wo 2014/120359 A1 | NF 10O 00 O

(43) International Publication Date

(12) INTERNATIONAL APPLICATION PUBLISHED UNDER THE PATENT COOPERATION TREATY (PCT)

(19) World Intellectual Property Ny
Organization é
International Bureau -,

=

\

(10) International Publication Number

WO 2014/120359 A1

7 August 2014 (07.08.2014) WIPOIPCT

(51) International Patent Classification: (74) Agent: NAYATE, Ambar P.; Shumaker & Sieffert, P.A.,
GO6T 15/00 (2011.01) GO6T 17/20 (2006.01) 1625 Radio Drive, Suite 300, Woodbury, Minnesota 55125

(21) International Application Number: (US).
PCT/US2013/076655 (81) Designated States (unless otherwise indicated, for every
. . kind of national protection available). AE, AG, AL, AM,
(22) International Filing Date: AO, 151", AU, Ag, BA, BB, BG, BH), BN, BR, BW, BY,
19 December 2013 (19.12.2013) BZ, CA. CH. CL, CN, CO, CR, CU, CZ, DE, DK, DM,
(25) Filing Language: English DO, DZ, EC, EE, EG, ES, FI, GB, GD, GE, GH, GM, GT,
HN, HR, HU, ID, IL, IN, IR, IS, JP, KE, KG, KN, KP, KR,
(26) Publication Language: English KZ, LA, LC, LK, LR, LS, LT, LU, LY, MA, MD, ME,
(30) Priority Data: MG, MK, MN, MW, MX, MY, MZ, NA, NG, NI, NO, NZ,
13/754,005 30 January 2013 (30.01.2013) US OM, PA, PE, PG, PH, PL, PT, QA, RO, RS, RU, RW, SA,
SC, SD, SE, SG, SK, SL, SM, ST, SV, SY, TH, TJ, TM,
(71) Applicant: QUALCOMM INCORPORATED [US/US]; TN, TR, TT, TZ, UA, UG, US, UZ, VC, VN, ZA, ZM,

ATTN: International IP Administration, 5775 Morehouse ZW.

Drive, San Diego, California 92121-1714 (US).

(84) Designated States (uniess otherwise indicated, for every
(72) Inventors: MEI, Chunhui; 5775 Morehouse DriVe, San kind Of regigna] pro[ecﬁgn avaﬂable): ARIPO (BW, GH,

Diego, California 92121-1714 (US). MOEZZI MADANI,
Nariman; 5775 Morehouse Drive, San Diego, California
92121-1714 (US). GOEL, Vineet; 5775 Morehouse Drive,
San Diego, California 92121-1714 (US). CEYLAN,
Usame; 5775 Morehouse Drive, San Diego, California
92121-1714 (US). JIAO, Guofang; 5775 Morehouse
Drive, San Diego, California 92121-1714 (US).

GM, KE, LR, LS, MW, MZ, NA, RW, SD, SL, SZ, TZ,
UG, ZM, ZW), Eurasian (AM, AZ, BY, KG, KZ, RU, TJ,
TM), European (AL, AT, BE, BG, CH, CY, CZ, DE, DK,
EE, ES, FL FR, GB, GR, HR, HU, IE, IS, IT, LT, LU, LV,
MC, MK, MT, NL, NO, PL, PT, RO, RS, SE, SL, SK, SM,
TR), OAPI (BF, BJ, CF, CG, CIL, CM, GA, GN, GQ, GW,
KM, ML, MR, NE, SN, TD, TG).

[Continued on next page]

(54) Title: OUTPUT ORDERING OF DOMAIN COORDINATES FOR TESSELLATION

(57) Abstract: Systems and methods for a tessellation are described. For

210
IMPLEMENT
JOINT
WALK
24
IMPLEMENT
JOINT
WALK X-
DIRECTION
IMPLEMENT
No QuAD JOINT |218
DOMAIN? WALK Y-
22 DIRECTION
YES
IMPLEMENT
SINGLE
WALK ¥
224 IMPLEMENT
YES SINGLE |,~230
fe<t, AND JOINT
WALK
226~ NO
IMPLEMENT *
SINGLE
WALK X- IMPLEMENT 228
DIRECTION SINGLE [~
WALK Y-
DIRECTION
FIG. 19

tessellation, a tessellation unit may divide a domain into a plurality of por-
tions, where at least one portion is a contiguous portion. The tessellation
unit may output domain coordinates of primitives along diagonal strips
within the contiguous portion to increase the likelihood that patch coordin-
ates that correspond to the domain coordinates are stored in a reuse buffer.

WO 2014/120359 A1 WAL 00T A0 R A

Declarations under Rule 4.17: Published:

— as to applicant’s entitlement to apply for and be granted — with international search report (Art. 21(3))
a patent (Rule 4.17(ii))

— as to the applicant's entitlement to claim the priority of
the earlier application (Rule 4.17(iii))

WO 2014/120359 PCT/US2013/076655

OUTPUT ORDERING OF DOMAIN COORDINATES FOR TESSELLATION

TECHNICAL FIELD
[0001] This disclosure relates to techniques for graphics processing, and more

specifically to tessellation in graphics processing.

BACKGROUND

[0002] A graphics processing unit (GPU) may implement a graphics processing pipeline
that includes a tessellation stage. The tessellation stage converts a surface into a
plurality of primitives on the GPU, resulting in a more detailed surface. For example,
the GPU can receive information for a coarse surface, and generate a high resolution
surface, rather than receiving information for the high resolution surface. Receiving
information for the high resolution surface, rather than the coarse surface, may be
bandwidth inefficient because the amount of information needed to define the high
resolution surface may be much greater than the amount of information needed to define

the coarse surface.

SUMMARY

[0003] In general, the techniques described in this disclosure are directed to a sequence
in which a tessellation unit outputs domain coordinates of primitives, generated during
tessellation, within a domain. For example, the tessellation unit may divide a domain
into a plurality of portions, and at least one of the portions may be a contiguous portion.
The tessellation unit may output the domain coordinates of primitives arranged in
diagonal strips, where the diagonal strips reside within the contiguous portion.

[0004] In one example, the disclosure describes a method for tessellation. The method
includes dividing, with a tessellation unit, a domain into a plurality of portions. In this
example, at least one of the portions is a contiguous portion. The method also includes
outputting, with the tessellation unit, domain coordinates of primitives within a first
diagonal strip that is within the contiguous portion, and outputting, with the tessellation
unit, domain coordinates of primitives within a second diagonal strip that is within the
contiguous portion. In this example, the second diagonal strip is one of parallel with the
first diagonal strip, or tangent with the first diagonal strip. The method also includes

outputting, with the tessellation unit, domain coordinates of primitives within a third

WO 2014/120359 PCT/US2013/076655

diagonal strip that is within the contiguous portion. In this example, the third diagonal
strip is parallel with at least the first diagonal strip. Also, in this example, a number of
primitives within the third diagonal strip is different than a number of primitives within
the first diagonal strip and the second diagonal strip.

[0005] In one example, the disclosure describes a device that includes a graphics
processing unit (GPU) comprising a tessellation unit. The tessellation unit is configured
to divide a domain into a plurality of portions. In this example, at least one of the
portions is a contiguous portion. The tessellation unit is also configured to output
domain coordinates of primitives within a first diagonal strip that is within the
contiguous portion, and output domain coordinates of primitives within a second
diagonal strip that is within the contiguous portion. In this example, the second
diagonal strip is one of parallel with the first diagonal strip, or tangent with the first
diagonal strip. The tessellation unit is also configured to output domain coordinates of
primitives within a third diagonal strip that is within the contiguous portion. In this
example, the third diagonal strip is parallel with at least the first diagonal strip. Also, in
this example, a number of primitives within the third diagonal strip is different than a
number of primitives within the first diagonal strip and the second diagonal strip. The
device also includes a reuse buffer configured to store patch coordinates that correspond
to one or more of the outputted domain coordinates of primitives within the first,
second, and third diagonal strips.

[0006] In one example, the disclosure describes a device comprising a graphics
processing unit (GPU). The GPU includes means for dividing a domain into a plurality
of portions. In this example, at least one of the portions is a contiguous portion. The
GPU also includes means for outputting domain coordinates of primitives within a first
diagonal strip that is within the contiguous portion, and means for outputting domain
coordinates of primitives within a second diagonal strip that is within the contiguous
portion. In this example, the second diagonal strip is one of parallel with the first
diagonal strip, or tangent with the first diagonal strip. The GPU also includes means for
outputting domain coordinates of primitives within a third diagonal strip that is within
the contiguous portion. In this example, the third diagonal strip is parallel with at least
the first diagonal strip. Also, in this example, a number of primitives within the third
diagonal strip is different than a number of primitives within the first diagonal strip and

the second diagonal strip.

WO 2014/120359 PCT/US2013/076655

[0007] In one example, the disclosure describes a computer-readable storage medium
comprising instruction stored thereon that when executed cause one or more processors
to divide a domain into a plurality of portions. In this example, at least one of the
portions is a contiguous portion. The instructions also cause the one or more processors
to output domain coordinates of primitives within a first diagonal strip that is within the
contiguous portion, and output domain coordinates of primitives within a second
diagonal strip that is within the contiguous portion. In this example, the second
diagonal strip is one of parallel with the first diagonal strip, or tangent with the first
diagonal strip. The instructions also cause the one or more processors to output domain
coordinates of primitives within a third diagonal strip that is within the contiguous
portion. In this example, the third diagonal strip is parallel with at least the first
diagonal strip. Also, in this example, a number of primitives within the third diagonal
strip 1s different than a number of primitives within the first diagonal strip and the
second diagonal strip.

[0008] The details of one or more examples are set forth in the accompanying drawings
and the description below. Other features, objects, and advantages will be apparent

from the description and drawings, and from the claims.

BRIEF DESCRIPTION OF DRAWINGS

[0009] FIG. 1 is a conceptual diagram illustrating an example of a graphics processing
unit (GPU) that may implement an example of a graphics processing pipeline in
accordance with one or more examples described in this disclosure.

[0010] FIG. 2 is a conceptual diagram illustrating another example of a GPU that may
implement another example of a graphics processing pipeline in accordance with one or
more examples described in this disclosure.

[0011] FIG. 3 is a diagram illustrating an example technique of outputting domain
coordinates of vertices for tessellation.

[0012] FIG. 4 is a diagram illustrating another example technique of outputting domain
coordinates of vertices for tessellation.

[0013] FIG. 5 is a diagram illustrating another example technique of outputting domain
coordinates of vertices for tessellation.

[0014] FIG. 6 is a block diagram illustrating a GPU in further detail in accordance with

one or more examples described in this disclosure.

WO 2014/120359 PCT/US2013/076655

[0015] FIG. 7 is a diagram illustrating an example technique of outputting domain
coordinates of vertices of primitives in a contiguous portion of a domain in accordance
with one or more examples described in this disclosure.

[0016] FIG. 8 is a diagram illustrating another example technique of outputting domain
coordinates of vertices of primitives in a contiguous portion of a domain in accordance
with one or more examples described in this disclosure.

[0017] FIG. 9 is a diagram illustrating an example of a contiguous portion of a domain
that a connectivity generator outputs in accordance with one or more examples
described in this disclosure.

[0018] FIG. 10 is a diagram illustrating another example technique of outputting
domain coordinates of vertices of primitives in a contiguous portion of a domain in
accordance with one or more examples described in this disclosure.

[0019] FIG. 11 is a diagram illustrating another example technique of outputting
domain coordinates of vertices of primitives in a contiguous portion of a domain in
accordance with one or more examples described in this disclosure.

[0020] FIG. 12 is a diagram illustrating another example of a contiguous portion of a
domain that a connectivity generator outputs in accordance with one or more examples
described in this disclosure.

[0021] FIG. 13 is a diagram illustrating another example technique of outputting
domain coordinates of vertices of primitives in a contiguous portion of a domain in
accordance with one or more examples described in this disclosure.

[0022] FIGS. 14A and 14B are diagrams illustrating example techniques of outputting
domain coordinates of vertices of primitives in contiguous portions of domains in
accordance with one or more examples described in this disclosure.

[0023] FIGS. 15A and 15B are diagrams illustrating example techniques of outputting
domain coordinates of vertices of primitives in contiguous portions of domains in
accordance with one or more examples described in this disclosure.

[0024] FIGS. 16A and 16B are diagrams illustrating example techniques of outputting
domain coordinates of vertices of primitives in contiguous portions of domains in
accordance with one or more examples described in this disclosure.

[0025] FIG. 17 is a diagram illustrating another example technique of outputting
domain coordinates of vertices of primitives in a contiguous portion of a domain in

accordance with one or more examples described in this disclosure.

WO 2014/120359 PCT/US2013/076655

[0026] FIG. 18 is a diagram illustrating another example technique of outputting
domain coordinates of vertices of primitives in a contiguous portion of a domain in
accordance with one or more examples described in this disclosure.

[0027] FIG. 19 is a flowchart illustrating an example operation in accordance with one
or more examples described in this disclosure.

[0028] FIG. 20 is another flowchart illustrating an example operation in accordance
with one or more examples described in this disclosure.

[0029] FIGS. 21-27 are graphs illustrating comparisons of results achieved by
implementing one or more example techniques described in this disclosure and
implementing one or more other techniques.

[0030] FIG. 28 is a block diagram illustrating a device of including a GPU as shown in
FIGS. 1 and 2.

DETAILED DESCRIPTION

[0031] Modern mobile devices, such as laptop computer, tablet computers,
smartphones, and digital media players, include a CPU (Central Processing Unit), a
graphics processing unit (GPU) and system memory. When rendering graphics as part
of executing an application, the CPU transmits instructions and graphics data to the
GPU. In some examples, the graphics data may be in the form of vertices, which may
comprise one or more data structures that describes a point in 2D or 3D space.

[0032] The application executing on the CPU may communicate with the GPU in
accordance with an application programming interface (API). For instance, the
application may communicate with the GPU in accordance with the DirectX® API
developed by Microsoft® or the OpenGL® API developed by the Khronos Group, as two
examples. For purposes of illustration and understanding, the techniques described in
this disclosure are generally described in the context of the DirectX and OpenGL APIs.
However, aspects of this disclosure should not be considered limited to the DirectX and
OpenGL APIs, and the techniques described in this disclosure may be extended to other
APIs as well.

[0033] DirectX and OpenGL each define graphics processing pipelines that are to be
implemented by a GPU. These graphics processing pipelines may include a

combination of programmable stages, as well as fixed-function stages. Some recent

WO 2014/120359 PCT/US2013/076655

versions of the APIs, such as the Direct3D 11 API and the OpenGL 4.x API, include a
tessellation process that is to be performed by the GPU.

[0034] The tessellation process refers to dividing a portion (referred to as patch) of a
surface of an object into a plurality of smaller portions, and interconnecting the smaller
portions together. This results in a more highly detailed surface, as compared to the
surface prior to tessellation. Tessellation allows the application executing on the CPU
to define the surface with low resolution, which may require few points, and allows the
GPU to generate a higher resolution surface.

[0035] To implement tessellation, the GPU may include a tessellation unit, which may
be a fixed-function unit, although aspects of this disclosure do not require the
tessellation unit to be a fixed-function unit. Examples of the tessellation unit include
the tessellation stage (in the DirectX pipeline) and the primitive generator (in the
OpenGL 4.x pipeline). The tessellation unit may be configured to construct primitives
within a domain. This domain should not be confused with the patch. The patch is a
portion of the surface of an object that is to be rendered. The domain may be
considered as a template within which the tessellation unit constructs primitives, and is
separate from the patch. The tessellation unit may define the vertices of the primitives
in domain coordinates. Domain coordinates are based on a coordinate system that is
local to the tessellation unit and used by the tessellation unit to define points within the
domain.

[0036] A domain shader (in the DirectX pipeline) or a tessellation evaluation shader (in
the OpenGL 4.x pipeline) may receive the domain coordinates from the tessellation unit
and transforms the domain coordinates to patch coordinates. Patch coordinates are
based on a coordinate system used by the GPU for defining points within the patch.
The domain shader or tessellation evaluation shader may be considered as mapping the
domain coordinates of vertices of the primitives within the domain to points within the
patch (e.g., vertices of primitives within the patch), and interconnecting these mapped
points within the patch to add resolution to the patch (e.g., add primitives within the
patch to add resolution to the patch).

[0037] In some examples, the tessellation unit may output the domain coordinates for
cach vertex of a primitive to a reuse buffer, sometimes referred to as a post-
transformation vertex cache (PTVC). A controller may determine whether the reuse
buffer stores patch coordinates for the domain coordinates outputted by the tessellation

unit. If the controller determines that the reuse buffer does not store the patch

WO 2014/120359 PCT/US2013/076655

coordinates for the domain coordinates outputted by the tessellation unit, then the
controller may cause an instance of the domain shader or tessellation evaluation shader
to execute to transform the domain coordinates of the vertex of the primitive within the
domain into the patch coordinates for a vertex of a primitive that is to be added into the
patch. The controller may then store the patch coordinates in the reuse buffer. If,
however, the controller determines that the reuse buffer already stores the patch
coordinates for the domain coordinates outputted by the tessellation unit, the controller
may not cause an instance of the domain shader or tessellation evaluation shader to
cxecute.

[0038] In general, execution of the domain shader or tessellation evaluation shader may
require substantial processing time which may slow the tessellation process. The
techniques described in this disclosure relate to a sequence in which the tessellation unit
may output the vertices of the primitives within the domain to increase the likelihood
that the reuse buffer already stores the patch coordinates for the domain coordinates of
the vertices of the primitives outputted by the tessellation unit. This may potentially
result in fewer instances of the execution of the domain shader or the tessellation
evaluation shader, which in turn may result in a faster completion of the tessellation
process, as compared to other techniques.

[0039] In the techniques described in this disclosure, the tessellation unit may output
the vertices of the primitives in the domain in a particular sequence. As described in
more detail, the tessellation unit may output the vertices of primitives within a portion
of the domain. For example, the tessellation unit may divide the domain into a plurality
of portions. At least one of the portions may encompass a contiguous area within the
domain, and may be referred to as a contiguous portion. As described in more detail, a
contiguous portion of the domain may mean that there is no gap, within the portion, that
excludes primitives within the domain.

[0040] As described in more detail, the tessellation unit may output vertices of
primitives, where the primitives are arranged in one or more diagonal strips within the
contiguous portion. For instance, the tessellation unit may output vertices of primitives
that reside within a first diagonal strip, where the first diagonal strip resides within the
contiguous portion.

[0041] After outputting the vertices of primitives that reside within the first diagonal
strip, the tessellation unit may output the vertices of primitives that reside within a

second diagonal strip, where the second diagonal strip resides within the contiguous

WO 2014/120359 PCT/US2013/076655

portion. In some examples, the second diagonal strip may be parallel with the first
diagonal strip. In other examples, the second diagonal strip may be tangent with the
first diagonal strip.

[0042] After outputting vertices of primitives that reside within the second diagonal
strip, the tessellation unit may then output vertices of primitives that reside within a
third diagonal strip, and so forth. The third diagonal strip may be parallel with the first
diagonal strip. The tessellation unit may output primitives within the diagonal strips
until the tessellation unit completes outputting the primitives within one of the portions
of the domain. The tessellation unit may output primitives within another portion in the
domain in a substantially similar manner.

[0043] FIG. 1 is a conceptual diagram illustrating an example of a graphics processing
unit (GPU) that may implement an example of a graphics processing pipeline in
accordance with one or more examples described in this disclosure. FIG. 1 illustrates a
device 10 that includes graphics processing unit (GPU) 12, system memory 14, and
central processing unit (CPU) 16. Examples of device 10 include, but are not limited to,
mobile wireless devices (e.g., wireless telephones), video gaming consoles that include
video displays, mobile video conferencing units, laptop computers, desktop computers,
tablet computers, television set-top boxes, and the like.

[0044] CPU 16 may execute various types of applications. Examples of the
applications include web browsers, e-mail applications, spreadsheets, video games, or
other applications that generate viewable objects for display. Instructions for execution
of the one or more applications may be stored within system memory 14. CPU 16 may
transmit graphics data of the generated viewable objects to GPU 12 for further
processing.

[0045] For example, GPU 12 may be specialized hardware that allows for massively
parallel processing, which functions well for processing graphics data. In this way,
CPU 16 offloads graphics processing that is better handled by GPU 12. CPU 16 may
communicate with GPU 12 in accordance with a particular application processing
interface (APT). Examples of such APIs include the DirectX® API by Microsoft® and
the OpenGL® by the Khronos group; however, aspects of this disclosure are not limited
to the DirectX and the OpenGL APIs, and may be extended to other types of APIs that
have been developed, are currently being developed, or are to be developed in the

future.

WO 2014/120359 PCT/US2013/076655

[0046] In addition to defining the manner in which GPU 12 is to receive graphics data
from CPU 16, the APIs may define a particular graphics processing pipeline that GPU
12 is to implement. GPU 12, in FIG. 1, illustrates the graphics processing pipeline
defined by the DirectX 11.x API, such as the Direct3D 11 API. As described in more
detail, FIG. 2 illustrates the graphics processing pipeline of the OpenGL 4.x API.
[0047] Examples of CPU 16 and GPU 12 include, but are not limited to, a digital signal
processor (DSP), general purpose microprocessor, application specific integrated circuit
(ASIC), field programmable logic array (FPGA), or other equivalent integrated or
discrete logic circuitry. In some examples, GPU 12 may be specialized hardware that
includes integrated and/or discrete logic circuitry that provides GPU 12 with massive
parallel processing capabilities suitable for graphics processing. In some instances,
GPU 12 may also include general purpose processing, and may be referred to as a
general purpose GPU (GPGPU). The techniques described in this disclosure may also
be applicable to examples where GPU 12 is a GPGPU.

[0048] System memory 14 may comprise one or more computer-readable storage
media. Examples of system memory 14 include, but are not limited to, a random access
memory (RAM), a read only memory (ROM), an electrically erasable programmable
read-only memory (EEPROM), flash memory, or any other medium that can be used to
carry or store desired program code in the form of instructions and/or data structures
and that can be accessed by a computer or a processor.

[0049] In some aspects, system memory 14 may include instructions that cause CPU 16
and/or GPU 12 to perform the functions ascribed to CPU 16 and GPU 12 in this
disclosure. Accordingly, system memory 14 may be a computer-readable storage
medium having instructions stored thereon that, when executed, cause one or more
processors (e.g., CPU 16 and GPU 12) to perform various functions.

[0050] System memory 14 may, in some examples, be considered as a non-transitory
storage medium. The term “non-transitory” may indicate that the storage medium is not
embodied in a carrier wave or a propagated signal. However, the term “non-transitory”
should not be interpreted to mean that system memory 14 is non-movable or necessarily
static in its content. As one example, system memory 14 may be removed from device
10, and moved to another device. As another example, a system memory, substantially
similar to system memory 14, may be inserted into device 10. In certain examples, a
non-transitory storage medium may store data that can, over time, change (e.g., in

RAM).

WO 2014/120359 PCT/US2013/076655
10

[0051] The execution of the applications on CPU 16 causes CPU 16 to generate a
plurality of primitives that connect together to form the viewable content. Examples of
the primitives include points, lines, triangles, squares, or any other type of polygon.
CPU 16 may define these primitives by their respective vertices. For example, CPU 16
may define coordinates and color values for the vertices. The coordinate values may be
three-dimensional (3D) coordinates or 2D coordinates.

[0052] In some cases, CPU 16 may also generate a special type of primitive referred to
as a patch. Similar to the other primitive types, a patch may be defined by a plurality of
vertices, referred to as control points of a patch. Unlike other primitive types, the patch
may not be any particular shape. For example, CPU 16 may interconnect the control
points of the patch in any manner, so that the interconnected control points form any
desired shape. For other primitive types such as triangles, CPU 16 may define the
specific manner in which the vertices are interconnected (e.g., such that interconnection
of the vertices results in a triangle).

[0053] Also, unlike other primitive types, the number of control points in a patch may
be variable. For example, the application executing on CPU 16 may define a maximum
number of control points that are allowed for a patch, or the maximum number of
control points may be user-defined. In some examples, the number of control points in
a patch may be one to thirty-two control points; however, the techniques described in
this disclosure are not so limited.

[0054] CPU 16 may utilize the control patch for purposes of tessellation. As described
above, a tessellation process refers to CPU 16 defining a portion of a surface of a
viewable object in low resolution, and tessellating the portion to generate a higher
resolution version of the surface. For example, CPU 16 may define control points of the
patch such that when the control points are interconnected the patch forms a portion of a
surface of a viewable object. If a surface were to be formed only from the control
points of the patch, the surface may not appear with high resolution and may appear
jagged. With tessellation, additional primitives are added to the patch, such that when
the primitives are interconnected, the interconnection of these primitives adds detail to
the patch, which increases the resolution of the patch and results in higher quality
viewable content.

[0055] GPU 12 may be configured to implement tessellation. In this way, CPU 16 may
not need to define the vertices for all the additional primitives needed to generate the

higher resolution patch, which saves on computations performed by CPU 16. Also,

WO 2014/120359 PCT/US2013/076655
11

CPU 16 may need to transmit fewer vertices (e.g., the vertices of the control points, and
not the vertices of the primitives to be added), and GPU 12 may correspondingly need
to receive fewer vertices, which promotes bandwidth efficiency due to fewer accesses to
system memory 14.

