(12) INTERNATIONAL APPLICATION PUBLISHED UNDER THE PATENT COOPERATION TREATY (PCT)

(19) World Intellectual Property Organization
International Bureau

(43) International Publication Date

21 August 2003 (21.08.2003) PCT

(10) International Publication Number

WO 03/069500 Al

(51) International Patent Classification”: GO6F 17/21
(21) International Application Number: PCT/US03/04802
(22) International Filing Date: 13 February 2003 (13.02.2003)
(25) Filing Language: English
(26) Publication Language: English

(30) Priority Data:
60/356,713 13 February 2002 (13.02.2002) US
10/131,368 23 April 2002 (23.04.2002) US

(71) Applicant (for all designated States except US): SIEBEL
SYSTEMS, INC. [US/US]; 2207 Bridgepointe Parkway,
San Mateo, CA 94404 (US).

(72) Inventors; and

(75) Inventors/Applicants (for US only): GEORGE, David
[GB/US]; 14648 NE 16th Street, Bellevue, WA 98006
(US). HARB, Joseph [CA/US]; 14643 NE 174th Street,
Woodinville, WA 98074 (US). HAVEN, Chris [US/US];

74

(381)

34

3214 NE 98th Street, Seattle, WA 98115 (US). FERRY,
Dennis [US/US]; 20202 72nd Drive SE, Snohomish, WA
98296 (US). LEE, Wen-Hsin [—/US]; 25732 SE 42st
Street, Issaquah, WA 98029 (US). SRINIVASAN, Jaya
[US/US]; 12840 SE 40st CT#E2, Bellevue, WA 98006
(Us).

Agents: MALLIE, Michael, J. et al.; Blakely, Sokoloff,
Taylor & Zafman LLP, 12400 Wilshire Boulevard, 7th
floor, Los Angeles, CA 90025 (US).

Designated States (national): AE, AG, AL, AM, AT, AU,
AZ, BA, BB, BG, BR, BY, BZ, CA, CH, CN, CO, CR, CU,
CZ, DE, DK, DM, DZ, EC, EE, ES, FI, GB, GD, GE, GH,
GM, HR, HU, ID, IL, IN, IS, JP, KE, KG, KP, KR, KZ, LC,
LK, LR, LS, LT, LU, LV, MA, MD, MG, MK, MN, MW,
MX, MZ, NO, NZ, OM, PH, PL, PT, RO, RU, SD, SE, SG,
SK, SL, TJ, TM, TN, TR, TT, TZ, UA, UG, US, UZ, VN,
YU, ZA, 7M, ZW.

Designated States (regional): ARIPO patent (GH, GM,
KE, LS, MW, MZ, SD, SL, SZ, TZ, UG, ZM, ZW),
Eurasian patent (AM, AZ, BY, KG, KZ, MD, RU, TJ, TM),
European patent (AT, BE, BG, CH, CY, CZ, DE, DK, EE,

[Continued on next page]

Opportunities,
Contacts, Accounts

Calendar, Employee

A 00 N 0 OO

16

69500 Al

(54) Titlee METHOD AND SYSTEM FOR ENABLING CONNECTIVITY TO A DATA SYSTEM

|
i
1
l
1
1
:
1

... Other Data, etc. : 12
)
) MOBILE
x CONNECTOR APPLICATION
]
]
IAACTRV S

APPLICATION i >
SERVER :

!
I

(57) Abstract: A method and system that provides filtered data from a data system (16). In one embodiment that system includes an

- API (application programming interface) and associated software modules to enable third party applications to access an enterprise
~~. data system. Administrators are enabled to select specific user interface (UI) objects (72), such as screens, views, applets, columns
and fields to voice or pass-through enable via a GUI (108) that presents a tree depicting a hierarchy of the UI objects (72) within a
user interface of an application (14). An XSLT style sheet is then automatically generated to filter out data pertaining to UI objects
(72) that were not voice or pass-through enabled. In response to a request for data, unfiltered data are retrieved from the data system
% and a specified style sheet is applied to the unfiltered data to return filtered data pertaining to only those fields and columns that are

voice or pass-through enabled.

wO 03/069500 A 1 NI 0000 0 0 000 R

ES, FI, FR, GB, GR, HU, IE, IT, LU, MC, NL, PT, SE, SI, For two-letter codes and other abbreviations, refer to the "Guid-
SK, TR), OAPI patent (BF, BJ, CF, CG, CI, CM, GA, GN, ance Notes on Codes and Abbreviations" appearing at the begin-
GQ, GW, ML, MR, NE, SN, TD, TG). ning of each regular issue of the PCT Gazette.

Published:
— with international search report

WO 03/069500 PCT/US03/04802

METHOD AND SYSTEM FOR ENABLING CONNECTIVITY
TO A DATA SYSTEM

RELATED APPLICATIONS

The present application is based on a co-pending provisional application
entitled “METHOD AND SYSTEM FOR ENABLING VOICE CONNECTIVITY
TO A DATA SYSTEM,” Serial No. 60,356,713, filed on February 13, 2002, the
benefit of the filing date of which is claimed under 35 U.S.C. § 119(e).

BACKGROUND OF THE INVENTION

1. Field of the Invention

The present invention relates to data systems in general, and an
interface to provide filtered data from a data system in particular. In one

embodiment, the interface facilitates voice access to a data system.

2. Backaground Infqrmation

Recently, the development of new technologies in the telephony and
speech recognition areas has enabled data systems to be accessed via voice
(e.g., spoken verbal input). Such voice-enabled data systems let users
navigate o request a particular piece of data or a related set of data using
voice commands, and then “reads back” the data to the user. These types of
data systems are widely used in information systems in various industries,
including banking, insurance, investments, etc.

In general, in order to provide voice access to a data system, a complete
voice interface has to be developed from scratch. This typically involves
integrating various hardware and software components, such as telephony
interfaces, multi-channel access equipment, speech recognition software, text-
to-speech (TTS) software and hardware, and other related components. In
addition, a dedicated application must be written to interact with the various

hardware and software components, and to provide interface and navigation
1

WO 03/069500 PCT/US03/04802

facilities for voice access. This can be a very daunting task, requiring a team of
IT professionals that are savvy in many specialized areas.

Several vendors now provide integrated voice-access systems that
handle the voice-to-computer aspects of a voice-enabled data system. For
example, these integrated systems handle telephony connectivity to a phone
network, perform speech recognition to convert voice commands and
verbalized data requests to a computer-readable form (e.g., ASCII text or
binary text form), and handle the TTS functions.

Although these integrated voice-access systems provide a lot of the
workload, they still require an application program to enable access to the data
system. Typically, the application program is data-system specific, requiring
specific navigation and database queries to be written. As a result, the inner-
workings of the data system need to be known in detail.

In view of the foregoing, it would be advantageous to provide an
“interface” that would enable data system vendors and third parties to easily
integrate voice access to existing data systems by using an integrated voice-
access system combined with an application program that is much simpler to
implement and doesn't require all of the inner-workings of the data system to
be known.

In addition to voice access systems, there are many other instances in
which it would be advantageous to access selected data sets from within data
systems. For example, many data systems provided integrated access
interfaces, such as client user interfaces, to enable users to access data stored
in the data system via a client computer connected to the data system via a
computer network. Generally, these client user interfaces are provided by the
data system vendor, and generally provide a limited, predetermined set of user
interface objects, such as screens, lists and forms. In contrast, a third party
vendor or business enterprise may desire to build a customized user interface
for the data system. To facilitate such implementations, it would be
advantageous to provide a mechanism to retrieve filtered data from data

systems.

WO 03/069500 PCT/US03/04802

SUMMARY OF THE INVENTION

A method and system that provides filtered data from a data system. In

one embodiment the system includes an API (application programming
interface) and associated software modules to enable a third party applications,
such as voice applications, to access an enterprise data system.
Administrators are enabled to select specific user interface (Ul) objects, such
as screens, views, applets, columns and fields to voice or pass-through enable
via a graphical user interface (GUI). The GUI presents a tree depicting a
hierarchy of the Ul objects within a user interface of an application that is used
to access a data system. An XSLT style sheet is then automatically generated
to filter out data pertaining to Ul objects that were not voice or pass-through
enabled. The third party application accesses the data system using a data
query request and one of the data system's existing interfaces, such as an
HTTP or HTTPS interface, a COM interface, or a Java interface. In response
to the request, unfiltered data are retrieved from the data system and a
specified style sheet is applied to the unfiltered data to return filtered data

pertaining to only those Ul objects that are voice or pass-through enabled.

WO 03/069500 PCT/US03/04802

BRIEF DESCRIPTION OF THE DRAWINGS

The foregoing aspects and many of the attendant advantages of this

invention will become more readily appreciated as the same becomes better
understood by reference to the following detailed description, when taken in
conjunction with the accompanying drawings, wherein:

FIGURE 1 is a schematic block diagram illustrating a high-level
architecture in accordance with one embodiment of the invention in which a
mobile connector interface enables third party applications to access an
enterprise data system;

FIGURE 1A is a schematic block diagram illustrating the architecture of
an exemplary implementation of the mobile connector interface to enable voice
access to an enterprise data system;

FIGURE 2 is a block schematic diagram illustrating a multi-layer
software architecture in accordance with one embodiment of the invention;

FIGURE 3 is a block schematic diagram illustrating further details of the
multi-layer software architecture of FIGURE 2;

FIGURE 4 is a block schematic .diagram illustrating further details of
various object. manager objects in accordance with the multi-layer software
architecture;

FIGURE 5 is a block schematic diagram illustrating further details of a
business component as used in the multi-layer software architecture;

FIGURE 6 is a block schematic diagram illustrating further details of the
architecture of FIGURE 1

FIGURE 7 is a block schematic diagram illustrating details of a voice
metadata builder component in accordance with one embodiment of the
invention;

FIGURE 8 is a flowchart illustrating the operations and logic used by one
embodiment of the invention when enabling an administrator to specify which
user interface (Ul) objects to voice enable and/or provide grammar update
support for and the generation of an application representation to be used for
building style sheets in accordance with the invention;

FIGURE 9 is a code listing corresponding to an exemplary portion of a

repository file;
4

WO 03/069500 PCT/US03/04802

FIGURE 10 is a block diagram illustrating the user interface hierarchy of
a user interface to enable access to the enterprise data system in accordance
with one embodiment of the invention;

FIGURE 11 is a representation of an exemplary user interface
corresponding to an Sales Accounts view;

FIGURE 12 shows a portion of an application representation that
corresponds to the Sales Accounts view of FIGURE 11 and corresponding
subscription data;

FIGURE 12A shows the application representation of FIGURE 12
corresponding to an implementation in which the subscription data pertains to
pass-through enabled Ul objects, and update-enabled Ul objects;

FIGURE 13 is a representation of a graphical user interface window that
enables an administrator to select Ul objects to voice enable and to provide
grammar update support for;

FIGURE 14A-C collectively comprise a combination of a style sheet
layout definition and integrated flowchart corresponding to an exemplary style
sheet that is used to filter out data that does not pertain to voice-enabled fields;

FIGURE 15 is a flowchart illustrating the operations and logic
implemented by one embodiment of the invention when generating a style
sheet;

FIGURE 16 is an XML listing illustrating a typical format of an XML
output document that is returned to a voice application in accordance with one
embodiment of the invention.

FIGURE 17 is an outlined XML listing having a format corresponding to
the XML listing of FIGURE 16 to illustrate the various hierarchical levels of the
XML output document;

FIGURE 18 is an XML code portion listing illustrating details of an
RS_HEADER section of the XML output document;

FIGURE 19 is an XML code portion listing illustrating details of an
RS_DATA section of the XML output document;

FIGURE 20 is a flowchart illustrating the operations and logic used by

one embodiment of the invention when processing a voice request for data;

5

WO 03/069500 PCT/US03/04802

FIGURE 21 is a flowchart illustrating the operations and logic used by
one embodiment of the invention when providing a grammar update;

FIGURE 22 is a block schematic diagram illustrating an exemplary
hardware infrastructure for implementing one embodiment of the invention; and

FIGURE 23 is a schematic diagram illustrating various components of an
exemplary computer server system that may be used for the various computer
servers in the hardware infrastructure of FIGURE 22 to implement the

embodiments of the invention described herein.

WO 03/069500 PCT/US03/04802

DETAILED DESCRIPTION OF THE ILLUSTRATED EMBODIMENTS

A system and method for providing filtered data from a data system is

described in detail herein. In the following description, numerous specific
details are disclosed, such as exemplary software and system architectures, to
provide a thorough understanding of embodiments of the invention. One skilled
in the relevant art will recognize, however, that the invention can be practiced
without one or more of the specific details, or with other methods, components,
etc. In other instances, well-known structures or operations are not shown or
described in detail to avoid obscuring aspects of various embodiments of the
invention.

Reference throughout this specification to “one embodiment” or “an
embodiment” means that a particular feature, structure, or characteristic
described in connection with the embodiment is included in at least one
embodiment of the present invention. Thus, the appearances of the phrases
“in one embodiment” or “in an embodiment” in various places throughout this
specification are not necessarily all referring to the same embodiment.
Furthermore, the particular features, structures, or characteristics may be
combined in any suitable manner in one or more embodiments. '

The present invention provides a system and method for providing
filtered data from a data system to a requesting component, such as a third
party application. In the following discussion, details of embodiments
pertaining to a voice access system are disclosed. The voice access system is
used to illustrate a general data system access architecture in accordance with
the invention. Accordingly, the use of the principles and teachings of the
invention are not to be limited to voice access systems, but may be applied to
any application or system outside of a data system that desires to receive
filtered data from the data system.

A high-level architecture 10 in accordance with one embodiment of the
invention is shown in FIGURE 1. At the center of architecture 10 is a mobile
connector interface 12 that enables third parties (referred to herein as
“application vendors”) to develop applications 14 that enable users 15 to

access data stored in an enterprise data system 16.

7

WO 03/069500 PCT/US03/04802

In one embodiment, mobile connector interface 12 provides a
mechanism for interacting with enterprise data system 16 via XML (extended
markup language) data in accordance with predefined protocol and data
formats that define parameters pertaining to the transferred XML data. These
data include incoming XML data 32, which typically comprise XML data
prescribing a data request that is received by enterprise data system 16, and
outgoing XML data 34, which typically comprises XML data pertaining to data
returned in response to the data request by enterprise data system 16.

In one embodiment, enterprise data system 16 includes an application
server 36, which logically represents a collection of (generally) distributed
software components and modules that define the business logic to enable
external systems and users to access various data stored in a database 38 that
hdsts the data for the enterprise data system based on a pre-defined set of
interfaces. Further details of the software components and modules
corresponding to application server 36 are described below.

Typically, the enterprise data system will provide various means to
access the data that it stores, such as client connections, as will be understood
by those skilled in the database/data system arts. Ideally, it is desired to
enable voice access to the enterprise system in a manner that is substantially
transparent to it. In one embodiment, each connection provided by the mobile
connector appears to the enterprise data system as a “normal” client
connection, and as such, does not require any changes to the core software
components that support the enterprise data system.

In one embodiment, software corresponding these core software
components that control normal operations of enterprise data system 16 (i.e.,
operations involving interaction with the enterprise data system outside of voice
access operations) can be logically structured as a multi-layered
architecture 50, as shown in FIGURE 2. In one embodiment, the logical multi-
layered architecture provides a platform for common services 52 to support
various applications that implement the architecture. These services may be
logically partitioned into a user interface layer 54, an object manager layer 56, a

data manager layer 58, and a data exchange layer 60.

WO 03/069500 PCT/US03/04802

In one embodiment, user interface layer 54 provides the screens, views,
and applets that make up various user interfaces that are rendered on client
machines that connect to the enterprise data system via a computer network
based client connection to enable users of those client machines to interact
with the enterprise data system. Generally, user interface layer 54 may be
configured to support various types of clients, including traditional connected
clients, remote clients, thin clients over an Intranet, Java thin clients or non-
Windows-based operating systems, and HTML clients over the Internet, etc.

