Title: HOME NETWORK MEDIA TRANSPORT NEGOTIATION

Abstract: In a first embodiment of the present invention, a method for performing home networking media transport negotiation by a control point in a home network is provided, the method comprising: issuing a browse command on a content directory service in the home network to locate a custom resource element; and issuing an action to a media renderer in the home network to set a location of a media server to serve the item, wherein the issuing includes passing item metadata stored in the custom resource element, thus enabling the media renderer to negotiate directly with the media server while conveying detailed information about capabilities of the media renderer.
Description

Title of Invention: HOME NETWORK MEDIA TRANSPORT NEGOTIATION

Technical Field

The present invention relates generally to home networking. More specifically, the present invention relates to media transport negotiation in a home network.

Background Art

Universal Plug and Play (UPnP) is a distributed, open networking architecture that allows devices to connect seamlessly and to simplify the implementation of networks in the home (data sharing, communications, and entertainment) and corporate environments. UPnP achieves this by defining and publishing UPnP device control protocols built upon open, Internet-based communication standards.

UPnP has grown in popularity of late in part due to the rise in popularity of media servers. Media servers are small computers that store multiple types of content (e.g., photos, music, videos, etc.). The content may then be streamed from a media server to one or more control points (e.g., iPod, television set, etc.).

As an example, a "Media Server" device might contain a significant portion of the homeowner's audio, video, and still-image library. In order for the homeowner to enjoy this content, the homeowner must be able to browse the objects stored on the Media Server, select a specific one, and cause it to be "played" on an appropriate rendering device, using a Media Renderer. This process is currently performed using metadata published by the Media Server and the Media Renderer devices.

Normally, when a user wishes to display media on a UPnP device, the control point can send the device an action to fetch a Uniform Resource Locator (URL) and render it. The URL can be a link to an image, video, song file, etc.

Disclosure of Invention

Technical Problem

General advances in computing technology now allow some Media Servers to dynamically modify content formats in real-time to meet custom requirements. This allows, for example, the content to be modified to meet the specifications of a particular presenter. A control point, however, may not have a complete understanding of the needs of a media renderer device. This is the case if the control point is not built into the media renderer. In this case, the control point can only rely on the list of media formats supported by the media Renderer. This list omits other relevant features of the Media Renderer, however, such as optimum resolutions, aspect ratios, and other potentially adjustable content features.
Different televisions, for example, have different modes. A TV, for example, may support a movie mode, a sports mode, and an outdoor mode, each having their own display preferences on the television. Supporting this advance using existing static Media Server metadata, however, is difficult because the number of possible variations in content format is large and not known a priori. For example, there is currently no way to represent "movie mode," "sports mode," or "outdoor mode" using UPnP.

In addition, UPnP mechanisms do not depend on the specifics of content transport. For example, UPnP allows content to be transferred via IEEE-1394 (Firewire) or HTTP-GET or RTP. Any negotiation of content formats must be done outside of the media transport operation.

What is needed is a mechanism that allows for negotiation between a Media Server and a media renderer that works with existing UPnP or similar home networking architectures but allows custom negotiation of content formats.

Solution to Problem

In a first embodiment of the present invention, a method for performing home networking media transport negotiation by a control point in a home network is provided, the method comprising: issuing a browse command on a content directory service in the home network to locate a custom resource element; and issuing an action to a media renderer in the home network to set a location of a media server to serve the item, wherein the issuing includes passing item metadata stored in the custom resource element, thus enabling the media renderer to negotiate directly with the media server while conveying detailed information about capabilities of the media renderer.

In a second embodiment of the present invention, a method for performing home network media transport negotiation by a media renderer in a home network is provided, the method comprising: receiving an action from a control point in the home network to set a location of a media server to serve an item to the media renderer, wherein the action includes item metadata stored in a custom resource element found using a browse command by the control point, wherein the item metadata includes available transforms for the item; setting optimum transform parameters based on the media renderer capabilities; and negotiating directly with the media server using the optimum transform parameters and the media server location.

