PCT

WORLD INTELLECTUAL PROPERTY ORGANIZATION
International Bureau

INTERNATIONAL APPLICATION PUBLISHED UNDER THE PATENT COOPERATION TREATY (PCT)

(51) International Patent Classification 7 :

HO04L 12/56 Al

(11) International Publication Number:

(43) International Publication Date:

WO 00/60819

12 October 2000 (12.10.00)

(21) International Application Number: PCT/US00/08700

(22) International Filing Date: 31 March 2000 (31.03.00)

(30) Priority Data:

09/285,618 3 April 1999 (03.04.99) US

(71) Applicant: TOP LAYER NETWORKS, INC. [US/US]; 2400
Computer Drive, Westboro, MA 01581-1770 (US).

(72) Inventors: SPINNEY, Barry, A.; Top Layer Networks, Inc.,
2400 Computer Drive, Westboro, MA 01581-1770 (US).
NARAYANASWAMY, Krishna; Top Layer Networks, Inc.,
2400 Computer Drive, Westboro, MA 01581-1770 (US).

(74) Agents: COHEN, Jerry et al.; Perkins, Smith & Cohen, LLP,
One Beacon St., 30th Floor, Boston, MA 02108-3106 (US).

(81) Designated States: AE, AG, AL, AM, AT, AU, AZ, BA, BB,
BG, BR, BY, CA, CH, CN, CR, CU, CZ, DE, DK, DM,
DZ, EE, ES, FI, GB, GD, GE, GH, GM, HR, HU, ID, IL,
IN, IS, JP, KE, KG, KP, KR, KZ, LC, LK, LR, LS, LT, LU,
LV, MA, MD, MG, MK, MN, MW, MX, NO, NZ, PL, PT,
RO, RU, SD, SE, SG, SI, SK, SL, TJ, TM, TR, TT, TZ,
UA, UG, UZ, VN, YU, ZA, ZW, ARIPO patent (GH, GM,
KE, LS, MW, SD, SL, SZ, TZ, UG, ZW), Eurasian patent
(AM, AZ, BY, KG, KZ, MD, RU, TJ, TM), European patent
(AT, BE, CH, CY, DE, DK, ES, FI, FR, GB, GR, IE, IT,
LU, MC, NL, PT, SE), OAPI patent (BF, BJ, CF, CG, CI,
CM, GA, GN, GW, ML, MR, NE, SN, TD, TG).

Published
With international search report.
Before the expiration of the time limit for amending the
claims and to be republished in the event of the receipt of
amendments.

TRANSFERS

(57) Abstract

transfer.

In a data communication switch, process and apparatus for tracking the number of
data bytes associated with data flow that is part of a session and automatically lowering
the priority given to the transmission of the remainder of a flow once a certain threshold l
has been reached that indicates that the flow is part of a bulk e-mail or other bulk file

(54) Titles PROCESS FOR AUTOMATIC DETECTION OF AND QUALITY OF SERVICE ADJUSTMENT FOR BULK DATA

1200 ~
First packet|
arrives

1216~JFE determines
type of flow

v

FE consults policy
record and assigns flow
to starting priority
queue

v

Special handler
begins data
byte count

!

Next data packet
arrives and count
is increased by
appropriate value

1215 ~O

1220 .

1225~

Is data
byte count greater
than threshold
value?

1235 ~ Transfer flow to
lower priority queue
and
reagsign flow to
normal flow handler

1240 ~__ | continue processing
packets

AL
AM
AT
AU
AZ
BA
BB

BE

BF

BG
BJ

BR
BY
CA

CG
CH
CI
CcM
CN
CU
CZ
DE
DK
EE

FOR THE PURPOSES OF INFORMATION ONLY

Codes used to identify States party to the PCT on the front pages of pamphlets publishing international applications under the PCT.

Albania
Armenia
Austria
Australia
Azerbaijan
Bosnia and Herzegovina
Barbados
Belgium
Burkina Faso
Bulgaria

Benin

Brazil

Belarus
Canada

Central African Republic
Congo
Switzerland
Cote d’Ivoire
Cameroon
China

Cuba

Czech Republic
Germany
Denmark
Estonia

ES
FI
FR
GA
GB
GE
GH
GN
GR
HU
IE
IL
IS
IT
Jp
KE
KG
KP

KR
KZ
Lc
LI

LK
LR

Spain

Finland

France

Gabon

United Kingdom
Georgia

Ghana

Guinea

Greece

Hungary

Ireland

Israel

Iceland

Ttaly

Japan

Kenya
Kyrgyzstan
Democratic People’s
Republic of Korea
Republic of Korea
Kazakstan

Saint Lucia
Liechtenstein

Sri Lanka

Liberia

LS
LT
LU
LV
MC
MD
MG
MK

ML
MN
MR
MW
MX
NE
NL
NO
NZ
PL
PT
RO
RU
SD
SE
SG

Lesotho

Lithuania
Luxembourg

Latvia

Monaco

Republic of Moldova
Madagascar

The former Yugoslav
Republic of Macedonia
Mali

Mongolia

Mauritania

Malawi

Mexico

Niger

Netherlands

Norway

New Zealand

Poland

Portugal

Romania

Russian Federation
Sudan

Sweden

Singapore

SI
SK
SN
SZ
TD
TG
TJ
™
TR
TT
UA
UG
us
UZ
VN
YU
w

Slovenia

Slovakia

Senegal

Swaziland

Chad

Togo

Tajikistan
Turkmenistan
Turkey

Trinidad and Tobago
Ukraine

Uganda

United States of America
Uzbekistan

Viet Nam
Yugoslavia
Zimbabwe

10

15

20

25

30

35

WO 00/60819 PCT/US00/08700

PROCESS FOR AUTOMATIC DETECTION OF AND QUALITY OF SERVICE ADJUSTMENT FOR BULK

DATA TRANSFERS

CROSS-REFERENCE TO RELATED APPLICATIONS

This application claims priority of U.S. application
Serial No. 09/285,618, entitled, "Application-Level Data
Communication Switching System and Process for Automatic
Detection of and Quality of Service Adjustment for Bulk Data
Transfers, " filed April 3, 1999 and assigned to the present
applicant.

This application is a continuation-in-part of U.S. patent
application Serial No. 09/058,448 entitled, "System and
Process for Application-Level Flow Connection of Data
Processing Networks" filed April 10, 1998, and of U.S. patent
application Serial No. 09/060,575 entitled "System and Process
for Flexible Queuing of Data Packets in Network Switching"
filed April 15, 1998, assigned to a common entity which has
been renamed.

This application is being filed with application for
United States Patent for "Application-level Data Communication
Switching System and Process for Automatic Detection of and
Quality of Service Adjustment for Multimedia Streaming
Applications" by Barry Spinney, and Krishna Narayanaswamy,
filed on the same date and assigned to a common entity.

This application is also related to U.S. patent
application Serial No. 09/058,629 entitled, “High-Speed Data
Bus for Network Switching” and filed April 10, 1998, and U.S.
patent application Serial No. 09/058,597 entitled, “System and
Process for High-Speed Pattern Matching for Application-Level
Switching of Data Packets” and filed April 10, 1998.

FIELD OF THE INVENTION

This invention relates generally to computer networks and

more particularly to handling bulk data transfers and network
switches and nodes.

10

15

20

25

30

35

WO 00/60819 PCT/US00/08700

BACKGROUND OF THE INVENTION

A problem with existing data communications switches is
the overloading of a switch or node with bulk or large
transfers of data such as in bulk e-mail or other bulk file
transfers. This congestion of a switch may disrupt more time-
sensitive traffic such as video or audio streaming, which is
becoming more important with the advance of Internet
telephony, video conferencing and video on demand.

In the field of connecting networks, a variety of
different network protocols are used to communicate between
different data processing systems on particular networks
making communication between such networks difficult. Most
network protocols require considerable configuration of
parameters when adding computer systems or nodes, typically
accomplished by manual input of device addresses by network
professionals who nonetheless make mistakes. This problem may
be exacerbated when connecting across network boundaries.

Current connection of networks, including the mechanisms
used to connect the so-called Internet, is accomplished using
devices known as “bridges” and “routers.” Roughly speaking,
bridges connect different networks at the “data link” layer or
Layer 2 of the 0SI Network model, see Schwartz, Mischa,
Telecommunication Networks at 75-99 (Addison-Wesley 1987), and
routers connect different networks at the “network” layer or
Layer 3 of the OSI model, wherein a packet of data is preceded
by headers corresponding to layers of communication, with the
first in time header corresponding to the lowest Layer 1, the
physical link, and proceeding up to Layer 7, the application
layer (other models have fewer layers and the “application
layer” may refer and here refers to functions at Layers 5-7 of
the 0OSI model). When packets of information are received at a
bridge, the bridge processor forwards the packet on a data
link according to the information in the data link header
(following the physical link header). When packets of
information are received at a router, the packet is routed
according to the information in the network header. These

headers, however, do not contain information about the quality

10

15

20

25

30

35

WO 00/60819 PCT/US00/08700

of service required by the application to which the data
packet pertains; thus, each packet is forwarded according to
the data link or network protocol which may or may not include
a priority flag, typically for network management operations.

The types of applications requiring data transmission on
current networks call for a wide range of service. Thus, in
communications with a file server, requests uploaded from a
client for downloading of data require relatively little
bandwidth, while downloading of massive amounts of data
requires great bandwidth to be accomplished in a reasonable
time. Streaming of audio-visual (“multimedia”) information
requires guaranteed bandwidth at regular intervals to avoid
perceivable interruptions or “jitter”. E-mail, file server
requests, HTTP, word processing each have their own
application protocols with associated header information that
can be associated with their communication needs, including
bandwidth.

Network switching schemes that consider information above
the network layer, so-called “Layer 4 switches,” are just
coming on the market and appear typically to involve software
implementations that are slow and only consider a portion of
the Layer 4 or transport layer header (the “TCP” part of
TCP/IP or transport control protocol/internetwork protocol).

It remains desirable to have a way of scheduling bulk
transfers of data efficiently and effectively while
maintaining the flow of time-sensitive data transfers through
a network switch.

It is an object of the present invention to provide a
method and apparatus to schedule bulk transfers of data
through a network switch without disrupting other data flow
through the switch.

It is another object of the present invention to provide

a method and apparatus to prevent data overload of a network
switch by a bulk transfer of data.

10

15

20

25

30

35

WO 00/60819 PCT/US00/08700

SUMMARY OF THE INVENTION

The problems of handling bulk data transfers in
communications networks are solved by the present invention of
an application-level data communication switching system and
process for automatic detection of and quality of service
adjustment for bulk data transfers.

In the present invention, a data communication switch
and process is provided for tracking the number of data bytes
processed by the switch that is associated with a data flow
that is part of a session by comparing information derived
from the contents of a session-level header in data packets.
Upon reaching a certain threshold that indicates that the flow
is part of a bulk e-mail or other bulk file transfer, the
switch automatically lowers the priority given to the
transmission of the remainder of the flow.

The present invention together with the above and other
advantages may best be understood from the following detailed
description of the embodiments of the invention illustrated in
the drawings, wherein:

BRIEF DESCRIPTION OF THE DRAWINGS

Figure 1 is a block diagram of a preferred embodiment of
the invention;

Figure 2 is a block diagram of the media interface ASIC
(MOM) of the preferred embodiment of the invention;

Figure 3 is a block diagram of the queue manager ASIC
(QM) of the preferred embodiment of the invention;

Figure 4 is a block diagram of the relay (forwarding)
engine ASIC (RE) of the preferred embodiment of the invention;

Figure 5 is a schematic diagram of the data flow of the
preferred embodiment of the invention;

Figure 6 is a general flow diagram of the processes used
in the preferred embodiment of the invention;

Figure 7A shows the data structure of a canonical header

used in the preferred embodiment of the invention;

10

15

20

25

30

35

WO 00/60819 PCT/US00/08700

Figure 7B shows the data structure of a portion of the
canonical header used in the preferred embodiment of the
invention;

Figure 7C shows the data structure and possible entries
of another portion of the canonical header used in the
preferred embodiment of the invention;

Figure 7D shows the data structure and possible entries
of another portion of the canonical header used in the
preferred embodiment of the invention;

Figure 8A shows the data structure of another portion of
the canonical header used in the preferred embodiment of the
invention;

Figure 8B shows the data structure and possible entries
of another portion of the canonical header used in the
preferred embodiment of the invention;

Figure 8C shows the data structure and possible entries
of another portion of the canonical header used in the
preferred embodiment of the invention;

Figure 9 is a block diagram of the high-speed bus used in
the preferred embodiment of the invention;

Figure 10 shows the differential character of the bus
lines of Figure 9;

Figure 11 is a schematic of a transmit circuit used on
the bus shown in Figure 9;

Figure 12 is a timing diagram of the transmit circuit of
Figure 11;

Figure 12A is a composite timing of the transmit circuit
of Figure 11;

Figure 13 is a schematic of a clock delay circuit used in
transmission on the bus shown in Figure 9;

Figure 13A is a timing diagram of signals on the circuit
shown in Figure 13;

Figure 14 is a detail of the circuit shown in Figure 13;

Figure 15 (Table 1) shows the possible values and
meanings of a control bit used in the bus shown in Figure 9;

Figure 16 shows a sequence of control bits shown in
Figure 15;

10

15

20

25

30

35

WO 00/60819 PCT/US00/08700

Figure 17 is a block diagram showing the token ring
arbitration used between the interface chips shown in Figure
1;

Figure 18 shows a sequence of cell transmissions used in
the preferred embodiment of the invention;

Figure 19 shows a pointer-register structure used in the
preferred embodiment of the invention;

Figure 20A shows the data structure of a hash table entry
used in the preferred embodiment of the invention;

Figure 20B shows the data structure of another hash table
entry used in the preferred embodiment of the invention;

Figure 21 is a timing diagram for the control signals
used on the bus shown in Figure 9;

Figure 22 shows possible values and meanings of control
bits used on the bus shown in Figure 9;

Figure 23 shows as an example a sequence of control bits
that may be seen on the bus shown in Figure 9;

Figure 24 shows diagrammatically the cell transmissions
for possible cells transmitted on the bus shown in FIG. 9;

Figure 25 shows the possible values and meanings for
codes used on the bus shown in Figure 9;

Figure 26 shows the data structure of a field of the
canonical header used in the preferred embodiment at different
times;

Figure 27 shows details of the data structure of one of
the subfields shown in Figure 26;

Figure 28 shows the data structure of a temporary “burst”
header used in the preferred embodiment of the invention;

Figure 29 shows a set of linked descriptors mapped to a
data packet used in the preferred embodiment;

Figure 29B shows a set of linked descriptors used in the
preferred embodiment to describe an incomplete packet;

Figure 30 shows the linking of descriptors used in the
preferred embodiment to establish virtual queues;

Figure 30B shows the linking to buffer descriptors of
receive and transmit context tables used in the preferred

embodiment to track data cells forming a packet;

10

15

20

25

30

35

WO 00/60819 PCT/US00/08700

Figure 31 is a representation of a credit-managed
transmission system used in the preferred embodiment of the
invention;

Figure 32 is a representation of a ring-pointer system
used in the preferred embodiment of the invention to determine
whether credits should be issued in the system represented in
Figure 31;

Figure 33 is a more detailed representation of the system
represented in Figure 31;

Figure 34 is a representation of a hierarchical queue
system used in a preferred embodiment of the invention;

Figure 35 shows the data structure of a transmit context
table entry used in a preferred embodiment of the invention;

Figure 35A shows the data structure of a field of the
data structure shown in Figure 35;

Figure 35B shows the possible service policies encoded in
the Q SVC Policy field of the data structure shown in Figure
35;

Figure 36 shows the data structure of the queue table
used in the preferred embodiment;

Figure 37 represents possible links and queues in the
transmission phase of the preferred embodiment;

Figure 38 shows the operation of the standby scheduler
used in a preferred embodiment of the invention;

Figure 39A represents a linked descriptor set
representing a complete packet in memory in the preferred
embodiment;

Figure 39B represents the delinking of the descriptor set
shown in Figure 39A to free the buffers described by the
linked descriptor set shown in Figure 39A;

Figure 40 is a block diagram of a DRAM control system
used in the preferred embodiment of the invention;

Figure 41 is a diagram of a TCP (Transmission Control
Protocol) packet typical of bulk data transactions;

Figure 42 is a diagram of a flow information data
structure and a portion of an application policy record

according to principles of the present invention; and,

10

15

20

25

30

35

WO 00/60819 PCT/US00/08700

Figure 43 is a flow chart of the method of graduated
quality of service according to principles of the present

invention.