[0056] To perform graphics operations, GPU 12 may implement a graphics processing
pipeline. The graphics processing pipeline includes performing functions as defined by
software or firmware executing on GPU 12 and performing functions by fixed-function
units that are hardwired to perform specific functions. The software or firmware
executing on the GPU 12 may be referred to as shaders, and the shaders may execute on
one or more shader cores of GPU 12. Shaders provide users with functional flexibility
because a user can design the shaders to perform desired tasks in any conceivable
manner. The fixed-function units, however, are hardwired for the manner in which the
fixed-function units perform tasks. Accordingly, the fixed-function units may not
provide much functional flexibility, such as programmable functional flexibility
provided by software or firmware.

[0057] As indicated above, the graphics processing pipeline illustrated in FIG. 1 is a
graphic processing pipeline substantially as defined by Direct3D 11. In this example,
GPU 12 may include one or more of input assembler stage 18, vertex shader stage 20,
hull shader stage 22, tessellation stage 24, domain shader stage 26, geometry shader
stage 28, rasterizer stage 30, pixel shader stage 32, and output merge stage 34. GPU 12
may include more stages than those illustrated, and in some examples, GPU 12 may not
necessarily include all of the illustrated stages. Also, the specific ordering of the stages
is provided for purposes of illustration and should not be considered limiting.

[0058] In techniques described in this disclosure, CPU 16 may output the control points
of a patch to system memory 14. GPU 12 may then retrieve the control points from
system memory 14. In this manner, CPU 16 may transmit the control points to GPU 12.
As used in this disclosure, CPU 16 transmitting to GPU 12, or GPU 12 receiving from
CPU 16, may generally include CPU 16 writing to system memory 14, from which GPU
112 reads. Alternatively, it may be possible for CPU 16 to directly transmit to GPU 12,
and for GPU 12 to directly receive from CPU 16.

[0059] Input assembler stage 18 may read the control points from system memory 14 as
defined by CPU 16, and assemble the control points to form the patch. For instance,
input assembler stage 18 may read the coordinates, color values, and other such

information of the control points. The coordinates, color values, and other such

WO 2014/120359 PCT/US2013/076655
12

information may be commonly referred to as attributes of the control points. Based on
the attributes of the control points, input assembler stage 18 may determine the general
layout of the patch. In this manner, input assembler stage 18 may assemble the control
points to form the patch. Input assembler stage 18 may be a fixed-function logic unit or
a programmable unit.

[0060] Vertex shader stage 20 may process the vertices (e.g., the control points of the
patch) from input assembler stage 18. For example, vertex shader stage 20 may perform
per-vertex operations such as transformations, skinning, morphing, and per-vertex
lighting. Vertex shader stage 20 may be a shader.

[0061] Hull shader stage 22 receives the control points of the patch, as processed by
vertex shader stage 20, process the control points, and outputs control points for a
processed patch. In other words, hull shader stage 22 receives an input patch, as
processed by vertex shader stage 20, processes the input patch, and outputs an output
patch. Hull shader stage 22 may perform various functions for processing the input
patch. For example, hull shader stage 22 may modify the coordinates of the control
points to change the locations of the control points, or may even add or delete control
points.

[0062] In addition, hull shader stage 22 may determine values that indicate how many
primitives are to be added to the patch generated by hull shader stage 22 (i.c., the output
patch). Hull shader stage 22 may utilize various criteria to determine how many
primitives are to be added to the patch. Described below are two example criteria that
hull shader stage 22 may utilize to determine how many primitives are to be added to
the patch. However, aspects of this disclosure are not so limited, and hull shader stage
22 may utilize any criteria to determine how many primitives should be added to the
patch.

[0063] As one example, hull shader stage 22 may utilize information indicative of the
depth of the patch to determine how many primitives should be added. For instance, a
patch that is further away, from the perspective of the viewer, may not need high
resolution because objects further in distance appear blurry in real life. However, a
patch that is closer, from the perspective of the viewer, may need higher resolution
because objects closer in distance appear sharper in real life. In this example, hull
shader stage 22 may determine that fewer primitives should be added to the patch that is
further away, and more primitives should be added to the patch that is closer, relative to

one another.

WO 2014/120359 PCT/US2013/076655
13

[0064] As another example, hull shader stage 22 may determine how many primitives
should be added based on the size of the patch. For a smaller sized patch, hull shader
stage 22 may determine that fewer primitives should be added because the patch
encompasses a smaller area. For a larger sized patch, hull shader stage 22 may
determine that more primitives should be added because the patch encompasses a larger
area.

[0065] Based on a determination of how many primitives should be added, hull shader
stage 22 may output a domain type and values that indicate how many primitives are to
be added to the patch to tessellation stage 24. The values that indicate how many
primitives are to be added to the patch, in the Direct3D 11 API, are referred to as
tessfactors.

[0066] The domain may be a considered as a template shape that tessellation stage 24
uses for tessellation purposes. Examples of the domain type include a line, a triangle, a
quad (e.g., a four sided polygon), or any other type of polygon. The domain may be a
two-dimensional (2D) shape, even if the patches define a three-dimensional (3D)
surface or a 2D surface. When the domain is a line, the domain may be a one-
dimensional (1D) shape (i.e., a line), even if the patches define a 3D surface, a 2D
surface, or a 1D surface. For purposes of illustration, the techniques described in this
disclosure are described with respect to the domain being a 2D surface. For instance,
the techniques are described with domain shapes that are the triangle or quad.

[0067] In some examples, hull shader stage 22 may not explicitly indicate the domain
type. Rather, tessellation stage 24 may determine the domain type based on the number
of transmitted tessfactors. For example, the presence of four tessfactors may indicate
that the domain type is a triangle domain type, and the presence of six tessfactors may
indicate that the domain type is a quad domain type.

[0068] In some examples, a quad domain may be defined by two-dimensional (2D)
Cartesian coordinates (u, v). In some examples, a triangle domain may be defined by
Barycentric coordinates. Barycentric coordinates utilize three coordinates to identify
any point within the triangle. For example, the vertices of the triangle domain may be
defined as (u, v, w), as described below in more detail. The location of any point within
the triangle is defined by vertex weighting that indicates its proximity to a vertex. For
instance, the closer a point is to a vertex, the higher its vertex weighting, and the further

away the point is from the vertex, the lower its vertex weighting.

WO 2014/120359 PCT/US2013/076655
14

[0069] As an example, assume the vertices of the triangle are defined with Barycentric
coordinates (u, v, w) as follows: (1, 0, 0), (0, 1, 0), and (0, 0, 1). In this example, the
center point is located at (1/3, 1/3, 1/3) because the center point is equally distant from
cach of the vertices. Also, with the given definition of the vertex coordinates, in this
example, the sum of the u, v, and w coordinates for any point within the triangle domain
should equal one.

[0070] The Cartesian and Barycentric coordinates are described for purposes of
illustration only, and should not be considered limiting. In other examples, it may be
possible to define the quad domain with Barycentric coordinates or Cartesian
coordinates, and the triangle domain with Cartesian coordinates or Barycentric
coordinates. In general, a domain, of any type, may be defined using any coordinate
System.

[0071] Tessellation stage 24 may tessellate the domain into a plurality of primitives
(e.g., construct a plurality of primitives within the domain). It should be understood
that, in this example, tessellation stage 24 is not tessellating the patch outputted by hull
shader stage 22 into primitives, but rather tessellating the domain into the primitives. In
some examples, tessellation stage 24 may not even have access to the patch outputted by
hull shader stage 22. Tessellation stage 24 may be a fixed-function unit, although
aspects of this disclosure need not be so limited.

[0072] Tesscllation stage 24 may utilize the tessfactors outputted by hull shader stage
22 to tessellate the domain into a plurality of primitives. For example, in addition to
defining the domain type (e.g., triangle or quad) the tessfactors may define how many
rings are to be included within the domain.

[0073] A ring may be a series of concentric shapes within the domain, where the
concentric shapes are the same shape as the domain shape. For example, if the domain
shape is a quad, the perimeter of the quad may be considered as the outer ring. Hull
shader stage 22 may define the number of inner rings, which may be series of smaller
sized quads that reside within the quad domain. Similarly, if the domain shape is a
triangle, the perimeter of the triangle may be considered as the outer ring, and the inner
rings may be series of smaller sized triangles that reside within the triangle domain.
[0074] In addition to defining the number of rings within a domain, the tessfactors
define the points that reside along the rings. The points that reside along the rings

should not be confused with control points. The control points define the patch. The

WO 2014/120359 PCT/US2013/076655
15

points that reside along the rings are points generated by tessellation stage 24 based on
the tessfactors. These points are generated within the domain, and not within the patch.
[0075] Also, it is these points that tessellation stage 24 connects together to construct
the plurality of primitives within the domain. For example, assume that the primitives
that tessellation stage 24 will construct are triangles. In this example, tessellation stage
24 may connect one point that resides along the outer ring, with two points that reside
along the inner ring to form a triangle primitive. Alternatively, tessellation stage 24
may connect two points that reside along the outer ring with one point that resides along
the inner ring to form a triangle primitive. In this way, by defining the domain type, the
number of rings within the domain, and the number of points along the outer and inner
rings, hull shader stage 22 may define the number of primitives that tessellation stage 24
should construct within the domain.

[0076] In some examples, the number of points that can reside along an edge of ring
may be one point to sixty-five points. For example, if the domain type is a triangle, than
there may be up to 65 points per edge of the triangle domain. Similarly, if the domain
type is a quad, than there may be up to 65 points per edge of the quad. However, the
techniques described in this disclosure are not limited to an edge having a maximum of
sixty-five points.

[0077] Furthermore, the number of points that reside along a ring may be different for
outer and inner rings. For example, the number of points that reside along an edge of
the outer ring may be more than or less than the number points that reside along an edge
of the inner ring. It may also be possible that number of points that reside along the
edge of the outer ring and the inner ring are the same number of points.

[0078] Moreover, the number points along an edge of the same ring may be different.
For example, for a triangle domain, the number of points that reside along one of the
edges may be different than the number of points that reside along one other edge, or
both edges. Similarly, for a quad domain, the number of points that reside along one of
the edges may be different than the number of points that reside along one, two, or all
three other, remaining edges. It may also be possible for each of the edges of the rings
to have the same number of points.

[0079] As described above, in some examples, tessellation stage 24 may not divide the
patch into a plurality of primitives. Accordingly, in some examples, tessellation stage
24 may not receive any information such as the number of control points, the locations

of the control points, or the size of the patch. Without any information as to the size of

WO 2014/120359 PCT/US2013/076655
16

the patch and the locations of the control points, tessellation stage 24 may not be able to
define the size of the domain that is used or the specific coordinates for the vertices of
the domain.

[0080] To address this, tessellation stage 24 may rely upon a normalized coordinate
system for defining the vertices of the domain, as well as for determining the locations
of the interconnected points within the domain. As one example of the normalized
coordinates, tessellation stage 24 may define the vertices of a quad domain, inu, v
coordinates, as: (0, 0), (1, 0), (0, 1), and (1, 1), which is a unit square. Tessellation stage
24 may define the vertices of a triangle domain, in u, v, w coordinates, as: (0, 0, 1), (0,
1, 0), and (1, 0, 0), which is an equilateral triangle. Tessellation stage 24 may determine
the coordinates for the interconnected vertices of the plurality of primitives in this
normalized coordinate system. In other words, tessellation stage 24 may define the
coordinates of the vertices of the primitives within the domain using a local normalized
coordinate system. In this disclosure, the coordinates of the vertices as defined by
tessellation stage 24 may be referred to as domain coordinates because these coordinate
are with respect to a normalized coordinate system for the domain.

[0081] In the illustrated graphics pipeline, domain shader 26 may receive the domain
coordinates for the vertices of the plurality of primitives in the normalized coordinate
system (e.g., the u, v coordinates or the u, v, w coordinates, as applicable). The function
of domain shader stage 26 may be to map the domain coordinates of the vertices, as
received from tessellation stage 24, on to the patch. For example, while tessellation
stage 24 may not receive information of the patch as defined by hull shader stage 22,
domain shader stage 26 may receive such information from hull shader stage 22.

[0082] Domain shader stage 26 may transform the domain coordinates for a vertex of a
primitive into patch coordinates of a vertex of a primitive that is to be added to the
patch. The patch coordinates may be coordinates that are defined relative to the
coordinate system used by GPU 12, and define points in the patch. For example, the
domain coordinates of the vertex of a primitive in the domain may be based on a
normalized coordinate system used to define points in a 2D domain. However, the
patch may be defined in three-dimensions, and domain shader stage 26 may transform
the domain coordinates of the vertex to identify a point on the patch.

[0083] For example, domain shader stage 26 may receive the coordinates of the control
points of the patch from hull shader 22. With the coordinates of the control points of

the patch from hull shader stage 22, domain shader stage 26 may determine the location

WO 2014/120359 PCT/US2013/076655
17

of the vertex, as outputted by tessellation stage 24, on the patch. This identified point
on the patch may be a vertex for a primitive that is added to the patch.

[0084] Tessellation stage 24 may output the domain coordinates for a vertex to a reuse
buffer (not shown in FIG. 1, and shown in greater detail in FIG. 6). The reuse buffer
may be referred to as a post-transformation vertex cache (PTVC). A controller (not
shown in FIG. 1, and shown in greater detail in FIG. 6) may determine whether the
reuse buffer stores patch coordinates that correspond to the domain coordinates of the
vertex outputted by tessellation unit 24. As used in this disclosure, patch coordinates
that correspond to the domain coordinates of the vertex outputted by tessellation unit 24
refer to patch coordinates that are generated by transforming the domain coordinates.
[0085] If the controller determines that the reuse buffer does not store the patch
coordinates that correspond to the domain coordinates, the controller may execute an
instantiation of domain shader stage 26. Domain shader stage 26 may receive the
domain coordinates of the vertex outputted by tessellation stage 24, transform the
domain coordinates to patch coordinates, and store the patch coordinates in the reuse
buffer. If the controller determines that the reuse buffer stores the patch coordinates that
correspond to the domain coordinates, the controller may not execute an instantiation of
domain shader stage 26. In either case, the controller may then output the patch
coordinates further along the graphics pipeline.

[0086] Because tessellation stage 24 outputs vertices of the plurality of primitives
generated by tessellation stage 24, and domain shader stage 26 adds these primitives to
the patch, the combination of hull shader stage 22, tessellation stage 24, and domain
shader stage 26 together add additional primitives to the patch. This results in a mesh of
primitives that are added to the patch creating a higher resolution, more detailed patch,
as compared to the patch defined by CPU 16. In this manner, hull shader stage 22,
tessellation stage 24, and domain shader stage 26 implement a tessellation process.
[0087] Geometry shader stage 28 receives the vertices of the primitives added to the
patch by domain shader stage 26 and may further generate additional vertices for the
primitives to add even more resolution. Rasterizer stage 30 receives the primitives from
geometry shader stage 28 and converts the primitives into pixels for the display. For
example, the primitives may be defined as vectors that indicate the interconnection of
the primitives, and may be defined in a coordinate space that is independent of the

display on which the image is to be displayed. Rasterizer stage 30 converts these

WO 2014/120359 PCT/US2013/076655
18

vectors into the display coordinates, and performs any additional functions such as
removing points within primitives that are occluded.

[0088] Pixel shader stage 32 receives the pixels as outputted by rasterizer stage 30 and
performs post processing to assign color values to each of the pixels that are to be
displayed. For example, pixel shader stage 32 may receive constant values stored in
system memory 14, texture data stored in system memory 14, and any other data to
generate per-pixel outputs such as color values. Pixel shader stage 32 may also output
opacity values that indicate the opaqueness of the pixels.

[0089] Output merge stage 34 may perform any final pixel processing. For example,
output merge stage 34 may utilize depth information to further determine whether any
of the pixels should be removed from being displayed. Output merge stage 34 may also
perform blending operations to generate final pixel values, which may include luma and
chroma values or red-green-blue (RGB) values.

[0090] Output merge stage 34 may output the final pixel values to a frame buffer,
generally located within system memory 14, but which may be located within GPU 12.
A display processor (not shown) may retrieve the pixel values from the frame buffer and
cause pixels of a display (not shown) of device 10 (e.g., via red, green and blue pixel
components) to illuminate at specified intensity levels according to the pixel values to
cause the display to display the image.

[0091] As described above, the controller may execute an instantiation of domain
shader stage 26 whenever the reuse buffer does not store the patch coordinates for the
corresponding domain coordinates of a vertex of a primitive within the domain. In
general, execution of domain shader stage 26 may be processing-intensive and time
consuming, and it may be desirable to limit the number of times domain shader stage 26
needs to execute. For example, a first primitive and a second primitive in the domain
may share two vertices. In this example, after tessellation stage 24 outputs the domain
coordinates of the vertices of the first primitive, the controller may execute three
instantiations of domain shader stage 26 (i.c., one per vertex), and store the resulting
patch coordinates in the reuse buffer. Then, after tessellation stage 24 outputs the
domain coordinates for the vertices of the second primitive, the controller may execute
one instantiation of domain shader stage 26. In this case, the reuse buffer may already
store the patch coordinates for the two vertices that are shared between the first and
second primitive. Accordingly, the controller may need to execute only one

instantiation of domain shader stage 26 for the unshared vertex of the second primitive.

WO 2014/120359 PCT/US2013/076655
19

[0092] However, due to the limited storage capabilities of the reuse buffer, it may be
possible that the patch coordinates for a vertex that is shared between two primitives is
no longer stored in the reuse buffer when tessellation stage 24 outputs the domain
coordinates for the shared vertex for the second time. For instance, in the previous
example, due to the limited storage capabilities of the reuse buffer, it may be possible
that the patch coordinates that correspond to the domain coordinates of one or both of
the vertices that are shared between the first and second primitive are no longer stored in
the reuse buffer when tessellation unit 24 outputs the domain coordinates of the vertices
of the second primitive.

[0093] This may result in execution of instantiations of domain shader stage 26 for
transforming domain coordinates that were previously transformed to patch coordinates.
For instance, in the above example where the patch coordinates that correspond to the
domain coordinates of the shared vertices are stored in the reuse buffer, the controller
may execute only one instantiation of domain shader stage 26 to transform the domain
coordinates of the unshared vertex of the second primitive to patch coordinates.
However, in the above example where the patch coordinates that correspond to the
domain coordinates of the shared vertices are not stored in the reuse buffer, the
controller may execute three instantiation of domain shader stage 26 to transform the
domain coordinates of the three vertices of the second primitive to patch coordinates.
[0094] Previously stored patch coordinates may not be available in the reuse buffer
because the reuse buffer may implement a first-in-first-out replacement scheme. For
example, when the reuse buffer is full (e.g., each slot within the reuse buffer stores a
patch coordinate), the reuse buffer may remove (i.c., wash out) the earliest stored patch
coordinates to free up storage space for the next patch coordinates that are to be stored.
If the removed patch coordinates correspond to domain coordinates for a vertex of a
primitive that is shared with another primitive, then the controller may cause the
execution of another instantiation of the domain shader stage 26 to retransform the
domain coordinates of the vertex into the patch coordinates when tessellation stage 24
outputs the vertices of the other primitive.

[0095] The techniques described in this disclosure are directed to the sequence in which
tessellation stage 24 outputs vertices of the primitives. In some examples, tessellation
stage 24 may output the vertices of primitives in such a sequence to increase the
likelihood that shared vertices remain stored in the reuse buffer. For example, after

outputting vertices of a first primitive, tessellation stage 24 may output vertices in such

WO 2014/120359 PCT/US2013/076655
20

a sequence that vertices of the first primitive that are shared with subsequent primitives
are within the reuse buffer when tessellation stage 24 outputs the vertices of these
subsequent primitives.

[0096] Furthermore, the output sequence of the primitives may be such that when the
reuse buffer is full, there are not many remaining primitives with a vertex whose domain
coordinates correspond to the earliest stored patch coordinates. For instance, in the
first-in-first-out replacement scheme, when the reuse buffer is full, the reuse buffer may
remove the earliest stored patch coordinates. These patch coordinates may correspond
to domain coordinates of a vertex within the primitive, where the vertex is not shared
with many other primitives. In this way, even if the reuse buffer removes these patch
coordinates, there may be limited impact on the number of instantiations of domain
shader stage 26, as described below in more detail.

[0097] As described above, hull shader stage 22 may define the number of rings within
the domain and the number of points that reside along each edge of the rings.
Tessellation stage 24, in turn, may place points along the rings in the manner defined by
hull shader stage 22. These points form the vertices of the primitives created by
tessellation stage 24 in the domain. Tessellation stage 24 may interconnect these
vertices together to form the primitives and output the domain coordinates for the
vertices of these primitives.

[0098] In accordance with the techniques described in this disclosure, prior to
outputting the domain coordinates for the vertices of the primitives, tessellation stage 24
may divide the domain into a plurality of portions. At least one of the portions may
encompass a contiguous arca within the domain, and may be referred to as a contiguous
portion. In general, it may be possible for each of the portions to be contiguous
portions; however, aspects of this disclosure are not so limited.

[0099] The contiguous portion may be defined by a plurality of edges. The plurality of
edges forms a perimeter within the domain that tessellation stage 24 tessellates, and the
portion may be the contiguous area of the domain within the perimeter. In the
techniques described in this disclosure, the contiguous portion may include any
primitive within the domain that falls within the perimeter of the contiguous portion.
[0100] For instance, the term contiguous means that there is no gap, within the portion,
that excludes primitives within the domain. For example, if a primitive within the
domain is within the perimeter of the portion, then that primitive is part of the portion.

To further assist with understanding the concept of a contiguous portion, the contiguous

WO 2014/120359 PCT/US2013/076655
21

portions should not be confused with the rings used to construct the primitives within
the domain.

[0101] Some other techniques output the primitives within each of the rings used to
construct the primitives. In these examples, a tessellation stage, other than tessellation
stage 24, first outputs primitives along an outer ring. This outer ring forms a gap in the
domain. For example, the center point within the domain falls within the area of the
domain encompassed by the ring, but the tessellation stage of these other techniques
excludes the center point when outputting the domain coordinates of vertices within the
ring. In other words, these rings should not be considered as contiguous portions
because the area within a ring is excluded from being part of the ring.

[0102] In accordance with the techniques described in this disclosure, tessellation stage
24 may output vertices of primitives, where the primitives are arranged in one or more
diagonal strips within the contiguous portion. A diagonal strip of primitives includes
four sides, where two of the four sides are parallel. The two parallel sides may each
include at least one vertex of each of the primitives within the diagonal strip. Also, the
number of vertices on each of the two parallel sides may be different.

[0103] For example, assume that a diagonal strip includes three primitives. In this
example, a first side of the parallel sides of the diagonal strip may include three points,
and a second side of the parallel sides of the diagonal strip may include two points. By
interconnecting the three points on the first side with the two points on the second side,
the tessellation unit may construct the three primitives within the diagonal strip. In this
example, the three points on the first side may form three vertices, and the two points on
the second side may form two vertices. Because the primitives within the diagonal strip
share vertices, tessellation stage 24 may construct the three primitives using only the
three vertices that reside along the first side of the parallel sides of the diagonal strip,
and the two vertices that reside along the second side of the parallel sides of the
diagonal strip.

[0104] In some examples, tessellation stage 24 may output vertices of primitives that
reside within a first diagonal strip, where the first diagonal strip resides within the
contiguous portion. After outputting the vertices of primitives that reside within the
first diagonal strip, tessellation stage 24 may output the vertices of primitives that reside
within a second diagonal strip, where the second diagonal strip resides within the

contiguous portion.

WO 2014/120359 PCT/US2013/076655
22

[0105] In some examples, the second diagonal strip may be parallel with the first
diagonal strip. In these examples, the number of primitives within the second diagonal
strip may be different than the number of primitives within the first diagonal strip. In
other examples, the second diagonal strip may be tangent with the first diagonal strip.
In these examples, the number of primitives within the second diagonal strip may be the
same as the number of primitives within the first diagonal strip.

[0106] After outputting vertices of primitives that reside within the second diagonal
strip, tessellation stage 24 may then output vertices of primitives that reside within a
third diagonal strip. The third diagonal strip may be parallel with the first diagonal
strip. Also, the number of primitives that reside within the third diagonal strip may be
different than the number of primitives that reside within the first and second diagonal
strips.

[0107] Tessellation stage 24 may output primitives within the diagonal strips until
tessellation stage 24 completes outputting the primitives within one of the portions of
the domain. Tessellation stage 24 may output primitives within another portion in the
domain in a substantially similar manner.

[0108] By outputting vertices in the manner described above, GPU 12 may execute
fewer instantiations of domain shader stage 26. For example, due to the limited size of
the reuse buffer, the reuse buffer may not be able to store all of the vertices outputted by
tessellation stage 24. For instance, as described above, the reuse buffer may implement
a first-in-first-out replacement scheme when the reuse buffer is full and domain shader
stage 26 is attempting to store newly transformed patch coordinates. The techniques
described in this disclosure may increase the likelihood that, after domain shader stage
26 transforms vertices of a first primitive from domain coordinates to patch coordinates,
the patch coordinates for vertices that are shared with a second primitive are not washed
out of the reuse buffer before tessellation stage 24 outputs the domain coordinates of
vertices of the primitives within the second diagonal strip, and similarly, for the third
diagonal strip.

[0109] As described above, tessellation stage 24 may divide the domain into a plurality
of portions. The manner in which tessellation stage 24 divides the domain into the
plurality of portions may be based on the tessfactors outputted by hull shader stage 22
and the number of storage slots in the reuse buffer (i.e., the storage capability of the
reuse buffer). For example, for a quad domain, hull shader stage 22 may output the

number of segments into which each side of the ring is to be divided. The number of

WO 2014/120359 PCT/US2013/076655
23

segments along each side of the ring is one example of the tessfactor outputted by hull
shader stage 22.

