Title: SILICON COMPOSITION AND POLYMER DISPERSED LIQUID CRYSTAL

Abstract: A silicone composition comprising a liquid crystal containing two para-phenylene groups, and a polymer dispersed liquid crystal (PDLC) prepared by a method comprising curing the aforementioned silicone composition, wherein the PDLC is transparent and has a refractive index of from 1.42 to 1.6 at 25 °C for light having a wavelength of 589 nm.
SILICONE COMPOSITION AND POLYMER DISPERSED LIQUID CRYSTAL

FIELD OF THE INVENTION

The present invention relates to a silicone composition and more particularly to an addition-curable silicone composition comprising a liquid crystal containing two para-phenylene groups. The present invention also relates to a polymer dispersed liquid crystal (PDLC) prepared by curing the silicone composition.

BACKGROUND OF THE INVENTION

Only a few examples of silicone compositions containing liquid crystals and PDLCs formed from such silicone compositions are known in the art. For instance, U.S. Patent No. 5,585,035 to Nerad et al. discloses an optically responsive film that includes liquid crystal dispersed in a polymer matrix that includes siloxane linkages. The film has a transmissivity at -20 °C that is substantially the same as the transmissivity of said film at 20 °C, and a \(V_{90} \) at -20 °C that is less than twice the value at 20 °C, wherein \(V_{90} \) refers to the switching voltage at 90% of the way to maximum transmission required to switch the film between translucent and transmissive states.

U.S. Patent No. 5,516,455 to Jacobine et al. discloses a PDLC composite prepared from at least one multifunctional electron-rich alkene that does not undergo appreciable homopolymerization; a multifunctional thiol; a photoinitiator; and liquid crystal material. According to the ‘455 patent, the multifunctional electron-rich alkene can be a norbornenyl compound with silicone moieties.

The aforementioned PDLCs are typically opaque to incident light in the absence of an electric field and become transparent upon application of the field (or vice-versa). Moreover, the PDLCs transmit light of variable intensity depending on the strength of the electric field. These materials are potentially useful for switchable windows in housing and automobiles. However, such materials are not useful in electro-optic devices used to transmit light having a different phase from the incident light. Consequently, there remains a need for an electrically tunable PDLC for controlling the phase of a transmitted light beam.
SUMMARY OF THE INVENTION

[0006] The present invention is directed to a silicone composition comprising:

(A) 100 parts by weight of an organopolysiloxane having an average of at least two alkenyl groups per molecule, a number-average molecular weight of from 1,000 to 50,000, and an average of from 10 to 90 mol% of silicon-bonded phenyl groups per molecule;

(B) a curing agent selected from (1) a mixture comprising (a) an organohydrogensiloxane having an average of at least two silicon-bonded hydrogen atoms per molecule in an amount sufficient to cure the composition and (b) a catalytic amount of a hydrosilylation catalyst, and (2) a mixture comprising (a) a mercapto-functional compound in an amount sufficient to cure the composition, wherein the mercapto-functional compound is selected from (i) a mercapto-functional organosiloxane having an average of at least two mercaptoalkyl groups per molecule and (ii) a mercapto-functional organic compound having an average of at least two mercapto groups per molecule, and (b) a catalytic amount of a photoinitiator, provided when the curing agent is component (B)(2), the alkenyl groups in component (A) are not norbornenyl; and

(C) an effective amount of a liquid crystal miscible in components (A) and (B) combined, wherein the liquid crystal is selected from (i) at least one compound having the formula:

\[R^1-(X)_n-(R^1) \]

and (ii) a mixture comprising (i) and from 1 to 10% of at least one terphenyl compound having the formula:

\[R^1-(R^1)_n-(R^1) \]

wherein each R1 is independently selected from C1 to C20 alkyl, C5 to C8 cycloalkyl, -OR2, -O(O=)CR2, -C≡N, -NO2, -CH=CHCOR2, -F, -Cl, -Br, and -I, wherein R2 is C1 to C20 alkyl, X is a divalent organic group selected from -CH=N-, -N=N-, -N=N(O)-, -CH=CH-, -C≡C-, -C(=O)O-, and -CH=N-N=CH-, and n is 0 or 1.