DETAILED DESCRIPTION OF PREFERRED EMBODIMENTS

The specification will be organized as follows:

1. BlazePath™/BlazeFire™ Architecture/Chip Set

2. Header “Canonicalization” and Packet
“Cellularization”

3. BlazeWire™ High-Speed MAC Bus

4 Data Flow In

5 Queue Pointer Management and Operation

6 Relay Engine Operations/Flow Matching (FastPath™)

7. Transmission Scheduling

8 Download to Interfaces/Transmission Credit Loops

9 Ultra-High Speed RAMBUS® Operation

10. Background Engine/Initialization/Monitoring

11. Scheduling for Bulk Transfer

1. BlazePath™/BlazeFire™ Architecture/Chip Set

The architecture of the invention, called the BlazePath™
architecture, comprises application layer flow switching or
connection performed by virtually allocating (by pointers to
high speed data buffers) incoming data packets to one or more
of a large number of virtual queues according to decisions
made on the basis of information in the application header of
the packets characterizing their membership in a particular
flow. To enhance the throughput or bandwidth of the system, a
preferred embodiment, the AppSwitch™ application flow switch,
makes decisions according to the initial packet(s) of the flow
and matches a hashed version of the header information to
identify subsequent packets of the flow. By “canonicalizing”
the header information of the incoming flow and splitting
lengthy frames into smaller internal cells (but keeping them
logically connected), the system is “cell or frame”
independent.

10

15

20

25

30

35

WO 00/60819 PCT/US00/08700

Referring to Fig. 1, in a preferred embodiment, the
architecture is implemented in the BlazeFire™ chipset
connected by the BlazeWire™ MAC Bus 60. The architecture is
centered around a 287k-gate Queue Manager (“QM”) ASIC 30
operating at 100 MHz which implements the queue-pointer scheme
allowing 16,000,000 queues for pointers (24-bit definition) to
locations in a high-speed data buffer 35 and 36 connected to
the OM 30 in which incoming packets are temporarily stored.
The queues are loaded based on decisions made by the 410k-gate
Relay Engine (“RE”) or Forwarding Engine (“FE”) ASIC 40
operating at 100 MHz which includes an Argonaut RISC (ARC)
central processing unit 387 and a FIFO 394 for packet headers
to be examined. The input to and output from the system is
performed using 359k-gate 60 MHz MOM (MII [Media-Independent
Interfacel Octal MAC) ASICs 10 and 20 daisy-chained on the
BlazeWire™ MAC Bus 60; the MOM chips 10 and 20 may each serve
two Quad physical link chips (71 and 72, and 70 and 73,
respectively) for local area Ethernets 63 or an interface for
a wide area network such as the Distributed Access Device
(DAD) WAN Processor 66 servicing Tl and POTS (“Plain Old
Telephone Service”) WAN lines 69 or for a Background Engine
(“BE”) 50.

FIG. 2 is a block diagram of the MOM chip, for example
MOM chip 10, used in the preferred embodiment of the
invention. Generally, the diagram shows MII interfaces 65
providing eight duplexed Ethernet ports. The receive
interfaces 11 and parsers 12 receive the data packets, rewrite
the frame headers as the canonical headers described in
Section 2 below, and divide the resulting packets into 128-
byte cells, which are placed in FIFO 15 by producers 13 and
the FIFO arbiter 14, in round robin arbitration among the
eight ports. Data cells not bearing a canonical header
(packet cells following the first cell of the packet) have a
burst header added by burst logic 17 for internal tagging of
the data. RX Credit Manager 19 adds transmission credits
(discussed in Section 8 below) to the headers as appropriate
to inform QM 30 that the transmit FIFO 24 can accept more data

10

15

20

25

30

35

WO 00/60819 PCT/US00/08700
’ 10

to be transmitted. A token arbiter 18 determines when the
data is to be sent to the MAC Bus TX cell 76 to be transmitted
on the MAC bus 60 to QM 30.

Still referring to FIG. 2, data cells incoming on MAC Bus
60 are directed to the transmit consumers 26 and according to
the circuit identifiers in their canonical/burst headers. The
data packet headers are reconstructed and transmitted by the
transmit consumers 26 and interfaces 27, and TX Credit Manager
28 is updated with credit information to be returned to the QM
30.

FIG. 3 is a block diagram of the OM 30 used in the
preferred embodiment of the invention. Essentially, OM 30 is
a collection of gates and state machines designed to rapidly
execute the placing of data cells on appropriate queues
(implemented virtually by linked lists of pointers to data
buffers) and to apply queue policies as directed by the RE 40.
The QM 30 is divided into three clock regimes. The interface
with the MAC bus 60 through Digital Delay Locked Loop 302 and
Receive Interface 304, supplying Receive Data FIFO 306 and
Receive Command FIFO 312, and through Digital Delay Locked
Loop 301 and Transmit Interface 303 draining Transmit Data
FIFO 305, is on the MAC bus clock. Data cells received are

channeled directly through Dual RAMBUS® Access Cell 308 into

the DRAMs 35 and 36 as discussed below. The DRAM Interface
307, operating on the DRAM clock, coordinates the operation of
MAC bus FIFOs 305 and 306 as well as Header Out FIFO 309
(containing canonical header cells to be sent to the RE 40
[not shown] on Header Data Interface 74), Header In FIFO 310
(containing canonical headers rewritten at the Relay engine
Data Interface 313 with appropriate routing information) and
DRAM Command FIFO 311. The latter contains the decisions of
the RE as implemented by the QM logic shown in the network of
functions under the SRAM clock domain. Receive Engine 315,
Transmit Engine 316 and Header Prefetch Engine 324 direct the
function of DRAM Arbiter 314 to provide instructions to the
DRAM Interface 307 to move data in and out of DRAMs 35 and 36.

Receive Engine 315 and Transmit Engine 316 also coordinate

10

15

20

25

30

35

WO 00/60819 PCT/US00/08700
11

with Free Buffer Manager 318 to allocate buffers in DRAMs 35
and 36 to incoming data. EnQueue Manager 319 and DeQueue
Manager 312 coordinate with Header Prefetch Engine and the
Receive Queue State (head and tail of receive queue pointers,
discussed in Section 5 below) 320, to determine, among other
things, when cells containing canonical header data should be
sent to the RE 40 for pattern-matching and the corresponding
packets taken off the receive gqueue. The Header Prefetch
engine 324 coordinates with the Relay Engine Context 326 and
the Instruction Dispatch Manager 327, which receives
instructions from RE 40 via interface 75, Relay Engine
Instruction Interface 329 and the Relay Engine Instruction
FIFO 328. Circuit Poller 317 polls the Transmit Engine 316
circuit by circuit to transmit cells and coordinates with the
SRAM Arbiter 322, which through the SRAM Interface 323,
accesses linked lists of buffer pointers (“descriptors”) in
SRAM 32 to track component cells of the packets as they are
received and transmitted on one or more gqueues. These
operations, where appropriate field mappings are hard-wired,
provide for a great deal of flexibility in scheduling and
routing executed at very high speed.

FIG. 4 is a block diagram of RE 40. A primary function
of the RE 40 is to examine canonicalized packet headers
received at interface 74 from the QM 30 and to determine
rapidly whether the packet belongs to a known flow and to
provide instructions accordingly on interface 75 for
appropriate scheduling (quality of service). A CPU Core 387
(implemented with the ARC processor) contains an instruction
cache 386 and a data cache 385 and communicates with the Code
and Data DRAM 42 through the DRAM Interface 384 (which also
accepts instructions from the BE 50 over a low speed bus 62
and the DMA 383 at initialization). String Compare
Coprocessor 389 is used to aid the pattern recognition used to
match a packet and flow. Generally, a canonicalized packet
header entering the RE 40 is pre-processed by the Hash
Preprocessor 399 in parallel with being MUXed into Data FIFO
394 by MUXIn 394. The results of the parallel hashing are

10

15

20

25

30

35

WO 00/60819 PCT/US00/08700
12

placed in Hash FIFO 393 and compared by the Hash Lookup Engine
392 with contents of the on-board L1 Cache of the Hash Table
(of known hashes of header information associated with
particular flow characteristics) 391. If no match is found in
the L1 Cache 391, the Hash Lookup Engine 392 will look to the
entire Hash Table stored in Lookup SRAM 45, accessed through
SRAM Interface and Arbitrator 388. Trie Search Coprocessor
390 is used to find the proper flow parameters in situations
(discussed below) where the fast pattern matching is not
appropriate or fails. With the flow parameters determined, an
appropriate instruction is issued by CPU 387 into the
Instruction FIFO 395 and processed by Instruction Push 396
multiplexed with any data from Data FIFO 394 by MUXOut 397
across interface 75 into the QM 30.

FIG. 5 shows a general schematic of the operation of the
preferred embodiment of the invention from the queue
management point of view. Data on MOM Receive Ports 15’ are
directed into the QM Main Receive FIFO 330. Also enqueued are
data from WAN (T1l and POTS) port receive queues 69’ processed
under protocols 66’ and under the direction of DAD Management
66" into a DAD Ethernet transmit queue 348’ to appear on a MOM
receive port 348. Data cells in the Receive FIFO 330 are
placed in the main system packet memory DRAMs 35 and 36 while
the canonical headers are forwarded in a FIFO 394 to the QM 30
where FastPath™ processes are applied to enable appropriate
queuing of packets on per flow, per priority and per port
queues 332 (static priority, as discussed below) and 333
(weighted robin priority, as discussed below) to be
transmitted to the MOM Transmit Ports 24’ (or the DAD 66 to be
distributed on circuit queues 350 for further distribution to
T1 and POTS Port Transmit Queues 69”) for transmission. Fine
tuning of scheduling may be achieved using Quality of Service
Scheduling Process 336 relative to per flow queuing using
Scheduled Queues 335 as “intermediate” queues. A Management
Queue 337 is also provided with a Management Operations
Process 338 operating on weighted round robin queues 333. A

Monitor Queue 334 is also provided for network monitoring

10

15

20

25

30

35

WO 00/60819 PCT/US00/08700
13

information to be transmitted over MIIs 24’. On the BE 50
side, data placed on the MOM Port Transmit Queue 339 is
transmitted over MII (100 Mbit Ethernet) link 64 into the BE
Receive Queue 341. The Background Engine Main Forwarding
Process 342 passes information into the BE Transmit Low
Priority Queue 346 or the Management Queue 343 which is
serviced by Management Operations Process 344 to develop data
(including instructions) to be placed on BE Transmit High
Priority Queue 345. Both BE Transmit Queues are drained into
the MOM Port Receive Queue 347 via link 64 to be placed on the
OM Receive Queue 330.

FIG. 6 is a generalized flow diagram for the process of
the invention. It is to be understood that the processes
occur simultaneously along various points in the diagram for
different cells. Because the preferred embodiment of the
invention divides often lengthy incoming Ethernet frames into
cells for subsequent reassembly, it is important in the
embodiment to characterize the cells relative to the packet

from which it originated. A received cell may be a “start of

packet” (“SOP”) a “middle of packet” (“"MOP”), an “end of
packet” (“EOP”), or include a single packet as a “start and
end of packet” (“SEP”). Because reception and transmission of

data packets in the preferred embodiment is executed on a
circuit-by-circuit basis, and a circuit is defined as a
logical connection preserving the order of packets, cells of a
packet on one circuit may be interleaved with cells of a
packet on another circuit, for example on the MAC bus, but
cells received on the same circuit must be transmitted in the
same order. Thus, in FIG. 6A, with time going forward from
top to bottom, an SOP 371 is received from Circuit 2, then an
SEP 372 from Circuit 1, an SOP 373 from Circuit 3, an MOP 374
from Circuit 2, an EOP 376 from Circuit 3, an SOP 375 from
Circuit 1 and an EOP 377 from Circuit 3, in order of
appearance on the MAC bus.

Referring to the generalized process shown in FIG. 6, in
operation 351, a packet is received at an MII and is split at

operation 352 into cells by MOM 10 or 20 (referring to FIG. 1)

10

15

20

25

30

35

WO 00/60819 PCT/US00/08700
14

which also adds canonical headers (and possibly burst
headers). The cells in MOM Transmit buffers are arbitrated on
the MAC bus in operation 353 and stored in DRAM for later
transmission in operation 354, which also includes the
development of a procedure to associate the cells with the
original packets, such as the link-list of virtual packets
used in the preferred embodiment of the invention. TIf the
cell is an SOP, a decision 355 is made to send the cell to a
pattern matching procedure wherein the cell is hashed 356 and
then matched 357 against known hash results associated with
previously identified flows. If there is no match (possibly
after several matching procedures), a new flow or exception is
noted 358. 1In either case, an appropriate header is written
354 to appropriately schedule andvroute the packet. 1In the
preferred embodiment, the scheduling is done by assignment of
the packet to a gqueue associated with a specified quality of
service and a particular circuit. A cell on a gqueue is
transmitted 360 at the appropriate time, the process possibly
including a rewriting of the headers. If the transmitted cell
was an EOP, the packet is dequeued 361 from the circuit and if
there are no other requirements for transmission of the packet
(no more owners 362), the data buffer is released 363. This
process may be further generalized and implemented in a
diverse ways.

The flow of data through a preferred embodiment of the
invention is presented below in further detail, which includes
additional inventions.

2. Header “Canonicalization” and Frame
“Cellularization”

Upon receiving a data packet on a physical link, the
inventive network switch takes the Layers 2 and 3 headers of
incoming packets (dropping any Layer 1 packet preamble) and
converts it to canonical form. The invention further breaks
variable-length packets into “cells” of a maximum convenient
length for communication on the high-speed internal bus. This
allows data packets of different lengths with different Layer

2-and 3 header formats, such as Ethernet “frames” or ATM

10

15

20

25

30

35

WO 00/60819 PCT/US00/08700

15

wcells,” to be routed by the same switching process and
apparatus. The wcanonicalization” of the header also aligns
the header along 4-byte boundaries that are convenient for
processing. The example here is for Ethernet frames, but is
applicable to ATM cells with appropriate modification in the
terminology and the interface ASIC.

Referring to FIG. 1, a frame of information is received
by the MOM 1 chip 10 via one of the eight ports shown. The
physical link Layer 1 processing is handled in the preferred
embodiment by dual “off-the-shelf” Quad PHY integrated
circuits (such as available from Lucent Technologies), each
handling the transmit/ receive electronics of 10-Base-T (10
Mbit/sec) or 100-Base-TX (100 Mbit/sec) Ethernet. One of the
ports, e.g., from MOM 2, may be connected by internal or
external 10 Mbit Ethernet to a DAD integrated circuit
including an off-the-shelf WAN processor (such as available
from Motorola), which in turn interfaces with Tl and POTS”
lines via modem. Together, these form a QuadServe™ WAN access
module.

Referring to FIG. 1, a frame or packet of information in
the form of a data stream forming a message is input to a
physical circuit 70 and then received by the MOM 1 chip 10 via
one of its eight ports. FIG. 18 schematically illustrates the
organization of a typical packet format. There may be a
preamble 620, followed by a data link Layer 2 header 622,
which contains information to bridge the packet, a network
Layer 3 header 623, which contains information to route the
message, and an application header 624, which contains
information about the application for which the data is used.
The headers are followed by the data itself 625, and,
occasionally, there is a trailer 626, which usually is
superfluous and not used.

The MOM 1 chip, preprogrammed in hardware in the
preferred embodiment to recognize a variety of Ethernet
protocols, drops the preamble and trailer, reads the Layers 2
and 3 headers from the received frame, and generates a

canonical header of twenty-eight bytes, FIG. 7A. Having a

10

15

20

25

30

35

WO 00/60819 PCT/US00/08700
16

buffer capacity of 256 bytes per port, the MOM 1 segments the
frame data into cells of 128 bytes each (other cell lengths
may be used in other embodiments).

Immediately adjoining the canonical header, Layer 3
(network) header information as received is stored. The Layer
3 header always starts at a multiple of four bytes from the
start of the cell because the canonical header is 28 bytes.
Important fields within the Layer 3 header are aligned at
four-byte boundaries generally. This makes the processing of
these fields very efficient for 32-bit processor/memory
architectures.

Other header information from the higher layers,
including the application layer, follow the Layer 3 header.
The canonical header is placed at the beginning of the first
cell of each frame or packet received and is used by the RE 40
to route or bridge the packet. When a packet in the form of a
stream of cells is sent to the MOM for transmission, the MOM
reconstructs the appropriate headers, preambles and trailers
according to the destination and protocol information in the
transmit canonical header and begins transmitting the
reconstructed packet on the line connected to the designated
port.

FIG. 7A shows the organization and content of the
canonical header in a preferred embodiment. The first two
bytes 430 hold the circuit identification of the circuit on
which the data packet was received, Byte 432, DL Info,
provides information about the Data Link (Layer 2) header from
the original received header. FIG. 7B shows the specific
assignments to these bits. Bit 7 indicates whether the
received frame was VLAN (virtual local area network) tagged on
reception. On transmission, if this bit is set, the outgoing
packet is encapsulated with a VLAN header by the MOM chip
handling the transmission. It should be noted, however, that
packets received with VLAN tags are not necessarily sent out
with VLAN tags and vice-versa.