In a third embodiment of the present invention, a control point in a home network is provided, the control point comprising: a controller configured to: issue a browse command on a content directory service in the home network to locate a custom resource element, wherein the custom resource element includes a metadata element containing a media server command network address and also includes a metadata element containing rules to convey session identification information; issue an action...
to a media renderer in the home network to set a location of a media server to serve the item, wherein the issuing includes passing item metadata stored in the custom resource element.

[13] In a fourth embodiment of the present invention, a media renderer for performing home network media transport negotiation in a home network, the media renderer comprising: a receiver configured to receive an action from a control point in the home network to set a location of a media server to serve an item to the media renderer, wherein the action includes item metadata stored in a custom resource element found using a browse command by the control point, wherein the item metadata includes available transforms for the item; and a controller configured to set optimum transform parameters based on media renderer capabilities, and a controller configured to negotiate directly with the media server using the optimum transform parameters and the media server location.

[14] In a fifth embodiment of the present invention, a program storage device readable by a machine tangibly embodying a program of instructions executable by the machine to perform a method for performing home networking media transport negotiation in a home network, the method comprising: issuing a browse command on a content directory service in the home network to locate a custom resource element; and issuing an action to a media renderer in the home network to set a location of a media server to serve the item, wherein the issuing includes passing item metadata stored in the custom resource element, thus enabling the media renderer to negotiate directly with the media server while conveying detailed information about capabilities of the media renderer.

[15] In a sixth embodiment of the present invention, a program storage device readable by a machine tangibly embodying a program of instructions executable by the machine to perform a method for performing home networking media transport negotiation in a home network, the method comprising: receiving an action from a control point in the home network to set a location of a media server to serve an item to the media renderer, wherein the action includes item metadata stored in a custom resource element found using a browse command by the control point, wherein the item metadata includes available transforms for the item; setting optimum transform parameters based on the media renderer capabilities; and negotiating directly with the media server using the optimum transform parameters and the media server location.

Advantageous Effects of Invention

[16] The present invention provides an effectively negotiation of media transport in a home network.

Brief Description of Drawings

[17] Figure 1 is a diagram illustrating UPnP media transport negotiation using SOAP in
accordance with an embodiment of the present invention.

[18] Figure 2 is a flow diagram illustrating a method for performing home network media transport negotiation in a home network in accordance with one embodiment of the present invention.

[19] Figure 3 is a flow diagram illustrating a method for performing home network media transport negotiation in a home network in accordance with one embodiment of the present invention.

[20] Figure 4 is a block diagram illustrating a structure of the control point in accordance with one embodiment of the present invention.

[21] Figure 5 is a block diagram illustrating a structure of the media renderer in accordance with one embodiment of the present invention.

Best Mode for Carrying out the Invention

[22] Reference will now be made in detail to specific embodiments of the invention including the best modes contemplated by the inventors for carrying out the invention. Examples of these specific embodiments are illustrated in the accompanying drawings. While the invention is described in conjunction with these specific embodiments, it will be understood that it is not intended to limit the invention to the described embodiments. On the contrary, it is intended to cover alternatives, modifications, and equivalents as may be included within the spirit and scope of the invention as defined by the appended claims. In the following description, specific details are set forth in order to provide a thorough understanding of the present invention. The present invention may be practiced without some or all of these specific details. In addition, well known features may not have been described in detail to avoid unnecessarily obscuring the invention.

[23] In accordance with the present invention, the components, process steps, and/or data structures may be implemented using various types of operating systems, programming languages, computing platforms, computer programs, and/or general purpose machines. In addition, those of ordinary skill in the art will recognize that devices of a less general purpose nature, such as hardwired devices, field programmable gate arrays (FPGAs), application specific integrated circuits (ASICs), or the like, may also be used without departing from the scope and spirit of the inventive concepts disclosed herein. The present invention may also be tangibly embodied as a set of computer instructions stored on a computer readable medium, such as a memory device.

[24] In an embodiment of the present invention, home networking media transport is accomplished through negotiation between a server and a renderer to arrive at a solution that works best for both. A renderer obtains a URL or other identification mechanism, then sends an action back to the server with a profile. The server can then modify the
object and send it back to the renderer. By using the profile to send requirements back and forth, the system is able to complete a negotiation using traditional UPnP architectures yet still support custom negotiation of content formats.