[0110] The number of segments into which each side of the quad domain is to be
divided may indicate the number of points on each side of the quad domain. For
instance, if one side is to be divided into five segments, then tessellation stage 24 may
determine that there are six points on the side (one point on each end of the side, and
four points in the middle to divide the side into five segments).

[0111] For the quad domain, hull shader stage 22 may output a tessfactor for the
vertical sides that define the number of segments into which the vertical sides are to be
divided. This tessfactor may be referred to as fy,. Hull shader stage 22 may also output
a tessfactor for the horizontal sides that define the number of segments into which the
horizontal sides are to be divided. This tessfactor may be referred to as f;.

[0112] Tessellation stage 24 may determine which one of these two tessfactors is
smaller (or possibly equal) in value (e.g., whether f, < £, or whether f, <f,). Assume
that the smaller of two is referred to as f1. Also, assume that the number of storage slots
in the reuse buffer is C. In this example, tessellation stage 24 may determine whether f;
+ 1 is less than or equal to C — 2. If f; + 1 is less than or equal to C — 2, then tessellation
stage 24 may divide the quad domain into two portions (e.g., divide the quad domain
into duplets), where one or both of the two portions are contiguous portions.

[0113] In this example, tessellation stage 24 may output domain coordinates of vertices
of the primitives within a first diagonal strip within a first contiguous portion of the two
portions, followed by a second diagonal strip within the first contiguous portion. In this
example, the second diagonal strip may be tangent with the first diagonal strip, and the
number of primitives in the first diagonal strip and the second diagonal strip may be the
same. Then, tessellation stage 24 may output domain coordinates of vertices of
primitives within a third diagonal strip of the first contiguous portion. The third
diagonal strip may be parallel with the first diagonal strip and the number of primitives
within the third diagonal strip may be different than the number of primitives within the
first and second diagonal strips.

[0114] Tessellation stage 24 may repeat outputting domain coordinates of primitives in
a similar manner until tessellation stage 24 finishes outputting primitives within the first
contiguous portion. Tessellation stage 24 may then proceed with the second contiguous
portion, and output domain coordinates of vertices within the second contiguous portion

in a substantially similar fashion. Outputting domain coordinates of the primitives in

WO 2014/120359 PCT/US2013/076655
24

the example where f; + 1 is less than or equal to C — 2 may be referred to as a first mode
of operation of tessellation stage 24.

[0115] If tessellation stage 24 determines that f; + 1 is not less than or equal to C — 2,
tessellation stage 24 may determine whether f1/2 + 1 is less than or equal to C— 1. If
f1/2 + 1 is less than or equal to C — 1, tessellation stage 24 may divide the quad domain
into four portions (e.g., quadruplets), where one or more of the four portions are
contiguous portions.

[0116] In this example, tessellation stage 24 may output domain coordinates of vertices
of the primitives within a first diagonal strip within a first contiguous portion of the four
portions, followed by a second diagonal strip within the first contiguous portion. In this
example, the second diagonal strip may be parallel with the first diagonal strip, and the
number of primitives in the first diagonal strip and the second diagonal strip may be
different. Then, tessellation stage 24 may output domain coordinates of vertices of
primitives within a third diagonal strip of the first contiguous portion. The third
diagonal strip may be parallel with the first and second diagonal strips and the number
of primitives within the third diagonal strip may be different than the number of
primitives within the first and second diagonal strips.

[0117] Tessellation stage 24 may repeat outputting domain coordinates of primitives in
a similar manner until tessellation stage 24 finishes outputting primitives within the first
contiguous portion. Tessellation stage 24 may then proceed with the second contiguous
portion, and output domain coordinates of vertices within the second contiguous portion
in a substantially similar fashion, followed by the third and fourth portions. Outputting
domain coordinates of the primitives in the example where /2 + 1 is less than or equal
to C — 1 may be referred to as a second mode of operation of tessellation stage 24.
[0118] If tessellation stage 24 determines that f;/2 + 1 is not less than or equal to C — 1,
tessellation stage 24 may divide the quad domain into more than four portions. In this
example, tessellation stage 24 may operate in a third mode of operation. For instance,
tessellation stage 24 may divide the quad domain into five portions. On four of the five
portions, tessellation stage 24 may implement the first mode of operation. On the fifth
portion, tessellation stage 24 may implement the second mode of operation.

[0119] It should be understood that although the previous examples described
tessellation stage 24 as determining whether f; + 1 is less than or equal to C — 2, or

whether f,/2 + 1 is less than or equal to C — 1, aspects of this disclosure are not so

WO 2014/120359 PCT/US2013/076655
25

limited. In general, any component may determine whether f; + 1 is less than or equal
to C — 2, or whether f;/2 + 1 is less than or equal to C — 1.

[0120] For example, GPU 12 may load hull shader stage 22 with the number of slots in
the reuse buffer (i.e., the value of C), and hull shader stage 22 may perform the above
determinations, and indicate to tessellation stage 24 the manner in which the domain is
to be divided. As another example, a controller of GPU 12 may perform the above
determinations, and indicate to tessellation stage 24 the manner in which the domain is
to be divided.

[0121] The above examples described the first, second, or third modes of operation for a
quad domain. Tessellation stage 24 may also implement the first, second, or third
modes of operation for instances when the domain is a triangular domain. For a triangle
domain, rather than defining a f, and f, tessfactor, hull shader stage 22 may define one
tessfactor, referred to as f;.

[0122] In this example, if f; + 1 is less than or equal to C — 2, then tessellation stage 24
may implement the first mode of operation by dividing the triangle domain into two
portions. In this example, one of the two portions may be sized differently than the
other portion. Tessellation stage 24 may then output the domain coordinates of the
primitives in the first, second, and third triangles as described above for the largest sized
domain. For the smaller sized domain, tessellation stage 24 may implement the second
mode of operation.

[0123] In this example, for the triangle domain, if f; + 1 is not less than or equal to C —
2, and fi/2 + 1 is less than or equal to C — 1, tessellation stage 24 implements the second
mode of operation. For instance, tessellation stage 24 may divide the triangle domain
into three portions (e.g., triplets), and implement the second mode of operation on each
of the three portions. In this example, if f/2 + 1 is not less than or equal to C — 1,
tessellation stage 24 implements the third mode of operation. For example, tessellation
stage 24 may divide the triangle domain into more than three portions. Tessellation
stage 24 may implement the second mode of operation on some of the portions, and
implement the third mode of operation on some of the other portions.

[0124] In the example where the domain is a triangle domain, tessellation stage 24 may
determine whether f; + 1 is less than or equal to C — 2, or whether /2 + 1 is less than or
equal to C — 1. However, as above, the techniques described in this disclosure are not

so limited. In general, any other component may perform these determinations, and

WO 2014/120359 PCT/US2013/076655
26

indicate to tessellation stage 24 the manner in which the triangle domain is to be
divided.

[0125] The above example techniques may be applicable to the entirety of the domain
when there is uniform tessellation. In uniform tessellation, the tessfactors for the outer
rings are the same as the tessfactors for the inner rings. However, in other examples,
hull shader stage 22 may define different numbers of tessfactors for the outer most ring,
and the inner rings. For example, the outer most ring may be equivalent to the
perimeter of the domain, and hull shader stage 22 may define a different number of
segments on the outer most ring, as compared to the number of segments in the inner
rings.

[0126] In this example, tessellation stage 24 may implement the first, second, or third
mode of operation on the domain encompassed by the inner rings. For example, the
first inner ring (e.g., ring after the outer most ring) may be considered as a subset
domain, and tessellation stage 24 may implement the first, second, or third mode of
operation on the subset domain. For the primitives in the outer most ring (i.c., part of
the domain that is not part of the subset domain), tessellation stage 24 may output those
primitives in any order.

[0127] FIG. 2 is a conceptual diagram illustrating another example of a graphics
processing unit (GPU) that may implement another example of a graphics processing
pipeline in accordance with one or more examples described in this disclosure. For
instance, FIG. 1 illustrated a graphics processing pipeline formulated substantially in
accordance with the DirectX 11.x API, such as the Direct3D 11 API. FIG. 2 illustrates
the graphics processing pipeline substantially in accordance with the OpenGL 4.x APL
[0128] The OpenGL 4.x graphics processing pipeline may function in a substantially
similar fashion as the Direct3D 11 graphics processing pipeline. Accordingly, for
purposes of brevity, reference is made to FIG. 1 to describe components that are similar
to both the Direct3D 11 graphics processing pipeline and the OpenGL 4.x graphics
processing pipeline.

[0129] As illustrated in the example of FIG. 2, GPU 12 includes input assembler 36,
vertex shader 38, tessellation control shader 40, primitive generator 42, tessellation
evaluation shader 44, geometry shader 46, clipping unit 48, rasterizer 50, fragment
shader 52, and post-processor 54. Similar to FIG. 1, in the example illustrated in FIG.

2, GPU 12 may include more or fewer components than those illustrated in FIG. 2.

WO 2014/120359 PCT/US2013/076655
27

Also, the specific ordering of the unit is provided for purposes of illustration and should
not be considered limiting.

[0130] In some ways, the tessellation process with the OpenGL 4.x graphics processing
pipeline may be substantially similar to the tessellation process with the Direct3D 11
graphics processing pipeline. For example, OpenGL 4.x tessellation process may rely
upon patches and control points, in the manner similar to that described above with
respect to FIG. 1. For instance, input assembler 36 and vertex shader 38 of FIG. 2 may
function substantially similar as input assembler stage 18 and vertex shader stage 20 of
FIG. 1, respectively.

[0131] As more examples, for tessellation, tessellation control shader 40 of FIG. 2 may
function substantially similarly to hull shader stage 22 of FIG. 1. However, tessellation
control shader 40 outputs tessellation levels, which may be analogous to the tessfactors
of Direct3D 11. For example, the tessellation levels of OpenGL 4.x may define the
domain type, the number of rings within the domain, and the number of points per ring
edge.

[0132] Primitive generator 42 may function in a substantially similar manner as
tessellation stage 24. For example, primitive generator 42 may utilize the tessellation
levels and the domain type to divide the domain into a plurality of primitives. Also, in
accordance with techniques described in this disclosure, primitive generator 42 may
output the domain coordinates of the primitives in the manner described above. For
example, primitive generator 42 may output the domain coordinates of the vertices of
primitives, where the primitives reside in diagonal strips.

[0133] Similar to tessellation stage 24 of FIG. 1, primitive generator 42 may divide the
domain into a plurality of portions, where at least one portion is a contiguous portion.
Primitive generator 42 may then output the domain coordinates of the vertices
primitives within the contiguous portion. For example, primitive generator 42 may
output domain coordinates of vertices of primitives that reside within a first diagonal
strip, followed by a second diagonal strip, and a third diagonal strip. Furthermore,
primitive generator 42 may implement the different example modes of operation
described above with respect to tessellation stage 24.

[0134] Tessellation evaluation shader 44 of FIG. 2 may function substantially similarly
to domain shader stage 26 of FIG. 1. For example, tessellation evaluation shader 44
may receive the vertices of the generated primitives from primitive generator 42 and add

the primitive to the patch outputted by tessellation control shader 40. In this manner,

WO 2014/120359 PCT/US2013/076655
28

the graphics processing pipeline of the OpenGL 4.x API may perform tessellation on a
patch to increase the resolution of the patch.

[0135] Geometry shader 46 may function substantially similarly to geometry shader
stage 28. The combination of clipping unit 48 and rasterizer 50, in FIG. 2, may function
substantially similarly to rasterizer stage 30 in FIG. 1. Fragment shader 52 and post-
processor 54 in FIG. 2 may function substantially similarly to pixel shader stage 32 and
output merge stage 34 in FIG. 1, respectively. Post-processor 54 may output the final
pixel values to a frame buffer and the display processor may retrieve the pixel values
from the frame buffer and cause a display to illuminate according to the pixel values to
display the image.

[0136] As described above, tessellation control shader 40, primitive generator 42, and
tessellation evaluation shader 44 of FIG. 2 function substantially similarly to hull shader
stage 22, tessellation stage 24, and domain shader stage 26 of FIG. 1, respectively, for
implementing the tessellation process. Accordingly, both the Direct3D 11 and the
OpenGL 4.x APIs rely upon two programmable shader units and one fixed-function unit
to implement the tessellation process.

[0137] For purposes of generality, the techniques described in this disclosure may be
described with a first tessellation shader unit, a tessellation unit, and a second
tessellation shader unit. Examples of the first tessellation shader unit include hull
shader stage 22 and tessellation control shader 40. Examples of the tessellation unit
include tessellation stage 24 and primitive generator 42. Examples of the second
tessellation shader unit include domain shader stage 26 and tessellation evaluation
shader 44.

[0138] Also, Direct3D 11 uses the term “tessfactors” and OpenGL 4.x uses the term
“tessellation levels,” which may be considered analogous terms. For purposes of
generality, this disclosure uses the term “tessellation factor,” examples of which include
tessfactors and tessellation levels. In this way, the first shader unit may be considered
as outputting tessellation factors to the tessellation unit, and the tessellation unit may
output vertices to the second shader unit in response to the tessellation factors.

[0139] It should be noted that while the Direct3D 11 and OpenGL 4.x utilize two shader
units and one fixed-function unit, the techniques described in this disclosure are not so
limited. For example, it may be possible in other systems for the first and second shader

units to be fixed-function units and the tessellation unit to be a shader unit. As another

WO 2014/120359 PCT/US2013/076655
29

example, all may be fixed-function units or all may be shader units, or any combination
thereof.

[0140] Therefore, in some examples, it may be considered that a first unit performs
functions similar to the first shader unit, but may be a shader unit or a fixed-function
unit, a second unit performs functions similar to the tessellation unit, but may be a
shader unit or a fixed-function unit, and a third unit performs functions similar to the
second shader unit, but may be a shader unit or a fixed-function unit. Moreover,
although the first shader unit, the tessellation unit, and the second shader unit are
illustrated as separate units in FIGS. 1 and 2, aspects of this disclosure are not so
limited. These units, and possibly any unit of the graphics processing pipelines
illustrated in FIGS. 1 and 2, may be combined together into a common unit.
Accordingly, while the functionality of these units is described separately for ease of
description, these units may be implemented in shared hardware or as distinct
components.

[0141] FIG. 3 is a diagram illustrating an example technique of outputting domain
coordinates of vertices for tessellation. The example illustrated in FIG. 3 may be
implemented by other examples of a tessellation unit, and not tessellation stage 24 and
primitive generator 42. FIG. 3 illustrates domain 56, which is a triangle domain, and
the points and the primitive pattern are symmetric along the center of the lines of
domain 56.

[0142] As illustrated, domain 56 is tessellated into a plurality of primitives (e.g.,
triangles). In some other examples, a tessellation unit, not like the tessellation unit of
this disclosure, outputs domain coordinates of the vertices of the primitives in a ring-by-
ring fashion, where the ring in this example is a triangle. For instance, FIG. 3 illustrates
ring 58 and ring 60. Ring 58 is the outer most ring and includes primitives that border
the boundary of domain 56. Ring 60 is the first inner ring because no primitive in ring
60 resides on the boundary of domain 56.

[0143] In some other techniques, the tessellation unit of these other techniques outputs
the domain coordinates of all of the primitives that reside within ring 58. Then, the
tessellation unit of these other techniques outputs the domain coordinates of all the
primitives that reside within ring 60. As shown in FIG. 3, some of the primitives are
numbered to assist with understanding. For example, the tessellation unit of these other
techniques outputs the domain coordinates of primitive 1, followed by primitive 2,

primitive 3, and so forth until primitive 42 because these primitives all reside within

WO 2014/120359 PCT/US2013/076655
30

ring 58. Then, the tessellation unit of these other techniques outputs the domain
coordinates of primitives in ring 60 starting from primitive 43.

[0144] In the example illustrated in FIG. 3, because primitive 1 is the first primitive of
domain 56, after the tessellation unit of these other techniques outputs the domain
coordinates of primitive 1, a domain shader executes three times to transform each of
the three domain coordinates of primitive 1 into patch coordinates, and stores the
corresponding patch coordinates in the reuse buffer. Then, after the tessellation unit of
these other techniques outputs the domain coordinates of primitive 2, the domain shader
may execute only one time because primitive 2 shares two vertices with primitive 1, and
the patch coordinates for these two vertices may be stored in the reuse buffer. The
domain shader may transform the unshared vertex of primitive 2 to transform the
domain coordinates of the unshared vertex of primitive 2 into patch coordinates, and
stored the corresponding patch coordinates in the reuse buffer.

[0145] The tessellation unit of these other techniques may output the domain
coordinates of the primitives along ring 58 until the tessellation unit of these other
techniques outputs the domain coordinates of primitive 42. As illustrated in FIG. 3,
primitive 42 shares two vertices with primitive 1. However, due to the limited size of
the reuse buffer, the reuse buffer may have removed the patch coordinates that
correspond to the domain coordinates of primitive 1. In this case, the domain shader
may execute three times, and re-transform the domain coordinates into patch
coordinates of the vertices shared by primitive 1 and primitive 42. In other words,
although the domain shader had already transformed domain coordinates of primitive 1
into patch coordinates, in these other techniques, the domain shader may have to once
again transform domain coordinates of primitive 1 (i.c., the ones shared with primitive
42) into patch coordinates.

[0146] The tessellation unit, in these other techniques, may then output the domain
coordinates of the vertices of primitive 43 in ring 60. As illustrated, primitive 43 shares
two vertices with primitive 2, and primitive 2 shares one vertex with primitive 42. In
this, the domain shader may execute twice. For instance, because primitive 43 shares
one vertex with primitive 42, the patch coordinates for that vertex may be stored in the
reuse buffer. However, for the vertex of primitive 43 that is shared with primitive 2 and
not shared with primitive 42, due to the limited size of the reuse buffer, the reuse buffer
may remove the patch coordinates that correspond to the domain coordinates of this

vertex. In this case, the domain shader may need to execute to transform the domain

WO 2014/120359 PCT/US2013/076655
31

coordinates of this vertex into patch coordinates even though the domain shader had
previously transformed the domain coordinates of this vertex into patch coordinates.
[0147] FIG. 4 is a diagram illustrating another example technique of outputting domain
coordinates of vertices for tessellation. The example illustrated in FIG. 4 may be
implemented by other examples of a tessellation unit, and not tessellation stage 24 and
primitive generator 42. FIG. 4 illustrates domain 62, which is a quad domain. The
points and the primitive pattern are symmetric along the center of the lines of domain
62.

[0148] As illustrated, domain 62 is tessellated into a plurality of primitives (e.g.,
triangles). In some other examples, a tessellation unit, not like the tessellation unit of
this disclosure, outputs domain coordinates of the vertices of the primitives in domain
62 in a ring-by-ring fashion, where the ring in this example is a rectangle.

[0149] For ease of description, only some of the primitives that reside in the outer ring
of domain 62 are illustrated. For example, the outer ring of domain 62 includes
primitive 1 to primitive 216. In this example, the tessellation unit of these other
techniques outputs the domain coordinates for the vertices of primitive 1, followed by
primitive 2, and so forth until primitive 216.

[0150] However, in these other techniques, by the time the tessellation unit of these
other techniques, outputs the domain coordinates of primitive 216, the reuse buffer may
have removed the patch coordinates that correspond to the domain coordinates of
primitive 1. Accordingly, even though primitive 216 shares two vertices with primitive
1, the domain shader may need to execute three times to transform the domain
coordinates of primitive 216 into corresponding patch coordinates.

[0151] FIG. 5 is a diagram illustrating another example technique of outputting domain
coordinates of vertices for tessellation. The example illustrated in FIG. 5 may be
implemented by other examples of a tessellation unit, and not tessellation stage 24 and
primitive generator 42. FIG. 5 illustrates domain 64, which is a quad domain, and the
points and the primitive pattern are symmetric along the center of the lines of domain
64.

[0152] The example illustrated in FIG. 5 is one example manner in which some other
techniques attempted to reduce the number of executions of the domain shader. For
example, in FIG. 4, the tessellation unit of these other techniques outputs primitives
from one ring. In FIG. 5, the tessellation unit of these other techniques outputs domain

coordinates of primitives in two rings simultaneously.

WO 2014/120359 PCT/US2013/076655
32

[0153] Such an output scheme may reduce the number of times the domain shader
needs to execute. For example, when the tessellation unit of these other techniques
outputs the domain coordinates of primitive 5, the patch coordinates for the domain
coordinates that primitive 5 shares with primitives 1 and 2 may still be available in the
reuse buffer. However, even the scheme illustrated in FIG. 5 may execute more
instances of the domain shader than desirable. For example, when the tessellation unit
of these other techniques outputs the domain coordinates of primitive 416, the patch
coordinates for the domain coordinates of the vertices of primitive 5 that are shared with
primitive 416 may no longer be stored in the reuse buffer.

[0154] In this way, in the examples illustrated in FIGS. 3 and 4, the tessellation unit of
these other techniques generates one strip of primitives for each ring, and it may be
possible for units further in the graphics pipeline (e.g., after the domain shader) to reuse
the vertices in the reuse buffer between primitives in the same ring. However, it may
not be possible for the units further in the graphics pipeline to reuse vertices for
primitives across the rings due to the limited size of the reuse buffer. This results in
extra executions of the domain shader.

[0155] For example, assume that the reuse buffer includes thirty-two cache slots. In the
examples illustrated in FIGS. 3 and 4, there may be two cache misses for the same
vertex. A cache miss may refer to an instance where the corresponding patch
coordinates for a domain coordinate are not stored in the reuse buffer. For example, in
the examples illustrated in FIGS. 3 and 4, after the domain shader transforms the
domain coordinates into patch coordinates for a vertex, it may be possible that the
domain shader will need to execute at least once more to transform the domain
coordinates of this same vertex into patch coordinates, due to the limited size of the
reuse buffer.

[0156] The example illustrated in FIG. 5 may reduce the number of executions of the
domain shader, relative to the techniques illustrated in FIGS. 3 and 4. However, in
some examples, there may be up to sixty-four vertices along an edge of a ring. In this
case, even the example illustrated in FIG. 5 may result in multiple executions of the
domain shader to transform the domain coordinates of the same vertex into patch
coordinates.

[0157] Accordingly, the techniques illustrated with FIGS. 3—5 may place limitations on
the efficiency of the reuse buffer. For example, the patch coordinates that correspond to

the domain coordinates for vertices in one ring are lost when outputting domain

WO 2014/120359 PCT/US2013/076655
33

coordinates for the second ring. Also, as can been seen in FIG. 3, the vertices of
primitives 1 to 14 that reside along the outer boundary of domain 56 are not shared with
any of the primitives in ring 60 (e.g., primitive 43 onwards in ring 60). Accordingly,
there may be very little to no negative impact on the efficiency of the reuse buffer if
patch coordinates that correspond to the domain coordinates of the vertices that reside
along the outer boundary of domain 56 are lost. For example, there may be little to no
negative impact on the efficiency of reuse buffer if vertices along one side of the ring
are lost, if the vertices along the other side of the ring are preserved in the reuse buffer.
[0158] However, in the examples of FIGS. 3-5 such preservation of vertices along one
side of the ring may not occur. For example, the order in which the domain coordinates
of vertices are output in examples of FIGS. 3-5 may be considered as axis aligned.
After the tessellation unit of these other techniques output the domain coordinates of
primitives 1 to 14, most of the primitives 15 to 28 do not share any vertices with
primitives 1 to 14 (with primitive 15 and 16 being the exception). However, the
primitives 43 onwards in ring 60 share vertices with the primitives 1 to 14, which are
lost in the reuse buffer due to the limited size. Accordingly, it may be more desirable to
ensure that the patch coordinates for primitives 1 to 14 are available when outputting the
primitives 43 and onward, than the patch coordinates for primitives 15 to 28.

[0159] As described above, the techniques described in this disclosure provide for an
output scheme of the domain coordinates to maximize the efficiency of the reuse buffer.
For example, as described above, the tessellation unit, in accordance with the techniques
described in this disclosure (e.g., tessellation stage 24 and primitive generator 42), may
divide the domain into a plurality of portions, where at least one of the portions is a
contiguous portion. The rings illustrated in FIGS. 3-5 should not be considered as
contiguous portions.

[0160] For example, as used in this disclosure, a contiguous portion includes any
primitive that falls within the area of the contiguous portion (e.g., within the ends of the
edges of the contiguous portion) such that there is no gap in the domain. The rings
illustrated in FIGS. 3-5 exclude primitives that fall within the area encompassed by the
rings such that there is a gap in the domain. For example, in FIG. 3, although ring 58
encompasses all of domain 56, ring 58 excludes primitives that fall within ring 60. In
this way, ring 58 hollows out domain 56 creating a gap in domain 56. Such similar

exclusion of primitives can also be seen in FIGS. 4 and 5.

WO 2014/120359 PCT/US2013/076655
34

[0161] The tessellation unit (e.g., tessellation stage 24 or primitive generator 42) may
output domain coordinates along diagonal strips within the contiguous portion. In other
words, the tessellation unit outputs domain coordinates in a diagonal walking direction.
“Walking” as used in this disclosure refers to the steps in which the tessellation unit
outputs the domain coordinates of the primitives. One potential advantage of outputting
in the diagonal walking direction is that the diagonal strip length grows gradually
starting from a strip length of one primitive. This may result in vertices being added
from the outer side of the diagonal strip, while the reuse buffer replaces vertices from
the inner side of the diagonal strip in a first-in-first-out scheme.

[0162] FIG. 6 is a block diagram illustrating a GPU in further detail in accordance with
one or more examples described in this disclosure. For example, FIG. 6 illustrates an
example of GPU 12 in further detail. As illustrated, GPU 12 includes tessellation unit
66, controller 74, domain shader 76, and reuse buffer 78. Tessellation unit 66 is one
example of tessellation stage 24 of FIG. 1 or primitive generator 42 of FIG. 2. Reuse
buffer 78 is an example of the reuse buffer described above.