Bits 6 and 5 of FIG. 7B indicate how CRCs (cyclical
redundancy checks) are to be handled. FIG. 7C is self-

10

15

20

25

30

35

WO 00/60819 PCT/US00/08700

17

explanatory. Of note is that when the outgoing frame is
different from the received frame, then a new CRC must be
generated, but if the original frame is simply forwarded, then
the CRC may not change, hence there is need to retain the old
CRC or generate another CRC. Bits 4 and 3 are unused and left
as zeros. FIG. 7D shows the encoding for bits 2, 1, and 0
which identify the data link packet format.

The canonical header NL Info field 434 contains network
layer information. FIG. 8A shows the meaning of the eight
bits in the NL Info. Regarding reception: bit 7 true
indicates that the destination address (DA) of the received
information is the address of the bridge group associated with
the circuit on which the packet was received; bit 6 true
indicates that the DA is the system’s address for the port;
bit 5 true indicates that the DA is an address that has been
pre-configured by the invention as a “well-known address,”
such as one associated with a network control protocol. On
transmission this bit is ignored. On transmission, if bits 7
and 6 are set, the appropriate source address is put on the SA
field.

Bits 4-0 identify the Layer 3 protocol of the packet.
FIG. 8B identifies those protocols preprogrammed into the
invention. These can be extended as new protocols are
developed and need to be handled efficiently by the system.

The Time Stamp four bytes 138 contain the time at which
the packet will expire. The QM 30 enters the time that the
packet will expire when it receives the canonical header as
part of the first cell of a packet. The QM 30 upon
transmitting a packet will check if the current time is
greater than the time stamp value in the canonical header. if
so, the data link device is directed to not transmit the
packet and count it instead. When first generated by the MOM,
this field contains cell information described in the “Data
Flow In” section below.

The two-byte receive circuit identification (Rx Ckt Id)
identifies the circuit on which the packet is received. The

OM copies the receive circuit identification from the Ckt Id

10

15

20

25

30

35

WO 00/60819 PCT/US00/08700
18

field 430 first supplied by MOM 1 before overwriting the Ckt
Id field 430 with the circuit identification of the circuit on
which the data is retransmitted. The receive circuit
identification is thus retained for later use (such as for
management and RMON functions by the BE 50).

DA is a 48-bit Layer 2 (MAC) destination address of the
received packet.

SA is a 48-bit Layer 2 (MAC) source address of the
received packet.

VLAN tag is a two-byte field to accommodate a packet
received with an Ethernet 802.1Q tag. The VLAN tag bit in the
DL Info field is also set, as described above. The MOM chip
handling the transmission of this packet will tag the outgoing
packet.

P-Type/len is a two-byte field containing the protocol
type/length field. 1In this preferred embodiment, if the value
is greater than 1500(decimal), this field represents a
protocol, and if the value is less than or equal to 1500, this
field represents a length. Protocol is captured in the
Protocol Kind subfield of the NL Info field. 1If the protocol
is not so configured, the Protocol Kind subfield of the NL
Info field would indicate Unknown (0) and the P-Type/len field
would have the value. For example, if the packet was in the
Ethernet 802.3 format, this field would contain the length
which could be used for validity checks with length in the
Layer 3 header.

The XX bytes may have other information based on the
packet format of the received packet. FIG. 8C shows the
contents of the XX bytes for the different DL format types.

3. BlazeWire™ High Speed MAC Bus

The received frame, reorganized into one or more cells,
the first cell containing the canonical header and higher
layer headers, is communicated to and from the QM on a high
speed MAC bus called BlazeWire™.

The present design of BlazeWire™ is a full-duplex,

clocked bus of ten signals and a clock signal each way between

10

15

20

25

30

35

WO 00/60819 PCT/US00/08700
19

two large integrated circuit chips. The clocking protocol
allows data transmission on the bus to be self-framing,
asynchronous and non-aliasing. All the signals are
differential signals between two conductor runs with the
inherent transmission lines properly terminated. In this
preferred embodiment, the electrical characteristics of the
differential drivers and receivers are as substantially
described in the low voltage differential standard (LVDS)
ANSI/TIA/EIA-644. The differential signal voltage is about
two hundred and fifty millivolts (250 mv), and the cable
terminations and physical signal paths are arranged and
designed to accommodate high speed operations over the bus.
The bus is organized as a chain running from one large chip
(MOM or QM) to another. A separate daisy chain token passing
scheme is implemented as discussed below to control the access
of the chips to the bus. The electronic design of the bus
compensates for the practical variations inherent in different
production runs of chips from possibly different
manufacturers, supply voltage variations, and temperature
variations. In preferred embodiments the speed of the bus can
run upwards to the gigaHertz range.

The ten signals are composed of eight data, one parity,
and one control. The data are placed on the lines on both the
rising and falling edges of the clock signal. Since the data
is placed on the signal lines at the clock transitions, the
signals should be read at the receiving end at or very near
the center of the clock signal. This allows any overshoots
and any other signal delays or other anomalies to settle.
Since the data is loaded onto the signal lines at both clock
signal transitions, it is critical to have a symmetrical clock
with minimum skew between the clock edges and the data being
placed on the bus. The present circuitry provides a feedback
mechanism for monitoring and finding the center of both phases
of the clock signal, and furthermore to provide a symmetrical
clock for the signals being sent out on the continuation of
the bus through the chip.

10

15

20

25

30

35

WO 00/60819 PCT/US00/08700
20

FIG. 9 diagrammatically shows the basic signal flows
between two sub-systems represented as MOM 1 and MOM 2 with
twenty signal lines, a group of ten each way, and a clock with
each group. FIG. 10 shows the differential character of each
of the twenty-two lines. Differential drivers and receivers
as known in the art are properly terminating the transmission
lines in their characteristic impedance to maximize signal
fidelity and minimize ringing. Other termination schemes such
as schemes implemented on the drive side may be used to
advantage in other embodiments.

FIG. 11 is a schematic of the circuitry by which one of
the ten data bits is output from one of the MOMs. The
circuitry is essentially duplicated for the other data bits.
This circuit implementation maximizes clock symmetry and
minimizes skew. The A data 462 is to be placed on the output
466 followed by the B data 464. The A data is latched in the
flop 468 and presented to the logic array. Consider that the
prior B data has remained in the latch 472 and is input to the
logic array 460. The logic array is arranged to load a signal
into the latch 474 which provides, when it is “exclusive
or'ed” with the signal that remained in latch 476, the A
signal at the output of the gate 466. On the next clock edge
a similar operation provides the B data signal at the output,
the B data 464 is latched 472 and “exclusive or‘ed” with the
prior signal in latch 474 such that the “exclusive or” of the
data in latch 476 will provide the B signal at the output of
the “exclusive or” 466. FIG. 12 is a simplified timing
diagram of the above.

FIG. 12A shows a composite timing chart of the bus clock
and the ten data lines on the bus between MOMs 1 and 2. FIG.
12A shows the transferring of eight consecutive bytes (plus
parity and control) on each edge of the clock signal.

When the signals are received at the MOM or QM, FIG. 13
shows the MOM’s circuitry which is used to provide a delayed
clock with an edge at the center of one phase of the received
clock. Another similar circuit is used to provide a delayed

clock with an edge at the center of the other phase of the

10

i5

20

25

30

35

WO 00/60819 PCT/US00/08700

21

received clock. These centered clocks are used to latch the
data into the receive MOM and will be the basis for the
symmetrical clock used to send out signals from the MOM. The
received clock 80 becomes the data input to the latch 482 and
latch 484. A delayed clock DLYA (a delay version of the input
clock) latches the clock signal 480 into the latch 482 whose
output is SAMPLE CLK A, and a delayed clock DLYB latches the
clock signal 480 into the latch 484 with an output SAMPLE CLK
B. The DLYA and DLYBR are delayed by the control logic by a
programmable amount. Both of these SAMPLE CLKs are fed back
to a control logic array 90 through circuitry designed to
synchronize the signals. In operation, the control logic can
program when the DLYA occurs. In this way, the DLYA might
latch the clock 480 signal when it is low which the control
logic can determine by the SAMPLE CLK A signal. The control
logic continues to set different delays until the clock 480
signal goes high. In a similar manner, the control logic
continues to set different delays until the clock signal goes
back low. As before, the control logic determines this
condition from monitoring the SAMPLE CLK A signal. With
reference to FIG. 13A, once the control logic has found the
first rising edge 480’ and the falling edge 480" of the clock
signal 480, the control logic “knows” and can set the DLYA
rising edge 486 at the center of the positive phase of the
clock 480. This DLYA rising signal will be, effectively, the
rising edge 486’ used to latch data on the next successive
positive phase of the clock 480. During the time that the
centering of the DLYA signal, the actual data being received
at the time 486, FIG. 13A, 1is latched by the DLYB, FIG. 13,
signal which had previously been centered to the positive
phase of the clock 480. The previous centering of the DLYB
was accomplished in the same manner as described above using
the SAMPLE CLK B feedback signal and the DLYB delayed signal.
In this embodiment, while one delayed clock is latching data,

the other delayed clock is being centered for use at some
later time.

10

15

20

25

30

35

WO 00/60819 PCT/US00/08700
22

The circuitry of FIG. 13 is duplicated to precisely
measure the center of the negative phase of the input clock
signal in order to latch in the data on the opposite phase.
FIG. 13 shows the DLYC rising edge 489 precisely at the center
of the negative phase of the received clock. As previously
described, the DLYC clock is being centered during one
negative phase of the clock 480 while the other (DLYD not
shown) is latching data, and the DLYD will be centered while
the DLYC clock latches data.

FIG. 14 shows parts of the delay circuitry. The IN
signal 494 is delayed by one gate 495 and input to the “and”
gate 496. If the control 1 signal is a logic one, the signal
traverses 96 and is output via the “or” structure 498 and
becomes the output signal delayed by the three gate delays --
495, 496, and 498. This delay is considered as a one unit
delay. 1If the control 1 signal is a logic “0” and control 2
signal is a logic “1”, the IN signal travels through gates 495
, 495’, 496', 498’ and 498. This path is longer by two gates,
and the IN signal is considered to have gone through two
single unit delay circuits. Each single delay unit adds two
gate delays. If the control logic allows the IN signal to
reach the three gates 500, and the control X signal is a logic
one, the IN signal will go through an incremental of four
gates -- the three gates 500 and the gate 504 (gate 502 being
the common path duplicated in each delay circuit and disabled
in prior delay circuits). This circuit adds four gate delays
and forms a two unit delay. A four-unit delay (not shown)
will replace the three gates 500 with seven gates, therefore
adding an increment of eight gate delays or four unit delays.
In this preferred embodiment, there are thirty-two single-unit
delays, sixteen two-unit delays, and sixteen four-unit delays.
The arrangement in this preferred embodiment allows an
arithmetic-like progression of delays up to a total of 128
unit delays which may be selected. In other embodiments other
arrangements of delay circuits may be selected and other known
delay circuits may be used to advantage. In this preferred

embodiment, for expected manufacturing processes used to build

10

15

20

25

30

35

WO 00/60819 PCT/US00/08700
23

the circuitry, and for expected temperature and supply voltage
operation, a single unit delay will be about 0.15 nsec. It is
expected that the variation of one unit delay may run from
0.08 to 0.3 nsec depending on the above mentioned parameters.

FIG. 15 (Table 1) is a table indicating the use of the
control bit in this preferred embodiment. The bit is used for
framing purposes. In the timing diagram of FIG. 1237, eight
bytes are transferred on each clock transition marked by e0-
e7. Table 1 shows the value of the control bit for the even
numbers transitions, e0, e2, e4, and e6. The combinations
indicate the allowable functions shown in the right most
column. If the control bit is zero in each of the even
transitions, the bus is idling. Any of the combinations shown
in rows 510 signal that the data on the data lines is a valid
frame. 1In particular, since the value at the e6 time is
always zero and the value at e0 time is always one for a valid
frame of data, the system looks for a zero to one time
sequence of the control bit. The one is assumed at e0, and if
the combinations shown in rows 510 exists, the framing of the
data shows a valid set of eight bytes.

The values of rows 510 are selected to ensure that no
aliasing of valid frames of eight data bytes can occur. The
valid control bit sequence combinations -- the rows 510, in
FIG. 15 -- will always have a zero then a one, with no other
zero/one patterns in a valid frame. FIG. 16 shows that the
pattern of control bit values at the even clock transition
shows frame 512 as invalid since there is another zero/one at
e2 and e4 for that frame 512. The frame 514, however, is
valid as is frame 516. In practice, the value of the control
bit is measured at each receive clock phase and a zero to one
transition separated by a clock phase is monitored. When such
a transition occurs, the one is treated as being in the e0
time slot and the monitoring of frame validity is based on
that relative timing.

Transmission of data from the MOM chips to the QM is
arbitrated by a token ring in the preferred embodiment. With

reference back to the system block/schematic diagram FIG. 1, a

10

15

20

25

30

35

WO 00/60819 PCT/US00/08700

24

token ring arbitration path 61 is shown between MOM 1 and MOM
2. The token ring is a looped signal where a chip has the
token when there is a logic difference between the incoming
token signal and the outgoing token signal. 1In FIG. 17, there
is no net inversion within the chips, so there is an inverter
in the path so that at initialization one chip, in this case
MOM 1, will be guaranteed to have the token and be in control
of the bus. When a chip has the token, it can send its own
data over the bus, whereas when the chip does not have the
token, it must wait for the token while other data are simply
passed through the chip. When a chip has the token, it will
send out all the data needing to be sent by that chip before
releasing the token. If MOM 1 has the token, it is passed to
MOM 2 by MOM 1 changing the state of its output signal 61.
MOM 2 then has the token.

This token passing may be extended to multiple devices by
connection of the single token output signal of one device to
the single token input signal of the next device. The last
device’s token output signal is inverted and then sent to the
first device in the token passing chain.

Implementation of the token passing at an edge or change
of state of the information facilitates synchronization
between different clock domains. The token automatically, by
virtue of the edge-based information passing, remains valid at
a device until it is recognized and then passed on to the next
device in the token passing chain.

4. Data Flow In

The MOM 1 chip 10 can store or buffer up to two cells or
256 bytes of received data for each of the eight ports. As
described in the “Header Canonicalization” section above, the
MOM chip reads the Layer 2 and 3 headers from the received
frame or packet and generates an initial canonical header of
twenty-eight bytes (described further in this section),
followed by the network Layer 3 header and the application
layer header in the first cell processed.

The MOM 10 (or 20) transmits the cell on the high-speed
MAC bus 60 to the QM 30 when the MOM holds the token of the

10

15

20

25

30

35

WO 00/60819 PCT/US00/08700
25

token ring arbitration path described above. Between the
eight ports of a MOM, arbitration is round robin. The QM
receives the cell and stores the cell in dynamic RAMs 35 and
36, in this preferred embodiment a RAMBUS® DRAM having two
banks of DRAMs rapidly accessed as described in Section 9
below. Information describing a received, stored cell is
placed in SRAM 32 and is called “descriptors.” The canonical
header is modified to include the Time Stamp. The modified
canonical header and the rest of the header information in the
first cell of the packet is placed in a Header Out FIFO 309
for transfer to the RE 40.

Because of the segmentation of frames and the arbitration
scheme, subsequent cells of a packet received on a circuit may
be interleaved with cells of other packets received on other
circuits. To provide information to allow the OM to keep
track of the order of the cells of a packet, the MOM writes an
eight-byte (octbyte) “burst” header added to subsequent cells
of the same packet (making up to 17 octbytes), corresponding
to the first octbyte of the initial canonical header of the
first cell of the packet.

Additional information is sent on the control signal line
or bit of the high-speed MAC bus that allows identification of
the boundaries of the cell and the type of information
contained in the cell. FIG. 21 shows the use of the control
bit to delineate data in groups of octbytes. The control bit
700 over eight consecutive clock phases frames eight bytes and
distinguishes the data. The value of the control bit is shown
as e0 through e7 in the table FIG. 22.

In FIG. 22, the even control bits, e0, e2, e4, and e6 are
encoded as follows: e0 is always a one and e6 is always a zero
to indicate that a valid group of eight bytes is received. To
prevent aliasing of this encoding, the only values indicating
a valid group are (for the even control bits, e0 through e6) :
1000; 1100; and 1110. The bit e2 indicates the start of a
cell, and e4 indicates the start of a packet. FIG. 23 shows a
possible sequence of the even control bits: group 702 1s not

a valid group, while groups 704, 708 and 710 are valid. The

10

15

20

25

30

35

WO 00/60819 PCT/US00/08700
26

circled zero/one 708 indicates that the only possible
beginning to a valid group must have a zero followed directly
by a one, and there cannot be another zero/one in the next two
bits (e2 and e4).

Still referring to FIG. 22, the odd control bits are
encoded as follows: el indicates a transmission credit (see
discussion below) exists, e3 (code bit 0) and e5 (code bit 1)
form a two-bit end code, and e7 (short word) indicates an
octbyte containing fewer than eight meaningful bytes. The
short word can be used at the start of a cell or at the end of
a cell.