Object manager layer 56 is designed to manage one or more sets of
business rules or business concepts associated with one or more applications
and to provide the interface between user interface layer 54 and data manager
layer 58. In one embodiment, the business rules or concepts can be
represented as business objects. In one embodiment, the business objects
may be designed as configurable software representations of the various
business rules or concepts applicable to the data services provided by the
embodiments of the invention described herein, as explained below in further
detail.

Data manager layer 58 is designed to maintain logical views of
underlying data stored in one or more databases 62 (e.g., database 38)
corresponding to a data storage layer 64, while allowing the object manager to
function independently of the underlying data structures or tables in which data
are stored. In one embodiment, the data manager provides certain database
query functions, such as generation of structure query language (SQL) in real
time to access the data. In one embodiment, data manager 68 is designed to
operate on object definitions 66 stored in a repository file 68 corresponding to a
database schema used to implement the data model for the system, as
described in further detail below. Generally, the data exchange layer is
designed to handle the interactions with one or more specific target databases
and provide the interface between the data manager and those databases, via
either generic (e.g., Open Database Connectivity (ODBC)) or native (e.g.,
Oracle Connection Interface (OCI)) database interface protocols.

FIGURE 3 shows a block diagram illustrating another logical

representation of a multi-layered architecture corresponding to the core
9

WO 03/069500 PCT/US03/04802

operations of the enterprise data system. Again, the multi-layered architecture
as illustrated in FIGURE 3 provides the platform for various common services
designed and configured to support the various core operations provided by the
enterprise data system. In one embodiment, these various services include a
presentation services layer 70 corresponding to services provided by an applet
manager and user interface 72, an application services layer 74 corresponding
to services provided by object manager layer 56 and data manager layer 58,
and a data services layer 76 corresponding to services provided by database
62.

In one embodiment, presentation services 70 may be designed and
configured to support various types of clients and may provide them with user
interface screens, views and applets. In one embodiment, application
services 74 may include business logic services and database interaction
services. In one embodiment, business logic services provide the class and
behaviors of business objects and business components implemented by the
application services. In one embodiment, database interaction services may be
designed and configured to take the user interface (Ul) request for data from a
business component and generate the appropriate database commands (e.g.,
SQL queries, efc.) to satisfy the request. For example, the data interaction
services may be used to translate a call for data into RDBMS-specific SQL
statements.

A multi-layer architecture illustrating the relationships between business
objects, business components, and database tables is shown in FIGURE 4. A
business object 80 sitting at the top layer passes various data access requests
to business components 82, 84, and 86 to retrieve data pertaining to the
business object from a database 88. For example, business object 80 may
pertain to an contact object and business components 82, 84, and 86 are used
to access data in a database 62 pertaining to contacts.

in one aspect, business components are objects that span data from
one or more physical database tables and calculated values by referencing a
base table and explicitly joining and linking other tables, including intersection
tables, as depicted by tables 90-1 and 90-2, each of which include a plurality of

records 92. As explained in further detail below, each business component
10

WO 03/069500 PCT/US03/04802

contains information for mapping to various data stored in those tables. More
specifically, these mappings are between a requested object, such as a
subject, and information pertaining to that object that are stored in the database
table(s) to which the business component corresponds. In one embodiment,
database schema information stored in repository file 68 is used by the
business components in determining their table mappings.

A block diagram of a logical structure of a business component in
accordance with one embodiment of the present invention is shown in FIGURE
5. Each business component (e.g., 82, 84, 86) may include a set of
properties 95 that pertain to the respective business component (e.g., NAME,
which specifies the logical name of the business component, TABLE NAME,
which specifies the actual name of the underlying table, etc.). A business
component also includes a set of fields 96, each of which may have a set of
associated attributes or properties 98. For example, a field may include a
NAME property that identifies the name of the field, a COLUMN NAME property
that identifies the column of the underlying table to which the respective field is
mapped, etc.

A high-level architecture 11 in accordance when an exemplary voice
access system implementation of the invention is shown in FIGURE 1A. In this
implementation a voice application 14A uses mobile connector interface 12 to
enable users to verbally access data stored in an enterprise data system 16 via
a phone 18. In further detail, a user of phone 18 is connected to a voice
infrastructure component 20 via a phone network 22, such as a wireless phone
network, land-line phone network, or the combination of the two. The voice
infrastructure includes various hardware and software components that enable
users to interact with voice application 14A via voice commands. Typically,
these components will include a telephony interface 24, an automated speech
recognition (ASR) component 26, and a text-to-speech (TTS) component 28.
In one embodiment, voice application 14A uses a standard application
programming interface 30 that enables the voice application to interact with
voice infrastructure 20 using a predefine set of commands and data protocols
specific to various voice access products. At present, several vendors provide

voice access products that provide operations and services corresponding to
11

WO 03/069500 PCT/US03/04802

voice infrastructure 20, including Avaya corporation (formerly Lucent)
(telephony interfaces/PXB switching) and Nuance corporation, Salt Lake City,
Utah (speech recognition software).

The specific details and inner-workings of the voice infrastructure is
beyond the scope of the invention. For the purpose of implementing
architecture 11, it is assumed that an integrated voice access system will be
deployed and/or the IT professionals who implement the system have sufficient
knowledge and skill to set up the voice infrastructure using readily available
hardware and software components, such as those described above.

An architecture 100 illustrating further details of mobile connector
interface 12 and other related components is shown in FIGURE 6. The mobile
connector interface comprises two separate but related components, including
a Metadata Builder 102 and an Update Support component 104. The Metadata
Builder is an administrative tool that will generally be run during an initial
installation and may be run again if the object definitions 66 stored in the
repository file have changed. The Update Support component is a runtime
component that is run at the discretion of voice application 14A, as explained
below in further detail.

In addition to Metadata Builder 102 and Update Support component 104,
architecture 100 further includes a Web engine 106, a reference or application
vendor GUI (graphical user interface) component 108, a Siebel COM or Java
interface 110 and a HTTP(S) interface 112. Web engine 106 is used to provide
an interface between voice application 14A and common services 52 via either
Siebel COM or Java interface 110 or HTTP(S) interface 112. In one
embodiment, Web engine 106 provides an XML interface that enables
application server 36 to receive incoming XML data 32 and send outgoing XML
data 34.

The reference or application vendor GUI in combination with the
metadata builder enables the application vendor to select which screens,
views, applets, columns, and controls/fields an application (e.g., voice
application 14A) may access through appropriate XML queries that are
submitted as incoming XML data 32 to Web engine 106. Further details of

Metadata Builder 102 are shown in FIGURE 7. At the core of the Metadata
12

WO 03/069500 PCT/US03/04802

Builder is a Metadata Builder Engine 114, which includes a parser 116, and an
extractor 118. Additional components include an XML builder 120 and a style
sheet builder 122. In one embodiment, Metadata Builder 102 may be
implemented as a business service that is managed by object manager 56.

With reference to FIGURE 8, the process for selecting which Ul objects
to voice enable and for generating style sheets begins in a block 300 in which
the application vender user (e.g., an administrator) opens reference or
application vendor GUI 108, initiates the voice enable process, and selects an
application the administrator would like to provide voice access to. Generally,
the administrator will be presented with a user interface such as a dialog box or
web page (both not shown) that enables the user to select an application to
voice enable from among one or more applications that are supported by the
enterprise data system. ‘

Upon selection of the application, selection data 123 identifying the
selected application is passed to metadata builder engine 114, which then
invokes extractor 118 to traverse repository file 68 and .extract metadata
corresponding to the selected application’s Ul objects and definitions in a
block 302. As described above, the repository file contains object definitions
for the various objects corresponding to all of the applications in the enterprise
data system, stored as metadata in a compiled format. Included in these object
definitions are user interface object definitions and their relationships. An
exemplary portion of a repository file is shown in FIGURE 9. (It is noted that in
one embodiment the repository file is actually stored in a compiled format
rather than the ASCII text format shown in FIGURE 9, which is used in the
figure for clarity.)

In one embodiment, the user interface objects have a hierarchical
relationship, as shown in FIGURE 10, wherein the top level of the hierarchy
corresponds to the entire enterprise data system, as depicted by an enterprise
data system block 150. Each enterprise data system will include one or more
applications 152, with each application 152 including a plurality of screen 154.
In turn, each screen will include one or more views 156, with each view
including one or more applets 158. Finally, each applet will include a plurality

of columns and/or fields/controls 160, with each column corresponding to
13

WO 03/069500 PCT/US03/04802

column in a list applet each field/control typically comprising an edit control on a
detail form (i.e., entry) applet that is either mapped to a column in a database
table or a list of values that are either predefined, or generated at run-time
based on current data in the enterprise data system.

A rendered user interface 170 that graphically depicts the Ul object
hierarchy of FIGURE 10 is shown in FIGURE 11. User interface 170 includes a
screen bar 170 corresponding to screens 154 that enables a user to select a
screen the user desires to view. For example, in the illustrated user interface
these screens include a “Home” screen 172, an “Opportunities” screen 174,
and “Accounts” screen 176, a “Contacts” screen 178, an “Activities” Screen
180, a “Calendar” screen 182, a “Quotes” screen 184, a “Forecasts”
screen 186, and a “Revenues” Screen 188. Activation of the tab having the
screen name causes the application to render the selected screen and navigate
the user to the application “domain” corresponding to the selected screen.

As discussed above, each screen includes one or more applets. Under
common user interface terminology, applets would generally fall into the form
category. Applets generally have two formats: list applets and form applets. A
list applet contains a tabular list of data including multiple rows and data
columns similar to that shown in an Account list applet 190. A form applet
typically includes a plurality of fields containing data pertaining to a particular
“record,” wherein .the record will often correspond to a selected row in an
accompanying list applet. Form applets are also referred to a detail applets
and entry applets. For example, an Account entry applet 192 includes a
“Name” field 194, and “Address Line 1" field 196, and “Address Line 2"
field 198, a “Zip” field 200, a “Main Phone #’ field 202, a “City” field 204, a
“State” field 206, a “County” field 208, an “Account Type” filed 210, a “Status”
filed 212, an “Industries” field 214, a “Territories” field 216, and “Account Team”
field 218 and a “Parent” field 220. Generally, each field will have a
corresponding edit control, which typically will comprise an edit box or a
dropdown control from which a user may select from a predetermined list of
values. In some instances, a dialog picklist control 222 may also be provided
that enables a user to select from list of options via a dialog box that is

populated with the list using a run-time query.
14

WO 03/069500 PCT/US03/04802

In many instances, applets may be linked via a parent-child type
relationship. For example, Account list applet 190 is a parent of Account entry
applet 192, which includes a plurality of tabs 224 to enable a user to enter or
view information specific to the name on each tab and the currently selected
account record. For example, the currently selected account is “A & W Gifts
and Flowers,” and a user could enter information concerning contacts for this
account by activating a “Contacts” tab 226, which would bring up a Contacts
form including a plurality of fields pertaining to contact information (not shown).

Returning to the flowchart of FIGURE 8, in a block 304 parser 116 builds
an application representation 124 comprising an internal representation of the
selected application’s screens, views, applets, columns, and fields/controls
based on the corresponding user interface object definition metadata that was
extracted in block 302, as depicted by application representation 124. In one
embodiment, the application representation comprises a hierarchical tree
structure of the object definitions extracted by the extractor. In exemplary
application representation occupies the left-hand portion of FIGURE 12. Each
node in the hierarchical tree stores data corresponding to an application
representation object. The object may be an application object, screen object,
view object, applet object, etc. After getting the ‘object definition from the
extractor, the parser will convert the object to an application representation
object and store it in a node of the hierarchical tree structure. This is repeated
for all objects until the tree is filled.

Next, in a block 306 metadata builder engine 114 invokes XML
builder 120 to build an XML data tree 126 corresponding to application
representation 124, and returns the XML data tree to reference or application
vendor GUI 108 in a block 308. To perform this operation, the XML builder
traverses the hierarchical tree and builds an XML representation for it. The
reference or application vendor GUI parses the XML data tree and renders a
selection tree 130 in a window or frame similar to that shown in FIGURE 13. In
general, the selection tree will have a hierarchy similar to the user interface
hierarchy of the application, as defined by application representation 124.

In one embodiment, the reference GUI comprises a plurality of ASP

(Active Server Page) web pages that use an ActiveX data control to get access
15

WO 03/069500 PCT/US03/04802

to the voice metadata builder. In this embodiment, the ASP creates the
ActiveX control, gains access to the voice metadata builder, starts the XML
extraction to get the XML object definition, renders the HTML for the reference
GUI, returns subscription XML data for Ul components to voice enable and/or
provide voice update support for, triggers the creation of style sheets, and
allows loading and saving existing subscriptions. In one embodiment, the
ActiveX DataControl is used to create Ul window 130, wherein the ActiveX
DataControl enables the window to have functionality similar to the Microsoft
Windows Explorer file management tool. For example, objects corresponding
to screens, views and applets are displayed with adjacent file icons, including
open file icons 132 and closed file icons 134, while column and field/control
objects are displayed with adjacent document icons 136. Additionally,
activation of an expansion control 138 causes data pertaining to a closed folder
to be expanded, while activating a collapse control 140 causes data
corresponding to an opened folder to be collapsed (i.e., removed from view).

As shown in FIGURE 13, a “Subscribe for UI” checkbox 142 and a
“Subscribe .for Grammar” checkbox 144 is displayed below each opened
screen, view, applet, and column/field/control object. Accordingly, in a
block 312, the administrator selects appropriate checkboxes to identify which
views, applets, and columns/fields/controls the administrator would like to
subscribe to have voice enabled and/or provide grammar update support for.
Subscription data 146 pertaining to the selected Ul objects and checked
options are then submitted back to metadata builder engine 114 in a block 314
along with a request to voice enable and/or provide grammar update support
for the selected Ul objects. An exemplary set of subscription data is shown in
the right-hand portion of FIGURE 12. Finally, in a block 316, the metadata
builder engine invokes style sheet builder 122 to create style sheets 148 based
on the application representation and the subscription data.

Based on the Ul objects selected to be voice-enabled, the style sheet
builder will generate an XSLT (extensible Style sheet Language
Transformation) style sheet, which will filter the unselected elements from the
original XML data in a result set returned by the enterprise data system such

that only data pertaining to voice-enabled Ul objects are returned to voice
16

WO 03/069500 PCT/US03/04802

application 14A. An exemplary style shéet layout and logic contained when
each style sheet template is shown in FIGURES 14A-C. As the name implies,
XSLT is an XML-based language used to create style sheets that are used to
transform XML documents into other types of documents and to format the
output of XML documents. XSLT became a W3C Recommendation in
November, 1999; the specification can be found at http://www.w3.org/TR.xslt.

XSLT style sheets are built on structures called templates. A template
specifies what to look for in an input document, called the source tree, and
what to put into an output document, called the result tree. XSLT style sheets
are also composed of XSLT elements, which generally include the <xis:style
sheet>, <xis:template>, <xslvalue-of:>, <xlIs:output>, <xIs:element>,
<xls:attribute>, <xls:attribute-set> and <xsl:text> elements. The XSLT
elements also include conditional elements, such as <xsl:if>, <xsl:choose>,
elements and loop elements such as the <xsl:for-each> element. All of these
elements will be familiar to those skilled in the XSLT style sheet art.

Initially, each style sheet will include a set of templates corresponding to
respective Ul object hierarchy positions, including an application processing
template, a screen processing template, a view processing template, an applet
processing template, and a LIST template. If the applet is a list abplet, the set
of templates will further include, an RS_HEADER template, and a COLUMN
template, if the applet is an entry applet (i.e., multi-field form), the set of
templates will include an RS_DATA template, a ROW template and a FIELD
template. The purpose of each template is to filter out unwanted data at each
hierarchy level of the XML source tree document, as will be explained below in
further detail.