[0163] Domain shader 76 is illustrated in dashed lines to indicate that domain shader 76
executes on GPU 12, such as on one or more shader cores of GPU 12, where a shader
core is a dedicated hardware of GPU 12 for the execution of shaders such as domain
shader 76. In other words, in this example, domain shader 76 is not a hardware block,
but rather a software unit executing on a hardware block. One example of domain
shader 76 is domain shader stage 26 (FIG. 1). Another example of domain shader 76 is
tessellation evaluation shader 44 (FIG. 2).

[0164] Controller 74 may be a control unit of GPU 12 that controls the overall
functionality of GPU 12. For example, controller 74 may determine whether and when
to execute shader programs. Controller 74 may also determine the mode of operation of
tessellation unit 66. Alternatively, tessellation unit 66 may determine the mode of
operation. Controller 74 may be hardware, software executing on hardware, or
firmware executing on hardware. Furthermore, in some examples, instead of or in
addition to controller 74 determining when to execute domain shader 76, reuse buffer 78
may include a cache controller that is configured to determine when to execute domain
shader 76. However, for purposes of illustration, the techniques are described in context
of controller 74 determining the mode of operation and determining when domain

shader 76 is to be executed.

WO 2014/120359 PCT/US2013/076655
35

[0165] Because either controller 74 or tessellation unit 66 may determine the mode of
operation of tessellation unit 66, the techniques described in this disclosure may be
considered as a processing unit being configured to determine the mode of operation of
tessellation unit 66. In some examples, the processing unit may be controller 74. In
some examples, the processing unit may be tessellation unit 66. In some examples, the
processing unit may be the combination of controller 74 and tessellation unit 66. For
case of illustration, as described above, the techniques for determining the mode of
operation are described with examples where the processing unit is controller 74.
However, the processing unit may alternatively or in conjunction with controller 74 be
tessellation unit 66.

[0166] As illustrated, tessellation unit 66 includes setup unit 68, point generators 70,
and connectivity generator 72. Setup unit 68, point generators 70, and connectivity
generator 72 may be fixed-function hardware units of tessellation unit 86. Setup unit
68, point generators 70, and connectivity generator 72 are illustrated as separate
components for ease of description. Setup unit 68, point generators 70, and connectivity
generator 72 may be formed as a single unit, as separate units, or a combination thereof.
[0167] Setup unit 68 may receive the tessellation factors as input from a first shader unit
such as hull shader stage 22 of FIG. 1 or tessellation control shader 40 of FIG. 2, and
may determine the domain type from the tessellation factors. For example, if there are
four tessellation factors, setup unit 68 may determine that the domain type is a triangle,
and if there are six tessellation factors, setup unit 68 may determine that the domain
type is a quad. Setup unit 68 may perform other setup functions such as correcting
rounding problems, ceiling and floor functions, determining half tessellation factors,
and reducing and combining tessellation factors. In general, setup unit 68 may process
the tessellation factors to ensure that the other components of tessellation unit 66 can
perform respective functions.

[0168] Point generators 70 may determine how many points reside along each edge of
cach ring of the domain, from the tessellation factors, and the locations of the points
(e.g., the u, v coordinates or the u, v, w coordinates of the points). Connectivity
generator 72 may connect (i.c., stitch) the points to form a plurality of primitives in the
domain.

[0169] In some examples, connectivity generator 72 may be configured to implement
the techniques described in this disclosure. For example, rather than outputting domain

coordinates of primitives as illustrated in FIGS. 3-5, connectivity generator 72 may be

WO 2014/120359 PCT/US2013/076655
36

configured to divide the domain into a plurality of portions, and output domain
coordinates of primitives in diagonal strips within the portions. In some examples,
point generators 70 and connectivity generator 72 may function together for outputting
the domain coordinates.

[0170] For example, point generators 70 may determine the coordinates of the vertices
of primitives that reside within a first diagonal strip, where the first diagonal strip
resides within the contiguous portion. Point generator 70 may then output the
determined coordinates to connective generator 72 (e.g., via a shallow buffer separate
from reuse buffer 78 and not illustrated in FIG. 6). Connectivity generator 72 may
assemble the primitives and output domain coordinates of vertices of the primitives that
reside within a first diagonal strip, where the first diagonal strip resides within the
contiguous portion. Point generators 70 may also determine the coordinates of vertices
of primitives that reside within a second diagonal strip, where the second diagonal strip
resides within the contiguous portion, and output the determined coordinates to
connectivity generator 72 (e.g., via the shallow buffer). After outputting the domain
coordinates of vertices that reside within the first diagonal strip, connectivity generator
72 may output domain coordinates of vertices that reside within a second diagonal strip,
where the second diagonal strip resides within the contiguous portion.

[0171] In one mode of operation, the second diagonal strip may be parallel with the first
diagonal strip, and connectivity generator 72 may output domain coordinates of vertices
that reside within the second, parallel diagonal strip. In this example, the second,
parallel diagonal strip may include a different number of primitives than the first
diagonal strip.

[0172] In another mode of operation, the second diagonal strip may be tangent with the
first diagonal strip. Tangent, as used in this disclosure, means that only one primitive in
the second diagonal strip shares two vertices with only one primitive in the first
diagonal strip. In this way, the second diagonal strip may be considered as being
connected to the first diagonal strip at only one primitive, and hence tangent with the
first diagonal strip. In this example, the second, tangent diagonal strip may include a
same number of primitives as the first diagonal strip.

[0173] Also, point generators 70 may determine the coordinates of the vertices of
primitives that reside within a third diagonal strip, and output the determined
coordinates to connectivity generator 72 (e.g., via the shallow buffer). After outputting

vertices of primitives that reside within the second diagonal strip, connectivity generator

WO 2014/120359 PCT/US2013/076655
37

72 may then output vertices of primitives that reside within the third diagonal strip that
is within the contiguous portion. In either mode of operation, the third diagonal strip
may be parallel with the first diagonal strip. For instance, in the mode of operation
where the first and second diagonal strips are parallel with one another, the third
diagonal strip may be parallel with both the first and second diagonal strip. In the mode
of operation where the second diagonal strip is tangent with the first diagonal strip, the
third diagonal strip may be parallel with the first diagonal strip, but may not be parallel
with the second diagonal strip.

[0174] Point generators 70 may determine coordinates of primitives and connectivity
generator 72 may output primitives within the diagonal strips until connectivity
generator 72 completes outputting the primitives within one of the contiguous portions
of the domain. Point generators 70 may determine coordinates of primitives and
connectivity generator 72 may then output primitives within another contiguous portion
in the domain in a substantially similar manner.

[0175] Connectivity generator 72 may output the domain coordinates of one primitive
to controller 74. Controller 74 may then determine whether reuse buffer 78 stores patch
coordinates that correspond to the outputted domain coordinates. For instance, the
domain coordinates may be indices into reuse buffer 78. As described above, the
domain coordinates may be Cartesian coordinates (e.g., u, v coordinates) or Barycentric
coordinates (e.g., u, v, w coordinates). The u coordinate, the v coordinate, and the w
coordinate may each be 17-bits. Accordingly, the u, v coordinates may include thirty-
four bits, while the u, v, w coordinates may include fifty-one bits.

[0176] Controller 74 may output these thirty-four or fifty-one bits to an XOR gate
within reuse buffer 78. The XOR gate may compare the received bits with bits
indicative of the indices of reuse buffer 78. If the output of the XOR gate indicates that
the received bits match an index in reuse buffer 78, reuse buffer 78 may output a cache
hit to controller 74. A cache hit means that reuse buffer 78 stores patch coordinates for
the domain coordinates that formed the thirty-four or fifty-one bits. If the output of the
XOR gate indicates that the received bits do not match an index in reuse buffer 78, reuse
buffer 78 may output a cache miss to controller 74. A cache miss means that reuse
buffer 78 does not store patch coordinates for the domain coordinates that formed the
thirty-four or fifty-one bits.

[0177] If a cache hit occurs, controller 74 may not cause an instantiation of domain

shader 76 to execute because reuse buffer 78 already stores the patch coordinates for the

WO 2014/120359 PCT/US2013/076655
38

domain coordinates that formed the thirty-four or fifty-one bits. In this case, controller
74 may cause subsequent units of the graphics pipeline to read the patch coordinates
that correspond to the outputted domain coordinates for further processing. For
example, controller 74 may cause geometry shader stage 28 (FIG. 1) or geometry
shader (FIG. 2) to read the patch coordinates that correspond to the outputted domain
coordinates from reuse buffer 78 for further processing.

[0178] If a cache miss occurs, controller 74 may cause an instantiation of domain
shader 76 to execute because reuse buffer 78 does not store the patch coordinates for the
domain coordinates that formed the thirty-four or fifty-one bits. In this case, controller
74 may provide the domain coordinates to domain shader 76, and domain shader 76
may transform the domain coordinates into corresponding patch coordinates. Domain
shader 76 may output the patch coordinates to reuse buffer 78. Reuse buffer 78, in turn,
may store the patch coordinates at indices equal to the thirty-four or fifty-one bits that
formed the domain coordinates. After reuse buffer 78 stores the patch coordinates,
controller 74 may cause subsequent units of the graphics pipeline to read the patch
coordinates from reuse buffer 78 for further processing.

[0179] Controller 74 may repeat these steps for each of the domain coordinates
outputted by connectivity generator 72. For example, for every cache miss, controller
74 may cause an instantiation of domain shader 76 to execute, and for every cache miss,
controller 74 may not cause an instantiation of domain shader 76 to execute.

[0180] As described above, the techniques described in this disclosure may minimize
the number of instantiations of domain shader 76. To this end, the techniques described
in this disclosure may minimize the number of cache misses that occur. For example,
outputting domain coordinates of primitives in diagonal strips within contiguous
portions increase the likelihood that patch coordinates that correspond to the domain
coordinates of shared vertices remain in reuse buffer 78, and that reuse buffer 78
removes (e.g., washes out) patch coordinates that correspond to the domain coordinates
of unshared vertices.

[0181] In the techniques described in this disclosure, each of the diagonal strips may
include a first side (e.g., an inner side) and a second side (e.g., an outer side). In the
example mode of operation in which the first, second, and third diagonal strips are all
parallel with one another, the outer side of the first diagonal strip may be the same as

the inner side of the second diagonal strip, and the outer side of the second diagonal

WO 2014/120359 PCT/US2013/076655
39

strip may be same as the inner side of the third diagonal strip. In this example, the
number of primitives in each of the diagonal strips may be different.

[0182] As one example, the number of primitives in the second diagonal strip may be
greater than the number of primitives in the first diagonal strip, and the number of
primitives in the third diagonal strip may be greater than the number of primitives in the
first and second diagonal strip. This results in the number of vertices on the outer side
of the first diagonal strip being greater than the number of vertices on the inner side of
the first diagonal strip, and the number of vertices on the outer side of the second
diagonal strip being greater than the number of vertices on the inner side of the second
diagonal strip, where the inner side of the second diagonal strip is the same as the outer
side of the first diagonal strip.

[0183] By ensuring that the patch coordinates that correspond to the domain coordinates
of the vertices on the outer side of the diagonal strips remain within reuse buffer 78, the
techniques described in this disclosure may progressively grow the number of patch
coordinates that are stored in reuse buffer 78. Then, when reuse buffer 78 becomes full,
reuse buffer 78 may remove patch coordinates that correspond to domain coordinates of
vertices that reside along the inner side of the diagonal strips. As there are fewer
primitives in the inner side of the diagonal strip, these primitives may not share as many
vertices, if any, with other primitives in the domain. Accordingly, if the patch
coordinates that correspond to the domain coordinates of these inner side vertices are
removed from reuse buffer 78, the impact on the number of times domain shader 76
needs to execute may be minor. In this way, this mode of operation allows for a
reduction in the number of times domain shader 76 needs to execute as compared to the
examples described above with respect to FIGS. 3-5.

[0184] The example mode of operation where the second diagonal strip is tangent with
the first diagonal strip may also minimize the execution of domain shader 76 by
increasing the likelihood that patch coordinates that correspond to domain coordinates
of shared vertices remain in reuse buffer 78. For example, if the storage capabilities of
reuse buffer 78 (e.g., the number of slots in reuse buffer 78) is sufficiently large and/or
the number of vertices in the domain is sufficiently small, after connectivity generator
72 outputs the domain coordinates for the primitives in the second diagonal strip, reuse
buffer 78 may still store the patch coordinates that correspond to the domain coordinates

of primitives in the first diagonal strip.

WO 2014/120359 PCT/US2013/076655
40

[0185] Then, when connectivity generator 72 outputs the domain coordinates of
primitives in the third diagonal strip, controller 74 may determine that domain shader 76
does not need to execute for many of the domain coordinates. For example, in this
mode of operation, the inner side of the third diagonal strip may be the same as the outer
side of the first diagonal strip. The patch coordinates that correspond to the domain
coordinates for the vertices that reside along the outer side of the diagonal strip may still
be stored in reuse buffer 78, and controller 74 may determine that domain shader 76
does not need to execute for at least these vertices.

[0186] In this way, even in the mode of operation where the second diagonal strip is
tangent with the first diagonal strip, the techniques described in this disclosure may
progressively grow the patch coordinates that are stored in reuse buffer 78 such that
patch coordinates that correspond to domain coordinates that reside on the outer side of
the diagonal strips remain in reuse buffer 78 and patch coordinates that correspond to
domain coordinates that reside on the inner side of the diagonal strips are removed from
reuse buffer 78. For instance, in the mode of operation where the second diagonal strip
is tangent with the first diagonal strip, the number of primitives in the third diagonal
strip may be greater than the number of primitives in the first diagonal strip.

[0187] Accordingly, the number of vertices that resides on the inner side of the first
diagonal strip are less than the number of vertices that reside on the outer side of the
first diagonal strip. In this manner, even if reuse buffer 78 removes the patch
coordinates that correspond to the domain coordinates of vertices that reside along the
inner side of the first diagonal strip, there may be minor, if any, negative impact on the
number of times domain shader 76 needs to execute. In this way, this mode of
operation also allows for a reduction in the number of times domain shader 76 needs to
execute as compared to the examples described above with respect to FIGS. 3-5.

[0188] As described above, point generators 70 and connectivity generator 72 together
may divide the domain into a plurality of portions, where at least one of the portions is a
contiguous portion. Point generators 70 and connectivity generator 72 together may
divide the domain into the plurality of portions based on the tessellation factors and the
storage capability of reuse buffer 78. Point generators 70 and connectivity generator 72
may then implement one of the example modes of operations described above based on
the manner in which point generators 70 and connectivity generator 72 divides the

domain.

WO 2014/120359 PCT/US2013/076655
41

[0189] For a quad domain, tessellation unit 66 may receive an fy tessellation factor, and
an f; tessellation factor. The f; tessellation factor may indicate the number of vertices
that reside on a ring in the x-direction, and the f; tessellation factor may indicate the
number of vertices that reside on a ring in the y-direction. For example, point
generators 70 of tessellation unit 66 may utilize the f; tessellation factor and the f;
tessellation factor to determine the number of points that reside on each of the rings. It
should be noted that although rings are needed to determine the location of the points
(e.g., the vertices), connectivity generator 72 outputs primitives in diagonal strips and
not based on the rings. In other words, once point generators 70 utilize the rings to
determine the location of the vertices, connectivity generator 72 outputs domain
coordinates of the vertices of the primitives in the diagonal strips, and not in the ring-
by-ring fashion described above with respect to FIGS. 3-5.

[0190] In some examples, setup unit 68 may preprocess the f, and f; tessellation factors.
For example, setup unit 68 may round f; and f{; to integer values if tessellation unit 66 is
to apply integer partitioning. Setup unit 68 may round f and f; to an odd integer if
tessellation unit 66 is to apply odd fractional partitioning. Setup unit 68 may round fy
and f; to an even integer if tessellation unit 66 is to apply even fractional partitioning.
Setup unit 68 may round f and fy to 2" (i.c., a dyadic integer) if tessellation unit 66 is to
apply power of 2 (pow2) partitioning. In any event, this disclosure refers to the f; and f;
tessellation factors as being factors subsequent to the preprocessing by setup unit 68.
[0191] Connectivity generator 72 may divide the quad domain based on the lesser of f;
and f;. For example, a processing unit (e.g., controller 74 and/or tessellation unit 66)
may determine the lesser of f; and f,. For instance, let f; equal the lesser of £, and £y,
where f; equals the greater of f; and f;. If f; is equal to fy, then let f; equal either f; or f;.
In other words, fj is less than or equal to f; (i.e., f; <f;).

[0192] The above example assumed the domain to be a quad domain. For a triangle
domain, tessellation unit 66 may not receive an f; and an fy tessellation factor. Rather,
tessellation unit 66 may receive one tessellation factor, which this disclosure refers to as
f) for simplicity.

[0193] As described in more detail the value of tessellation factor f; may determine the
manner in which point generators 70 and connectivity generator 72 divide the domain.
Also, the number of slots in reuse buffer 78 may determine the manner in which point
generators 70 and connectivity generator 72 divide the domain. Let “C” equal the

number of slots in reuse buffer 78 (i.e., the storage capabilities of reuse buffer 78).

WO 2014/120359 PCT/US2013/076655
42

[0194] In some examples, controller 74 may determine whether f; + 1 is less than or
equal to C — 2. It should be understood that it may be possible for tessellation unit 66 to
determine whether f; + 1 is less than or equal to C — 2. For example, tessellation unit 66
may be preloaded with the value of C. In other words, the processing unit (e.g.,
controller 74 and/or tessellation unit 66) may determine whether f; + 1 is less than or
equal to C — 2. However, for ease of description, controller 74 is described as
determining whether f; + 1 is less than or equal to C — 2.

[0195] If controller 74 determines that f] + 1 is less than or equal to C — 2, then
controller 74 may instruct connectivity generator 72 to operate in a first mode of
operation. This first mode of operation may be referred to as a joint diagonal walk. In
the first mode of operation, point generators 70 and connectivity generator 72 may
divide the domain into two portions, where one or more both portions are contiguous
portions. For example, point generators 70 and connectivity generator 72 may divide
the quad domain into two halves, and may implement the first mode of operation on
cach of the two halves. As another example, point generators 70 and connectivity
generator 72 may divide the triangle domain into a one-third portion and a two-thirds
portion. In this example, point generators 70 and connectivity generator 72 may
implement a first mode of operation on the two-thirds portion, and may implement a
second mode of operation, described in more detail below, on the one-third portion.
[0196] FIG. 7 is a diagram illustrating an example technique of outputting domain
coordinates of vertices of primitives in a contiguous portion of a domain in accordance
with one or more examples described in this disclosure. FIG. 7 illustrates domain 80,
which is a quad domain. As illustrated, point generators 70 and connectivity generator
72 may divide domain 80 into two portions 81A and 81B, because in this example, the
processing unit (e.g., controller 74 and/or tessellation unit 66) may have determined that
fi + 1 is less than or equal to C — 2. In other words, point generators 70 and
connectivity generator 72 may implement the first mode of operation. In this case,
portions 81A and 81B may each be considered as joint portions. For instance, if point
generators 70 and connectivity generator 72 were to divide domain 80 into quadruplets,
then portion 81A includes a joint portion comprising two of the quadruplets, and portion
81B includes a joint portion comprising the other two of the quadruplets.

[0197] For purposes of illustration, FIG. 7 illustrates the manner in which connectivity
generator 72 may output domain coordinates for primitives within portion 81B. It

should be understood that connectivity generator 72 outputs the domain coordinates

WO 2014/120359 PCT/US2013/076655
43

based on the determined domain coordinates by point generators 70. Portion 81B is a
contiguous portion because all primitives of domain 80 that fall within portion 81B are
included as part of portion 81B. For instance, portion 81B does not create a gap in
domain 80.

[0198] In the example illustrated in FIG. 7, connectivity generator 72 may start
outputting domain coordinates of primitives that are located at the center of portion
81B, along the x-axis boundary of domain 80, and extend outwards. This is further
illustrated with respect to first diagonal strip 82, second diagonal strip 84, and third
diagonal strip 86. For instance, first diagonal strip 82 includes primitives 88A to 88N,
second diagonal strip 84 includes primitives 90A to 90N, and third diagonal strip 86
includes primitives 92A to 92M.

[0199] In the first mode of operation (e.g., where f; + 1 is less than or equal to C — 2),
second diagonal strip 84 may include a same number of primitives as first diagonal strip
82. For example, in FIG. 7, first diagonal strip 82 includes “N” number of primitives
and second diagonal strip 84 also includes “N” number of primitives. In the first mode
operation, third diagonal strip 86 includes a different number of primitives than first
diagonal strip 82 and second diagonal strip 84. For instance, third diagonal strip 86
includes “M” number of primitives.

[0200] Also, in the first mode of operation, second diagonal strip 84 is tangent with first
diagonal strip 82. For example, second diagonal strip 84 includes only one primitive
that shares two vertices with only one primitive of first diagonal strip 82. As illustrated
in FIG. 7, primitive 90A of second diagonal strip 84 shares two vertices with primitive
88N of first diagonal strip 82, and none of the remaining primitives of second diagonal
strip 84 shares two vertices with any remaining primitives of first diagonal strip 82.
[0201] Furthermore, in the first mode of operation, third diagonal strip 86 is parallel
with first diagonal strip 82, but not parallel with second diagonal strip 84. Each of first
diagonal strip 82, second diagonal strip 84, and third diagonal strip 86 may include an
inner side and an outer side. The inner side refers to the side of first diagonal strip 82,
second diagonal strip 84, and third diagonal strip 86 that is closer to the center of
portion 81B, and the outer side refers to the side of first diagonal strip 82, second
diagonal strip 84, and third diagonal strip 86 that is away from the center of portion
81B.

[0202] Two diagonal strips being parallel with one another means that the two diagonal

strips start from the same axis and extend outwards in the same direction. For example,

WO 2014/120359 PCT/US2013/076655
44

first diagonal strip 82 and third diagonal strip 86 both start along the x-axis of domain
80 and extend outwards in the same direction. Second diagonal strip 84 starts along the
x-axis of domain 80 but does not extend outwards in the same direction as first diagonal
strip 82 and third diagonal strip 86.

[0203] In some examples, two diagonal strips being parallel with one another means
that an outer side of one of the two diagonal strips is the same as an inner side of the
other of the two diagonal strips. For example, the outer side of first diagonal strip 82 is
the same as the inner side of third diagonal strip 86. Accordingly, third diagonal strip
86 is parallel with first diagonal strip 82. However, neither of the inner side nor the
outer side of second diagonal strip 84 is the same as the inner side or outer side of first
diagonal strip 82 and third diagonal strip 86. Accordingly, third diagonal strip 86 is not
parallel with second diagonal strip 84.

[0204] Furthermore, even if two diagonal strips do not share an inner side and outer
side, it may be possible for the two diagonal strips to be considered parallel with one
another. For instance, as described above, if two diagonal strips start from a same axis
of the domain and extend outwards in the same direction, the two diagonal strips may be
considered as being parallel with one another.

[0205] In FIG. 7, connectivity generator 72 may output the domain coordinates for
primitives 88A to 88N (i.c., domain coordinates for primitives in first diagonal strip 82).
For any of these domain coordinates of primitives 88A to 88N, for which reuse buffer
78 does not store corresponding patch coordinates, controller 74 may cause an
instantiation of domain shader 76 to execute, and domain shader 76 may store the
transformed coordinates (i.e., the patch coordinates that correspond to the domain
coordinates) in reuse buffer 78. Connectivity generator 72 may then output domain
coordinates for primitives 90A to 90N (i.e., domain coordinates for primitives in second
diagonal strip 84). Again, for any of these domain coordinates of primitives 90A to
90N, for which reuse buffer 78 does not store corresponding patch coordinates,
controller 74 may cause an instantiation of domain shader 76 to execute, and domain
shader 76 may store the transformed coordinates in reuse buffer 78. Next, connectivity
generator may output domain coordinates for primitives 92A to 92M (i.e., domain
coordinates for primitives in third diagonal strip 86). As above, for any of these domain
coordinates of primitives 92A to 92M, for which reuse buffer 78 does not store

corresponding patch coordinates, controller 74 may cause an instantiation of domain

WO 2014/120359 PCT/US2013/076655
45

shader 76 to execute, and domain shader 76 may store the transformed coordinates in
reuse buffer 78.

[0206] Connectivity generator 72 may keep outputting domain coordinates in this
manner until connectivity generator 72 completes outputting domain coordinates of all
of the primitives in portion 81B. Connectivity generator 72 may then repeat these steps
with respect to portion 81A. As illustrated in FIG. 7, portion 81B and portion 81A
share many vertices. In some cases, it may be possible that the patch coordinates that
correspond to the domain coordinates for some of these vertices that shared by portion
81A and portion 81B are no longer available in reuse buffer 78. For some of vertices,
controller 74 may cause domain shader 76 to execute. However, although domain
shader 76 may need execute for retransforming the domain coordinates of these shared
vertices to patch coordinates, the techniques described in this disclosure may still reduce
the overall number of times domain shader 76 needs to execute, as compared to the
examples illustrated in FIGS. 3-5.

[0207] In some instances, as illustrated in FIG. 7, after outputting primitives of a
diagonal strip, there may be no diagonal strip that is congruent (i.c., tangent) to that
diagonal strip. In this case, connectivity generator 72 may output primitives of the
diagonal strip that is the mirror opposite. For example, after connectivity generator 72
outputs the domain coordinates of primitives within diagonal strip 94, there may be no
tangent diagonal strip to diagonal strip 94. In this case, connectivity generator 72 may
output the domain coordinates of primitives in diagonal strip 96, which is the mirror
opposite of diagonal strip 94.