FIG. 24 is a chart of several packet types that may be
encountered. The first cell 720 of the packet may have up to
sixteen octbytes, or 128 bytes. The even control bits 722 for
the first 32-bit word (octbyte) is 1110. As shown in FIG. 22,
this code means that this octbyte is part of a valid first
cell of a packet. As shown, e0 equal to “1” is required for a
valid cell; e2 equal to “1” means this eight-byte transfer is
the start of a cell, ed4d equal to “1” means it is the start of
a packet, and e6 must be zero for a valid cell. For the cell
720, the odd control bits are all zeros except for bit e5 of
the last eight-byte transfer, which is a “17. FIG. 25 shows
the encoding of the control bits el, e3, e5, and €7 -- the odd
control bits. For cell 720, e5 is a “1” and e3 is a “0” which
decodes into “end of packet.” Thus cell 720 is a one-cell
packet (SEP). It should be noted that this cell need not be a
full 128 bytes long.

Cell 724 is a valid starting cell of a packet, and here
e3 of the odd control bits 726 is set meaning “end of cell”
but not “end of packet”; thus, it is an SOP cell. The next
cell 728 is the second cell of a packet (MOP), and all the
cells following an SOP cell will have up to seventeen
octbytes, including an octbyte burst header 330 added to the
beginning of each cell. For this second cell, the last
octbyte e3 is set meaning this cell is the end of a cell, but
not the end of the packet. The cell 734 has e5 set in the
last eight byte group, meaning that this cell is the end of

10

15

20

25

30

35

WO 00/60819 PCT/US00/08700
27

the packet (EOP), and in this instance, e7 is also set. The
bit e7 means that the last group of eight was not filled and
was a “short word” (as so labeled in FIG. 25), and when this
happens, the last byte 338 contains the number of valid bytes
in the last eight byte group. For example, if there were only
three valid bytes in the last group, the last byte (concurrent
with the e7 control bit), would contain 0011, or decimal
three.

Regarding the transmission of cells to the QM from the
MOM chip, the first octbyte at the start of the first cell
contains a portion of the canonical header that is modified by
the QM to include the Time Stamp. The entire canonical header
is stored in the DRAM with the other headers and such frame
data as may fit in the remainder of the 128 bytes.

FIG. 26 shows the transformation of the first octbyte of
the canonical header by the QM. As shown, the initial four
bytes 740 written by the MOM, the Ckt Id, DL Info and NL Info,
are carried forward by the QM. The second four bytes 742,
including cell information, is overwritten by the QM with the
Time Stamp 748. (The canonical header is sent to the RE,
which deals only with packet policy and is unconcerned with
cell information.)

The first byte 744 of the cell information bytes 742
contains the number of transmission credits being reported
from the QM (described in the “Transmission Credit Scheme”
section below). The second byte contains credit flags, bit 7
being a SYNCH flag (for initialization) and bit 6 a “parent”
flag (described in Section 8 below). The third byte provides
cell information whose meanings are shown in FIG. 27. The bit
meanings are: bit 7 indicates cell error; bit 6 packet time
out; bit 5 a packet from the bad packet queue; bit 4 from the
monitor queue; and bits 3-0 are selected bits from the control
described above. Bit 3 is the packet end bit, bit 2 is the
start of packet bit, bit 1 is the data cell bit, and bit zero
is the transmit credit bit. The last byte in the cell
information bytes 742 provides the cell length in number of
bytes.

10

15

20

25

30

35

WO 00/60819 PCT/US00/08700

28

The octbyte-long burst header used to track cells without
canonical headers is shown in FIG. 28. 1Its fields are
identical to those of the first octbyte of the initial
canonical header except that DL Info and NL Info (used by the
RE which only sees the SOP) is replaced by the cell sequence
number 752 and unused space. The Ckt Id 750 is used to match
the cell (or more specifically, its proxy, the buffer
descriptor) with preceding cells having the same Ckt Id, which
should have sequential sequence numbers (unless a cell has
been discarded). Once the cell is linked by the QM with
preceding cells (as described below), the credits entered, and
action taken on the other cell information, the burst header
is no longer needed and is dropped. (A cell may be discarded
if parity information detects an error. In such cases, at this
time the cell and finally the packet is aborted by signaling
the MOM chip.) A new burst header is created for the cell by
the QM in the transmit phase, where the CKT ID shows where the
packet i1s being sent.

5. QM Buffer and Queue Structure and Operation

Data cells received on the MAC bus by the QM are
individually stored in the RAMBUS® DRAMs according to the
fast-access operation described in Section 9 below, in
addressable 128-byte data buffers, with the canonical header
intact but rewritten to include the Time Stamp, and with the
burst header octbyte dropped. Address 00000 does not contain
cell information and corresponds to a null-pointer.

All data cells received on the MAC bus and stored in data
buffers are organized in a single virtual receive queue using
a descriptor/pointer scheme that is used for all but a handful
of specialized queues for exceptions. The scheme allows a
receive queue corresponding to up to 1 Gbytes of data.

In the descriptor/pointer scheme, data buffer
“descriptors” in the QM SRAM, comprising two 4-byte words, are
surrogates for the actual data stored in the buffers and are
linked to form logical packets. Thus a descriptor assigned to
a data buffer with data has a field in the first word

indicating the address of the buffer in the DRAM in which the

10

15

20

25

30

35

WO 00/60819 PCT/US00/08700

29

associated cell is stored and a field in the second word
containing a pointer to another descriptor 802 in the SRAM
associated with the next cell of the same packet. As shown in
FIG. 29, a complete multi-cell packet is described by a
descriptor “link-list,” with the second word of the SOP buffer
descriptor 801 pointing to the MOP buffer descriptor 802, the
second word of descriptor 802 pointing to EOP buffer
descriptor 803 and the second word of descriptor 803,
associated with the last cell of the packet, containing a
pointer pointing to descriptor 801, associated with the first
cell of the packet. As shown in FIG. 29B, an incomplete
packet has a null pointer in the second word of descriptor
805.

Queues are formed in the invention by a queue head
pointer pointing to the first word of the descriptor
associated with the first cell of the first packet in the
queue and with a field in that first word pointing to the
first word of the descriptor associated with the first cell of
the next packet in the queue, and so linked reiteratively
until the last packet in the queue, which has a queue tail
pointer pointing to it, as shown in FIG. 30 with the receive
queue head pointer pointing to the designator 812 associated
with the first cell of the first packet in the queue and tail
811 pointing to the designator 815 associated with the first
cell of the last packet of the receive queue (the descriptors
each map to a 128-byte buffer in DRAMs 35 or 36). As shown,
the queued packets are not necessarily complete, but in this
packet-oriented implementation, data cells received from the
MAC bus are “added” to the packet to which it is identified by
Rcv Ckt Id in the burst header, rather than at the end of the
queue.

In the receive operation, the QM Descriptor SRAM is
organized into a buffer descriptor table and a receive context
(or circuit) table. The buffer table or list has descriptors

containing two 4-byte words, with word 0 containing a buffer

address of a data buffer in the RAMBUS® DRAM (hence the buffer

table entry is an implicit buffer), and word 1 containing a

10

15

20

25

30

35

WO 00/60819 PCT/US00/08700
30

pointer to another descriptor in the buffer table. At
initialization, the buffer table is a “free buffer table” the
designator of the first free buffer to which the QM hardware
by a head pointer points and the second word of which points
to the next free buffer descriptor, and so reiterated in a
link until the last free buffer designator which contains a
null terminator in its second word.

As a data cell is presented by the MAC bus to the QOM, the
OM extracts its circuit id from its canonical or burst header
and checks for an entry in the receive context (circuit) table
which yields information on the activity of that circuit.
When an SOP is detected, an entry on the receive context table
(8 bytes/circuit) is created and a pointer (current buffer) is

entered pointing to the next free buffer designator. The cell

data is written into the associated RAMBUS® DRAM buffer. The

free buffer list pointer is moved to the next free buffer
designator after the “current buffer” is allocated.

If the received cell was not an SEP, the second word in
the buffer designator points to the next free buffer
designator, preallocating the associated buffer, and a “0” is
written in the second word of that next buffer entry.

If the received cell was an SEP or an EOP, the second
word in the buffer descriptor is set to point to the first
buffer descriptor for the packet, and the resulting link-list
defining the packet is de-linked from the receive context
table.

The cells received with the same circuit id, which may be
interleaved on the MAC bus, are thus virtually reorganized by
link-lists into packets, some of which may be incomplete even
when leading cells are transmitted in cut-through operation.
In the latter case, as shown in FIG. 30B, the current buffer
of the receive context table 820 points to the next buffer
descriptor 833 corresponding to the buffer into which the data
cell is to be loaded, and the buffer descriptor 833 is linked
to the descriptors 832, 822, and 821 of the other cells of the
packet, one of which, descriptor 832, is linked as the current

buffer 821 of a circuit entry in the transmit context table.

10

15

20

25

30

35

WO 00/60819 PCT/US00/08700

31

Since the circuit entry in the transmit context table provides
routing information, the data subsequently placed in the
buffer associated with descriptor 833 “knows where to go.”
This system of link management allows “cut-through,” that is,
the transmission of portions of a packet while other portions
are still being received.

6. Relay Engine Processing/Flow Matching (FastPath™)

The receive queue of linked descriptors of SOPs waits for
processing by the RE 40. The SOP cells themselves are loaded,
as room is made available, into a “circular” FIFO 394 of four
128-byte registers processed by the relay engine. Alternative
embodiments of the invention may include more or fewer
registers in the FIFO 394. This is implemented with a pointer
system that follows the processing of the SOP cells, adding
cells until the register is full (when the send pointer
“catches up” to the receive pointer in FIG. 19), then adding
another cell only when processing of the cell pointed to by a
head pointer is complete and dropped (and the receive pointer
“falls behind” the transmit pointer).

The RE operation centers around a four-stage pipeline.
Pipelining is a term of art used for many years, especially in
high speed hardware designs, and will not be further discussed
herein except incidentally. The RE’'s task is to determine how
to best forward a frame flow and to provide forwarding
information accordingly to the QM to route and schedule
retransmission of stored packets. The four stages are briefly
described here, followed by a more detailed description of the
hashing and signature functions used to perform pattern
matching to identify a flow.

The first stage stores the full header information (the
entire SOP cell) in a “circular” data FIFO, in parallel as the
header is processed by a hash engine to compute a hash and a
signature value to perform a pattern-matching function to
check whether the packet is part of an existing flow for which
routing and scheduling information has already been developed.

The second stage receives the Hash value which is used to

address a Hash Table L1 391. If a valid entry is found in this

10

15

20

25

30

35

WO 00/60819 PCT/US00/08700
32

table, the signature from the L1 Table is compared to the
computed signature of the Hashed data. If consistent, then a
Flow Tag (not shown) from the Hash Table is presented to the
next stage of the pipelined FE/RE hardware design together
with an indication that a valid hit was found. The Flow Tag
is a 28-bit index into a table in memory where information
about the flow is stored. 1In alternative embodiments of the
invention, a smaller or larger index may be used. This
information will include the circuit or circuits on which to
forward the packet along with other flow related information
as described elsewhere herein.

A valid Flow Tag pointer (linking the contents pointed
to) is the preferred result of the pattern matching functions
described in this preferred embodiment

If a match is not found in L1, the search is performed on
the off-chip L2 Table 45. Signatures are compared as above
and the Flow Tag from the L2 table is presented to the next
stage. To facilitate the next search, the L2 entry is written
into the L1 table.

If there is no hit in either Ll or L2, the computed hash
and signature are presented to the next stage with an
indication that no hit was found.

The third stage receives the above information and
determines if the header look-up was successful. If
successful, the header data is updated according to the
protocol rules that apply and the packet is forwarded
according to the flow information. If, however, the header is
found to be a TCP (Layer 4 Transport Control Protocol) SYN
packet, or an equivalent start of connection packet in another
protocol, or if the frame is not part of a known connection
flow, the packet is not forwarded according to the flow
information. In these instances the RE acts to route the
frame by decoding the full pre-hashed header. 1In the process,
it creates useful flow information and inserts a tag that
points to it in the L2 Hash Table using the hash and signature

values obtained by the hardware in stage one.

10

15

20

25

30

35

WO 00/60819 PCT/US00/08700
33

In the fourth stage of the pipeline, the header is passed
back to the QM to be queued for transmitting on the specified
gueue according to the information supplied by the Flow Tag or
the routing information supplied by the RE’s decoding of the
full pre- hashed header. For putting together the information
to forward subsequent packets of the flow, the RE examines the
application layer data in addition to the Layer 2 and Layer 3
headers.

In further detail, with reference to FIG. 4, when a
packet is received, the QM 30 provides a useful header (as
determined from the NL field) which may be as long as 128
bytes to the FE/RE by loading that header data onto a dual
ported circular buffer in the RE. With reference to FIG. 4,
the header data is sent from the QM 100 to the MUXIn 102 and
placed on a FIFO stack DF in the RE 40. The RE uses the
network link byte to index into a previously stored ordered
data array of 128-bit entries, where each bit corresponds to
one of the full received header data bytes. The bytes that
correspond to the bits with a one are extracted and processed
by the hash and signature functions. The byte string is padded
at the end with zeroes to provide a string that is an even
multiple of four bytes. In this preferred embodiment, up to 64
of the 128 header bytes can be processed by the hash/signature
operation, but fewer or more can be used to advantage in other
preferred embodiments.

The hash and the signature functions are identical except
that different multipliers are used. But, in other preferred
embodiment, other combinations of different multipliers and
different divisors may be used to advantage.

With reference to FIG. 4, the Hash Preprocessor 399
inputs the selected bytes from the 128 bytes of the header
data. The selected bytes form a number (n) of 32-bit words
(multiples of 4 bytes, as noted above). The bits in this
sequence of 32 bit words are treated as a polynomial in the
Galois Field, GF[2] -- a Galois Field of 2 (Galois Field is
known in the art). In this preferred embodiment, the

polynomial is multiplied by a random 32-bit polynomial, and

10

15

20

25

30

35

WO 00/60819 PCT/US00/08700
34

then divided by a carefully chosen polynomial of order 32
resulting in a 32-bit remainder. The divisor used above is
selected to be both irreducible and primitive (irreducible and
primitive are terms known in the art). A subset of the
remainder bits are used as the actual index into the hash
table. Bits 5 down to 0 are addresses directed into the on-
chip L1l cache 391. Bits 16 to 1 are used to address the 64K
locations in the off-chip L2 RAM 45.

The divisor used in this preferred embodiment is
X24+x+x°+x°+x*+x+1, although others may be used provided they
are both irreducible and primitive.

The contents of the Hash Tables which identify the Flow
Tag and/or the destination of the incoming frame are organized
as follows:

Hash Table 1 contains 64 words each of 64 bits, and it
exists on chip to optimize the return of the value in the
common occurrence where only a small number of flows are
active. Larger tables can be used. In the present embodiment
of the invention, in each word, see FIGS. 20A and 20B, bits
31-28 form a status where bit 31 being true indicates a valid
entry. Bits 0-27 form a 28-bit Flow Tag where information
about the particular flow is stored. The tag is a pointer to
information about the circuit or circuits to which the packet
will be forwarded. Obtaining the Flow Tag is the primary task
of the RE. The Hash table also contains the 32-bit signature
at bits 63-32, which is used to ensure that no collision has
occurred and the result is valid. 1In order to further ensure
the validity of the Flow Tag look up, the pre-hashed header
data is stored so that unambiguous identification may be
performed.

If there is no match in the L1 Hash table, the system
will use the hashed result bits 16-0 to index into the 64k
Hash Table L2. Each location will have a 64 bit width. Bit 30
is a Hash Bucket pointer wherein, if this bit is a zero, the
bits in L2 table are organized functionally as in the L1
table. If there is one valid entry at this Hash Address, the
system takes L2 bits 0-23 to be an index into a flow table to

10

15

20

25

30

35

WO 00/60819 PCT/US00/08700
35

obtain a flow tag. See FIG. 20B. If there are no valid
entries at this Hash Address, L2 bit 31, the Vvalid Bit, is set
to a zero. If there are two or more entries at this hash
address, then status word bit 30 is set to a one and the
system takes the L2 bits 55-36 as a pointer to the Hash
Bucket.

The Hash Bucket holds up to eight aliased addresses of
64-bit words. If the collision bit 29 is a one, an aliased
condition persists for both the hash and the signature
operations and no further resolution will be performed by the
hash mechanism, as no useful information can be obtained. At
this point the two conflicting flows are handed back to the
processor to perform a Trie search for routing information.
The eight words in the Hash Bucket are searched sequentially,
and to facilitate this search the addresses are sequential
starting at the lowest index into the table. If more than
eight entries are directed to the Hash Bucket, the system
reverts and the overflow are searched via the Trie routine.
The Trie search uses a co-processor 390 and is organized as a
large Trie database for routing and bridging.