[25] It should be noted that the term "home networking" as used throughout this document refers to a type of network that is commonly used in homes to connect media devices. There is no requirement, however, that this type of networking actually be used in homes, as it has equal applicability for use in businesses or other entities. As such, the term "home networking" shall not be construed as limiting any embodiments of the present invention to use in a home, and shall be interpreted as any type of local area network (LAN).

[26] Figure 1 is a diagram illustrating UPnP media transport negotiation using SOAP in accordance with an embodiment of the present invention. At 100, the control point issues a content directory service (CDS) browse action and finds a custom type <res> element. At 102, the media server returns the custom <res> element with the item metadata. At 104, the control point then issues a SetAVTransportURI action and passes a URL value and item metadata to the media renderer. At 106, the media renderer sets the optimum transform parameters and issues a SetSessionProfile() action to the URL. Alternatively, the media renderer sends a profile to the media server. The media server can ignore this profile or optimize the content based on the profile. The media server could then send back what it decided to do. Then at 108, the server associates the provided Session Identifier with the Session Profile element provided and responds to the action.

[27] As stated above, the control point can pass item metadata including available transforms to the media renderer. This metadata can be stored in a wide variety of formats, including a markup language. An example item metadata is as follows:

[28]
Figure 2 is a flow diagram illustrating a method for performing home network media transport negotiation in a home network in accordance with one embodiment of the present invention. This method is performed by the control point. At 200, a browse command (e.g., CDS::Browse) is issued on a content directory service in the home network to locate a custom resource element. The custom resource element can include transforms available for an item corresponding to the custom resource element. The
custom resource element can includes rules for selecting and conveying session identifiers. At 202, an action is issued to a media renderer in the home network to set a location of a media server to serve the item. This issuing includes passing item metadata stored in the custom resource element, thus enabling the media renderer to negotiate directly with the media server while conveying detailed information about capabilities of the media renderer. This involves passing a SOAP or REST URL value, or other network address value.

[30] Figure 3 is a flow diagram illustrating a method for performing home network media transport negotiation in a home network in accordance with one embodiment of the present invention. This method is performed by the media renderer. At 300, an action is received from a control point to set a location of a media server to serve an item to the media renderer. The action includes item metadata stored in a custom resource element found using a browse command by the control point. The item metadata may include available transforms for the item. At 302, the media renderer negotiates directly with the media server conveying its capabilities. At 304, transport can be initiated using a custom URL received from the media server in response to the negotiating.

[31] In another embodiment of the present invention, the method described above can be utilized for digital rights management (DRM) negotiations between the media server and the media renderer devices. DRM involves various protections to ensure that only legitimate users can view or play copyrighted material. DRM typically involves some measure of encryption of the content, of which only legitimate users can decrypt. As such, in order to implement DRM, it is often necessary for the content provider and the user to have knowledge about the others' encryption/decryption schemes. This information can be negotiated and exchanged though the present invention, which allows devices from, for example, different manufacturers to negotiate and exchange DRM encryption/decryption scheme, allowing a user on one device to view source material from another, different device. Additionally, an embodiment of the present invention could be used to negotiate DRM support.

[32] In another embodiment of the present invention, extensions are provided to the Representational State Transfer (REST) protocol to implement the invention. REST is a style of software architecture for distributed systems such as the World Wide Web. REST has emerged over the past few years as a predominant Web service design model.

[33] An important concept in REST is the existence of resources (sources of specific information), each of which is referenced with a global identifier (e.g., a URI in HTTP). In order to manipulate these resources, components of the network (user agents and origin servers) communicate via a standardized interface (e.g., HTTP) and exchange
representations of these resources (the actual documents conveying the information).

In an embodiment of the present invention, a SOAP action can be mapped to a RESTful URL to implement the present invention.

Additionally, in an embodiment of the present invention, possible extensions are provided to the variety of actions that the media renderer could issue back to the media server.

In another embodiment of the present invention, the custom resource element includes a metadata element containing a media server command network address, such as a URL, and also includes a metadata element containing rules to convey session identification information. In such an embodiment, the media renderer then can additionally receive the rules for conveying session identification information and receive the command network address via this metadata. The media renderer can then select a session identifier through an internal process and issue one or more actions to the media server using the media server command network address and the chosen session identifier to convey the media Tenderer's capabilities to the media server. The media server can then be configured to associate the media render capabilities with the session identifier provided. When the media renderer subsequently issues a request for the media server content including the indicated session identifier using the rules provided to the media renderer in the custom resource element, the media server can then modify, optimize, and possibly transform the requested content to improve compatibility with and playback quality on the media renderer device.