[0208] Diagonal strips that are mirror opposites of one another refer to diagonal strips
that would intersect a line of symmetry within the domain at the same point if extended.
For instance, in FIG. 7, the line of symmetry may be considered as a vertical line that
extends upwards from a center bottom-end of domain 80 or downwards from a center
top-end of domain 80. In this example, if diagonal strip 94 and diagonal strip 96
extended further, diagonal strip 94 and diagonal strip 96 would intersect along the line
of symmetry of domain 80.

[0209] In this manner, as illustrated in FIG. 7, connectivity generator 72 starts from the
center of the bottom-end of portion 81B and outputs domain coordinates of primitives
extending in the outwards direction towards both the right-end and left-end of portion
81B, and towards the top-end of portion 8§1B. Alternatively, connectivity generator 72
may start from the center of top-end of portion 81B outwards towards both the right-end

WO 2014/120359 PCT/US2013/076655
46

and left-end of portion 81B, and towards the bottom-end of portion 81B. In this case,
the likelihood that patch coordinates that correspond to the domain coordinates of
vertices that are shared by portion §1B and 81 A will be removed from reuse buffer 78.
Accordingly, it may be more advantageous for connectivity generator 72 to start from
the center of bottom-end of portion 81B, rather than the top-end of portion 81B. In
either situation (e.g., starting from top-end or bottom-end of portion 81), the output
scheme may be referred to as a joint walk in the x-direction because first diagonal strip
82 starts from the x-axis, and second diagonal strip 84 ends at the x-axis.

[0210] However, the techniques described in this disclosure are not so limited. In some
other examples, point generators 70 and connectivity generator 72 may divide domain
80 into two vertical portions, rather than the horizontal portions illustrated in FIG. 7. In
this case, connectivity generator 72 may start from a center of the left-end or a center of
the right-end and output domain coordinates of primitives extending in the outwards
direction towards both the top-end and the bottom-end of a vertical portion of the two
vertical portions. Such an output scheme may be referred to as a joint walk in the y-
direction because the first diagonal strip, in this example, may start from the y-axis of
the domain, and the second diagonal strip, in this example, may end at the y-axis of the
domain. For instance, the joint walk in the y-direction may be considered as the same
as the joint walk in the x-direction if domain 80 were rotated 90 degrees.

[0211] When the processing unit (e.g., controller 74 or tessellation unit 66) determines
that connectivity generator 72 is to implement the first mode of operation, controller 74
may further determine whether connectivity generator 72 is to implement the joint walk
in the x-direction or the joint walk in the y-direction. For example, controller 74 may
determine whether connectivity generator 72 is to implement the joint walk in the x-
direction or the joint walk in the y-direction based on the tessellation factors.

[0212] For instance, in the first mode of operation, f; + 1 is less than or equal to C — 2,
and f; equaled to the lesser of f; and fy. If controller 74 determines that f; equals fx (i.e.,
f, is less than or equal to fy), then controller 74 may determine that connectivity
generator 72 is to implement the joint walk in the x-direction to output the domain
coordinates of primitives in the contiguous portion. If controller 74 determines that f;
equals £ (i.e., £ is less than or equal to £;), then controller 74 may determine that
connectivity generator 72 is to implement the joint walk in the y-direction to output the
domain coordinates of primitives in the contiguous portion. Connectivity generator 72

may then output domain coordinates of primitives in the contiguous portion in either the

WO 2014/120359 PCT/US2013/076655
47

joint walk in the x-direction or joint walk in the y-direction based on the determination
of controller 74.

[0213] FIG. 8 is a diagram illustrating another example technique of outputting domain
coordinates of vertices of primitives in a contiguous portion of a domain in accordance
with one or more examples described in this disclosure. FIG. 8 illustrates domain 98,
which is a triangle domain. As illustrated, point generators 70 and connectivity
generator 72 may divide domain 98 into two portions 100A and 100B, because in this
example, the processing unit (e.g., controller 74 or tessellation unit 66) may have
determined that f; + 1 is less than or equal to C — 2. In other words, similar to FIG. 7,
connectivity generator 72 may implement the first mode of operation.

[0214] For triangle domain 98, tessellation unit 66 may receive one tessellation factor
that indicates the number of points that reside along each side of a ring, rather than two
tessellation factors (i.e., f; and £,) for a quad domain such as quad domain 80 of FIG. 7.
For consistency, the tessellation factor that indicates the number of points that reside
along each side of a ring for triangle domain 98 is referred to as f;. However, f; may
simply be referred to as f, as there is no f; and f; tessellation factors.

[0215] Furthermore, in the first mode of operation where connectivity generator point
generators 70 and 72 divide domain 98 into two portions, one of the two portions may
include one-third of domain 98 and the other of the two portions may include two-thirds
of domain 98. For example, portion 100B is a contiguous portion that includes two-
thirds of domain 98, and portion 100A is a contiguous portion that includes one-third of
domain 98.

[0216] It may be possible for point generators 70 and connectivity generator 72 to
divide domain 98 into equal halves. However, in the case where f; + 1 is less than or
equal to C — 2, there may be sufficient storage slots in reuse buffer 78 for connectivity
generator 72 to output domain coordinates for primitives within two-thirds of domain 98
(i.e., within portion 100B). Because two-thirds of domain 98 is larger than one-half of
domain 98, it may be more advantageous for connectivity generator 72 to divide domain
98 into a one-third portion 100A and a two-thirds portion 100B.

[0217] For purposes of illustration, FIG. 8 illustrates the manner in which connectivity
generator 72 may output domain coordinates for primitives within portion 100B. As
described above, connectivity generator 72 may output domain coordinates that point

generators 70 determined. Outputting domain coordinates of primitives in portion 100B

WO 2014/120359 PCT/US2013/076655
48

may be considered as a joint walk because portion 100B is a combination of two triplets
(e.g., two-thirds of domain 98 equals a combination of two one-thirds of domain 98).
[0218] In the example illustrated in FIG. 8, connectivity generator 72 may start
outputting domain coordinates of primitives that are located at the center of portion
100B and extend outwards. For example, FIG. 8 illustrates first diagonal strip 102,
second diagonal strip 104, and third diagonal strip 106. In this example, connectivity
generator 72 may output the domain coordinates of primitives that reside within first
diagonal strip 102, followed by the domain coordinates of primitives that reside with
second diagonal strip 104, and then followed by the domain coordinates of primitives
that reside with third diagonal strip 106. After the outputting of the domain coordinates,
for each of the diagonal strips, for any of the domain coordinates, for which reuse buffer
78 does not store corresponding patch coordinates, controller 74 may cause an
instantiation of domain shader 76 to execute, and domain shader 76 may store the
transformed coordinates (i.e., the patch coordinates that correspond to the domain
coordinates) in reuse buffer 78.

[0219] In the example illustrated in FIG. 8, because connectivity generator 72 is
implementing the first mode of operation, second diagonal strip 104 is tangent to first
diagonal strip 102, and second diagonal strip 104 may include the same number of
primitives as first diagonal strip 102. Also, in the first mode of operation, third diagonal
strip 106 may be parallel with first diagonal strip 102, and not diagonal with second
diagonal strip 104. As illustrated, third diagonal strip 106 may include a different
number of primitives than the first diagonal strip 102 and the second diagonal strip 104.
[0220] Connectivity generator 72 may keep outputting domain coordinates in this
manner until connectivity generator 72 completes outputting domain coordinates of all
of the primitives in portion 100B. It should be understood that although FIG. 8
illustrates portion 100B as including the bottom two-thirds of domain 98, aspects of this
disclosure are not so limited. In other examples, portion 100B may include the right or
left two-thirds of domain 98. For portion 100A, connectivity generator 72 may output
primitives in accordance with a second mode of operation described below.

[0221] In the examples illustrated in FIGS. 7 and 8, point generators 70 and
connectivity generator 72 may implement the joint walk, where joint walk includes two
sections of a quadruplet for a quad domain, and two sections of a triplet for a triangle
domain. In the joint walk, the two sections are adjacent to one another and share

vertices on a hypothetical middle line extending throughout the domain (i.e., in the

WO 2014/120359 PCT/US2013/076655
49

vertical direction in FIGS. 7 and 8). FIGS. 7 and 8 also illustrate an example of uniform
tessellation in which there are the same number of vertices along each of the rings, and
the number of vertices along each of the rings is even. This may allow point generators
70 of tessellation unit 66 to exploit the symmetry pattern in the tessellation and save
computations by computing the coordinates for half the vertices along a ring, and
mirroring the coordinates of the other half of the vertices along the ring using an internal
buffer (other than or including reuse buffer 78).

[0222] Similar to FIG. 7, after outputting primitives of a diagonal strip, there may be no
diagonal strip that is congruent to that diagonal strip. In this case, connectivity
generator 72 may output primitives of the diagonal strip that is the mirror opposite. For
example, after connectivity generator 72 outputs the domain coordinates of primitives
within diagonal strip 108, there may be no diagonal strip that is tangent to diagonal strip
108. In this case, connectivity generator 72 may output the domain coordinates of
primitives in diagonal strip 110, which is the mirror opposite of diagonal strip 108. For
example, if diagonal strip 108 and diagonal strip 110 were to extend, diagonal strip 108
and diagonal strip 110 would meet at the same point along a line of symmetry.

[0223] FIG. 9 is a diagram illustrating an example of a contiguous portion of a domain
that a connectivity generator outputs in accordance with one or more examples
described in this disclosure. For example, FIG. 9 illustrates contiguous portion 112.
The primitives of contiguous portion 112 are identified by numeral values within the
primitives, and indicate the order in which connectivity generator 72 may output the
domain coordinates. For example, connectivity generator 72 may output the domain
coordinates of vertices of primitive 0, followed by primitive 1, followed by primitive 2,
and so forth. The numerical values at the vertices of the primitives represent domain
coordinates. For example, the domain coordinates for primitive 0 are (2, 3, 10). It
should be understood that the domain coordinates are (u, v) coordinates or (u, v, w)
coordinates. However, for ease of description, the domain coordinates are provided
with a single value.

[0224] In the example illustrated in FIG. 9, f; equals 6, and f, equals 18. However, for
case of illustration only half of contiguous portion is illustrated. For instance, FIG. 9
illustrates six segments along the y-axis, where a segment is a line between two vertices,
and nine segments along the x-axis. The full contiguous portion includes six segments
along the y-axis and eighteen segments along the x-axis. For ease of illustration, only

the part of the contiguous portion that includes six segments along the y-axis and nine

WO 2014/120359 PCT/US2013/076655
50

segments along the x-axis is illustrated (i.e., half of the contiguous portion). For
instance, fy equals 6 because there are six segments along the y-axis, where a segment
includes two end points, and the two end points are vertices of primitives. In FIG. 9, fx
equals 18 because there are actually eighteen segments along the x-axis, but only nine of
the eighteen segments are illustrated in FIG. 9.

[0225] Also, in the example illustrated in FIG. 9, assume that the number of slots in
reuse buffer 78 is 9 (i.e., C equals 9). In this case, because f; is less than f;, the
processing unit (e.g., controller 74 and/or tessellation unit 66) may determine that f;
equals £y (i.e., f1 equals 6). In this example, f; + 1 equals 7, and C — 2 also equals 7.
Therefore, in this example, controller 74 may determine that f; + 1 is less than or equal
to C — 2, and may cause point generators 70 and connectivity generator 72 to implement
the first mode of operation (i.¢., the joint walk).

[0226] Furthermore, in this example, because fj is less than f,, controller 74 may cause
point generators 70 and connectivity generator 72 to implement the joint walk in the y-
direction. For example, as illustrated in FIG. 9, connectivity generator 72 may start
from the left-end of contiguous portion 112 and extend outwards to the right-end of
contiguous portion 112. In the example illustrated in FIG. 9, a first diagonal strip may
include primitives 2, 3, and 4, a second diagonal strip may include primitives 5, 6, and
7, and a third diagonal strip may include primitives 8, 9, 10, 11, and 12. The first
diagonal strip starts from the y-axis, and the second diagonal strip ends at the y-axis,
hence joint walk in the y-direction.

[0227] In this case, the second diagonal strip is tangent with the first diagonal strip, and
the third diagonal strip is parallel with the first diagonal, and not parallel with the third
diagonal. Also, the number of primitives in the first and second diagonal strips is the
same (i.e., 3 primitives in each), and the number of primitives in the third diagonal strip
is different (i.e., 5 primitives instead of 3 primitives).

[0228] Table 1 below illustrates the behavior of reuse cache 78 for the first 42
primitives of contiguous portion 112. In Table 1, the first column indicates the
primitive, the second column indicates the domain coordinates, and the third column
indicates the patch coordinates stored in reuse buffer 78. For ease of illustration, the
patch coordinates are given the same value as their corresponding domain coordinates.
Also, in the third column of Table 1, patch coordinates that are bolded and underlined
indicate the instance when domain shader 78 executed to transform the domain

coordinates to patch coordinates.

WO 2014/120359 51 PCT/US2013/076655
TABLE 1.
Primitive Domain Coordinates Patch Coordinates in 9 slots of reuse
buffer 78

0 (2,3, 10) 2,3,10, %, x,X,X, X, X
1 (10, 3, 4) 2,3,10,4,%, X, X, X, X
2 (1,2,9) 2,3,10,4,1,9, %, x, X
3 9,2, 10) 2,3,10,4,1,9,%, x,x
4 (9,10,17) 2,3,10,4,1,9,17, x, x
5 (17,10, 11) 2,3,10,4,1,9,17, 11, x
6 (10,4, 11) 2,3,10,4,1,9,17, 11, x
7 (11,4,5) 2,3,10,4,1,9,17, 11,58
8 (0,1,8) 10,4,1,9,17,11,5,0, 8
9 (8,1,9) 10,4,1,9,17,11,5,0, 8
10 (8,9, 16) 4,1,9,17,11,5,0,8, 16
11 (16,9, 17) 4,1,9,17,11,5,0,8, 16
12 (16, 17, 24) 1,9,17,11,5,0, 8, 16, 24
13 (24,17, 18) 9,17,11,5,0,8, 16,24, 18
14 (17,11, 18) 9,17,11,5,0,8, 16,24, 18
15 (18,11, 12) 17,11,5,0,8, 16,24, 18, 12
16 (11,5,12) 17,11,5,0, 8, 16, 24, 18, 12
17 (12,5, 6) 11,5,0,8, 16,24, 18,12, 6
18 (7,0, 8) 5,0,8,16,24,18,12,6,7
19 (7, 8, 15) 0,8,16,24,18,12,6,7, 15
20 (15, 8, 16) 0,8, 16,24,18,12,6,7, 15
21 (15, 16, 23) 8,16,24,18,12,6,7, 15,23
22 (23, 16, 24) 8,16,24,18,12,6,7, 15,23
23 (23,24, 31) 16,24, 18,12,6,7, 15,23, 31
24 (31, 24, 25) 24,18,12,6,7, 15,23, 31,25
25 (24, 18, 25) 24,18,12,6,7, 15,23, 31,25
26 (25,18, 19) 18,12,6,7,15,23,31,25,19
27 (18,12, 19) 18,12, 6,7, 15,23, 31, 25, 19
28 (29, 12, 13) 12,6,7,15,23,31,25,19,13
29 (12,6, 13) 12, 6,7, 15,23, 31, 25,19, 13
30 (14,7, 15) 6,7,15,23,31,25,19,13,14
31 (14, 15, 22) 7,15,23,31,25,19, 13, 14, 22
32 (22, 15, 23) 7, 15,23, 31, 25, 19, 13, 14, 22
33 (22,23, 30) 15,23, 31, 25,19, 13, 14, 22, 30
34 (30, 23, 31) 15,23, 31, 25, 19, 13, 14, 22, 30
35 (30, 31, 38) 23,31,25,19, 13, 14, 22, 30, 38
36 (38, 31, 32) 23,31, 25,19, 13, 14, 22, 30, 38
37 (31, 25, 32) 31, 25,19, 13, 14, 22, 30, 38, 32
38 (32, 25, 26) 25,19, 13,14, 22, 30, 38, 32, 26
39 (25,19, 26) 25,19, 13, 14, 22, 30, 38, 32, 26
40 (26, 19, 20) 19, 13, 14, 22, 30, 38, 32, 26, 20
41 (19, 13, 20) 19, 13, 14, 22, 30, 38, 32, 26, 20

WO 2014/120359 PCT/US2013/076655
52

[0229] In Table 1, for primitive 0, controller 74 may cause three instantiations of
domain shader 76 to execute to transform the domain coordinates of primitive 0 to patch
coordinates. Primitive 1 shares two vertices with primitive 0 (i.e., the vertex with
domain coordinate 3 and 10). In this case, for primitive 1, controller 74 may cause one
instantiation of domain shader 76 to execute: one for domain coordinate 4. Because the
patch coordinates that correspond to domain coordinates 3 and 10 are already stored in
reuse buffer 78, controller 74 may not cause an instantiation of domain shader for
domain coordinates 3 and 10.

[0230] As illustrated in Table 1, after primitive 7, reuse buffer 78 is full. In this case,
after connectivity generator 72 outputs the domain coordinates of primitive 8, controller
74 may determine that two instantiations of domain shader 76 need to execute: one for
domain coordinate 0 of primitive 8, and one for domain coordinate 8 of primitive 8.
Accordingly, reuse buffer 78 may remove the earliest stored patch coordinates, which
are patch coordinates 2 and 3, to free storage space for patch coordinates 0 and 8.

[0231] Table 1 may indicate the manner in which to efficiently utilize reuse buffer 78 to
minimize the execution of domain shader 76 for the first mode of operation. For
example, all shared vertices are fully utilized (e.g., no extra cache misses). For instance,
the patch coordinates that correspond to the domain coordinates of a vertex remain
stored in reuse buffer until connectivity generator 72 outputs the domain coordinates for
most of the primitives that share that vertex. This may minimize the number of times
domain shader 76 needs to execute.

[0232] The above examples described the techniques for the first mode of operation
where f] + 1 is less than or equal to C —2. However, the condition that f; + 1 is less
than or equal to C — 2 may be not true in every case. For example, for larger values of f;
and/or smaller values of C, compared to above examples, the condition that f; + 1 is less
than or equal to C — 2 may not hold true.

[0233] In some examples, if the processing unit (e.g., controller 74 and/or tessellation
unit 66) determines that f; + 1 is not less than or equal to C — 2, controller 74, in this
example, may determine whether f,/2 + 1 is less than or equal to C — 1. If controller 74
determines that f1/2 + 1 is less than or equal to C — 1, controller 74 may cause
connectivity generator 72 to implement a second mode of operation.

[0234] In the second mode of operation, point generators 70 and connectivity generator
72 may divide a quad domain into four portions (e.g., quadruplets), where at least one of

the portions is a contiguous portion. In the second mode of operation, point generators

WO 2014/120359 PCT/US2013/076655
53

70 and connectivity generator 72 may divide a triangle domain into three portions (e.g.,
triplets), where at least one of the portions is a contiguous portion.

[0235] For the second mode of operation, similar to the first mode of operation,
connectivity generator 72 may output domain coordinates of primitives that reside
within a first diagonal strip, followed by domain coordinates of primitives that reside
within the second diagonal strip, and then followed by domain coordinates of primitives
that reside within a third diagonal strip. However, in the second mode of operation, the
second diagonal strip is parallel with the first diagonal strip and the third diagonal strip.
[0236] For instance, an inner side of the second diagonal strip may be the same as an
outer side of the first diagonal strip. Also, an outer side of the second diagonal strip
may be the same as an inner side of the third diagonal strip. In this example, because
the second diagonal strip is parallel with both the first and the third diagonal strips, the
first diagonal strip is parallel with the third diagonal strip even if neither the outer nor
inner side of the first diagonal strip is the same as the inner or outer side of the third
diagonal strip.

[0237] FIG. 10 is a diagram illustrating another example technique of outputting
domain coordinates of vertices of primitives in a contiguous portion of a domain in
accordance with one or more examples described in this disclosure. FIG. 10 illustrates
domain 114, which is a quad domain. As illustrated, connectivity generator 72 may
divide domain 114 into four portions 115A—115D, because in this example, controller
74 may have determined that f;/2 + 1 is less than or equal to C — 1 (i.e., connectivity
generator 72 is to implement the first mode of operation). In the example of FIG. 7,
portions 81 A and 81B were described as being joint portions. In the example of FIG.
10, portions 115A—115 may be considered as single portions, where two single portions
together form a joint portion.

[0238] For purposes of illustration, FIG. 10 illustrates the manner in which connectivity
generator 72 may output domain coordinates for primitives within portion 115C.
Portion 115C may be considered as a contiguous portion because portion 115C does not
create a gap in domain 114.

[0239] In the example illustrated in FIG. 10, connectivity generator 72 may start
outputting domain coordinates of primitives that are located at a corner of portion 115C
and extend outwards towards the opposing corner of portion 115C. For example, in
FIG. 10, connectivity generator 72 may start from the bottom-right corner of portion

115C and extent outwards towards the top-left corner of portion 115C. This is further

WO 2014/120359 PCT/US2013/076655
54

illustrated with respect to first diagonal strip 116, second diagonal strip 118, and third
diagonal strip 120. As illustrated, second diagonal strip 118 is closer to the top-right
corner than first diagonal strip 116, and third diagonal strip 120 is closer to the top-right
corner than both second diagonal strip 118 and first diagonal strip 116.

[0240] First diagonal strip 116 includes primitives 122A to 122N, second diagonal strip
118 includes primitives 124A to 124M, and third diagonal strip 120 includes primitives
126A to 126X. In the second mode of operation, second diagonal strip 118 may include
a different number of primitives than first diagonal strip 116. For example, second
diagonal strip 118 may include “M” number of primitives, and first diagonal strip 116
may include “N” number of primitives, where M and N are different numbers. Also,
third diagonal strip 120 may include a different number of primitives than first diagonal
strip 116 and second diagonal strip 118. For example, third diagonal strip 120 includes
“X” number of primitives, where X is different than M and N.

[0241] In the second mode of operation, first diagonal strip 116 may be parallel with
second diagonal strip 118. For example, an inner side of second diagonal strip 118 is
the same as an outer side of first diagonal strip 116. Also, in the second mode of
operation, third diagonal strip 120 may be parallel with second diagonal strip 118. For
example, an inner side of third diagonal strip 120 is the same as an outer side of second
diagonal strip 118. In this case, because second diagonal strip 118 is parallel with both
first diagonal strip 116 and third diagonal strip 120, first diagonal strip 116 and third
diagonal strip 120 may be considered parallel with one another.

[0242] In FIG. 10, connectivity generator 72 may output the domain coordinates for
primitives 122A to 122N (i.e., domain coordinates for primitives in first diagonal strip
116). For any of these domain coordinates of primitives 122A to 122N, for which reuse
buffer 78 does not store corresponding patch coordinates, controller 74 may cause an
instantiation of domain shader 76 to execute, and domain shader 76 may store the
transformed coordinates (i.e., the patch coordinates that correspond to the domain
coordinates) in reuse buffer 78. Connectivity generator 72 may then output domain
coordinates for primitives 124A to 124M (i.c., domain coordinates for primitives in
second diagonal strip 118). Again, for any of these domain coordinates of primitives
124A to 124M, for which reuse buffer 78 does not store corresponding patch
coordinates, controller 74 may cause an instantiation of domain shader 76 to execute,
and domain shader 76 may store the transformed coordinates in reuse buffer 78. Next,

connectivity generator may output domain coordinates for primitives 126A to 126X

WO 2014/120359 PCT/US2013/076655
55

(i.e., domain coordinates for primitives in third diagonal strip 120). As above, for any
of these domain coordinates of primitives 126A to 126X, for which reuse buffer 78 does
not store corresponding patch coordinates, controller 74 may cause an instantiation of
domain shader 76 to execute, and domain shader 76 may store the transformed
coordinates in reuse buffer 78.

[0243] In the second mode of operation, connectivity generator 72 may output domain
coordinates of primitives in a zig-zag manner. For instance, connectivity generator 72
may start outputting domain coordinates of first diagonal strip 116 starting from the x-
axis of domain 114. Then, in some examples, connectivity generator 72 may output
domain coordinates of second diagonal strip 118 starting from the x-axis of domain 114.
For third diagonal strip 120, connectivity generator 72 may once again start from the x-
axis of domain 114. Such outputting may form a zig-zag pattern.

[0244] Connectivity generator 72 may keep outputting domain coordinates in this
manner until connectivity generator 72 completes outputting domain coordinates of all
of the primitives in portion 115C. Connectivity generator 72 may then repeat these
steps with respect to portions 115A, 115B, and 115D. As illustrated in FIG. 10, portion
115C and portions 115A, 115B, and 115D share many vertices. In some cases, it may
be possible that the patch coordinates that correspond to the domain coordinates for
some of these vertices that shared by portion 115C with each one of portions 115A,
115B, and 115D are no longer available in reuse buffer 78. For some of vertices,
controller 74 may cause domain shader 76 to execute. However, although domain
shader 76 may need execute for retransforming the domain coordinates of these shared
vertices to patch coordinates, the techniques described in this disclosure may still reduce
the overall number of times domain shader 76 needs to execute, as compared to the
examples illustrated in FIGS. 3-5.

[0245] In the example of FIG. 10, connectivity generator 72 started from the bottom-
right corner of portion 115C and extended outwards towards the top-left corner of
portion 115C. Such an output scheme may be referred to as a single walk in the x-
direction because connectivity generator 72 starts from the x-axis of domain 114.
Another example of the single walk in the x-direction may be where connectivity
generator 72 starts from the bottom-left corner of portion 115C and extends outwards
towards the top-right corner of portion 115C.