With reference to the flowchart of FIGURE 15 in view of the XSLT style
sheet layout of FIGURES 14A-C, the generation of XSLT style sheets proceeds
as follows. The process begins in a block 400 in which the style sheet is
initialized. In accordance with one embodiment of the invention, each XSLT
style sheet will include substantially the same layout and logic at the beginning
of the style sheet. This will include an XSLT header section 253, and
application template 254, and a screen template 256. The application template

will include a code block 260 that copies all of the values in the source tree
17

WO 03/069500 PCT/US03/04802

document at the application level to the result tree document, and a decision
block 262 in which a determination is made to whether a screen level exists in
the source tree document. If it does, screen template 256 is called in a block
264. If the screen level doesn't exist in the source tree document, the process
exits.

The code blocks in the screen template are substantially similar to those
in the application template. First, style sheet code corresponding to a
block 266 is used to copy all of the values at the screen level of the hierarchy to
the result tree document. In a decision block 268, a determination is made to
whether a view level exists in the source tree. If it does, view template 258 is
called in a block 270. If it does not, the process exits.

In a block 401 of FIGURE 15 the tree nodes of the application
representation are traversed, beginning with the root of the tree (i.e., the
application level - note the application representation tree will look somewhat
like an upside-down real tree, so the root is at the top of the application
representation in FIGURE 12). As.depicted by start and end blocks 402 and
404, the operations enclosed between these two loop end points are performed
on each node as the application representation tree is traversed.

In accordance with one embodiment of the invention, a style sheet is
created for each view. Accordingly, in a decision block 406, a determination is
made to whether the node corresponds to a selected view (i.e., a view that is
selected to be voice-enabled via the subscription data). For example,
supposed that the current node being processed corresponds to a Sales
Accounts View 250 node in the application representation of FIGURE 12.
Since the corresponding subscription data indicates that this is a view that is
selected to be voice-enabled, the answer to the decision block is YES (TRUE),
and the logic proceeds to a block 408 in which a new style sheet is created
using a base view style sheet template. This new view template will have a
layout similar to a view template 272 shown in FIGURE 14A, will include a
code block 257 containing logic that is used to copy all values pertaining to the
view level to the result tree, and an applet template routing section 274 that is
used to route the XSLT processing to an appropriate template as identified in

the source tree. (It is noted that applet template routing section 274 will initially
18

WO 03/069500 PCT/US03/04802

be empty, as explained in further detail below.) The logic then loops back to
start loop block 402 to begin processing the next node.

If the answer to decision block 406 is NO (FALSE), the logic proceeds to
a decision block 410 in which a determination is made to whether the node
corresponds to a selected applet. For example, suppose that the current node
is a More Info Account Entry Applet node 276 in the application representation.
This node is marked as being selected to be voice-enabled, resulting in a YES
result to decision block 410 and leading to a block 412 in which a new applet
and child template set is generated, including an applet template, and a list
template. Each applet template will include substantially the same logic that
includes specific references pertaining to that applet template. In one
embodiment each template has a name that specifically references the node
corresponding to the template. For example, a Contacts Accounts Entry Applet
Template 278 corresponding to a Contacts Accounts Entry node 280 is shown
in FIGURE 14B. This template includes a code block 282 containing logic to
copy all of the values pertaining to the Contacts Accounts Entry Applet in the
source tree to the target tree. The template further includes a code section
pertaining to a decision block 284 through-which a determination can be made
to whether the source tree document includes a list level. The template also
includes a code block 286 that contains logic to call an appropriate list template
(in this case a Contacts Account Entry Applet List template 288). (It is noted
that for simplicity Contacts Account Entry Applet List template 288 is used in
conjunction with both the Accounts List applet and the Contact Account Entry -
Applet. It will be understood that in actual practice a separate List template
would be provided for each applet.)

Each List template will include a code block 290 containing logic to copy
all values pertaining to the list level of the source tree document. As discussed
above, if an applet is a list applet, an RS_Header and a column template are
added, as depicted by an Account List Applet RS_HEADER template 292 and
an Accounts LIST Applet Column template 294. In contrast, if the applet is an
entry applet than an RS_DATA template, row template, and field template are
created, as depicted by a Contacts Account Entry Applet RS_DATA

template 296, a Contacts Account Entry Applet ROW template 297, and a
19

WO 03/069500 PCT/US03/04802

Contacts Account Entry Applet Field Template 298. Accordingly, each list
template will include a code section corresponding to a decision block 320 by
which a determination is made to whether and RS_DATA level exists in the
source tree document, and/or a code section corresponding to a decision
block 322 by which a determination can be made to whether an RS_HEADER
level exists in the source tree document. If the answer to decision block 320 is
TRUE, the logic flows to a code block 324 in which an appropriate RS_DATA
template is called. If the answer to decision block 322 is TRUE, the logic flows
to a code block 326 in which an appropriate RS_HEADER template is called.

As depicted by Account List Applet RS_Header template 292, each
RS_Header template includes a code block 328 containing logic to copy all of
the values pertaining to the applet level from the source tree to the result tree.
A code section pertaining to a decision block 330 is also provided that is used
to determine whether an appropriate column template exists in the source tree
document. If it does, the logic proceeds to a code block 332 in which the
appropriate column template is called.

As depicted by Account List Applet Column .template 294, each column
template will include a code block 334 that includes logic to filter out all data at -
the column level that does not pertain.to columns that were marked to be voice
enabled for the applet that is being currently processed. For example, in code
block 334, logic is included to filter out data in all columns of the Account List
Applet except for a new column, a Name column, and a Main Phone# column.
When a Column template is initially generated, the filtering logic corresponding
to code block 334 will be empty.

As depicted by Contacts Account Entry Applet RS_DATA template 296,
each RS_DATA template includes a code block 336 that contains logic to copy
all of the values pertaining to the RS_DATA level in the source tree. Each
RS_DATA template also includes a code section corresponding to a decision
block 338 by which a determination is made to whether a Row level exists in
the source tree. Each RS_DATA template further includes a code block 340
that is used to call an appropriate Row template corresponding to the Row

level.

20

WO 03/069500 PCT/US03/04802

Each Row template includes a code block 342 containing logic to copy
all values pertaining to the Row level of the source tree, as depicted in
Contécts Account Entry Applet Row template 297. Each Row template also
includes a code section corresponding to a decision block 344 by which a
determination is made to whether a Field level exists in the source tree. Each
Row template further includes a code block 346 that is used to call an
appropriate Field template corresponding to the Row level.

In a manner similar to the column template discussed above, each field
template includes a code block 348 containing logic to filter out all data at the
field level that does not pertain to fields that were marked to be voice enabled
for the applet that is being currently processed. For example, in code
block 348, logic is included to filter out data in all fields of the Contacts Account
Entry Applet except for a Last Name column, a First Name column, a Work
Phone column, a Street Address 1 column, a Street Address 2 column, a City
column, a State column, and a Country column. When a Column template is
initially generated, the logic corresponding to code block 348 will be empty.

Returning to the flowchart of FIGURE 15, the next operation is
performed in a block 414, wherein branch logic is-created in the "parent” view
template for the current applet. Generally, this branch logic will be contained
within an applet template routing section 274 and comprise a choose block
containing a list of test conditions. Each of these test conditions is depicted in
view template 272 as a decision block 337 and a call block 339. For example,
the test conditions in applet template routing section 274 pertain to applet
nodes 276, 279, 281, 283, and 280 in the application representation of FIGURE
12. Generally, if a test condition is determined to be TRUE, the applet template
corresponding to the test condition is called.

Upon completion of block 414, the logic loops back to process the next
node, which would be a name column/field node 285. This node would be
processed in the manner discussed below, along with all of the other field
nodes of the More Info Account Entry applet. The processing would then
address Activities Account Entry applet node 279 (and subsequently its field
nodes), followed by Assets Account Entry applet node 281 (and subsequently

its field nodes) followed by an Attachments Account Entry applet node 282 (and
21

WO 03/069500 PCT/US03/04802

subsequently its field nodes). As discussed above, an appropriate set of applet
and child templates would be created for each applet node in block 412, and an
appropriate portion of template branch logic will be added to the parent view
template for these applets.

Now suppose that a Contacts Account Entfy applet node 284 is
encountered. After processing this node, the next node to be encountered is a
Personal Title column/field node 287. In this instance, the answers to both
decision block 406 and 410 would be NO, and the logic would proceed to a
decision block 416 in which a determination is made whether the node
corresponds to a selected column or field. Since the Personal Title field node
is marked as not selected, the answer to decision block 416 is NO, and the
logic loops back to process the next node, which is a Last Name field
node 289. This time, when the logic reaches decision block 416 the result is
YES (since this Ul object was selected to be voice-enabled), and the logic
proceeds to a block 418. In this block, XSLT code is added to the column
and/or field template child of the current applet (as applicable) to .enable data
corresponding to the column or field to be filtered through. For example, this
logic might be similar to that shown in code block 334 for a Column template, or

. that shown in code block 348 for a Field template.

“In one embodiment, addition filter conditions are concatenated onto a
first filter condition for other column or field objects corresponding to the current
applet upon subsequent processing of the applets child column and field nodes
as those nodes are encountered. For example, in the application
representation of FIGURE 12, each of the Last Name, First Name, Phone #,
Street Address 1, Street Address 2, State City and Country fields have been
selected to be voice-enabled. As a result, appropriate filter logic would be
added to allow data pertaining to these fields to be filtered through at the Field
level.

The operations and logic described above for the flowchart of
FIGURE 15 are further repeated until all of the nodes in the application
representation have been processed. The net result is that in accordance with
one embodiment of the invention there will be a separate style sheet created

for each view, and each view will include child templates corresponding to one
22

WO 03/069500 PCT/US03/04802

or more applets that are contained within that view. The style sheet builder is
also used to build style sheets for the voice update support component 104, as
described below.

Exemplary Enterprise Data System

In one embodiment, enterprise data system 16 comprises a Siebel 7
enterprise data system and Web engine 106 comprises a Siebel Web Engine
(SWE). Under the Siebel 7 architecture, the SWE provides an XML interface to
enable third party applications to access a Siebel enterprise data system.
Siebel 7 supports open system architecture through XML pages that are
generated by the Siebel Web Engine as applications can make a request
through a web-server, Java Data Bean or ActiveX Data Control.

In order to support different implementations of voice application that
vendors develop, the XML interface generates the definition of user interfaces
and user data in XML format, which will then be sent to the vendor's voice
application. The voice application will use this information to format its voice
page and present that page to its voice users via internal operations such as
TTS. In response to verbal navigation commands and data request, the voice
application will then format a next request based on a current user navigation
context and submit it via an appropriately configured XML document back to
the Siebel Web Engine. Throughout the remainder of this specification, SWE
XML interface access examples will be provided using an HTTP request
format. It is important to note that similar access features are also available
through an equivalent COM or JDB Java data bean).

XML Page Content
The XML page output is based on the application definitions, including

application, screen, view, applet, and columns/fields/controls, that are defined
in a repository. In accordance with the Siebel enterprise data system
architecture, administrators are enabled to customize their enterprise data
system implementations to fit their needs such that each implementation will be
unique. and customer can change. The XML interface defines XML tags in the
XML pages to support various types of user interfaces that are presented to
different type of users, including HTML and WML dat.

23

WO 03/069500 PCT/US03/04802

Generally, each XML output page 34 that is sent back to voice

application 14A contains the following sections:

1. The supported version of XML and encoding information

This information is appended in all XML pages.

2. Application information
This information is appended in all XML pages. It describes the
application name, such as Siebel Sales Enterprise, that the voice

application is connected to and interacting with.

3. User Agent Markup
This information is appended to all XML pages. It describes the default
markup language that is supported and is based on user-agent in the

http header request header.

4. Active Screen, View and Applets definition and User Data
This. information is generated by default. If application only wants this
information, it can add SWEDataOnly=TRUE in the http request. This
section contains current active screen and view information and also
applets and the record (user data) information defined in that view.
XML User Data

This section gives a detailed description of the outbound XML tags

contained in an XML page 34 that is returned to voice application 14A in
response to a request for user data (e.g., via a user operating phone 18). To
retrieve data, voice application 14A sends a request having a format described
below to Web engine 106. The request contains Ul object specific information,
such as screen, view, and applet identifiers, and specifies as style sheet to use
when filtering the returned dataset. The request may also include additional
parameters that are specific to the Siebel Web Engine. A table listing some of
these parameters and the effect of such parameters is contained in the
attached appendix. For example, if the voice application only wants data

returned without Ul information, the user can specify that the SWEDataOnly
24

WO 03/069500 PCT/US03/04802

parameter is set to TRUE in the request. When this parameter is set, the
returned XML contains only data tags and does not contain any Ul Navigation
elements like menu drop downs, page tabs etc. In contrast, if the
SWEDataOnly is not set to TRUE (default value), then in addition to the data,
the user data returned includes data pertaining to the screen, applet and view
the data resides in. For instance, the user data for the Contacts screen would
have information pertaining to the SCREEN, VIEW, and APPLET the data is
retrieved from in addition to the actual user contact data.

The sample XML provided herein represents XML data for the Contacts
Screen. An HTTP request made to Web engine 106 SWE to retrieve data
pertaining to the Contacts screen may have the following format:

http://localhost/sales/start.swe?
SWECmd=GotoPageTab&SWEScreen=Contacts+Screen&SWEGetDataOnly=
TRUE

LISTING 1

The‘http://localhost/sales/start.swe? Parameter specifies the Internet URL
address for the Web engine. The parameters in the second line correspond to
specific commands that instruct the Web engine what data is desired based on
a navigation context within the application — in this case the contacts screen.
As discussed above, the last parameter specifies that only data pertaining to
appropriate Ul objects are to be returned.

In general, a typical XML page that is returned by the Web engine in
response to a data request will have a format shown in FIGURE 16 (when the
SWEDataOnly=TRUE argument is used). As will be recognized by those
skilled in the XML art, the XML page includes nested pairs of XML tags that are
used to define a format for the returned data. Each pair of tags defines a level
in the hierarchy of the XML tree. Detailed examples of various portions of the
XML page are shown in FIGURES 17, 18, and 19.

With reference to FIGURE 17, the first element in the XML page will be
an application element 350 that identifies the name of the application. The next

element comprises a user agent element 351 that provides information about
25

WO 03/069500 PCT/US03/04802

the user agent or the browser type that made the XML or HTML request. A
screen element 352 appears next, which is contained inside of the application
element tag pairs. This element gives information about the name and title for
the currently active screen.

The next element is a view element 354. Similar to the screen element,
the view element describes the name and title of the currently active view. An
applet element 356 is contained inside the view. In addition to returning an
applet name 358 and applet title 359, the applet element includes a MODE
attribute 360, a NO_INSERT attribute 362, NO_MERGE attribute 364, a
NO_DELETE attribute 366, a NO_UPDATE attribute 368, a
NO_EXEC_QUERY 370. The MODE attribute describes what mode the applet
is in. It can either be in an EDIT mode or BASE mode. The former means that
the applet allows modification, deletion, creation and querying of records. The
latter means that the applet is read only and cannot be modified.

The NO_INSERT, NO_MERGE, NO_DELETE, NO_UPDATE,
NO_EXEC_QUERY atitributes provide a filter to what specific edit mode
operations are possible for the applet. If any of these attributes are TRUE then
that particular operation is not :‘possible. For instance, if the NO_INSERT
attribute is TRUE then new records cannot be inserted onto this applet. The
voice application can tailor the voice commands based on these attributes. For
instance, if the NO_EXEC_QUERY attribute is set to FALSE for an applet, this
indicates that the Voice application should be able to query for a contact using
that applet.