The occurrence of signature and/or hash collisions can be
monitored, and if excessive, the respective multipliers can be
changed. Such changing results in a better randomization for
the given set of addresses encountered in the network.

The hashing and signature routine results are not used in
certain circumstances: when a connection is initiated, as when
a TCP SYN or an equivalent “start of connection” packet
arrives, or when a packet is found that does not belong to a
connection flow, or the packet is part of a high security or
other special mode. When such conditions are found the system
can revert to the Trie search.

Generally processing of subsequent packets in a flow is
accelerated by the optimization of software pattern matching
as described above.

The RE returns information with instructions indicating
which queue the cells are to be placed for forwarding along

with the addressing. The QM receives the information and

10

15

20

25

30

35

WO 00/60819 PCT/US00/08700
36

places the cells, which are stored in linked lists forming the
contents of the packet which is being or was received, on a
list to be transmitted.

7. Transmission Scheduling

The RE programs the QM, developing virtually by linked
pointers in the QM Descriptor SRAM up to 16,000,000 transmit
gueues (24 bits) with managed priority for the various
circuits.

The core of the transmission phase is the Transmit
Context Table, which is organized by circuit, four four-byte
words for each circuit as shown in FIG. 35. Word 0 contains a
credit sync bit, seven bits 812 for transmit credits (no
transmission unless a credit exists for the circuit), a start
of packet bit 814, and 23 bits designating the next buffer to
transmit (next buffer ID). Word 1 816 contains eight flag bits
818. FIG. 35A shows the meaning of these flag bits: Bit 7
indicates that the packet is a single buffer; bit 6 indicates
that the packet is bad, usually from a CRC error, and that the
MOM should abort this packet; bit 5 indicates that the packet
was dequeued from the monitor queue wherein the packet can be
off loaded at some other port or to the background engine for
traffic analysis; bit 4 indicates that the packet is “multi-
owned” or may be transmitted to more than one circuit; bits 3-
0 indicate the buffer length in bytes up to 128 bytes in
groups of sixteen bytes. The remaining 24 bits of Word 1
contain the address of the first queue (each circuit may have
1, 2, 4, 8, or 16 associated queues). Word 2 820 in the
transmit context table contains one bit 822 that indicates
that a monitor queue is attached, four bits that indicate the
gqueue service policy, and three bits that indicate a reference
count. FIG. 35B shows the meanings of the four queue service
policy bits. The possible designations are: one queue; two,
four, eight or sixteen static queues; two, four, or eight
weighted round robin queues; or two, four, eight and sixteen
one-half static and one-half weighted round robin queues. As
described below, the static queues have the highest priority,
followed by the weighted round robin queues. Word 3 contains

10

15

20

25

30

35

WO 00/60819 PCT/US00/08700

37

the stand-by scheduler control word, which consists of “next
cct Id,” “parent cct Id” (used only for stand-by scheduler
circuits), a state bit (active or idle) and a stand-by
scheduler interval.

The Queue Table shown at FIG. 36, which coordinates with
the Transmit Context Table, contains four four-byte words for
each queue. Word 0 contains a 2-byte standby circuit ID
(discussed below) and two bytes of queue summary bits (only in
every sixteenth queue number). Word 1 contains two bytes
indicating the queue size and a 2-byte overflow counter ID.
Word 2 contains a five-bit field indicating the number of
standby queues and 24 bits for the head-of-queue pointer.

Word 3 contains a 24-bit tail-of-queue pointer.

In the preferred embodiment, it should be remembered that
a queue is formed by linking the SOP cells starting with a
head-of-queue pointer to the first SOP (and a tail pointer to
the last SOP), and new cells of a packet are added to the cell
of the packet. Thus, referring to FIG. 37, there are four
SOPs in queue 16 of Queue Table 850, represented by linked
descriptors 863, and two SOPs or “packets” in queue 17
represented by linked descriptors 864. Incomplete packets,
such as that represented by linked descriptors 862 may
nonetheless be transmitted (allowing “cut-through”), but
transmission will stop on the circuit when the last descriptor
indicates that its associated buffer is empty, thereby
preserving the rule that packet order is preserved on a
circuit.

The queue policy allows prioritizing and scheduling of
transmission of data packets. Thus, under a fixed static
priority, all the packets on a particular gueue are
transmitted before those on another. In a weighted round
robin scheme, a certain number of packets on one queue are
transmitted, then a certain number of packets on the next
gueue are transmitted, and so forth, this allows classes
(queues) of traffic to have relative priorities without

“starving” the lower priority classes. A “half-and-half”

10

15

20

25

30

35

WO 00/60819 PCT/US00/08700

38

scheme is provided in which the static queues have priority,
and when they are served.

A Schedule Table for the circuits in use is scanned
continuously. As shown in FIG. 37, this is composed of a
Primary Schedule Table with a Primary Schedule Table A 865 and
a Primary Schedule Table B 866 and a Secondary Schedule Table
870. The Primary Schedule Table is located on-chip and
consists of the two mentioned subtables, each with 64 entries.
Slots in Primary Schedule Table A are visited once every
Schedule Table time “tick.” A Primary Table A entry contains
a 6-bit index to an entry in Primary Schedule Table B. As
shown in FIG. 37, any given Table B entry may have more than
one Table A entry pointing to it. Primary Table B entries
contain the size of the secondary table, and if the size is
not equal to “0”, then it also contains an offset into the
secondary table 867 and the base address of the secondary
table 868. If the size is equal to “0”, the remaining fields
are the “Use Parent Circuit” bit 871, the Parent Circuit ID
872 and the Circuit ID 873.

A cell transmission event is triggered when a schedule
table entry with a Circuit ID is found. By entering the
appropriate Circuit Ids in the Schedule Table, a cell
transmission ordering pattern is created which effectively
allocates bandwidth to circuits according to their respective
proportion of transmission events.

The hierarchical nature of the Schedule Table allows a
wide range of rates to be programmed. This is done by
“chaining” up to 3 levels of subtables. If the size field of
a Primary Table B entry is not zero, this entry contains a
pointer to a Secondary Table which is located off-chip. A
Secondary Table 870 may have up to 255 entries, each of which
may point to a Tertiary Table or may contain a Circuit ID.
When table chaining is encountered, the offset field 867 is
used to keep track of which entry is to be accessed in the
lower-level table. At each visitation, the offset is

incremented, modulo the table size.

10

15

20

25

30

35

WO 00/60819 PCT/US00/08700
39

The Stand-by Scheduler (SBS) is a secondary scheduling
mechanism. As its name implies, it schedules traffic for
bandwidth left over from the Schedule Table. There are 2
cases where stand-by traffic can be transmitted: (1) a
transmit event resulted in no data sent for a circuit (lack of
credits or lack of data); and (2) the Circuit ID programmed in
the Schedule Table is zero, thereby pre-allocating a certain
amount of bandwidth to stand-by traffic.

The SBS uses a version of the Calendar Queue algorithm,
essentially a slotted time ring implemented as an array of
linked lists. Each element of the array corresponds to a
different time slot. Attached to each time slot is a list of
circuits which are scheduled to send a cell at this time. A
slot index advances with time. When a populated slot is
found, a cell for the circuit at the head of the list at that
slot can be transmitted. When a cell is transmitted for a
particular circuit, the eligibility time for the next cell on
that circuit is calculated and mapped to another time slot.

Referring to FIG. 38, the Stand By Scheduler Calendar
Table 878 is an on-chip table consisting of 64 entries. Each
entry contains a head and tail index to describe a linked list
of circuits attached to a particular slot. The links are
stored in the Next CCtId field of word 3 in the Transmit
Context Table 860. The slot index 877 advances with periods
corresponding to the QM core clock. When a SBS opportunity
arises, the next circuit to transmit is found by scanning
forward from the point in time represented by the current
value of the slot index. The next circuit to send is the one
at the head of the list for the next populated slot. Once the
next circuit is found, it is dequeued from the list and
rescheduled.

Rescheduling is performed by calculating the next slot at
which the circuit should be sent. The calculation of the next
slot is based on the SBS Interval field of Word 3 in the
Transmit Context Table. This field is a 6-bit number
representing the number of Calendar Table slots between

successive transmission events for the circuit. The next slot

10

15

20

25

30

35

WO 00/60819 PCT/US00/08700
40

for a circuit is the current slot plus this interval, modulo
the table size. The net effect of the SBS is an approximation
of the Weighted Fair Queueing algorithm. The weight of a
given circuit is the inverse of its SBS Interval.

Another aspect of the Stand-by Scheduler is its ability
to perform dynamic bandwidth allocation based on only the
circuits which are ‘“active,” i.e., have data to send.
Thousands of circuits may be enabled for stand-by bandwidth.
Only a small number, however, will likely be active at any one
time. In order to more efficiently use stand-by bandwidth,
the SBS keeps only active circuits in the scheduler. It
receives messages from the process managing the Queue Table
when a circuit becomes active or goes idle. The transition
from active to idle occurs when a packet is dequeued resulting
in all queues for the circuit becoming empty. The transition
from idle to active occurs when a packet is enqueued to a
circuit which has all empty queues.

Any circuit may be scheduled using both the Schedule
Table and the SBS simultaneously. This is useful for ATM
Available Bit Rate (“ABR”)traffic.

The “sending” in the preferred embodiment starts with the
delinking of a packet string (which may be incomplete) from
its queue (“dequeueing”) and its linking to the current buffer
of the Transmit Context Table 860 (as shown in FIG. 37). The
circuit entries of the Transmit Context Table are then polled
to send the buffer contents of the current buffer (if not
empty) to the corresponding “circuit” 63’. Cell data is read
from the RAMBUS® DRAMs according to the “ping-pong” scheme
described below.

When a packet is fully transmitted, its buffers are
returned to the free buffer list. Completion of transmission
of a packet is indicated when the next buffer of the transmit
context table is directed to the descriptor 880 associated
with the first buffer of the packet by the second word of the
descriptor 882 of the last buffer of the packet, referring to
pointer 883 in FIG. 39A. The free buffer manager (not shown)
then checks whether there are other “owners” (such as for

10

15

20

25

30

35

WO 00/60819 PCT/US00/08700
41

multicasting) by looking at the “owner” field of descriptor
880 of the SOP, and if none (if value is one, otherwise
decrement), as shown in FIG. 39B, it increments the free
counter 890 by the buffer count 891 in the second word of
descriptor 890. It moves the free buffer list head pointer
895 from the head of the free buffer list 896 to the
descriptor to which descriptor 880 points, namely descriptor
881 of the buffer of the second cell, and enters in the next
descriptor field of descriptor 880 a pointer to the previous
head of the free buffer list 896. As seen in FIG. 39B, all
three buffers are thus linked at the head of the free buffer
list.

8. Transmission Credit Loops

In the preferred embodiment, a hierarchical flow and
congestion control scheme is provided by the use of multiple
credit loops. A system of credits is established that
indicates the ability of the MOM chip, for each of the eight
output channels, to accept cells for transmission. As the MOM,
for a particular channel is sending a packet, cell by cell,
and as each cell is sent the MOM indicates, through the credit
bits described above, that another cell can be transferred to
the MOM chip. As shown in FIG. 31, the MOM, upon sending out
a cell will increment the credit count 760, and as the QM
transfers cells 762 to the MOM, the QM decrements the credit
count 764. As noted above, the credits have a circuit ID such
that the proper MOM channel credit is retained. In this
preferred embodiment, as many as four transmit cells can be
stored. The MOM has a FIFO in which the packet is reassembled
from the cells.

When a cell is transmitted by the MOM chip, the credit
sent back to the QM is a credit for a maximum length cell,
which may be 17 octbytes when in cell mode or 16 octbytes when
in packet mode (because the MOM deletes the burst header when
in packet mode). The QM, however, may send down something less
than the maximum cell size. FIG. 32, which is duplicated for
each output channel associated with the MOM chips,

diagrammatically shows the mechanism by which the credits are

10

15

20

25

30

35

WO 00/60819 PCT/US00/08700
42

processed in the MOM chip. There is a head pointer 770, a
tail pointer 772, a virtual tail pointer 774, and a start of
packet pointer 776. In this preferred embodiment there are
512, or four full 128-byte location in the transmit FIFO. In
FIG. 32, there are 64 slots, each slot 778 representatively
holding one octbyte. (The 64 octbytes equal the 512-byte
storage capacity of the FIFO in this embodiment.)

At initialization the FIFO is empty, and the virtual tail
is incremented, moving it through the FIFO locations. The
virtual tail pointer stops when it reaches or attempts to
reach the head pointer. Each time the virtual tail pointer
increments, a single credit is sent via the transmit and
receive credit managers in the MOM chip. These credits are
accumulated in the QM for this circuit. As the MOM receives
cells to this circuit, the tail pointer (this pointer points
to real information representing actual cell lengths) is
incremented. If the QM sends less than a full cell, the
virtual tail pointer is corrected. When the MOM actually
transmits the cells the head pointer is incremented. As the
MOM sends out the cells the head pointer moves away from the
virtual and the real tail pointers, opening up room in the
FIFO. When the virtual tail pointer, which might have been
corrected by the QM sending less than maximum cells, can
increment a maximum cell length in the transmit FIFO, without
wrapping the head pointer, a credit is sent and established in
the QM.

The other remaining pointer, the start of packet pointer
776, has one important function. That function is to retain
the starting location of the start of the packet, so that if
there is a collision on an Ethernet cable, the packet that was
collided with can be retransmitted, in accordance with the
published specification.

With regard to FIG. 2, the virtual tail pointers are
controlled by the transmit credit manager and the real tail
pointers are controlled by the transmit FIFO “producer,” and

the “consumer” controls the header and the start of packet

10

15

20

25

30

35

WO 00/60819 PCT/US00/08700
43

pointers. All the pointers are accessible to all the transmit
credit manager for comparison and for issuing credits.

FIG. 33 indicates how the MOM FIFO, a two-port, 64-
octbyte memory, is controlled. An arbiter 780 controls the
most significant three address bits of the FIFO from the
“producer” side to keep track of the cells loaded from the QM,
and the lower six bits, the total of nine bits needed to
address the 512 locations, are controlled by the tail pointer
782 (one shown of eight). The virtual tail pointer 784 does
not point to real data; it is a counter mechanism by which the
credit manager can determine the number of credits to send to
the QM. Another arbiter 786 and head pointers (one shown of
eight) control the unloading and freeing up of the FIFO as
packets are physically sent out by the MOM chip. The head
pointer 788 controls the lower six bits of the FIFO from the
unloading side of the FIFO. The consumer increments the head
pointer as the data is sent out. The head, tail and start of
header pointers are available to the transmit credit
circuitry.

Referring to FIG. 26, a portion 742 of the first octbyte
of the initial canonical header and, referring to FIG. 27, the
burst header contain two credit flags, the “synch” flag and
the “parent” flag. The synch flag is used at power up to
properly establish the credit cycle operation described above.
At power up, the MOM sends synch flags to the QM about every
10 milliseconds. When the QM has powered up, the QM looks for
the synch flag, and when found the QM sends a synch
acknowledge to the MOM. The MOM then will send up any credits
as described above with the assurance that the QM is ready to
accept the credits.

The parent flag is necessary because there can be a
multiple of physical communication paths multiplexed into one
channel of a MOM chip. When there is only one communication
circuit connected to a MOM channel, as when the MOM is
connected to an Ethernet, the credit system works as described
above, but with many separate paths into one MOM channel, a

method of maintaining credits for each of the paths connected

10

15

20

25

30

35

WO 00/60819 PCT/US00/08700
44

to the one MOM channel was designed. One important aspect of
this credit system is that it was necessary to ensure that
none of the several communications paths connected to the one
MOM channel could be blocked or locked out by another of the
communication paths. In this embodiment, FIG. 34 shows two
FIFO channels in a MOM chip. FIFO 800 operates with a single
communications path. In this case, the MOM FIFO 800 is termed
a leaf to indicate its operation with a single communications
circuit. But FIFO 802 is associated with a FIFO channel that
is connected to another chip, for example, a DAD chip 804 in
this preferred embodiment, where the DAD is further connected
to eight other communication circuits 804. In this case the
FIFO 802 is termed a “parent” and the eight communications
circuits connected to the DAD are the leaves. In this
circumstance the QM maintains a credit for the individual
leaves attached to the parent FIFO in the MOM. 1In this way
the OM knows when the transmit FIFOs are filled and can accept
no further cells. The QM can subsequently transfer cells to
the other leaf by simply polling the credits in the parent and
the leaves and transmit cells accordingly. In this manner one
leaf cannot prevent the servicing of the other leaves.

Referring to FIG. 38, in the Schedule Table 866 in the
QM, there is an indication 871 whether there is a parent
associated with that particular circuit. The MOM, acting as a
parent, sends up credits for the parent FIFO and for each of
the leaves associated with that parent.