[0007] The present invention is also directed to a PDLC prepared by a method comprising curing the aforementioned silicone composition, wherein the PDLC is transparent and has a refractive index of from 1.42 to 1.6 at 25 °C for light having a wavelength of 589 nm (sodium D line).
[0008] The silicone composition of the present invention can be conveniently formulated as a one-part composition having good shelf-stability. Also, the composition can be applied to a substrate by conventional high-speed methods such as spin coating, printing, and spraying. Also, the silicone composition can be readily cured by exposure either to moderate temperatures or radiation, depending on the curing agent. Importantly, the liquid crystal, component (B), is miscible in components (A) and (B) combined. As a result the composition cures to form a PDLC containing liquid crystal droplets having very small diameter.

[0009] The PDLC of the present invention has very low light-scattering and high transparency in both the absence and presence of an applied electric field. The degree of light-scattering in a PDLC is directly related to the difference in refractive indices between the liquid crystal and the polymer matrix, and also to the diameter of the liquid crystal droplets. Conventional PDLCs are typically opaque in the off state (zero electric field) due to the mismatch between the refractive index of the liquid crystal and the refractive index of the polymer matrix, and the relatively large droplet size, which causes light scattering. They are transparent in the on state (applied electric field) because the refractive index of the liquid crystal, measured in the direction of light transmission, matches that of the polymer matrix, which reduces light-scattering. Such PDLCs can be regulated to transmit light having a different intensity than the incident light by varying the electric field. On the other hand, the PDLC of the present invention is transparent in both the on state and off state because it contains liquid crystal droplets having a very small diameter, typically less than 1μm, which greatly reduces light-scattering. Importantly, the PDLC can be tuned to transmit light having a phase shift from the incident light by varying the electric field.

[0010] The silicone composition of the present invention can be used to prepare a PDLC. The PDLC is useful in tunable waveguide devices for controlling the phase of transmitted light for a particular application. Examples of waveguide devices include interferometric modulators, attenuators, switches, splitters, routers, filters, and gratings.

[0011] These and other features, aspects, and advantages of the present invention will become better understood with reference to the following description and appended claims.
DETAILED DESCRIPTION OF THE INVENTION

[0012] As used herein, the term “PDLC” is an abbreviation for polymer dispersed liquid crystal.” Also, the “mol%” of silicon-bonded phenyl groups is defined as the ratio of the number of moles of silicon-bonded phenyl groups to the total number of moles of silicon-bonded groups in the organopolysiloxane, multiplied by 100. Also, the term “transparent” means the PDLC has a transmittance of at least 80 % for light in the visible region (~400 to ~700 nm) of the electromagnetic spectrum. Also, the “refractive index” of the PDLC is defined as the ratio of the velocity of light in a vacuum to the velocity of light in the PDLC at 25 °C for light having a wavelength of 589 nm (sodium D line). Further, the term “free of aliphatic unsaturation” means the group is free of aliphatic carbon-carbon double bonds and aliphatic carbon-carbon triple bonds. Still further, the term “norbornenyl” refers to a group having the formula:

\[
\begin{array}{c}
 \text{\includegraphics[width=0.1\textwidth]{norbornenyl.png}}
\end{array}
\]

[0013] A silicone composition according to the present invention comprises:

(A) 100 parts by weight of an organopolysiloxane having an average of at least two alkenyl groups per molecule, a number-average molecular weight of from 1,000 to 50,000, and an average of from 10 to 90 mol% of silicon-bonded phenyl groups per molecule;

(B) a curing agent selected from (1) a mixture comprising (a) an organohydrogensiloxane having an average of at least two silicon-bonded hydrogen atoms per molecule in an amount sufficient to cure the composition and (b) a catalytic amount of a hydrosilylation catalyst, and (2) a mixture comprising (a) a mercapto-functional compound in an amount sufficient to cure the composition, wherein the mercapto-functional compound is selected from (i) a mercapto-functional organosiloxane having an average of at least two mercaptoalkyl groups per molecule and (ii) a mercapto-functional organic compound having an average of at least two mercapto groups per molecule, and (b) a catalytic amount of a photoinitiator, provided when the curing agent is component (B)(2), the alkenyl groups in component (A) are not norbornenyl; and