Another attribute included in the applet element is a CLASS attribute
372. This attribute specifies the C++ class the applet belongs to. For instance,
in the illustrated example the CLASS attribute has a value of
CSSFramelListBase, which identifies it as a List applet under the Siebel 7.0
architecture.

A ROW_COUNTER attribute 374 provides an indication of the number
of data records returned. A “+” at the end of the attribute value indicates that
there are more records than that returned by the current XML page. One of the
ways to get all the data would be to check for the ROW_COUNTER attribute

and see if it contains a “+”. If it does, then submit the prior data request to the
26

WO 03/069500 PCT/US03/04802

Web engine repeatedly until the ROW_COUNTER attribute no longer ends with
a“+.

It is possible to retrieve a large number of rows via a single request by
setting the SWESetRowCnt parameter in the HTTP request. Caution should be
used when setting this parameters, as a large value may generate a delayed
response since data pertaining to the number of rows provided by the
parameter must be retrieved, converted into an XML format, and appended to
the XML page.

In addition the the HTTP route, XML pages that return only data may
also be retreived via the Siebel Data Bean and ActiveX Controls via calls to
methods provided by the underlying business components (i.e., the business
components corresponding to object manager 54). This way, specific columns
can be activated directly, thus limiting the returns to specified data.

RS _HEADER, COLUMN
The next XML element of importance is the RS_HEADER element 376.

As shown in further detail in FIGURE 18, this element contains one or more

COLUMN elements 378 that provide column.details for the underlying data
records. Each column element includes a NAME attribute 379, and a
DISPLAY_NAME attribute 380, that respectively provide information about the
name and display name of the column on the list applet. A DATATYPE
attribute 381 describes what kind of data type the column represents. If the
DATATYPE corresponds to a text type of data, a TEXT_LENGTH attribute 382
may be provided. For instance, a phone number might have a data type of
“phone” and an email might have a data type of “email” or “character.”

A REQUIRED attribute 383 defines whether the column is a required
column or not. This information is useful when creating new records. The
voice application can determine what field information is mandatory by looking
at this attribute. A FORMAT attribute 384 is an important attribute that the
voice application can use to determine the format of the data. For the Date
data type this attribute will contain the acceptable Date Format (e.g., as shown
in the middle column element of FIGURE 18). For revenue and other price
related fields this attribute will have the format for the dollar amount. The voice

application can use this to get or display the right information back to the user.
27

WO 03/069500 PCT/US03/04802

A CALCULATED attribute 385 specifies that the column is not a
database column but rather contains a value that is calculated using a
mathematical expressions or similar calculation. A FIELD attribute 386
provides the name of the FIELD element the column refers to. The FIELD
element (described below) contains the actual data. Typically, voice
application 14A might make use of both the FIELD and COLUMN elements to
get more information on the data. A READ_ONLY attribute 387 specifies

whether the column is editable or just read only.

RS DATA, ROW, FIELD

The next important XML element is an RS_DATA element 391. This
element contains the XML tags that hold the actual data. An example of an
RS _DATA element is shown in FIGURE 19. -

A ROW element 392 identifies the Row id of the data in the attribute
ROW_ID. This information is very useful in querying for a particular row of data

and getting the detailed information for that row. For instance, if the voice
application wanted a particular row, e.g. 12-WFJ4D, on the Contacts Screen, -

the XML request would look something like the following:

http://localhost/sales/start.swe? :
SWECmd=InvokeMethod&SWEMethod=DrillDown&SWEView=Visible+Contact+List+Vie
w&SWESetMarkup=XML&SWEApplet=Contact+List+Applet&SWERowId=12-
WFJ4D&SWEField=Last+Name

LISTING 2

A SELECTED attribute 393 indicates that the particular row is selected
on the User Interface. FIELD elements 394 holds the actual data for the row.
Each FIELD element includes a NAME attribute 395 that provides the name of
the Business Component field corresponding to the element. This information
is useful in determining what fields to query on while fetching a particular row
id. In the URL of LISTING 2 the SWEField parameter is queried on the Last
Name of the contact. Each FIELD element also includes a VARIABLE

28

WO 03/069500 PCT/US03/04802

attribute 396 value that corresponds to the name of the column to which the
field is mapped to.
Retrieving Detailed Information About the Data

As discussed above, the RS HEADER section holds detailed

information about each data column. For instance, if the voice application

wants to detect if a particular column holds a phone number then it should
lookup the DATATYPE attribute in the COLUMN element (under the
RS_HEADER section) and then get the data from the FIELD element. The
FIELD attribute of the COLUMN element gives a link to the FIELD element,
which holds the actual data. It is recommended not to use the field attributes in
the RS_DATA section for data type detection, as this information is not
guaranteed to be a constant. This might change if the object definition, field
names in this case, are changed. |

Voice Access Process Using the Mobile connector

With reference to the flowchart of FIGURE 20, a voice data access
process in accordance with the software and hardware architectures for the
systems described herein begins in a block 420 in which a user verbalizes a
voice request via a voice application user interface. Generally, the voice
application user interface operations are enabled in large part via voice
infrastructure 20 and is therefore outside the scope of the invention, as
discussed above; the operations of block 420 and a block 434 discussed below
are included in the flowchart to illustrate how a complete voice access would be
performed.

In a block 422, the voice application transforms the voice request into an
XML query (i.e., data request) and sends the query as an XML document 32 to
Web engine 106 via either the Siebel COM or Java interface, or through Web
server 112 using HTTP. For example, suppose the user desires to retrieve
information pertaining to a particular contact from within the Contacts Accounts
Entry Applet having a last name of "Jones," and the applicable style sheet is
named "Sales_Accounts_stylesheet" Using HTTP, the XML query would look

something like the following:

http://localhost/applicationname/start.swe?
29

WO 03/069500 PCT/US03/04802

SWECmd=GotoView&SWEView=Sales+Accounts&SWESetMarkup=XML&SWEApplet=Co
ntacts+Accounts+Entry+Applet&SWEDataOnly=TRUE&SWEXslStyleSheet=Sales_Accounts
_stylesheet&Last+Name=Jones

LISTING 3

In the foregoing example and other examples discussed above, the XML
query comprises a concatenated list of Siebel Web Engine commands,
methods and arguments that informs the Siebel Web Engine what data is
wanted and how that data is to be provided back to the requester. In general,
the Web engine needs to know a navigation context for the request data, such
as the screen, view, applet, and columns or fields from which the data may be
accessed. In addition to the navigation context data, thé input XML document
should also include the name of a style sheet that is to be applied to filter the
returned data. In one embodiment, this is provided in a SWEXsIStyleSheet
argument. In accordance with one embodiment discussed above, a style sheet
is created for each view in a given application. As a result, the style sheet
corresponding to the view of the desired navigation context should be used to
filter data in the output XML document.

Upon receiving the XML query, in a block 424 the Web engine parses
the XML document to identify the navigation context corresponding to where
the data may be accessed, along with any particular data location information,
such as a rowed. This information is then passed on to the object manager to
service the request. The object manager then formulates an appropriate SQL
query, executes the SQL query against database 38, and returns data
corresponding to the query's result set to the Web engine in a block 426. The
Web engine the generates an XML document corresponding to the result set in
a block 428 based, in part, on any applicable Siebel Web Engine parameters
that were provided in the incoming XMLwere provided in the incoming XML
query. For example, if the SWEDataOnly argument is set to TRUE, the Web
engine will filter out all of the Ul content corresponding to the result set.

At this point the mobile connector applies the specified style sheet to the
XML document to filter out all data except data pertaining to any voice-enabled

columns or fields in accordance with the current request. For example, in
30

WO 03/069500 PCT/US03/04802

response to the XML query in LIST 3, the Web engine would create an XML
document containing all of the contact information for all contacts with a last
name of "Jones."

At this point, the mobile connector then applies the identified style sheet
to the XML document to filter out all the data that corresponds to columns
and/or fields that were not selected to be voice-enabled for the current
navigation context (i.e., current SCREEN, VIEW, and APPLET. Since the style
sheet is an XSLT style sheet, one of several well-known prewritten software
modules that implement an appropriate XSLT style shest processing algorithm
may be used.

As discussed above, the original XML document submitted to be
transformed via the XSLT style sheet is the source tree, while the resulting
transformed (i.e., filtered) document comprises the result tree. To produce the
result tree, the algorithm traverses the XSLT style sheet based on conditional
logic contained in the style sheet, copying data from the source tree to the
result tree when a corresponding copy element is encountered.

For example, returning to the style sheet of FIGURES 14A-C, the
algorithm would begin at XLST header 253 and continue sequentially through
the various style sheet templates using appropriate branching conditions. The
first style sheet template that is encountered is application template 254, which
corresponds to the "APPLICATION" level of the source tree document. As
discussed above, the XML document that is output from the Web engine after
the style sheet is applied will have a format similar to that shown in FIGURE 16.
The source tree document will have a similar format. Accordingly, the
"APPLICATION" level is identified by the <APPLICATION ...> tag. In block 260
all of the values pertaining to the application level are copied to the result tree
document. For example, data pertaining to the APPLICATION NAME will be
copied to the result tree.

Next, in decision block 262 it is determined that a Screen level exists in
the source tree, and screen template 268 is called in code block 264. This
causes the processing to jump to screen template 268.

In a manner similar to Application template 258, in the Screen template

all of values pertaining to the Screen level are copied to the result tree in block
31

WO 03/069500 PCT/US03/04802

266, and a determination is made in decision block 268 to whether a View level
exists in the source tree. For source trees having a structure similar to that
shown in FIGURE 16, the answer to decision block 268 will be true, causing
View template 272 to be called in block 270.

In View template 272, things get a little more interesting. Since the
selected style sheet will correspond to the current view, all of the view
information is copied to the result tree in block 257, such as the views name
and title. The processing will then flow to applet template routing section 274,
wherein the test conditions corresponding to decision blocks 337 are evaluated.
In the current example, the applet is the Contacts Account Entry Applet, which
has a corresponding test condition defined in a decision block 341. In
response to a TRUE result for decision block 341, code pertaining to a
block 343 will be executed, causing the pfocessing to jump to Contacts
Account Entry Applet template 278.

At the start of this template, all of the applet information is copied to the
result tree in block 282, leading to decision block 284, which will determine that
the source tree includes a List level. Contacts Account Entry Applet List
Template 288 is then called in block 268. In the Contacts Account Entry Applet
List Template, data pertaining to the list level (this will usually include just the
<LIST> and </LIST> tags) is copied to the result tree, and an RS_DATA test
condition corresponding to decision block 320 is encountered. |f this condition
is TRUE, which will be the case when field data is sought, the processing
jumps to Contacts Account Entry Applet RS_Data template 296 via code block
324. In this template, all values pertaining to the RS_DATA level in the source
tree is copied to the result tree in block 336, and then a determination is made
in decision block 338 that a Row level exists in the source tree. Accordingly,
Contacts Account Entry Applet Row template 297 is called in block 340,
causing the style sheet processing to advance to the Contacts Account Entry
Applet Row template.

In this template, all values pertaining to the Row level of the source free
are copied in block 342 to the result tree, and it is determined in decision
block 344 that a Field level exists in the source tree. Accordingly, Contacts

Account Entry Applet Field template 348 is called via block 346.
32

WO 03/069500 PCT/US03/04802

The Contacts Account Entry Applet Field template is different than the
previous templates that were encountered. Rather than copy all of the data to
the result tree, the logic in code block 348 says to copy data in the source tree
pertaining to the "Last Name," "First Name," "Work Phone#,"” "Street Address
1," "Street Address 2," "City," "State," and "Country" fields to the result tree; the
data in all of the other fields of the field templates parent applet will not be
copied to the result tree, and thus will be filtered out.

Suppose that it was desired to retrieve data pertaining to the Account
List Applet 275 in the application representation of FIGURE 12. Since the
Application, Screen, and View are the same for this applet as they were for
More Info Account Entry applet 276, the processing would proceed in the same
manner as discussed above until reaching Contacts Account Entry Applet List
Template 288. In this instance, the result of decision block 320 will be NO
(FALSE), and the logic will proceed to decision block 322, which will produce a
YES (TRUE) result since a source tree corresponding to a list applet will
include an RS_HEADER level. As a result, the style sheet processing will jump
to Account List Applet RS_HEADER template 292 via code block 326, wherein
the values pertaining to the RS_HEADER level would be copied from the
source tree to the result tree in block 328. Next, in decision block 330 it would
be determined that a Column level exists in the source tree. The result of this
condition would be TRUE, causing the processing to finally jump to Account
List Applet Column template 294, which contains a filter that will only allow data
pertaining to the New, Name, and Main Phone # columns to be copied to the
result tree.

Voice Update Support

The purpose of voice update support module 104 is to support grammar
update for the voice application. The grammars are words or patterns of words
that are listened for by a speech recognizer and other grammar processors that
are part of the voice infrastructure and/or the voice application. The speech
recognizer uses grammars to know what the user said and then passes the
information to the voice application for further processing. In one respect,
grammar fields are basically the subset of list columns defined in a list applet.

For example, as the voice application is in the state of looking up an account,
33

WO 03/069500 ‘ PCT/US03/04802

the voice user can say an account name and the speech recognizer will use the
account name list that the voice user would normally view if he or she was
connected to the enterprise data system via an HTML client as the grammar to
understand what the voice user said. Then the voice application uses this
account name to format the request and send it to the Siebel Web Engine to
get the detailed information of that account.

In order to support this paradigm, grammar data corresponding to
various data columns must be accessible to voice application 14A. Preferably,
this will be done by periodically retrieving data pertaining to those data columns
from the enterprise data system via the mobile connector (or via another
access means, such as a backend connection directly to database 38), and
storing the retrieved data in a manner that is useable by the voice application
and/or voice infrastructure 20 as grammar data. For example, the grammar
data may be stored in a local (to the vbice application) database. The specific
implementation details for storing and accessing the grammar data will be
familiar to those skilled in the voice access system arts and are outside the
scope of the invention. ‘

Voice update support module 104 supports dynamic grammar updates
through exporting user data in XML format to the voice application. The output
is generated by Web engine 110 based on the view and applet specified in the
XML query request and uses grammar stylesheets to filter out information that
is not required as grammars. The grammar style sheets are generated in the
same manner as discussed above with reference to the voice style sheets,
except that in this instance the selections in the Grammar Update Enable
column of the application representation are used rather than the values in the
Voice Enable column. The voice application can periodically check if there is
any new/updated data (also refered to as "delta" data) which are used for
grammar, and retrieve the delta changes if desired.

The retrieval of grammar information means getting the data of the
subset of the list columns in the applet to which the update is to apply. This
may be implemented with a new SWE method, GetVoiceGrammer, to retrieve
the delta data that is based on the specified view and applet and the last

update time that the periodic update was performed for that view and applet
34

WO 03/069500 PCT/US03/04802

and use an appropriate grammar stylesheet (e.g., pertaining to the view) to
filter the output for data only pertaining to grammars;

In one embodiment, the request parameters to web engine 106 for Voice
Update Support should include the following information:

a. SWE Command Name, required

a. SWE Method Name, required

b. View Name, required

c. Applet Name, required

d. Last Update Time, optional

For example if a voice application submits the command with the

parameters below to the Web Engine:

SWECmd=InvokeMethod
SWEMethod=GetVoiceGrammar&
SWEView=Account List View&
SWEApplet=Account List Applet&
LastUpdate=01/15/2001 -

Where

GetVoiceGrammar is a new command in the set of SWE commands;
SWEView specifies the view name;

SWEApplet specifies the applet names that have grammar fields
defined;

LastUpdate specifies the last update time that the delta is based on;.

the SWE will return the list of account names that have been updated or
added since 01/15/2001. If the information of LastUpdate parameter is not
provided, the voice update support module will return all grafnmar data
pertaining to the view and applet.

