranged human heavy chain variable region gene segment, wherein the heavy chain variable

domain is fused to a mouse heavy chain constant (C_H) region; and, (b) a light chain comprising a light chain variable domain derived from an unarranged hV λ and a hJ λ , wherein the light chain variable domain is fused to a mouse C_L region.

[0086] In one embodiment, the mouse comprises (i) a heavy chain locus that comprises a replacement of all or substantially all functional endogenous mouse V, D and J gene segments with all or substantially all functional human V, D, and J gene segments, a mouse C_H gene, (ii) a first κ light chain locus comprising a replacement of all or substantially all functional endogenous mouse V κ and J κ gene segments with all, substantially all, or a plurality of, functional hV λ and hJ λ gene segments, and a mouse C κ gene, (iii) a second κ light chain locus comprising a replacement of all or substantially all functional endogenous mouse V κ and J κ gene segments with all, substantially all, or a plurality of, functional hV κ and hJ κ gene segments, and a mouse C κ gene. In one embodiment, the mouse does not express an antibody that comprises a C λ region. In one embodiment, the mouse comprises a deletion of a C λ gene and/or a V λ and/or a J λ gene segment. In one embodiment, the mouse comprises a nonfunctional λ light chain locus. In a specific embodiment, the λ light chain locus is deleted in whole or in part.

[0087] In one embodiment, the mouse comprises (i) a heavy chain locus that comprises a replacement of all or substantially all functional endogenous mouse V, D and J gene segments with all or substantially all functional human V, D, and J gene segments, a mouse C_H gene, (ii) a first λ light chain locus comprising a replacement of all or substantially all functional endogenous mouse V λ and J λ gene segments with all, substantially all, or a plurality of, functional hV λ and hJ λ gene segments, and a mouse C λ gene, (iii) a second λ light chain locus comprising a replacement of all or substantially all functional endogenous mouse V λ and J λ gene segments with all, substantially all, or a plurality of, functional hV λ and hJ λ gene segments, and a mouse C λ gene. In a specific embodiment, the mouse C λ gene is C λ 2. In a specific embodiment, the mouse C λ gene is derived from a C λ gene that is at least 60%, at least 70%, at least 80%, at least 90%, at least 95%, or at least 98% identical to mouse C λ 2.

[0088] In one embodiment, the mouse comprises a deletion of a C κ gene and/or a V κ and/or a J κ gene segment. In one embodiment, the mouse comprises a nonfunctional κ light chain locus.

[0089] In one aspect, a genetically modified mouse that expresses an antibody is provided, wherein greater than 10%, greater than 15%, greater than 20%, greater than 25%, greater than 30%, greater than 35%, greater than 40%, greater than 60%, greater than 70%, greater than 80%, or greater than 90% of total IgG antibody produced by the

mouse comprises a λ -derived variable domain, and wherein the mouse expresses antibodies comprising a κ -derived variable domain fused with a mouse $C\kappa$ region. In specific embodiments, about 15-40%, 20-40%, 25-40%, 30-40%, or 35-40% of total antibody produced by the mouse comprises a λ -derived variable domain.

[0090] In one embodiment, the λ -derived variable domain is derived from a $hV\lambda$ and a $hJ\lambda$. In one embodiment, the λ -derived variable domain is in a light chain that comprises a mouse $C\kappa$ region. In a specific embodiment, the λ -derived variable region is in a light chain that comprises a mouse $C\lambda$ region. In another specific embodiment, the $C\lambda$ region is a $C\lambda 2$ region. In one embodiment, the κ -derived variable domain is derived from a $hV\kappa$ and a $hJ\kappa$, and in a specific embodiment is in a light chain that comprises a mouse $C\kappa$ region.

[0091] In one aspect, an isolated DNA construct is provided that comprises an upstream homology arm and a downstream homology arm, wherein the upstream and the downstream homology arms target the construct to a mouse κ locus, and the construct comprises a functional unarranged $hV\lambda$ segment and a functional unarranged $hJ\lambda$ segment, and a selection or marker sequence.

[0092] In one aspect, an isolated DNA construct is provided, comprising, from 5' to 3' with respect to the direction of transcription, a targeting arm for targeting a mouse λ sequence upstream of mouse $V\lambda 2$, a selection cassette flanked 5' and 3' with recombinase recognition sites, and a targeting arm for targeting a mouse λ sequence 3' of mouse $J\lambda 2$. In one embodiment, the selection cassette is a Fr't'ed Hyg-TK cassette. In one embodiment, the 3' targeting arm comprises mouse $C\lambda 2$, $J\lambda 4$, $C\lambda 4$, and mouse enhancer 2.4.

[0093] In one aspect, an isolated DNA construct is provided, comprising, from 5' to 3' with respect to the direction of transcription, a targeting arm for targeting the mouse λ locus 5' with respect to $V\lambda 1$, a selection cassette flanked 5' and 3' with recombinase recognition sites, and a 3' targeting arm for targeting a mouse λ sequence 3' with respect to mouse $C\lambda 1$. In one embodiment, the selection cassette is a loxed neomycin cassette. In one embodiment, the 3' targeting arm comprises the mouse λ 3' enhancer and mouse λ 3' enhancer 3.1.

[0094] In one aspect, an isolated DNA construct is provided, comprising from 5' to 3' with respect to the direction of transcription, a targeting arm for targeting the mouse λ locus 5' with respect to $V\lambda 2$, a selection cassette flanked 5' and 3' with recombinase recognition sites, and a 3' targeting arm for targeting a mouse λ sequence 3' with respect to mouse $J\lambda 2$ and 5' with respect to mouse $C\lambda 2$. In one embodiment, the selection cassette is a

Fr'ted hygromycin-TK cassette. In one embodiment, the 3' targeting arm comprises the mouse Cλ2-Jλ4-Cλ4 gene segments and mouse λ enhancer 2.4.

[0095] In one aspect, an isolated DNA construct is provided, comprising, from 5' to 3' with respect to the direction of transcription, a targeting arm for targeting the mouse λ locus 5' with respect to Vλ2, a selection cassette flanked 5' and 3' with recombinase recognition sites, a human genomic fragment comprising a contiguous region of the human λ light chain locus from hVλ3-12 downstream to the end of hJλ1, and a 3' targeting arm for targeting a mouse λ sequence 3' with respect to mouse Jλ2. In one embodiment, the selection cassette is a Fr'ted neomycin cassette. In one embodiment, the 3' targeting arm comprises the mouse Cλ2-Jλ4-Cλ4 gene segments and mouse λ enhancer 2.4.

[0096] In one aspect, an isolated DNA construct is provided, comprising a contiguous region of the human λ light chain locus from hVλ3-12 downstream to the end of hJλ1.

[0097] In one aspect, an isolated DNA construct is provided, comprising, from 5' to 3' with respect to the direction of transcription, a targeting arm for targeting the mouse λ locus 5' with respect to Vλ2, a selection cassette flanked 5' and 3' with recombinase recognition sites and a human genomic fragment comprising a contiguous region of the human λ light chain locus from hVλ3-27 downstream to the end of hVλ2-8. In one embodiment, the selection cassette is a Fr'ted hygromycin cassette. In one embodiment, the human genomic fragment comprises a 3' targeting arm. In a specific embodiment, the 3' targeting arm comprises about 53 kb of the human λ light chain locus from hVλ3-12 downstream to the end of hVλ2-8.

[0098] In one aspect, an isolated DNA construct is provided, comprising a contiguous region of the human λ light chain locus from hVλ3-27 downstream to the end of hVλ3-12.

[0099] In one aspect, an isolated DNA construct is provided, comprising, from 5' to 3' with respect to the direction of transcription, a targeting arm for targeting the mouse λ locus 5' with respect to Vλ2, a selection cassette flanked 5' and 3' with recombinase recognition sites, a first human genomic fragment comprising a contiguous region of the human λ light chain locus from hVλ5-52 downstream to the end of hVλ1-40, a restriction enzyme site, and a second human genomic fragment comprising a contiguous region of the human λ light chain locus from hVλ3-29 downstream to the end of hVλ82K. In one embodiment, the selection cassette is a Fr'ted neomycin cassette. In one embodiment, the restriction enzyme site is a site for a homing endonuclease. In a specific embodiment, the homing endonuclease is PI-SceI. In one embodiment, the second human genomic fragment is a 3' targeting arm. In a specific embodiment, the 3' targeting arm comprises about 27 kb of the human λ light chain locus from hVλ3-29 downstream to the end of hVλ82K.

[00100] In one aspect, an isolated DNA construct is provided, comprising a contiguous region of the human λ light chain locus from hV λ 5-52 downstream to the end of hV λ 1-40.

[00101] In one aspect, an isolated DNA construct is provided, comprising, from 5' to 3' with respect to the direction of transcription, a targeting arm for targeting the mouse κ locus 5' with respect to the endogenous V κ gene segments, two juxtaposed recombinase recognition sites, a selection cassette 3' to the juxtaposed recombinase recognition sites, and a 3' targeting arm for targeting a mouse κ sequence 5' with respect to the κ light chain variable gene segments. In one embodiment, the juxtaposed recombinase recognition sites are in opposite orientation with respect to one another. In a specific embodiment, the recombinase recognition sites are different. In another specific embodiment, the recombinase recognition sites are a *loxP* site and a *lox511* site. In one embodiment, the selection cassette is a neomycin cassette.

[00102] In one aspect, an isolated DNA construct is provided, comprising, from 5' to 3' with respect to the direction of transcription, a targeting arm for targeting the mouse κ locus 5' with respect to the mouse J κ gene segments, a selection cassette, a recombinase recognition site 3' to the selection cassette, and a 3' targeting arm for targeting a mouse κ sequence 3' with respect to the mouse J κ gene segments and 5' to the mouse κ intronic enhancer. In one embodiment, the selection cassette is a hygromycin-TK cassette. In one embodiment, the recombinase recognition site is in the same direction with respect to transcription as the selection cassette. In a specific embodiment, the recombinase recognition site is a *loxP* site.

[00103] In one aspect, an isolated DNA construct is provided, comprising, from 5' to 3' with respect to the direction of transcription, a first mouse genomic fragment comprising sequence 5' of the endogenous mouse V κ gene segments, a first recombinase recognition site, a second recombinase recognition site, and a second mouse genomic fragment comprising sequence 3' of the endogenous mouse J κ gene segments and 5' of the mouse κ intronic enhancer.

[00104] In one aspect, a genetically modified mouse is provided, wherein the genetic modification comprises a modification with one or more of the DNA constructs described above or herein.

[00105] In one aspect, use of an isolated DNA construct to make a mouse as described herein is provided. In one aspect, use of an isolated DNA construct as described herein in a method for making an antigen-binding protein is provided.

[00106] In one aspect, a non-human stem cell is provided that comprises a targeting vector that comprises a DNA construct as described above and herein. In one aspect, a

non-human stem cell is provided, wherein the non-human stem cell is derived from a mouse described herein.

[00107] In one embodiment, the non-human stem cell is an embryonic stem (ES) cell. In a specific embodiment, the ES cell is a mouse ES cell.

[00108] In one aspect, use of a non-human stem cell as described herein to make a mouse as described herein is provided. In one aspect, use of a non-human stem cell as described herein to make an antigen-binding protein is provided.

[00109] In one aspect, a mouse embryo is provided, wherein the mouse embryo comprises a genetic modification as provided herein. In one embodiment, a host mouse embryo that comprises a donor ES cell is provided, wherein the donor ES cell comprises a genetic modification as described herein. In one embodiment, the mouse embryo is a pre-morula stage embryo. In a specific embodiment, the pre-morula stage embryo is a 4-cell stage embryo or an 8-cell stage embryo. In another specific embodiment, the mouse embryo is a blastocyst.

[00110] In one aspect, use of a mouse embryo as described herein to make a mouse as described herein is provided. In one aspect, use of a mouse embryo as described herein to make an antigen-binding protein is provided.

[00111] In one aspect, a non-human cell is provided, wherein the non-human cell comprises a rearranged immunoglobulin light chain gene sequence derived from a genetically modified mouse as described herein. In one embodiment, the cell is a B cell. In one embodiment, the cell is a hybridoma. In one embodiment, the cell encodes an immunoglobulin light chain variable domain and/or an immunoglobulin heavy chain variable domain that is somatically mutated.

[00112] In one aspect, a non-human cell is provided, wherein the non-human cell comprises a rearranged immunoglobulin light chain gene sequence derived from a genetically modified mouse as described herein. In one embodiment, the cell is a B cell. In one embodiment, the cell is a hybridoma. In one embodiment, the cell encodes an immunoglobulin light chain variable domain and/or an immunoglobulin heavy chain variable domain that is somatically mutated.

[00113] In one aspect, use of a non-human cell as described herein to make a mouse as described herein is provided. In one aspect, use of a non-human cell as described herein to make an antigen-binding protein is provided.

[00114] In one aspect, a mouse B cell is provided that expresses an immunoglobulin light chain that comprises (a) a variable region derived from a hV λ gene segment and a hJ λ gene segment; and, (b) a mouse C λ gene. In one embodiment, the mouse C λ gene is selected from a C λ and a C λ 2 gene. In a specific embodiment, the C λ gene is C λ 2. In a

specific embodiment, the mouse $C\lambda$ gene is derived from a $C\lambda$ gene that is at least 60%, at least 70%, at least 80%, at least 90%, at least 95%, or at least 98% identical to mouse $C\lambda 2$. In one embodiment, the mouse B cell further expresses a cognate heavy chain that comprises (c) a variable region derived from a hV_H , a hD_H , and (d) a hJ_H segment. In one embodiment, the B cell does not comprise a rearranged λ gene. In another embodiment, the B cell does not comprise a rearranged κ gene.

[00115] In one aspect, a method for making an antibody in a genetically modified mouse is provided, comprising: (a) exposing a genetically modified mouse to an antigen, wherein the mouse has a genome comprising at least one $hV\lambda$ and at least one $hJ\lambda$ at an endogenous light chain locus, wherein the endogenous light chain locus comprises a mouse C_L gene; (b) allowing the genetically modified mouse to develop an immune response to the antigen; and, (c) isolating from the mouse of (b) an antibody that specifically recognizes the antigen, or isolating from the mouse of (b) a cell comprising an immunoglobulin domain that specifically recognizes the antigen, wherein the antibody comprises a light chain derived from a $hV\lambda$, a $hJ\lambda$ and a mouse C_L gene. In a specific embodiment, the mouse C_L gene is a mouse $C\kappa$ gene.

[00116] In one embodiment, a method for making an antibody in a genetically modified mouse is provided, comprising: (a) exposing a genetically modified mouse to an antigen, wherein the mouse has a genome comprising at least one $hV\lambda$ at an endogenous κ locus and at least one $hJ\lambda$ at the κ locus, wherein the κ locus comprises a mouse $C\kappa$ gene; (b) allowing the genetically modified mouse to develop an immune response to the antigen; and, (c) isolating from the mouse of (b) an antibody that specifically recognizes the antigen, or isolating from the mouse of (b) a cell comprising an immunoglobulin domain that specifically recognizes the antigen, wherein the antibody comprises a light chain derived from a $hV\lambda$, a $hJ\lambda$ and a mouse $C\kappa$ gene.

[00117] In one embodiment, the κ light chain constant gene is selected from a human $C\kappa$ gene and a mouse $C\kappa$ gene.

[00118] In one embodiment, a method for making an antibody in a genetically modified mouse is provided, comprising: (a) exposing a genetically modified mouse to an antigen, wherein the mouse has a genome comprising at least one $hV\lambda$ at a λ light chain locus and at least one $J\lambda$ at the λ light chain locus, wherein the λ light chain locus comprises a mouse $C\lambda$ gene; (b) allowing the genetically modified mouse to develop an immune response to the antigen; and, (c) isolating from the mouse of (b) an antibody that specifically recognizes the antigen, or isolating from the mouse of (b) a cell comprising an immunoglobulin domain that specifically recognizes the antigen, or identifying in the mouse of B a nucleic acid sequence encoding a heavy and/or light chain variable domain that

binds the antigen, wherein the antibody comprises a light chain derived from a hV λ , a hJ λ and a mouse C λ gene.

[00119] In one embodiment, the λ light chain constant gene is selected from a human C λ gene and a mouse C λ gene. In one embodiment, the λ light chain constant gene is a human C λ gene. In a specific embodiment, the human C λ gene is selected from C λ 1, C λ 2, C λ 3 and C λ 7. In one embodiment, the λ light chain constant gene is a mouse C λ gene. In a specific embodiment, the mouse C λ gene is selected from C λ 1, C λ 2 and C λ 3. In a more specific embodiment, the mouse C λ gene is C λ 2. In another specific embodiment, the mouse C λ gene is derived from a C λ gene that is at least 60%, at least 70%, at least 80%, at least 90%, at least 95%, or at least 98% identical to mouse C λ 2.

[00120] In one aspect, a method for making a rearranged antibody gene in a genetically modified mouse is provided, comprising: (a) exposing a genetically modified mouse to an antigen, wherein the genetic modification comprises a hV λ and a hJ λ at an endogenous light chain locus, wherein the endogenous light chain locus comprises a mouse C λ gene or functional fragment thereof; and, (b) identifying a rearranged immunoglobulin gene in said mouse, wherein the rearranged immunoglobulin gene comprises a λ light chain variable region gene segment and a C λ gene or functional fragment thereof.

[00121] In one embodiment, the method further comprises cloning a nucleic acid sequence encoding a heavy and/or light chain variable region from the mouse, wherein the heavy and/or light chain variable region is from an antibody that comprises a human V λ and a mouse C λ .

[00122] In one embodiment, the mouse C λ gene or functional fragment thereof is selected from a human C λ gene and a mouse C λ gene, or functional fragment thereof.

[00123] In one embodiment, a method for making a rearranged antibody gene in a genetically modified mouse is provided, comprising: (a) exposing a genetically modified mouse to an antigen, wherein the genetic modification comprises a hV λ and a hJ λ at a κ light chain locus, wherein the κ light chain locus comprises a mouse C κ gene or functional fragment thereof; and, (b) identifying a rearranged immunoglobulin gene in said mouse, wherein the rearranged immunoglobulin gene comprises a λ light chain variable region gene segment and a C κ gene or functional fragment thereof.

[00124] In one embodiment, the κ light chain constant gene or functional fragment thereof is selected from a human C κ gene and a mouse C κ gene, or a functional fragment thereof.

[00125] In one embodiment, the method further comprises cloning a nucleic acid sequence encoding a heavy and/or light chain variable region from the mouse, wherein the

heavy and/or light chain variable region is from an antibody that comprises a human V λ and a mouse C κ .

[00126] In one embodiment, a method for making a rearranged antibody gene in a genetically modified mouse is provided, comprising: (a) exposing a genetically modified mouse to an antigen, wherein the genetic modification comprises a hV λ and a hJ λ at a mouse λ light chain locus, wherein the λ light chain locus comprises a mouse C λ gene or functional fragment thereof; and, (b) identifying a rearranged immunoglobulin gene in said mouse, wherein the rearranged immunoglobulin gene comprises a λ light chain variable region gene segment and a C λ gene or functional fragment thereof.

[00127] In one embodiment, the λ light chain constant gene or functional fragment thereof is selected from a human C λ gene and a mouse C λ gene, or a functional fragment thereof. In a specific embodiment, the λ light chain constant gene is a mouse C λ gene, or a functional fragment thereof.

[00128] In one embodiment, the method further comprises cloning a nucleic acid sequence encoding a heavy and/or light chain variable region from the mouse, wherein the heavy and/or light chain variable region is from an antibody that comprises a human V λ and a mouse C λ .

[00129] In one aspect, a method for making an antibody is provided, comprising exposing a mouse as described herein to an antigen, allowing the mouse to mount an immune response that comprises making an antibody that specifically binds the antigen, identifying a rearranged nucleic acid sequence in the mouse that encodes heavy chain and a rearranged nucleic acid sequence in the mouse that encodes a cognate light chain variable domain sequence of an antibody, wherein the antibody specifically binds the antigen, and employing the nucleic acid sequences of the heavy and light chain variable domains fused to human constant domains to make a desired antibody, wherein the desired antibody comprises a light chain that comprises a V λ domain fused to a C L domain. In one embodiment, the V λ domain is human and the C L domain is a human or mouse C λ domain. In one embodiment, the V λ domain is mouse and the C L domain is a human or mouse C κ domain.

[00130] In one embodiment, a method for making an antibody is provided, comprising exposing a mouse as described herein to an antigen, allowing the mouse to mount an immune response that comprises making an antibody that specifically binds the antigen, identifying a rearranged nucleic acid sequence in the mouse that encodes a heavy chain and a rearranged nucleic acid sequence in the mouse that encodes a cognate light chain variable domain sequence of an antibody, wherein the antibody specifically binds the antigen, and employing the nucleic acid sequences of the heavy and light chain variable

domains fused to nucleic acid sequences of human constant domains to make a desired antibody, wherein the desired antibody comprises a light chain that comprises a $V\lambda$ domain fused to a $C\kappa$ domain.

[00131] In one embodiment, a method for making an antibody is provided, comprising exposing a mouse as described herein to an antigen, allowing the mouse to mount an immune response that comprises making an antibody that specifically binds the antigen, identifying a rearranged nucleic acid sequence in the mouse that encodes a heavy chain variable domain and a rearranged nucleic acid sequence that encodes a cognate light chain variable domain sequence of an antibody, wherein the antibody specifically binds the antigen, and employing the nucleic acid sequences fused to nucleic acid sequences that encode a human heavy chain constant domain and a human light chain constant domain to make an antibody derived from human sequences, wherein the antibody that specifically binds the antigen comprises a light chain that comprises a human $V\lambda$ domain fused to a mouse $C\lambda$ region.

[00132] In one embodiment, the mouse $C\lambda$ region is selected from $C\lambda 1$, $C\lambda 2$ and $C\lambda 3$. In a specific embodiment, the mouse $C\lambda$ region is $C\lambda 2$.

[00133] In one aspect, a method for making a rearranged antibody light chain variable region gene sequence is provided, comprising (a) exposing a mouse as described herein to an antigen; (b) allowing the mouse to mount an immune response; (c) identifying a cell in the mouse that comprises a nucleic acid sequence that encodes a rearranged human $V\lambda$ domain sequence fused with a mouse C_L domain, wherein the cell also encodes a cognate heavy chain comprising a human V_H domain and a mouse C_H domain, and wherein the cell expresses an antibody that binds the antigen; (d) cloning from the cell a nucleic acid sequence encoding the human $V\lambda$ domain and a nucleic acid sequence encoding the cognate human V_H domain; and, (e) using the cloned nucleic acid sequence encoding the human $V\lambda$ domain and the cloned nucleic acid sequence encoding the cognate human V_H domain to make a fully human antibody.

[00134] In one embodiment, a method for making a rearranged antibody light chain variable region gene sequence is provided, comprising (a) exposing a mouse as described in this disclosure to an antigen; (b) allowing the mouse to mount an immune response; (c) identifying a cell in the mouse that comprises a nucleic acid sequence that encodes a rearranged human $V\lambda$ domain sequence contiguous on the same nucleic acid molecule with a nucleic acid sequence encoding a mouse $C\kappa$ domain, wherein the cell also encodes a cognate heavy chain comprising a human V_H domain and a mouse C_H domain, and wherein the cell expresses an antibody that binds the antigen; (d) cloning from the cell a nucleic acids sequence encoding the human $V\lambda$ domain and a nucleic acid sequence

encoding the cognate human V_H domain; and, (e) using the cloned nucleic acid sequence encoding the human $V\lambda$ domain and the cloned nucleic acid sequence encoding the cognate human V_H domain to make a fully human antibody.

[00135] In one embodiment, a method for making a rearranged antibody light chain variable region gene sequence is provided, comprising (a) exposing a mouse as described herein to an antigen; (b) allowing the mouse to mount an immune response to the antigen; (c) identifying a cell in the mouse that comprises DNA that encodes a rearranged human $V\lambda$ domain sequence fused with a mouse $C\lambda$ domain, wherein the cell also encodes a cognate heavy chain comprising a human V_H domain and a mouse C_H domain, and wherein the cell expresses an antibody that binds the antigen; (d) cloning from the cell a nucleic acid sequence encoding the rearranged human $V\lambda$ domain and a nucleic acid sequence encoding the human $V\lambda$ domain and the cloned nucleic acid sequence encoding the cognate human V_H domain to make a fully human antibody. In one embodiment, the mouse $C\lambda$ domain is mouse $C\lambda 2$. In a specific embodiment, the mouse $C\lambda$ domain is derived from a $C\lambda$ gene that is at least 60%, at least 70%, at least 80%, at least 90%, at least 95%, or at least 98% identical to mouse $C\lambda 2$.

[00136] In one aspect, a genetically modified mouse is provided that expresses a human λ -derived light chain fused to an endogenous light chain constant region (C_L), wherein the mouse, upon immunization with antigen, makes an antibody comprising a human $V\lambda$ domain fused to a mouse C_L domain. In one embodiment, the mouse C_L domain is selected from a $C\kappa$ domain and a $C\lambda$ domain. In one embodiment, the mouse C_L domain is a $C\kappa$ domain. In one embodiment, the mouse C_L domain is a $C\lambda$ domain. In a specific embodiment, the $C\lambda$ domain is $C\lambda 2$. In a specific embodiment, the mouse $C\lambda$ domain is derived from a $C\lambda$ gene that is at least 60%, at least 70%, at least 80%, at least 90%, at least 95%, or at least 98% identical to mouse $C\lambda 2$.

[00137] In one aspect, a genetically modified mouse comprising a modified endogenous κ or λ light chain locus as described herein, is provided that expresses a plurality of immunoglobulin λ light chains associated with a plurality of immunoglobulin heavy chains. In one embodiment, the heavy chain comprises a human sequence. In various embodiments, the human sequence is selected from a variable sequence, a $C_H 1$, a hinge, a $C_H 2$, a $C_H 3$, and a combination thereof. In one embodiment, the plurality of immunoglobulin λ light chains comprises a human sequence. In various embodiments, the human sequence is selected from a variable sequence, a constant sequence, and a combination thereof. In one embodiment, the mouse comprises a disabled endogenous immunoglobulin locus and expresses the heavy chain and/or the λ light chain from a

transgene or extrachromosomal episome. In one embodiment, the mouse comprises a replacement at an endogenous mouse locus of some or all endogenous mouse heavy chain gene segments (*i.e.*, V, D, J), and/or some or all endogenous mouse heavy chain constant sequences (*e.g.*, C_H1, hinge, C_H2, C_H3, or a combination thereof), and/or some or all endogenous mouse light chain sequences (*e.g.*, V, J, constant, or a combination thereof), with one or more human immunoglobulin sequences.

[00138] In one aspect, a mouse suitable for making antibodies that have a human λ -derived light chain is provided, wherein all or substantially all antibodies made in the mouse are expressed with a human λ -derived light chain. In one embodiment, the human λ -derived light chain is expressed from an endogenous light chain locus. In one embodiment, the endogenous light chain locus is a κ light chain locus. In a specific embodiment, the κ light chain locus is a mouse κ light chain locus.

[00139] In one aspect, a method for making a λ -derived light chain for a human antibody is provided, comprising obtaining from a mouse as described herein a light chain sequence and a heavy chain sequence, and employing the light chain sequence and the heavy chain sequence in making a human antibody.

[00140] In one aspect, a method for making an antigen-binding protein is provided, comprising exposing a mouse as described herein to an antigen; allowing the mouse to mount an immune response; and obtaining from the mouse an antigen-binding protein that binds the antigen, or obtaining from the mouse a sequence to be employed in making an antigen-binding protein that binds the antigen.

[00141] In one aspect, a cell derived from a mouse as described herein is provided. In one embodiment, the cell is selected from an embryonic stem cell, a pluripotent cell, an induced pluripotent cell, a B cell, and a hybridoma.

[00142] In one aspect, a cell is provided that comprises a genetic modification as described herein. In one embodiment, the cell is a mouse cell. In one embodiment, the cell is selected from a hybridoma and a quadroma. In one embodiment, the cell expresses an immunoglobulin light chain that comprises a human λ variable sequence fused with a mouse constant sequence. In a specific embodiment, the mouse constant sequence is a mouse κ constant sequence.

[00143] In one aspect, a tissue derived from a mouse as described herein is provided.

[00144] In one aspect, use of a mouse or a cell as described herein to make an antigen-binding protein is provided. In one embodiment, the antigen-binding protein is a human protein. In one embodiment, the human protein is a human antibody.

[00145] In one aspect, an antigen-binding protein made by a mouse, cell, tissue, or method as described herein is provided. In one embodiment, the antigen-binding protein is a human protein. In one embodiment, the human protein is a human antibody.

[00146] Any of the embodiments and aspects described herein can be used in conjunction with one another, unless otherwise indicated or apparent from the context. Other embodiments will become apparent to those skilled in the art from a review of the ensuing description.

BRIEF DESCRIPTION OF THE FIGURES

[00147] FIG. 1 shows a detailed illustration, not to scale, of the human λ light chain locus including the clusters of $V\lambda$ gene segments (A, B and C) and the $J\lambda$ and $C\lambda$ region pairs (J-C pairs)

[00148] FIG. 2 shows a general illustration, not to scale, of a targeting strategy used to inactivate the endogenous mouse λ light chain locus.

[00149] FIG. 3 shows a general illustration, not to scale, of a targeting strategy used to inactivate the endogenous mouse κ light chain locus.

[00150] FIG. 4A shows a general illustration, not to scale of an initial targeting vector for targeting the endogenous mouse λ light chain locus with human λ light chain sequences including 12 h $V\lambda$ gene segments and h $J\lambda$ 1 gene segment (12/1- λ Targeting Vector).

[00151] FIG. 4B shows a general illustration, not to scale, of four initial targeting vectors for targeting the endogenous mouse κ light chain locus with human λ light chain sequences including 12 h $V\lambda$ gene segments and h $J\lambda$ 1 gene segment (12/1- κ Targeting Vector), 12 h $V\lambda$ gene segments and h $J\lambda$ 1, 2, 3 and 7 gene segments (12/4- κ Targeting Vector), 12 h $V\lambda$ gene segments, a human $V\kappa$ - $J\kappa$ genomic sequence and h $J\lambda$ 1 gene segment (12(κ)1- κ Targeting Vector) and 12 h $V\lambda$ gene segments, a human $V\kappa$ - $J\kappa$ genomic sequence and h $J\lambda$ 1, 2, 3 and 7 gene segments (12(κ)4- κ Targeting Vector).

[00152] FIG. 5A shows a general illustration, not to scale, of a targeting strategy for progressive insertion of 40 h $V\lambda$ gene segments and a single h $J\lambda$ gene segment into the mouse λ light chain locus.

[00153] FIG. 5B shows a general illustration, not to scale, of a targeting strategy for progressive insertion of 40 h $V\lambda$ gene segments and a single h $J\lambda$ gene segment into the mouse κ locus.

[00154] FIG. 6 show a general illustration, not to scale, of the targeting and molecular engineering steps employed to make unique human λ - κ hybrid targeting vectors for construction of a hybrid light chain locus containing a human κ intergenic sequence, multiple h $J\lambda$ gene segments or both.

[00155] FIG. 7A shows a general illustration, not to scale, of the locus structure for a modified mouse λ light chain locus containing 40 hV λ gene segments and a single hJ λ gene segment operably linked to the endogenous C λ 2 gene.

[00156] FIG. 7B shows a general illustration, not to scale, of the locus structure for four independent, modified mouse κ light chain loci containing 40 hV λ gene segments and either one or four hJ λ gene segments with or without a contiguous human V κ -J κ genomic sequence operably linked to the endogenous C κ gene.