[0246] However, aspects of this disclosure are not limited to a single walk in the x-

direction. In some other examples, point generators 70 and connectivity generator 72

WO 2014/120359 PCT/US2013/076655
56

may implement a single walk in the y-direction, where point generators 70 and
connectivity generator 72 start from the top-left corner of portion 115C and extend
outwards to the bottom-right corner of portion 115C, or starts from the top-right corner
of portion 115C and extends outwards to the bottom-left corner of portion 115C. These
output schemes may be referred to as a single walk in the y-direction because point
generators 70 and connectivity generator 72 start from the y-axis of domain 114.

[0247] The processing unit (i.c., controller 74 in this example) may determine whether
connectivity generator 72 is to implement the single walk in the x-direction or the single
walk in the y-direction. For example, in the second mode of operation, f1/2 + 1is less
than or equal to C — 1. If controller 74 determines that f; equals fx (i.c., fx is less than or
equal to fy), controller 74 may cause connectivity generator 72 to output domain
coordinates in accordance with the single walk in the x-direction. If controller 74
determines that f; equals f, (i.e., f; 1s less than or equal to f,), controller 74 may cause
connectivity generator 72 to output domain coordinates in accordance with the single
walk in the y-direction.

[0248] FIG. 11 is a diagram illustrating another example technique of outputting
domain coordinates of vertices of primitives in a contiguous portion of a domain in
accordance with one or more examples described in this disclosure. FIG. 11 illustrates
domain 128, which is a triangle domain. As illustrated, point generators 70 and
connectivity generator 72 may divide domain 128 into three portions 130A-130C
because the processing unit (controller 74 in this example) may have determined that
f1/2 + 1 is less than or equal to C — 1 (e.g., point generators 70 and connectivity
generator 72 is to implement the second mode of operation). In this example, f; may be
referred to simply as f because for a triangle domain, tessellation unit 66 may receive
one tessellation factor that indicates the number of points that reside on a ring.

[0249] For purposes of illustration, FIG. 11 illustrates the manner in which connectivity
generator 72 outputs the domain coordinates for primitives in portion 130C.
Connectivity generator 72 may similarly output the domain coordinates of primitives
within portions 130A and 130B. Furthermore, with respect to FIG. 8, connectivity
generator 72 may similarly output the domain coordinates of primitives within portion
100A.

[0250] FIG. 11 illustrates portion 130C as including first diagonal strip 132, second
diagonal strip 134, and third diagonal strip 136. In this example, first diagonal strip 132

is parallel with second diagonal strip 134, and second diagonal strip 134 is parallel with

WO 2014/120359 PCT/US2013/076655
57

third diagonal strip 136. Accordingly, first diagonal strip 132 is also parallel with third
diagonal strip 136. Furthermore, the number of primitives in first diagonal strip 132
may be different than the number of primitives in second diagonal strip 134, and the
number of primitives in third diagonal strip 136 may be different than the number of
primitives in first diagonal strip 132 and second diagonal strip 134.

[0251] In this example, connectivity generator 72 may output the domain coordinates
for primitives in first diagonal strip 132, and controller 74 may execute instantiations of
domain shader 76 for each domain coordinate whose corresponding patch coordinate is
not stored in reuse buffer 78. Connectivity generator 72 may then output the domain
coordinates for primitives in second diagonal strip 134, and controller 74 may execute
instantiations of domain shader 76 for each domain coordinate whose corresponding
patch coordinate is not stored in reuse buffer 78. Next, connectivity generator 72 may
output the domain coordinates for primitives in third diagonal strip 136, and controller
74 may execute instantiations of domain shader 76 for each domain coordinate whose
corresponding patch coordinate is not stored in reuse buffer 78.

[0252] Connectivity generator 72 may keep outputting domain coordinates in this
manner until connectivity generator 72 reaches the last primitive in portion 130C. Then,
connectivity generator 72 may output domain coordinates of primitives in portions
130A and 130B in a substantially similar fashion.

[0253] FIG. 12 is a diagram illustrating another example of a contiguous portion of a
domain that a connectivity generator outputs in accordance with one or more examples
described in this disclosure. For example, FIG. 12 illustrates contiguous portion 138.
Similar to FIG. 9, the primitives of contiguous portion 138 are identified by numeral
values within the primitives, and indicate the order in which connectivity generator 72
may output the domain coordinates. For example, connectivity generator 72 may output
the domain coordinates of vertices of primitive 0, followed by primitive 1, followed by
primitive 2, and so forth. The numerical values at the vertices of the primitives
represent domain coordinates.

[0254] In the example illustrated in FIG. 12, {, equals 10, and f; equals 8. FIG. 12
illustrates a quarter of the contiguous portion. For example, FIG. 12 illustrates five
segments along the x-axis and four segments along the y-axis, where the full contiguous
portion includes ten segments along the x-axis and eight segments along y-axis. Also,
in the example illustrated in FIG. 12, assume that the number of slots of reuse buffer 78

18 6 (i.e., C equals 6). In this case, because fy is less than f;, the processing unit (e.g.,

WO 2014/120359 PCT/US2013/076655
58

controller 74 and/or tessellation unit 66) may determine that f; equals f; (i.e., f; equals
8). In this example, f1/2 + 1 equals 5, and C — 1 also equals 5. Therefore, in this
example, controller 74 may determine that f;/2 + 1 is less than or equal to C — 1, and
may cause point generators 70 and connectivity generator 72 to implement the second
mode of operation (i.c., single walk).

[0255] For example, connectivity generator 72 may output domain coordinates of
primitives within a first diagonal strip, which may include primitives 1, 2, and 3.
Connectivity generator 72 may then output domain coordinates of primitives within a
second diagonal strip, which may include primitives 4, 5, 6, 7, and 8. Then,
connectivity generator 72 may output domain coordinates of primitives within a third
diagonal strip, which may include primitives 9, 10, 11, 12, 13, 14, and 15. In this
example, each of the first, second, and third diagonal strips may include different
number of primitives (i.e., 3, 5, and 7 primitives, respectively).

[0256] Furthermore, in this example, because fy is less than f;, point generators 70 and
connectivity generator 72 may implement the single walk in the y-direction. For
example, primitive 1 of the first diagonal strip is located along the y-axis of contiguous
portion 138, primitive 4 (i.e., the first primitive of the second diagonal strip) is located
along the y-axis of contiguous portion 138, and primitive 9 (i.c., the first primitive of
the third diagonal strip) is located along the y-axis of contiguous portion 138.

[0257] Table 2 below illustrates the behavior of reuse cache 78 for the 40 primitives of
contiguous portion 138. In Table 2, the first column indicates the primitive, the second
column indicates the domain coordinates, and the third column indicates the patch
coordinates stored in reuse buffer 78. For ease of illustration, the patch coordinates are
given the same value as their corresponding domain coordinates. Also, in the third
column of Table 2, patch coordinates that are bolded and underlined indicate the

instance when domain shader 78 executed to transform the domain coordinates to patch

coordinates.
TABLE 2.
Primitive Domain Coordinates Patch Coordinates in 6
slots of reuse buffer 78
0 (3,9,4) 3,9,4,x,x, X
1 2,8,3) 3,9,4,2,8 x
2 (3,8,9) 3,9,4,2,8,x
3 (8,14, 9) 3,9,4,2,8,14
4 (1,7,2) 4,2,8,14,1,7
5 (2,7,8) 4,2,8,14,1,7

WO 2014/120359 59 PCT/US2013/076655
6 (7,13,8) 2,8,14,1,7,13
7 (8, 13, 14) 2,8,14,1,7, 13
8 (13, 19, 14) 8,14,1,7, 13,19
9 (0,6, 1) 1,7,13,19,0,6
10 (1,6,7) 1,7,13,19,0,6
11 (6,12, 7) 7,13,19,0,6,12
12 (7,12, 13) 7,13,19,0,6, 12
13 (12,18, 13) 13,19,0,6, 12,18
14 (13,18, 19) 13,19,0,6, 12, 18
15 (18, 24, 19) 19,0, 6, 12, 18, 24
16 (0,5, 6) 0,6,12,18,24,5
17 (5,11, 6) 6,12,18,24,5, 11
18 (6,11, 12) 6,12,18,24,5, 11
19 (11,17, 12) 12, 18,24, 5, 11, 17
20 (12,17, 18) 12,18,24,5, 11, 17
21 (17,23, 18) 18,24,5, 11, 17,23
22 (18, 23, 24) 18,24,5,11, 17,23
23 (23,29, 24) 24,5, 11, 17,23, 29
24 (5,10, 11) 5,11,17,23,29, 10
25 (10, 16, 11) 11, 17, 23,29, 10, 16
26 (11, 16, 17) 11, 17, 23, 29, 10, 16
27 (16,22, 17) 17, 23,29, 10, 16, 22
28 (17,22, 23) 17, 23,29, 10, 16, 22
29 (22, 28, 23) 23,29, 10, 16, 22, 28
30 (23,28, 29) 23,29, 10, 16, 22, 28
31 (10, 15, 16) 29, 10, 16, 22, 28, 15
32 (15, 21, 16) 10, 16, 22, 28, 15, 21
33 (16,21, 22) 10, 16, 22, 28, 15, 21
34 (21,27, 22) 16, 22,28, 15,21, 27
35 (22,27, 28) 16, 22,28, 15, 21, 27
36 (15, 20, 21) 22,28, 15,21, 27,20
37 (20, 26, 21) 28, 15, 21, 27, 20, 26
38 (21, 26, 27) 28, 15, 21, 27, 20, 26
39 (20, 25, 26) 15, 21, 27, 20, 26, 25

[0258] In Table 2, for primitive 0, controller 74 may cause three instantiations of
domain shader 76 to execute to transform the domain coordinates of primitive 0 to patch
coordinates. Primitive 1 shares one vertex with primitive 0 (i.e., the vertex with domain
coordinate 3). In this case, for primitive 1, controller 74 may cause two instantiations of
domain shader 76 to execute: one for domain coordinate 2 and one for domain
coordinate 8. Because the patch coordinates that correspond to domain coordinate 3 is
already stored in reuse buffer 78, controller 74 may not cause an instantiation of domain
shader for domain coordinate 3.

[0259] As illustrated in Table 2, after primitive 3, reuse buffer 78 is full. In this case,

after connectivity generator 72 outputs the domain coordinates of primitive 4, controller

WO 2014/120359 PCT/US2013/076655
60

74 may determine that two instantiations of domain shader 76 need to execute: one for
domain coordinate 1 of primitive 4, and one for domain coordinate 7 of primitive 4.
Accordingly, reuse buffer 78 may remove the earliest stored patch coordinates, which
are patch coordinates 3 and 9, to free storage space for patch coordinates 1 and 7.
[0260] Table 2, as an example, indicates a way in which to efficiently utilize reuse
buffer 78 to minimize the execution of domain shader 76 for the second mode of
operation. For example, all shared vertices are fully utilized (e.g., no extra cache
misses). For instance, similar to the example in Table 1, the patch coordinates that
correspond to the domain coordinates of a vertex remain stored in reuse buffer until
connectivity generator 72 outputs the domain coordinates for most of the primitives that
share that vertex. This may minimize the number of times domain shader 76 needs to
cxecute.

[0261] The above examples illustrated the first mode of operation and the second mode
of operation. However, in some examples, point generators 70 and connectivity
generator 72 may need to implement a third mode of operation. For example, £1/2 +1 <
C — 1 can be rewritten as f; + 2 <2*(C — 1). If the size of fj is too large, or the size of C
is too small, then there may be instances where f; + 2 is not less than or equal to 2*(C —
1). In these cases, f; +1 may also not be less than or equal to C — 2. In such cases, it
may not be possible for point generators 70 and connectivity generator 72 to divide a
quad domain into quadruplets or divide a triangle domain into triplets, and implement
the single walk in each of these quadruplets or triplets such that each of the shared
vertices 1s reused.

[0262] In such a case (i.c., when f; + 2 is greater than 2*(C — 1)), connectivity point
generators 70 and generator 72 may implement the third mode of operation. The third
mode of operation may be a combination of the first mode of operation and the second
mode of operation. For example, when the processing unit (e.g., controller 74 and/or
tessellation unit 66) determines that f; + 2 is greater than 2*(C — 1), controller 74, as the
example of the processing unit, may cause point generators 70 and connectivity
generator 72 to divide a quad domain into more than quadruplets, and may cause point
generators 70 and connectivity generator 72 to divide a triangle domain into more than
triplets. Connectivity generator 72 may then implement the first mode of operation
(e.g., single walk) on a first set of the plurality of portions, and implement the second

mode of operation (e.g., joint walk) on a second set of the plurality of portions.

WO 2014/120359 PCT/US2013/076655
61

[0263] FIG. 13 is a diagram illustrating another example technique of outputting
domain coordinates of vertices of primitives in a contiguous portion of a domain in
accordance with one or more examples described in this disclosure. FIG. 13 illustrates
domain 140, which is a quad domain. In this example, controller 74 may have
determined that f; + 2 is greater than 2*(C — 1), and may cause connectivity generator
72 to implement the third mode of operation. For example, connectivity generator 72
may divide quad domain 140 into more than four portions. As illustrated, connectivity
generator 72 may divide quad domain 140 into six portions 142A—142F. In this
example, controller 74 may cause connectivity generator 72 to implement the single
walk (i.e., the first mode of operation) on each one of portions 142A, 142B, 142E, and
142F. Controller 74 may cause connectivity generator 72 to implement the joint walk
(i.e., the second mode of operation) across portions 142C and 142D. In other words,
controller 74 may combine portions 142C and 142D into a joint portion, and cause
connectivity generator 72 to implement the joint walk across the joint portion.

[0264] For example, connectivity generator 72 may output domain coordinates of
primitives within a first, second, and third diagonal strips, where the diagonal strips are
within portion 142A. In this example, the first, second, and third diagonal strips may be
parallel with one another. For the joint walk across the combined portions 142C and
142D, connectivity generator may output domain coordinates within a fourth, fifth, and
sixth diagonal strips, where the diagonal strips are within combined portions 142C and
142D. In this example, the fifth diagonal strip may be tangent with the fourth diagonal
strip, and the sixth diagonal strip may be parallel with the fourth diagonal strip.

[0265] In some examples, tessellation unit 66 may have tessellated the example
domains illustrated in FIGS. 7, 8, 10, and 11 using uniform tessellation with even
tessellation factors. Uniform tessellation means that there are an equal number of points
(i.e., vertices) along the rings. Also, in the example illustrated in FIG. 7, the tessellation
factors were fi equals 18 and f; equals 6 (both of which are even tessellation factors),
and in the example illustrated in FIG. 10, the tessellation factors were f; equals 10 and f;
equals 8 (both of which are even tessellation factors). Even tessellation factors results
in mirroring across the half-way point of an edge of the domain.

[0266] However, not all domains may be tessellated using uniform tessellation or with
even tessellation factors. The following describes a few examples in which the domains
are not tessellated using uniform tessellation, and examples in which the tessellation

factors are even and odd, and are both odd.

WO 2014/120359 PCT/US2013/076655
62

[0267] For uniform tessellation with odd tessellation factors, the manner in which
connectivity generator 72 divides the domain may be slightly different than the
examples with even tessellation factors. However, the order in which connectivity
generator 72 outputs the domain coordinates of the primitives may be the same.

[0268] FIGS. 14A and 14B are diagrams illustrating example techniques of outputting
domain coordinates of vertices of primitives in contiguous portions of domains in
accordance with one or more examples described in this disclosure. FIG. 14A illustrates
domain 144A, and FIG. 14B illustrates domain 144B. Domain 144A and domain 144B
are cach a quad domain. As illustrated, tessellation unit 66 may have tessellated domain
144A and domain 144B with one even tessellation factor and one odd tessellation
factor. The even tessellation factor may be f, because there are eight segments along
the y-axis of domain 144 A and domain 144B. The odd tessellation factor may be f
because there are five segment along the x-axis of domain 144A and domain 144B. For
purposes of illustration, FIGS. 14A and 14B illustrate the manner in which connectivity
generator 72 outputs domain coordinates for primitives within contiguous portion 146A
and contiguous portion 146B, respectively.

[0269] In the example illustrated in FIG. 14A, the processing unit (e.g., controller 74
and/or tessellation unit 66) may have determined that f;/2 + 1 is less than or equal to C —
2, and may cause point generators 70 and connectivity generator 72 to implement the
second mode of operation (i.c., the single walk). For example, connectivity generator
72 may output domain coordinates for primitives within first diagonal strip 148,
followed by second diagonal strip 150, and then third diagonal strip 152. As illustrated,
first diagonal strip 148 is parallel with second diagonal strip 150, which is parallel with
third diagonal strip 152. Accordingly, first diagonal strip 148, second diagonal strip
150, and third diagonal strip 152 are each parallel with one another. Also, the number
of primitives in first diagonal strip 148, second diagonal strip 150, and third diagonal
strip 152 is different.

[0270] In the example illustrated in FIG. 14B, the processing unit (e.g., controller 74
and/or tessellation unit 66) may have determined that f; + 1 is less than or equal to C —
2, and may cause point generators 70 and connectivity generator 72 to implement the
first mode of operation (i.e., the joint walk). For example, connectivity generator 72
may output domain coordinates for primitives within first diagonal strip 154, followed
by second diagonal strip 156, and then third diagonal strip 158. As illustrated, second
diagonal strip 156 is tangent with first diagonal strip 154. Third diagonal strip 158 is

WO 2014/120359 PCT/US2013/076655
63

parallel with first diagonal strip 154, and not parallel with second diagonal strip 156.
Also the number of primitives in first diagonal strip 154 and second diagonal strip 156
is the same, and different than the number of primitives in third diagonal strip 158.
[0271] FIGS. 15A and 15B are diagrams illustrating example techniques of outputting
domain coordinates of vertices of primitives in contiguous portions of domains in
accordance with one or more examples described in this disclosure. FIG. 15A illustrates
domain 160A, and FIG. 15B illustrates domain 160B. Domain 160A and domain 160B
are cach a quad domain. As illustrated, tessellation unit 66 may have tessellated domain
160A and domain 160B with odd tessellation factors (1.¢., f; and f; are both odd
numbers). For purposes of illustration, FIGS. 15A and 15B illustrate the manner in
which connectivity generator 72 outputs domain coordinates for primitives within
contiguous portion 162A and contiguous portion 162B, respectively.

[0272] In the example illustrated in FIG. 15A, the processing unit (e.g., controller 74
and/or tessellation unit 66) may have determined that f;/2 + 1 is less than or equal to C —
2, and may cause point generators 70 and connectivity generator 72 to implement the
second mode of operation (i.c., the single walk). For example, connectivity generator
72 may output domain coordinates for primitives within first diagonal strip 164,
followed by second diagonal strip 166, and then third diagonal strip 168. In the
example illustrated in FIG. 15B, the processing unit (¢.g., controller 74 and/or
tessellation unit 66) may have determined that f; + 1 is less than or equal to C — 2, and
may cause point generators 70 and connectivity generator 72 to implement the first
mode of operation (i.¢., the joint walk). For example, connectivity generator 72 may
output domain coordinates for primitives within first diagonal strip 170, followed by
second diagonal strip 172, and then third diagonal strip 174.

[0273] In the examples illustrated in FIG. 15A, after connectivity generator 72 outputs
the domain coordinates for the contiguous portions, there may be some remaining
primitives whose domain coordinates have not yet been outputted. For instance, in FIG.
15A, the two triangles that form the center of domain 160A may not be encompassed by
the contiguous portions. In these examples, connectivity generator 72 may output the
domain coordinates of the remaining primitives (e.g., the triangles that form the center
of domain 160A).

[0274] FIGS. 16A and 16B are diagrams illustrating example techniques of outputting
domain coordinates of vertices of primitives in contiguous portions of domains in

accordance with one or more examples described in this disclosure. FIG. 16A illustrates

WO 2014/120359 PCT/US2013/076655
64

domain 176A, and FIG. 16B illustrates domain 176B. Domain 176A and domain 176B
are cach a triangle domain. As illustrated, tessellation unit 66 may have tessellated
domain 160A and domain 160B with an odd tessellation factor (i.c., f is an odd
number). For purposes of illustration, FIGS. 16A and 16B illustrate the manner in
which connectivity generator 72 outputs domain coordinates for primitives within
contiguous portion 178A and contiguous portion 178B, respectively.

[0275] In the example illustrated in FIG. 16A, controller 74 (as one example of the
processing unit) may have determined that f;/2 + 1 is less than or equal to C — 2, and
may cause point generators 70 and connectivity generator 72 to implement the second
mode of operation (i.c., the single walk). For example, connectivity generator 72 may
output domain coordinates for primitives within first diagonal strip 180, followed by
second diagonal strip 182, and then third diagonal strip 184. In the example illustrated
in FIG. 16B, controller 74 may have determined that f; + 1 is less than or equal to C -2,
and may cause connectivity generator 72 to implement the first mode of operation (i.c.,
the joint walk). For example, connectivity generator 72 may output domain coordinates
for primitives within first diagonal strip 186, followed by second diagonal strip 188, and
then third diagonal strip 190.

[0276] Similar to FIG. 15B, after connectivity generator 72 outputs the domain
coordinates for the contiguous portions, there may be a remaining primitive in FIGS.
16A and 16B whose domain coordinates have not yet been outputted. For instance, in
FIGS. 16A and 16B, the triangle that forms the center of domain 176A and 176B,
respectively, may not be encompassed by the contiguous portions. In these examples,
connectivity generator 72 may output the domain coordinates of the remaining primitive
(e.g., the triangle that forms the center of domain 176A and 176B).

[0277] The above examples describes the manner in which connectivity generator 72
outputs domain coordinates of primitives within a contiguous portion of a domain,
where tessellation unit 66 tessellates the domain with uniform tessellation and even
tessellation factors, even and odd tessellation factors, and odd tessellation factors. The
following describes the manner in which connectivity generator 72 outputs domain
coordinates of primitives for a non-uniform tessellated domain. In a non-uniform
tessellation domain, tessellation unit 66 may tessellate parts of the domain utilizing non-
uniform tessellation, and may tessellate other parts of the domain utilizing uniform

tessellation.

WO 2014/120359 PCT/US2013/076655
65

[0278] For instance, for a quad domain, there may be a total of six tessellation factors.
Four of the six tessellation factors may define the number of segments along each of the
four sides of the quad domain, respectively. These four tessellation factors may not be
the same, resulting in non-uniform tessellation. The remaining two tessellation factors
may define the number of segments along the x-axis and y-axis of the rings within the
quad domain, resulting in uniform tessellation within the quad domain.

[0279] For a triangle domain, there may be a total of four tessellation factors. Three of
the four tessellation factors may define the number of segments along each of the three
sides of the triangle domain, respectively. These three tessellation factors may not be
the same, resulting in non-uniform tessellation. The remaining tessellation factor may
define the number of segments for the triangle rings within the triangle domain,
resulting in uniform tessellation within the triangle domain.

[0280] For example, non-uniform tessellation refers to instances when the number of
vertices on one or more sides of an outer ring is different. In examples of non-uniform
tessellation, if the tessellation factors for the uniform portions are f; and fy, setup unit 68
of tessellation unit 66 may determine the values of F, and Fy, where f; equals F, — 2.0,
and f; equals Fy —2.0.

[0281] In examples where tessellation unit 66 tessellates a domain utilizing both non-
uniform tessellation and uniform tessellation, controller 74 may cause point generators
70 and connectivity generator 72 to implement the first, second, or third mode of
operation on the uniform tessellated part of the domain. In the techniques described in
this disclosure, the manner in which point generators 70 and connectivity generator 72
output the domain coordinates of primitives within the non-uniform part of the domain
may be generally immaterial.

[0282] FIG. 17 is a diagram illustrating another example technique of outputting
domain coordinates of vertices of primitives in a contiguous portion of a domain in
accordance with one or more examples described in this disclosure. For example, FIG.
17 illustrates domain 192, which is a triangle domain. In the example illustrated in FIG.
17, tessellation unit 66 may have tessellated portion 194 using non-uniform tessellation,
and may have tessellated the area of domain 192 encompassed by portions 196A, 196B,
and 196C using uniform tessellation. For example, in portion 194, the number of
vertices that reside along each of the three boundaries of domain 192 is different, hence

non-uniform tessellation. In the remainder of domain 192 (i.e., portions 196A, 196B,

WO 2014/120359 PCT/US2013/076655
66

and 196C) the number of vertices that reside along each of the boundaries is the same,
hence uniform tessellation.

[0283] In accordance with techniques described in this disclosure, controller 74 (one
example of the processing unit) may cause point generators 70 and connectivity
generator 72 to implement the first, second, or third mode of operation on portions
196A, 196B, and 196C based on the values of f; and C. Point generators 70 and
connectivity generator 72 may implement any existing technique or technique yet to be
developed to output the domain coordinates of the primitives within portion 194. As
illustrated, portion 194 may be the outer ring of domain 192.

[0284] FIG. 18 is a diagram illustrating another example technique of outputting
domain coordinates of vertices of primitives in a contiguous portion of a domain in
accordance with one or more examples described in this disclosure. For example, FIG.
18 illustrates domain 198, which is a quad domain. In the example illustrated in FIG.
18, tessellation unit 66 may have tessellated portion 200 using non-uniform tessellation,
and may have tessellated the area of domain 198 encompassed by portions 202A-202D
using uniform tessellation. For example, in portion 200, the number of vertices that
reside along at least two of the four boundaries of domain 198 is different, and hence the
tessellation in this case may be referred to as non-uniform tessellation. In the remainder
of domain 198 (i.e., portions 202A-202D) the number of vertices that reside along each
of the boundaries is the same, hence uniform tessellation.