In one embodiment, the output will be in XML format using the same

output DTD (data type definition) normally implemented but it will contain only

35

WO 03/069500 PCT/US03/04802

partial Ul information. In case of an error during processing, the output will
include the error message in an <ERROR> tag.

With reference to the flowchart of FIGURE 21, an typical grammar
update process will proceed as follows. In a block 440 the voice application
determines which views and applets it wants to update grammar data for and
formulates one or more XML queries requesting these data and send to the
Web engine via the COM or Java interface or through the Web server using
HTTP. Each request is accompanied with the name of the grammar style sheet
that is to be appled and last update information, if applicable.

In response to receiving the XML query request, the Web engine parses
the XML in a block 442 and passes on appropriate data to the object manager
to service the request. The object manager then returns a result set
corresponding to the request to the Web engine in a block 444. In a manner
similar to that discussed above, the web engine generates an XML source tree
document corresponding to the result set in a block 446, which is filtered by the
voice update support component by using the specified grammar style sheet in
a block 448 to produce an XML result tree that only includes data pertaining to
columns and fields that were marked for update previously as defined by the
grammar style sheet. The web engine then sends the filtered data as an XML
document back to the voice application in a block 450, and the voice
application updates its grammar database in a block 452.

Exemplary System Infrastructure

An exemplary system infrastructure 500 by which various embodiments
of the invention described herein may be implemented is shown in FIGURE 22.
The enterprise data system side of system infrastructure 500 uses a well-
known N-tier architecture, wherein one or more physical machines occupy each
tier in the architecture. These tiers include a database tier, depicted by a
database server 502, and application server tier, depicted by an application
server 504, and a web server tier, depicted by a web server 506. Each of the
machines in the N-tier architecture are linked in communication via a local area
network (LAN) 508.

Database server 502 is used to run an RDBMS (relation database

management system) database server software component that hosts
36

WO 03/069500 PCT/US03/04802

database 38. The RDBMS database server software will typically comprise a
SQL database server that may be provided by one of several vendors,
including Oracle (Oracle Enterprise 8i and 9i), Microsoft (SQL Server 7 or
2000), IBM (DB2), Sybase, or Informix. All of the components depicted in the
block corresponding to application server 36 may be run in the application
server tier. 'Optionally, all or a portion of the software associated with Web
engine 110 may be run on web server 112.

On the voice application side, the architecture includes a voice
application server 510 on which voice application 14A is run. The voice
application server is linked to web server 508 via a computer network 512, such
as a LAN, a WAN (wide area network) or via the Internet. Generally, the voice
application server will be connected to another server that is part of voice
infrastructure 20 via a LAN or the same machine may be used for both voice
infrastructure operations and for serving the voice application. If the Siebel
COM or Java interface 110 is implemented, the client side of this software will
typically be run on voice application server 510. If Web server 112 is used,
software corresponding to this component may be run on the voice application

. server or a separate web server machine linked to the voice application server
via a LAN (not shown).

As discussed above with reference to FIGURE 7, in one embodiment
reference or application vendor GUI 108 is supported by Web pages that are
served to a client 514 via computer network 512. Alternative, the application
vendor may create their own GUI (108) based on a language that supports the
generation of interactive graphical user interfaces, such as C, C++, or Java, in
which case the GUI component may be directly connected to application
server 504 via a LAN or WAN connection (not shown).

The foregoing embodiments disclose particular details that are suitable
for using the invention in connection with voice access systems. This is not
meant to be limiting. For example, the architecture of the system enables an
external application or system to access filtered data from data systems, such
as an enterprise data system; the voice access system embodiments
discussed above correspond to a particular implementation of the system,

wherein the filtered data are used for voice access purposes. In instances in
37

WO 03/069500 PCT/US03/04802

which filtered data are desired to be retrieved from a data system, rather than
selecting Ul objects to be voice-enabled, the system would permit users to
select Ul objects to be "pass-through" enabled (i.e., data pertaining to pass-
through enabled Ul objects would pass through the data filter mechanism), and
corresponding subscription data would be generated in the same manner
discussed above. An exemplary result of such subscription data is shown in
FIGURE 12A. From the external application's or system's standpoint, the
operations for interacting with the data system via the mobile connector would
appear substantially identical, whether the filtered data was ultimately used ina
voice access system or for any other purpose.

The same is true for data updates. The principles and teabhings
disclosed in the exemplary implementation discussed above concerning
grammar building and updating for use in a voice access system may be
applied to other data building and updates implementations as well. In such
instances, the user interfaces provided by the system or application vendor
should reflect the type of data being updated. For example, in the GUI shown
in FIGURE 13, the "Subscribe for Grammar" labels might be replaced with
"Subscribe for Update" or something similar to inform the user what is being
selected for update. Accordingly, the subscription data would correspond to
the data contained in the "Update Enable" column of FIGURE 12A.
EXEMPLARY FILE SERVER COMPUTER SYSTEM

With reference to FIGURE 23, a generally conventional computer

server 600 is illustrated, which is suitable for use in connection with practicing
the present invention. For example, computer server 600 may be used for
running application server software software modules and components,
including object manager 56, data manager 58, Web engine 106, voice update
support 104, and voice metadata builder 102. The same or preferably a
separate computer server of similar architecture may be used to host database
38. Similarly, the same or preferably a separate computer server of similar
architecture may be used for Web server 112. Examples of computer systems
that may be suitable for these purposes include stand-alone and enterprise-
class servers operating UNIX-based and LINUX-based operating systems, as

well as servers running the Windows NT or Windows 2000 Server operating
38

WO 03/069500 PCT/US03/04802

systems.

Computer server 600 includes a chassis 602 in which is mounted a
motherboard (not shown) populated with appropriate integrated circuits,
including one or more processors 604 and memory (e.g., DIMMs or SIMMs)
606, as is generally well known to those of ordinary skill in the art. A
monitor 608 is included for displaying graphics and text generated by software
programs and program modules that are run by the computer server. A
mouse 610 (or other pointing device) may be connected to a serial port (ortoa
bus port or USB port) on the rear of chassis 602, and signals from mouse 610
are conveyed to the motherboard to control a cursor on the display and to
select text, menu options, and graphic components displayed on monitor 608
by software programs and modules executing on the computer. In addition, a
keyboard 612 is coupled to the motherboard for user entry of text and
commands that affect the running of software programs executing on the
computer. Computer server 600 also includes a network interface card
(NIC) 614, or equivalent circuitry built into the motherboard to enable the server
to send and receive data via a network 6186..

File system storage corresponding to the invention may be implemented
via a plurality of hard disks 618 that are stored internally within chassis 602,
and/or via a plurality of hard disks that are stored in an external disk array 620
that may be accessed via a SCSI card 622 or equivalent SCSI circuitry built
into the motherboard. Optionally, disk array 620 may be accessed using a
Fibre Channel link using an appropriate Fibre Channel interface card (not
shown) or built-in circuitry.

Computer server 600 generally may include a compact disk-read only
memory (CD-ROM) drive 624 into which a CD-ROM disk may be inserted so
that executable files and data on the disk can be read for transfer into
memory 606 and/or into storage on hard disk 618. Similarly, a floppy drive 626
may be provided for such purposes. Other mass memory storage devices such
as an optical recorded medium or DVD drive may also be included. The
machine instructions comprising the software program that causes
processor(s) 604 to implement the functions of the present invention that have

been discussed above will typically be distributed on floppy disks 628 or
39

WO 03/069500

PCT/US03/04802

CD-ROMs 630 (or other memory media) and stored in one or more hard

disks 618 until loaded into memory 606 for execution by processor(s) 604.
Optionally, the machine instructions may be loaded via network 616 as a carrier
wave file.

Although the present invention has been described in connection with a
preferred form of practicing it and modifications thereto, those of ordinary skill
in the art will understand that many other modifications can be made to the
invention within the scope of the claims that follow. Accordingly, it is not
intended that the scope of the invention in-any way be limited by the above
description, but instead be determined entirely by reference to the claims that

follow.

APPENDIX
TABLE 1 provides and exemplary set of Siebel Web Engine (SWE)

commands that enable access to a Siebel Enterprise Data System via an HTTP
XML request. TABLE 2 provides various SWE methods that may be used to
access the Siebel Enterprise Data System via an HTTP XML request. TABLE
3 includes parameters that may be provided for the SWE commands and

methods in an HTTP request to control the form and content of a returned XML

document.
Command Description Required Arguments Optional Arguments
GotoPageTab Go to a Siebel screen. SWEScreen — name of None
Will show the default the screen
view for the screen.
GotoView Go to a Siebel View. If SWEView- name of the SWEKeepContext- if

the SWEPPostnApplet
and SWEPostnRowID
arguments are specified,
it will execute a search
for the specified rowID in
the specified applet. If
SWEQMApplet and
SWEQMMethod
arguments are specified,
it will invoke the method
after going to the view.

view.

TRUE, keeps the
current business object
context, when
requesting to a view
based on the same
business object.
SWEPostnApplet-
name of the applet on
which the search
should executed.
SWEPostnRowld- row
Id to search for.
SWEQMApplet-name

40

WO 03/069500

PCT/US03/04802

of the QueueMethod
applet. This is the
applet where the
method specified in
SWEQMMethod
should be invoked after
going to the view.
SWEQMMethod-name
of the QueueMethod
method. The method to
be invoked.

query spec of the fields

SWEQMArgs-
arguments of the
QueueMethod method.
InvokeMethod Invoke a method on an SWEMethod-name of the | SWEService-name of
applet, a business method. the business service to
service, a business invoke the method.
component, or the SWE SWEBusComp-name
application. of the business
The optional component to invoke
SWEService, the method.
SWEBusComp, and SWEApplet-name of
SWEApplet arguments the applet to invoke the
are used to specify the method.
Siebel object on which
the method should be
invoked.
TABLE 1
Method Description Required Arguments Optional Arguments
Performs initialization None None
CopyRecord then calls CopyRecord
on the business
component.
CreateRecord Performs initialization, None None
then calls NewRecord
on the business
component.
| Drilldown Drilldown on the field as | SWEField: Specify the None
specified in the name of the applet field
argument SWEField. that you want to drilldown
on. The drilldown
information is specified in
the repository.

EditRocord Edit a record. None SWESeq: Specify the
sequence number of
the Edit template to
show. You can have
many Edit templates for
an applet in Siebel
Tools, each identified
by the sequence
number.

ExecuteQuery Execute a query. The None List of arguments with

name and value, where

41

WO 03/069500

PCT/US03/04802

is specified in the list of
arguments.

the name specifies the
field name and the
value specifies the field
query spec.-Will set
field query spec before
executing the query.

GotoView

Go to a Siebel view.

If the SWEPostnApplet
and SWEPostnRowld
arguments are specified,
will execute a search for
the specified rowed in
the specified applet.

SWETargetView-name
of the view.

SWEKeepContext-if
TRUE, keep the current
business objects if
going to a view that
uses the same
business object.
SWEPosinApplet,
name of the applet that
the search should be
executed on.
SWEPostnRowld-
rowld to search for.
SWEQMApplet-name
of QueueMethod
applet. This is the
applet where the
method (as specified in

| SWEQMMethod)

should be invoked after
going to the view.
SWEQMMethod-name
of the QueueMethod
method. The method to
be invoked.
SWEQMArgs-
arguments of the
QueueMethod method.

NewRecord

If the applet has an
association applet, show
the association popup
applet. Otherwise,
create a new record.

None

None

TABLE 2

Query Parameter

Description

Usage

Example

SWEGetApplet This parameter is used 1. SWEGetApplet=<n | 1. SWEGetApplet=A
to filter the outbound ame of the applet> ccount+List+Applet
XML document so only 2. <ARG 2. <ARG
the applet named as the NAME="SWEGetApp NAME="SWEGetA
value of the parameter let”>name of the pplet”>Account List
will be allowed in the applet</ARG> Applet</ARG>
output. All other
document content will be
discarded.

SWESetMarkup Temporarily set the 1. SWESetMarkup=<n | 1. SWESetMarkup

markup language to use
in the output document.

ame of the markup
language>

2. <ARG
NAME="SWESetMar

=HTML

2. <ARG
NAME="SWESetM
arkup”>HTML</AR

42

WO 03/069500

PCT/US03/04802
kup”>markup G>
language</ARG>

SWESetRowCnt Temporarily set the 1. SWESetRowCnt=< SWESetRowCnt
workset size or row number of list rows> =50
number of list applets in | 2. <ARG <ARG
the view. NAME="SWESetRow NAME="SWESetR
Cnt">number of list owCnt">number of
rows</ARG> list rows</ARG>
SWESetNoTempl Disable the use of 1. SWESetNoTempl={ SWESetNoTem
templates during the TRUE | FALSE} pl=TRUE
generation of the 2. <ARG <ARG
outbound document. NAME="SWESetNoT NAME="SWESetN
emp!">TRUE|FALSE oTempl”>TRUE</A
</ARG> RG>
SWEDataOnly Discard all Ul content 1. SWEDataOnly={TR SWEDataOnly=
(including anchors) if set UE | FALSE} TRUE
to TRUE. 2. <ARG <ARG
NAME="SWEDataOn NAME="SWEData
ly’>TRUE|FALSE</A Only">TRUE</ARG
RG> >
SWEXsIStyleSheet Specify the name of the | 1. SWEXsIStyleSheet SWEXsIStyleSh
XSLT stylesheet to use =<stylesheet name>. eet=ui.xsl
to perform the XSLT on The stylesheet needs <ARG
the XML output to be in the NAME="SWEXsISt
document. application’s yleSheet">ui.xsI</A
webtempl directory. RG>
2. <ARG
NAME="SWEXs|Styl
eSheet">name of the
XSLT
stylesheet</ARG>

TABLE 3

43

WO 03/069500 PCT/US03/04802

CLAIMS

What is claimed is:

1. A method for providing data from a data system, comprising:

providing a mechanism to enable a user to identify user interface (Ul)
objects corresponding to a user interface of an application used to access the
data system to pass-through enable; and

in response to a data query request submitted by a requestor to receive
data from the data system corresponding to a navigation context within the user
interface of the application,

returning data from the data system to the requestor pertaining to Ul

| objects corresponding to the navigation context that were identified to pass-

through enable. |

2. The method of claim 1, further comprising:

providing a filter mechanism to filter out data pertaining to Ul objects that
were not identified to pass-through enable,

and, in response to the data query request, further performing the
operations of:

retrieving an unfiltered set of data from the data system pertaining to the
navigation context;

filtering the unfiltered set of data with the filter mechanism to create a
filtered set of data; and

returning the filtered set of data to the requestor,

said filtered set of data comprising data from the data system pertaining
to Ul objects corresponding to the navigation context that were identified to

pass-through enable.

3. The method of claim 2, wherein the filter mechanism implements an
XSLT (extensible Style sheet Language transformation) style sheet containing
logic to filter out any data pertaining to Ul objects in the identified form that are

not pass-through enabled.
44

WO 03/069500 PCT/US03/04802

4. The method of claim 3, wherein the data query request identifies a
particular XSLT style sheet to be used by the filter mechanism.

5. The method of claim 3, further comprising automatically generating an
XSLT style sheet for a set of one or more related forms based on Ul objects
corresponding to the forms that were identified to pass-through enable.

6. The method of claim 1, wherein the data query request identifies a row
of data to be retrieved from a database that is used by the data system to store
data. '

7. The method of claim 1, wherein Ul objects to pass-through enable are
enabled to be identified by performing the operations of:
presenting indicia pertaining to Ul objects corresponding to the user
interface for the data system to a user via a computer user interface;
enabling the user to select which Ul objects to pass-through enable via
the computer user interface by marking the indicia corresponding to those Ul

objects.