[00157] FIG. 8A shows contour plots of Ig λ^+ and Ig κ^+ splenocytes gated on CD19 $^+$ from a wild type mouse (WT), a mouse homozygous for 12 hV λ and four hJ λ gene segments including a human V κ -J κ genomic sequence (12hV λ -V κ J κ -4hJ λ) and a mouse homozygous for 40 hV λ and one hJ λ gene segment (40hV λ -1hJ λ).

[00158] FIG. 8B shows the total number of CD19 $^+$ B cells in harvested spleens from wild type (WT), mice homozygous for 12 hV λ and four hJ λ gene segments including a human V κ -J κ genomic sequence (12hV λ -V κ J κ -4hJ λ) and mice homozygous for 40 hV λ and one hJ λ gene segment (40hV λ -1hJ λ).

[00159] FIG. 9A, in the top panel, shows contour plots of splenocytes gated on singlets and stained for B and T cells (CD19 $^+$ and CD3 $^+$, respectively) from a wild type mouse (WT) and a mouse homozygous for 40 hV λ and four J λ gene segments including a human V κ -J κ genomic sequence (40hV λ -V κ J κ -4hJ λ). The bottom panel shows contour plots of splenocytes gated on CD19 $^+$ and stained for Ig λ^+ and Ig κ^+ expression from a wild type mouse (WT) and a mouse homozygous for 40 hV λ and four J λ gene segments including a human V κ -J κ genomic sequence (40hV λ -V κ J κ -4hJ λ).

[00160] FIG. 9B shows the total number of CD19 $^+$, CD19 $^+$ Ig κ^+ and CD19 $^+$ Ig λ^+ B cells in harvested spleens from wild type mice (WT) and mice homozygous for 40 hV λ and four J λ gene segments including a human V κ -J κ genomic sequence (40hV λ -V κ J κ -4hJ λ).

[00161] FIG. 9C shows contour plots of splenocytes gated on CD19 $^+$ and stained for immunoglobulin D (IgD) and immunoglobulin M (IgM) from a wild type mouse (WT) and a mouse homozygous for 40 hV λ and four J λ gene segments including a human V κ -J κ genomic sequence (40hV λ -V κ J κ -4hJ λ). Mature (72 for WT, 51 for 40hV λ -V κ J κ -4hJ λ) and transitional (13 for WT, 22 for 40hV λ -V κ J κ -4hJ λ) B cells are noted on each of the contour plots.

[00162] FIG. 9D shows the total number of CD19 $^+$ B cells, transitional B cells (CD19 $^+$ IgM hi IgD lo) and mature B cells (CD19 $^+$ IgM lo IgD hi) in harvested spleens from wild type mice (WT) and mice homozygous for 40 hV λ and four J λ gene segments including a human V κ -J κ genomic sequence (40hV λ -V κ J κ -4hJ λ).

[00163] FIG. 10A, in the top panel, shows contour plots of bone marrow stained for B and T cells (CD19⁺ and CD3⁺, respectively) from a wild type mouse (WT) and a mouse homozygous for 40 hV λ and four J λ gene segments including a human V κ -J κ genomic sequence (40hV λ -V κ J κ -4hJ λ). The bottom panel shows contour plots of bone marrow gated on CD19⁺ and stained for ckit⁺ and CD43⁺ from a wild type mouse (WT) and a mouse homozygous for 40 hV λ and four J λ gene segments including a human V κ -J κ genomic sequence (40hV λ -V κ J κ -4hJ λ). Pro and Pre B cells are noted on the contour plots of the bottom panel.

[00164] FIG. 10B shows the number of Pro (CD19⁺CD43⁺ckit⁺) and Pre (CD19⁺CD43⁻ckit⁻) B cells in bone marrow harvested from the femurs of wild type mice (WT) and mice homozygous for 40 hV λ and four J λ gene segments including a human V κ -J κ genomic sequence (40hV λ -V κ J κ -4hJ λ).

[00165] FIG. 10C shows contour plots of bone marrow gated on singlets stained for immunoglobulin M (IgM) and B220 from a wild type mouse (WT) and a mouse homozygous for 40 hV λ and four J λ gene segments including a human V κ -J κ genomic sequence (40hV λ -V κ J κ -4hJ λ). Immature, mature and pro/pre B cells are noted on each of the contour plots.

[00166] FIG. 10D shows the total number of immature (B220^{int}IgM⁺) and mature (B220^{hi}IgM⁺) B cells in bone marrow isolated from the femurs of wild type mice (WT) and mice homozygous for 40 hV λ and four J λ gene segments including a human V κ -J κ genomic sequence (40hV λ -V κ J κ -4hJ λ).

[00167] FIG. 10E shows contour plots of bone marrow gated on immature (B220^{int}IgM⁺) and mature (B220^{hi}IgM⁺) B cells stained for Ig λ and Ig κ expression isolated from the femurs of a wild type mouse (WT) and a mouse homozygous for 40 hV λ and four J λ gene segments including a human V κ -J κ genomic sequence (40hV λ -V κ J κ -4hJ λ).

[00168] FIG. 11 shows a nucleotide sequence alignment of the V λ -J λ -C κ junction of eighteen independent RT-PCR clones amplified from splenocyte RNA of mice bearing human λ light chain gene sequences at an endogenous mouse κ light chain locus. A6 = SEQ ID NO:57; B6 = SEQ ID NO:58; F6 = SEQ ID NO:59; B7 = SEQ ID NO:60; E7 = SEQ ID NO:61; F7 = SEQ ID NO:62; C8 = SEQ ID NO:63; E12 = SEQ ID NO:64; 1-4 = SEQ ID NO:65; 1-20 = SEQ ID NO:66; 3B43 = SEQ ID NO:67; 5-8 = SEQ ID NO:68; 5-19 = SEQ ID NO:69; 1010 = SEQ ID NO:70; 11A1 = SEQ ID NO:71; 7A8 = SEQ ID NO:72; 3A3 = SEQ ID NO:73; 2-7 = SEQ ID NO:74. Lower case bases indicate non-germline bases resulting from either mutation and/or N addition during recombination. Consensus amino acids within the Framework 4 region (FWR4) encoded by the nucleotide sequence of hJ λ and mouse C κ are noted at the bottom of the sequence alignment.

[00169] FIG. 12 shows a nucleotide sequence alignment of the V λ -J λ -C κ junction of twelve independent RT-PCR clones amplified from splenocyte RNA of mice bearing human λ light chain gene sequences including a contiguous human V κ -J κ genomic sequence at an endogenous mouse κ light chain locus. 5-2 = SEQ ID NO:87; 2-5 = SEQ ID NO:88; 1-3 = SEQ ID NO:89; 4B-1 = SEQ ID NO:90; 3B-5 = SEQ ID NO:91; 7A-1 = SEQ ID NO:92; 5-1 = SEQ ID NO:93; 4A-1 = SEQ ID NO:94; 11A-1 = SEQ ID NO:95; 5-7 = SEQ ID NO:96; 5-4 = SEQ ID NO:97; 2-3 = SEQ ID NO:98. Lower case bases indicate non-germline bases resulting from either mutation and/or N addition during recombination. Consensus amino acids within the Framework 4 region (FWR4) encoded by the nucleotide sequence of each human J λ and mouse C κ are noted at the bottom of the sequence alignment.

[00170] FIG. 13 shows a nucleotide sequence alignment of the V λ -J λ -C λ junction of three independent RT-PCR clones amplified from splenocyte RNA of mice bearing human λ light chain gene sequences at an endogenous mouse λ light chain locus. 2D1 = SEQ ID NO:101; 2D9 = SEQ ID NO:102; 3E15 = SEQ ID NO:103. Lower case bases indicate non-germline bases resulting from either mutation and/or N addition during recombination. Consensus amino acids within the Framework 4 region (FWR4) encoded by the nucleotide sequence of hJ λ 1 and mouse C λ 2 are noted at the bottom of the sequence alignment.

DETAILED DESCRIPTION

[00171] Although specific features of various embodiments are discussed in detail, the descriptions of the specific aspects, embodiments, and examples do not limit the subject matter of the claims; it is the claims that describe the scope of the invention. All terms and phrases used in this disclosure include the meanings normally ascribed to them in the art.

[00172] The term "contiguous" includes reference to occurrence on the same nucleic acid molecule, e.g., two nucleic acid sequences are "contiguous" if they occur on the same nucleic molecule but are interrupted by another nucleic acid sequence. For example, a rearranged V(D)J sequence is "contiguous" with a constant region gene sequence, although the final codon of the V(D)J sequence is not followed immediately by the first codon of the constant region sequence. In another example, two V gene segment sequences are "contiguous" if they occur on the same genomic fragment, although they may be separated by sequence that does not encode a codon of the V region, e.g., they may be separated by a regulatory sequence, e.g., a promoter or other noncoding sequence. In one embodiment, a contiguous sequence includes a genomic fragment that contains genomic sequences arranged as found in a wild-type genome.

[00173] The phrase "derived from" when used concerning a variable region "derived from" a cited gene or gene segment includes the ability to trace the sequence back to a

particular unrearranged gene segment or gene segments that were rearranged to form a gene that expresses the variable domain (accounting for, where applicable, splice differences and somatic mutations).

[00174] The phrase "functional" when used concerning a variable region gene segment or joining gene segment refers to usage in an expressed antibody repertoire; e.g., in humans V λ gene segments 3-1, 4-3, 2-8, etc. are functional, whereas V λ gene segments 3-2, 3-4, 2-5, etc. are nonfunctional.

[00175] A "heavy chain locus" includes a location on a chromosome, e.g., a mouse chromosome, wherein in a wild-type mouse heavy chain variable (V_H), heavy chain diversity (D_H), heavy chain joining (J_H), and heavy chain constant (C_H) region DNA sequences are found.

[00176] A " κ locus" includes a location on a chromosome, e.g., a mouse chromosome, wherein in a wild-type mouse κ variable (V κ), κ joining (J κ), and κ constant (C κ) region DNA sequences are found.

[00177] A " λ locus" includes a location on a chromosome, e.g., a mouse chromosome, wherein in a wild-type mouse λ variable (V λ), λ joining (J λ), and λ constant (C λ) region DNA sequences are found.

[00178] The term "unrearranged" includes the state of an immunoglobulin locus wherein V gene segments and J gene segments (for heavy chains, D gene segments as well) are maintained separately but are capable of being joined to form a rearranged V(D)J gene that comprises a single V,(D),J of the V(D)J repertoire.

Mice Expressing Human λ Variable Domains

[00179] Mice that express antibodies that are fully human, or partly human and partly mouse, have previously been reported. VELOCIMMUNE® genetically engineered mice comprise a replacement of unrearranged V(D)J gene segments at endogenous mouse loci with human V(D)J gene segments. VELOCIMMUNE® mice express chimeric antibodies having human variable domains and mouse constant domains (see, e.g., US Pat. No. 7,605,237). Most other reports concern mice that express fully human antibodies from fully human transgenes in mice that have disabled endogenous immunoglobulin loci.

[00180] Antibody light chains are encoded by one of two separate loci: kappa (κ) and lambda (λ). Mouse antibody light chains are primarily of the κ type. Mice that make mouse antibodies, and modified mice that make fully human or chimeric human-mouse antibodies, display a bias in light chain usage. Humans also exhibit light chain bias, but not so pronounced as in mice; the ratio of κ light chains to λ light chains in mice is about 95:5, whereas in humans the ratio is about 60:40. The more pronounced bias in mice is

not thought to severely affect antibody diversity, because in mice the λ variable locus is not so diverse in the first instance. This is not so in humans. The human λ light chain locus is richly diverse.

[00181] The human λ light chain locus extends over 1,000 kb and contains over 80 genes that encode variable (V) or joining (J) segments (FIG. 1). Within the human λ light chain locus, over half of all observed $V\lambda$ domains are encoded by the gene segments 1-40, 1-44, 2-8, 2-14, and 3-21. Overall, about 30 or so of the human $V\lambda$ gene segments are believed to be functional. There are seven $J\lambda$ gene segments, only four of which are regarded as generally functional $J\lambda$ gene segments— $J\lambda 1$, $J\lambda 2$, $J\lambda 3$, and $J\lambda 7$.

[00182] The λ light chain locus in humans is similar in structure to the κ locus of both mice and humans in that the human λ light chain locus has several variable region gene segments that are capable of recombining to form a functional light chain protein. The human λ light chain locus contains approximately 70 V gene segments and 7 $J\lambda$ - $C\lambda$ gene segment pairs. Only four of these $J\lambda$ - $C\lambda$ gene segment pairs appear to be functional. In some alleles, a fifth $J\lambda$ - $C\lambda$ gene segment pair is reportedly a pseudo gene ($C\lambda 6$). The 70 $V\lambda$ gene segments appear to contain 38 functional gene segments. The 70 $V\lambda$ sequences are arranged in three clusters, all of which contain different members of distinct V gene family groups (clusters A, B and C; FIG. 1). This is a potentially rich source of relatively untapped diversity for generating antibodies with human V regions in non-human animals.

[00183] In stark contrast, the mouse λ light chain locus contains only two or three (depending on the strain) mouse $V\lambda$ region gene segments (FIG. 2). At least for this reason, the severe κ bias in mice is not thought to be particularly detrimental to total antibody diversity.

[00184] According published maps of the mouse λ light chain locus, the locus consists essentially of two clusters of gene segments within a span of approximately 200 kb (FIG. 2). The two clusters contain two sets of V, J, and C genes that are capable of independent rearrangement: $V\lambda 2$ - $J\lambda 2$ - $C\lambda 2$ - $J\lambda 4$ - $C\lambda 4$ and $V\lambda 1$ - $J\lambda 3$ - $C\lambda 3$ - $J\lambda 1$ - $C\lambda 1$. Although $V\lambda 2$ has been found to recombine with all $J\lambda$ gene segments, $V\lambda 1$ appears to exclusively recombine with $C\lambda 1$. $C\lambda 4$ is believed to be a pseudo gene with defective splice sites.

[00185] The mouse κ light chain locus is strikingly different. The structure and number of gene segments that participate in the recombination events leading to a functional light chain protein from the mouse κ locus is much more complex (FIG. 3). Thus, mouse λ light chains do not greatly contribute to the diversity of an antibody population in a typical mouse.

[00186] Exploiting the rich diversity of the human λ light chain locus in mice would likely result in, among other things, a source for a more complete human repertoire of light chain V domains. Previous attempts to tap this diversity used human transgenes containing chunks of the human λ light chain locus randomly incorporated into the mouse genome (see, e.g., US 6,998,514 and US 7,435,871). Mice containing these randomly integrated transgenes reportedly express fully human λ light chains, however, in some cases, one or both endogenous light chain loci remain intact. This situation is not desirable as the human λ light chain sequences contend with the mouse light chain (κ or λ) in the expressed antibody repertoire of the mouse.

[00187] In contrast, the inventors describe genetically modified mice that are capable of expressing one or more λ light chain nucleic acid sequences directly from a mouse light chain locus, including by replacement at an endogenous mouse light chain locus. Genetically modified mice capable of expressing human λ light chain sequences from an endogenous locus may be further bred to mice that comprise a human heavy chain locus and thus be used to express antibodies comprising V regions (heavy and light) that are fully human. In various embodiments. The V regions express with mouse constant regions. In various embodiments, no endogenous mouse immunoglobulin gene segments are present and the V regions express with human constant regions. These antibodies would prove useful in numerous applications, both diagnostic as well as therapeutic.

[00188] Many advantages can be realized for various embodiments of expressing binding proteins derived from human V λ and J λ gene segments in mice. Advantages can be realized by placing human λ sequences at an endogenous light chain locus, for example, the mouse κ or λ locus. Antibodies made from such mice can have light chains that comprise human V λ domains fused to a mouse C_L region, specifically a mouse C κ or C λ region. The mice will also express human V λ domains that are suitable for identification and cloning for use with human C_L regions, specifically C κ and/or C λ regions. Because B cell development in such mice is otherwise normal, it is possible to generate compatible V λ domains (including somatically mutated V λ domains) in the context of either C λ or C κ regions.

[00189] Genetically modified mice are described that comprise an unarranged V λ gene segment at an immunoglobulin κ or λ light chain locus. Mice that express antibodies that comprise a light chain having a human V λ domain fused to a C κ and/or C λ region are described.

Sterile Transcripts of the Immunoglobulin κ Light Chain Locus

[00190] Variations on the theme of expressing human immunoglobulin λ sequences in mice are reflected in various embodiments of genetically modified mice capable of such expression. Thus, in some embodiments, the genetically modified mice comprise certain non-coding sequence(s) from a human locus. In one embodiment, the genetically modified mouse comprises human $V\lambda$ and $J\lambda$ gene segments at an endogenous κ light chain locus, and further comprises a human κ light chain genomic fragment. In a specific embodiment, the human κ light chain genomic fragment is a non-coding sequence naturally found between a human $V\kappa$ gene segment and a human $J\kappa$ gene segment.

[00191] The human and mouse κ light chain loci contain sequences that encode sterile transcripts that lack either a start codon or an open reading frame, and that are regarded as elements that regulate transcription of the κ light chain loci. These sterile transcripts arise from an intergenic sequence located downstream or 3' of the most proximal $V\kappa$ gene segment and upstream or 5' of the κ light chain intronic enhancer ($E_{\kappa i}$) that is upstream of the κ light chain constant region gene ($C\kappa$). The sterile transcripts arise from rearrangement of the intergenic sequence to form a $V\kappa J\kappa 1$ segment fused to a $C\kappa$.

[00192] A replacement of the κ light chain locus upstream of the $C\kappa$ gene would remove the intergenic region encoding the sterile transcripts. Therefore, in various embodiments, a replacement of mouse κ light chain sequence upstream of the mouse $C\kappa$ gene with human λ light chain gene segments would result in a humanized mouse κ light chain locus that contains human $V\lambda$ and $J\lambda$ gene segments but not the κ light chain intergenic region that encodes the sterile transcripts.

[00193] As described herein, humanization of the endogenous mouse κ light chain locus with human λ light chain gene segments, wherein the humanization removes the intergenic region, results in a striking drop in usage of the κ light chain locus, coupled with a marked increase in λ light chain usage. Therefore, although a humanized mouse that lacks the intergenic region is useful in that it can make antibodies with human light chain variable domains (e.g., human λ or κ domains), usage from the locus decreases.

[00194] Also described is humanization of the endogenous mouse κ light chain locus with human $V\lambda$ and $J\lambda$ gene segments coupled with an insertion of a human κ intergenic region to create a $V\lambda$ locus that contains, with respect to transcription, between the final human $V\lambda$ gene segment and the first human $J\lambda$ gene segment, a κ intergenic region; which exhibits a B cell population with a higher expression than a locus that lacks the κ intergenic region. This observation is consistent with a hypothesis that the intergenic region—directly through a sterile transcript, or indirectly—suppresses usage from the

endogenous λ light chain locus. Under such a hypothesis, including the intergenic region would result in a decrease in usage of the endogenous λ light chain locus, leaving the mouse a restricted choice but to employ the modified (λ into κ) locus to generate antibodies.

[00195] In various embodiments, a replacement of mouse κ light chain sequence upstream of the mouse $C\kappa$ gene with human λ light chain sequence further comprises a human κ light chain intergenic region disposed, with respect to transcription, between the 3' untranslated region of the 3' most $V\lambda$ gene segment and 5' to the first human $J\lambda$ gene segment. Alternatively, such an intergenic region may be omitted from a replaced endogenous κ light chain locus (upstream of the mouse $C\kappa$ gene) by making a deletion in the endogenous λ light chain locus. Likewise, under this embodiment, the mouse generates antibodies from an endogenous κ light chain locus containing human λ light chain sequences.

Approaches to Engineering Mice to Express Human $V\lambda$ Domains

[00196] Various approaches to making genetically modified mice that make antibodies that contain a light chain that has a human $V\lambda$ domain fused to an endogenous C_L (e.g. $C\kappa$ or $C\lambda$) region are described. Genetic modifications are described that, in various embodiments, comprise a deletion of one or both endogenous light chain loci. For example, to eliminate mouse λ light chains from the endogenous antibody repertoire a deletion of a first $V\lambda$ - $J\lambda$ - $C\lambda$ gene cluster and replacement, in whole or in part, of the $V\lambda$ - $J\lambda$ gene segments of a second gene cluster with human $V\lambda$ - $J\lambda$ gene segments can be made. Genetically modified mouse embryos, cells, and targeting constructs for making the mice, mouse embryos, and cells are also provided.

[00197] The deletion of one endogenous $V\lambda$ - $J\lambda$ - $C\lambda$ gene cluster and replacement of the $V\lambda$ - $J\lambda$ gene segments of another endogenous $V\lambda$ - $J\lambda$ - $C\lambda$ gene cluster employs a relatively minimal disruption in natural antibody constant region association and function in the animal, in various embodiments, because endogenous $C\lambda$ genes are left intact and therefore retain normal functionality and capability to associate with the constant region of an endogenous heavy chain. Thus, in such embodiments the modification does not affect other endogenous heavy chain constant regions dependent upon functional light chain constant regions for assembly of a functional antibody molecule containing two heavy chains and two light chains. Further, in various embodiments the modification does not affect the assembly of a functional membrane-bound antibody molecule involving an endogenous heavy chain and a light chain, e.g., a $hV\lambda$ domain linked to a mouse $C\lambda$ region. Because at least one functional $C\lambda$ gene is retained at the endogenous locus,

animals containing a replacement of the $V\lambda$ - $J\lambda$ gene segments of an endogenous $V\lambda$ - $J\lambda$ - $C\lambda$ gene cluster with human $V\lambda$ - $J\lambda$ gene segments should be able to make normal λ light chains that are capable of binding antigen during an immune response through the human $V\lambda$ - $J\lambda$ gene segments present in the expressed antibody repertoire of the animal.

[00198] A schematic illustration (not to scale) of a deleted endogenous mouse $V\lambda$ - $J\lambda$ - $C\lambda$ gene cluster is provided in FIG. 2. As illustrated, the mouse λ light chain locus is organized into two gene clusters, both of which contain function gene segments capable of recombining to form a function mouse λ light chain. The endogenous mouse $V\lambda$ 1- $J\lambda$ 3- $C\lambda$ 3- $J\lambda$ 1- $C\lambda$ 1 gene cluster is deleted by a targeting construct (Targeting Vector 1) with a neomycin cassette flanked by recombination sites. The other endogenous gene cluster ($V\lambda$ 2- $V\lambda$ 3- $J\lambda$ 2- $C\lambda$ 2- $J\lambda$ 4- $C\lambda$ 4) is deleted in part by a targeting construct (Targeting Vector 2) with a hygromycin-thymidine kinase cassette flanked by recombination sites. In this second targeting event, the $C\lambda$ 2- $J\lambda$ 4- $C\lambda$ 4 endogenous gene segments are retained. The second targeting construct (Targeting Vector 2) is constructed using recombination sites that are different than those in the first targeting construct (Targeting Vector 1) thereby allowing for the selective deletion of the selection cassette after a successful targeting has been achieved. The resulting double-targeted locus is functionally silenced in that no endogenous λ light chain can be produced. This modified locus can be used for the insertion of human $V\lambda$ and $J\lambda$ gene segments to create an endogenous mouse λ locus comprising human $V\lambda$ and $J\lambda$ gene segments, whereby, upon recombination at the modified locus, the animal produces λ light chains comprising rearranged human $V\lambda$ and $J\lambda$ gene segments linked to an endogenous mouse $C\lambda$ gene segment.

[00199] Genetically modifying a mouse to render endogenous λ gene segments nonfunctional, in various embodiments, results in a mouse that exhibits exclusively κ light chains in its antibody repertoire, making the mouse useful for evaluating the role of λ light chains in the immune response, and useful for making an antibody repertoire comprising $V\kappa$ domains but not $V\lambda$ domains.

[00200] A genetically modified mouse that expresses a $hV\lambda$ linked to a mouse $C\lambda$ gene having been recombined at the endogenous mouse λ light chain locus can be made by any method known in the art. A schematic illustration (not to scale) of the replacement of the endogenous mouse $V\lambda$ 2- $V\lambda$ 3- $J\lambda$ 2 gene segments with human $V\lambda$ and $J\lambda$ gene segments is provided in FIG. 4A. As illustrated, an endogenous mouse λ light chain locus that had been rendered nonfunctional is replaced by a targeting construct (12/1- λ Targeting Vector) that includes a neomycin cassette flanked by recombination sites. The $V\lambda$ 2- $V\lambda$ 3- $J\lambda$ 2 gene

segments are replaced with a genomic fragment containing human λ sequence that includes 12 hV λ gene segments and a single hJ λ gene segment.

[00201] Thus, this first approach positions one or more hV λ gene segments at the endogenous λ light chain locus contiguous with a single hJ λ gene segment (FIG. 4A).

[00202] Further modifications to the modified endogenous λ light chain locus can be achieved with using similar techniques to insert more hV λ gene segments. For example, schematic illustrations of two additional targeting constructs (+16- λ and +12- λ Targeting Vectors) used for progressive insertion of addition human hV λ gene segments are provided in FIG. 5A. As illustrated, additional genomic fragments containing specific human hV λ gene segments are inserted into the modified endogenous λ light chain locus in successive steps using homology provided by the previous insertion of human λ light chain sequences. Upon recombination with each targeting construct illustrated, in sequential fashion, 28 additional hV λ gene segments are inserted into the modified endogenous λ light chain locus. This creates a chimeric locus that produces a λ light chain protein that comprises human V λ -J λ gene segments linked to a mouse C λ gene.

[00203] The above approaches to insert human λ light chain gene segments at the mouse λ locus, maintains the enhancers positioned downstream of the C λ 2-J λ 4-C λ 4 gene segments (designated Enh 2.4, Enh and Enh 3.1 FIG. 4A and FIG. 5A). This approach results in a single modified allele at the endogenous mouse λ light chain locus (FIG. 7A).

[00204] Compositions and methods for making a mouse that expresses a light chain comprising hV λ and J λ gene segments operably linked to a mouse C λ gene segment, are provided, including compositions and method for making a mouse that expresses such genes from an endogenous mouse λ light chain locus. The methods include selectively rendering one endogenous mouse V λ -J λ -C λ gene cluster nonfunctional (e.g., by a targeted deletion), and employing a hV λ and J λ gene segments at the endogenous mouse λ light chain locus to express a hV λ domain in a mouse.

[00205] Alternatively, in a second approach, human λ light chain gene segments may be positioned at the endogenous κ light chain locus. The genetic modification, in various embodiments, comprises a deletion of the endogenous κ light chain locus. For example, to eliminate mouse κ light chains from the endogenous antibody repertoire a deletion of the mouse V κ and J κ gene segments can be made. Genetically modified mouse embryos, cells, and targeting constructs for making the mice, mouse embryos, and cells are also provided.

[00206] For the reasons stated above, the deletion of the mouse V κ and J κ gene segments employs a relatively minimal disruption. A schematic illustration (not to scale) of

deleted mouse V_{κ} and J_{κ} gene segments is provided in FIG. 3. The endogenous mouse V_{κ} and J_{κ} gene segments are deleted via recombinase-mediated deletion of mouse sequences position between two precisely positioned targeting vectors each employing site-specific recombination sites. A first targeting vector (J_{κ} Targeting Vector) is employed in a first targeting event to delete the mouse J_{κ} gene segments. A second targeting vector (V_{κ} Targeting Vector) is employed in a second, sequential targeting event to delete a sequence located 5' of the most distal mouse V_{κ} gene segment. Both targeting vectors contain site-specific recombination sites thereby allowing for the selective deletion of both selection cassettes and all intervening mouse κ light chain sequences after a successful targeting has been achieved. The resulting deleted locus is functionally silenced in that no endogenous κ light chain can be produced. This modified locus can be used for the insertion of hV_{λ} and J_{λ} gene segments to create an endogenous mouse κ locus comprising hV_{λ} and J_{λ} gene segments, whereby, upon recombination at the modified locus, the animal produces λ light chains comprising rearranged hV_{λ} and J_{λ} gene segments operably linked to an endogenous mouse C_{κ} gene segment. Various targeting vectors comprising human λ light chain sequences can be used in conjunction with this deleted mouse κ locus to create a hybrid light chain locus containing human λ gene segments operably linked with a mouse C_{κ} region.

[00207] Thus, a second approach positions one or more human V_{λ} gene segments are positioned at the mouse κ light chain locus contiguous with a single human J_{λ} gene segment (12/1- κ Targeting Vector, FIG. 4B).

[00208] In various embodiments, modifications to this approach can be made to add gene segments and/or regulatory sequences to optimize the usage of the human λ light chain sequences from the mouse κ locus within the mouse antibody repertoire.

[00209] In a third approach, one or more hV_{λ} gene segments are positioned at the mouse κ light chain locus contiguous with four hJ_{λ} gene sequences (12/4- κ Targeting Vector FIG. 4B).

[00210] In a third approach, one or more hV_{λ} gene segments are positioned at the mouse κ light chain locus contiguous with a human κ intergenic sequence and a single hJ_{λ} gene sequence (12(κ)1- κ Targeting Vector, FIG. 4B).

[00211] In a fourth approach, one or more hV_{λ} gene segments are positioned at the mouse κ light chain locus contiguous with a human κ intergenic sequence four hJ_{λ} gene sequences (12(κ)4- κ Targeting Vector FIG. 4B).

[00212] All of the above approaches to insert human λ light chain gene segments at the mouse κ locus, maintain the κ intronic enhancer element upstream of the C_{κ} gene

(designated E_κ1, FIG. 4B and FIG. 5B) and the 3' κ enhancer downstream of the C_κ gene (designated E_{κ3'}, FIG. 4B and FIG. 5B). The approaches result in four separate modified alleles at the endogenous mouse κ light chain locus (FIG. 7B).

[00213] In various embodiments, genetically modified mouse comprise a knockout of the endogenous mouse λ light chain locus. In one embodiment, the λ light chain locus is knocked out by a strategy that deletes the region spanning V_λ2 to J_λ2, and the region spanning V_λ1 to C_λ1 (FIG. 2). Any strategy that reduces or eliminates the ability of the endogenous λ light chain locus to express endogenous λ domains is suitable for use with embodiments in this disclosure.

Lambda Domain Antibodies from Genetically Modified Mice

[00214] Mice comprising human λ sequences at either the mouse κ or λ light chain locus will express a light chain that comprises a hVλ region fused to a mouse C_L (C_κ or C_λ) region. These are advantageously bred to mice that (a) comprise a functionally silenced light chain locus (e.g., a knockout of the endogenous mouse κ or λ light chain locus); (b) comprise an endogenous mouse λ light chain locus that comprises hV and hJ gene segments operably linked to an endogenous mouse Cλ gene; (c) comprise an endogenous mouse κ light chain locus that comprises hV_κ and hJ_κ gene segments operably linked to an endogenous mouse C_κ gene; and, (d) a mouse in which one κ allele comprises hV_κs and hJ_κs; the other κ allele comprising hV_λs and hJ_λs; one λ allele comprising hV_λs and hJ_λs and one λ allele silenced or knocked out, or both λ alleles comprising hV_λs and hJ_λs; and, two heavy chain alleles that each comprise hV_Hs, hD_Hs, and hJ_Hs.

[00215] The antibodies that comprise the hVλ domains expressed in the context of either C_κ or C_λ are used to make fully human antibodies by cloning the nucleic acids encoding the hVλ domains into expression constructs that bear genes encoding human Cλ. Resulting expression constructs are transfected into suitable host cells for expressing antibodies that display a fully hVλ domain fused to hCλ.

EXAMPLES

[00216] The following examples are provided so as to describe how to make and use methods and compositions of the invention, and are not intended to limit the scope of what the inventors regard as their invention. Unless indicated otherwise, temperature is indicated in Celsius, and pressure is at or near atmospheric.

Example I

Deletion of the Mouse Immunoglobulin Light Chain Loci

[00217] Various targeting constructs were made using VELOCIGENE® technology (see, e.g., US Pat. No. 6,586,251 and Valenzuela *et al.* (2003) High-throughput engineering of the mouse genome coupled with high-resolution expression analysis, *Nature Biotech.* 21(6):652-659) to modify mouse genomic Bacterial Artificial Chromosome (BAC) libraries to inactivate the mouse κ and λ light chain loci.