The Parent Credit Table 875 is a 64-entry on-chip table
in the QM. Fach entry contains a credit count for what is
treated as a “parent circuit.” When a circuit is bound to a
parent circuit, it can only transmit cells onto the MAC bus if
it has credits available in both its Transmit Context Table
credit field and in its parents credit field in the Parent
Credit Table.

When a cell is transmitted for a circuit with a parent,
both the Transmit Context Table credits and the associated

parent credits are decremented. Parent credit update cells

10

15

20

25

30

35

WO 00/60819 PCT/US00/08700

45

from the parent channels are sent back to the OM which causes
the parent credits to be incremented.

The Schedule Table is used to bind a circuit to a given
parent circuit. The Use Parent Circuit Bit (P) 871 and the
Parent Circuit ID field 872 are used for this purpose. If the
schedule table entry has the P bit set, this means that this
circuit has a parent and should use the Parent Circuit ID 872
to index the Parent Credit Table 875.

9. Ultra-High Speed Access on RAMBUS®

RAMBUS® DRAMs 35 and 36 are off-the-shelf items. In the
present invention they are used in a unique manner that
maximizes the reading and writing bandwidth of the RAMBUS® for
this data communication application.

The invention provides an interface 308 to the RAMBUS®
which utilizes the dual bank organization of a RAMBUS® to
increase the useful bandwidth of the RAMBUS® memory. Dual
FIFO stacks are used with a controller to alternately address
the separate DRAM banks within the RAMBUS®. The FIFOs
increase the latency and increase the hardware overhead of the
RAMBUS® controlling electronics, but attempts to guarantee
that the sequential data written or read comes from the
alternate banks. In this manner, one bank is precharging
while the other is being accessed, and then the other bank is
precharging while the first bank is accessed.

Referring to FIG. 40, a RAMBUS® 900, is shown in block
form showing the phase-locked loop, PLL, and the two dynamic
RAM banks DRAM 1 and 2 (36, 37 respectively). The multiplexed
data/address bus into and out of the RAMBUS® is essentially an
eight-bit wide serial port with an accompanying clock.

The organization of data buffers in DRAMs 35 and 36 is
such that all even data buffers (of 128 bytes) are on one bank
and all odd data buffers are on the other. The arbiter 902
determines the order in which various requests for data are
loaded onto FIFO stacks 904 and 906. The buffer addresses in
the requests are either even or odd, and the requests with
even buffers are loaded into FIFO 904 and the odd buffers into
FIFO 906.

10

15

20

25

30

35

WO 00/60819 PCT/US00/08700

46

In the condition that the FIFOs are empty, the requests
are loaded into the even or odd FIFO and the interleaver 908
transfers the request to the controller 910. As the requests
become numerous, however, the requests in the FIFOs back up.
When the requests have backed up into both FIFOs, the
interleaver 908 takes the requests alternately from one FIFO
and then the other (“ping-ponging”). Since these buffer

addresses are alternately even and then odd, the controller

accesses the two different banks in the RAMBUS® in an

alternate or interleaved manner. In this operation, the first
bank is being accessed while the second bank is being
precharged, and, on the next access, the second bank will be
accessed while the first bank is being precharged.

This alternative accessing substantially provides the
fastest accessing for either writing or reading of the RAMBUS®
and maximizes the throughput of the RAMBUS® memory as long as
there are requests in both FIFO stacks, which is likely in
high traffic situations. In contrast, requests presented on a
purely FIFO basis likely will have a fractional number with
back-to-back even or back-to-back odd requests causing a
fractional number of time-outs to allow precharging.

Any latency relative to a particular regquest may in any
case have occurred under normal access methods. The method
here assures maximum usage of RAMBUS® resources under high
traffic conditions.

10. Background Engine/Initialization

An important part of the invention is the use of the BE,
interfaced on a MOM port during operation to perform
monitoring and other higher-layer decision making. This
allows for the BlazeWatch™ and Learn-and-Lock security systems
to access configuration and control functions, among other
applications.

With reference to FIG. 1, a Boot FLASH ROM 51 is provided
that is accessible to BE 50 for initialization and start up of
the system. The boot ROM instructions will run when there is
a power up or a complete system reset. The boot will test and

verify that the section of the BE DRAM 53 is operational and

10

15

20

25

30

35

WO 00/60819 PCT/US00/08700
47

reliable. This section is where the ISB code and the BlazeNet
Runtime Kernel (BeRT) will reside. The first 1F (hex) or 32
(decimal) addresses of ROM 51 hold the initial interrupt
vectors. Addresses 20-7F hold ROM information; 80-FF hold
console support interface Routines, 100-4FF hold a MOM
attribute table; 500-1FFFB hold the boot image; and 1FFFC-
1FFFF hold the boot image checksum of a cyclical redundancy
check (CRC). In this embodiment, the remaining BE DRAM 53
will be tested in parallel with running the BeRT
initialization process.

The boot also tests the interrupt structure and operation
to insure that the BARK (the background engine kernel) can
receive interrupts, for example, from timers. Next the boot
will initialize the I2C bus 62 and assign addresses to the
chips attached to the I2C bus. The boot then determines the
ID of chips on the bus, including revision level. The boot
then looks up the ID of the chips found, and an initializer is
found in the boot directory which is downloaded and executed.

The main system image is in the NonVolatile Storage 52 in
a compact flash card containing, for example 10 Mbytes of
system software. Basic information is transferred on the I2C
bus to the RE 40 and MOMs 10 and 20. The complete image is
subsequently transferred on the DMA channel 64.

The above discussion describes the preferred embodiment
of the invention(s) at the time of filing. It should be clear
that equivalent components and functions may be substituted
without departing from the substance of the invention(s).
Various mixes of hardware and software implementation are
possible while retaining the benefits of the invention(s).
Because the invention is intended to be highly flexible and
scalable, it is the cooperation of the modules here disclosed
that is important, rather than the number of modules and
ports.

11. Scheduling for Bulk Transfer

Certain applications move bulk data across the network,

for example, e-mail with attachment, file transfer, and backup

applications. Packets from bulk data transfer applications

10

15

20

25

30

35

WO 00/60819 PCT/US00/08700
48

could congest an outgoing circuit (link). A graduated
priority quality of service is here presented that addresses
the congestion problem caused by bulk data transfers.

Figure 41 is a diagram of an IP (Internet Protocol)
packet 1000 used in the present embodiment of the invention.
The IP packet 1000 has a plurality of fields of information.
The version number and header length field 1005 holds the
version of the IP protocol the packet belongs to and the
length of the packet header in 32-bit words. The type of
service field 1010 allows a host to tell an internet device
(i.e. a switch or a router) what kind of service it wants.
The data length field 1015 holds the number of data bytes in
the transmission. The data byte count is used in determining
whether a flow is a bulk transfer. The identifier field 1020
is needed by the destination host in determining which packet
a newly arrived fragment belongs to. All fragments of a data
packet have the same identification value. The fragmentation
field 1025 gives more fragment information including the
offset in a current data packet where the current fragment
belongs. The time to live field 1030 is a counter used to
limit packet lifetimes. The protocol field 1035 holds
transport information. The header checksum field 1040 is
useful for header verification only. The source IP address
1045 and destination IP address 1050 supply the source and
destination addressing information. The IP Options field 1055
allows users to add more information if the information was
not present in initial packet design. The transport header
and data field 1060 holds TCP or UDP packets. Figure 42 is a
diagram of a TCP (Transmission Control Protocol) packet 1080
typical of bulk data transactions such as e-mail and file
transfers. TCP enables two hosts to establish a connection
and exchange streams of data. TCP also guarantees delivery of
the data and guarantees that data packets will be delivered in
the same order in which they were sent.

Returning to FIG. 4, the block diagram of RE (Relay
Engine, also called the Forwarding Engine) 40. A primary

function of the RE 40 is to examine canonicalized packet

10

15

20

25

30

35

WO 00/60819 PCT/US00/08700
49

headers received at interface 74 from the QM (Queue Manager)
30 and to determine rapidly whether the packet belongs to a
known flow and to provide instructions accordingly on
interface 75 for appropriate scheduling (quality of service).
A special handler 1085 in the FE code and data DRAM 42 holds a
cumulative data byte count of the data bytes as the packets of
the flow arrive. That DRAM 42 also holds a threshold value
1087 to which the data byte count is compared in order to
determine whether a flow is a bulk data transfer.

The flow determination includes making a determination
whether the known flow is a bulk transfer of data. The RE 40
compares an accumulated data byte count (described further
below) for each flow to a predetermined threshold value. If
the data byte count is above the threshold value, the flow is
a bulk transfer and the RE 40 instructs the QM 30 to lower the
quality of service to that flow so that more time-sensitive
data may continue to receive adequate scheduling services. If
the data byte count is below the threshold value, the flow is
provided with non-bulk transfer quality of service.

Layer 2/Layer 3 information is used to find the outgoing
circuit (link) for a given packet. In the present embodiment
of the invention, every circuit in the system is set up with
16 queues. In alternative embodiments of the invention, there
may be more or fewer queues. The decision on which of these
16 queues to place the packet is based on higher layer
information (layers 4 - 7). The graduated priority quality of
service of the present invention is overlaid onto 8 of the 16
gueues, the 8 weighted round robin queues.

Referring now to FIG. 5, data cells in the Receive FIFO
330 are placed in the main system packet memory DRAMs 35 and
36 while the canonical headers of the SOPs are forwarded in a
FIFO 394 to the relay engine 40 where FastPath™ processes are
applied to enable appropriate queuing of packets on per flow,
per priority and per port queues 332 (static priority, as
discussed below) and 333 (weighted robin priority, as
discussed below) to be transmitted to the MOM Transmit Ports

24’ (or the DAD 66 to be distributed on circuit queues 350 for

10

15

20

25

30

35

WO 00/60819 PCT/US00/08700
50

further distribution to T1 and POTS Port Transmit Queues 69”)
for transmission. The data byte counts for each received
packet is stored for each identified flow in a data byte count
buffer. As packets are identified as being part of a
particular flow, the counts in the buffer are incremented.

Figure 43 is a diagram of flow information data
structures 1100, 1102 located in the forwarding engine (FE)
code and data DRAM 45 (Figure 1), and a portion of an
application policy record 1110, also located in the forwarding
engine code and data DRAM 45. Each flow has two flow
information data structures 1100, 1102. A first flow
information data structure 1100 is for the client to server
flow direction. A second flow information data structure 1102
is for the server to client flow direction.

The flow information data structures 1100, 1102 have a
plurality of fields. A prehash data field 1115 holds
information extracted from a data packet before hashing takes
place. The data extracted is that which is used in the flow
identification process. The flow handler field 1120 is a
pointer to a software routine that completes any additional
processing required for a flow of a given type. The flow
queue instructions field 1125 contains the instruction for
placing the flow on a particular queue and the number of the
particular queue is stored in the flow queue number field
1130. The flow byte and packet counter field 1135 holds the
byte and packets counts for the flow. The reverse flow data
field 1137 links the two flow information data structures
1100, 1102 together. The reverse flow data field of the
client/server flow information data structure 1100 has a
pointer to the server/client flow information data structure
1102 and vice versa. The flow policy data field 1140 holds a
pointer that points to the application policy record 1110. 1In
the present embodiment, the flow policy data field 1140 of
both the flow information data structures points to the same
policy record, however, they may each point to different
policy records in alternative embodiments of the invention.

The flow maintenance data field 1145 contains software

10

15

20

25

30

35

WO 00/60819 PCT/US00/08700

51

overhead that keeps the data structures consistent within the
switch.

The application policy record 1110 holds handling data
and parameters for each type of flow that may come through the
switch. The portion of the application policy record shown in
Figure 42 has three fields, a threshold value field 1150, a
starting priority field 1155, and an ending priority field
1160, which are used to determine bulk flows, and quality of
service. If the data byte count goes above the threshold
value, then the flow is a bulk data transfer. The starting
priority field 1155 stores the priority accorded to a
particular flow at the beginning of the flow before a bulk
transfer determination is made. The ending priority field
1160 stores the priority accorded to a particular flow after a
bulk transfer determination is made. Together, these three
fields hold the policy parameters for the quality of service
to be received for a particular type of flow.

Figure 44 is a flow diagram of the method of scheduling
bulk transfer quality of service. A first packet arrives at
the switch, block 1200. The forwarding engine 40 determines
the type of flow that the initial packet belongs to, block
1210. Flows which are to obtain graduated priority service
are assigned to one of the 8 graduated priority queues. The
forwarding engine consults the policy record for the initial
priority level of the particular flow identified, block 1215.
The flow is then assigned to the queue specified in the
starting priority field 1155 of the policy record 1110. A
special handler 1085 in the forwarding engine code and data
DRAM 42 begins to count the number of bytes received from that
particular flow, block 1220. This count is stored in the flow
byte and packet count field 1135 of the flow information data
structure 1100. The data byte count value is compared with
the threshold value, decision block 1230. If the data byte
count is not greater than the threshold value, then the data
packets continue to be processed at the same priority set at
the start of the flow. If, however, the data byte count is
greater than the threshold value, the data flow is reassigned

10

15

WO 00/60819 PCT/US00/08700
52

to a lower priority queue and data packets for the rest of the
flow are processed by the queue specified in the ending
priority field of the policy record, block 1235. The flow is
also moved from the special handler to a normal handler. The
remaining packets of the bulk data transfer flow are processed
at the lower priority queue, block 1240. This action opens up
a bandwidth required by other application flows destined to
the same circuit as well as other flows of the same
application which do not violate the byte threshold.

It is to be understood that the above-described
embodiments are simply illustrative of the principles of the
invention. Various and other modifications and changes may be
made by those skilled in the art which will embody the
principles of the invention and fall within the spirit and

scope thereof.

10

15

20

25

30

35

WO 00/60819 PCT/US00/08700
53

What is claimed is:

1. A process for flexibly connecting between a receive
physical path and a transmit physical path the flow of data
packets, said process comprising:

(a) receiving a data packet on said receive physical
path;

(b) determining whether said data packet is part of a
flow initiated in a previously received data packet; (i) if
not, then adding the number of data bytes presented to a count
of the number of data bytes received as part of a new flow;
(ii) if so, then adding the number of data bytes presented to
a count of the number of data bytes previously counted as part
of said previously initiated flow;

(c) determining whether the count of the number of data
bytes received resulting from said adding exceeds a given
threshold; (i) if not, then applying a first quality of
service sequence for transmission; (ii) if so, then applying a
second quality of service sequence for transmission; and

(d) transmitting data packets that are part of said flow

according to said applied quality of service sequence.

2. The process of Claim 1 wherein said step (c¢) of
determining whether the count of data bytes received exceeds
said given threshold is a constant affirmative for a
particular flow after said threshold is first exceeded for
said flow.

3. The process of Claim 1 wherein step (b) of
determining whether said data packet is part of a flow
initiated by a previously received packet further comprises
the step (bl) of comparing the contents of a field of said
data packet containing information identifying said flow with
the contents of a corresponding field in said previously
received data packet.

10

15

20

25

30

35

WO 00/60819 PCT/US00/08700

54

4. The process of Claim 3 wherein step (bl) of comparing
the contents of said fields is performed by comparing the

results of hashing said fields.

5. The process of Claim 3 wherein the fields compared in
said step (bl) are corresponding portions of Layer 2 or higher
layer headers of said data packets.

6. The process of Claim 1 further comprising the step of
dividing said received data packet into canonical cells upon

receipt of said data packet.

7. The process of Claim 6 wherein step (d) of
transmitting data packets is performed by transmitting
sequentially the data in said respective canonical cells

extracted from received data packets.

8. The process of Claim 7 wherein each sequential one of
said cells of said received data packet is stored in a memory

location, logically linked and queued for transmission.

9. The process of Claim 8 wherein said logical linking
and queuing are performed by linking pointers to the

respective memory locations where said cells are stored.

10. The process of Claim 9 wherein said quality of
service sequences are determined by respective sequences of

entries in respective tables of pointers to said pointers.

11. The process of Claim 10 wherein said given threshold
of data bytes counted indicates a bulk document being
transferred and said second quality of service sequence
includes a smaller proportion of pointers to data packets
associated with said flow in proportion to pointers to data

packets associated with all active flows.

10

15

20

25

30

35

WO 00/60819 PCT/US00/08700

55

12. The process of Claim 2 wherein said given threshold
of data bytes counted indicates a bulk document being

transferred and said second quality of service sequence

results in fewer transmissions of data packets associated with

said flow in a given period of time than does said first

quality of service sequence.