8. The method of claim 7, wherein the computer user interface comprises a
graphical user interface (GUI) that is generated by performing the operations
of:

extracting metadata corresponding to the data system application, said
metadata comprising object definitions for the Ul objects of the user interface
including a hierarchical position of each Ul object within the user interface:

processing the metadata to build an application representation
comprising an internal representation of the user interface of the data system
application including data identifying the hierarchical position of each Ul object;
and

rendering a hierarchical tree to provide a visual representation of the

application representation.

45

WO 03/069500 PCT/US03/04802

9. A method to enable voice access to a data system, comprising:
identifying user interface (Ul) objects to voice enable, said Ul objects
pertaining to a user interface that is provided by the data system to access data
in the data system; and
in response to receiving a data request from a voice application that
identifies a navigation context of a user within the user interface for the data
system,
retrieving data from the data system pertaining to the navigation
context of the user; and
filtering the data retrieved from the data system to provide data
pertaining to voice-enabled Ul objects corresponding to the navigation

context of the user to the voice application.

10. The method of claim 9, wherein the data request is received as an XML

document.

11. The method of claim 9, wherein the data request includes commands to

access the data system via an application program interface (API).

12. The method of claim 11, wherein the APl comprises a Siebel Web
Engine API.
13. The method of claim 9, wherein the data are filtered by performing the
operations of:

generating a source tree XML (extended markup language) document
that includes an initial set of data retrieved from the data system in response to
the data request; and

applying an XSLT (extensible Style sheet Language transformation)
style sheet to the source tree XML document to produce an result tree XML

document containing a filtered set of data.

14. The method of claim 9, wherein the Ul objects to voice enable are

identified by performing the operations of:
46

WO 03/069500 PCT/US03/04802

presenting indicia pertaining to respective Ul objects of the user
interface for the data system to a user via a computer user interface;

allowing the user to select which Ul objects to voice enable via the
computer user interface by marking the indicia corresponding to those Ul

objects.

15. The method of claim 14, wherein the computer user interface includes a
first set of markable objects adjacent to respective Ul object indicia to allow a
user to select which Ul object to voice enable and further includes a second set
of markable objects to allow the user to select Ul objects to provide grammar
update support for, said Ul objects that are selected being grammar-update
enabled Ul objects, further comprising:

in response to receiving a grammar update request from the voice
access system that identifies a navigation context of the user interface to
update grammar information for,

retrieving data from the data system pertaining to the navigation context;
and

filtering the data retrieved from the data system to provide data
pertaining to grammar update-enabled Ul objects according to the navigation

context to the voice access system.

16. The method of claim 14, wherein the computer user interface comprises
a graphical user interface (GUI) and the indicia pertaining to the respective Ul
objects are presented to the user as a hierarchical tree corresponding to a
hierarchical relationship of the Ul objects in the user interface of the data

system.

17. The method of claim 16, wherein selected levels in the hierarchical tree

may be expanded or collapsed in response to a user input.

18. The method of claim 16, wherein the GUI is generated by performing the

operations of:

47

WO 03/069500 PCT/US03/04802

storing metadata corresponding to the user interface for the data
system, said metadata comprising object definitions for the Ul objects of the
user interface including a hierarchical position of each Ul object within the user
interface;

processing the metadata to build an application representation
comprising an internal representation of the user interface of the data system
including data identifying the hierarchical position of each Ul object; and

rendering a hierarchical tree to provide a visual representation of the

application representation.

19. The method of claim 18, wherein the application representation
comprises an XML tree, further comprising:

sending the XML tree to a browser operating on a client machine that is
linked in communication with the data system; and

rendering the hierarchical tree via the browser.

20. The method of claim 9, wherein the grammar update request further
includes information identifying a last update for the navigation context, further
comprising filtering data that are retrieved from the data system such that only
grammar data in accordance with the navigation context that have changed

since the last update are provided to the voice access system.

21. The method of claim 9, wherein the Ul objects include objects pertaining
to screens, views, applets, columns, and fields in the user interface of the data

system.

22. The method of claim 9, wherein the filtered data are returned to the

voice application as an XML document.

23. The method of claim 9, wherein Ul object data is returned to the voice
application in addition to the filtered data, said Ul object data defining
characteristics of one or more Ul objects pertaining to the navigation context of

the user.
48

WO 03/069500 PCT/US03/04802

24. The method of claim 23, wherein the Ul object data include data
pertaining to at least one of an operational mode of a Ul object, a read-only
attribute of a Ul object, an insert attribute of a Ul object, a delete attribute of a
Ul object, and an update attribute of a Ul object.

25. The method of claim 9, wherein the data request includes size indicia

- identifying a number of records to be returned to the voice application at one
time, and wherein additional records indicia is provided with the filtered data in
an event in which a number of records for a given data request exceeds the

- number of records specified in the size indicia.

- 26. The method of claim 9, wherein field attribute data comprising attributes
of one or more columns or fields of a Ul object pertaining to the navigation

context of the user are sent to the voice application along with the filtered data.

- 27. The method of claim 26, wherein the field attribute data include at least
one of a data type, a text length, a field name, a required, and a format
attribute.

28. The method of claim 9, wherein the data system provides a web
interface having a URL address, and the data request is received via a
computer network using the HTTP (Hypertext Transport Protocol) or HTTPS
(Hypertext Transport Protocol Secured) protocol.

29. The method of claim 9, wherein the data request corresponds to a COM
(component object model) interface provided by the data system.

30. The method of claim 29, wherein the COM interface enables selected
data to be retrieved from a database in which data for the data system are
stored by referencing a business component that is used to access one or

more database tables in which those data are stored.

49

WO 03/069500 PCT/US03/04802

31. A computer readable medium on which a plurality of machine
instructions are stored that when executed by a computing machine provides
filtered data to a voice access system by performing the operations of:

providing data to render a computer user interface by which a user may
identify user interface (UI) objects to voice enable, said Ul objects pertaining to
a data system user interface that is provided by a data system from which the
filtered data are retrieved to access data in the data system; and

in response to receiving data from the data system pertaining to a data
request from the voice access system that identifies a navigation context of a
user within the user interface for the data system,

filtering the data received from the data system to produce filtered
data pertaining to voice-enabled Ul objects corresponding to the
navigation context of the user; and

providing the filtered data to the voice access system.

32. The machine-readable media of claim 31, wherein execution of the
machine-instructions filters the data by performing the operations of:
generating a source tree XML (extended markup language) document
that includes an initial set of data retrieved from the data system in response to
the data request; and
applying an XSLT (extensible Style sheet Language transformation)
style sheet to the source tree XML document to produce an result tree XML

document containing a filtered set of data.

33. The machine-readable media of claim 31, wherein the Ul objects to
voice enable are identified by performing the operations of:

presenting indicia pertaining to respective Ul objects of the user
interface for the data system on the computer user interface;

enabling the user to identify which Ul objects to voice enable via the
computer user interface by marking the indicia corresponding to those Ul

objects.

50

WO 03/069500 PCT/US03/04802

34. The machine-readable media of claim 33, wherein the computer user
interface comprises a graphical user interface (GUI) and the indicia pertaining
to the respective Ul objects are presented to the user as a hierarchical tree
corresponding to a hierarchical relationship of the Ul objects in the user

interface of the data system.

35. The machine-readable media of claim 34, wherein execution of the
machine instructions generates the GUI by performing the operations of:

retrieving metadata corresponding to the user interface for the data
system, said metadata comprising object definitions for the Ul objects of the
user interface including a hierarchical position of each Ul object within the user
interface;

processing the metadata to build an application representation
comprising an internal representation of the user interface of the data system
including data identifying the hierarchical position of each Ul object; and

providing data from which a hierarchical tree corresponding to the
application representation can be rendered to provide a visual representation of

the application representation.

36. The machine-readable media of claim 35, wherein the application
representation comprises an XML tree, and execution of the machine
instructions further performs the operations of:

sending the XML tree to a browser operating on a client machine that is
linked in communication with the data system; and

rendering the hierarchical tree via the browser.

37. The machine-readable media of 33, wherein the computer user interface
includes a first set of markable objects adjacent to respective Ul object indicia
to allow a user to select which Ul object to voice enable and further includes a
second set of markable objects to allow the user to select Ul objects to provide
grammar update support for, said Ul objects that are selected being grammar-
update enabled Ul objects, and wherein execution of the machine instructions

further performs the operations of:
51

WO 03/069500 PCT/US03/04802

in response to receiving a grammar update request from the voice
. access system that identifies a navigation context of the user interface to
update grammar information for,
retrieving data from the data system pertaining to the navigation context;
and
filtering the data retrieved from the data system to provide data
pertaining to grammar update-enabled Ul objects according to the navigation

context to the voice access system.

38. The machine-readable media of claim 37, wherein the grammar update
request further includes information identifying a last update for the navigation
context, and wherein the data retrieved from the data system are filtered such
that only grammar data corresponding to grammar update-enabled Ul objects
in accordance with the navigation context that have changed since the last

update are provided to the voice access system.

39. The machine-readable media of claim 31, wherein the Ul objects include
objects pertaining to screens, views, applets, columns, and fields in the user

interface of the data system.

40. The machine-readable media of claim 31, wherein the filtered data are

returned to the voice application as an XML document.

41. The machine-readable media of claim 31, wherein the data request
includes size indicia identifying a number of records of filtered data to be
returned to the voice access system at one time, and wherein additional
records indicia is provided with the filtered data in an event in which a number
of records for a given data request exceeds the number of records specified in

the size indicia.

42. A computer readable medium on which a plurality of machine
instructions are stored that when executed by a computing machine provides

filtered data by performing the operations of:
52

WO 03/069500 PCT/US03/04802

providing data to render a computer user interface by which a user may
identify user interface (Ul) objects in forms corresponding to a user interface of
an application used to access the data system to pass-through enable;
generating a filter mechanism to filter out underlying data pertaining to
Ul objects contained in the forms that were not identified to pass-through
enable; and |
in response to a data query request from a requestor requesting to
retrieve data from the data system meeting a query criteria provided with the
data query request, said query criteria identifying a form to which the requested
data pertain,
receiving an unfiltered set of data from the data system based on
the query criteria;
filtering the unfiltered set of data with the filter mechanism to
create a filtered set of data; and
returning the filtered set of data to the requestor,
the filtered set of data including data meeting the query criteria

and pertaining to Ul objects that are pass-through enabled.

43. The machine-readable media of claim 42, wherein the filter mechanism
implements an XSLT (extensible Style sheet Language transformation) style
sheet containing logic to filter out any data pertaining to Ul objects in the
identified form that are not pass-through enabled.

44. The machine-readable media of claim 41, wherein the data query
request identifies a particular XSLT style sheet to be used by the filter

mechanism.

45. The machine-readable media of claim 41, wherein execution of the
machine instructions further performs the operation of automatically generating
an XSLT style sheet for a set of one or more related forms based on Ul objects

corresponding to the forms that were identified to pass-through enable.

53

WO 03/069500 PCT/US03/04802

46. The machine-readable media of claim 42, wherein the computer user
interface includes indicia pertaining to Ul objects contained in respective forms
corresponding to the user interface for the data system, and a user is enabled
to identify which Ul objects to pass-through enable by marking the indicia

corresponding to those Ul objects via the computer user interface.

47. The machine-readable media of claim 46, wherein the computer user
interface comprises a graphical user interface (GUI), and execution of the
machine instructions generates the GU! by performing the operations of:

retrieving metadata corresponding to the user interface for the data
system, said metadata comprising object definitions for the Ul objects of the
user interface including a hierarchical position of each Ul object within the user
interface;

processing the metadata to build an application representation
comprising an internal representation of the user interface of the data system
including data identifying the hierarchical position of each Ul object; and

providing data from which a hierarchical tree corresponding to the
application representation can be rendered to provide a visual representation of

the application representation.

48. The machine-readable media of claim 47, wherein the application
representation comprises an XML tree, and execution of the machine
instructions further performs the operations of:

sending the XML tree to a browser operating on a client machine that is
linked in communication with the data system; and

rendering the hierarchical tree via the browser.

54

WO 03/069500

—

Opportunities,
Contacts, Accounts
Calendar, Employee
.. Other Data, etc.

SERVER

|
}
|
APPLICATION {
I
|
|
|

1/26

~ MOBILE
CONNECTOR

15

PCT/US03/04802

APPLICATION

L14

WO 03/069500 PCT/US03/04802

2/26

1

ogl [TELEPHONY
INTERFACE | 26

TTS ASR]

Opportunities,
Contacts, Accounts

VOICE INFRASTRUCTURE

!

|

|

1

|

|

! -— <
Calendar, Employee 20/ 4

|

! ... Other Data, etc. 12\\ @32 @’\/ 30

|

! MOBILE

: K\ CONNECTOR VOICE APPLICATION

' | -

: | @34 C1an

| APPLICATION ,

! SERVER ! >

! |

! |

! |

' 1

A e —— . — - ——— —\t— —— — —— '

FIG. 14

WO 03/069500

PCT/US03/04802

3/26

50

__ :
i
ul, :
56 BUSINESS | |
t’ |
USER INTERFACE %’gggg !
— |
\ 54 , |
S ECUTABLE) OBJECT MANAGER <+ il §
/ 5 READ |
= REPOSITORY | |
FILE (.SRF) |
DATA MANAGER <READ |
!
= 1 68 :
Usp 58 }l
|
DATA EXCHANGE LAYER 410 }
|
|
|
|
|
|
[DATA STORAGE -1 | !
Les ‘ }
1
|

WO 03/069500 ‘ PCT/US03/04802

4/26

APPLET MANAGER
USER INTERFACE (Ul)
- SCREENS, VIEWS, APPLETS, CONTROLS

PRESENTATION || - NATIVE INTERFACES
SERVICES - HTML IN ANY BROWSER
U - SCRIPTING ON DEDICATED CLIENT
70 -

[

OBJECT MANAGER (OM)

(- BUSINESS LOGIC

- BUSINESS OBJECTS

- BUSINESS COMPONENTS

- BUSINESS SERVICES

- SCRIPTING ON ALL PLATFORMS

APPLICATION < ' L55
SERVICES

L4

DATA MANAGER (DM)

- DATABASE INTERACTION
- DYNAMIC SQL GENERATION
_ AUTO-ADAPTING TO Ul AND OM
- DATABASE SPECIFIC CONNECTOR

\-58

DATABASE
DATA SERVICES
N [- NO BUSINESS LOGIC
U - COMPREHENSIVE DATA MODEL
76 - PERFORMANCE OPTIMIZED

Loz
FIG. 3

WO 03/069500

5/26

BUSINESS

ossect |78

oot

PCT/US03/04802

REPOSITORY
FILE

BUSINESS | . BUSINESS { o, BUSINESS { ..
COMPONENT COMPONENT COMPONENT
DB TABLE DB TABLE
Ugo-1 / \Lgo-z
N
| AN
L_Lr DB RECORD - 92 (TYP)
S_CONTACTS ﬁ
ROW_ID | LAST_NAME | FIRST_NAME | COMPANY OF_PHONE
113445 | JONES MIKE INTEL 503-555-3147
113446 | PRICE JAMES GENERAL ELECTRIC| 206-555-1719
113447 | FARNUS SHARON INTEL 408-555-3759
113448 | PIERCE STEPHANIE | BOEING 425-555-0923
RDBMS DATABASE 62