[00218] **Deletion of the mouse λ light chain locus.** DNA from mouse BAC clone RP23-135k15 (Invitrogen) was modified by homologous recombination to inactivate the endogenous mouse λ light chain locus through targeted deletion of the $V\lambda$ - $J\lambda$ - $C\lambda$ gene clusters (FIG. 2).

[00219] Briefly, the entire proximal cluster comprising $V\lambda$ 1- $J\lambda$ 3- $C\lambda$ 3- $J\lambda$ 1- $C\lambda$ 1 gene segments was deleted in a single targeting event using a targeting vector comprising a neomycin cassette flanked by *loxP* sites with a 5' mouse homology arm containing sequence 5' of the $V\lambda$ 1 gene segment and a 3' mouse homology arm containing sequence 3' of the $C\lambda$ 1 gene segment (FIG. 2, Targeting Vector 1).

[00220] A second targeting construct was prepared to precisely delete the distal endogenous mouse λ gene cluster containing $V\lambda$ 2- $J\lambda$ 2- $C\lambda$ 2- $J\lambda$ 4- $C\lambda$ 4 except that the targeting construct contained a 5' mouse homology arm that contained sequence 5' of the $V\lambda$ 2 gene segment and a 3' mouse homology arm that contained sequence 5' to the endogenous $C\lambda$ 2 gene segment (FIG. 2, Targeting Vector 2). Thus, the second targeting construct precisely deleted $V\lambda$ 2- $J\lambda$ 2, while leaving $C\lambda$ 2- $J\lambda$ 4- $C\lambda$ 4 intact at the endogenous mouse λ locus. ES cells containing an inactivated endogenous λ locus (as described above) were confirmed by karyotyping and screening methods (e.g., TAQMAN®) known in the art. DNA was then isolated from the modified ES cells and subjected to treatment with CRE recombinase thereby mediating the deletion of the proximal targeting cassette containing the neomycin marker gene, leaving only a single *loxP* site at the deletion point (FIG. 2, bottom).

[00221] **Deletion of the mouse κ light chain locus.** Several targeting constructs were made using similar methods described above to modify DNA from mouse BAC clones RP23-302g12 and RP23-254m04 (Invitrogen) by homologous recombination to inactivate the mouse κ light chain locus in a two-step process (FIG. 3).

[00222] Briefly, the $J\kappa$ gene segments (1-5) of the endogenous mouse κ light chain locus were deleted in a single targeting event using a targeting vector comprising a hygromycin-thymidine kinase (hyg-TK) cassette containing a single *loxP* site 3' to the hyg-TK cassette (FIG. 3, $J\kappa$ Targeting Vector). The homology arms used to make this targeting

vector contained mouse genomic sequence 5' and 3' of the endogenous mouse $J\kappa$ gene segments. In a second targeting event, a second targeting vector was prepared to delete a portion of mouse genomic sequence upstream (5') to the most distal endogenous mouse $V\kappa$ gene segment (FIG. 3, $V\kappa$ Targeting Vector). This targeting vector contained an inverted $l\text{ox}511$ site, a $l\text{ox}P$ site and a neomycin cassette. The homology arms used to make this targeting vector contained mouse genomic sequence upstream of the most distal mouse $V\kappa$ gene segment. The targeting vectors were used in a sequential fashion (i.e., $J\kappa$ then $V\kappa$) to target DNA in ES cells. ES bearing a double-targeted chromosome (i.e., a single endogenous mouse κ locus targeted with both targeting vectors) were confirmed by karyotyping and screening methods (e.g., TaqmanTM) known in the art. DNA was then isolated from the modified ES cells and subjected to treatment with Cre recombinase thereby mediating the deletion of endogenous mouse $V\kappa$ gene segments and both selection cassettes, while leaving two juxtaposed $l\text{ox}$ sites in opposite orientation relative to one another (FIG. 3, bottom; SEQ ID NO:1).

[00223] Thus, two modified endogenous light chain loci (κ and λ) containing intact enhancer and constant regions were created for progressively inserting unarranged human λ germline gene segments in a precise manner using targeting vectors described below.

Example II
Replacement of Mouse Light Chain Loci
with a Human λ Light Chain Mini-Locus

[00224] Multiple targeting vectors were engineered for progressive insertion of human λ gene segments into the endogenous mouse κ and λ light chain loci using similar methods as described above. Multiple independent initial modifications were made to the endogenous light chain loci each producing a chimeric light chain locus containing $hV\lambda$ and $J\lambda$ gene segments operably linked to mouse light chain constant genes and enhancers.

[00225] **A human λ mini-locus containing 12 human $V\lambda$ and one human $J\lambda$ gene segment.** A series of initial targeting vectors were engineered to contain the first 12 consecutive human $V\lambda$ gene segments from cluster A and a $hJ\lambda 1$ gene segment or four $hJ\lambda$ gene segments using a human BAC clone named RP11-729g4 (Invitrogen). FIGs. 4A and 4B show the targeting vectors that were constructed for making an initial insertion of human λ light chain gene segments at the mouse λ and κ light chain loci, respectively.

[00226] For a first set of initial targeting vectors, a 124,125 bp DNA fragment from the 729g4 BAC clone containing 12 $hV\lambda$ gene segments and a $hJ\lambda 1$ gene segment was engineered to contain a PI-SceI site 996 bp downstream (3') of the $hJ\lambda 1$ gene segment for

ligation of a 3' mouse homology arm. Two different sets of homology arms were used for ligation to this human fragment; one set of homology arms contained endogenous mouse λ sequences from the 135k15 BAC clone (FIG.4A) and another set contained endogenous κ sequence 5' and 3' of the mouse $V\kappa$ and $J\kappa$ gene segments from mouse BAC clones RP23-302g12 and RP23-254m04, respectively (FIG. 4B).

[00227] For the 12/1- λ Targeting Vector (FIG. 4A), a PI-SceI site was engineered at the 5' end of a 27,847 bp DNA fragment containing the mouse $C\lambda 2-J\lambda 4-C\lambda 4$ and enhancer 2.4 of the modified mouse λ locus described in Example 1. The ~28 kb mouse fragment was used as a 3' homology arm by ligation to the ~124 kb human λ fragment, which created a 3' junction containing, from 5' to 3', a $hJ\lambda 1$ gene segment, 996 bp of human λ sequence 3' of the $hJ\lambda 1$ gene segment, 1229 bp of mouse λ sequence 5' to the mouse $C\lambda 2$ gene, the mouse $C\lambda 2$ gene and the remaining portion of the ~28 kb mouse fragment. Upstream (5') from the human $V\lambda 3-12$ gene segment was an additional 1456 bp of human λ sequence before the start of the 5' mouse homology arm, which contained 23,792 bp of mouse genomic DNA corresponding to sequence 5' of the endogenous mouse λ locus. Between the 5' homology arm and the beginning of the human λ sequence was a neomycin cassette flanked by Frt sites.

[00228] Thus, the 12/1- λ Targeting Vector included, from 5' to 3', a 5' homology arm containing ~24 kb of mouse λ genomic sequence 5' of the endogenous λ locus, a 5' Frt site, a neomycin cassette, a 3' Frt site, ~123 kb of human genomic λ sequence containing the first 12 consecutive $hV\lambda$ gene segments and a $hJ\lambda 1$ gene segment, a PI-SceI site, and a 3' homology arm containing ~28 kb of mouse genomic sequence including the endogenous $C\lambda 2-J\lambda 4-C\lambda 4$ gene segments, the mouse enhancer 2.4 sequence and additional mouse genomic sequence downstream (3') of the enhancer 2.4 (FIG. 4A).

[00229] In a similar fashion, the 12/1- κ Targeting Vector (FIG. 4B) employed the same ~124 human λ fragment with the exception that mouse homology arms containing mouse κ sequence were used such that targeting to the endogenous κ locus could be achieved by homologous recombination. Thus, the 12/1- κ Targeting Vector included, from 5' to 3', a 5' homology arm containing ~23 kb of mouse genomic sequence 5' of the endogenous κ locus, an I-CeuI site, a 5' Frt site, a neomycin cassette, a 3' Frt site, ~124 kb of human genomic λ sequence containing the first 12 consecutive $hV\lambda$ gene segments and a $hJ\lambda 1$ gene segment, a PI-SceI site, and a 3' homology arm containing ~28 kb of mouse genomic sequence including the endogenous the mouse $C\kappa$ gene, $E\kappa 1$ and $E\kappa 3'$ and additional mouse genomic sequence downstream (3') of $E\kappa 3'$ (FIG. 4B, 12/1- κ Targeting Vector).

[00230] Homologous recombination with either of these two initial targeting vectors created a modified mouse light chain locus (κ or λ) containing 12 hV λ gene segments and a hJ λ 1 gene segment operably linked to the endogenous mouse light chain constant gene and enhancers (C κ or C λ 2 and E κ 1/E κ 3' or Enh 2.4/Enh 3.1) gene which, upon recombination, leads to the formation of a chimeric λ light chain.

[00231] **A human λ mini-locus with 12 human V λ and four human J λ gene segments.** In another approach to add diversity to a chimeric λ light chain locus, a third initial targeting vector was engineered to insert the first 12 consecutive human V λ gene segments from cluster A and hJ λ 1, 2, 3 and 7 gene segments into the mouse κ light chain locus (FIG. 4B, 12/4- κ Targeting Vector). A DNA segment containing hJ λ 1, J λ 2, J λ 3 and J λ 7 gene segments was made by *de novo* DNA synthesis (Integrated DNA Technologies) including each J λ gene segment and human genomic sequence of ~100 bp from both the immediate 5' and 3' regions of each J λ gene segment. A PI-SceI site was engineered into the 3' end of this ~1 kb DNA fragment and ligated to a chloroamphenicol cassette. Homology arms were PCR amplified from human λ sequence at 5' and 3' positions relative to the hJ λ 1 gene segment of the human BAC clone 729g4. Homologous recombination with this intermediate targeting vector was performed on a modified 729g4 BAC clone that had been previously targeted upstream (5') of the human V λ 3-12 gene segment with a neomycin cassette flanked by Frt sites, which also contained an I-CeuI site 5' to the 5' Frt site. The double-targeted 729g4 BAC clone included from 5' to 3' an I-CeuI site, a 5' Frt site, a neomycin cassette, a 3' Frt site, a ~123 kb fragment containing the first 12 hV λ gene segments, a ~1 kb fragment containing human J λ 1, 2, 3 and 7 gene segments, a PI-SceI site, and a chloroamphenicol cassette. This intermediate targeting vector was digested together with I-CeuI and PI-SceI and subsequently ligated into the modified mouse BAC clone (described above) to create the third targeting vector.

[00232] This ligation resulted in a third targeting vector for insertion of human λ sequences into the endogenous κ light chain locus, which included, from 5' to 3', a 5' mouse homology arm containing ~23 kb of genomic sequence 5' of the endogenous mouse κ locus, an I-CeuI site, a 5' Frt site, a neomycin cassette, a 3' Frt site, a ~123 kb fragment containing the first 12 hV λ gene segments, a ~1 kb fragment containing hJ λ 1, 2, 3 and 7 gene segments, a PI-SceI site and a 3' homology arm containing ~28 kb of mouse genomic sequence including the endogenous the mouse C κ gene, E κ 1 and E κ 3' and additional mouse genomic sequence downstream (3') of E κ 3' (FIG. 4B, 12/4- κ Targeting Vector). Homologous recombination with this third targeting vector created a modified mouse κ light chain locus containing 12 hV λ gene segments and four hJ λ gene segments

operably linked to the endogenous mouse C κ gene which, upon recombination, leads to the formation of a chimeric human λ /mouse κ light chain.

[00233] A human λ mini-locus with an integrated human κ light chain sequence. In a similar fashion, two additional targeting vectors similar to those engineered to make an initial insertion of human λ gene segments into the endogenous κ light chain locus (FIG. 4B, 12/1- κ and 12/4- κ Targeting Vectors) were engineered to progressively insert human λ light chain gene segments using uniquely constructed targeting vectors containing contiguous human λ and κ genomic sequences. These targeting vectors were constructed to include a ~ 23 kb human κ genomic sequence naturally located between human V κ 4-1 and J κ 1 gene segments. This human κ genomic sequence was specifically positioned in these two additional targeting vectors between human V λ and human J λ gene segments (FIG. 4B, 12(κ)1- κ and 12(κ)4- κ Targeting Vectors).

[00234] Both targeting vectors containing the human κ genomic sequence were made using the modified RP11-729g4 BAC clone described above (FIG. 6). This modified BAC clone was targeted with a spectinomycin selection cassette flanked by NotI and AsiSI restriction sites (FIG. 6, top left). Homologous recombination with the spectinomycin cassette resulted in a double-targeted 729g4 BAC clone which included, from 5' to 3', an I-CeuI site, a 5' Frt site, a neomycin cassette, a 3' Frt site, a ~123 kb fragment containing the first 12 hV λ gene segments, a NotI site about 200 bp downstream (3') to the nonamer sequence of the hV λ 3-1 gene segment, a spectinomycin cassette and an AsiSI site. A separate human BAC clone containing human κ sequence (CTD-2366j12) was targeted two independent times to engineer restriction sites at locations between hV κ 4-1 and hJ κ 1 gene segments to allow for subsequent cloning of a ~23 kb fragment for ligation with the hV λ gene segments contained in the double targeted modified 729g4 BAC clone (FIG. 6, top right).

[00235] Briefly, the 2366j12 BAC clone is about 132 kb in size and contains hV κ gene segments 1-6, 1-5, 2-4, 7-3, 5-2, 4-1, human κ genomic sequence down stream of the V κ gene segments, hJ κ gene segments 1-5, the hC κ and about 20 kb of additional genomic sequence of the human κ locus. This clone was first targeted with a targeting vector containing a hygromycin cassette flanked by Frt sites and a NotI site downstream (3') of the 3' Frt site. The homology arms for this targeting vector contained human genomic sequence 5' and 3' of the V κ gene segments within the BAC clone such that upon homologous recombination with this targeting vector, the V κ gene segments were deleted and a NotI site was engineered ~133 bp downstream of the hV κ 4-1 gene segment (FIG. 6, top right). This modified 2366j12 BAC clone was targeted independently with two targeting

vectors at the 3' end to delete the hJ κ gene segments with a chloroamphenicol cassette that also contained either a hJ λ 1 gene segment, a PI-Scel site and an AsiSI site or a human λ genomic fragment containing four hJ λ gene segments (*supra*), a PI-Scel site and an AsiSI site (FIG. 6, top right). The homology arms for these two similar targeting vectors contained sequence 5' and 3' of the hJ κ gene segments. Homologous recombination with these second targeting vectors and the modified 2366j12 BAC clone yielded a double-targeted 2366j12 clone which included, from 5' to 3', a 5' Frt site, a hygromycin cassette, a 3' Frt site, a NotI site, a 22,800 bp genomic fragment of the human κ locus containing the intergenic region between the V κ 4-1 and J κ 1 gene segments, either a hJ λ 1 gene segment or a human λ genomic fragment containing hJ λ 1, J λ 2, J λ 3 and J λ 7, a PI-Scel site and a chloroamphenicol cassette (FIG. 6, top right). Two final targeting vectors to make the two additional modifications were achieved by two ligation steps using the double-targeted 729g4 and 2366j12 clones.

[00236] Double targeted 729g4 and 2366j12 clones were digested with NotI and AsiSI yielding one fragment containing the neomycin cassette and hV λ gene segments and another fragment containing the ~23 kb genomic fragment of the human κ locus containing the intergenic region between the V κ 4-1 and J κ 1 gene segments, either a hJ λ 1 gene segment or a genomic fragment containing hJ λ 1, J λ 2, J λ 3 and J λ 7 gene segments, the PI-Scel site and the chloroamphenicol cassette, respectively. Ligation of these fragments generated two unique BAC clones containing from 5' to 3' the hV λ gene segments, the human κ genomic sequence between the V κ 4-1 and J κ 1 gene segments, either a hJ λ 1 gene segment or a genomic fragment containing hJ λ 1, J λ 2, J λ 3 and J λ 7 gene segments, a PI-Scel site and a chloroamphenicol cassette (FIG. 6, bottom). These new BAC clones were then digested with I-CeuI and PI-Scel to release the unique fragments containing the upstream neomycin cassette and the contiguous human λ and κ sequences and ligated into a modified mouse BAC clone 302g12 which contained from 5' to 3' mouse genomic sequence 5' of the endogenous κ locus, an I-CeuI site, a 5' Frt site, a neomycin cassette, a 3' Frt site, hV λ gene segments (3-12 to 3-1), a NotI site ~200 bp downstream of V λ 3-1, ~23 kb of human κ sequence naturally found between the human V κ 4-1 and J κ 1 gene segments, either a hJ λ 1 gene segment or a genomic fragment containing hJ λ 1, J λ 2, J λ 3 and J λ 7 gene segments, the mouse E κ 1, the mouse C κ gene and E κ 3' (FIG. 4, 12hV λ -V κ J κ -hJ λ 1 and 12hV λ -V κ J κ -4hJ λ Targeting Vectors). Homologous recombination with both of these targeting vectors created two separate modified mouse κ light chain loci containing 12 hV λ gene segments, human κ genomic sequence, and either one or four hJ λ

gene segments operably linked to the endogenous mouse C κ gene which, upon recombination, leads to the formation of a chimeric human λ /mouse κ light chain.

Example III
Engineering Additional Human V λ Genes Segments
Into a Human λ Light Chain Mini-Locus

[00237] Additional hV λ gene segments were added independently to each of the initial modifications described in Example 2 using similar targeting vectors and methods (FIG. 5A, +16- λ Targeting Vector and FIG. 5B, +16- κ Targeting Vector).

[00238] **Introduction of 16 additional human V λ gene segments.** Upstream (5') homology arms used in constructing targeting vectors for adding 16 additional hV λ gene segments to the modified light chain loci described in Example 2 contained mouse genomic sequence 5' of either the endogenous κ or λ light chain loci. The 3' homology arms were the same for all targeting vectors and contained human genomic sequence overlapping with the 5' end of the human λ sequence of the modifications as described in Example 2.

[00239] Briefly, two targeting vectors were engineered for introduction of 16 additional hV λ gene segments to the modified mouse light chain loci described in Example 2 (FIG. 5A and 5B, +16- λ or +16- κ Targeting Vector). A ~172 kb DNA fragment from human BAC clone RP11-761I13 (Invitrogen) containing 21 consecutive hV λ gene segments from cluster A was engineered with a 5' homology arm containing mouse genomic sequence 5' to either the endogenous κ or λ light chain loci and a 3' homology arm containing human genomic λ sequence. The 5' mouse κ or λ homology arms used in these targeting constructs were the same 5' homology arms described in Example 2 (FIG. 5A and 5B). The 3' homology arm included a 53,057 bp overlap of human genomic λ sequence corresponding to the equivalent 5' end of the ~123 kb fragment of human genomic λ sequence described in Example 2. These two targeting vectors included, from 5' to 3', a 5' mouse homology arm containing either ~23 kb of genomic sequence 5' of the endogenous mouse κ light chain locus or ~24 kb of mouse genomic sequence 5' of the endogenous λ light chain locus, a 5' Frt site, a hygromycin cassette, a 3' Frt site and 171,457 bp of human genomic λ sequence containing 21 consecutive hV λ gene segments, ~53 kb of which overlaps with the 5' end of the human λ sequence described in Example 3 and serves as the 3' homology arm for this targeting construct (FIG. 5A and 5B, +16- λ or +16- κ Targeting Vectors). Homologous recombination with these targeting vectors created independently modified mouse κ and λ light chain loci each containing 28 hV λ gene segments and a hJ λ 1 gene segment operably

linked to endogenous mouse constant genes (C κ or C λ 2) which, upon recombination, leads to the formation of a chimeric light chain.

[00240] In a similar fashion, the +16- κ Targeting Vector was also used to introduce the 16 additional hV λ gene segments to the other initial modifications described in Example 2 that incorporated multiple hJ λ gene segments with and without an integrated human κ sequence (FIG. 4B). Homologous recombination with this targeting vector at the endogenous mouse κ locus containing the other initial modifications created mouse κ light chain loci containing 28 hV λ gene segments and hJ λ 1, 2, 3 and 7 gene segments with and without a human V κ -J κ genomic sequence operably linked to the endogenous mouse C κ gene which, upon recombination, leads to the formation of a chimeric λ - κ light chain.

[00241] **Introduction of 12 additional human V λ gene segments.** Additional hV λ gene segments were added independently to each of the modifications described above using similar targeting vectors and methods. The final locus structure resulting from homologous recombination with targeting vectors containing additional hV λ gene segments are shown in FIG. 7A and 7B.

[00242] Briefly, a targeting vector was engineered for introduction of 12 additional hV λ gene segments to the modified mouse κ and λ light chain loci described above (FIG. 5A and 5B, +12- λ or 12- κ Targeting Vectors). A 93,674 bp DNA fragment from human BAC clone RP11-22I18 (Invitrogen) containing 12 consecutive hV λ gene segments from cluster B was engineered with a 5' homology arm containing mouse genomic sequence 5' to either the endogenous mouse κ or λ light chain loci and a 3' homology arm containing human genomic λ sequence. The 5' homology arms used in this targeting construct were the same 5' homology arms used for the addition of 16 hV λ gene segments described above (FIG. 5A and 5B). The 3' homology arm was made by engineering a PI-Scel site ~3431 bp 5' to the human V λ 3-29P gene segment contained in a 27,468 bp genomic fragment of human λ sequence from BAC clone RP11-76I13. This PI-Scel site served as a ligation point to join the ~94 kb fragment of additional human λ sequence to the ~27 kb fragment of human λ sequence that overlaps with the 5' end of the human λ sequence in the previous modification using the +16- λ or +16- κ Targeting Vectors (FIG. 5A and 5B). These two targeting vectors included, from 5' to 3', a 5' homology arm containing either ~23 kb of mouse genomic sequence 5' of the endogenous κ light chain locus or ~24 kb of mouse genomic sequence 5' of the endogenous λ light chain locus, a 5' Frt site, a neomycin cassette, a 3' Frt site and 121,188 bp of human genomic λ sequence containing 16 hV λ gene segments and a PI-Scel site, ~27 kb of which overlaps with the 5' end of the human λ sequence from the insertion of 16 addition hV λ gene segments and serves as the 3'

homology arm for this targeting construct (FIG. 5A and 5B, +12- λ or 12- κ Targeting Vectors). Homologous recombination with these targeting vectors independently created modified mouse κ and λ light chain loci containing 40 hV λ gene segments and human J λ 1 operably linked to the endogenous mouse constant genes (C κ or C λ 2) which, upon recombination, leads to the formation of a chimeric light chain (bottom of FIG. 5A and 5B).

[00243] In a similar fashion, the +12- κ Targeting Vector was also used to introduce the 12 additional hV λ gene segments to the other initial modifications that incorporated multiple hJ λ gene segments with and without an integrated human κ sequence (FIG. 4B). Homologous recombination with this targeting vector at the endogenous mouse κ locus containing the other modifications created a mouse κ light chain locus containing 40 hV λ gene segments and hJ λ 1, 2, 3 and 7 gene segments with and without a human V κ -J κ genomic sequence operably linked to the endogenous mouse C κ gene which, upon recombination, leads to the formation of a chimeric λ - κ light chain.

Example IV

Identification of targeted ES cells Bearing Human λ Light Chain Gene Segments

[00244] Targeted BAC DNA made according to the foregoing Examples was used to electroporate mouse ES cells to create modified ES cells for generating chimeric mice that express human λ light chain gene segments. ES cells containing an insertion of unarranged human λ light chain gene segments were identified by a quantitative TAQMAN® assay. Specific primers sets and probes were design for insertion of human λ sequences and associated selection cassettes (gain of allele, GOA), loss of endogenous mouse sequences and any selection cassettes (loss of allele, LOA) and retention of flanking mouse sequences (allele retention, AR). For each additional insertion of human λ sequences, additional primer sets and probes were used to confirm the presence of the additional human λ sequences as well as the previous primer sets and probes used to confirm retention of the previously targeted human sequences. Table 1 sets forth the primers and associated probes used in the quantitative PCR assays. Table 2 sets forth the combinations used for confirming the insertion of each section of human λ light chain gene segments in ES cell clones.

[00245] ES cells bearing the human λ light chain gene segments are optionally transfected with a construct that expresses FLP in order to remove the Frt'ed neomycin cassette introduced by the insertion of the targeting construct containing human V λ 5-52 – V λ 1-40 gene segments (FIG. 5A and 5B). The neomycin cassette may optionally be

removed by breeding to mice that express FLP recombinase (e.g., US 6,774,279). Optionally, the neomycin cassette is retained in the mice.

Table 1

Primer	SEQ ID NO:	Probe	SEQ ID NO:
hL2F	2	hL2P	24
hL2R	3		
hL3F	4	hL3P	25
hL3R	5		
NeoF	6	NeoP	26
NeoR	7		
61hJ1F	8	61hJ1P	27
61hJ1R	9		
67hT1F	10	67hT1P	28
67hT1R	11		
67hT3F	12	67hT3P	29
67hT3R	13		
HygF	14	HygP	30
HygR	15		
MKD2F	16	MKD2P	31
MKD2R	17		
MKP8F	18	MKP8P	32
MKP8R	19		
MKP15F	20	MKP15P	33
MKP15R	21		
MK20F	22	—	—
MKP4R	23		
68h2F	34	68h2P	38
68h2R	35		
68h5F	36	68h5P	39
68h5R	37		
mL1F	75	mL1P	83
mL1R	76		
mL2F	77	mL2P	84
mL2R	78		
mL11F	79	mL11P	85
mL11R	80		

mL12F	81	mL12P	86
mL12R	82		

Table 2

Modification	Assay	Forward/Reverse Primer Set	Probe	Sequence Location
Insertion of 12 hV λ & hJ λ 1	GOA	hL2F/hL2R	hL2P	hV λ 3-12 – hV λ 3-1
		hL3F/hL3R	hL3P	
		61hJ1F/61hJ1R	61hJ1P	hJ λ sequence
		NeoF/NeoR	NeoP	Neomycin cassette
	LOA	MK20F/MKP4R	—	lox511/loxP sequence of inactivated κ locus
		HygF/HygR	HygP	Hygromycin cassette from inactivated λ locus
		mL1F/mL1R	mL1P	Mouse V λ 1-C λ 1 Cluster
		mL2F/mL2R	mL2P	
		mL11F/mL11R	mL11P	Mouse V λ 2-C λ 2 Cluster
	AR/LOA	mL12F/mL12R	mL12P	
		MKD2F/MKD2R	MKD2P	Mouse sequence in 5' $V\kappa$ locus
		MKP15F/MKP15R	MKP15P	Mouse sequence in 3' $V\kappa$ locus
		67hT1F/67hT1R	67hT1P	hV λ 3-27 – hV λ 3-12
Insertion of 16 hV λ	GOA	67hT3F/67hT3R	67hT3P	
		HygF/HygR	HygP	Hygromycin cassette
		NeoF/NeoR	NeoP	Neomycin cassette
	LOA	mL1F/mL1R	mL1P	Mouse V λ 1-C λ 1 Cluster
		mL2F/mL2R	mL2P	
		mL11F/mL11R	mL11P	Mouse V λ 2-C λ 2 Cluster
		mL12F/mL12R	mL12P	
		hL2F/hL2R	hL2P	hV λ 3-12 – hV λ 3-1
	AR	hL3F/hL3R	hL3P	
		MKD2F/MKD2R	MKD2P	Mouse sequence in 5' $V\kappa$ locus
		MKP15F/MKP15R	MKP15P	Mouse sequence in 3' $V\kappa$ locus

Insertion of 12 hV λ	GOA	68h2F/68h2R	68h2P	hV λ 5-52 – hV λ 1-40
		68h5F/68h5R	68h5P	
		NeoF/NeoR	NeoP	
	LOA	HygF/HygR	HygP	Hygromycin cassette
		ml1F/ml1R	ml1P	Mouse V λ 1-C λ 1 Cluster
		ml2F/ml2R	ml2P	
		ml11F/ml11R	ml11P	Mouse V λ 2-C λ 2 Cluster
		ml12F/ml12R	ml12P	
	AR	hL2F/hL2R	hL2P	hV λ 3-12 – hV λ 3-1
		hL3F/hL3R	hL3P	
		67hT1F/67hT1R	67hT1P	hV λ 3-27 – hV λ 3-12
		67hT3F/67hT3R	67hT3P	
	AR/LOA	MKD2F/MKD2R	MKD2P	Mouse sequence in 5' V κ locus
		MKP15F/MKP15R	MKP15P	Mouse sequence in 3' V κ locus

Example V

Generation of Mice Expressing Human λ Light Chains

From an Endogenous Light Chain Locus

[00246] Targeted ES cells described above were used as donor ES cells and introduced into an 8-cell stage mouse embryo by the VELOCIMOUSE® method (see, e.g., US Pat. No. 7,294,754 and Poueymirou *et al.* (2007) F0 generation mice that are essentially fully derived from the donor gene-targeted ES cells allowing immediate phenotypic analyses *Nature Biotech.* 25(1):91-99. VELOCIMICE® (F0 mice fully derived from the donor ES cell) independently bearing human λ gene segments were identified by genotyping using a modification of allele assay (Valenzuela *et al.*, *supra*) that detected the presence of the unique human λ gene segments (*supra*).

[00247] $\kappa:\lambda$ light chain usage of mice bearing human λ light chain gene segments. Mice homozygous for each of three successive insertions of hV λ gene segments with a single hJ λ gene segment (FIG. 5B) and mice homozygous for a first insertion of hV λ gene segments with either a single hJ λ gene segment or four human J λ gene segments including a human V κ -J κ genomic sequence (FIG. 4B) were analyzed for κ and λ light chain expression in splenocytes using flow cytometry.

[00248] Briefly, spleens were harvested from groups of mice (ranging from three to seven animals per group) and grinded using glass slides. Following lysis of red blood cells (RBCs) with ACK lysis buffer (Lonza Walkersville), splenocytes were stained with fluorescent dye conjugated antibodies specific for mouse CD19 (Clone 1D3; BD

Biosciences), mouse CD3 (17A2; Biolegend), mouse Igκ (187.1; BD Biosciences) and mouse Igλ (RML-42; Biolegend). Data was acquired using a BD™ LSR II flow cytometer (BD Biosciences) and analyzed using FLOWJO™ software (Tree Star, Inc.). Table 3 sets forth the average percent values for B cells (CD19⁺), κ light chain (CD19⁺Igκ⁺Igλ⁻), and λ light chain (CD19⁺Igκ⁻Igλ⁺) expression observed in splenocytes from groups of animals bearing each genetic modification.

[00249] In a similar experiment, B cell contents of the splenic compartment from mice homozygous for a first insertion of 12 hVλ and four hJλ gene segments including a human Vκ-Jκ genomic sequence operably linked to the mouse Cκ gene (bottom of FIG. 4B) and mice homozygous for 40 hVλ and one hJλ gene segment (bottom of FIG. 5B or top of FIG. 7B) were analyzed for Igκ and Igλ expression using flow cytometry (as described above). FIG. 8A shows the Igλ and Igκ expression in CD19⁺ B cells for a representative mouse from each group. The number of CD19⁺ B cells per spleen was also recorded for each mouse (FIG. 8B).

[00250] In another experiment, B cell contents of the spleen and bone marrow compartments from mice homozygous for 40 hVλ and four hJλ gene segments including a human Vκ-Jκ genomic sequence operably linked to the mouse Cκ gene (bottom of FIG. 7B) were analyzed for progression through B cell development using flow cytometry of various cell surface markers.