13. A process for flexibly connecting between a receive
physical path and a transmit physical path the flow of data
packets with a downward adjustment in quality of service for
flows determined to be associated with bulk data transfers,
said process comprising:

(a) receiving a data packet on said receive physical
path;

(b) dividing said received data packet into canonical
cells;

(c) for each sequential one of said cells,

(1) storing said cell and logically linking it

to a prior cell divided from the same data packet, if
any;

(ii) determining whether said sequence of cell
in part of a data packét is part of a flow initiated in
previously received data packet by comparing respective
information derived from respective data fields of said
data packets identifying said flow; (A) if not, then
adding the number of data bytes presented to a count of
the number of data bytes received as part of a new flow;
(B) if so, then adding the number of data bytes presente
to a count of the number of data bytes previously counte
as part of said previously initiated flow;

(iii) determining whether the count of the
number of data bytes received resulting from said adding
exceeds a given threshold associated with bulk data
transfer for a particular application; (A) if not, then
applying a first quality of service sequence for

transmission of data packets of said flow; (B) if so,

S

a

d
d

10

15

20

25

30

35

WO 00/60819 PCT/US00/08700

56

then applying a second quality of service queue that
provides for less frequent transmission; and
(d) transmitting data packets that are part of said
flow according to said linking of cells and said applied

guality of service queue.

14. An apparatus for flexibly connecting between a
receive physical path and a transmit physical path the flow of
data packets, comprising:

(a) a receiving means for receiving a data packet on said
receive physical path;

(b) flow determining means for determining whether said
data packet is part of a flow initiated in a previously
received data packet, said flow determining means having data
byte count means for producing a data byte count further
comprising,

(1) first adding means for adding the number of data
bytes presented to a count of the number of data bytes
received as part of a new flow if said data packet is not part
of said previously initiated flow, and

(ii) second adding means for adding the number of
data bytes presented to a count of the number of data bytes
previously counted as part of said previously initiated flow
if said data packet is part of said previously initiated flow;

(c) threshold means for determining whether the count of
the number of data bytes received resulting from said adding
exceeds a given threshold,

(i) means for applying a first quality of service
sequence for transmission if said data byte count does not
exceed said given threshold, and

(ii) means for applying a second quality of service
sequence for transmission if said data byte count does exceed
said given threshold; and

(d) transmitting means for transmitting data packets that
are part of said flow according to said applied quality of
service sequence.

10

15

20

25

30

35

WO 00/60819 PCT/US00/08700

57

15. The apparatus of Claim 14 wherein said threshold
means is a constant affirmative for a particular flow after
said given threshold is first exceeded for said particular

flow.

16. The apparatus of Claim 14 wherein said flow determining

means further comprises comparing means for comparing the

contents of a field of said data packet with the contents of a

corresponding field in said previously received data packet.

17. The apparatus of Claim 16 wherein said comparing means
further comprises a means for hashing the contents of each
said fields, the hashed fields to be compared by said

comparing means.

18. The apparatus of Claim 16 wherein the fields compared by
said comparing means are corresponding portions of Layer 2 or

higher layer headers of said data packets.

19. The apparatus of Claim 14 further comprising:
means for dividing said received packet into canonical

cells upon receiving said data packet.

20. The apparatus of Claim 19 wherein said means for
transmitting data packets further comprises means for
transmitting sequentially the data in said respective

canonical cells extracted from received data packets.

21. The apparatus of Claim 20 further comprising storing
means for storing each sequential one of said cells of said
received data packet in a memory location, logically linked

and queued for transmission.

22. The apparatus of Claim 21 said storing means has queue
pointers for logically linking and queueing the respective
memory locations wherein said cells are stored.

10

15

20

25

30

35

WO 00/60819 PCT/US00/08700

58

23. The apparatus of Claim 22 wherein said quality of service
sequences are determined by respective sequences of entries in

respective tables of pointers to said queue pointers.

24. The apparatus of Claim 23 wherein said given threshold
indicates a bulk document being transferred, and said second
quality of service sequence includes a smaller proportion than
said first quality of service sequence of pointers to data
packets associated with said flow in proportion to pointers to

data packets associated with all active flows.

25. The apparatus of Claim 15 wherein said given threshold
number indicates a bulk document being transferred and said
second quality of service sequence results in fewer

transmissions of data packets associated with said flow in a
given period of time than does said first quality of service

sequence.

26. An apparatus for flexibly connecting between a receive
physical path and a transmit physical path the flow of data
packets with a downward adjustment in quality of service for
flows determined to be associated with bulk data transfers,
sald process comprising:

(a) receiving means for receiving a data packet on said
receive physical path;

(b) canonicalizing means for dividing said received data
packet into canonical cells;

(c) storing means for storing each sequential one of said
cells and logically linking each said cell to a prior cell
divided from a same data packet, if such a prior cell exists;

(d) determining means for determining for each segquential
one of said cells whether said cell is part of a data packet
in a flow initiated by a previously received data packet by
comparing respective information derived from respective data
fields of said data packets identifying said flow;

(e) first data byte count means for determining a data

byte count by adding the number of data bytes presented to a

10

15

20

25

30

35

WO 00/60819 PCT/US00/08700
59

count of the number of data bytes received as part of a new
flow;

(f) second data byte count means for determining a data
byte count by adding the number of data bytes presented to a
count of the number of data bytes previously counted as part
of said previously initiated flow;

(g) threshold means for determining whether the count of
the number of data bytes received resulting from said adding
exceeds a given threshold associated with bulk data transfer
for the application;

(h) first adding means for adding the number of data
bytes presented to a count of the number of data bytes
received as part of a new flow if said data packet is not part
of said previously initiated flow, and |

(1) second adding means for adding the number of data
bytes presented to a count of the number of data bytes
previously counted as part of said previously initiated flow
if said data packet is part of said previously initiated flow;
and,

(j) transmitting means for transmitting data packets that
are part of said flow according to said linking of cells and

said applied quality of service sequence.

27. A network switch for flexibly connecting between a
receive physical path and a transmit physical path a flow of
data packets, comprising:

a network interface connected to the receive physical
path and the transmit physical path, said network interface
for receiving a data packet on said receive physical path,
said network interface for counting the data bytes presented
in said data packet;

a forwarding engine connected to said network interface
for determining whether said data packet is part of a new flow
or a previously initiated flow;

a data byte count buffer connected to said forwarding
engine for storing a data byte count for each identified flow,

responsive to said network interface and said forwarding

10

15

20

25

30

35

WO 00/60819 PCT/US00/08700
60

engine, said forwarding engine for comparing the data byte
count of each flow stored in said data byte count buffer to a
predetermined threshold value in order to determine whether a
particular flow is a bulk transfer, said forwarding engine for
determining a quality of service for a particular flow in
response to the data count byte comparison; and,

a gqueue manager connected to said forwarding engine for
scheduling transmission of said data packet responsive to said

determinations of said forwarding engine.

28. 2An epparatus for flexibly connecting a receive physical
path and a transmit physical path a flow of data packets,
comprising:

an interface to receive a data packet;

a memory to store said data packet, said memory also to
store a threshold value;

a counter to keep a data byte count for the flow received
at said interface, said counter incrementing said data byte
count each time a packet is received at said interface; and

a microprocessor interacting with said memory and said
counter, said microprocessor determining whether said data
packet is part of a particular flow, said microprocessor
determining whether said data byte count exceeds said
threshold value indicating that said flow is a bulk flow, said
microprocessor specifying'a quality of service for
transmitting said data packet in response to said flow
determinations, said interface transmitting said data packet

according to said quality of service.

29. An information packet switch comprising:

A) at least one packet receiver;

B) a parser connected to said receiver, said parser
dividing information packets received by said receiver into
uniform cells large enough to contain header information
identifying the application stream of said packet;

C) fast memory connected to said parser organized into

locations to accommodate said cells, said parser setting

10

15

20

WO 00/60819 PCT/US00/08700
61

pointers to maintain the association and order of said cells
relative to said received information packets;

D) a comparator connected to said parser, said comparator
connected to a dedicated memory containing information
identifying the application stream of information packets
obtained from packets received during a prior window of time,
said comparator adding to said dedicated memory identifying
information of a newly received packet if it does not match
prior information or identifying the pointers to the cells of
said newly received packet with one of said prior received
packets;

E) at least one transmitter connected to said fast
memory;

F) a logic processor programmed to cause said transmitter
to transmit information from said fast memory according to
quality of service policies associated with a particular type
of application stream and in the order maintained by said
pointers within s packet; and

G) said logic processor further responsive to an
information quantity counter located along the path A-B-C-E to
determine whether said application stream is a bulk transfer

type of application stream.

WO 00/60819

PCT/US00/08700
1/ 31
Lookup Tables nu::zfp‘.my D.::z:p‘.ﬁ Fast Path Code Q 1
FE /> 40 * 7> Fle.
LOOKUP FE FE
sram 4L, (Forwarding Engine) CODE & DATA
«— {RE chip #1] -+ DRAM
Adde Addr 45
100Mhz
Y Y
cae UL e
16-bi a W
headudfl-) ' h:“" A > 3
3.260ses
3 1‘! 3.2Gbv/sect 3} } System Data
m
Tables , A Bat Packet Memory
aMm D 4 dntaepatity
DESCRIPTOR | 30 Nyl RAMBUS
SRAM au 4 DRAM ac
3 > Queus Manager HDX peak 3__,
32+4 . B+l
Data + Parity 100Mhz datasparity RAMBUS
4.8wnec DRAM 3b
Y HDX poak _ -
BlazaNet
MAC Bus
1, 1)
2.4Ghb/sec 2.4Gtvsec
1
100 Mbit L £ 100 Mbit
Ml 10 Mt A T
Quad MOM 1 —_— M Quad
PHY {Mil Octal Mac) PHY
1 N 2
S0Mhz & 25Mhz p
X . 1
lazeNet
101100 el| 69 |1, 10100
Autonegotiating 1 240 BlazeNet Autonegotiating
Switched Ethemet alen by S0, iaee FoBus Switched Ethemet
Ports 2.4Gt/s0c| . Ports
] I 1
62 A & | i 63
o |
Quad MOM 2 7:-— N Quad
PHY (Mll Octal Mac) PHY
3 N 4
70 25Mhz 100 Mbit n
100 Mbit Mu
M
| L6
{k 10 Mbit Enet ‘ L ¢ " BE”
-— BoolFLASH _1-§ |
DAD 12C Bus
Boot FLASH ’ DAD
t (Distributed Access 8 BE - Endi PN BE 45
(2] Device) (ackg;;':. #;9'"9) 7’| NonVolatile Storags
R WAN Processor [RE ctiip #2]
«r ¢ 50
DAD soMhz O 5Q 100Mhz
DRAM g
K
L PR S5
DRAM
bﬁ A\ 4 L:c‘
T1 and POTS WAN Ponts “—

PCT/US00/08700
2/ 31

WO 00/60819

p -
ureonsumoqa 4| | 7914 .
sng OV A X oA
1enezeld 1 e = T
BN T B R S bl kg —T % XL 0vA
o W 4T +1 52 ok & 1IN
— ° r—J>| 818UNSUCD [Ui XL
= . Lo 3 !
4 W 1z A e oyt »] v | 1= sroumsuos [quixt 4
o a ; wod/seikazis | ! 1
“ n “ p .mmJ Oid LINSNVHL foq “ L—p| piouinsuos pf quixg “
: . o w “_ |] srewnsucd (»] puixi “
i 8 d u
1 w0 I
(| s [P s odid Odty | [P piemneueo [b Bt 1
“ X . XL - XL i preunsuos [puyxg I—I_
u 4 Ad-\h
| I 1 d P} zewnsuco tpf pujx) r“l
1t " shg oo [3 \v b
PR PRI W24 Cg vy TR TEVE o4 W A
| YW S g 1 5 IOLEE AW I RN —p BWnsUos PR)
_hnu% 1 > soBeusiy paid X1 | “
| snaown | | !
I o O R By~ = ==~
8100 X1 . freopouRD) - jonoRg °§
SRIUMSUDD SPON C
TRt A I i]
_ “
{
b . i <\ A n “
“ r.auu:us gieanpoud Jesred XY e pUj XY
] wpero Xt | § ; HI]
1 Y] Lteanpod Josied XY aurxy
-] 91 — |3 |
9t T St 1 ¢ smanpoud sourd Xy |¢ puixy
1 lapqy w ! !
1 uexol Hod ;| s1eanposd jg—-t Josied X
ww | e /esifgose | o bbbl b = il
o “ T n w>n_vmm"._.....w " v fieonpord 1esuBg xy |e] AUl XY Al“,
i oo} & d
a9 V17 < ! sing u |e m eleanp lesied XH @] AU XY A.+
h [L/ d % | XH [I " 1
{ ‘llﬂu]. 3 4 gieonp Jesiud X (4] pup xy J
{ [e =]
{ %20ig 1sing XY Odlid - peonpoid -1 Jeeieg XH g Xy L
{ |
L e e e D e e e
100 XY WnhD suBu3 praidyoed G Weop WOR %A 10 finN) suiBuz P30 G
{9149 35482)) 302 Sopiigeced oo @ yenced aigy (o4a SEL-924} 192 2
{eoponeD) - wyded | yusasmydun ssey uBOLYL {uonounD) - jonoeg °)
LHRINVIUOD SPOK € nueuodiiod ,0pou £, Ak i%emg spor &

WO 00/60819 PCT/US00/08700

3/ 31
208
Dl Je
| A\ 307
F
306
MAC | DRAM 3l
Clock | Glock
: SRAM Clock
32
Cloeks, { ..,
Reset, | 39°
Misc. [>~. .

Instruction
fromRE

WO 00/60819 PCT/US00/08700
4/ 31
16%5 \ 10877
[s.K. T,
FE FE
CODE & DATA LOOKUP
DRAM SRAM
G 45
* Y
DR
> ‘ORam [*
X 3%4 l 2gd
A 4
Stiing .
'";‘:;;ion Coc;?sg:;:or g:%:g;'
6
CPU Core <8 S \ Hach T
396 t 340 (L)
Data Cache « v ~P 29 !
39? 285 Hash Lookup Engine ¢ I
(HLE)
{ i ,[, B SN
Q2
Instruction FIFO
" Data FIFO Hash FIFO
ata
395 (oF) (HF)
v 394 393
i Instruction Push v) T
{P)
DMA
39 S N('k’&g;ﬂ h(dhlnl))((ll;‘ 3 Hash P(r;;;r;wessor
T W I pad
C'
24 1 RELAY ENGINE .
' DI '
I 3¢ [0 [P 3
M _
QUEUE
§v MANAGER
30
Fle ¢

PCT/US00/08700

5/ 31

S1H0od
LNSNVHL

WO 00/60819

\. 18U3 YGINO B1A
4 enent X1 54 Uod WOW

23

lll
[WE
enanD XL £1 Hod WON -

enend XL 0} Hod WOW
anent X1 8 ¥od WOW

[eemsamaron
enent XL § ¥0d WON sseoand Xt .VMﬂ
anend XL € Hod WON

(e

epo et

tse30ld
Buipremiog UsN
sufiug punoipyeg

3n3N0 Anoud Mo1X1 38
3naND Alolid WBiH XL 38

18u3 aWol BA ‘\

_ enanp Xy Ei ¥od WOW
_ enenp Xy 21 Hod WOW
_ enenpd X + b ¥od WOW
_ enend Xy 0% ¥od WOW
enend Xy 6 Uod WOW

_ enent) Xd 8 #9d WON

_ enend X £ ¥od WO

— enanp X4 9 Uod WO

— enang XH S Uod WOW

_ enant Xd » ¥od WOW

675t [RAJLIY XBJY 18 POSIAIOS
(anend) sapos) weyshs V)

_ ener) XU € ¥od WON
_ 8nenD Xd 2 Hod WON

WO 00/60819 PCT/US00/08700
6/ 31

l‘\JQ&. G
Seli) Juk Cellg
A Headeo '
3c2 B H\ﬁ ;-‘ (A
. N Ckt) ctr R
v‘? & ow —_
\an bous ’ i _ Bs-n
353

¥
PR Livk Lb a
¢ .L\\“ ,i t \335 ¢
T 5
/ Ik
seP’ K Hro\'\

3¢y \ &<

/ ey
LAY Y& Eecep 11-

WO 00/60819 PCT/US00/08700

77 31
Pl Z s Pazal
Cktld(1) © |CKild(2) |DLInfo NL Info ~
Time(1) [Time(2) |Time(3) |[Timed) §— 43%
Rx Ckt1d (1) |Rx CktId (2) |DA(1) DA(2)
DA(3) DA(4) DA(5) DAG) 2o
\ SA(1) SA(2) SA(3) Isady”
Fie Al SA(5) SA(6) VLAN Tag (1)[VLAN Tag (2)|
-Type/Len(1){P-Type/Len(2){xx*) o. 4
L3Hdr1 |L3Hdr2 [13Har3 |L3Hard4 p— N©
|
Bit7 | Bit6 | Bit 5 |Bit|Bit| Bit2 | Bit1 | Bit0
413
Vian |CRC(1) [CRC(2) [XX [XX [Pkt Pkt Pkt ELc +R
Tagged Format(1) - {Format(2) |Format(3)
Bit 6 | Bit 5 Description

CRC Not Present - on Rcvd Pkts
CRC is Present - on Rcvd Pkts :
Add CRC - on Xmit Pkts FLG le.
Delete CRC - on Xmit Pkts
Modify CRC - on Xmit Pkts