FIG. 4

WO 03/069500

BUSINESS
‘COMPONENT

6/26

PCT/US03/04802

182, 84, 86

PROPERTIES ~ 95

FIELD

FIELD

—

N 96-1 L 96-2

ATTRIBUTES/

ATTRIBUTES/

PROPERTIES PROPERTIES
L 98-1 L 98-2
PROPERTY 1 PROPERTY 2 | PROPERTY 3 PROPERTY 4

FIG. 5

WO 03/069500 . PCT/US03/04802

7/26
I ____________________________ =
| !
i |
|
| DATABASE 38 l
|
| J\ }
|
| | 36
| DATA MANAGER |
| T i
i 58 -
| Y (56 :
\{r¥ OBJECT MANAGER ',
I |
! Y (54 1 :
| USER INTERFACE }|“52 | 20~ VOICE INFRASTRUCTURE
I <) I PN
: : 110 API~_30
| [106 : [2
| WEB] ! SIEBEL
'|i { ENGINE < | COMOR [+>
1] + SESSION MANAGEMENT | \ XML \ -1 34{_“AYA VOICE
|11 + USERAUTHENTICATION | 32T, ML\ [wes APPLICATION
3 l Ll . L ol
]
| UPDATE SUPPORT it l HTTPS _
| 148 ! Ci12 Liaa
! METADATA BUILDER |
5 STYLE SHEET > |
|
| BUILDER, - ' | REFERENCE OR APP. VENDOR GUI
! 1 Y122 02 ! \L ‘
| <
| BUILDER ENGINE [« |
|
: \jtzs
| 114 Ul OBJECT l
! DEFINITION | ~16
|
| |
|
: 0|
| REPOSITORY | | | \
HolE ; FILE (.SRF) !
| el ° | 110
t| Screens, Views, Applets, k 1
1| Columns, Fields/Controls 68 | |
| APPLICATION SERVER | FIG. 6
| |
| |

ENTERPRISE DATA SYSTEM

e ot o o e . e G . ———— — — —— — — —- — —— —— —— — — —

PCT/US03/04802

WO 03/069500

8/26

89

L OIA

S|ojuog/spisld
‘suwnjo) ‘sje|ddy

A

(4ys) 314
AYO1ISOdTY

A

=5

‘SM3IA ‘susalIog

e

L "OLOVHIXd

%

sman Jepuajeg seies I H3
smalp sanmoy sares I [
smalp speo) saes M EH

12iddy Ajug unoooy siessy Y B
1oiddy A5iu3 unodoy saxnoy MR £

Jewwels) Joj aquasqng i
1N 10} BqUISANS
e}
JEWNESE) 10} 9qUISONS |
IN 30} aquasans 4
2 aun) ssalppy
Jewusels) J0) 3qUISqNS
1N 10} 8q1IsANg
| 3U SSAIPPY
Jeunuess) Joj 8quIsans |
1N Joj aquosgng A
#avoud uiew G
1EWwWeRID 10) BQUISENS 1
1N 30j aqpasqns
aweN
SeWWIRIE) 10} 3QUISANS L
1N 20} 9quosans 4
1oiddy Anu3 unoody ojuy asow P B

Jewweis) J0) 9quasqng
1A 403 8QUISGNS A
auoud ulew
JEWWRIG J0) IqUISANS
1N Joj 8qudsgng
aus
JEWWEIL) J0) BQPISGNS)
1N Joj 3quasqng 4
aweN
JewweIs) 1o} 9quUISgNg
1N 10} 3qUISQNS
MaN
Jewnuels) 10} 9quIsSQNg 4
{0) J0j 9qUISANS 4
191ddy 1517 Junosovy I B2
Jewwessy J0) aquasqQng
1M 10} @quUIsang 4
SMBIA SIUNDJY Sales IR m
Jeunuels) Joj aquasang
1N Joj aquosans A
u9910g SIUN0JoY sajes M 1
usasog sanunpoddo ssies T (R

02 saleg paais MR

IN3IO

811
« y3sHvd
NOILYINISTdTY v 2Ly 8L
>
NOILYOITddY avena | T sEaing I~
Jf¥30UN8 VLvavLIN 133HS TIALS sjpaus ol
142 X
0zl
Jrln
¥307ING X [«
¥307NE VLVAYLIN
9z1 | 33UL WX —|vLva NOLLdOSENS > Ovh
- adv aaLoTEs/~ ezt (Moo ey
wo; . . X9AIOY
IN9 YOANIA NOILYOTddY YIAUIS 9IM

HO FONIHIHTY N S -

=

WO 03/069500 PCT/US03/04802

9/26

OPEN GUI, INITIATE VOICE ENABLE PROCESS | 300
AND SELECT APPLICATION -~

!

TRAVERSE REPOSITORY FILE EXTRACTING
METADATA CORRESPONDING TO SELECTED 7}~ 302
APPLICATION'S Ul OBJECTS AND DEFINITIONS

A
BUILD APPLICATION REPRESENTATION
COMPRISING INTERNAL REPRESENTATION OF |
APPLICATION'S SCREENS, VIEWS, APPLETS
AND FIELDS

— 304

A
METADATA BUILDER ENGINE INVOKES XML
BUILDER TO BUILD XML DATA TREE 1306
CORRESPONDING TO APPLICATION
REPRESENTATION

A
METADATA BUILDER ENGINE RETURNS THE .
XML DATA TREE TO THE REFERENCE 308
OR APPLICATION VENDOR GUI

A
GUI RENDERS XML DATA TREE IN A VISUAL
TREE FORMAT TO THE ADMINISTRATOR WITH
SELECTION BOXES

’v310

A
THE ADMINISTRATOR CHOOSES THE DOMAINS
AND FIELDS TO VOICE ENABLE AND TO
PROVIDE UPDATE SUPPORT FOR GRAMMER
UPDATES FOR VIA GUI

v

SUBSCRIPTION DATA IDENTIFYING Ul OBJECTS
TO VOICE ENABLE IS SENT BACK TO 1314
METADATA BUILDER ENGINE

‘v312

+

METADATA BUILDER ENGINE INVOKES

STYLESHEET BUILDER TO CREATE Y 316
STYLESHEET(S) BASED ON APPLICATION

REPRESENTATION AND SUBSCRIPTION DATA

FIG. 8

WO 03/069500 PCT/US03/04802

10/26

<PAGE_TAB
INACTIVE="N"
NAME="Siebel Voice Employee Screen"
SCREEN="Siebel Voice Employee Screen"
SEQUENCE="6"
UPDATED="01/16/2002 13:21:49"
UPDATED_BY="SADMIN"
CREATED="01/08/2002 11:35:59"
CREATED BY="SADMIN">
<PAGE_TAB_LOCALE
INACTIVE="N"
LANGUAGE_CODE="ENU"
NAME="ENU"
TEXT="Employees"
TRANSLATE="Y"
UPDATED="01/10/2002 11:28:50"
UPDATED_BY="SADMIN"
CREATED="01/08/2002 11:36:33"
CREATED_BY="SADMIN">
</PAGE_TAB_LOCALE>
</PAGE_TAB>
<PAGE_TAB

FIG. 9

FIG. 10

WO 03/069500 PCT/US03/04802
11/26
ENTERPRISE §.._
DATA SYSTEM| .
150
APPLICATION f-152-1| APPLICATION fo152-2 3 REFOSITORY
s
SCREEN {.154-1 | /SCREEN SCREEN
! o i -
\154-2{ | \154-2
VIEW VIEW
~ ~
Ui56-1 \156-2
APPLET APPLET APPLET
2 2 S
\-158-1 \.158-2 \158-3%,
1 | |
) 1
COLUMN OR COLUMN OR COLUMN OR
FIELD/CONTRQL FIELD/CONTROL FIELD/CONTROL
160 (TYP)

PCT/US03/04802
12/26

WO 03/069500

oo ot

oLk (D iy Hiabiasd b

10142y AJJUS JUN933y

R B ~ Zrezi0cot]
IMNGY OON\ P2

=% 9Bl J 12 U SERDPY

T Tysnény| B on@ Umoig 30dor Ty v
PN 3 UL SSIIPPY
9617

W3 § JUNOIY 1240A) WMo
4 Y 012 L id

12915001191 s0MLIeD

" Gy o

BdpNsapLg staueg

T803-72L (304)] om0 E WORAT W
¥ OLI0Y S WLRY g,

Z61”

A TP P AT

2q<

o WalNaE
; (dAL) vz 9¢C

N« N L4 bN\VWN AR T AR

003 SrRURBI 51057468 (€16) SSI IANATHSIS] FHisu 13

e . 5555358 (sZe)’ wepng 1B
3%

U T e | oev D ciobvisnone sy

061 < o cmRmnsT Z esluSII S SR0NIRL 5 A 00Nd WY S o

(bad)diznd pauysazasgd8l
" jxmoove v|isgEiend) .

£3n35- 034

PAE % u

~#0135 RIS

WO 03/069500
13/26

Application Representation
A

PCT/US03/04802

Subscrip}t\ion Data

" Voice -

View Applet Column/Field | Enable
: 250 \
Sales Accounts ' Yes
. |
275~ Account List Applet ! Yes
New 1 Yes
Name ! Yes
Site I No
Main Phone# | Yes
Territories I No
276\ : L
More Info Account Entry /285 | Yes
Name I Yes
Main Phone# | Yes
Address Line1 1 No
AddressLine2 | No
City Il Yes
279~ Activities Account Entry }l
281~ Assets Account Entry :
: |
283~ Attachments Account Entry {
: |
: n
280~ Contacts Account Entry I Yes
287~ Personal Title 1 No
289~ Last Name : Yes
First Name i Yes
Job Title ! No
Phone # 1 Yes
Fax # ' No
Pager Phone# ! No
Street Address 1 | Yes
Street Address 2 | Yes
State | Yes
City I Yes
Postal Code ' No
Country " Yes
E-mail Address | No
Alias “ No
Home Phone# | No
Division 'I No
Employee Il No
: : [:
Sales Contacts | Yes
|
I
i

Grammar

~

Update Enable

Yes

No
No
No
No
No
No

No
No
No
No
No
No

Yes
No
Yes
Yes
No
No
No
No
No
No
No
No
No
No
No
No
No
No
No

Yes

WO 03/069500

14/26

Application Representation
A

PCT/US03/04802

Subscription Data
A

View Apglet Column/Field

: 250
Sales Accounts

275~ Accour.lt List Applet
New

Name

Site

Main Phone #
Territories

276

\ More Info Account Entry _/285
Name
Main Phone #
Address Line 1
Address Line 2
City

279~ Activities Account Entry
281~ Assets Account Entry

283~ Attachments Account Entry

280~ Contacts Account Entry

287 ~~ Personal Title

289~_ Last Name
First Name
Job Title
Phone #
Fax #
Pager Phone #

Street Address 1
Street Address 2

State

City

Postal Code
Country

E-mail Address
Alias

Home Phone #
Division
Employee

Sales Contacts

FIG. 124

V\Pass-through Update

| (U) Enable Enable
|

{ Yes Yes
)

! Yes No
1 Yes No
: Yes No
i No No
| Yes No
} No No
I : :

| Yes No
I Yes No
} Yes No
1 No No
| No No
: Yes No
1 . .

|

!

]

|

|

|

)

)

i

: Yes Yes
! No No
: Yes Yes
| Yes Yes
{ No No
1 Yes No
! No No
i No No
} Yes No-
I Yes No
: Yes No
I Yes No
{ No No
: Yes No
1 No No
: No No
| No No
} No No
1 No No
] . .

| : :

} Yes Yes
I

]

}

|

WO 03/069500

15/26

PCT/US03/04802

¥ Siebel Sales 7.0
& j@ Sales Opportunities Screen

@@ Sales Accounts Screen
¥ Subscribe for Ul
I~ Subscribe for Grammar
£ €8 Sales Accounts Views
¥ Subscribe for Ul
I~ Subscribe for Grammar
= & Account List Applet
¥ Subscribe for Ul
140 (TYP) I~ Subscribe for Grammar
B New
I~ Subscribe for Ul
[~ Subscribe for Grammar
E Name
[¥. Subscribe for Ul
I~ Subscribe for Grammar
B Site
¥ Subscribe for Ul
I~ Subscribe for Grammar
B Main Phone #
¥, Subscribe for Ul
I Subscribe for Grammar

- 132(TYP)

=] More Info Account Entry Applet
i Subscribe for Ul
Subscribe for Grammar

144 (TYP) E Name
¥, Subscribe for Ul
[~ Subscribe for Grammar
B Main Phone#
¥ Subscribe for Ul
I~ Subscribe for Grammar

B Address Line 1

|~ Subscribe for Ul

I Subscribe for Grammar
B Address Line 2

J=* Subscribe for Ul

J7 Subscribe for Grammar

136 (TYP)~B City
V. Subscribe for Ul
I~ Subscribe for Grammar

142 (TYP)

138 (TYP)k .
. Em Activities Account Entry Applet
2 Assets Account Entry Applet
s 134 (TYP)

& I Sales Contacts Views
& B3 Sales Activities Views
& B3 Sales Calendar Views

FIG. 13

WO 03/069500

PCT/US03/04802

16/26

XSLT HEADER

1+~ 253

A

APPLICATION TEMPLATE

COPY ALL VALUES PERTAINING TO
APPLICATION LEVEL

262 254

YES
I
CALL SCREEN TEMPLATE

260J
264 ~

EXIT

5

SCREEN TEMPLATE

COPY ALL VALUES PERTAINING TO
SCREEN LEVEL

YES
I
CALL VIEW TEMPLATE

266J
270~

=

h 4

VIEW TEMPLATE

COPY ALL VALUES PERTAINING TO |
VIEW LEVEL

257

%_1*%%(11’ P)

CALL "MORE INFO ACCOUNT
ENTRY APPLET TEMPLATE"

CALL "ACTIVITIES ACCOUNT ENTRY
APPLET TEMPLATE"

CALL "ASSETS ACCOUNT ENTRY
APPLET TEMPLATE"

CALL "ATTACHMENTS ACCOUNT
ENTRY APPLET TEMPLATE"

N CALL "CONTACTS ACCOUNT ENTRY

APPLET TEMPLATE"

|
1
|
|
|
!
|
|
|
|
!
i
!
|
|
|
|
[
|
1
}
!
|

FIG. 144

WO 03/069500

17/26

—®

PCT/US03/04802

A
CONTACTS ACCOUNT ENTRY APPLET TEMPLATE 84 278

COPY ALL VALUES PERTAINING TO
APPLET LEVEL

282J

YES

286~

CALL CONTACTS ACCOUNT ENTRY
APPLET LIST TEMPLATE

NO

EXIT

= ,

CONTACTS ACCOUNT ENTRY APPLET LIST TEMPLATE 288

COPY ALL VALUES PERTAINING TO |
LIST LEVEL

290

324
/

CALL "CONTACTS ACCOUNT ENTRY
APPLET RS_DATA TEMPLATE"

CALL "ACCOUNT LIST APPLET
RS_HEADER TEMPLATE"

|

U326

y

ACC

A
OUNT LIST APPLET RS_HEADER TEMPLATE 33

L

COPY ALL VALUES PERTAINING TO
APPLET LEVEL

328/

YES

332~

CALL "CONTACTS ACCOUNT ENTRY
APPLET COLUMN TEMPLATE"

L?