[00251] Briefly, two groups (N=3 each, 9-12 weeks old, male and female) of wild type and mice homozygous for 40 hVλ and four hJλ gene segments including a human Vκ-Jκ genomic sequence operably linked to the mouse Cκ gene were sacrificed and spleens and bone marrow were harvested. Bone marrow was collected from femurs by flushing with complete RPMI medium (RPMI medium supplemented with fetal calf serum, sodium pyruvate, Hepes, 2-mercaptoethanol, non-essential amino acids, and gentamycin). RBCs from spleen and bone marrow preparations were lysed with ACK lysis buffer (Lonza Walkersville), followed by washing with complete RPMI medium. 1x10⁶ cells were incubated with anti-mouse CD16/CD32 (2.4G2, BD Biosciences) on ice for 10 minutes, followed by labeling with a selected antibody panel for 30 min on ice.

[00252] Bone marrow panel: anti-mouse FITC-CD43 (1B11, BioLegend), PE-ckit (2B8, BioLegend), PeCy7-IgM (II/41, eBioscience), PerCP-Cy5.5-IgD (11-26c.2a, BioLegend), APC- B220 (RA3-6B2, eBioscience), APC-H7-CD19 (ID3, BD) and Pacific Blue-CD3 (17A2, BioLegend).

[00253] Bone marrow and spleen panel: anti-mouse FITC-Igκ (187.1, BD), PE-Igλ (RML-42, BioLegend), PeCy7-IgM (II/41, ebioscience), PerCP-Cy5.5-IgD (11-26c.2a,

BioLegend), Pacific Blue-CD3 (17A2, BioLegend), APC- B220 (RA3-6B2, eBioscience), APC-H7-CD19 (ID3, BD).

[00254] Following staining, cells were washed and fixed in 2% formaldehyde. Data acquisition was performed on a FACSCANTOII™ flow cytometer (BD Biosciences) and analyzed with FLOWJO™ software (Tree Star, Inc.). FIGs. 9A – 9D show the results for the splenic compartment of one representative mouse from each group. FIGs. 10A – 10E show the results for the bone marrow compartment of one representative mouse from each group. Table 4 sets forth the average percent values for B cells (CD19⁺), κ light chain (CD19⁺Ig κ ⁺Ig λ ⁻), and λ light chain (CD19⁺Ig κ ⁻Ig λ ⁺) expression observed in splenocytes from groups of animals bearing various genetic modifications. Table 5 sets forth the average percent values for B cells (CD19⁺), mature B cells (B220^{hi}IgM⁺), immature B cells (B220^{int}IgM⁺), immature B cells expressing κ light chain (B220^{int}IgM⁺Ig κ ⁺) and immature B cells expressing λ light chain (B220^{int}IgM⁺Ig λ ⁺) observed in bone marrow of wild type and mice homozygous for 40 hV λ and four hJ λ gene segments including a human V κ -J κ genomic sequence operably linked to the mouse C κ gene. This experiment was repeated with additional groups of the mice described above and demonstrated similar results (data not shown).

Table 3

Genotype	% B cells	% Ig κ ⁺	% Ig λ ⁺
Wild Type	46.2	91.0	3.6
12 hV λ +hJ λ 1	28.3	10.4	62.5
12 hV λ -V κ J κ -hJ λ 1	12.0	11.0	67.5
12 hV λ -V κ J κ -4hJ λ	41.8	17.2	68.4
28 hV λ +hJ λ 1	22.0	13.3	51.1
40 hV λ +hJ λ 1	28.2	24.3	53.0

Table 4

Genotype	% B cells	% Ig κ ⁺	% Ig λ ⁺
Wild Type	49.8	91.2	3.5
40 hV λ -V κ J κ -4hJ λ	33.3	41.6	43.1

Table 5

Genotype	% B cells	% Mature B cells	% Immature B cells	% Immature Igκ ⁺ B cells	% Immature Igλ ⁺ B cells
Wild Type	62.2	9.2	12.0	79.0	8.84
40hVλ- VκJκ-4hJλ	60.43	2.59	7.69	38.29	43.29

[00255] Human Vλ gene usage in mice bearing human λ light chain gene segments. Mice heterozygous for a first insertion of human λ sequences (hVλ3-12 – hVλ3-1 and hJλ1, FIG. 5B) and homozygous for a third insertion of human λ sequences (hVλ5-52 – hVλ3-1 and hJλ1, FIG. 5B) were analyzed for human λ light chain gene usage by reverse-transcriptase polymerase chain reaction (RT-PCR) using RNA isolated from splenocytes.

[00256] Briefly, spleens were harvested and perfused with 10 mL RPMI-1640 (Sigma) with 5% HI-FBS in sterile disposable bags. Each bag containing a single spleen was then placed into a STOMACHER™ (Seward) and homogenized at a medium setting for 30 seconds. Homogenized spleens were filtered using a 0.7μm cell strainer and then pelleted with a centrifuge (1000 rpm for 10 minutes) and RBCs were lysed in BD PHARM LYSE™ (BD Biosciences) for three minutes. Splenocytes were diluted with RPMI-1640 and centrifuged again, followed by resuspension in 1 mL of PBS (Irvine Scientific). RNA was isolated from pelleted splenocytes using standard techniques known in the art.

[00257] RT-PCR was performed on splenocyte RNA using primers specific for human hVλ gene segments and the mouse Cκ gene (Table 6). PCR products were gel-purified and cloned into pCR2.1-TOPO TA vector (Invitrogen) and sequenced with primers M13 Forward (GTAAAACGAC GGCCAG; SEQ ID NO:55) and M13 Reverse (CAGGAAACAG CTATGAC; SEQ ID NO:56) located within the vector at locations flanking the cloning site. Eighty-four total clones derived from the first and third insertions of human λ sequences were sequenced to determine hVλ gene usage (Table 7). The nucleotide sequence of the hVλ-hJλ1-mCκ junction for selected RT-PCR clones is shown in FIG. 11.

[00258] In a similar fashion, mice homozygous for a third insertion of human λ light chain gene sequences (*i.e.* 40 hVλ gene segments and four hJλ gene segments including a human Vκ-Jκ genomic sequence, bottom of FIG. 7B) operably linked to the endogenous mouse Cκ gene were analyzed for human λ light chain gene usage by RT-PCR using RNA

isolated from splenocytes (as described above). The human λ light chain gene segment usage for 26 selected RT-PCR clones are shown in Table 8. The nucleotide sequence of the hV λ -hJ λ -mC κ junction for selected RT-PCR clones is shown in FIG. 12.

[00259] In a similar fashion, mice homozygous for a first insertion of human λ light chain gene segments (12 hV λ gene segments and hJ λ 1, FIG. 4A & FIG. 5A) operably linked to the endogenous mouse C λ 2 gene were analyzed for human λ light chain gene usage by RT-PCR using RNA isolated from splenocytes (as described above). The primers specific for hV λ gene segments (Table 6) were paired with one of two primers specific for the mouse C λ 2 gene; C λ 2-1 (SEQ ID NO:104) or C λ 2-2 (SEQ ID NO:105).

[00260] Multiple hV λ gene segments rearranged to h λ 1 were observed from the RT-PCR clones from mice bearing human λ light chain gene segments at the endogenous mouse λ light chain locus. The nucleotide sequence of the hV λ -hJ λ -mC λ 2 junction for selected RT-PCR clones is shown in FIG. 13.

Table 6

5' hV λ Primer	Sequence (5'-3')	SEQ ID NO:
VLL-1	CCTCTCCTCC TCACCCCTCCT	40
VLL-1n	ATGRCCDGST YYYCTCTCCT	41
VLL-2	CTCCTCACTC AGGGCACA	42
VLL-2n	ATGGCCTGGG CTCTGCTSCT	43
VLL-3	ATGGCCTGGA YCSCTCTCC	44
VLL-4	TCACCATGGC YTGGGRYCYCM YTC	45
VLL-4.3	TCACCATGGC CTGGGTCTCC TT	46
VLL-5	TCACCATGGC CTGGAMTCYT CT	47
VLL-6	TCACCATGGC CTGGGCTCCA CTACTT	48
VLL-7	TCACCATGGC CTGGACTCCT	49
VLL-8	TCACCATGGC CTGGATGATG CTT	50
VLL-9	TAAATATGGC CTGGGCTCCT CT	51
VLL-10	TCACCATGCC CTGGGCTCTG CT	52
VLL-11	TCACCATGGC CCTGACTCCT CT	53

3' Mouse C κ Primer	Sequence (5'-3')	SEQ ID NO:
mlgKC3'-1	CCCAAGCTTA CTGGATGGTG GGAAGATGGA	54

Table 7

hV λ	Observed No. of Clones
3-1	2
4-3	3
2-8	7
3-9	4
3-10	3
2-14	1
3-19	1
2-23	7
3-25	1
1-40	9
7-43	2
1-44	2
5-45	8
7-46	3
9-49	6
1-51	3

Table 8

Clone	hV λ	hJ λ
1-3	1-44	7
1-5	1-51	3
2-3	9-49	7
2-5	1-40	1
2-6	1-40	7
3b-5	3-1	7
4a-1	4-3	7
4a-5	4-3	7
4b-1	1-47	3
5-1	3-10	3
5-2	1-40	7
5-3	1-40	7
5-4	7-46	2
5-6	1-40	7
5-7	7-43	3
6-1	1-40	1
6-2	1-40	2
6-7	1-40	3
7a-1	3-10	7
7a-2	9-49	2
7a-7	3-10	7
7b-2	7-43	3
7b-7	7-46	7
7b-8	7-43	3
11a-1	5-45	2
11a-2	5-45	7

[00261] FIG. 11 shows the sequence of the hV λ -hJ λ 1-mC κ junction for RT-PCR clones from mice bearing a first and third insertion of hV λ gene segments with a single hJ λ gene segment. The sequences shown in FIG. 11 illustrate unique rearrangements involving different hV λ gene segments with hJ λ 1 recombined to the mouse C κ gene. Heterozygous mice bearing a single modified endogenous κ locus containing 12 hV λ gene segments and hJ λ 1 and homozygous mice bearing two modified endogenous κ loci containing 40 hV λ gene segments and hJ λ 1 were both able to produce human λ gene segments operably

linked to the mouse $C\kappa$ gene and produce B cells that expressed human λ light chains. These rearrangements demonstrate that the chimeric loci were able to independently rearrange human λ gene segments in multiple, independent B cells in these mice. Further, these modifications to the endogenous κ light chain locus did not render any of the hV λ gene segments inoperable or prevent the chimeric locus from recombining multiple hV λ and a hJ λ (J λ 1) gene segment during B cell development as evidenced by 16 different hV λ gene segments that were observed to rearrange with hJ λ 1 (Table 7). Further, these mice made functional antibodies containing rearranged human V λ -J λ gene segments operably linked to mouse $C\kappa$ genes as part of the endogenous immunoglobulin light chain repertoire.

[00262] FIG. 12 shows the sequence of the hV λ -hJ λ -mC κ junction for selected RT-PCR clones from mice homozygous for 40 hV λ and four hJ λ gene segments including a human V κ -J κ genomic sequence. The sequences shown in FIG. 12 illustrate additional unique rearrangements involving multiple different hV λ gene segments, spanning the entire chimeric locus, with multiple different hJ λ gene segments rearranged and operably linked to the mouse $C\kappa$ gene. Homozygous mice bearing modified endogenous κ loci containing 40 hV λ and four hJ λ gene segments were also able to produce human λ gene segments operably linked to the mouse $C\kappa$ gene and produce B cells that expressed human λ light chains. These rearrangements further demonstrate that the all stages of chimeric loci were able to independently rearrange human λ gene segments in multiple, independent B cells in these mice. Further, these additional modifications to the endogenous κ light chain locus demonstrates that each insertion of human λ gene segments did not render any of the hV λ and/or J λ gene segments inoperable or prevent the chimeric locus from recombining the hV λ and J λ gene segments during B cell development as evidenced by 12 different hV λ gene segments that were observed to rearrange with all four hJ λ gene segments (Table 8) from the 26 selected RT-PCR clone. Further, these mice as well made functional antibodies containing human V λ -J λ gene segments operably linked to mouse $C\kappa$ regions as part of the endogenous immunoglobulin light chain repertoire.

[00263] FIG. 13 shows the sequence of the hV λ -hJ λ -mC λ 2 junction for three individual RT-PCR clones from mice homozygous for 12 hV λ gene segments and hJ λ 1. The sequences shown in FIG. 13 illustrate additional unique rearrangements involving different hV λ gene segments, spanning the length of the first insertion, with hJ λ 1 rearranged and operably linked to the mouse C λ 2 gene (2D1 = V λ 2-8J λ 1; 2D9 = V λ 3-10J λ 1; 3E15 = V λ 3-1J λ 1). One clone demonstrated a nonproductive rearrangement due to N additions at the hV λ -hJ λ junction (2D1, FIG.13). This is not uncommon in V(D)J recombination, as the

joining of gene segments during recombination has been shown to be imprecise. Although this clone represents an unproductive recombinant present in the light chain repertoire of these mice, this demonstrates that the genetic mechanism that contributes to junctional diversity among antibody genes is operating normally in these mice and leading to an antibody repertoire containing light chains with greater diversity.

[00264] Homozygous mice bearing modified endogenous λ loci containing 12 hV λ gene segments and hJ λ 1 were also able to produce human λ gene segments operably linked to an endogenous mouse C λ gene and produce B cells that expressed reverse chimeric λ light chains containing hV λ regions linked to mouse C λ regions. These rearrangements further demonstrate that human λ light chain gene segments placed at the other light chain locus (*i.e.*, the λ locus) were able to independently rearrange human λ gene segments in multiple, independent B cells in these mice. Further, the modifications to the endogenous λ light chain locus demonstrate that the insertion of human λ gene segments did not render any of the hV λ and/or hJ λ 1 gene segments inoperable or prevent the chimeric locus from recombining the hV λ and hJ λ 1 gene segments during B cell development. Further, these mice also made functional antibodies containing human V λ -J λ gene segments operably linked to a mouse C λ region as part of the endogenous immunoglobulin light chain repertoire.

[00265] As shown in this Example, mice bearing human λ light chain gene segments at the endogenous κ and λ light chain loci are capable of rearranging human λ light chain gene segments and expressing them in the context of a mouse C κ and/or C λ region as part of the normal antibody repertoire of the mouse because a functional light chain is required at various checkpoints in B cell development in both the spleen and bone marrow. Further, early subsets of B cells (*e.g.*, pre-, pro- and transitional B cells) demonstrate a normal phenotype in these mice as compared to wild type littermates (FIGs. 9D, 10A and 10B). A small deficit in bone marrow and peripheral B cell populations was observed, which may be attributed to a deletion of a subset of auto-reactive immature B cells and/or a suboptimal association of human λ light chain with mouse heavy chain. However, the Ig κ /Ig λ usage observed in these mice demonstrates a situation that is more like human light chain expression than that observed in mice.

Example VI

Breeding of Mice Expressing Human λ Light Chains From an Endogenous Light Chain Locus

[00266] To optimize the usage of the human λ gene segments at an endogenous mouse light chain locus, mice bearing the unrearranged human λ gene segments are bred

to another mouse containing a deletion in the opposing endogenous light chain locus (either κ or λ). For example, human λ gene segments positioned at the endogenous κ locus would be the only functional light chain gene segments present in a mouse that also carried a deletion in the endogenous λ light chain locus. In this manner, the progeny obtained would express only human λ light chains as described in the foregoing examples. Breeding is performed by standard techniques recognized in the art and, alternatively, by commercial companies, e.g., The Jackson Laboratory. Mouse strains bearing human λ light chain gene segments at the endogenous κ locus and a deletion of the endogenous λ light chain locus are screened for presence of the unique reverse-chimeric (human-mouse) λ light chains and absence of endogenous mouse λ light chains.

[00267] Mice bearing an unarranged human λ light chain locus are also bred with mice that contain a replacement of the endogenous mouse heavy chain variable gene locus with the human heavy chain variable gene locus (see US 6,596,541, Regeneron Pharmaceuticals, the VELOCIMMUNE® genetically engineered mouse). The VELOCIMMUNE® mouse includes, in part, having a genome comprising human heavy chain variable regions operably linked to endogenous mouse constant region loci such that the mouse produces antibodies comprising a human heavy chain variable region and a mouse heavy chain constant region in response to antigenic stimulation. The DNA encoding the variable regions of the heavy chains of the antibodies can be isolated and operably linked to DNA encoding the human heavy chain constant regions. The DNA can then be expressed in a cell capable of expressing the fully human heavy chain of the antibody. Upon a suitable breeding schedule, mice bearing a replacement of the endogenous mouse heavy chain locus with the human heavy chain locus and an unarranged human λ light chain locus at the endogenous κ light chain locus is obtained. Antibodies containing somatically mutated human heavy chain variable regions and human λ light chain variable regions can be isolated upon immunization with an antigen of interest.

Example VII

Generation of Antibodies From Mice Expressing Human Heavy Chains and Human λ Light Chains

[00268] After breeding mice that contain the unarranged human λ light chain locus to various desired strains containing modifications and deletions of other endogenous Ig loci (as described above), selected mice are immunized with an antigen of interest.

[00269] Generally, a VELOCIMMUNE® mouse containing one of the single rearranged human germline light chain regions is challenged with an antigen, and lymphatic cells (such as B-cells) are recovered from serum of the animals. The lymphatic cells may be

fused with a myeloma cell line to prepare immortal hybridoma cell lines, and such hybridoma cell lines are screened and selected to identify hybridoma cell lines that produce antibodies containing human heavy chain and human λ light chain that are specific to the antigen used for immunization. DNA encoding the variable regions of the heavy chains and the λ light chains may be isolated and linked to desirable isotypic constant regions of the heavy chain and light chain. Due to the presence of the additional hV λ gene segments as compared to the endogenous mouse λ locus, the diversity of the light chain repertoire is dramatically increased and confers higher diversity on the antigen-specific repertoire upon immunization. The resulting cloned antibody sequences may be subsequently produced in a cell, such as a CHO cell. Alternatively, DNA encoding the antigen-specific chimeric antibodies or the variable domains of the light and heavy chains may be isolated directly from antigen-specific lymphocytes (e.g., B cells).

[00270] Initially, high affinity chimeric antibodies are isolated having a human variable region and a mouse constant region. As described above, the antibodies are characterized and selected for desirable characteristics, including affinity, selectivity, epitope, etc. The mouse constant regions are replaced with a desired human constant region to generate the fully human antibody containing a somatically mutated human heavy chain and a human λ light chain derived from an unarranged human λ light chain locus of the invention. Suitable human constant regions include, for example wild type or modified IgG1, IgG2, IgG3, or IgG4.

[00271] Where the terms "comprise", "comprises", "comprised" or "comprising" are used in this specification (including the claims) they are to be interpreted as specifying the presence of the stated features, integers, steps or components, but not precluding the presence of one or more other features, integers, steps or components, or group thereof.

[00272] The discussion of documents, acts, materials, devices, articles and the like is included in this specification solely for the purpose of providing a context for the present invention. It is not suggested or represented that any or all of these matters formed part of the prior art base or were common general knowledge in the field relevant to the present invention as it existed before the priority date of each claim of this application.

THE CLAIMS DEFINING THE INVENTION ARE AS FOLLOWS:

1. A mouse, comprising:
an unrearranged human immunoglobulin light chain variable (V λ) gene segment and an unrearranged human λ immunoglobulin light chain joining (J λ) gene segment which are operably linked to a mouse κ constant (C κ) at an endogenous mouse κ immunoglobulin light chain locus, wherein the mouse expresses an antibody comprising a light chain that comprises a human λ variable sequence and a mouse κ constant domain.
2. The mouse of claim 1, wherein the mouse lacks or substantially lacks a functional mouse κ immunoglobulin variable (V κ) gene segment and lacks or substantially lacks a functional mouse κ immunoglobulin light chain (J κ) gene segment.
3. The mouse of claim 1, wherein the mouse comprises a plurality of human V λ gene segments.
4. The mouse of claim 3, wherein the mouse comprises:
 - (a) at least 12 human V λ gene segments;
 - (b) 13 to 28 or more human V λ gene segments; or
 - (c) 29 to 40 human V λ gene segments.
5. The mouse of claim 3 or 4, wherein the human V λ gene segments include
 - (a) V λ 3-1, V λ 4-3, V λ 2-8, V λ 3-9, V λ 3-10, V λ 2-11, and V λ 3-12;
 - (b) V λ 2-14, V λ 3-16, V λ 2-18, V λ 3-19, V λ 3-21, V λ 3-22, V λ 2-23, V λ 3-25, and V λ 3-27; or
 - (c) V λ 1-40, V λ 7-43, V λ 1-44, V λ 5-45, V λ 7-46, V λ 1-47, V λ 5-48, V λ 9-49, V λ 1-50, V λ 1-51, and V λ 5-52.
6. The mouse of claim 1, wherein the human J λ is J λ 1.
7. The mouse of claim 1, wherein the mouse comprises four human J λ gene segments.
8. The mouse of claim 7, wherein the four human J λ gene segments are J λ 1, J λ 2, J λ 3, and J λ 7.

9. The mouse of claim 1, wherein the endogenous mouse λ light chain locus is deleted in whole or in part.
10. The mouse of claim 1, wherein the endogenous mouse κ light chain locus comprises a contiguous sequence of the human λ light chain locus that spans from hV λ 3-12 through hV λ 3-1.
11. The mouse of claim 1, wherein the endogenous mouse κ light chain locus comprises a contiguous sequence of the human λ light chain locus that spans from hV λ 3-27 through hV λ 3-1.
12. The mouse of claim 10, wherein the endogenous mouse κ light chain locus comprises a contiguous sequence of the human λ light chain locus that spans from hV λ 5-52 through hV λ 1-40.
13. The mouse of claim 1, wherein the endogenous mouse λ light chain locus comprises a contiguous sequence of the human λ light chain locus that spans from hV λ 5-52 through hV λ 1-40 and a contiguous sequence of the human λ light chain locus that spans from hV λ 3-27 through hV λ 3-1.
14. An isolated cell of the mouse of claim 1.
15. The isolated cell of claim 14, wherein the cell is an embryonic stem cell.
16. A mouse embryo comprising the embryonic stem cell of claim 15.
17. The isolated cell of claim 14, wherein the cell is a B cell.
18. A hybridoma made with the B cell of claim 17.
19. A mouse comprising:
 - (a) at least 12 to at least 40 unarranged human λ immunoglobulin light chain variable (V λ) gene segments and at least one unarranged human λ immunoglobulin light chain joining (J λ) gene segment that are operably linked to a mouse κ constant (C κ) gene at an endogenous mouse κ immunoglobulin light chain locus; and

- (b) a human $V\kappa$ - $J\kappa$ intergenic sequence located between at least 12 to at least 40 human $V\lambda$ gene segments and the at least one human $J\lambda$ gene segment;
wherein the mouse expresses an antibody that comprises an immunoglobulin light chain comprising a human $V\lambda$ domain and a mouse $C\kappa$ domain.
20. The mouse of claim 19, wherein the mouse comprise 12 human $V\lambda$ gene segments.
21. The mouse of claim 19, wherein the mouse comprises 28 human $V\lambda$ gene segments.
22. The mouse of claim 19, wherein the mouse comprises 40 human $V\lambda$ gene segments.
23. A method for making an antibody in a mouse, the method comprising
(a) exposing a mouse according to claim 1 to 13 or 19 to 22 to an antigen;
(b) allowing the mouse to develop an immune response to the antigen; and,
(c) isolating from the mouse of (b) an antibody that specifically recognizes the antigen, or isolating from the mouse of (b) a cell comprising an immunoglobulin domain that specifically recognizes the antigen, wherein the antibody comprises a light chain derived from a human $V\lambda$ gene segment, a human $J\lambda$ gene segment and a mouse $C\kappa$ gene.
24. A mouse according to claim 1 or 19, substantially as herein described with reference to any of the Examples and/or Figures.