[0285] In accordance with techniques described in this disclosure, the processing unit
(e.g., controller 74) may cause point generators 70 and connectivity generator 72 to
implement the first, second, or third mode of operation on portions 202A-202D based
on the values of f; and C. Point generators 70 and connectivity generator 72 may
implement any existing technique or technique yet to be developed to output the domain
coordinates of the primitives within portion 200.

[0286] FIG. 19 is a flowchart illustrating an example operation in accordance with one
or more examples described in this disclosure. For purposes of illustration only,
reference is made to FIG. 6. Furthermore, many of the techniques are described as
being performed by controller 74. However, such description is provided for illustration
purposes and should not be considered limiting. In other examples, tessellation unit 66
may be configured to implement the functions described with respect to controller 74, or
some other hardware or software unit may be configured to implement the techniques of

controller 74. Accordingly, the techniques illustrated in FIG. 19 are described with

WO 2014/120359 PCT/US2013/076655
67

respect to a processing unit, examples of which include controller 74 and/or tessellation
unit 66.

[0287] Tessellation unit 66 may receive and process tessellation factors for a domain
(204). For example, setup unit 68 may receive the f; and f; tessellation factors for a
quad domain, or the f tessellation factor for the triangle domain, where these tessellation
factors indicate the number of segments along ecach ring of the domain. For example,
point generators 70 may partition each ring within the domain based on these
tessellation factors, and the end points of each segment may be a vertex for one or more
primitives. In addition, setup unit 68 may round f, and f; to an integer, round f; and f;
to an odd integer, round f; and f; to an even integer, or round f and f; to 2" (i.c., a
dyadic integer) based on the manner in which the domain is to be tessellated.

[0288] Furthermore, if the received tessellation factors indicate that the domain is to be
tessellated using uniform tessellation and non-uniform tessellation, tessellation unit 66
may implement the example techniques illustrated in FIG. 19 on the uniform tessellated
part of the domain. For the non-uniform tessellated part of the domain, such as the
outer ring of the domain, tessellation unit 66 may output the domain coordinates of the
non-uniformed tessellated part of the domain utilizing any technique. For instance, for
the non-uniformed tessellated part, tessellation unit 66 may output the domain
coordinates in the manner illustrated in FIGS. 3-5 (i.c., in a ring fashion, which is non-
contiguous).

[0289] The processing unit may determine whether f; + 1 is less than or equal to C —2
(206). If the processing unit determines that f; + 1 is less than or equal to C — 2 (YES of
206), the processing unit may cause tessellation unit 66, via point generators 70 and
connectivity generator 72, to implement the first mode of operation.

[0290] For example, the processing unit may determine whether the domain is a quad
domain (208). If the domain is a quad domain (YES of 208), the processing unit may
determine whether f, is less than or equal f; (212). If f, is less than or equal to f, (YES
of 212), the processing unit may cause tessellation unit 66, via point generators 70 and
connectivity generator 72, to implement the joint walk in the x-direction (214). For
example, point generators 70 and connectivity generator 72 may divide the quad domain
into two portions, where one of the portions is a contiguous portion, and may output
domain coordinates of primitives within the contiguous portion in accordance with the

joint walk in the x-direction technique.

WO 2014/120359 PCT/US2013/076655
68

[0291] If f; is not less than or equal to f, (NO of 212), the processing unit may cause
tessellation unit 66, via point generators 70 and connectivity generator 72, to implement
the joint walk in the y-direction (216). For example, connectivity generator 72 may
divide the quad domain into two portions, where one of the portions is a contiguous
portion, and may output domain coordinates of primitives within the contiguous portion
in accordance with the joint walk in the y-direction technique.

[0292] If the domain is not a quad domain (NO of 208), the processing unit may cause
tessellation unit, via point generators 70 and connectivity generator 72, to implement the
joint walk on a triangle domain (210). For example, connectivity generator 72 may
divide the triangle domain into a one-third portion and a two-thirds portion, where at
least the two-thirds portion is a contiguous portion. Connectivity generator 72 may
output domain coordinates of primitives within the contiguous two-thirds portion in
accordance with the joint walk technique.

[0293] If the processing unit determined that f; + 1 is not less than or equal to C —2
(NO of 206), the processing unit may determine whether f,/2 + 1 is less than or equal to
C —1(218). If the processing unit determines that f;/2 + 1 is less than or equal to C —2
(YES of 218), the processing unit 74 may cause tessellation unit 66, via point generators
70 and connectivity generator 72, to implement the second mode of operation.

[0294] The processing unit may determine whether the domain is a quad domain (220).
If the domain is a quad domain (YES of 220), the processing unit may determine
whether f, is less than or equal f, (224). If f; is less than or equal to f, (YES of 224), the
processing unit may cause tessellation unit 66, via point generators 70 and connectivity
generator 72, to implement the single walk in the x-direction (226). For example,
connectivity generator 72 may divide the quad domain into four portions, where one of
the four portions is a contiguous portion, and may output domain coordinates of
primitives within the contiguous portion in accordance with the single walk in the x-
direction technique.

[0295] If f; is not less than or equal to f, (NO of 224), the processing unit may cause
tessellation unit 66, via point generators 70 and connectivity generator 72, to implement
the single walk in the y-direction (228). For example, connectivity generator 72 may
divide the quad domain into four portions, where one of the portions is a contiguous
portion, and may output domain coordinates of primitives within the contiguous portion

in accordance with the single walk in the y-direction technique.

WO 2014/120359 PCT/US2013/076655
69

[0296] If the domain is not a quad domain (NO of 220), the processing unit may cause
tessellation unit 66, via point generators 70 and connectivity generator 72, to implement
the single walk on a triangle domain (222). For example, connectivity generator 72 may
divide the triangle domain into three portions, where at least one portion is a contiguous
portion. Connectivity generator 72 may output domain coordinates of primitives within
the contiguous portion in accordance with the single walk technique.

[0297] If the processing unit determined that f;/2 + 1 is not less than C — 1 (NO of 218),
the processing unit may cause point generator 70 and connectivity generator 72 to
implement the third mode of operation. For example, the processing unit may cause
connectivity generator 72 to implement both the single walk technique and the joint
walk technique (230). For instance, in the third mode of operation, connectivity
generator 72 may divide a quad domain into more than four portions, and may divide a
triangle domain into more than three portions. In this example, for the quad domain,
connectivity generator 72 may implement the single walk technique on four of the
portions, and may implement the joint walk technique on the other portions. For the
triangle domain, connectivity generator 72 may implement the single walk technique on
three of the portions, and may implement the joint walk technique on the other portions.
[0298] In the example of FIG. 19, connectivity generator 72 may implement the single
walk in the x-direction, the single walk in the y-direction, the joint walk in the x-
direction, and the joint walk in the y-direction. In some examples, walking in the x-
direction or the y-direction may be based on the lesser of the two tessellation factors.
For example, the processing unit may determine that a first tessellation factor is less
than or equal to a second tessellation factor. When outputting the domain coordinates of
primitives within the first, second, and third diagonal strips, connectivity generator 74
may start from an axis of the domain that corresponds to the first tessellation factor and
extends outwards.

[0299] For instance, if f; is less than fy, then connectivity generator 74 starts from the x-
axis of the domain and extends outwards when outputting the domain coordinates of
primitives within the first, second, and third diagonal strips. If {; is less than f,, then
connectivity generator 74 starts from the y-axis of the domain and extends outwards
when outputting the domain coordinates of primitives within the first, second, and third
diagonal strips.

[0300] In general, in accordance with the example illustrated FIG. 19, the processing

unit may select a mode of operation, from a plurality of different modes of operation,

WO 2014/120359 PCT/US2013/076655
70

based at least on a number of storage slots in reuse buffer 78, where each of the
different modes of operation indicate a different manner in which connectivity generator
72 outputs domain coordinates of primitives within a contiguous portion of a domain.
Examples of the plurality of different modes of operation include the first, second, and
third modes of operation. The processing unit may select the mode of operation based
at least on the storage capabilities of a reuse buffer. The processing unit may then cause
connectivity generator 72 to output the domain coordinates of the primitives within the
contiguous portion of the domain based on the selected mode of operation.
[0301] For example, if at least one tessellation factor plus one is less than or equal to a
number of storage slots in reuse buffer 78 minus two, the processing unit may cause
connectivity generator 72 to output domain coordinates in accordance with the first
mode of operation. If the at least one tessellation factor plus one is not less than or
equal to the number of storage slots in reuse buffer 78 minus two, and the at least one
tessellation factor divided by two plus one is less than or equal to the number of storage
slots in reuse buffer 78 minus one, the processing unit may cause connectivity generator
72 to output domain coordinates in accordance with the second mode of operation. If
the at least one tessellation factor divided by two plus one is not less than or equal to the
number of storage slots in reuse buffer 78 minus one, the processing unit may cause
connectivity generator 72 to output domain coordinates in accordance with the third
mode of operation. The third mode of operation may be considered to be different than
just the first mode of operation and just the second mode of operation because the third
mode of operation is a combination of the first mode of operation and the second mode
of operation.
[0302] The following pseudo-code further illustrates example techniques in accordance
with this disclosure.
1. If non-uniform tessellation;
process outer ring;
endIf
If quad domain
continue to step 2 for uniform tessellation
else //triangle domain
continue to step 3 for uniform tessellation
endIf
2. //quad domain

WO 2014/120359 PCT/US2013/076655
71

divide domain into quadruplets
Iffi+1<C-2,(fi<f)
process joint walk on x-direction based on even/odd tessellation factors
elself f, + 1 <C -2, (f, <£)
process joint walk on y-direction based on even/odd factors
elself 2+ 1<C-1,(fi<f)
process single walk on x-direction
elself £,/2+1<C—-1, (f,<fy)
process single walk on y-direction
else
add partitions in each quadruplet
process single walk and joint walk
endIf
exit
3. //triangle domain
divide domain into triplets
Iff+1<C-2
process joint walk on x-direction based on even/odd factors
elself /2 +1<C-1

process single walk

else
add partitions in each triplet
process single walk and joint walk
endIf
exit

[0303] FIG. 20 is another flowchart illustrating an example operation in accordance
with one or more examples described in this disclosure. For purposes of illustration
only, the techniques are described with respect to FIG. 6.

[0304] Point generators 70 and connectivity generator 72 may divide a domain into a
plurality of portions (231). At least one of the portions is a contiguous portion. If
operating in the first mode of operation, point generators 70 and connectivity generator
72 may divide a quad domain into two equal portions, and may divide a triangle domain
into two portions, where one portion is one-third of the domain, and the other portion is

two-thirds of the domain. If operating in the second mode of operation, point generators

WO 2014/120359 PCT/US2013/076655
72

70 and connectivity generator 72 may divide a quad domain into four portions, and may
divide a triangle domain into three portions. If operating in the third mode of operation,
point generators 70 and connectivity generator 72 may divide the quad domain into
more than four portions, and may divide the triangle domain into more than three
portions.

[0305] Connectivity generator 72 may output domain coordinates of primitives in a first
diagonal strip within the contiguous portion (232). Connectivity generator 72 may then
output domain coordinates of primitives in a second diagonal strip within the contiguous
portion (234). Connectivity generator 72 may then output domain coordinates of
primitives in a third diagonal strip within the contiguous portion (236).

[0306] The second diagonal strip may be one of parallel with the first diagonal strip or
tangent with the first diagonal strip. The third diagonal strip may be parallel with the
first diagonal strip. The third diagonal strip may be parallel with the second diagonal
strip in examples where the second diagonal strip is parallel with the first diagonal strip.
The third diagonal strip may not be parallel with the second diagonal strip in examples
where the second diagonal strip is tangent with the first diagonal strip.

[0307] The number of primitives in the first diagonal strip may the same as the number
of primitives in the second diagonal strip in examples where the second diagonal strip is
tangent with the first diagonal strip. The number of primitives in the first diagonal strip
may be different then the number of primitives in the second diagonal strip in examples
where the second diagonal strip is parallel with the first diagonal strip. In either case,
the number of primitives in the third diagonal strip may be different than the number of
primitives in the first and second diagonal strips.

[0308] FIGS. 21-27 are graphs illustrating comparisons of results achieved by
implementing one or more example techniques described in this disclosure and
implementing one or more other techniques. For example, the techniques described in
this disclosure may result in the graphics pipeline completing tessellation faster than
some other techniques by effectively ensuring that patch coordinates that correspond to
domain coordinates of shared vertices remain in reuse buffer 78. The techniques
described in this disclosure may significantly decrease extra miss rate (i.c., decrease the
rate cache misses) as compared to some other techniques. The rate of cache misses may
refer to rate at which controller 74 needs to execute domain shader 76 for vertices that

were previously transformed from domain coordinates to patch coordinates.

WO 2014/120359 PCT/US2013/076655
73

[0309] In the following examples, the number of storage slots in reuse buffer 78 is 32
slots. The tessellation factors range from 1.0 to 64.0. In general, the techniques
described above with respect to FIGS. 3 and 4 result in almost a 100% miss rate for
uniform tessellation. The techniques described above with respect to FIG. 5 result in
about a 45% miss rate. The techniques described above with respect to FIGS. 6-20
result in a 5% miss rate. Minimizing the miss rate may be beneficial, as it results in
fewer instantiations of domain shader 76. Execution of domain shader 76 may be time
and processing extensive, and therefore, minimized execution of domain shader 76 may
be beneficial.

[0310] FIG. 21 illustrates the miss rate of non-fully reused vertices in accordance with
one or more techniques described in this disclosure for uniform tessellation on a quad
domain. The x-axis and y-axis are for tessellation factors (e.g., fx and £;), and the z-axis
indicates the miss rate. In this example, the miss rate is zero when the tessellation
factors are small and all patch coordinates of a contiguous portion can fit within reuse
buffer 78. For some small values of the tessellation factors, the miss rate may rise to
approximately 0.16 (i.e., approximately 16%). However, the miss rate then drops
substantially and stays within a miss rate of 2% to 5%. Even when the miss rate is 16%,
the techniques described in this disclosure may still provide a much lower miss rate than
some other techniques, such as those illustrated in FIGS. 22 and 23.

[0311] FIG. 22 illustrates the miss rate of non-fully reused vertices in accordance with
one or more techniques described with respect to FIG. 4 for uniform tessellation on a
quad domain. The x-axis and y-axis are for tessellation factors (e.g., f and fy), and the
z-axis indicates the miss rate. In this example, the miss rate is zero when the
tessellation factors are small and all patch coordinates of a contiguous portion can fit
within reuse buffer 78. However, for large tessellation factors (e.g., fx and £, equal 64),
FIG. 22 illustrates that the miss rate is approximately one (i.e., approximately 100%).
[0312] FIG. 23 illustrates the miss of non-fully reused vertices in accordance with one
or more techniques described with respect to FIG. 5 for uniform tessellation on a quad
domain. The x-axis and y-axis are for tessellation factors (e.g., fx and £;), and the z-axis
indicates the miss rate. In this example, the miss rate is zero when the tessellation
factors are small and all patch coordinates of a contiguous portion can fit within reuse
buffer 78. However, for large tessellation factors (e.g., fi and f; equal 64), FIG. 23
illustrates that the miss rate is approximately 0.45 (i.e., approximately 45%). Moreover,

if there are large differences between the tessellation factors (e.g., £, >> fy, or vice-

WO 2014/120359 PCT/US2013/076655
74

versa), FIG. 23 illustrates the miss rate as rising up to approximately 0.55 (i.e.,
approximately 55%).

[0313] FIGS. 24-27 illustrate a comparison between the miss rate between the
techniques described above with respect to FIG. 3, FIG. 4, and FIGS. 6-20 for a quad
domain. In FIG. 24, both tessellation factors are equal to one another and in the range
of (1.0-64.0). In FIG. 25, one tessellation factor is equal to 5.0, and the other
tessellation factor is in the range of (1.0-64.0). In FIG. 26, one tessellation factor is
equal to 25.0, and the other tessellation factor is in the range of (1.0-64.0). In FIG. 27,
one tessellation factor is equal to 50.0, and the other tessellation factor is in the range of
(1.0-64.0).

[0314] Line 238 of FIG. 24, line 244 of FIG. 25, line 250 of FIG. 26, and line 256 of
FIG. 27 illustrate the miss rate when connectivity generator 72 outputs domain
coordinates of primitives in accordance with the techniques described in this disclosure.
As illustrated by these lines, the miss rate is very low, and close to 0%. Line 242 of
FIG. 24, line 246 of FIG. 25, line 252 of FIG. 26, and line 258 of FIG. 27 illustrate the
miss rate when a connectivity generator, unlike connectivity generator 72, outputs
domain coordinates of primitives in accordance with the techniques described above
with respect to FIG. 5. As illustrated by these lines, the miss rate is much greater than
the miss rate when connectivity generator 72 implements one or more example
techniques described in this disclosure. Line 240 of FIG. 24, line 248 of FIG. 25, line
254 of FIG. 26, and line 260 of FIG. 27 illustrate the miss rate when a connectivity
generator, unlike connectivity generator 72, outputs domain coordinates of primitives in
accordance with the techniques described above with respect to FIG. 4. As illustrated
by these lines, the miss rate is much greater than the miss rate when connectivity
generator 72 implements one or more example techniques described in this disclosure,
and also greater than when a connectivity generator, unlike connectivity generator 72,
implements the techniques illustrated in FIG. 5.

[0315] FIG. 28 is a block diagram illustrating a device of including a GPU as shown in
FIGS. 1 and 2. For example, FIG. 28 further illustrates device 10. Examples of device
28 include, but are not limited to, wireless devices, mobile telephones such as so-called
smartphones, personal digital assistants (PDAs), video gaming consoles that include
video displays, mobile video conferencing units, laptop computers, desktop computers,
television set-top boxes, tablet computing devices, e-book readers, and the like. Device

10 may include graphics processing unit (GPU) 12, system memory 14, processor 16,

WO 2014/120359 PCT/US2013/076655
75

display 262, user interface 264, and transceiver module 266. Device 10 may include
additional modules or units not shown in FIG. 28 for purposes of clarity. For example,
device 10 may include a speaker and a microphone, neither of which are shown in FIG.
28, to effectuate telephonic communications, or otherwise process speech input or emit
sound, in examples where device 10 is a mobile wireless telephone. Furthermore, the
various modules and units shown in device 10 may not be necessary in every example
of device 10. For example, user interface 264 and display 262 may be external to
device 10 in examples where device 10 is a desktop computer. As another example,
display 262 may be part of user interface 264 in examples where display 262 is a touch-
sensitive or presence-sensitive display of a mobile device.

[0316] GPU 12, system memory 14, and processor 16 of FIG. 28 may be similar to
GPU 12, system memory 14, and processor 16 of FIGS. 1 and 2. Examples of user
interface 264 include, but are not limited to, a trackball, a mouse, a keyboard, and other
types of input devices. User interface 264 may also be a touch screen and may be
incorporated as a part of display 262. Transceiver module 266 may include circuitry to
allow wireless or wired communication between device 10 and another device or a
network. Transceiver module 266 may include modulators, demodulators, amplifiers
and other such circuitry for wired or wireless communication. Display 262 may
comprise a liquid crystal display (LCD), a cathode ray tube (CRT) display, a plasma
display, a touch-sensitive display, a presence-sensitive display, or another type of
display device.

[0317] In one or more examples, the functions described may be implemented in
hardware, software, firmware, or any combination thereof. If implemented in software,
the functions may be stored as one or more instructions or code on a computer-readable
medium. Computer-readable media may include computer data storage media. Data
storage media may be any available media that can be accessed by one or more
computers or one or more processors to retrieve instructions, code and/or data structures
for implementation of the techniques described in this disclosure. By way of example,
and not limitation, such computer-readable media can comprise random access memory
(RAM), read-only memory (ROM), EEPROM, CD-ROM or other optical disk storage,
magnetic disk storage or other magnetic storage devices, or any other medium that can
be used to store desired program code in the form of instructions or data structures and
that can be accessed by a computer. Disk and disc, as used herein, includes compact

disc (CD), laser disc, optical disc, digital versatile disc (DVD), floppy disk and Blu-ray

WO 2014/120359 PCT/US2013/076655
76

disc where disks usually reproduce data magnetically, while discs reproduce data
optically with lasers. Combinations of the above should also be included within the
scope of computer-readable media.

[0318] The code may be executed by one or more processors, such as one or more
digital signal processors (DSPs), general purpose microprocessors, application specific
integrated circuits (ASICs), field programmable logic arrays (FPGAs), or other
equivalent integrated or discrete logic circuitry. Accordingly, the term “processor,” as
used herein may refer to any of the foregoing structure or any other structure suitable for
implementation of the techniques described herein. Also, the techniques could be fully
implemented in one or more circuits or logic elements.

[0319] The techniques of this disclosure may be implemented in a wide variety of
devices or apparatuses, including a wireless handset, an integrated circuit (IC) or a set of
ICs (i.c., a chip set). Various components, modules or units are described in this
disclosure to emphasize functional aspects of devices configured to perform the
disclosed techniques, but do not necessarily require realization by different hardware
units. Rather, as described above, various units may be combined in a hardware unit or
provided by a collection of interoperative hardware units, including one or more
processors as described above, in conjunction with suitable software and/or firmware.
[0320] Various examples have been described. These and other examples are within the

scope of the following claims.

WO 2014/120359 PCT/US2013/076655
77

WHAT IS CLAIMED IS:

1. A method for tessellation, the method comprising:

dividing, with a tessellation unit, a domain into a plurality of portions, wherein
at least one of the portions is a contiguous portion;

outputting, with the tessellation unit, domain coordinates of primitives within a
first diagonal strip that is within the contiguous portion;

outputting, with the tessellation unit, domain coordinates of primitives within a
second diagonal strip that is within the contiguous portion, wherein the second diagonal
strip is one of parallel with the first diagonal strip, or tangent with the first diagonal
strip; and

outputting, with the tessellation unit, domain coordinates of primitives within a
third diagonal strip that is within the contiguous portion, wherein the third diagonal strip
is parallel with at least the first diagonal strip, and wherein a number of primitives
within the third diagonal strip is different than a number of primitives within the first

diagonal strip and the second diagonal strip.

2. The method of claim 1, further comprising:

selecting a mode of operation from a plurality of different modes of operation
based at least in part on a number of storage slots within a reuse buffer,

wherein each mode of the different modes of operation indicates a different
manner in which to output the domain coordinates within the contiguous portion of the
domain, and

wherein dividing the domain comprises dividing the domain based on the

selected mode of operation.

3. The method of claim 1, further comprising:

determining whether at least one tessellation factor plus one is less than or equal
to a number of storage slots in a reuse buffer minus two,

wherein, when the domain is a quad domain, the at least one tessellation factor is
less than or equal to another tessellation factor of the quad domain,

wherein dividing the domain comprises dividing the domain into two portions
when the at least one tessellation factor plus one is less than or equal to the number of

storage slots in the reuse buffer minus two, and

WO 2014/120359 PCT/US2013/076655
78

wherein outputting the domain coordinates of primitives within the second
diagonal strip comprises outputting the domain coordinate of primitives within the
second diagonal strip that is tangent with the first diagonal strip when the at least one
tessellation factor plus one is less than or equal to the number of storage slots in the

reuse buffer minus two.

4. The method of claim 3, further comprising:
outputting domain coordinates of primitives within a fourth diagonal strip; and
outputting domain coordinates of primitives within a fifth diagonal strip,

wherein the fifth diagonal strip is a mirror opposite of the fourth diagonal strip.

5. The method of claim 3,

wherein, when the domain is the quad domain, dividing the domain into two
portions comprises dividing the domain into two halves,

wherein, when the domain is a triangle domain, dividing the domain into two
portions comprises dividing the domain into a one-third portion and a two-thirds
portion, and

wherein the two-thirds portion comprises the contiguous portion.

6. The method of claim 1, further comprising:

determining whether at least one tessellation factor divided by two plus one is
less than or equal to a number of storage slots in a reuse buffer minus one,

wherein, when the domain is a quad domain, the at least one tessellation factor is
less than or equal to another tessellation factor of the quad domain,

wherein dividing the domain comprises dividing the domain into four portions
when the domain is the quad domain and when the at least one tessellation factor
divided by two plus one is less than or equal to the number of storage slots in the reuse
buffer minus one,

wherein dividing the domain comprises dividing the domain into three portions
when the domain is a triangle domain and when the at least one tessellation factor
divided by two plus one is less than or equal to the number of storage slots in the reuse
buffer minus one, and

wherein outputting the domain coordinates of primitives within the second

diagonal strip comprises outputting the domain coordinates of primitives within the

WO 2014/120359 PCT/US2013/076655
79

second diagonal strip that is parallel with the first diagonal strip when the at least one
tessellation factor divided by two plus one is less than or equal to the number of storage

slots in the reuse buffer minus one.

7. The method of claim 1, further comprising:

determining that a first tessellation factor is less than or equal to a second
tessellation factor,

wherein outputting the domain coordinates of the primitives within the first
diagonal strip, outputting the domain coordinates of the primitives within the second
diagonal strip, and outputting the domain coordinates of the primitives within the third
diagonal strip comprises outputting starting from an axis of the domain that corresponds

to the first tessellation factor and extending outwards.