ACCOUNT LIST APPLET COLUMN TEMPLATE

COPY ALL VALUES MEETING FILTER CONDITION AT
COLUMN LEVEL: NEW, NAME, MAIN PHONE#; DISREGARD |

\.E., FILTER OUT) ALL OTHER DATA PERTAINING TO [-2**
COLUMN LEVEL FOR CORRESPONDING APPLET
DONE -

FI1G. 148 (&

WO 03/069500 PCT/US03/04802
18/26

—®

A

CONTACTS ACCOUNT ENTRY APPLET RS_DATA TEMP-LATE

COPY ALL VALUES PERTAINING TO
RS_DATA LEVEL

YES

340,\1CALL "CONTACTS ACCOUNT ENTRY
APPLET ROW TEMPLATE"

336J

~

CONTACTS ACCOUNT ENTRY APPLET ROW TEMPLATE 297
344
COPY ALL VALUES PERTAINING TO
ROW LEVEL A
342 VES
245~/ CALL "CONTACTS ACCOUNT ENTRY EXIT
[APPLET FIELD TEMPLATE" —

n

CONTACTS ACCOUNT ENTRY APPLET FIELD TEMPLATE

COPY ALL VALUES MEETING FILTER CONDITION AT FIELD
LEVEL: LAST NAME, FIRST NAME, WORK PHONE, STREET
ADDRESS 1, STREET ADDRESS 2, CITY, STATE, AND 1348
COUNTRY; DISREGARD ALL OTHER DATA PERTAINING TO
FIELD LEVEL

|

FIG. 14C

N
(o]

WO 03/069500 PCT/US03/04802

19/26

INITIALIZE STYLE SHEET: CREATE XSLT
HEADER, SCREEN & VIEW TEMPLATES

v
TRAVERSE TREE NODES OF

APPLICATION REPRESENTATION
v
N FOR EACH NODE }u402

—

‘ 406
YES
v

CREATE NEW VIEW STYLE SHEET
TEMPLATE

NO \ 408

SELECTED
APPLET?

410

YES

[412

\
GENERATE NEW APPLET AND CHILD]
TEMPLATE SET INCLUDING APPET, LINK
RS_HEADER, COLUMN, RS_DATA, ROW
AND FIELD TEMPLATES

NO v
CREATE BRANCH LOGIC IN PARENT VIEW

TEMPLATE TO CALL APPLET TEMPLATE

rece o
SELECTED
<COLUMNI
? (
R

YES 418
v [

ADD XSLT CODE TO COLUMN OR FIELD
TEMPLATE TO ENABLE DATA
PERTAINING TO THE COLUMN OR FILED

TO BE COPIED TO THE RESULT TREE NO

A

NEXT NODE
AN v

L
FIG. 15

WO 03/069500 PCT/US03/04802

20/26

<7xml version="1.0" encoding="windows-1252"?>
<APPLICATION NAME="application name">
<SCREEN CAPTION="caption" NAME="screen name">
<VIEW TITLE="title” NAME=" view name">

<APPLET ROW_COUNTER="n - N of X' NO_DELETE="TRUE | FALSE"
NO_EXEC_QUERY="TRUE | FALSE" NO_UPDATE="TRUE | FALSE" MODE="Base"
TITLE="applet title" NO_INSERT="TRUE | FALSE" CLASS="CSSSWEFrameLotList"

NO_MERGE="TRUE | FALSE" ACTIVE="TRUE | FALSE" ID="N" NAME="applet name">
<LIST>

<RS_HEADER>
<COLUMN CALCULATED=" TRUE | FALSE"
LIST_EDITABLE="Y | N" HTML_TYPE="Field"
FIELD="Accept Less" HIDDEN="TRUE | FALSE" DATATYPE="text"
TEXT_LENGTH="255" TYPE="Field" ID="N"
REQUIRED="TRUE | FALSE" READ_ONLY="TRUE | FALSE"/>
</RS_HEADER>
<RS_DATA>

<ROW SELECTED="TRUE | FALSE" ROWID="id numberI">
<FIELD VARIABLE="column name" NAME="field namel">
field valuel
</FIELD>

<FIELD VARIABLE="column name" NAME="field nameN">
field valueN
</FIELD>

</ROW>

<ROW SELECTED="TRUE | FALSE" ROWID="id numberil">
<FIELD VARIABLE="column name" NAME="field namel">
field valuel
</FIELD>

<FIELD VARIABLE="column name" NAME="field nameN">
field valueN
</FIELD>
</ROW>
</RS_DATA>
</LIST>
</APPLET>
</VIEW>
</SCREEN></APPLICATION>

FIG. 16

WO 03/069500 PCT/US03/04802
21/26

<? xml version="1.0" encoding="windows -1252" 7>
<APPLICATION NAME ="Siebel Sales Enterprise">
351~ <USER_AGENT MARKUP="HTML" TYPE="IE 5.5" />

< SCREEN CAPTION ="Contacts” NAME = "Screen">
(<VIEW TITLE="My Contacts " NAME="Visible
Contact List View "> 374
<APPLET MODmist " ROW_COUNTER ="1 - 7 of 7+"
362~ NO_INSERT ="FALSE" /_"/- 359
372 ~~ CLASS="CSSFrameListBase" TITLE="Contacts" ID="2"
364~ NO_MERGE="FALSE" NO_DELETE ="FALSE™ 366
350 < 368~ NO_UPDATE ="FALSE" NO_EXEC_QUERY ="FALSE"
352 NAME=" Contact List Applet "> \370
354< (<LIST> 358
356 <RS_HEADER >
3755 <RS_DATA>
3764391<
</RS_DATA >
</ RS_HEADER >
__</LIST>
____ </APPLET>
\ </VIEW>

</SCREEN> F IG. 1 7

\ </APPLICATION>

<RS_HEADER> 382 381 380

<COLUMN HAML_TYPE="Field" DISPLAY N ="Work Phone #"

378 TEXT_LENGTH="40" DATATYPE="phone" NUMBER_BASED="FALSE"

(TYP) ID="506" READ_ONLY="FALS?EQUIRED=“FALSE" TYPE="Field"
CALCULATED="FALSE" FIELD="Work Phone #" NAME="Work Phone #" />
383 379

<COLUMN HTML_TYPE="Field" DISPLAY_NAME="Close Date"
TEXT_LENGTH="32" DATATYPE="date" [D="508" READ_ONLY="FALSE"
REQUIRED="TRUE" FORMAT="M/D/YYYY" CALCULA ="FALSE"
FIELD="Primary Revenue Close Date" NAME="Primary ReveEme Close Date" />

<COLUMN HTML_TYPE="Field" D]SPLAY__NAME="Revenue"385
TEXT_LENGTH="25" DATATYPE="currency" LIST_EDITABLE="Y" ID="510"
READ_ONLY="FALSE" REQUIRED="FALSE"
f FORMAT="(S#:#, ###,##H ###,##0.)" CALCULATED="FALSE" FIELD="Primary
387 Revenue Amount" NAME="Primary Revenue Amount" />
</RS_HEADER>

384 \

376
FIG. 18

WO 03/069500 PCT/US03/04802
22/26

392
<RS_DATA> Y 393
-<<ROW ROWID="12-WFJ4D" SELECTED="TRUE" >
394 {<FIELD VARIABLE="LastName" NAME="Last
(TYP) Name">Aamot</FIELD>
<FIELD VARIABLE="FirstName" NAME="First
Name">Gina</FIELD>
<FIELD VARIABLE="MiddleName" NAME="Middle
Name" /> /“ 395 (TYP)
396 (TYP)<F1:ELD VAR]ABLE="JObTiﬂE" NAME="JOb

Title">IT Manager</FIELD>

<FIELD VARIABLE="StreetAddress" NAME="Street
Address">Lady's Well Brewery, Leitrim
Street</FIELD>

<FIELD VARIABLE="StreetAddress2"
NAME="Street Address 2" />

<FIELD VARIABLE="City"
NAME="City">Cork</FIELD>

<FIELD VARIABLE="State" NAME="State" />

<FIELD VARIABLE="PostalCode" NAME="Postal
Code">NONE</FIELD>

<FIELD VARIABLE="MailStop" NAME="Mail Stop"
/>

<FIELD VARIABLE="WorkPhoneNum"
NAME="Work Phone #">(614) 343-
8700</FIELD>

<FIELD VARIABLE="CellularPhoneNum"
NAME="Cellular Phone #">(650) 235-
9845</FIELD>

<FIELD VARIABLE="EmailAddress" NAME="Email
Address">Gina_Aamot@aep.com</FIELD>

</ROW>
</RS_DATA>

FIG. 19

WO 03/069500

23/26

USER VERBALIZES A VOICE REQUEST VIA
VOICE APPLICATION UI

PCT/US03/04802

420

A 4

VOICE APPLICATION TRANSFORMS VOICE
REQUEST IN AN XML QUERY AND SENDS TO
WEB ENGINE VIA COM OR JAVA INTERFACE, OR|
THROUGH WEB SERVER USING HTTP
PROTOCOL, ACCOMPANYING REQUEST WITH
NAME OF STYLE SHEET TO BE APPLIED

422

A 4

WEB ENGINE RECEIVES REQUESTS, PARSES
XML, AND PASSES ON TO OBJECT MANAGER 1
TO SERVICE THE REQUEST

424

A 4

OBJECT MANAGER RETURNS DATA (RESULT
SET) CORRESPONDING TO THE REQUEST
TO WEB ENGINE

4426

A

WEB ENGINE GENERATES XML SOURCE TREE |
DOCUMENT CORRESPONDING TO RESULT SET

428

) 4

VOICE CONNECTOR APPLIES THE SPECIFIED
STYLE SHEET TO FILTER OUT ALL DATA IN
SOURCE TREE EXCEPT DATA PERTAINING TO -
VOICE ENABLED COLUMNS/FIELDS IN
ACCORDANCE WITH CURRENT REQUEST

430

A 4

WEB ENGINE SENDS FILTERED DATA (RESULT
TREE) BACK TO VOICE APPLICATION AS XML
DOC VIA COM OR JAVA INTERFACE, OR VIA
HTTP WEB SERVER (AS APPLICABLE)

1 v432

A

VOICE APPLICATION "READS" DATA BACK TO
USER USING PRE-DEFINED FORMAT

1434

FIG. 20

WO 03/069500 PCT/US03/04802

24/26

VOICE APPLICATION DETERMINES VIEW/APPLET
GRAMMAR DATA IT WANTS UPDATED AND FORMULATES
APPROPRIATE XML QUERY REQUEST(S) AND SENDS
(INDIVIDUALLY) TO WEB ENGINE VIA COM OR JAVA
INTERFACE, OR THROUGH WEB SERVER USING HTTP
PROTOCOL, ACCOMPANYING EACH REQUEST WITH
NAME OF GRAMMAR STYLE SHEET TO BE APPLIED AND
LAST UPDATE INFORMATION (IF APPLICABLE)

4-440

y
WEB ENGINE RECEIVES EACH XML QUERY
REQUEST, PARSES XML, AND PASSES ON TO 1-442
OBJECT MANAGER TO SERVICE THE REQUEST

v
OBJECT MANAGER RETURNS DATA (RESULT
SET) CORRESPONDING TO THE Ui OBJECTS AND 1444
LAST UPDATE IN REQUEST TO WEB ENGINE

A

WEB ENGINE GENERATES XML SOURCE TREE '
DOCUMENT CORRESPONDING TO RESULT SET

4446

A 4

VOICE UPDATE SUPPORT COMPONENT APPLIES
THE SPECIFIED GRAMMAR STYLE SHEET TO
FILTER OUT ALL DATA IN SOURCE TREE EXCEPT _
DATA PERTAINING TO GRAMMAR UPDATE
ENABLED COLUMNS/ FIELDS IN ACCORDANCE
WITH CURRENT REQUEST

448

A
WEB ENGINE SENDS FILTERED DATA (RESULT
TREE) AS XML DOC BACK TO VOICE APPLICATION |
VIA COM OR JAVA INTERFACE, OR VIAHTTP WEB
SERVER (AS APPLICABLE)

450

A 4
VOICE APPLICATION UPDATES ITS GRAMMAR
DATABASE

"_/452

FIG. 21

WO 03/069500 PCT/US03/04802

38 DATABASE

|
l I
Y | DATABASE
| SERvER 202
|
—oATA MANAGER |
S I
: 58(sof ||
- OBJECT MANAGER |
A !
v 54| VOICE ~
USER INTERFACE | _ . INFRASTRUCTURE
. : ! ICATION g P¥| 0
52 |t SERVER 110 N~
T | o e B
WEB 110 : 508 : SIEBEL :
ENGINE | LAN ! COMOR > |
+ SESSIONMANAGEMENT | || X oo 1LJAVA voicE |
* USERAUTHENTICATION | |! = WEg =} ||APPLICATION|!
© XMLINTERFACE q04| |1 12 SERVER: |« |
UPDATE SUPPORT e HTTPS) | | - |
L WEBN e | e =
| SER 14A
METADATA BUILDER |
STYLE SHEET |
BUILDER_ l 7
] V122 } VOICE APP.
METADATA 1 SERVER
BUILDER ENGINE |
102 [
C ;1 REFERENCE
14 16 - OR VOICE
| — VENDOR GUI
REPOSITORY I = N
|
FILE (.SRF) | CLIENT L 108
i\
|
| 36
|
l \
APPLICATION SERVER _ |; 500
|

ENTERPRISE DATA SYSTEM

FIG. 22

WO 03/06
/069500 PCT/US03/04802
26/26

630
614 Cﬁ\/GZB
\%Ez[]ﬂﬂﬂ Céem\ e Agmsm(p)

[} ocoooo \
e o =
606 ~FIFT=rR—y | }
< =000~ | iy (|71
516 qoum [T, i |

88 O |

[ooooo . T
SCSI \622

= O] —

=—— | le0 5?\@7\7

DISK ARRAY 600

International application No.

INTERNATIONAL SEARCH REPORT
PCT/US03/04802

A. CLASSIFICATION OF SUBJECT MATTER
IPC(7) : GO6F 17/21
US CL 1 345/734, 707/513
According to International Patent Classification (IPC) or to both national classification and IPC

B. FIELDS SEARCHED

Minimum documentation searched (classification system followed by classification symbols)
U.S. : 345/734, 742, 746, 748; 707/513, 501.1, 522; 713/201

Documentation searched other than minimum documentation to the extent that such documents are included in the fields searched

Electronic data base consulted during the international search (name of data base and, where practicable, search terms used)

C. DOCUMENTS CONSIDERED TO BE RELEVANT

Category * Citation of document, with indication, where appropriate, of the relevant passages Relevant to claim No.
X, P US 2002/0073236 A1 (HELGESON et al) 13 June 2002, the whole document 1-11, 13-48
Y,p T

Y US 6,336,137 B1 (LEE et al) 01 January 2002, Fig. 3, column 13, 27-42 12
Y,.P uUs .6,507,857 B1 (YALCINALP) 14 January 2003, Figs. 1-5, column 2, lines 16-column 1-11, 13-48
Y, P ?};;13822131404 Al (MEHTA et al) 19 September 2002, page 1, paragraph 5-page 2, 1-11, 13-48

paragraph 17, figs. 6, 7 and 8

D Further documents are listed in the continuation of Box C. l:l See patent family annex.

* Special categories of cited documents: “T” later document published after the international filing date or priority
date and not in conflict with the application but cited to understand the
“A" document defining the general state of the art which is not considered to be principle or theory underlying the invention
of particular relevance
“X document of particular relevance; the claimed invention cannot be
“E” earlier application or patent published on or after the international filing date considered navel or cannot be considered to involve an inventive step

when the document is taken alone
“L" document which may throw doubis on priority claim(s) or which s cited to

establish the publication date of another citation or other special reason (as “ym document of particular relevance; the claimed invention cannot be
specified) considered to involve an inventive step when the document is
combined with one or more other such documents, such combination
“Q" document referring to an oral disclosure, use, exhibition or other means being obvious to a person skilled in the art
“P” document published prior to the international filing date but later than the “&" document member of the same patent family
priority date claimed
Date of the actual completion of the international search Date of mailing of the international search report
06 May 2003 (06.05.2003) 3 0 MAY 2003
Name and mailing address of the ISA/US Authorized officer
Commissioner of Patents and Trademarks
Box PCT John Cabeca (/7 . £ /} [1 I
Washington, D.C. 20231 7 . // M S it
Facsimile No. (703)305-3230 Telephone No. 703) 308-3116

Form PCT/ISA/210 (second sheet) (July 1998)

	Abstract
	Bibliographic
	Description
	Claims
	Drawings
	Search_Report