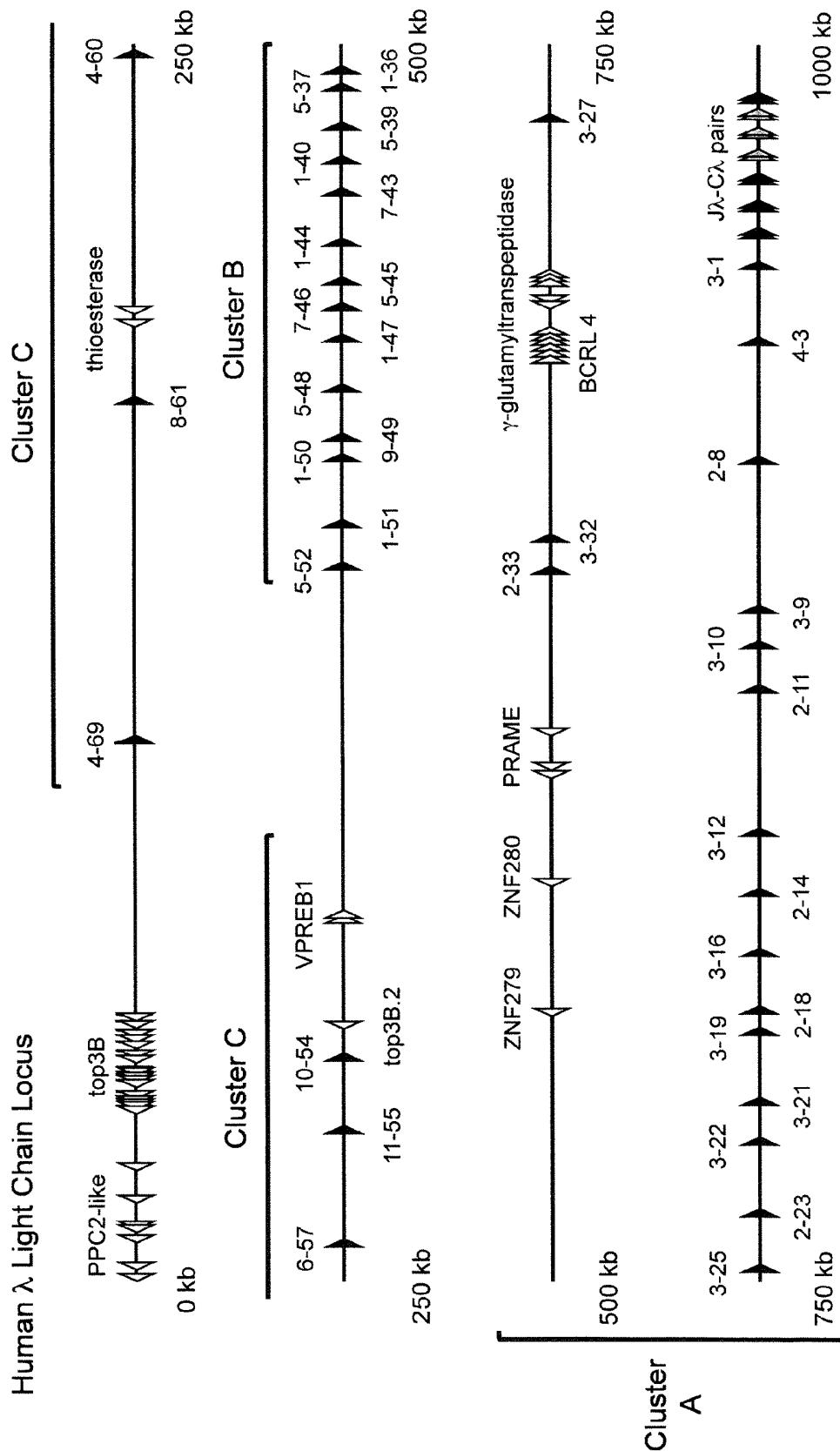


FIG. 1

2/24

FIG. 2

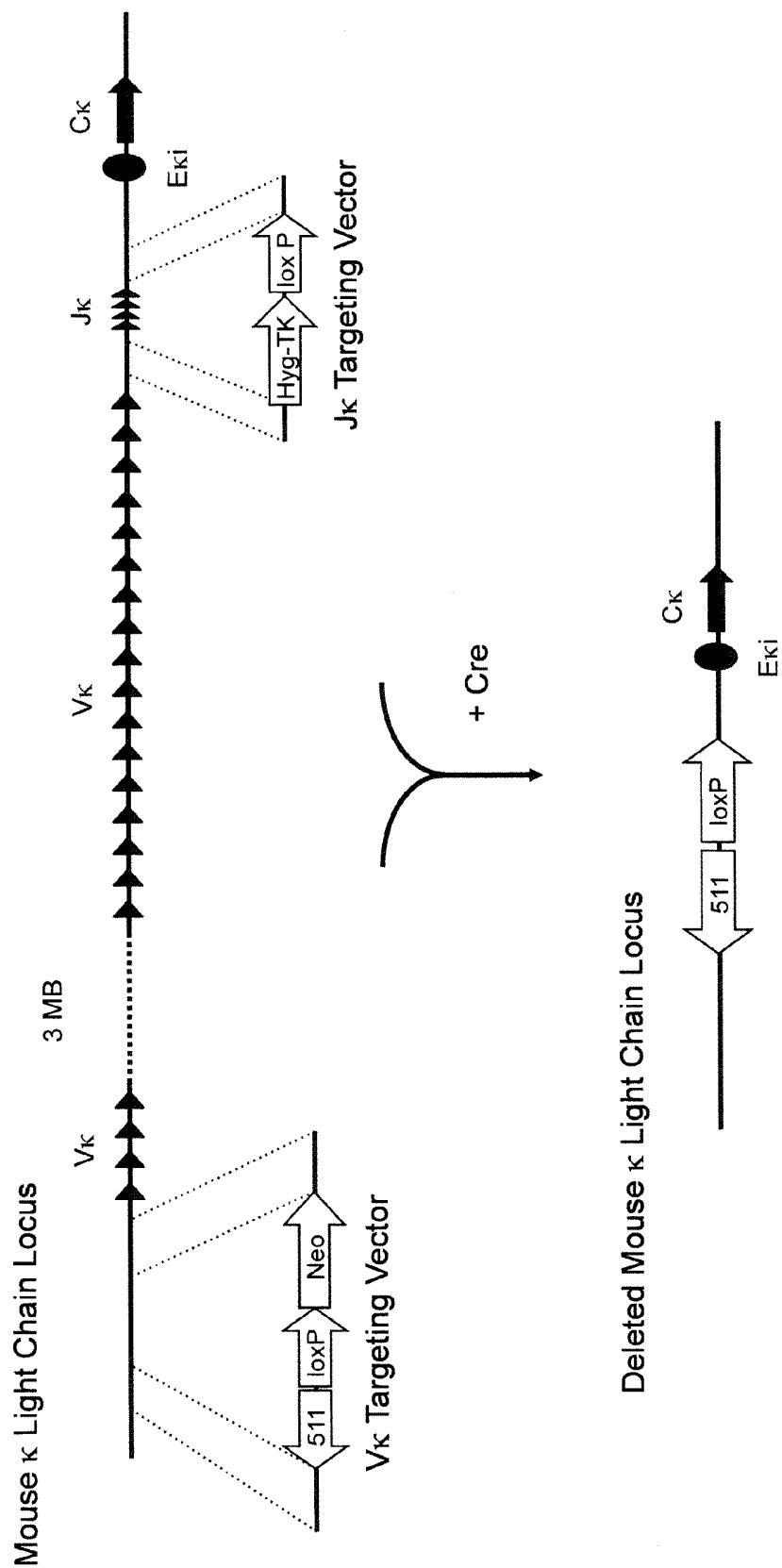


FIG. 3

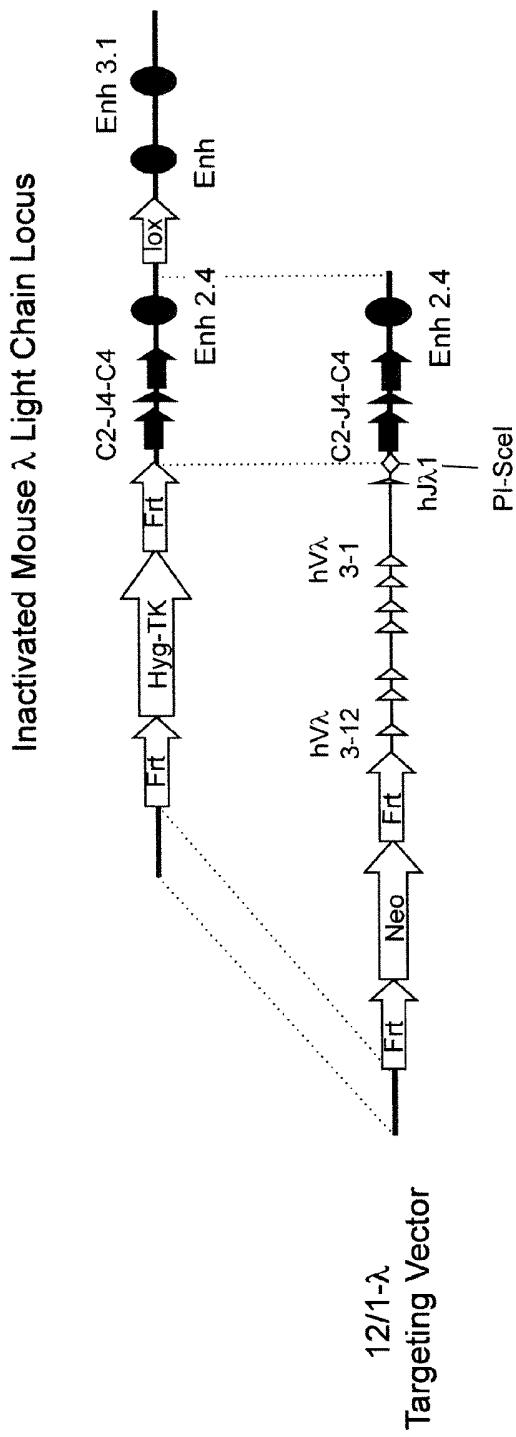


FIG. 4A

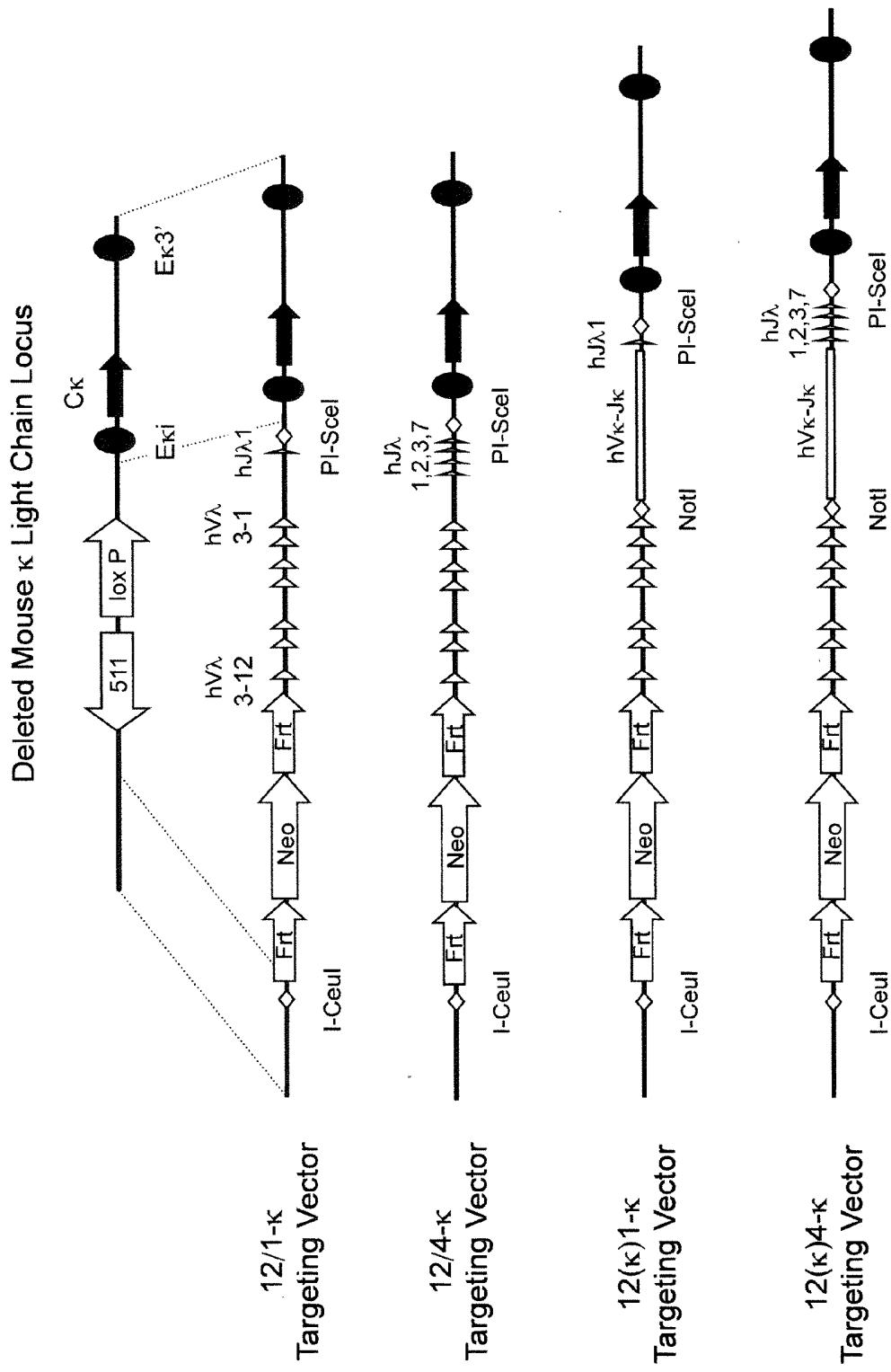


FIG. 4B

6/24

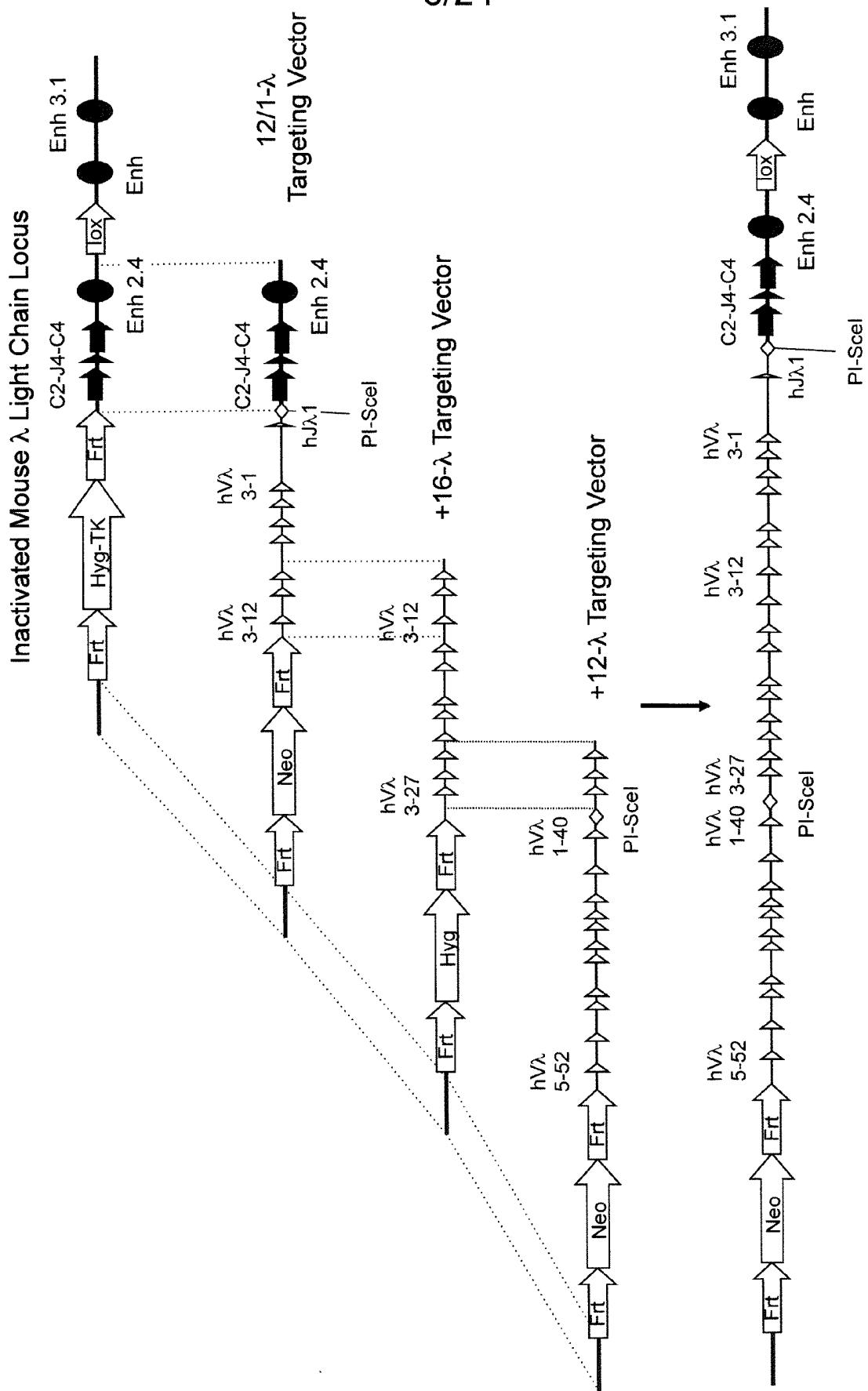


FIG. 5A

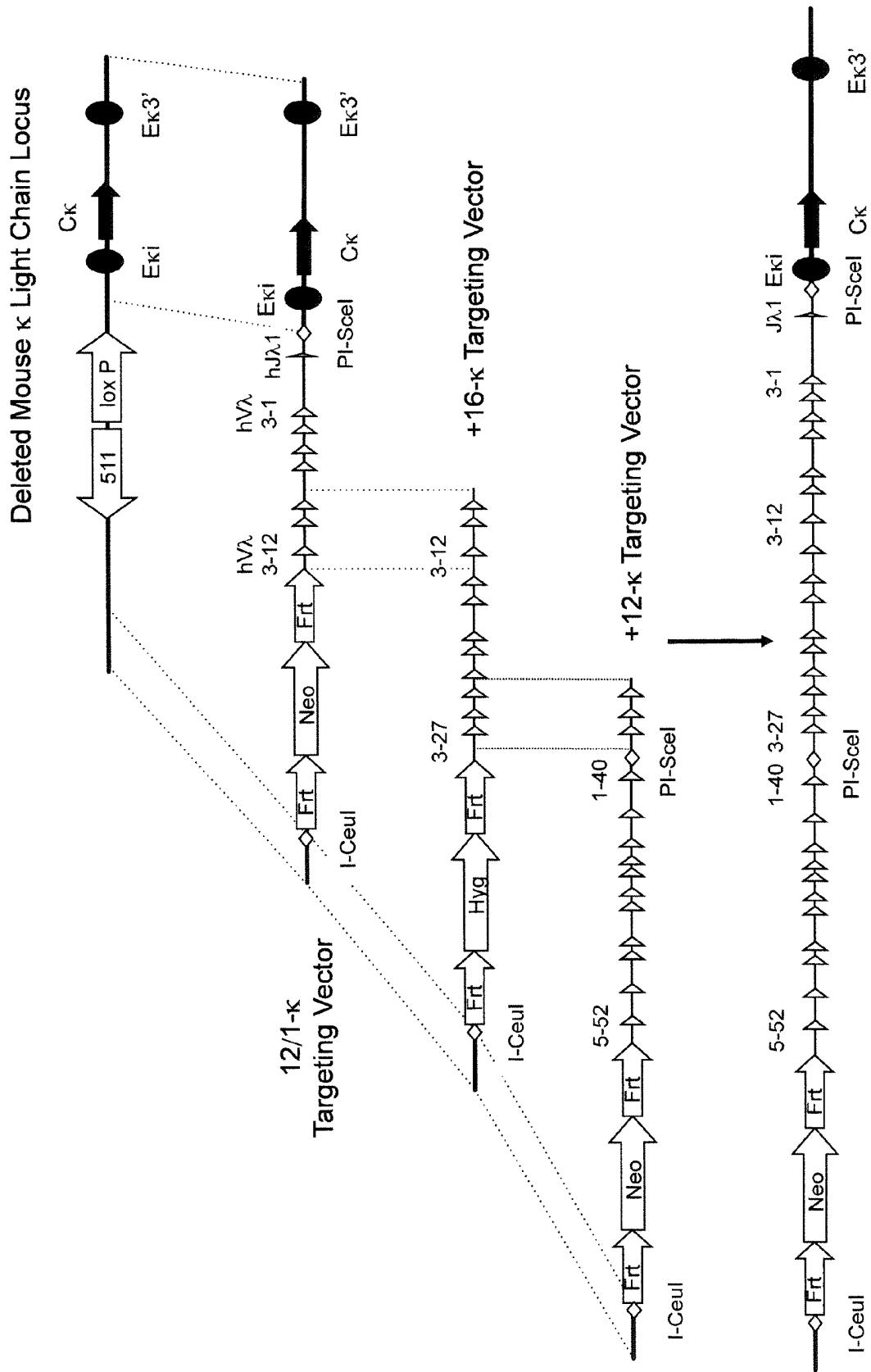


FIG. 5B

8/24

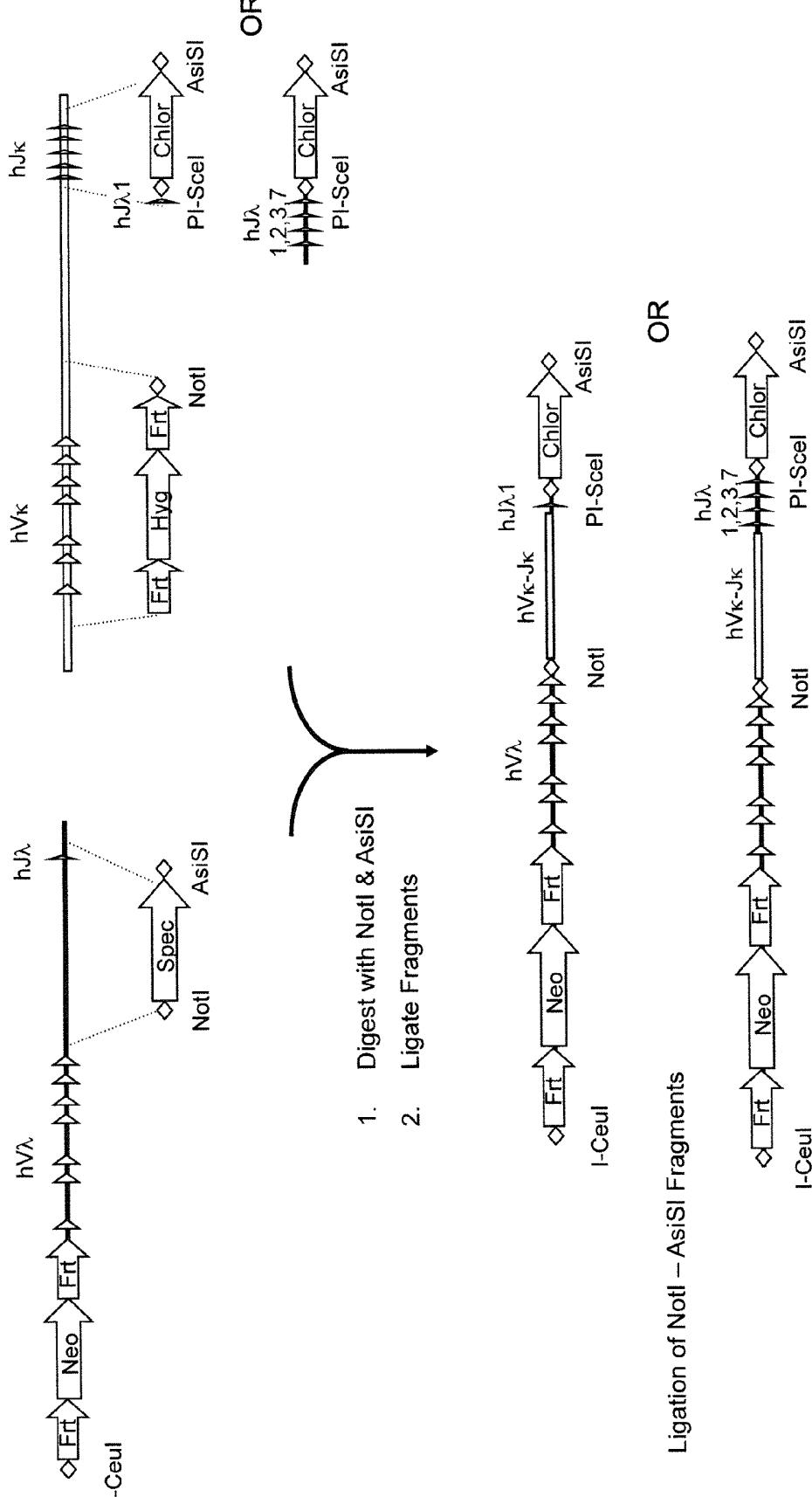


FIG. 6

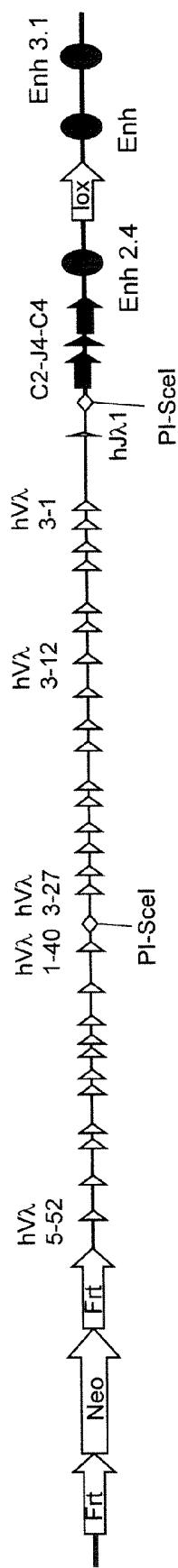


FIG. 7A

10/24

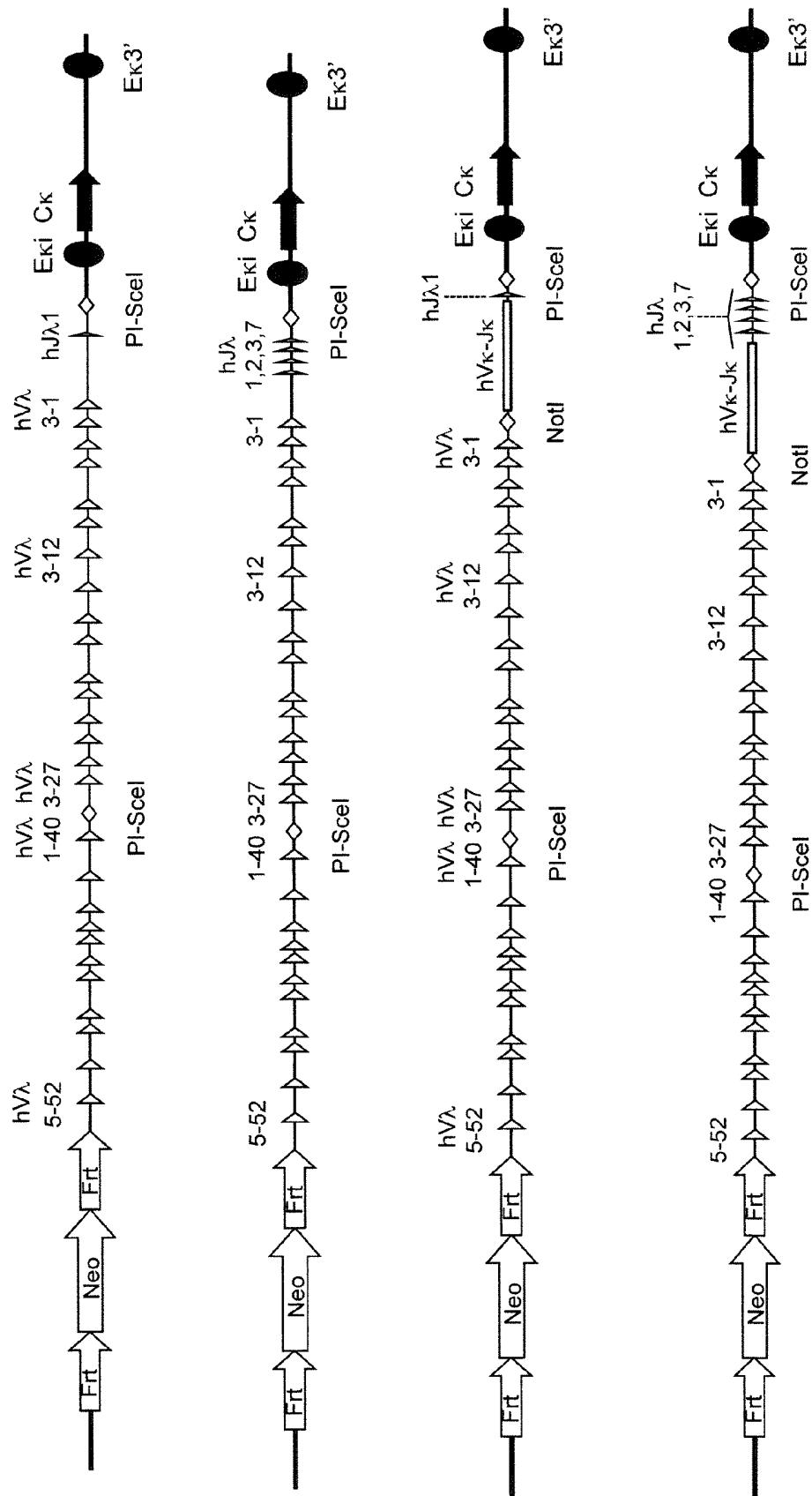


FIG. 7B

11/24

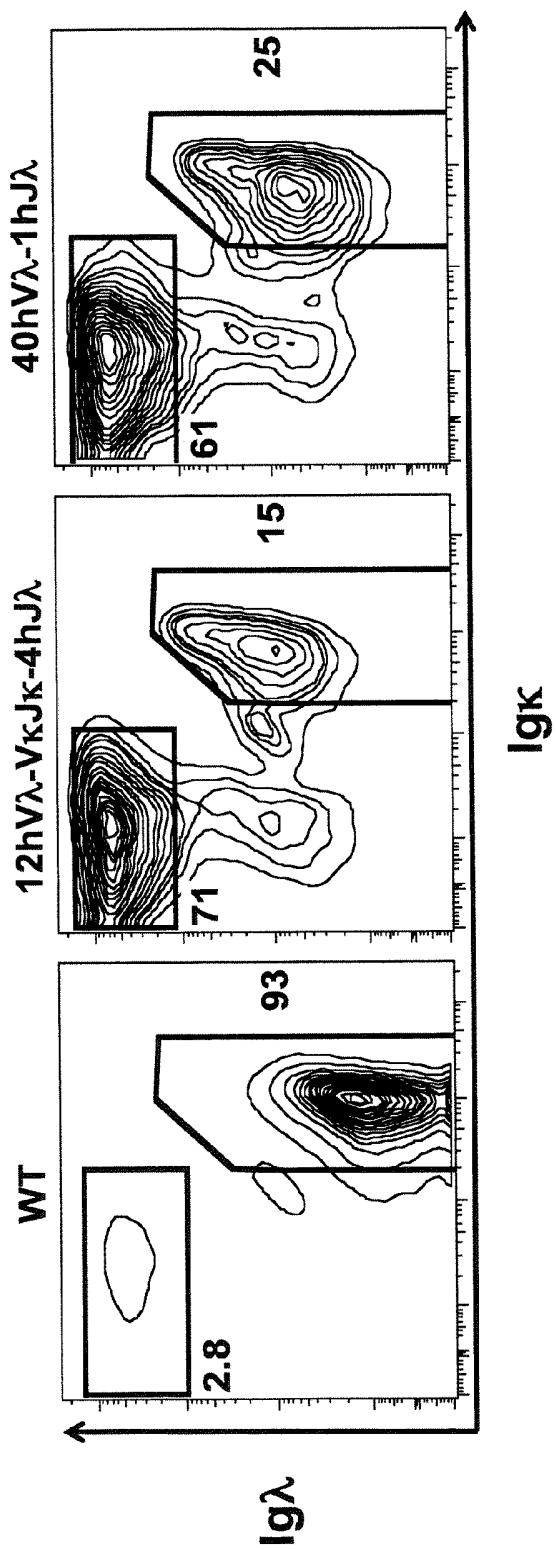


FIG. 8A

12/24

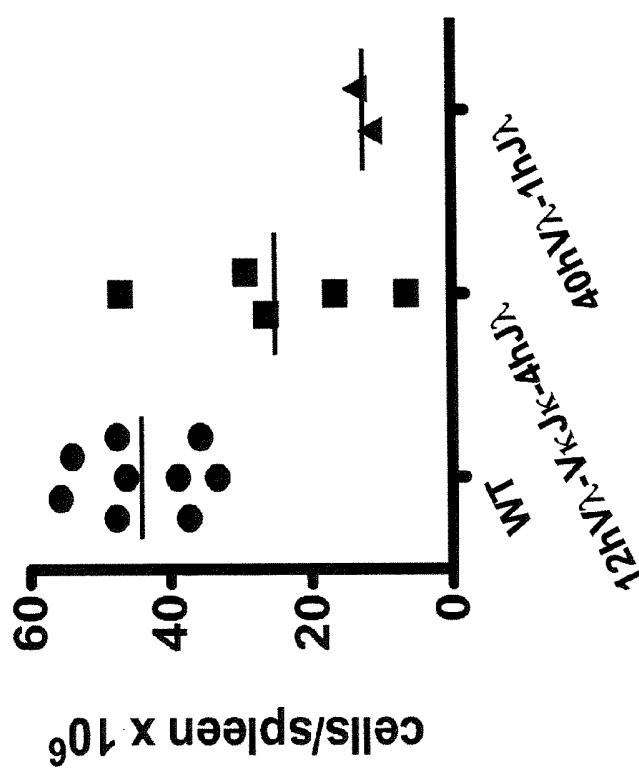


FIG. 8B

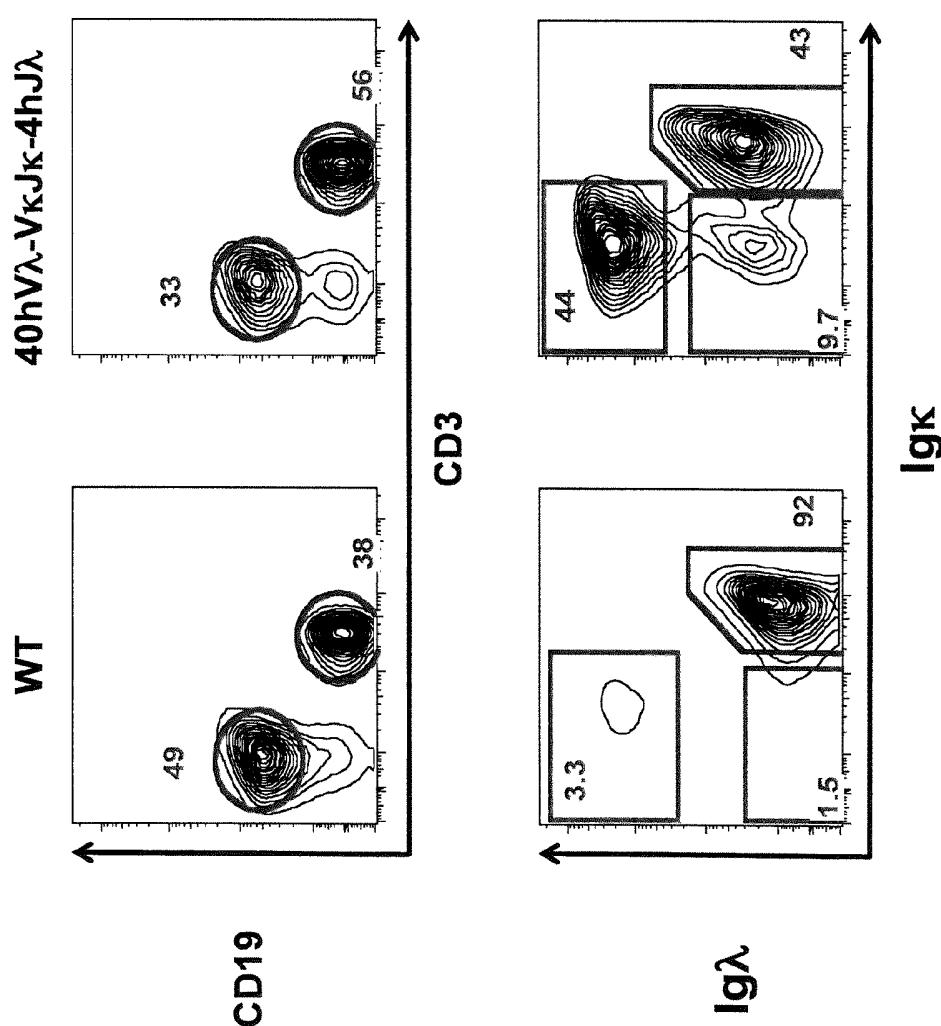


FIG. 9A

14/24

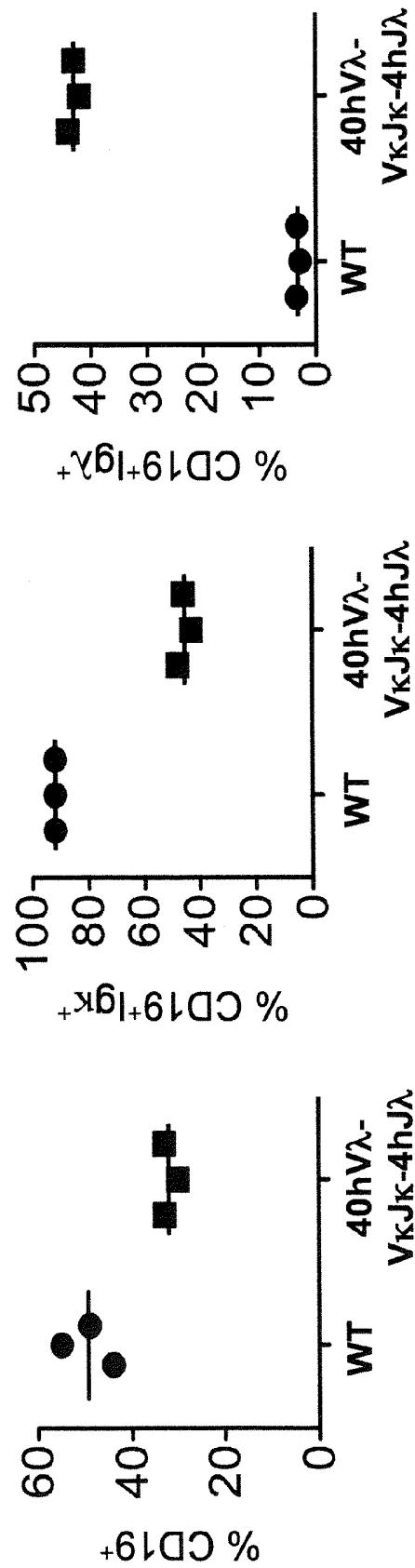


FIG. 9B

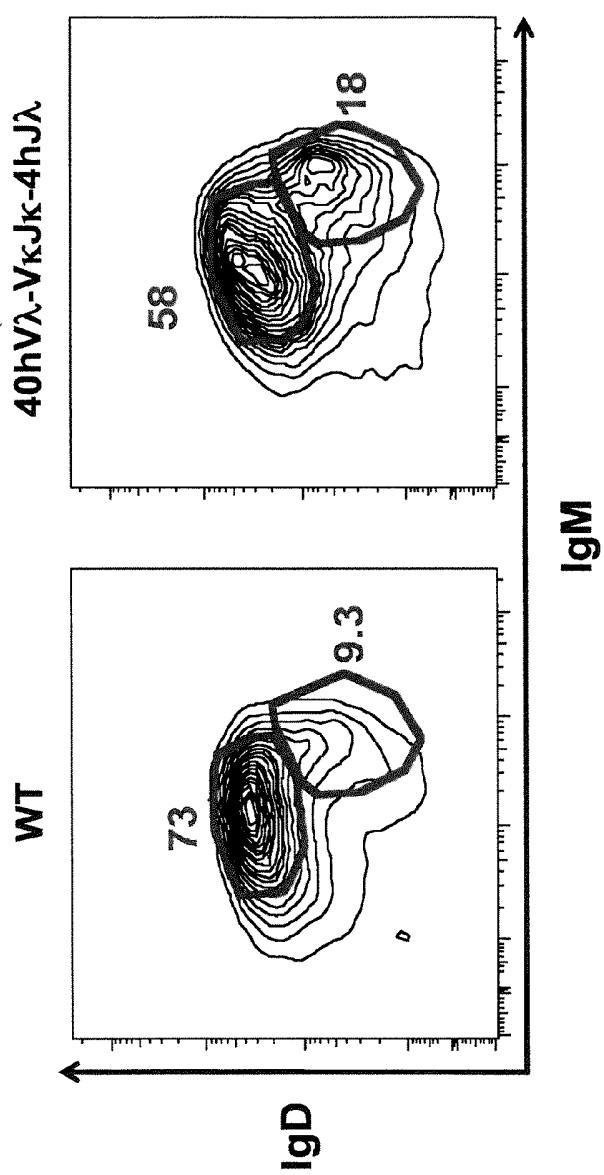


FIG. 9C

16/24

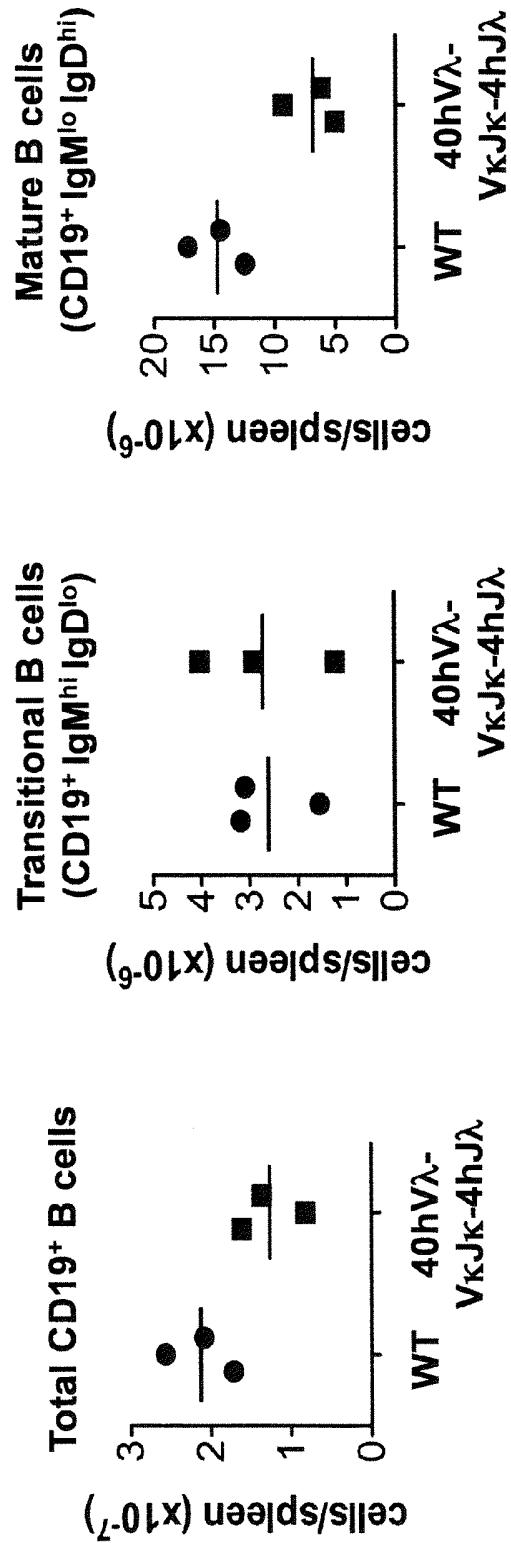


FIG. 9D

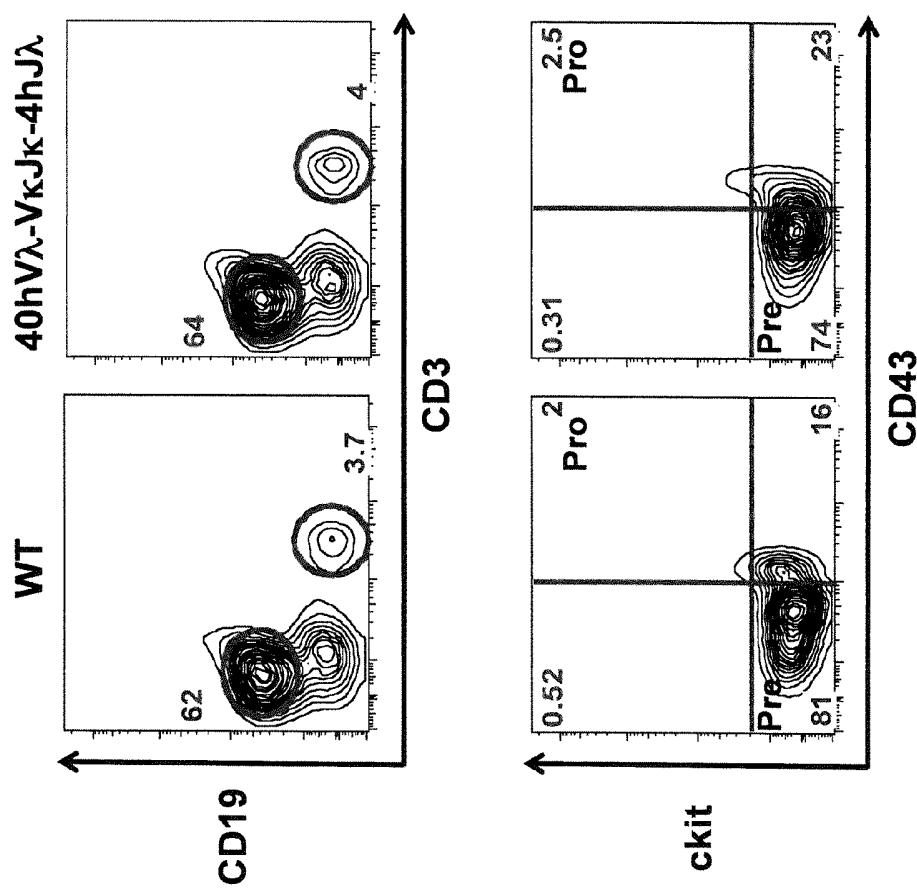


FIG. 10A

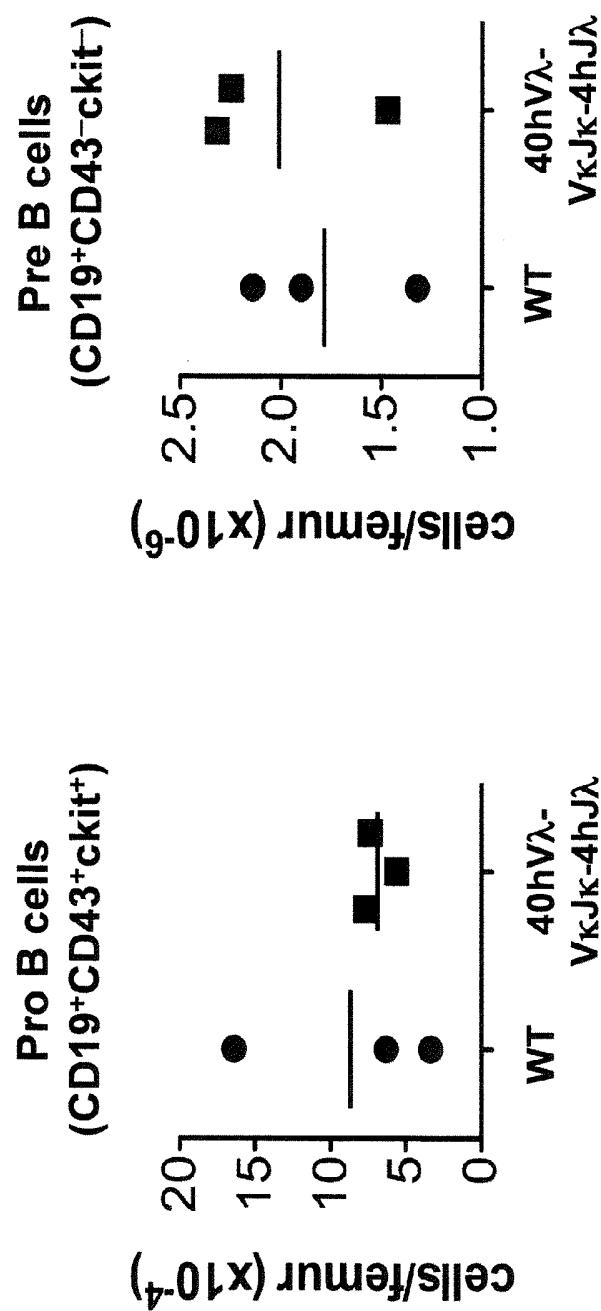


FIG. 10B

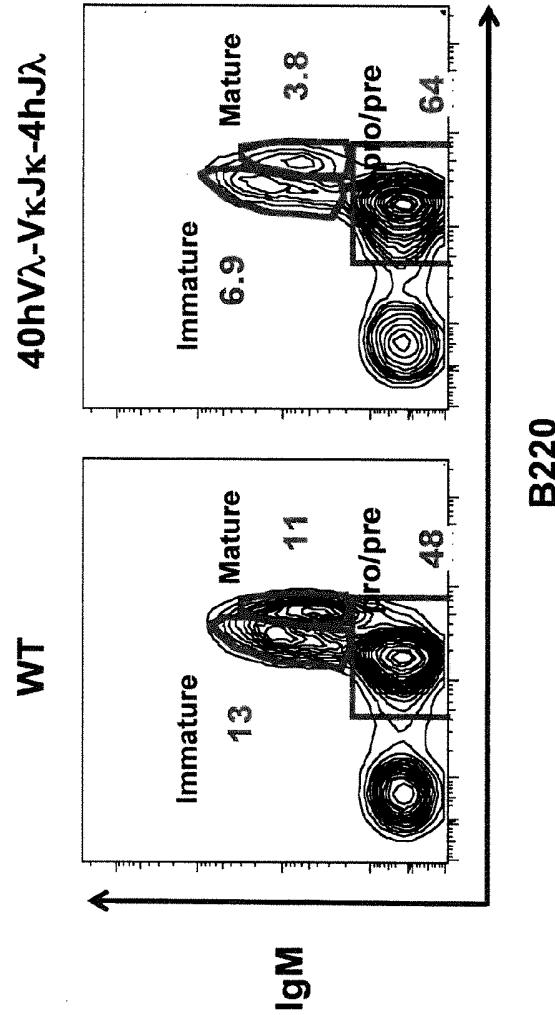


FIG. 10C

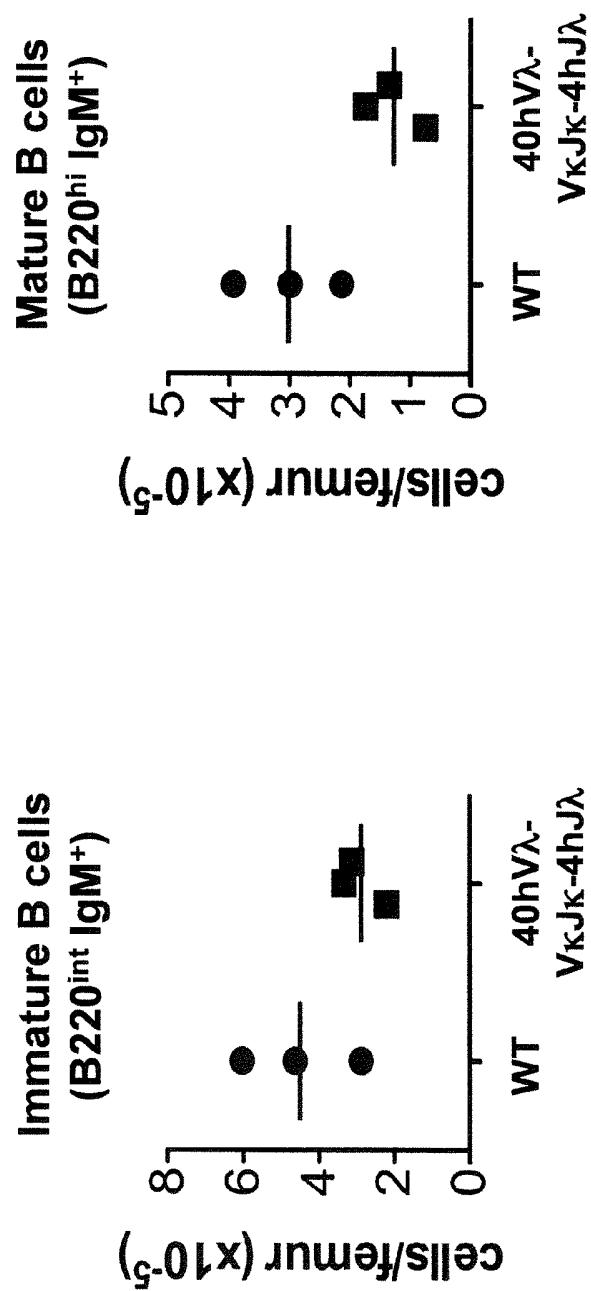


FIG. 10D

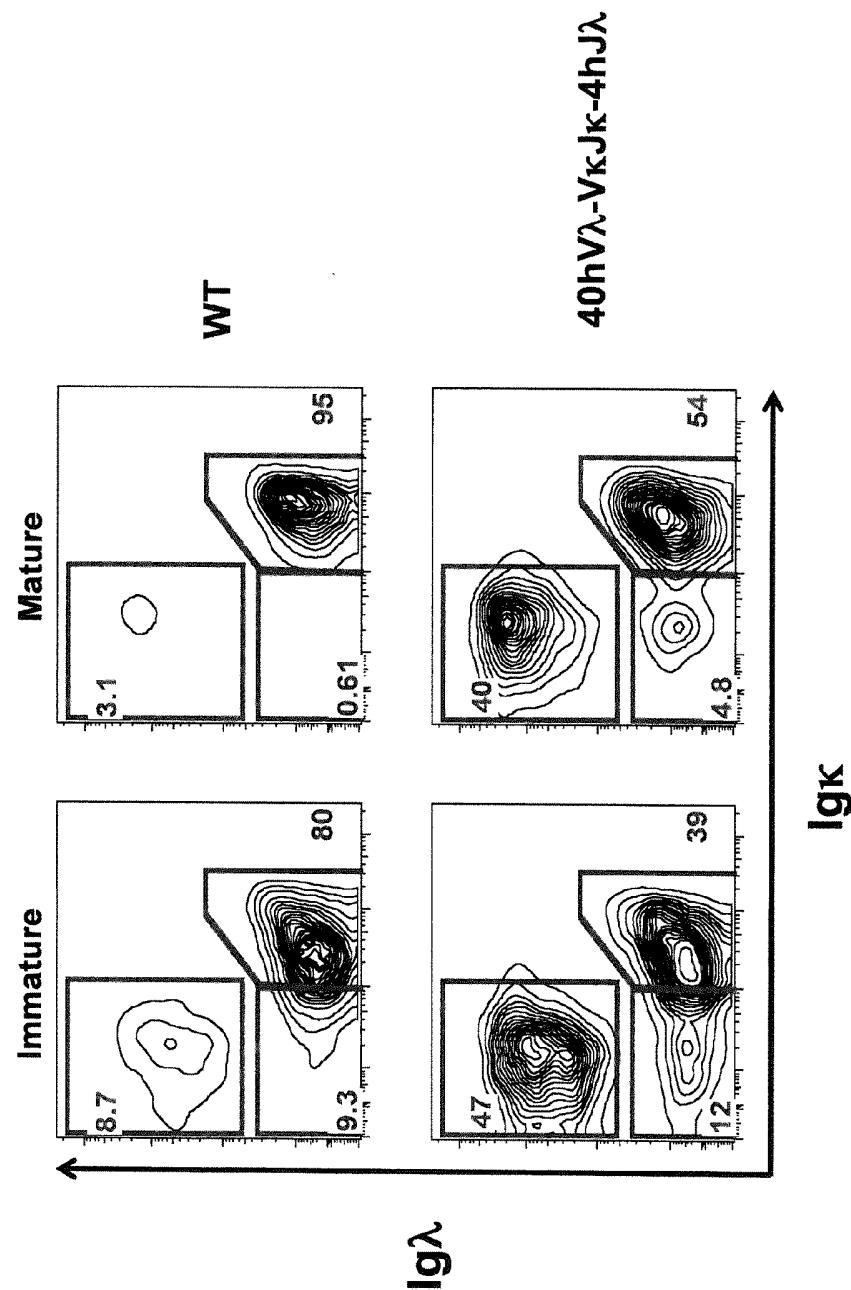


FIG. 10E

	3' Human V λ	Human J λ 1	5' Mouse C κ
A6	GCAACAATT	tcGTCTTCGGAACCTGGGACCAAGGTCAACCGTCCCTAG	GGGCTGATGGCTGCACCAACTGTATCCATCTTC
B6	GCAACAATT	ATGTCTTCGGAACCTGGGACCAAGGTCAACCGTCCCTAG	GGGCTGATGGCTGCACCAACTGTATCCATCTTC
F6	GCAACAATT	ATGTCTTCGGAACCTGGGACCAAGGTCAACCGTCCCTAG	GGGCTGATGGCTGCACCAACTGTATCCATCTTC
B7	GCAACAATT	ATGTCTTCGGAACCTGGGACCAAGGTCAACCGTCCCTAG	GGGCTGATGGCTGCACCAACTGTATCCATCTTC
E7	GCAACAAT	GTCTTCGGAACCTGGGACCAAGGTCAACCGTCCCTAG	GGGCTGATGGCTGCACCAACTGTATCCATCTTC
F7	GCAACAATT	ATGTCTTCGGAACCTGGGACCAAGGTCAACCGTCCCTAG	GGGCTGATGGCTGCACCAACTGTATCCATCTTC
C8	GCAACAATT	ATGTCTTCGGAACCTGGGACCAAGGTCAACCGTCCCTAG	GGGCTGATGGCTGCACCAACTGTATCCATCTTC
E12	CAAGTCGGTT	GTGTCTTCGGAACCTGGGACCAAGGTCAACCGTCCCTAG	GGGCTGATGGCTGCACCAACTGTATCCATCTTC
1-4	TGAGTGCT	TATGTCTTCGGAACCTGGGACCAAGGTCAACCGTCCCTAG	GGGCTGATGGCTGCACCAACTGTATCCATCTTC
1-20	TGAGTGCg	gcttttttttGGAACCTGGGACCAAGGTCAACCGTCCCTAG	GGGCTGATGGCTGCACCAACTGTATCCATCTTC
3B4.3	CTGAATGGT	TATGTCTTCGGAACCTGGGACCAAGGTCAACCGTCCCTAG	GGGCTGATGGCTGCACCAACTGTATCCATCTTC
5-8	AGTGGTAAT	CATGTCTTCGGAACCTGGGACCAAGGTCAACCGTCCCTAG	GGGCTGATGGCTGCACCAACTGTATCCATCTTC
5-19	AGTGGTGC	TATGTCTTCGGAACCTGGGACCAAGGTCAACCGTCCCTAG	GGGCTGATGGCTGCACCAACTGTATCCATCTTC
1010	AGCAGGCACT	TATGTCTTCGGAACCTGGGACCAAGGTCAACCGTCCCTAG	GGGCTGATGGCTGCACCAACTGTATCCATCTTC
11A1	AGCAGGCG	TATGTCTTCGGAACCTGGGACCAAGGTCAACCGTCCCTAG	GGGCTGATGGCTGCACCAACTGTATCCATCTTC
7A8	GGTGGTGC	TATGTCTTCGGAACCTGGGACCAAGGTCAACCGTCCCTAG	GGGCTGATGGCTGCACCAACTGTATCCATCTTC
3A3	AGTAGGCACT	TATGTCTTCGGAACCTGGGACCAAGGTCAACCGTCCCTAG	GGGCTGATGGCTGCACCAACTGTATCCATCTTC
2-7	AGCAGGCACT	TATGTCTTCGGAACCTGGGACCAAGGTCAACCGTCCCTAG	GGGCTGATGGCTGCACCAACTGTATCCATCTTC
FWR4		F G T G T K V T V L G A D A A P T V S I F	

FIG. 11

	3' Human V λ	Human J λ	5' Mouse C κ
5-2	CAGCCTGAGTGGTTC	TGTGTTGGAGGGCACCGGCTGACCGCCCTCG	GGGCTGATGCTGACCAACTGTATCCATC
2-5	CAGCCTGAGTGGTT	ATGTCCTCGGAACCTGGACCAAGGTACCGTCCTAG	GGGCTGATGCTGACCAACTGTATCCATC
1-3	CAGCCTGAGTGGT	GCTGTTCGAGGGCACCCAGCTGACCGCCCTCG	GGGCTGATGCTGACCAACTGTATCCATC
4B-1	CAGCCTGAGTGGTC	GGGTGTTCGGGGGAGGGACCAAGCTGACCGCCCTAG	GGGCTGATGCTGACCAACTGTATCCATC
3B-5	CAGCAGCACTGC	TGTGTTCGAGGGCACCCAGCTGACCGCCCTCG	GGGCTGATGCTGACCAACTGTATCCATC
7A-1	CAGCAGTGGTAA	GCTGTTGTTGGAGGGACCCAGCTGACCGCCCTCG	GGGCTGATGCTGACCAACTGTATCCATC
5-1	CAGCAGTGGTAATCATAG	GGTGTTCGGGGAGGGACCAAGGTGACCGCCCTAG	GGGCTGATGCTGACCAACTGTATCCATC
4A-1	CAGCCTGAGTGGTT	ATGTCCTCGGAACCTGGACCAAGGTACCGCCCTAG	GGGCTGATGCTGACCAACTGTATCCATC
11A-1	CAGCAGCGCT	GTGGTATTGGGGAGGGACCAAGGTGACCGCCCTAG	GGGCTGATGCTGACCAACTGTATCCATC
5-7	CTACTATGGTGGCTC	GGCTGTTGGGGAGGGACCAAGGTGACCGCCCTAG	GGGCTGATGCTGACCAACTGTATCCATC
5-4	CTCCCTATAGTGGTGTG	GTATTTCGGGGAGGGACCAAGGTGACCGCCCTAG	GGGCTGATGCTGACCAACTGTATCCATC
2-3	GAGCAACTCGTGT	CTGTTGGGGAGGGACCCAGCTGACCGCCCTCG	GGGCTGATGCTGACCAACTGTATCCATC
	FWR4	F G G G T K L T V L G A D A A P T V S I	

FIG. 12

	3' Human V λ	Human J λ 1	5' Mouse C λ 2
2D1	GCAGGAGGAAACAAATTa	AGTCTTCGGAACCTGGGACCAAGGTACCCGTCCCTAG	GTCAGCCCCAAGTCCACTCCCACTCTC
2D9	GACAGCAGTGGTAATCAT	TATGGTCTCGGAACCTGGGACCAAGGTACCCGTCCCTAG	GTCAGCCCCAAGTCCACTCCCACTCTC
3E15	GACAGCAGCACTGCC	GTCTTCGGAACCTGGGACCAAGGTACCCGTCCCTAG	GTCAGCCCCAAGTCCACTCCCACTCTC
FWR4		F G T G T K V T V L G Q P K S T P T L	

FIG. 13

SEQUENCE LISTING

<110> Macdonald, Lynn
Stevens, Sean
Gurer, Cagan
Murphy, Andrew J.
Hosiawa, Karolina A.

<120> HYBRID LIGHT CHAIN MICE

<130> 795A-W0

<140> To be assigned
<141>

<150> 61/357,314
<151> 2010-06-22

<150> 61/357,317
<151> 2010-06-22

<160> 105

<170> FastSEQ for Windows Version 4.0

<210> 1
<211> 219
<212> DNA
<213> artificial sequence

<220>
<223> synthetic

<400> 1