8. The method of claim 1, further comprising:
determining whether at least one tessellation factor divided by two plus one is
greater than a number of storage slots in a reuse buffer minus one,
wherein, when the domain is a quad domain, the at least one tessellation factor
is less than or equal to another tessellation factor of the quad domain,
wherein, when the at least one tessellation factor divided by two plus one is
greater than the number of storage slots in the reuse buffer minus one:
outputting domain coordinates of primitives within the first diagonal
strip comprises outputting domain coordinates of primitives within the first
diagonal strip that is within a first contiguous portion;
outputting domain coordinates of primitives within the second diagonal
strip comprises outputting domain coordinates of primitives within the second
diagonal strip that is parallel with the first diagonal strip and that is within the
first contiguous portion; and
outputting domain coordinates of primitives within the third diagonal
strip comprises outputting domain coordinates of primitives within the third
diagonal strip that is within the first contiguous portion,
the method further comprising;:
outputting domain coordinates of primitives within a fourth diagonal

strip that is within a second contiguous portion;

WO 2014/120359 PCT/US2013/076655
80

outputting domain coordinates of primitives within a fifth diagonal strip
that is within the second contiguous portion, wherein the fifth diagonal strip is
tangent with the fourth diagonal strip; and

outputting domain coordinates of primitives within a sixth diagonal strip
that is within the second contiguous portion, wherein the sixth diagonal strip is

parallel with the first diagonal strip.

9. The method of claim 1, further comprising:
determining that a first part of the domain is non-uniform tessellated; and
determining that a second part of the domain is uniform tessellated,
wherein dividing the domain into the plurality of portions comprises dividing the

second part of the domain into the plurality of portions.

10. The method of claim 9, wherein the first part of the domain comprises an outer
ring of the domain, the method further comprising:

outputting domain coordinates of primitives within the outer ring of the domain.

11. The method of claim 1, further comprising:

receiving the domain coordinates for the primitives within the first, second, and
third diagonal strips;

determining whether a reuse buffer stores patch coordinates that correspond to
the domain coordinates for the primitives within the first, second, and third diagonal
strips; and

executing one or more instantiations of a shader based on the determination of
whether the reuse buffer stores the patch coordinates that correspond to the domain

coordinates for the primitives within the first, second, and third diagonal strips.

12. A device comprising:
a graphics processing unit (GPU) comprising a tessellation unit, the tessellation
unit configured to:
divide a domain into a plurality of portions, wherein at least one of the
portions is a contiguous portion;
output domain coordinates of primitives within a first diagonal strip that

is within the contiguous portion;

WO 2014/120359 PCT/US2013/076655
81

output domain coordinates of primitives within a second diagonal strip
that is within the contiguous portion, wherein the second diagonal strip is one of
parallel with the first diagonal strip, or tangent with the first diagonal strip; and

output domain coordinates of primitives within a third diagonal strip that
is within the contiguous portion, wherein the third diagonal strip is parallel with
at least the first diagonal strip, and wherein a number of primitives within the
third diagonal strip is different than a number of primitives within the first
diagonal strip and the second diagonal strip; and
a reuse buffer configured to store patch coordinates that correspond to one or

more of the outputted domain coordinates of primitives within the first, second, and

third diagonal strips.

13. The device of claim 12, further comprising:

a processing unit configured to select a mode of operation from a plurality of
different modes of operation based at least in part on a number of storage slots within
the reuse buffer,

wherein each mode of the different modes of operation indicates a different
manner in which to output the domain coordinates within the contiguous portion of the
domain, and

wherein the tessellation unit is configured to divide the domain based on the

selected mode of operation.

14. The device of claim 12, further comprising:

a processing unit configured to determine whether at least one tessellation factor
plus one is less than or equal to a number of storage slots in the reuse buffer minus two,

wherein, when the domain is a quad domain, the at least one tessellation factor is
less than or equal to another tessellation factor of the quad domain,

wherein the tessellation unit is configured to divide the domain into two portions
when the at least one tessellation factor plus one is less than or equal to the number of
storage slots in the reuse buffer minus two, and

wherein the tessellation unit is configured to output the domain coordinate of
primitives within the second diagonal strip that is tangent with the first diagonal strip
when the at least one tessellation factor plus one is less than or equal to the number of

storage slots in the reuse buffer minus two.

WO 2014/120359 PCT/US2013/076655
82

15. The device of claim 14,
wherein the tessellation unit is configured to:
output domain coordinates of primitives within a fourth diagonal strip;
and
output domain coordinates of primitives within a fifth diagonal strip, and

wherein the fifth diagonal strip is a mirror opposite of the fourth diagonal strip.

16. The device of claim 14,

wherein, when the domain is a quad domain, the tessellation unit is configured
to divide the domain into two halves,

wherein, when the domain is a triangle domain, the tessellation unit is
configured to divide the domain into a one-third portion and a two-thirds portion, and

wherein the two-thirds portion comprises the contiguous portion.

17. The device of claim 12, further comprising:

a processing unit configured to determine whether at least one tessellation factor
divided by two plus one is less than or equal to a number of storage slots in the reuse
buffer minus one,

wherein, when the domain is a quad domain, the at least one tessellation factor is
less than or equal to another tessellation factor of the quad domain,

wherein the tessellation unit is configured to divide the domain into four
portions when the domain is the quad domain and when the at least one tessellation
factor divided by two plus one is less than or equal to the number of storage slots in the
reuse buffer minus one,

wherein the tessellation unit is configured to divide the domain into three
portions when the domain is a triangle domain and when the at least one tessellation
factor divided by two plus one is less than or equal to the number of storage slots in the
reuse buffer minus one, and

wherein the tessellation unit is configured to output the domain coordinates of
primitives within the second diagonal strip that is parallel with the first diagonal strip
when the at least one tessellation factor divided by two plus one is less than or equal to

the number of storage slots in the reuse buffer minus one.

WO 2014/120359 PCT/US2013/076655
83

18. The device of claim 12, further comprising:

a processing unit configured to determine that a first tessellation factor is less
than or equal to a second tessellation factor,

wherein the tessellation unit is configured to output the domain coordinates of
the primitives within the first diagonal strip, output the domain coordinates of the
primitives within the second diagonal strip, and output the domain coordinates of the
primitives within the third diagonal strip starting from an axis of the domain that

corresponds to the first tessellation factor and extending outwards.

19. The device of claim 12, further comprising:

a processing unit configured to determine whether at least one tessellation factor
divided by two plus one is greater than a number of storage slots in the reuse buffer
minus one,

wherein, when the domain is a quad domain, the at least one tessellation factor
is less than or equal to another tessellation factor of the quad domain,

wherein, when the at least one tessellation factor divided by two plus one is
greater than the number of storage slots in the reuse buffer minus one, the tessellation
unit is configured to:

output domain coordinates of primitives within the first diagonal strip
that is within a first contiguous portion;

output domain coordinates of primitives within the second diagonal strip
that is parallel with the first diagonal strip and that is within the first contiguous
portion;

output domain coordinates of primitives within the third diagonal strip
that is within the first contiguous portion,

output domain coordinates of primitives within a fourth diagonal strip
that is within a second contiguous portion;

output domain coordinates of primitives within a fifth diagonal strip that
is within the second contiguous portion, wherein the fifth diagonal strip is
tangent with the fourth diagonal strip; and

output domain coordinates of primitives within a sixth diagonal strip that
is within the second contiguous portion, wherein the sixth diagonal strip is

parallel with the first diagonal strip.

WO 2014/120359 PCT/US2013/076655
84

20. The device of claim 12, further comprising:

a processing unit configured to determine that a first part of the domain is non-
uniform tessellated, and determine that a second part of the domain is uniform
tessellated,

wherein the tessellation unit is configured to divide the second part of the

domain into the plurality of portions.

21. The device of claim 20, wherein the first part of the domain comprises an outer
ring of the domain, and where the tessellation unit is configured to output domain

coordinates of primitives within the outer ring of the domain.

22. The device of claim 12, further comprising:

a controller configured to:

receive the domain coordinates for the primitives within the first, second,
and third diagonal strips;

determine whether the reuse buffer stores the patch coordinates that
correspond to the domain coordinates for the primitives within the first, second,
and third diagonal strips; and

execute one or more instantiations of a shader based on the determination
of whether the reuse buffer stores the patch coordinates that correspond to the
domain coordinates for the primitives within the first, second, and third diagonal

strips.

23. The device of claim 12, wherein the device comprises one of a mobile wireless
device, a video gaming console that includes a video display, a mobile video
conferencing unit, a laptop computer, a desktop computer, a tablet computer, and a

television set-top box.

24. A device comprising:
a graphics processing unit (GPU), the GPU comprising:
means for dividing a domain into a plurality of portions, wherein at least
one of the portions is a contiguous portion;
means for outputting domain coordinates of primitives within a first

diagonal strip that is within the contiguous portion;

WO 2014/120359 PCT/US2013/076655
85

means for outputting domain coordinates of primitives within a second
diagonal strip that is within the contiguous portion, wherein the second diagonal
strip is one of parallel with the first diagonal strip, or tangent with the first
diagonal strip; and

means for outputting domain coordinates of primitives within a third
diagonal strip that is within the contiguous portion, wherein the third diagonal
strip is parallel with at least the first diagonal strip, and wherein a number of
primitives within the third diagonal strip is different than a number of primitives

within the first diagonal strip and the second diagonal strip.

25. A computer-readable storage medium comprising instruction stored thercon that
when executed cause one or more processors to:

divide a domain into a plurality of portions, wherein at least one of the portions
1S a contiguous portion;

output domain coordinates of primitives within a first diagonal strip that is
within the contiguous portion;

output domain coordinates of primitives within a second diagonal strip that is
within the contiguous portion, wherein the second diagonal strip is one of parallel with
the first diagonal strip, or tangent with the first diagonal strip; and

output domain coordinates of primitives within a third diagonal strip that is
within the contiguous portion, wherein the third diagonal strip is parallel with at least
the first diagonal strip, and wherein a number of primitives within the third diagonal
strip 1s different than a number of primitives within the first diagonal strip and the

second diagonal strip.

WO 2014/120359

CPU
16

1/26

SYSTEM

MEMORY |@€—p

14

FIG. 1

PCT/US2013/076655

e

10

GPU
12

INPUT ASSEMBLER STAGE
18

Y

VERTEX SHADER STAGE
20

Y

HULL SHADER STAGE
22

v

TESSELLATION STAGE
24

Y

DOMAIN SHADER STAGE
26

Y

GEOMETRY SHADER
STAGE
28

Y

RASTERIZER STAGE
30

i

PIXEL SHADER STAGE
32

v

OUTPUT MERGE STAGE
34

WO 2014/120359

CPU
16

2/26

SYSTEM

MEMORY |@€—p

14

FIG. 2

PCT/US2013/076655

£

10

GPU
12

INPUT ASSEMBLER
36

Y

VERTEX SHADER
38

Y

TESSELLATION CONTROL
SHADER
40

v

PRIMITIVE GENERATOR
42

Y

TESSELLATION
EVALUATION SHADER
44

Y

GEOMETRY SHADER
46

Y

CLIPPING UNIT
48

Y

RASTERIZER
50

v

FRAGMENT SHADER
52

v

POST-PROCESSOR
54

WO 2014/120359 PCT/US2013/076655

3/26

FIG. 3

SUBSTITUTE SHEET (RULE 26)

WO 2014/120359 PCT/US2013/076655

4/26

S & X
SRR SRR 1 X X R A

IR BRI
B
3 R0 &

Y

2 j"*“};};%;};;{«::::::
RRARRARRRRRRA

N
Si
oo

SRR, 3

s

S
S

AT

R,
RN

5
5

Shaanacr: acosan oo SRaanats
SRR

s
R

RIS

S

FIG. 4

PCT/US2013/076655

WO 2014/120359

216

64

5/26

112

R
R RS

N

SR

%

Z:

PITTT T

B

DR TR

%
o5

T

o

it

g

P

e

]

e

A

]

2R

755,

s e s

s

L

S

2 T

T

LA il G

SRR

)

]

IRR00% 20808

s]

R DI
3 EERERN RN

B8R0

Ty
RIRRRND

320

5 416

1

2

5

FIG

WO 2014/120359 PCT/US2013/076655
6/26
12

Ve

SETUP UNIT
68

Y

POINT
GENERATORS
70

Y

CONNECTIVITY
GENERATOR TESSELLATION

72 UNIT

Y

CONTROLLER DOMAIN SHADER I
74 > 76 |

REUSE BUFFER
78

FIG. 6

WO 2014/120359

PCT/US2013/076655

7126

80

92M

92A

88N 90N

4
36 82 8

90A

FIG. 7

81B

WO 2014/120359 PCT/US2013/076655

8126
‘(,S%S
LI
d RN P A
‘i jf /“) $ \h\%’)}
., LRV Y
J AN 100A
AT LA
/ ™ \\k/‘ J ‘-\ ‘;* - ‘\’\ \/
AN
L
f‘} A :(’.
TR,
N, AR
N e
3 \§\T\\?\i\\\\\“ \\ ol Ry ,
§§§§§§§§w§§§§§§®\= P a ke \

A et

.

2

B
\\,

ANy
Nt NN

.......... NN Y

100B
106 102 104
108 110

FIG. 8

WO 2014/120359 PCT/US2013/076655

9/26

112

Ve

. . -~ -
Y T 4 A % 4 R XS £ £ Py
3 %_ & b3 3 2 N 3 AN Ry Ry
N
Ao

e

e"%

So.

5,
o %
>

L

Y > S RQ
R Nt B g o oo f e

FIG.9

WO 2014/120359

10/ 26

PCT/US2013/076655

114
115B

124M
124A

115C

126A

122A

120 118116

FIG. 10

122N 126X

115D

WO 2014/120359 PCT/US2013/076655

111726

128

Ve

O .t D
130C ®§§1§\§§\ \
SO

e O
N 1308

AR e ..

! \\\\“E\x\\\ \\\\\\\\\\\\\\ o
L

N

Oty SRR
\Q\R\\\\\\\ > -

e 3
. 2
N N
N

N
N) X 3 R e et L o
N

N N
L \\\ >
Al S

.
_

.

s,

7

.
7
.

N R
,,,,,,, N\ S b

136
134

132

FIG. 11

WO 2014/120359

12/ 26

PCT/US2013/076655

¢ g N oo
= = § »% .
3
§
&
Ao

%
e

AT

o
&
Raoaee

S N S

& 8 i
ol N SN
Soove Jpe® & Soaliw

R ¥

P

=3
.

A

FIG. 12

: <
3 o &
x B

WO 2014/120359 PCT/US2013/076655

13726

140

142D
142C

FIG. 13

WO 2014/120359 PCT/US2013/076655

14/ 26

\ 146A \ 146B
154 156
158

148

152
150

FIG. 14A FIG. 14B

WO 2014/120359 PCT/US2013/076655

15/26

160A 160B

\ 162B
170 172
174

164

168
166

FIG. 15A FIG. 15B

WO 2014/120359 PCT/US2013/076655

16 / 26

190

182
184

FIG. 16A FIG. 16B

WO 2014/120359 PCT/US2013/076655

17 1 26

192

196A

FIG. 17

SUBSTITUTE SHEET (RULE 26)

WO 2014/120359 PCT/US2013/076655

18 /26

202A 202B

B

198

5*&%
\\\

| % *\
\\ _ 5\\

\\\

\\ﬂ

? Q&

= \\\\\\\ \\\ \ \ \\\\\ \\\\\\\\\\\\\\\\

202D
202C

FIG. 18

WO 2014/120359

RECEIVE AND PROCESS
TESSELLATION FACTORS

PCT/US2013/076655

206 208
YES QUAD NO
DOMAIN?
NO YES
218
212
NO YES
YES NO
220 IMPLEMENT
NO QUAD JOINT |—216
DOMAIN? WALK Y-
222 DIRECTION
YES
IMPLEMENT
SINGLE
WALK v
224 IMPLEMENT
YES SINGLE |~230
AND JOINT
WALK
226\ NO
IMPLEMENT
SINGLE
WALK X- IMPLEMENT [
DIRECTION SINGLE ¥~
WALK Y-
DIRECTION

/-210

IMPLEMENT
JOINT
WALK

r—214

IMPLEMENT
JOINT
WALK X-
DIRECTION

FIG. 19

WO 2014/120359 PCT/US2013/076655

20/ 26

DIVIDE DOMAIN INTO A PLURALITY OF 231
PORTIONS

l

OUTPUT DOMAIN COORDINATES OF 232
PRIMITIVES IN FIRST DIAGONAL STRIP

l

OUTPUT DOMAIN COORDINATES OF —234
PRIMITIVES IN SECOND DIAGONAL
STRIP

l

OUTPUT DOMAIN COORDINATES OF 236
PRIMITIVES IN THIRD DIAGONAL STRIP

FIG. 20

WO 2014/120359 PCT/US2013/076655

21126

. -
. - : .

. . . s .

~ . . .

. . . M -2

FIG. 21

SUBSTITUTE SHEET (RULE 26)

WO 2014/120359 PCT/US2013/076655

22126

FIG. 22

SUBSTITUTE SHEET (RULE 26)

WO 2014/120359 PCT/US2013/076655

23 /26

. L T

b

00t WHN M\\ \\{‘& ““““‘“‘\\\‘\\\ L S
05‘ | l\ W o

\\\
K \\\ \

FIG. 23

SUBSTITUTE SHEET (RULE 26)

WO 2014/120359 PCT/US2013/076655

2426

60 70

08)) L L L v

0.7F
0.6F

0.5})
246

0.4F
0.3F

0.2+

244

20 50 60 70

FIG. 25

SUBSTITUTE SHEET (RULE 26)

WO 2014/120359 PCT/US2013/076655

25 /26
0.8 ; . . ————
08r 254]
0.7} -
0.6} -
0.5F -
0.4} -
0al 252 |
0.2} 1
0.1} 250 .
% 10 20 30 40 50 60 70
FIG. 26
1 . : ; . : :
ool 260~ |
0.8} i
0.7} -
0.6} -
0.5¢ i
ol -
0.3} -
0.2} -
0.(1) . | | ,I /I256 : | -
0 10 20 30 40 50 60 70
FIG. 27

SUBSTITUTE SHEET (RULE 26)

WO 2014/120359 PCT/US2013/076655

26 /26
~ 10
TRANSCEIVER USER
MODULE INTERFACE DISZF;;AY
266 264 o
l A
GRAPHICS
PROCESSOR PROCESSING
16 UNIT
12

SYSTEM MEMORY
14

FIG. 28

INTERNATIONAL SEARCH REPORT

International application No

PCT/US2013/076655

A. CLASSIFICATION OF SUBJECT MATTER

INV. GO6T15/00 GO6T17/20
ADD.

According to International Patent Classification (IPC) or to both national classification and IPC

B. FIELDS SEARCHED

Minimum documentation searched (classification system followed by classification symbols)

GO6T

Documentation searched other than minimum documentation to the extent that such documents are included in the fields searched

Electronic data base consulted during the international search (name of data base and, where practicable, search terms used)

EPO-Internal, WPI Data

C. DOCUMENTS CONSIDERED TO BE RELEVANT

Category™ | Citation of document, with indication, where appropriate, of the relevant passages Relevant to claim No.

Y US 2011/057931 Al (GOEL VINEET [US] ET AL) 1,2,
10 March 2011 (2011-03-10) 9-13,18,

20-25

paragraph [0089] - paragraph [0091]

Y Martin Storsjo: "Efficient Triangle 1,2,
Reordering for Improved Vertex Cache 9-13,18,
Utilisation in Realtime Rendering", 20-25

13 May 2008 (2008-05-13), pages 1-100,
XP002721768,

Retrieved from the Internet:
URL:http://www.martin.st/thesis/efficient
triangle_reordering.pdf

[retrieved on 2014-03-14]

section 5.1

_/__

Further documents are listed in the continuation of Box C. See patent family annex.

* Special categories of cited documents : L
"T" later document published after the international filing date or priority
date and not in conflict with the application but cited to understand

"A" document defining the general state of the art which is not considered the principle or theory underlying the invention

to be of particular relevance

"E" earlier application or patent but published on or after the international "X" document of particular relevance; the claimed invention cannot be

filing date considered novel or cannot be considered to involve an inventive
"L" document which may throw doubts on priority claim(s) or which is step when the document is taken alone
cited to establish the publication date of another citation or other

. e "Y" document of particular relevance; the claimed invention cannot be
special reason (as specified)

considered to involve an inventive step when the document is

"O" document referring to an oral disclosure, use, exhibition or other combined with one or more other such documents, such combination
means being obvious to a person skilled in the art
"P" document published prior to the international filing date but later than
the priority date claimed "&" document member of the same patent family
Date of the actual completion of the international search Date of mailing of the international search report
14 March 2014 26/03/2014
Name and mailing address of the ISA/ Authorized officer

European Patent Office, P.B. 5818 Patentlaan 2
NL - 2280 HV Rijswijk

Tel. (+31-70) 340-2040, -
Fax: (+31-70) 340-3016 dos Santos, Luis

Form PCT/ISA/210 (second sheet) (April 2005)

page 1 of 2

INTERNATIONAL SEARCH REPORT

International application No

PCT/US2013/076655

C(Continuation).

DOCUMENTS CONSIDERED TO BE RELEVANT

Category™ | Citation of document, with indication, where appropriate, of the relevant passages

Relevant to claim No.

A

Loop, C., Schaefer, S. Ni, T. and Castafo,
I.: "Approximating Subdivision Surfaces
with Gregory Patches for Hardware
Tessellation",

1 December 2009 (2009-12-01), pages 1-9,
XP002721769,

Retrieved from the Internet:
URL:http://research.microsoft.com/en-us/um
/people/cloop/sga09.pdf

[retrieved on 2014-03-14]

figure 2

Hanika, J., Keller, A. and Lensch, H.P.A.:
"Two-Level Ray Tracing with Reordering for
Highly Complex Scenes",

2 June 2010 (2010-06-02), XP002721770,
Retrieved from the Internet:
URL:http://delivery.acm.org/10.1145/184000
0/1839241/pl45-hanika.pdf?ip=145.64.134.24
181d=18392418acc=ACTIVE%20SERVICE&key=E8OE
9EB78FFDFODF.4D4702BOC3E38B35.4D4702BOC3E3
8B35.4D4702BOC3E38B35&CFI1D=420286304&CFTOK
EN=24359463& acm_ =1394792496 32976ae1582
06dlc47acc894cef61798

[retrieved on 2014-03-14]

abstract

1-25

1-25

Form PCT/ISA/210 (continuation of second sheet) (April 2005)

page 2 of 2

INTERNATIONAL SEARCH REPORT

Information on patent family members

International application No

PCT/US2013/076655
Patent document Publication Patent family Publication
cited in search report date member(s) date

US 2011057931 Al 10-03-2011 CN 102598063 A 18-07-2012
EP 2476101 Al 18-07-2012
JP 2013504816 A 07-02-2013
KR 20120061973 A 13-06-2012
US 2011057931 Al 10-03-2011
WO 2011031844 Al 17-03-2011

Form PCT/ISA/210 (patent family annex) (April 2005)

	Page 1 - front-page
	Page 2 - front-page
	Page 3 - description
	Page 4 - description
	Page 5 - description
	Page 6 - description
	Page 7 - description
	Page 8 - description
	Page 9 - description
	Page 10 - description
	Page 11 - description
	Page 12 - description
	Page 13 - description
	Page 14 - description
	Page 15 - description
	Page 16 - description
	Page 17 - description
	Page 18 - description
	Page 19 - description
	Page 20 - description
	Page 21 - description
	Page 22 - description
	Page 23 - description
	Page 24 - description
	Page 25 - description
	Page 26 - description
	Page 27 - description
	Page 28 - description
	Page 29 - description
	Page 30 - description
	Page 31 - description
	Page 32 - description
	Page 33 - description
	Page 34 - description
	Page 35 - description
	Page 36 - description
	Page 37 - description
	Page 38 - description
	Page 39 - description
	Page 40 - description
	Page 41 - description
	Page 42 - description
	Page 43 - description
	Page 44 - description
	Page 45 - description
	Page 46 - description
	Page 47 - description
	Page 48 - description
	Page 49 - description
	Page 50 - description
	Page 51 - description
	Page 52 - description
	Page 53 - description
	Page 54 - description
	Page 55 - description
	Page 56 - description
	Page 57 - description
	Page 58 - description
	Page 59 - description
	Page 60 - description
	Page 61 - description
	Page 62 - description
	Page 63 - description
	Page 64 - description
	Page 65 - description
	Page 66 - description
	Page 67 - description
	Page 68 - description
	Page 69 - description
	Page 70 - description
	Page 71 - description
	Page 72 - description
	Page 73 - description
	Page 74 - description
	Page 75 - description
	Page 76 - description
	Page 77 - description
	Page 78 - description
	Page 79 - claims
	Page 80 - claims
	Page 81 - claims
	Page 82 - claims
	Page 83 - claims
	Page 84 - claims
	Page 85 - claims
	Page 86 - claims
	Page 87 - claims
	Page 88 - drawings
	Page 89 - drawings
	Page 90 - drawings
	Page 91 - drawings
	Page 92 - drawings
	Page 93 - drawings
	Page 94 - drawings
	Page 95 - drawings
	Page 96 - drawings
	Page 97 - drawings
	Page 98 - drawings
	Page 99 - drawings
	Page 100 - drawings
	Page 101 - drawings
	Page 102 - drawings
	Page 103 - drawings
	Page 104 - drawings
	Page 105 - drawings
	Page 106 - drawings
	Page 107 - drawings
	Page 108 - drawings
	Page 109 - drawings
	Page 110 - drawings
	Page 111 - drawings
	Page 112 - drawings
	Page 113 - drawings
	Page 114 - wo-search-report
	Page 115 - wo-search-report
	Page 116 - wo-search-report