Don’t Change CRC - on Xmit Pkts

=Y YN =1 R
S EEEBEE

WO 00/60819

PCT/US00/08700
8/ 31
Bit2 | Bit1 | Bit0 DL Header Format
0 0 0 Reserved
0 0 1 DIX Format
0 1 0 SAP Format
0 1 1 Novell Raw Format —
1 0 0 SNAP Format ‘/lé‘ } b
1 0 1 SNAP 1042 Format
1 1 0 Reserved
1 1 1 Reserved
Bit 7 Bit 6 BitS | Bit4 | Bit3 | Bit2 | Bit1 | Bit0
|ourMac(BridgeGroup) |OurMac(Port) {WellKnown Protocol|{Protocol{Protocol{Protocol{Protocol F—l& %A
DA Kind |Kind [Kind |[Kind [Kind -
(1) ()] 3)) (&)

WO 00/60819 PCT/US00/08700

9/ 31

Value| Protocol | DIX [RAWISAP 511::),2;
(] Uknown

1 [IPv4 08-00 |08-00
2 |ARP 08-06 |08-06 el @F
3 |PX 81-37 [Yes [E0 [81-37
4 |Pv6 86-DD 86-DD
5 AppleTalk |80-9B

6 |NetBeui [80-D5 FO

7 |DECnetIV |60-03 60-03
8 DECnet V FE

31 |BlazeNet IPC

WO 00/60819

10 / 31

Byte 0 | Byte 1 DL Header Format
XX XX DIX Format
SSAP Ca SAP Format - Configured SAP
XX SAP Format - Unknown SAP
XX XX Novell Raw Format
SSAP |Cut _|SNAP Format
P-Type(1) |P-Type(2) [SNAP 1042 Format

PCT/US00/08700

=

WO 00/60819 PCT/US00/08700
11/ 3

MAC Bus
BlaAze wike

4-éé outpuT

\ Adats
Then
B decten

a ¢ -
\‘ Lmu '=—'9'CW\;\-&

owteul R

Fle. 42 BlG. Bt 12b

cC ‘ k "“‘““"‘"‘{ o r““'wwumvm mm
DAY A m D S ——

){-Fewe
(=) (4] €L £ ' L - G

WO 00/60819 PCT/US00/08700

12 / 31
0
58 cAMPLE Cllch
e i M%"‘“-
) T?Sl

SAWPLE ¢l

8 NS
. \\C
R i o MPLE lq_ N
L OGAC SAMPLE ®
{ ' ’
_ 4qq,, [y
| \
: ¢
B .
l CL ¢ t ComMTROL '
S \&::mu, EI“' o wu.fgg
2 SiG-N
C.ow"rno\. !
| !
| =16, y
| Fle ¥ 1%,
! 1
TRELE | €e e €y Ce¢ Eyuetuy
CoNTRBL © © & o \oLE
BT l o o o Frowme \
VRLLLE \ { [o Fiuwe b
i (] Fvawm=e?

;,@0 t \
Fla . \¢ (thers)

codvel -~ _ . . DlCioootie —-9"“.\14.*’

b Wy i
}ll 314 glL

<t cven e's
E(¢. b

WO 00/60819 PCT/US00/08700

13/ 31

S
ovd

\ [
R covmum B TR
7]
{2e 0<’.KI

WO 00/60819 PCT/US00/08700

14/ 3

¢ \¢

L S R K272 gy
Lo ¢ac ey E— ~——

H
6% 87 (e

bia .14
\L kﬂ:(\vc d’e‘\hk—' @

(o

T T
[P

Sewd Peiither

WO 00/60819 PCT/US00/08700
15/ 31
63 2213t 28|10 o
S oénq*fd*r& Status Flow ‘T&«z
FlG. 20A
s 32131 |20] 27 6

FlG. 2081

Fllow -723

WO 00/60819 PCT/US00/08700

16 / 31

e — T NN [

CTRLeru XXX

€. €3 €& W ey € Cy &

od
:1; e, W
even N >P0
cTRL Meaniung cTRE .
€. | =1 ALWRYS e, |=\ Ty CREPN
c o
<Py =| STRRT ©F CEtC » | BVPcepE
€s gD CopE
e‘_‘ ={ STARRT ofF Pt
=] SHRT woRkD
e, =0 BRWAYS <7 l
tie. 11
208 g JDQ
)
—_— ©0o0D0 [Cos dollob e m I \\00 |eep Do
?o—)_ ;0'4 ?bL /'!;
“ 3 7
Fle, 2%
evd copcrC MEANIVG
l)
© °© NeT EwnP
) \ END CBLL
t o END PeT
t ¢ EMO BB Pet

rie. 2%

WO 00/60819

CNTRL
G\TS

odd
[X~1-T-}

"ql'l 7~ even
[)
\ |o60 \

10006
lboo

©leo
o(o0o

AR IN-Y-Y.%)
\ebo Dooo

e e e e - ‘”...

| beo Ol0D

| o0

w1

17 / 31

B eNTE
GRouwf

CithoniCcAL HDR
CAlNe :’LCAL “&en

%
OTHER WPR MO |
4

- o n - e

uounica! HER,

[LButst ___ap{{v .

P ?15 B

PCT/US00/08700

CoMpLETE
PleT

PT

Tl EBYTE
G-ROYPS

- A_C__o__c_f.__e‘t___‘___és)_.. -

] TMREE celt

4. .

:.“_4 C_ELL \-n (o=r Bﬂé;j \

L BURST wpe [
OATH

2l Cel -ii(oereaes)

et S SR SR

— .\ loop OOl

N\
e 26 FRE

WO 00/60819

PCT/US00/08700
18 / 31
}ND /2'41
/'_/__\ /_A/—‘\
vt [oL | wU | # lceepin) ce | cELL
\:o Lm—-o 1ok \c\u‘. FL“,;;\!PFO' LEwaTd
\ N
5/ \/ /Jf 1 BlE, 26
B Qr WRITFEM TiME
STAHP
\/‘___“”\;_"*
/Z*L'B
/{
CELL wgo
7 ~ CELL FRRoR
€ ~ Pt T(mESUT
S - FROM BAD Pet _
3 A6 2%
Q FROM MOMITOR ®
3 =~ €vo ceLL
. — START CELL
\ - PATAR C&Elt
& — CREVIT ceLL
/‘Z ,
Y
- /
et 1D CeLl |wer | @ Crepit | cEU]cELy
. Bits SIE'G# wusehlerepics | ELags | (uw |[LE

Zso PES
7 1 Fle,.)&

WO 00/60819 PCT/US00/08700

19 / 31
ble 24
T e T"q Q04
/. ’\
\
%02
Pec
)
o=
& 243

52

S3)

831

e323

WO 00/60819

PCT/US00/08700
20 / 31
<15
Sram buffer ﬁ 28
descriptors Dra %%
™ 33
1 7 /\W data
g [A%] 214 buffer
L—e | . —
30
context table \'_l ¢
b2
of
:;; c\\“e“\“““
fev, cot b
numbe!
/ 4————Queue of packets————p
hY
2\
Z A %13
/7
/.
Many Output
Queuss
£19
<€
8

Store-and-forward
staging areas

«——Buffers in packet—»

WO 00/60819

Mo & Bus

PCT/US00/08700
21/ 31

{ @ t
ey e, €5 N M_RE_*_‘E:'T

71&5

T e

Fi\Fe

e .

/2N

pec&EHEMT

ca@mi

CREVIT

P START-&F-PrT PolnteR—F7t
,,,,,, «—— HERD PoWTER —F7e

<— TARL PolbTER-FTL

VIRTd L ThL
O IVTER =374 .

Fle. 32

/L
—A L _Ass

'ﬁ / W“EAD /

VIRTUKL THIL

Bytes V=T
i k r&ﬁn /
«—

3‘17—

TR c__(-l,EQ_l'r e
M AP RGE R

WO 00/60819

22 | 31
LERE
o M / Goo
Te owe
[
('S l

€.

cwe
cet

okp ___
ekl

g([~]
CREPITS ’ d

NEXT BUFFER 3¢

Sywnel —T

g + FLaGs

QR-S V¢
fouey

#* FIRST Rueue

REF
(o'} ¢

Mo lrog
Ya1

PAREMT CITD

| péi&f ceT "BP

|

e _EBunes
N 1S&Pb | Mow, ULt
. | RET ,\,& oM

|

A queue

L STATIC Q's

2 ..h):u‘.qk’l%e.l. KRR m‘,-.‘ C R &)
Y4 STRTIC QY

2L STHRC/LRR Q'S
@ SthTie
8 RR
4 STANC/y RR
\6 Stwtec.
S R

8 stAn/s RR

e ucodi

T R

T\g\ 6

PCT/US00/08700

14

Elc. 3C

fo

3¢h

ElG.

E6. 35%

PCT/US00/08700

WO 00/60819

23 / 31

527nb g

wyr e 1) bive

¥xv 3°
7?2 1WA S

~ 79 Ndprw v)

~9WAN Pnan gy

3\

hus fpon

PCT/US00/08700

WO 00/60819

24 | 3

2195 21 P2 3

— ;I’lll!ll)
=]
« rwwzaua S$8 4 Lvurud

==
%L
s 435

ri«..?ﬂum

D\\\\lﬁ%\

mmu ‘ R
[ar==

!
[v—
1£9

o2 [

I3 QS V .
o5 L4 t9X R, Eeoig

PCT/US00/08700
25/ 3

WO 00/60819

o >3

—|

T T
[nu yrv

m 477 T |, e
e e n

. L T
=1 x5 s ES L

SN 5¢5

o> SED

L
b \ Q.: »r%&,ix ,\.u_..q;uw_uw \,J NS

e .U n- 24} . /
R | £9 [/
e ~W¢ .
l\ — L/ J
T~ -
h
M‘ [
c .
I
o

WO 00/60819

Fl& 29A

Q45

&a°
76

PCT/US00/08700

26 / 31
TG 393
TR\,
& go
=
%)
FgL
'X3) F¢

WO 00/60819

%™

-~
e
tﬂ\iﬁ\veﬁ

|

PCT/US00/08700

b

PCT/US00/08700

WO 00/60819
28 [31
\oos\, lolo\ Iors’\
10 < 1 Tyee
Vs e | 27 | Dt eagfh
Lamsz
026 o FM mxerk‘h‘kof\ , %)
| T, Aéﬂ‘k"ﬁd’f 3 i — (625
Fiel |
Tioe b Prots col Heacler L
122 e ,'_‘.‘._%{ Chetksven jeqe
{045~ Sovrce IP 90(4(@5&
|650™~ __Desjrina%‘.en._-.y) AAJ@:
1085~ TP Options (0or More T2bit words)
j06 0O ™ "[Fanspfo-r‘* Header andl éﬂc{h

looo/’

Fig. 4

WO 00/60819 PCT/US00/08700
29 / 31

Source port Destinafion port

Sequenca. numbec

Acknow (ea&gmud? numbec

TP ulAle|R]s|F
b::;;\r RElixd el Window size
Checksom Ur sgal poinfer
~ Op‘f"ions (Q oc more. 32-Lit Wo-f'o'es> v
4 Data

e

joYe)

FI1G. 42

WO 00/60819

15—~

1120~

a5 ~

W30 =~

Client to Server

Prehash Data

Flow Handler

Flow
Queue Instructions

Flow Queue Number

W35

Flow Byte and

Packet Counts

(31—

Reverse Flow Data

30 / 31

PCT/US00/08700

Server to Client

s —

Prehash Data

H20~

Flow Handler

1125 —|

Flow
Queue Instructions

]\30—'\.

Flow Queue Number

Nn3s —
H3T

Flow Byte and
Packet Counts

1140 ~

Flow Policy Data o

145~

Flow Maintenance
Data

ll-’c_.)o}

[150 ~

=

Byte Threshold

Reverse Flow Data

1140~

sFlow Policy Data

Flow Maintenance

~— 145

Data
llogz)

nss ~

Starting
Priority

[160 ~]

Ending
Priority

FlG. 43

WO 00/60819

[200 ~

31/ 31

[
|
rirst packet

arrives

y

|216~JFE determinesi

type of flow|

v

FE consults policy

12158 —~_ | record and assigns flow

to starting priority

queue

1220 Special handler

v

begins data
byte count

!

1225~
—>

Next data packet
arrives and count
is increased by
appropriate value

Is data
byte count greater
‘than threshold
value?

~es

1035 ~—

Transfer flow to
lower priority gqueue
and
reassign flow to
normal flow handler

1240 ~_

Continue processing
packets

PCT/US00/08700

FIG. 44

INTERNATIONAL SEARCH REPORT

Intes nal Application No

PCT/US 00/08700

A. CLASSIFICATION OF SUBJECT MATTER
IPC 7 HO4L12/56

According to Intemational Patent Classification (IPC) or to both national classification and IPC

B. FIELDS SEARCHED

IPC 7 HO4L

Minimum documentation searched (classification system followed by classification symbols)

Documentation searched other than minimum documentation to the extent that such documents are included in the fields searched

Electronic data base consulted during the intemational search (name of data base and, where practicai, search terms used)

EPO-Internal, WPI Data, PAJ, IBM-TDB, INSPEC, COMPENDEX

C. DOCUMENTS CONSIDERED TO BE RELEVANT

Category ° | Citation of document, with indication, where appropriate, of the relevant passages Relevant to claim No.

2 July 1998 (1998-07-02)
abstract

page 1, line 1-20

page 3, line 7-19

page 4, line 16-29

figure 5
claims 1-5

page 5, line 17 -page 7, line 14

S

A WO 98 28938 A (NORTHERN TELECOM LTD) 1-29

m Further documents are listed in the continuation of box C.

Patent family members are listed in annex.

° Speciai categories of cited documents :

"A" document defining the general state of the art which is not
considered to be of particular relevance

“E" eamier document but published on or after the interational
filing date

°L* document which may throw doubts on priority claim(s) or
which is cited to establish the publication date of another
citation or other special reason (as specified)

*0" document referring to an oral disclosure, use, exhibition or
other means

P document published prior to the intemational filing date but
later than the priority date claimed

e

e

oy

g

later document published after the intemational filing date
or priority date and not in conflict with the application but
cited to understand the principle or theory undedying the
invention

document of particular relevance; the claimed invention
cannot be considered novel or cannot be considered to
involve an inventive step when the document is taken alone

document of particular relevance; the claimed invention
cannot be considered to involve an inventive step when the
document is combined with one or more other such docu-
maﬂr;ts. such combination being obvious to a person skilled
in the art.

document member of the same patent family

Date of the actual completion of the intemational search

15 August 2000

Date of mailing of the intemational search report

22/08/2000

Name and mailing address of the ISA
European Patent Office, P.B. 5818 Patentlaan 2
NL — 2280 HV Rijswijk
Tel. (+31-70) 3402040, Tx. 31 651 eponl,
Fax: (+31-70) 340-3016

Authorized officer

Cichra, M

Form PCT/ISA/210 (second sheet) (July 1992)

page 1 of 2

INTERNATIONAL SEARCH REPORT

inte onal Appiication No

PCT/US 00/08700

C.(Continuation) DOCUMENTS CONSIDERED TO BE RELEVANT

Category ° | Citation of document, with indication,where appropriate, of the relevant passages

Relevant to claim No.

A NEWMAN P ET AL: "FLOW LABELLED IPD A
CONNECTIONLESS APPROACH TO ATM"
PROCEEDINGS OF INFOCOM,US,LOS ALAMITOS,
IEEE COMP. SOC. PRESS,

vol. CONF. 15, 24 March 1996 (1996-03-24),
pages 1251-1260, XP000622261

ISBN: 0-8186-7293-5

abstract

paragraph ‘05.2!

paragraph €05.3!

paragraph ‘05.6!

A EP 0 706 297 A (IBM)

10 April 1996 (1996-04-10)
abstract
figures 2,4

page 3, line 42-50

page 5, line 32-43

claims 1-6

A R B BELLMAN: "IP switching - which flavor
works for you?"

BUSINESS COMMUNICATIONS
REVIEW,US,HINSDALE, IL,

vol. 27, no. 4, April 1997 (1997-04),
pages 41-46, XP002113893

the whole document

1-3,
13-16,
19,26-29

6-11,13,
14,26-29

1-5,13,
14,26-29

Form PCT/ISA/210 (continuation of second sheet) (July 1992)

page 2 of 2

INTERNATIONAL SEARCH REPORT

information on patent family members

inte

snal Application No

PCT/US 00/08700

Patent document Publication Patent family Publication
cited in search report date member(s) date
W0 9828938 A 02-07-1998 us 6028842 A 22-02-2000
WO 9828939 A 02-07-1998
EP 0954943 A 10-11-1999
us 6023456 A 08-02-2000
EP 0706297 A 10-04-1996 us 5790522 A 04-08-1998

Form PCT/ISA/210 (patent family annex) (July 1992)

	Abstract
	Bibliographic
	Description
	Claims
	Drawings
	Search_Report