actttcagaa ttttcttgaa cagtctctga gaaacacgga agacggccgc ataacttcgt 60
atagtataca ttatacgaag ttattctaga ccccccggct cgataactat aacggtccta 120
aggtagcgac tcgagataac ttcgtataat gtatgctata cgaagttatc catggtaagc 180
ttacgtggca tacagtgtca gattttctgt ttatcaagc 219

<210> 2
<211> 21
<212> DNA
<213> artificial sequence

<220>
<223> synthetic

<400> 2
agctgaatgg aaacaaggca a 21

<210> 3
<211> 19
<212> DNA
<213> artificial sequence

<220>
<223> synthetic

<400> 3

ggagacaatg ccccaagtga	19
<210> 4	
<211> 21	
<212> DNA	
<213> artificial sequence	
<220>	
<223> synthetic	
<400> 4	
tcccataggg ctaggatttc c	21
<210> 5	
<211> 19	
<212> DNA	
<213> artificial sequence	
<220>	
<223> synthetic	
<400> 5	
tcccctcaca ctgttcccc	19
<210> 6	
<211> 19	
<212> DNA	
<213> artificial sequence	
<220>	
<223> synthetic	
<400> 6	
ggtggagagg ctattcgcc	19
<210> 7	
<211> 17	
<212> DNA	
<213> artificial sequence	
<220>	
<223> synthetic	
<400> 7	
gaacacggcg gcatcag	17
<210> 8	
<211> 21	
<212> DNA	
<213> artificial sequence	
<220>	
<223> synthetic	
<400> 8	
tcaaaccttc ccagcctgtc t	21
<210> 9	
<211> 24	
<212> DNA	
<213> artificial sequence	

<220>		
<223> synthetic		
<400> 9		
ccccagagag agaaaaacaga tttt		24
<210> 10		
<211> 20		
<212> DNA		
<213> artificial sequence		
<220>		
<223> synthetic		
<400> 10		
ccctggtgaa gcatgttgc		20
<210> 11		
<211> 20		
<212> DNA		
<213> artificial sequence		
<220>		
<223> synthetic		
<400> 11		
tgtggcctgt ctgccttacg		20
<210> 12		
<211> 21		
<212> DNA		
<213> artificial sequence		
<220>		
<223> synthetic		
<400> 12		
cacacctaga ccccgaaat c		21
<210> 13		
<211> 21		
<212> DNA		
<213> artificial sequence		
<220>		
<223> synthetic		
<400> 13		
tcgcttgcc agttgattct c		21
<210> 14		
<211> 17		
<212> DNA		
<213> artificial sequence		
<220>		
<223> synthetic		
<400> 14		
tgcggccgat cttagcc		17

<210> 15		
<211> 18		
<212> DNA		
<213> artificial sequence		
<220>		
<223> synthetic		
<400> 15		
ttgaccgatt ccttgcgg		18
<210> 16		
<211> 20		
<212> DNA		
<213> artificial sequence		
<220>		
<223> synthetic		
<400> 16		
gcaaacaaaa accactggcc		20
<210> 17		
<211> 19		
<212> DNA		
<213> artificial sequence		
<220>		
<223> synthetic		
<400> 17		
ggccacattc catgggttc		19
<210> 18		
<211> 22		
<212> DNA		
<213> artificial sequence		
<220>		
<223> synthetic		
<400> 18		
ccatgactgg gcctctgtac ac		22
<210> 19		
<211> 25		
<212> DNA		
<213> artificial sequence		
<220>		
<223> synthetic		
<400> 19		
caagtcaagg tgctaatgct gtatc		25
<210> 20		
<211> 19		
<212> DNA		
<213> artificial sequence		

<220>		
<223> synthetic		
<400> 20		
cacagcttgt gcagcctcc		19
<210> 21		
<211> 22		
<212> DNA		
<213> artificial sequence		
<220>		
<223> synthetic		
<400> 21		
gggcactgga tacgatgtat gg		22
<210> 22		
<211> 21		
<212> DNA		
<213> artificial sequence		
<220>		
<223> synthetic		
<400> 22		
tcataggtag gtctcagttt g		21
<210> 23		
<211> 21		
<212> DNA		
<213> artificial sequence		
<220>		
<223> synthetic		
<400> 23		
tgatctgcgc tgtttcatcc t		21
<210> 24		
<211> 31		
<212> DNA		
<213> artificial sequence		
<220>		
<223> synthetic		
<400> 24		
tgacatgaac catctgtttc tctctcgaca a		31
<210> 25		
<211> 29		
<212> DNA		
<213> artificial sequence		
<220>		
<223> synthetic		
<400> 25		
agagacgctc cgaggtcaag gtgctctag		29

<210> 26		
<211> 23		
<212> DNA		
<213> artificial sequence		
<220>		
<223> synthetic		
<400> 26		
tgggcacaac agacaatcg 23	ctg	
<210> 27		
<211> 16		
<212> DNA		
<213> artificial sequence		
<220>		
<223> synthetic		
<400> 27		
accctctgct gtccct 16		
<210> 28		
<211> 26		
<212> DNA		
<213> artificial sequence		
<220>		
<223> synthetic		
<400> 28		
ccaagcagga ggtgctcagt tcccaa 26		
<210> 29		
<211> 24		
<212> DNA		
<213> artificial sequence		
<220>		
<223> synthetic		
<400> 29		
tccacactgt cggtggag ctca 24		
<210> 30		
<211> 21		
<212> DNA		
<213> artificial sequence		
<220>		
<223> synthetic		
<400> 30		
acgagcgggt tcggccatt c 21		
<210> 31		
<211> 37		
<212> DNA		
<213> artificial sequence		
<220>		

<223> synthetic	
<400> 31	
ctgttcctct aaaactggac tccacagtaa atggaaa	37
<210> 32	
<211> 27	
<212> DNA	
<213> artificial sequence	
<220>	
<223> synthetic	
<400> 32	
tgccgcttat acaacactgc catctgc	27
<210> 33	
<211> 37	
<212> DNA	
<213> artificial sequence	
<220>	
<223> synthetic	
<400> 33	
agaagaagcc tgtactacag catccgtttt acagtca	37
<210> 34	
<211> 21	
<212> DNA	
<213> artificial sequence	
<220>	
<223> synthetic	
<400> 34	
gggctacttg aggaccttgc t	21
<210> 35	
<211> 23	
<212> DNA	
<213> artificial sequence	
<220>	
<223> synthetic	
<400> 35	
gacagccctt acagagtttg gaa	23
<210> 36	
<211> 23	
<212> DNA	
<213> artificial sequence	
<220>	
<223> synthetic	
<400> 36	
aagaccagga gctctgccta agt	23
<210> 37	