A media renderer can reuse the same session identifier coordinate modifications across multiple transport sessions (for example, applying a consistent set of transforms across a separate video and audio transport session).

Figure 4 is a block diagram illustrating a structure of the control point in accordance with one embodiment of the present invention.

Referring to Figure 4, the control point includes a receiver 400, a transmitter 402, and a controller 404.

The receiver 400 and the transmitter 402 is operated to communication the media server and the media renderer.

The controller 404 controls the receiver 400 and the transmitter 402. Specifically, the controller 404 controls all operations of the control point. The controller 404 issues a browse command (e.g., CDS::Browse) on a content directory service in the home network to locate a custom resource element. The custom resource element can include transforms available for an item corresponding to the custom resource element. The custom resource element can includes rules for selecting and conveying session identifiers.

The controller 404 issues an action to the media renderer in the home network to set
a location of the media server to serve the item. This issuing includes passing item metadata stored in the custom resource element, thus enabling the media renderer to negotiate directly with the media server while conveying detailed information about capabilities of the media renderer. This involves passing a SOAP or REST URL value, or other network address value. Figure 5 is a block diagram illustrating a structure of the media renderer in accordance with one embodiment of the present invention.

Referring to Figure 5, the media renderer includes a receiver 500, a transmitter 502, and a controller 504.

The receiver 500 and the transmitter 502 is operated to communication the media server and the control point.

The controller 504 controls the receiver 500 and the transmitter 502. Specifically, the controller 504 controls all operations of the media renderer. The controller 504 controls the receiver 500 to receive an action from a control point to set a location of a media server to serve an item to the media renderer. The action includes item metadata stored in a custom resource element found using a browse command by the control point. The item metadata may include available transforms for the item. The controller 504 negotiates directly with the media server conveying its capabilities. And, the controller 504 controls the transmitter 502 to initiate transport using a custom URL received from the media server in response to the negotiating.

It should be noted that to one of ordinary skill in the art, the aforementioned example architectures can be implemented in many ways, such as program instructions for execution by a processor, as software modules, microcode, as computer program product on computer readable media, as logic circuits, as application specific integrated circuits, as firmware, as consumer electronic device, etc. and may utilize wireless devices, wireless transmitters/receivers, and other portions of wireless networks. Furthermore, embodiment of the disclosed method and system for displaying multimedia content on multiple electronic display screens can take the form of an entirely hardware embodiment, an entirely software embodiment, or an embodiment containing both software and hardware elements.

Additionally, the various components of the home network described above (e.g., media server, media renderer, control point, etc.) can be implemented on a wide variety of networked devices. Indeed, while each of these components are described separately and have different functions, it is even possible for two or more of them to be located on the exact same device. The choice of device will also vary based upon the home network. For example, some users prefer to play content on televisions, while others may prefer to play them on mobile devices such as mobile phones or tablets. In the former, the media renderer can be a television and in the latter it can be a mobile device. Similarly, the source of the content can be any networked device having access
to storage, therefore making it possible that a mobile device, for example, can be a
"media server". Thus the term "media server" is not to be taken as being limited to tra-
ditional hardware notions of what a server is.

[48] The term "computer readable medium" is used generally to refer to media such as
main memory, secondary memory, removable storage, hard disks, flash memory, disk
drive memory, CD-ROM and other forms of persistent memory. It should be noted that
program storage devices, as may be used to describe storage devices containing ex-
ecutable computer code for operating various methods of the present invention, shall
not be construed to cover transitory subject matter, such as carrier waves or signals.
Program storage devices and computer readable medium are terms used generally to
refer to media such as main memory, secondary memory, removable storage disks,
hard disk drives, and other tangible storage devices or components.