<211> 22	
<212> DNA	
<213> artificial sequence	
<220>	
<223> synthetic	
<400> 37	22
cccatcacga actgaagttg ag	
<210> 38	
<211> 20	
<212> DNA	
<213> artificial sequence	
<220>	
<223> synthetic	
<400> 38	20
cagggcctcc atcccaggca	
<210> 39	
<211> 28	
<212> DNA	
<213> artificial sequence	
<220>	
<223> synthetic	
<400> 39	28
ccccagtgtg tgaatcactc taccctcc	
<210> 40	
<211> 20	
<212> DNA	
<213> artificial sequence	
<220>	
<223> synthetic	
<400> 40	20
cctctccctcc tcaccctcct	
<210> 41	
<211> 20	
<212> DNA	
<213> artificial sequence	
<220>	
<221> variation	
<222> (4)...(4)	
<223> r=a or g	
<220>	
<221> variation	
<222> (9)...(9)	
<223> s=c or g	
<220>	
<221> variation	
<222> 11, 12, 13	

<223> y=c or t	
<400> 41	20
atgrccdgst yyyctctcct	
<210> 42	
<211> 18	
<212> DNA	
<213> artificial sequence	
<220>	
<223> synthetic	
<400> 42	18
ctcctcaactc agggcaca	
<210> 43	
<211> 20	
<212> DNA	
<213> artificial sequence	
<220>	
<221> variation	
<222> (18)...(18)	
<223> s=c or g	
<400> 43	20
atggcctggg ctctgctcct	
<210> 44	
<211> 19	
<212> DNA	
<213> artificial sequence	
<220>	
<221> variation	
<222> (11)...(11)	
<223> y=c or t	
<220>	
<221> variation	
<222> (13)...(13)	
<223> s=c or g	
<400> 44	19
atggcctggg ycsctctcc	
<210> 45	
<211> 23	
<212> DNA	
<213> artificial sequence	
<220>	
<221> variation	
<222> 11, 16, 18, 21	
<223> y=c or t	
<220>	
<221> variation	
<222> (15)...(15)	
<223> r=a or g	

<220>		
<221> variation		
<222> (20)...(20)		
<223> m=a or c		
<400> 45		
tcaccatggc ytggrycycm ytc		23
<210> 46		
<211> 22		
<212> DNA		
<213> artificial sequence		
<220>		
<223> synthetic		
<400> 46		
tcaccatggc ctgggtctcc tt		22
<210> 47		
<211> 22		
<212> DNA		
<213> artificial sequence		
<220>		
<221> variation		
<222> (16)...(16)		
<223> m=a or c		
<220>		
<221> variation		
<222> (19)...(19)		
<223> y=c or t		
<400> 47		
tcaccatggc ctggamtcyt ct		22
<210> 48		
<211> 26		
<212> DNA		
<213> artificial sequence		
<220>		
<223> synthetic		
<400> 48		
tcaccatggc ctgggctcca ctactt		26
<210> 49		
<211> 20		
<212> DNA		
<213> artificial sequence		
<220>		
<223> synthetic		
<400> 49		
tcaccatggc ctggactcct		20
<210> 50		

<211> 23		
<212> DNA		
<213> artificial sequence		
<220>		
<223> synthetic		
<400> 50		
tcaccatggc ctggatgatg ctt		23
<210> 51		
<211> 22		
<212> DNA		
<213> artificial sequence		
<220>		
<223> synthetic		
<400> 51		
taaatatggc ctgggctcct ct		22
<210> 52		
<211> 22		
<212> DNA		
<213> artificial sequence		
<220>		
<223> synthetic		
<400> 52		
tcaccatgcc ctgggctctg ct		22
<210> 53		
<211> 22		
<212> DNA		
<213> artificial sequence		
<220>		
<223> synthetic		
<400> 53		
tcaccatggc cctgactcct ct		22
<210> 54		
<211> 30		
<212> DNA		
<213> artificial sequence		
<220>		
<223> synthetic		
<400> 54		
cccaagctta ctggatggtg ggaagatgga		30
<210> 55		
<211> 16		
<212> DNA		
<213> artificial sequence		
<220>		
<223> synthetic		

<400> 55	
gtaaaacgac ggccag	16
<210> 56	
<211> 17	
<212> DNA	
<213> artificial sequence	
<220>	
<223> synthetic	
<400> 56	
cagggaaacag ctatgac	17
<210> 57	
<211> 440	
<212> DNA	
<213> artificial sequence	
<220>	
<223> synthetic	
<400> 57	
gggcctggc tctgctgctc ctcaccctcc tcactcaggg cacagggtcc tgggcccagt 60	
ctgcctgac tcagcctccc tccgcgtccg ggtctcctgg acagtcagtc accatctcct 120	
gcactgaaac cagcagtgac gttgggtggtt ataaactatgt ctccctggta caacagcacc 180	
caggcaaaac ccccaaactc atgattttagt aggtcagtaa gcggccctca ggggtccctg 240	
atcgcttctc tggtccaaag tctggcaaca cggcctccct gaccgtctc gggctccagg 300	
ctgaggatga ggctgattat tactgcagct catatgcagg cagcaacaat ttgcgtttcg 360	
gaactgggac caaggtcacc gtcctaggg ctgatgctgc accaactgtta tccatcttcc 420	
caccatccag taagtttggg 440	
<210> 58	
<211> 441	
<212> DNA	
<213> artificial sequence	
<220>	
<223> synthetic	
<400> 58	
atggcctggg ctctgctgct cctcaccctc ctcactcagg gcacagggtc ctgggcccag 60	
tctgcctgaa ctcagcctcc ctccgcgtcc gggctcctg gacagtca gaccatctcc 120	
tgcactggaa ccagcagtga cgttgggtgt tataactatgt tctccctggta ccaacagcac 180	
ccaggcaaaag ccccaaactc catgattttagt gaggtcaacta agcggccctc aggggtccct 240	
gatcgcttct ctggctccaa gtctggcaac acggcctccc tgaccgtctc tgggctccag 300	
gctgaggatg aggtgattat ttactgcagc tcatatgcagg gcagcaacaa ttatgtttc 360	
ggaactgggaa ccaaggtcacc cgtcctaggg gctgatgctg caccaactgtt atccatcttcc 420	
ccaccatcca gtaagcttgg g 441	
<210> 59	
<211> 441	
<212> DNA	
<213> artificial sequence	
<220>	
<223> synthetic	
<400> 59	
atggcctggg ctctgctgct cctcaccctc ctcactcagg gcacagggtc ctgggcccag 60	

tctgccctga ctcagcctcc ctccgcgtcc gggctcttg gacagtcgt caccatctcc 120
 tgcactggaa ccagcagtga cggtgggt tataactatg tctcctggta ccaacagcac 180
 ccaggcaaag ccccaaact catgattat gaggtcgt gacggccctc aggggtccct 240
 gatcgcttct ctggctccaa gtctggcaac acggcctccc tgaccgtctc tgggctccag 300
 gctgaggatg aggctgatta ttactgcagc tcataatgcag gcagcaacaa ttatgtcttc 360
 ggaactggga ccaagggtcac cgtccttaggg gctgatgctg caccaactgt atccatcttc 420
 ccaccatcca gtaagcttgg g 441

<210> 60
 <211> 438
 <212> DNA
 <213> artificial sequence

<220>
 <223> synthetic

<400> 60
 atggcctggg ctctgctcct caccctccctc actcaggca cagggcctg gcccagtct 60
 gccctgactc agcctccctc cgcgtccggg ttcctggac agtcgtcac catctcctgc 120
 actggaaacca gcagtgcgt tgggtgttat aactatgtct cctggatcca acagcaccca 180
 gcaaagccc ccaaactcat gattatgag gtcagtaagc ggcctcagg gtcctgtat 240
 cgcttctctg gtcctaaatc tggcaacacg gcctccctga ccgtctctgg gtcctcagg 300
 gaggatgagg ctgattatca ctgcagctca tatgcaggca gcaacaatta tgtttcgaa 360
 actgggacca aggtcaccgt cctagggct gatgcgtcac caactgttac catttccca 420
 ccatccagta agttggg 438

<210> 61
 <211> 438
 <212> DNA
 <213> artificial sequence

<220>
 <223> synthetic

<400> 61
 atggcctggg ctctgctgct ctcaccctc ctcactcagg gcacagggtc ctgggcccag 60
 tctgccctga ctcagcctcc ctccgcgtcc gggctcttg gacagtcgt caccatctcc 120
 tgcactggaa ccagcagtga cggtgggt tataactatg tctcctggta ccaacagcac 180
 ccaggcaaag ccccaaact catgattat gaggtcgt gacggccctc aggggtccct 240
 gatcgcttct ctggctccaa gtctggcaac acggcctccc tgaccgtctc tgggctccag 300
 gctgaggatg aggctgatta ttactgcagc tcataatgcag gcagcaacaa ttatgtcttc 360
 actgggacca aggtcaccgt cctagggct gatgcgtcac caactgttac catttccca 420
 ccatccagta agttggg 438

<210> 62
 <211> 441
 <212> DNA
 <213> artificial sequence

<220>
 <223> synthetic

<400> 62
 atggcctggg ctctgctcct ctcaccctc ctcactcagg gcacagggtc ctgggcccag 60
 tctgccctga ctcagcctcc ctccgcgtcc gggctcttg gacagtcgt caccatctcc 120
 tgcactggaa ccagcagtga cggtgggt tataactatg tctcctggta ccaacagcac 180
 ccaggcaaag ccccaaact catgattat gaggtcgt gacggccctc aggggtccct 240
 gatcgcttct ctggctccaa gtctggcaac acggcctccc tgaccgtctc tgggctccag 300
 gctgaggatg aggctgatta ttactgcagc tcataatgcag gcagcaacaa ttatgtcttc 360
 ggaactggga ccaagggtcac cgtccttaggg gctgatgctg caccaactgt atccatcttc 420
 ccaccatcca gtaagcttgg g 441

```

<210> 63
<211> 442
<212> DNA
<213> artificial sequence

<220>
<223> synthetic

<400> 63
atggcctggg ctctgctgct ctcaccctc ctcactcagg gcacagggc ctgggcccag 60
tctgcctgta ctcagcctcc ctccgcgtcc gggctctcctg gacagtcgt caccatctcc 120
tgcactggaa ccagcagtga cggtgggttataactatgt tctcctggta ccaacagcac 180
ccaggcaaag ccccaaact catgattat gaggtcagta agcggccctc aggggtccct 240
gatcgcttct ctggctccaa gtctggcaac acggcctccc tgaccgtctc tgggctccag 300
gctgaggatg agctgatta ttactgcagc tcataatgcag gcagcaacaa tttatgtctt 360
cggaactggg accaaggta ccgtcttagg ggctgatgct gcaccaactg tatccatctt 420
cccaccatcc agtaagcttgg 442

<210> 64
<211> 428
<212> DNA
<213> artificial sequence

<220>
<223> synthetic

<400> 64
ctttcatttt ctccacaggct ctcgtgctc tgccctgtgct gactcagccc ccgtctgcat 60
ctgccttgct gggagcctcg atcaagctca cctgcaccct aagcagttag cacagcacct 120
acaccatcga atggtatcaa cagagaccag ggaggcccccc ccagtatata atgaaggta 180
agagtatgg cagccacagc aagggggacg ggtatccccga tcgcttcatg ggctccagtt 240
ctgggctgta ccgttaccc accttctcca acctccagtc tgacgatgag gctgagttac 300
actgtggaga gagccacacagc attgatggcc aagtccgttg tgtcttcgga actgggacca 360
agtcaccgt cctagggct gatgctgcac caactgtatc catctccca ccatccagta 420
agtttggg 428

<210> 65
<211> 441
<212> DNA
<213> artificial sequence

<220>
<223> synthetic

<400> 65
atgacctgct cccctctcct ctcaccctt ctcattcaact gcacagggc ctgggcccag 60
tctgtttgta cgccgcgcctc ctcagttct gcggcccccag gacagaaggc caccatctcc 120
tgcctggaa gcagctccaa cattggaaat aattatgtat cttggatcca gcagctccca 180
ggaacagccc cccaaactcct catttatgac aataataagg gaccctcagg gattcctgac 240
cgattctctg gtcggatgtc tggcacgtca gccaccctgg gcatcaccgg actccagact 300
ggggacgggg ccgattattaa ctgcggaaaca tggatagca gcctgatgtc ttatgtctt 360
ggaactggg ccaaggta cgtccttaggg gctgatgtc caccaactgt atccatctt 420
ccaccatcca gtgagcaggta a 441

<210> 66
<211> 441
<212> DNA
<213> artificial sequence

<220>

```

<223> synthetic

<400> 66

atgacctgct cccctctcct ctcaccctt ctcattcaact gcacagggtc ctgggcccag 60
tctgtgtga cgagccgccc ctcagtgtct gcgccccag gacagaaggt caccatctcc 120
tgctctggaa gcagctccaa cattggaaat aattatgtat cctggatcca gcagctccca 180
ggaacagccc ccaaactcct catttatgac aataataagc gaccctcagg gattcctgac 240
cgattctctg gctccaagtc tggcacgtca gccaccctgg gcatcaccgg actccagact 300
ggggacgagg ccgattatta ctgcggaaaca tggatagca gcctgagtgc ggctttttt 360
ggaactggga ccaaggtcac cgtcctaggg gctgatgctg caccaactgt atccatcttc 420
ccaccatcca gtgagcagtt a 441

<210> 67

<211> 345

<212> DNA

<213> artificial sequence

<220>

<223> synthetic

<400> 67

cccgccaga gggtcacccat ctcttgcgtt ggaaggcagct ccaacatcgg aagtaataact 60
gtaaactggt accagcagct cccaggaacg gcccccaac tcctcatcta tagtaataat 120
cagcggccct caggggtccc tgaccgattc tctggctcca agtctggcac ctcagcctcc 180
ctggccatca gtgggctcca gtctgaggat gaggctgatt attactgtgc agcatggat 240
gacagcctga atggttatgt cttcggaaact gggaccaagg tcaccgtcct aggggctgat 300
gctgcaccaa ctgtatccat cttccacca tccagtgagc agtta 345

<210> 68

<211> 432

<212> DNA

<213> artificial sequence

<220>

<223> synthetic

<400> 68

atggcctgga cccctctcct gctccccctc ctcactttct gcacagtctc tgaggcctcc 60
tatgagctga cacagccacc ctcgggtgtca gtgtccccag gacaaacggc caggatcacc 120
tgctctggag atgcattgtcc aaaaaaatat gcttattgggt accagcagaa gtcaggccag 180
gccccctgtgc tggcatctca tgaggacagc aaacgaccct ccgggatccc tgagagattc 240
tctggctcca gtcaggggac aatggccacc ttgactatca gtggggccca ggtggaggat 300
gaagctgact actactgtta ctcaacagac tacagtggta atcatgtctt cggaaactggg 360
accaaggtca ccgtcctagg ggctgatgct gcaccaactg tatccatctt cccaccatcc 420
agtgagcagt ta 432

<210> 69

<211> 426

<212> DNA

<213> artificial sequence

<220>

<223> synthetic

<400> 69

atggcctgga ctccctctc tctgttcctc ctcacttgct gcccagggtc caattccccag 60
gctgtgggtga ctcaggagcc ctcactgact gtgtccccag gaggacagt cactctcacc 120
tgtggctcca gcactggaggc tgcaccagggt gtcattatc cctactggtt ccagcagaag 180
cctggccaag ccccccaggac actgatttat gatacaagca acaaacactc ctggacacact 240
gcccgggtct caggctccct ccttgggggc aaagctgcc tgacccttc gggtgcgac 300
cctgaggatg aggctgagta ttactgcttg ctctcctata gtggtgctta tgtcttcgga 360

```

actgggacca aggtcaccgt cctaggggct gatgctgcac caactgtatc catcttccca 420
ccatcc                                         426

<210> 70
<211> 331
<212> DNA
<213> artificial sequence

<220>
<223> synthetic

<400> 70
agtggctctg ggacagacgg ccaggattac ctgtggggaa aacaacattg gaagtaaaaa 60
tgtgcactgg taccagcaga agccaggcca ggccctgtg ctggtcatct atagggataa 120
caaccggccc tctgggatcc ctgagcgatt ctctggctcc aactcgggaa acacggccac 180
cctgaccatc agcagagccc aagccgggaa tgaggctgac tattactgtc aggtgtggg 240
cagcagact tatgtcttcg gaactgggac caaggtcacc gtcctagggg ctgatgctgc 300
accaactgttccatcttcc caccatccag t                                         331

<210> 71
<211> 417
<212> DNA
<213> artificial sequence

<220>
<223> synthetic

<400> 71
actcctctcc tcctcctgtt cctctctcac tgcacaggtt ccctctcgca ggctgtgctg 60
actcagccgt ctccctctc tgcatctcctt ggagcatcaag ccagtcac ctgcacctt 120
cgcagtgccca tcaatgttgg tacctacagg atatactggt accagcagaa gccagggagt 180
cctcccccagt attcctctgag gtacaatca gactcagata agcagcaggctt ctctggagtc 240
cccagccgct tctctggatc caaagatgct tcggccaatg cagggatttt actcatctt 300
gggctccagt ctgaggatga ggctgactat tactgtatga tttggcacag cagcgcttat 360
gttctcgaa ctgggaccaa ggtcaccgtc cttagggctg atgctgcacc aactgtt 417

<210> 72
<211> 393
<212> DNA
<213> artificial sequence

<220>
<223> synthetic

<400> 72
tttctgttcc tcctcacttg ctgcccagggttccaattctc agactgtggt gactcaggag 60
ccctcactga ctgtgtcccc aggaggacatcacttca cctgtgtttc cagcactggaa 120
gcagtcacca gtggttacta tccaaactgg ttccagcaga aacctggaca agcaccgg 180
gcactgattt atagtacaag caacaaacgc tcctggaccc ctggccgggtt ctcaggctcc 240
ctccttgggg gcaaagctgc cctgacactg tcaggtgtgc agcctgagga cgaggctgag 300
tattactgcc tgcctacta tgggtgggttatgtcttcg gaactgggac caaggtcacc 360
gtccttagggg ctgatgctgc accaactgttcc                                         393

<210> 73
<211> 417
<212> DNA
<213> artificial sequence

<220>
<223> synthetic

```

<400> 73
 atggcctggg ctctgctgct cctcaactc ctcactcagg acacagggtc ctgggcccag 60
 tctgcctga ctcagcctgc ctccgtgtct gggctccctg gacagtcgt caccatctcc 120
 tgcactggaa ccagcagtga tgttggagt tataacccctt tctcctggta ccaacagcac 180
 ccaggcaaag cccccaaact catgatttt gagggtcgtga agcggccctc aggggtttct 240
 aatcgcttct ctggctccaa gtctggcaac acggcctccc tgacaatctc tgggctccag 300
 gctgaggacg aggctgatta ttactgctgc tcataatgcag gtatgtcac ttatgtcttc 360
 ggaactggga ccaaggtcac cgtcctaggg gctgtatgtc caccaactgt atccatc 417

<210> 74
 <211> 348
 <212> DNA
 <213> artificial sequence

<220>
 <223> synthetic

<400> 74
 cagtctgccc tgactcagcc tgcctccgtg tctgggtctc ctggacagtc gatcaccatc 60
 tcctgcactg gaaccaggcag tgacgttggt gttataact atgtctccctg gtaccaacag 120
 caccaggca aagccccaa actcatgatt tatgagggtca gtaatcggcc ctcagggtt 180
 tctaattcgct tctctggctc caagtctggc aacacggcct ccctgaccat ctctgggctc 240
 caggctgagg acgaggctga ttattactgc agtctatata caagcagcag cacttatgtc 300
 ttcggaactg ggaccaaggt caccggctg gggctgtatc ctgcacca 348

<210> 75
 <211> 20
 <212> DNA
 <213> Artificial Sequence

<220>
 <223> synthetic

<400> 75
 aacaaccgag ctccaggtgt 20

<210> 76
 <211> 19
 <212> DNA
 <213> Artificial Sequence

<220>
 <223> synthetic

<400> 76
 agggcagcct tgtctccaa 19

<210> 77
 <211> 20
 <212> DNA
 <213> Artificial Sequence

<220>
 <223> synthetic

<400> 77
 cctgccagat tctcaggctc 20

<210> 78
 <211> 20
 <212> DNA

<213> Artificial Sequence	
<220>	
<223> synthetic	
<400> 78	
catcacaggg gcacagactg	20
<210> 79	
<211> 19	
<212> DNA	
<213> Artificial Sequence	
<220>	
<223> synthetic	
<400> 79	
gatttgctga gggcagggt	19
<210> 80	
<211> 21	
<212> DNA	
<213> Artificial Sequence	
<220>	
<223> synthetic	
<400> 80	
ccccaaagtct gatccttcct t	21
<210> 81	
<211> 20	
<212> DNA	
<213> Artificial Sequence	
<220>	
<223> synthetic	
<400> 81	
gctgaccaac gatcgccctaa	20
<210> 82	
<211> 19	
<212> DNA	
<213> Artificial Sequence	
<220>	
<223> synthetic	
<400> 82	
taagcgccac actgcacct	19
<210> 83	
<211> 24	
<212> DNA	
<213> Artificial Sequence	
<220>	
<223> synthetic	
<400> 83	

cctgccagat tctcaggctc cctg	24
<210> 84	
<211> 23	
<212> DNA	
<213> Artificial Sequence	
<220>	
<223> synthetic	
<400> 84	
ctgattggag acaaggctgc cct	23
<210> 85	
<211> 30	
<212> DNA	
<213> Artificial Sequence	
<220>	
<223> synthetic	
<400> 85	
ccttcatact ctgcatacct cccttctcca	30
<210> 86	
<211> 35	
<212> DNA	
<213> Artificial Sequence	
<220>	
<223> synthetic	
<400> 86	
ttccttctct tctgtgactc aattatttgt ggaca	35
<210> 87	
<211> 159	
<212> DNA	
<213> Artificial Sequence	
<220>	
<223> synthetic	
<400> 87	
tctggcacct cagcctccct ggccatcaact gggctccagg ctgaggatga ggctgattat 60	
tactgcctagt cctatgacag cagcctgagt ggttctgtgt tcggaggagg cacccggctg 120	
accgcctcg gggctgatgc tgcaccaact gtatccatc	159
<210> 88	
<211> 159	
<212> DNA	
<213> Artificial Sequence	
<220>	
<223> synthetic	
<400> 88	
tctggcacct cagcctccct ggccatcaact gggctccagg ctgaggatga ggctgattat 60	
tactgcctagt cctatgacag cagcctgagt ggttatgtct tcggaactgg gaccaaggc 120	
accgtcttag gggctgatgc tgcaccaact gtatccatc	159

```

<210> 89
<211> 159
<212> DNA
<213> Artificial Sequence

<220>
<223> synthetic

<400> 89
tctggcacct cagcctccct ggcacatcagt gggctccagt ctgaggatga ggctgattat 60
tactgtcag catggatga cagcctgaat ggtgctgtgt tcggaggagg cacccagctg 120
accgcctcg gggctgatgc tgcaccaact gatatccatc 159

<210> 90
<211> 159
<212> DNA
<213> Artificial Sequence

<220>
<223> synthetic

<400> 90
tctggcacct cagcctccct ggcacatcagt gggctccggc ccgaggatga ggctgattat 60
tactgtcag catggatga cagcctgagt ggtcgggtgt tcggcggagg gaccaagctg 120
accgtccatc gggctgatgc tgcaccaact gatatccatc 159

<210> 91
<211> 153
<212> DNA
<213> Artificial Sequence

<220>
<223> synthetic

<400> 91
tcggggaca cggccaccct gaccatcagc agagcccaag ccggggatga ggctgactat 60
tactgtcagg tgtggacag cagcactgct gtgttcggag gaggcaccca gctgaccgccc 120
ctcggggctg atgctgcacc aactgtatcc atc 153

<210> 92
<211> 156
<212> DNA
<213> Artificial Sequence

<220>
<223> synthetic

<400> 92
tcagggacaa tggccaccctt gactatcagt gggggccagg tggaggatga agctgactac 60
tactgttact caacagacag cagtggtaat gctgtgttcg gaggaggcac ccagctgacc 120
gccctcgaaa ctgatgctgc accaactgtt tccatc 156

<210> 93
<211> 159
<212> DNA
<213> Artificial Sequence

<220>
<223> synthetic

<400> 93

```

tcagggacaa tggccaccaa gactatcagt ggggcccagg tggaggatga agctgactac 60
 tactgttact caacagacag cagtggtaat catagggtgt tcggcggagg gaccaagctg 120
 accgtcttag gggctgatgc tgaccaact gtatccatc 159

<210> 94
 <211> 159
 <212> DNA
 <213> Artificial Sequence

<220>
 <223> synthetic

<400> 94
 tctggcacct cagcctccct ggccatcaact gggctccagg ctgaggatga ggctgattat 60
 tactgcagg cctatgacag cagcctgagt gtttatgtct tcggaactgg gaccaaggc 120
 accgtcttag gggctgatgc tgaccaact gtatccatc 159

<210> 95
 <211> 159
 <212> DNA
 <213> Artificial Sequence

<220>
 <223> synthetic

<400> 95
 gatgcttcgg ccaatgcagg gattttactc atctctggc tccagtcga ggatgaggct 60
 gactattact gatgatttg gcacagcagc gctgtggat tcggcggagg gaccaagctg 120
 accgtcttag gggctgatgc tgaccaact gtatccatc 159

<210> 96
 <211> 153
 <212> DNA
 <213> Artificial Sequence

<220>
 <223> synthetic

<400> 96
 cttggggca aagctgccct gacactgtca ggtgtgcagc ctgaggacga ggctgagttat 60
 tactgcctgc tctactatgg tggtgctcg gtttcggcg gagggacaa gctgaccg 120
 ctagggctg atgctgcacc aactgtatcc atc 153

<210> 97
 <211> 153
 <212> DNA
 <213> Artificial Sequence

<220>
 <223> synthetic

<400> 97
 cttggggca aagctgccct gacccttcg ggtgcgcagc ctgaggatga ggctgagttat 60
 tactgcttgc tctcctatag tggtgctcg gtattcggcg gagggacaa gctgaccg 120
 ctagggctg atgctgcacc aactgtatcc atc 153

<210> 98
 <211> 165
 <212> DNA
 <213> Artificial Sequence

<220>
 <223> synthetic

<400> 98
 tcaggcctga atcggcaccc gaccatcaag aacatccagg aagaggatga gagtgactac 60
 cactgtgggg cagaccatgg cagtgggagc aacttcgtgt ctgtttcg aggaggcacc 120
 cagctgaccg ccctcggggc tcatgctgca ccaactgtat ccatac 165

<210> 99
 <211> 164
 <212> DNA
 <213> Artificial Sequence

<220>
 <223> synthetic

<400> 99
 tctggcacgt cagccaccct gggcatcacc ggactccaga ctggggacga ggccgattat 60
 tactgcggaa catggatag cagcctgagt gctggccccc ggtgttcggc ggagggacca 120
 agctgaccgt cctaggggct gatgctgcac caactgtatc catc 164

<210> 100
 <211> 22800
 <212> DNA
 <213> Artificial Sequence

<220>
 <223> synthetic

<400> 100
 aagctctaaa actacaaact gctgaaagat ctaatgacta ggacagccta gtaattttca 60
 tagggcata aatgtgaaac gccttgca tcgtagaaga aagcagaaga gaaagcattc 120
 ccaatttctt aactgcctt tacctatatt aatcagtaat atactggctt ttacctctgt 180
 taatcataat aaacaaattt tcaataaattt ttatcgatac tcttcaatgc ctgctcagca 240
 acattttccg aaggcagctc aagatattaa ataactcata agggccaacc tcctattgca 300
 gcatttttg ggatttaacc agtttccaa gactctttc acaatgttaa gatgttagaa 360
 atagatccaa aacttaggtga tatatcccct agtaaaaactg tgaggtaaa cttgtctggc 420
 taatgcttcc atttaaaaat ttctcttct tcatccttca ttgtatgtac acaataaattc 480
 agggggaaaac tttaactgag tgaatcaaag tattctcatt attataatag gagcttcaca 540
 cacacacaaa aaaatcaatt ctattactct cagcctcagt tcctaaagcc aagttaaagt 600
 cctgttctaa gatcattgtt gcatgaccat atgtattcca ggtctaatct aaactgtgga 660
 taaatcccag caggacatta gagatttttg tgagagtaag catataggat tcagggttt 720
 tgagctttag atttttcttg tcaaaatgaa tgagagttgc catatctaaa aattattccc 780
 agataaataa aattcactac ctagaattaa ttatgcata taagtagaaa tgctatctcc 840
 ctttttacca tccaaagtgg aaagcctcat ggaactagaa attaatatta gaaaaatcag 900
 ttaataaaag tatgtcattt catcaattca ataagttata atagaaaaa accataataa 960
 attatcactt aaatgtcaat acatttataa actatggtaataatagga tattgaataag 1020
 ccattgatgc tcctgatgaa aattagcagg cagtgataaa tgataaatat gaagcacatg 1080
 tcaataaataa aaataaagttt tatgttaattt aggagaaaaat ggtgataatg acacaaaatg 1140
 tgaattatgg atgcatttat aaaattctt gtacattttgtt gaattgtaaa tatttatctt 1200
 agagacatta ttactttgtatgatccat ttgctcacct atatgtccca gtctccttac 1260
 aaatgctatg gccaaagaaa taggcataca tacatcctt gcaggctgag gcaggaaaaa 1320
 gatcttacgg aattttccag tctatcctt atctgtataa gcaacttaag aggccatgtg 1380
 ctccaaatgg tgccaaataca agatggtaga gcctctgtct gcctgatcc ttgagtggct 1440
 gcatggagca gagcacctt ctggccctgg tgaagattgtt agcatgagca agatataagg 1500
 atttggatggc gctaggccat gagattttgg gcagtggat aacctaccctt attatggaaa 1560
 atataaatac aacaaaacaga aaagagagag agaagtgaga gaagactgtg agagaagtgc 1620
 atgagagaag actgtgtttt gttcatttcc tataatccta tatcaccatg ggatcctgtg 1680
 cttctggatggc atcaaactaa tggcttacag ctccaaagaa gaatgctcgc ctaacgtctc 1740
 cattccaaatg acctagagac taaaagccaa aaagaacacctt agaaattatc tattgcattc 1800
 tttgatgtaa gggaaatatct tagagggcac agatagaaat atcttaaccc aggtcactta 1860

gttcggtggca gagctgaggc taaaaccagg cctttgact cctaatttg tgctcttac 1920
 accttcac atcacttctc caacccaaag tctagcagaa aaggctaaa taagatata 1980
 gcatagattt gctattataa gtccatgtac ttccctcagac gctttaagat ggggcttctc 2040
 atggttcaca ataagcagca gagggaaagt aataactatc ttgcgtctcc ctactgctat 2100
 ttgtgcagtt tgaagctt atctttaatc atgtttctt ctcgtagtaa atactacaac 2160
 ttgtgcctt tatgtgtta taaattttaa tataattttt ttccatgaac cattcaagta 2220
 aaatggacac tccaaaaaga tggtaataa ggttacatgg cttcacattt cccctctac 2280
 accatcttgtt ggagctacac attcacctca cccaaattt agaaaaataa tcaagaaaat 2340
 gactctcaact agcagtggaa ccaagttccat aagcactaat gtcacatgtg cacactgcag 2400
 cctcatgtt ccaagcatgt tttggcgta tcctggact ggtttgtga catgatcaa 2460
 ggtacattt ccacctgcat agccccatcc tggatctata gccttcctt tgcgtttgt 2520
 aacaacctag tgcgtacta aagtatgaga cagatctca ttaatttata aagtttattt 2580
 tcccaagatt aaggacaagg ccatgataaa gcctccagag gtcctgatat atgtgccc 2640
 gggggtcggg gcacagctt gtttataaca ttttagggag acaagaaaaca tcaatcgata 2700
 tggtaaagat gtgcacatgtt ttggctgtt aagggtgtac aactcaaggc agggaaagggg 2760
 gcttcctgtt ggggtgtcat ttgttttgcgt ctctgtatca ctttcacat gtgaaaggca 2820
 ggttagagaaa tagtcatatc tgccttagtc tggcttattt aaacagtagg gcagaagaag 2880
 cattgcataat gcatttgttca aaggtgttca gagggtatgc tttgagctt gtccttctt 2940
 tgcgttccaaat gaattacattt gtggccaaat tgcgtggggag gtatgtatct ttttttctt 3000
 tgcgtatc ttatatttgcgtt ataaaatggg agcagggtt gcctgtatca attcccagct 3060
 tgcatttttttcc ttgttttttgcgtt ggggtcttgcgtt gtttattttt tcttcacat 3120
 tagtataact acttttctt ttcttaattcc ttttctactt gtatgttta cagctgactt 3180
 atgttacttgcgtt caaaaagaat tctgactaat gcaccatctg actagaaggc agggttctt 3240
 gatgataacg aatccctccatc aatcttagaa acagaattgc ctgaaaaaaa ggtgggtgtc 3300
 ttcttggggaa atttctcatg gcaatgaatg gcaactggcc aaaggattta tgaccagact 3360
 gagctcttctt ttatctattt ttttcttgcgtt gagatacattt taggggttgcgtt gctccacagg 3420
 gacactgggtt tctaagggttca aagggttcaatc agtccactcc caggcccacc acaccatacc 3480
 ctccgtacat ctggtaaca gcaataaaaat ttttttttttgcgtt tctgaaaaatc ctccaataact 3540
 tccaccatcc ccaaaaatgc agtggaggag gagagaaaaat gaatttttgcgtt ttttttttttgcgtt 3600
 acaatatccatcc ttatattttt ttttttttttgcgtt gagatacattt acaaaaacaaa tacaaaaaaa 3660
 gtccttgcgtt aacatctttt aataatctt acaaaaacaga acacatctcc ttttttttttgcgtt 3720
 atagtcagaagtttgcgtt caactgtgtt gaaaagtgtc agattctgtt catgtttca 3780
 agtagaaaaaa aatagaattt gtttacatattt ttttttttttgcgtt ggcgtggaga aacgtgaaat 3840
 caaggtgggtt gcaagtgtttt aacctgagca actagagaat ttggaaaggac attttcttgcgtt 3900
 atggggaaagg caggcgggaa tcagggatta gagtttgcgtt ttttttttttgcgtt ttttttttttgcgtt 3960
 tgcttagacat ctaatttgcgtt atatcccttgcgtt gacaggtgtt gtttttttttgcgtt ttttttttttgcgtt 4020
 gttcggggaaa tagtccgggtt ggagatgcaat ttttttttttgcgtt caggccgagg ttacttagca 4080
 ttttttttttgcgtt ttttttttttgcgtt ttttttttttgcgtt ttttttttttgcgtt ttttttttttgcgtt 4140
 agagatgaga agaaaaacacgca acaggagact tagaaggcagt ggtcaggagg aaggagtttgcgtt 4200
 accaagaaaatgc ttttttttttgcgtt ttttttttttgcgtt ttttttttttgcgtt ttttttttttgcgtt 4260
 aaaaatttttttgcgtt ttttttttttgcgtt ttttttttttgcgtt ttttttttttgcgtt ttttttttttgcgtt 4320
 ccaaaacactg ttttttttttgcgtt ttttttttttgcgtt ttttttttttgcgtt ttttttttttgcgtt 4380
 agtttactttt taaaagggtgtt gtttttttttgcgtt ttttttttttgcgtt ttttttttttgcgtt 4440
 aatttccaaagg acgatttgcgtt ttttttttttgcgtt ttttttttttgcgtt ttttttttttgcgtt 4500
 tagaaaagaaatccatcc ttttttttttgcgtt ttttttttttgcgtt ttttttttttgcgtt ttttttttttgcgtt 4560
 gttcaggccatcc ttttttttttgcgtt ttttttttttgcgtt ttttttttttgcgtt ttttttttttgcgtt 4620
 cggctttccatcc ttttttttttgcgtt ttttttttttgcgtt ttttttttttgcgtt ttttttttttgcgtt 4680
 tataggacatcc ttttttttttgcgtt ttttttttttgcgtt ttttttttttgcgtt ttttttttttgcgtt 4740
 ttctttttaattt acaagcttttgcgtt ttttttttttgcgtt ttttttttttgcgtt ttttttttttgcgtt 4800
 ggcggccatcc ttttttttttgcgtt ttttttttttgcgtt ttttttttttgcgtt ttttttttttgcgtt 4860
 atttcttccatcc ttttttttttgcgtt ttttttttttgcgtt ttttttttttgcgtt ttttttttttgcgtt 4920
 caaggcttccatcc ttttttttttgcgtt ttttttttttgcgtt ttttttttttgcgtt ttttttttttgcgtt 4980
 gtgttttttttgcgtt ttttttttttgcgtt ttttttttttgcgtt ttttttttttgcgtt ttttttttttgcgtt 5040
 taatttccatcc ttttttttttgcgtt ttttttttttgcgtt ttttttttttgcgtt ttttttttttgcgtt 5100
 caaggcttccatcc ttttttttttgcgtt ttttttttttgcgtt ttttttttttgcgtt ttttttttttgcgtt 5160
 taaaatttttgcgtt ttttttttttgcgtt ttttttttttgcgtt ttttttttttgcgtt ttttttttttgcgtt 5220
 atcacaatccatcc ttttttttttgcgtt ttttttttttgcgtt ttttttttttgcgtt ttttttttttgcgtt 5280
 aaggcggccatcc ttttttttttgcgtt ttttttttttgcgtt ttttttttttgcgtt ttttttttttgcgtt 5340
 gtgttttttttgcgtt ttttttttttgcgtt ttttttttttgcgtt ttttttttttgcgtt ttttttttttgcgtt 5400
 gatttttttttgcgtt ttttttttttgcgtt ttttttttttgcgtt ttttttttttgcgtt ttttttttttgcgtt 5460
 ttttttttttgcgtt ttttttttttgcgtt ttttttttttgcgtt ttttttttttgcgtt ttttttttttgcgtt 5520

attttaagt gaggttactg aggtataaaatacataaaaaa gccacccttt cgtgtatatt 9240
 tctataagtt ttggcaaatg catagctgtg taaccacaaac cacattcaag atataggaca 9300
 agtccctcat cctttaaagt tcctttatgc cccttccttc accccagccc ttggcaacca 9360
 ctggttttg tctgatccaa tcgtttgcct ctcctgaat gtcatgtaaa tagagccatg 9420
 caatgtgaag cctttgagt ctggcttgc tcaactgttc acttaggaga atgcatttg 9480
 gattcatctt tgctgttcg tctgactca gttcactgtc tattgtttag tagtattcca 9540
 ttgtgtggat atgcccacaga ttgtttatct agttaacaat ttaaagccat ttggtcatt 9600
 ctaatttttta gctgctaaga ataaaggttgc tctaagctt ccaatgcagg tttttgtgt 9660
 aactcaggat ttcatattcgc ttgggtaaat tcctagctt gggactgctg agtcatctgg 9720
 taggtgtatg ttgaacttta taagaaactg ccaaactgtt ttccaaaggt gctgtgcct 9780
 tttgcactcc catcagcagt gaatgagggt tccacttgct cgagctagt attttaactt 9840
 cactatatac ctctttgtat gacatatcct ttcaaatttt tggtaagctt tttattgggg 9900
 tgggtgtact atggactgtg agagttctt gtatattctg catatgattt ttttctcaca 9960
 tttgtttttt atgaatatgt tctcccaatg tggcgcct tttatatttct taacgtgcca 10020
 tggtaagagc agaagtttaa ttttatgtat tccaaattat cttttttct tttctttttt 10080
 agatcaaaat aggggtctat tttgattacc actgttattt tatctccatt tgattttcga 10140
 tttttatattt ttttttctt atttcattgt aaatttttaa ttaaacccaa atattctagg 10200
 ggaaagaggc aagataaaaaa tagtctaact tgggcataaa ttttagagtc atattctt 10260
 gccgagaag gaaactagct ctcttacatt gattgtttaa tttcagacgt cactacttta 10320
 tgaggatgcc caaattatgg gctttaaaaa atatataatcc aaacaggggt tcagaaagaa 10380
 taactaattt gtcacacaaca acacaaaaaa tgattccacc ataagttgc ccagtgcac 10440
 ggtctatattt atttcattata tatcaaatttca tacaactggt tcttaaagct actgtacata 10500
 acctaagttt aaatatttagg tattgttga taagacattt tatcatctat gaaatgttgc 10560
 ctgttgcattt agtttagagaa tctttttttt tatggagctt ttttcataga ttaaactatg 10620
 ccagttaaaaa gttgggtaaa aagaactaca gaataatattt tatgtttatc gtgttaaggt 10680
 ttaaagccaa ctccaagtca ttttcatcaa tggaaatcaat aaggtttgc aaatataat 10740
 gtatgaaaat actgatttaa aatgcaaata aggggagagt ttgagagaga gagagagacc 10800
 aaatgattttt ataattcttag taagttataa gttttatggg gtttttacgt acttttctac 10860
 ccaactgtc tataagactt taatgaatca cttagaattt ttaaataat ttattattac 10920
 tctgtacctg ttcttactc tgcaaatctt accttgcctt tttgtctaaa agcaataaaaa 10980
 tctgacttgg ttatatactgt atcattgatt ttgttactta gcaagcacag tgatccatta 11040
 ggcctatgtt ggctcatggt ttatacaaca ctggcatctg ctgacagagt gtgacagtc 11100
 cagtcagcaa cacgagacca ctttattttc atttttagtgg tttatagaaa tatgaatata 11160
 cacaatagt ataatgaacc ctaagcttca caaattaaca ttttgcataat ctgtttca 11220
 ctaccgcctc ccccttcatac caattactct gttctctcac ctcctcac acagacactg 11280
 gcaatgtttt tcagccaatc attaatacgt tgccaaactga taaggactt taaaaaaca 11340
 ccaccattcc attatgatttcc agcataat tgagagtaat tccctaatat ccaataccca 11400
 ttttcttatttcaatccctt gattgtctt aaactgtttt tacccttaatg ttgcttaat 11460
 caaagttccag gtccctgtttaa acatatggtt aagttttacc caaacccaa taaataaata 11520
 aataaataaaa taaaataacccat ttttttccatccatcggaa atagtggaaag agggtaatg 11580
 ccattattttttaa gaaacataaaa tcacatcata ggactagaat tatcttgcggaa taaaatttgc 11640
 agactgaaaaa tgaaaagaa aggtatagac taaaacttattt taaaacttcaatgcagaac 11700
 tctaagagaa gatatttagaa agttgtacca gatccattt ttcagttttc atcgttattc 11760
 actcagctat atgttagttga aatctaacta gaggagctt gatcagataaa gagatacatt 11820
 tttctcacca agggcgactc tggaggcagg tgggttcagat ctagacagct gctgcaggac 11880
 ccagggctt tccctgcctg ctcctccact ctgttgcctg actttcatcc tgcaagatgg 11940
 gtgtttctgc caagttccag atagaagaag atagaacaca aaggagaaat aagcagtgg 12000
 gcctctgtcc atcaagccaa atttttccatccatcggaa aatgcacaa tagatttcag atgtatgtctc 12060
 aacagtccta actgcaaaaga agctgaggaa ttagattttt ggctggaca ctgttgcctt 12120
 gtaaaaaat tggattctg ttatataaga ataaagaggaa ggaagaaaga ttgaaaactc 12180
 ctatgcataa gtggaaaaaaa taagaaactc aataaaaaaaatggatccatccatcggaa 12240
 gcaatttcaca acagatgaga ccccaatagc caataaacat ttttaatgg tcaacctcat 12300
 gagtgatcag aaaacacaaa tatgttattt aaacccaaaaa taaaataaca tgatgttgc 12360
 atttgagtgg aaaaaaattttaa aaaaaggctga taatatacgt tattggagag gatgttaggt 12420
 gaggaaactc catggaggac ctatcattgc aatgtggga atgaaactta atacacgaat 12480
 ttggggccaa ttgttaaattt gaaaaatgcg cacaccctgc aaccaagttc cccttgcatt 12540
 atttttgaaa agacaaaaac gttatgtaaa tggaaatcatg caatatgtga cctttataact 12600
 cagcataatg cccttcagat ccattgaatgt catgtgtatc aacagctcac tttttttttt 12660
 ttaattttttt ttagagacag agtctcactc tggcacacag ggtggagtgc agtggcgaga 12720
 tcataactct ctctagcgc ctcgaactcc tgggctcaag catccctctg cctcagccctc 12780
 ccaagtagctt aggactacag gcatggaca caacacacacag ctaattttttt taaattttttt 12840

ttagagacat ggtctcaacta tggtgcctac gctggctca aactcctagg tcaagcgatt 12900
 ctcccacctc tacttcacaa agtgctgtag gtagttaggt atggattgtt ggtatgaacc 12960
 accgtgccc actcaactact ttttattact aattattcca tgggatggat gtaccgcagt 13020
 ttgtttacc attaatctat tgtaggacat ttgactgtat tccagtttt tttaataca 13080
 aataaaaacca ctatgaatag ttgtgtattt tatacgttt tgtgctaagt tttcattttt 13140
 ctgggataag ttttcatttc tttggcctt tactgtatcc ttgatattat aatatgttac 13200
 atcttcagtt ttattctatt caatatataa tcttttattt tcctgaaat ctcccatgga 13260
 ttgttagaa gtgtgtgtt ttgttccaa gggttggca tttttccat tattttctta 13320
 ttatcgattt ccagttgtat tccaggtggt cagagaacac acttcatgtt atttcagttc 13380
 tattaaattt gttgagggtt gttacatggc ccagtatata gcaattttgg tatatgttcc 13440
 atgagcactt gaaaagaatg cgaattctgc tggctgtgtt tggagtttc cagcaatgtt 13500
 gatttatgtat cttaactcatt gatgggtgtt ttgagttgtat tggttctta cgatggcagc 13560
 tttaacattc ttgtcaggta attctaactt ctctgtcatg tcagtatttgc cgcctttaa 13620
 ctgtctcatc aaagctgaga ttttcctggt tcccctgggtt cctggtggaa tgggtgggtt 13680
 tcatttggaaa tctggacttt ggagtattgtt gttatgaggc tttggatctc atttaaactc 13740
 atctcagcga atttcctctc ttgccactca ggaaggagaa gttgggtgtt tgaatggagc 13800
 agagccgtta ctgcctaaga attgttttac tggcttccc ctttcttctt cctttgacta 13860
 gagagagcca gcttttattt agggctttat gttttctggt gctgtgggtt gttctgggtt 13920
 tgacaaactt ctccagaacc aagtctggaa tggatgaggc aaaaagaaac cccgtggaat 13980
 gcaactgtgg gtcgctcctt gggcccaat gttcctaact ggtctgcctt cttctctcca 14040
 gcttccagag tcttcataag tttgctttac gtacaatgtc cgggggtttt actttacttg 14100
 agagaaatag gtaaaagtttac ttctactcca tcttcagga agcaaaagcc cccttgcgtt 14160
 tttttttaaa ctttcaaaaaa caaaacaaaaa ggcagctgca acagtaaaga agcttagtaac 14220
 acccttgggtt gggaaatttcaaa gtccaaatac acatttttaa gttggcttagc cagtggaaac 14280
 atcagaatag tttaggtttt aaacaaattt atattttatgat ttatgcataat actaaaagct 14340
 gaaggcatct tatattttact aagcactat tttgttcttg ttaaaaagac agaattccat 14400
 tccctaggaa atttgacctg gcagctggag ctgatccacc tggccacttag agcacagagc 14460
 agggagagta gtagccctgc cccagccacc cctcaagaca ggatttttc tctggaaact 14520
 gtaggttaaca ctaaaatcggtt ctggacacaca acaacgaaag aagaaaggaa agagaaagaa 14580
 agaaaggaag aaagagagag agaaggaagg aagggagggg gggaaaggaag gaaggggaag 14640
 ggaagggaaat ggaagggaaag gaaggaagga aagggaaagga agggagggag agagggagga 14700
 aggaagggaaa gggaaagggaaag gaaggaagaa gggaaagaaaaa aagaaagaa agaagaaaga 14760
 aagaaagaca agaaagaaag aaagaaagaa agaaaggggaa aagaaagaa agagggaaaga 14820
 aagagaaaga aagaaaagaa agaaagggaa gaaagagaaaaa gaaagaaaaaa gaaagagaaaa 14880
 gaaagagaaaa gacaagaaaaa aaaaagggaaag gaaaagaaaaa agaaagaaaaa gaaagaaaaagg 14940
 aaagaaagag aaagaaagaa aaaaagaaaaa agaaaaagaaag aaagagaaaaa aaagaaagaa 15000
 aaagaaagaa agaaagaaaaa aaaaagaaaaa aaaaagaaaaa gagaaaaatgat cagcaattac 15060
 ttttgcaaca acctaataata agttttttaa aagtttaataa ttctgttcca tgcattgtct 15120
 gataccttat aaataaacagg gcacccatgtt acctgaattt cccaaattat gagttgaggg 15180
 ttgtacttag tttttttttttaa caaggaggcc aggcgcactg gctcatgcct gtaatccca 15240
 cactttggga ggctgaggca ggtggatcac gaggtcagga gctcgagacc agccttacca 15300
 acatagtggaa acaccgcctc tactaaaaat acaaaaaat tttcccttca tatttaacct 15360
 cctgtatct cagctactca gcaggctgag gcaggagaat cgcttgcacc cagaaggcgg 15420
 aggttgcagt gagccaagat cacagcattt cactccagcc tgggcacag agggagactc 15480
 cgtcttcaaa aaaaaaaaaa aagacaagga atctgtaaaaa caggcactgg aagtatatgc 15540
 acttttattt tcattctatg ctatccatg cctactgtctt tttcccttca tatttaacct 15600
 ccaacagctg cattttgtcc cctccagacc acctgttgg agtcacgtt ctcccacaca 15660
 gtaccccaa ccagagagag tcgagttccca cagaaaggcg taacaatcac cagtaatttt 15720
 gcacttattt tacattgtgc ctgtatcac agtactcaat gaatgttctt tgaatcatat 15780
 ttaataaata tggatgttggtggatgttggc atattgttggc tacctggata tataattaa 15840
 tttagaaaaaa aattttgtgtt ggctcaatca acaaacgact tttctctctc tctcttctc 15900
 tttctccctc tctctctctt tttctctctt tggatgttggc atattgttggc tggatgttggc 15960
 tggcagtgac aaatgccatg ggcacatgag atatgataaa aggtccctga agaaggtgg 16020
 gaaccaggtt tctttagaaaa tttccagag tgggtactgg atctctctc tctggcacca 16080
 tgctggctc agcccaaggg gaatttccctt ccagagacag agggcactgta ttgaggtgg 16140
 gagacagatc gtaacactga gacttacatg aggacacccaa acagaaaaaaa ggtggcaagt 16200
 atagaaaaattt ctttcttctg gacagtcttc tctgttctaa cttcagcaaa attctcccc 16260
 cagtgatgc tattgcacaa ccctacatgtt gctatgtttt ttcctataca cacttaccta 16320
 tgataaaaatg cattaatttag tcacagtaag agttaacaa caataacttag taataaaata 16380
 gaacaattca gtaaaaataag agttaacttga gcacaaacac taggatataca tgacagtcaa 16440
 tctgtatgacc aagagggtca ctaagcatct aaacaggagg gtaagtgtag acagcatgga 16500

gacgctggac aaaggatga ttcagtccta ggctggatg gagcggagg gcatgatatg 16560
tcatcagct actaaggcac acaattaaa atgagtaaat tcttatttct agaaatttct 16620
tttaatatt ttcagactac agttgcctac aggttaactga aaccccgaa agcaaaattg 16680
ttgataagga ggtactactg tacatcgcc tttgaaccaa ctttacatcatt tgcttagtata 16740
tacatatata cctacatatacata tacatatacata catacctgca cacacctata tgtatacgt 16800
cacacacaca cacgcacaca cacacactca catctactaa tgtagaata agtttgcata 16860
ataagatgca caacttgtt aatgcctaca gagcaataaa accataagca ttggggttat 16920
cttttctact agataaaaat ccattatcat ttcataaaag ttttcttac attaacatct 16980
aactttgca atctagttt taatcatcat aaataggaag caaatgaact gtttctctag 17040
tgaatcaa atccttggaa acatacatag tcatctttt ggttatttt tatttttaga 17100
taaattattt aaagttttaa ataatttaac attcacaata gtttgcact gtatatttt 17160
acttggcct tcaaacttaa tttgtacttt tatgtatcg tcttacatc attttttatt 17220
cactttcct aaactttgct ggattgggtt attattttt tcttatttctt ttcccttctag 17280
tggtttggga gggttttta aatcccatta ctattgaatg ccttatttact tgccccctt 17340
ttcttcaat ctctattccc acggcctgaa gcatgaggc caagctgtct gtaaccagca 17400
gagagatgac ccaggtgtt ttccactctc cactgtccac ctatcaccat tcccgcccg 17460
atagctctga agtacggc ttctggggct ctgtggggaa aactagaact ggctgcctca 17520
aggacaccc tcgttttgc aatggaaaaa atgtttctaa attccagttt ctctatgaat 17580
tcaatgacat ggttaaattc tctgtgggt tcttcaaaatg ttttcttctt aataggacct 17640
ctcatgattc tccaaccacg aaataaattt attatcattt ttatatttctt tctgtcattt 17700
caaaggaggt ttgaaagag tggaggacgc gctaattgaaac tcaaaaatcc acactattcc 17760
ttgttccat ctgttgc ttcattttt ccattggcct gtccgcctcc ttttgcctt 17820
cttagacttgc gagctcttagc ctcagccagg atagggaaaa gagagatcag actgttactt 17880
tgtctatgtt gaaaaggaag acataagaaa ctccattttt atctgtatcc tgaacaattt 17940
tttgcctt agatgttgc tttttttttt accttgc tttttttttt tttttttttt 18000
tgtgtgttat ggaatcaaga tttaaggat ctagggtgtt gcaatgttgc ctttgcctt 18060
aacatgtt caggcgtat gcttggaaa atgcattgcattt attcttccattt ctcgatttac 18120
tagggcaca gtgcactgc gaaagccgc gggacctctg cccagaaaa ctgggtattt 18180
tccaagggtt ctccccactg agacagctg agatatggcc ttgcggatg gaaaaatct 18240
gaccgtcccc cagcctgaca cccgtgaagg gtctgcgtt aggaggatta gtaaaaagg 18300
aaggccttgc ggggttggaa taagagaaac ccctctgtt cctgcattgc cctggaaac 18360
gcatgtctca gtgtttttttt tttttttttt tttttttttt tttttttttt 18420
ctctgtggct ggaggcgaga tatgtggcg gcaatgttgc tttttttttt tttttttttt 18480
tgagatgtt ggggtggaga agcataaattc tggcttgcgtt gcaatccatg gcatagttacc 18540
ttcccttgc tttttttttt tttttttttt tttttttttt tttttttttt 18600
tccccactat caccctgttcc tccgcgc tttttttttt tgaggtagtggaaaatgtt 18660
tcaataaata ctgagggaaac tcagagaccg gtgcgcgc gggcctccatg tttttttttt 18720
gacggccctt tggggccact gttccttcata tttttttttt tttttttttt 18780
ctcagttctc cgtttttttt tttttttttt tttttttttt tttttttttt 18840
ttcgagccag gattatcagg gttttttttt tttttttttt tttttttttt 18900
tttcacaactt catccagagc cagcctgaaac agtagttgc tttttttttt tttttttttt 18960
acgagaagag aacatagggg ctgggttgcctt agtaggttgc tttttttttt 19020
aagacagagc ttgaggggctt cattttttttt gcaaatgttgc tttttttttt 19080
tatgtaaatc tcgggtggctt aaccccttccatg tttttttttt tttttttttt 19140
atcttcttctt tctctcaagg aagtcaaaa acacctgcgtt tttttttttt 19200
caagatgaaac atctacattt tctaaatgttgc tttttttttt tttttttttt 19260
atgcatttgc acgtggccgg tttttttttt tttttttttt tttttttttt 19320
atgagaggaa acagacacaaa cttggaggcg gcaaaaaggccatg tttttttttt 19380
cctctatctc cttttttttt tttttttttt tttttttttt tttttttttt 19440
atatccactc gtgacaaactt tttttttttt tttttttttt tttttttttt 19500
ggatgtgaac cacagaattt tttttttttt tttttttttt tttttttttt 19560
aatgtaaaac tgagaggtt acaatcttgc tttttttttt tttttttttt 19620
cctactctgg actccagcat gactgttgc tttttttttt tttttttttt 19680
caaacttgc gatggatatac agtacagac tttttttttt tttttttttt 19740
cctcaaaccct tgcggaaaaggccatg tttttttttt tttttttttt 19800
actgtatgtt actgtatgttgc tttttttttt tttttttttt 19860
aaagcaaaaaa tgatatttctt tttttttttt tttttttttt 19920
cagtagttt caggatgatt tttttttttt tttttttttt 19980
cctctctctc tttttttttt tttttttttt tttttttttt 20040
ctgactttcc tttttttttt tttttttttt tttttttttt 20100
tgctgagggt tcaatgttgc tttttttttt tttttttttt 20160

attctatttc cagcactctt ttacatgaaa tccaagaagc tctcagacta tcttactgac 20220
 accttgcctt tcctcaacag atcaatctta tcaatgtcca tcacagatata tttgtagaac 20280
 ggtggatcct ggcagagtc cacagatgtct tctgagacaa catttgcttt caaaaaatga 20340
 accacacaca tcctaaagat ctcagccact tcccatgttt cattttgtgt tacagcaaac 20400
 atcacaacaa tcattcctac agatcaccac tgcacgtgtat caataaaata gttttgcaa 20460
 caatggact tatgataatc atcttttatt gtttacaaat actgcattac aatagttatt 20520
 cgggtgcact gttcatatta gatttccaaat tagctcaattt aggaacataa gtccctcgaa 20580
 cagctcagtc atcttttca ttcctgtttc tatcccctac atctcttcc tttgcagacg 20640
 actatctcct acactgaaac aggaaagctt ttacctttt ggcacatgtt attaaagat 20700
 tatagaaaag tatttgacaa agaaaactca cacatgtgtg tacatatactt ttaaaaagg 20760
 atgtttatgc attgcacagg aatatcgaga atgctaataa gcaatgtcag agtttactgt 20820
 ttttcaaaat tagtacagtt ttattttc taaaaactat aaaaatgaata tattcacatc 20880
 accatacaga agagtagggag gagatggcat aaagtgtcat tgttcctcct ctgcaatccc 20940
 aggagataac taccaagcac aattttatgtc tttttaaaattt cagccgtat ttatatacat 21000
 atatattcaa ttagatggg atcatgatata ctcaccacac atacttca gtgacctgca 21060
 ttttcacaaa caccttccac gtaactatata agaagtctac gtcttccct taatgtctgc 21120
 tttgtgtac attgttaaagg tctagcacag ttaacccaa ctcctattaa tgaggatttt 21180
 agttattttt cactctttaa acaatatttc catgtgtatg cttatacata cgtctgtaca 21240
 cacttatccc agtctaagga gttcctttta ctttccccca tcccagcatt ccctgtcact 21300
 cttgttgctt ccgttgagtg actttactcc tggagtataa tctgcgtata gttcagttaa 21360
 aaacatgggta tctgagttt ggtcacagct ctgcccactta ctgcccataag ccagttccct 21420
 gacctctctg ccctcaagttt tttgcaccta caaagtaggg gataatatta gttccttagtt 21480
 catagagtct tggaaataat taaatgtat gatccatgtt caatgtctgg cacttagtaa 21540
 gtgctcaata aatgtcaccc tttatgattt gtattgcgtt tatgtctgca gagaaaatca 21600
 ctttgggtcc cttttaaaaa aggactatgc ctttgggtcag ctattttgcata cattaaattt 21660
 cacttgccaa tatttaactct ccacccctaa ctgtatccct ctccttcctc atcttctgg 21720
 gagaccaaaat gctaattctg ctattcaagg caactagcaaa agtgcctgtt gacagaatca 21780
 aataaaaccta cccttaatct tttagattt agttatgattt tctgtgtaa aagttactgt 21840
 tgtggcagtc agtatttagtc tttgggtctat gatagcatct ctgatctattt attgayttt 21900
 aattakgtat ttttttttat ttattctgaa aatgtttgtt aagcatttgc taagtaaaga 21960
 tactggackg agcctcccaa atacagggca aataaaaacat caaacagctt ataatttaga 22020
 agggtagaaag agaatctgaa agcaggtaaa aataaaacagg cactcggctg ggcgcgggtgg 22080
 ctcacgcctg taatcccagc actttgggg gccgagggtgg gccgatcactg aggtcaggag 22140
 atcgagacca tcctggctaa cacgggtggaaa ccccgctctt actaaaaata caaaaaattt 22200
 gcgaggcgtg gtggcggcg ccttttagtcc cagctgtcg ggaggctgag gcaggagaat 22260
 ggtgtgaacc cgggaggcgg agcttgcgtt gaggcaagat cgcaccactg cactccagcc 22320
 tgggygacag agcgagactc cgtctcaaaa aaaataaata aataaaataa aaaataattt 22380
 ggtactctag gcccagtgtac ctgtctctgt actctgtaaa ttcaggtcac ctgctcagg 22440
 ctaatctgag agaaggtctc tcttcagttt aattttgtaaa gacaatttgc agttcacaag 22500
 ctaaccagg tggacaaaga tggcccaag cagaggaggat gcttgcataa gctggaggcc 22560
 atagaaaaac tctaaggagt gttagggaggt gggagtaatg tatggaaagg gtggagatgg 22620
 aaggtaaga gagatacaag gctgcaaaaaa tggagctgga ctcaaaagaa aataactgaaa 22680
 aggtcttcag tgggtgtat gagattacta tggaaacact atggaaacact gggactccat 22740
 ggcagctcca aagatggcat ggcctggtc cagctcagta agagctgagc tcttcctgtg 22800

<210> 101
 <211> 154
 <212> DNA
 <213> Artificial Sequence

<220>
 <223> synthetic

<400> 101
 tctggcaaca cggcctccct gaccgtctct gggctccagg ctgaggatga ggctgattat 60
 tactgcagct catatgcagg cagcaacaat ttaagtcttc ggaactggga ccaaggtcac 120
 cgtcctaggt cagcccaagt ccactccac tctc 154

```

<210> 102
<211> 156
<212> DNA
<213> Artificial Sequence

<220>
<223> synthetic

<400> 102
tcagggacaa tggccacctt gactatcagt ggggcccagg tggaggatga agctgactac 60
tactgttaact caacagacag cagtggtaat cattatgtct tcggaactgg gaccaaggtc 120
accgtcctag gtcagcccaa gtccactccc actctc 156

<210> 103
<211> 150
<212> DNA
<213> Artificial Sequence

<220>
<223> synthetic

<400> 103
tctggaaaca cagccactct gaccatcagc gggacccagg ctatggatga ggctgactat 60
tactgtcagg cgtggacag cagcaactgcc gtcttcggaa ctgggaccaa ggtcaccgtc 120
ctaggtcagc ccaagtccac tcccactctc 150

<210> 104
<211> 21
<212> DNA
<213> Artificial Sequence

<220>
<223> synthetic

<400> 104
aggtggaaac acggtgagag t 21

<210> 105
<211> 21
<212> DNA
<213> Artificial Sequence

<220>
<223> synthetic

<400> 105
ccactcgggg aaaagttgga a 21

```