[49] Although only a few embodiments of the invention have been described in detail, it
should be appreciated that the invention may be implemented in many other forms
without departing from the spirit or scope of the invention. Therefore, the present em-
bodiments should be considered illustrative and not restrictive and the invention is not
to be limited to the details given herein, but may be modified within the scope and
equivalents of the appended claims.
Claims

[Claim 1] A method for performing home networking media transport negotiation by a control point in a home network, the method comprising:
issuing a browse command on a content directory service in the home network to locate a custom resource element; and
issuing an action to a media renderer in the home network to set a location of a media server to serve the item, wherein the issuing includes passing item metadata stored in the custom resource element, thus enabling the media renderer to negotiate directly with the media server while conveying detailed information about capabilities of the media renderer.

[Claim 2] The method of claim 1, wherein the issuing an action includes passing a Simple Object Access Protocol (SOAP) Uniform Resource Locator (URL) value.

[Claim 3] The method of claim 1, wherein the custom resource element includes transforms available for an item corresponding to the custom resource element.

[Claim 4] A method for performing home network media transport negotiation by a media renderer in a home network, the method comprising:
receiving an action from a control point in the home network to set a location of a media server to serve an item to the media renderer, wherein the action includes item metadata stored in a custom resource element found using a browse command by the control point, wherein the item metadata includes rules for conveying session identification information;
negotiating directly with the media server using the conveyed session identification information.

[Claim 5] The method of claim 4, wherein the negotiating directly includes issuing an action to inform the media server of capabilities of the media renderer.

[Claim 6] The method of claim 4, further comprising initiating transport using a custom URL received from the media server in response to the negotiating.

[Claim 7] A control point in a home network, comprising:
a controller configured to:
issue a browse command on a content directory service in the home network to locate a custom resource element, wherein the custom
resource element includes a metadata element containing a media server command network address and also includes a metadata element containing rules to convey session identification information; issue an action to a media renderer in the home network to set a location of a media server to serve the item, wherein the issuing includes passing item metadata stored in the custom resource element.

[Claim 8] The control point of claim 7, wherein the controller passes a Simple Object Access Protocol (SOAP) Uniform Resource Locator (URL) value.

[Claim 9] The control point of claim 7, wherein the custom resource element includes transforms available for an item corresponding to the custom resource element.

[Claim 10] A media renderer in a home network, the media renderer comprising: a receiver configured to receive an action from a control point in the home network to set a location of a media server to serve an item to the media renderer, wherein the action includes item metadata stored in a custom resource element found using a browse command by the control point, wherein the item metadata includes available transforms for the item; and a controller configured to set optimum transform parameters based on media renderer capabilities, and negotiate directly with the media server using the optimum transform parameters and the media server location.

[Claim 11] The media renderer of claim 10, wherein the means for negotiating directly includes issuing an action to obtain content from the media server using the optimum transform parameters and the media server location.

[Claim 12] The media renderer of claim 11, wherein the action to obtain content is a SOAP action.

[Claim 13] The media renderer of claim 10, further comprising means for initiating transport using a custom URL received from the media server in response to the negotiating.

[Claim 14] A program storage device readable by a machine tangibly embodying a program of instructions executable by the machine to perform a method for performing home networking media transport negotiation in a home network, the method comprising a method described in claims 1 to 3.

[Claim 15] A program storage device readable by a machine tangibly embodying a program of instructions executable by the machine to perform a method
for performing home networking media transport negotiation in a home network, the method comprising a method described in claims 4 to 6.
[Fig. 1]

1. **Media Server**
 - Issue `SetSessionProfile()` action
 - Respond to action
 - CDS Browse
 - Custom `<res>` element with item metadata

2. **Media Renderer**
 - `SetAVTransportURI()` with item metadata

3. **Control Point**

[Fig. 2]

1. **Begin**
2. Issue a browse command on a content directory service to locate a custom resource element
3. Issue an action to a media renderer to set a location of a media server to serve the item, using item metadata from the custom resource element
4. **End**
[Fig. 3]

Begin

Receive an action from a control point to set a location of a media server to serve an item to the media renderer, wherein the action include item metadata

~300

Negotiate directly with the media server conveying capabilities

~302

Initiate transport using a custom URL received from the media server

~304

End

[Fig. 4]

400
receiver

404
controller

402
transmitter

[Fig. 5]

500
receiver

504
controller

502
transmitter