(C) an effective amount of a liquid crystal miscible in components (A) and (B) combined, wherein the liquid crystal is selected from (i) at least one compound having the formula:
and (ii) a mixture comprising (i) and from 1 to 10% of at least one terphenyl compound having the formula:

\[
R^1 \begin{array}{c}
\text{phenyl} \\
\text{phenyl} \\
\text{phenyl}
\end{array} R^1
\]

wherein each \(R^1 \) is independently selected from \(C_1 \) to \(C_{20} \) alkyl, \(C_5 \) to \(C_8 \) cycloalkyl, \(-\text{OR}^2\), \(-\text{O}(=\text{CR}^2)\), \(-\text{C}=\text{N}\), \(-\text{NO}_2\), \(-\text{CH}={\text{CHCOOR}^2}\), \(-\text{F}\), \(-\text{Cl}\), \(-\text{Br}\), and \(-\text{I}\), wherein \(R^2 \) is \(C_1 \) to \(C_{20} \) alkyl, \(X \) is a divalent organic group selected from \(-\text{CH}=\text{N}-\), \(-\text{N}=\text{N}-\), \(-\text{N}=\text{N}(\text{O})-\), \(-\text{CH}=\text{CH}-\), \(-\text{C}=\text{C}-\), \(-\text{C}(=\text{O})\text{O}-\), and \(-\text{CH}=\text{N}-\text{N}=\text{CH}-\), and \(n \) is 0 or 1.

[0014] Component (A) is at least one organopolysiloxane having an average of at least two alkenyl groups per molecule, a number-average molecular weight of from 1,000 to 50,000, and an average of from 10 to 90 mol% of silicon-bonded phenyl groups per molecule. The organopolysiloxane can have a linear or branched structure. The organopolysiloxane can be a homopolymer or a copolymer. The alkenyl groups typically have from 2 to 10 carbon atoms, alternatively from 2 to 6 carbon atoms. The alkenyl groups in the organopolysiloxane can be located at terminal, pendant, or both terminal and pendant positions. Examples of alkenyl groups include, but are not limited to, vinyl, allyl, butenyl, and hexenyl.

[0015] The remaining silicon-bonded organic groups (other than alkenyl) in the organopolysiloxane are independently selected from hydrocarbyl and halogen-substituted hydrocarbyl, both free of aliphatic unsaturation. These monovalent groups typically have from 1 to 20 carbon atoms, alternatively from 1 to 10 carbon atoms, alternatively from 1 to 6 carbon atoms. Examples of hydrocarbyl groups include, but are not limited to, alkyl, such as methyl, ethyl, propyl, 1-methylethyl, butyl, 1-methylpropyl, 2-methylpropyl, 1,1-dimethylethyl, pentyl, 1-methylbutyl, 1-ethylpropyl, 2-methylbutyl, 3-methylbutyl, 1,2-dimethylpropyl, 2,2-dimethylpropyl, hexyl, heptyl, octyl, nonyl, decyl, undecyl, dodecyl, tridecyl, tetradecyl, pentadecyl, hexadecyl, heptadecyl, and octadecyl; cycloalkyl, such as cyclopentyl, cyclohexyl, and methylcyclohexyl; aryl, such as phenyl and naphthyl; alkaryl, such as tolyl and xylyl; and aralkyl, such as benzyl and phenethyl. Examples of halogen-substituted hydrocarbyl groups include, but are not limited to, 3,3,3-trifluoropropyl, 3-chloropropyl, chlorophenyl, and dichlorophenyl.
[0016] The organopolysiloxane typically has a number-average molecular weight of from 1,000 to 50,000, alternatively from 1,500 to 20,000, alternatively from 2,000 to 10,000, where the molecular weight is determined by gel permeation chromatography employing a low angle laser light scattering detector.

[0017] The organopolysiloxane typically has an average of from 10 to 90 mol%, alternatively from 20 to 60 mol%, alternatively from 30 to 55 mol%, of silicon-bonded phenyl groups per molecule. When the mol% of silicon-bonded phenyl groups is less than 10 mol%, the PDLC formed by curing the silicone composition has a transparency less than 80%.

[0018] Examples of organopolysiloxanes useful in the silicone composition include, but are not limited to, the following polysiloxanes:

(i) a dimethylvinylsiloxyl-terminated poly(dimethylsiloxane-methylphenylsiloxane);
(ii) a dimethylvinylsiloxyl-terminated poly(methylphenylsiloxane);
(iii) a diphenylvinylsiloxyl-terminated poly(dimethylsiloxane-methylphenylsiloxane);
(iv) an organopolysiloxane resin comprising PhSiO3/2 units and Me2ViSiO1/2 units;
(v) a dimethylvinylsiloxyl-terminated poly(phenylvinylsiloxane); and
(vi) a diphenylvinylsiloxyl-terminated poly(phenylvinylsiloxane); wherein Ph is phenyl and Me is methyl.

[0019] Component (A) can be a single organopolysiloxane or a mixture comprising two or more organopolysiloxanes that differ in at least one property, such as structure, viscosity, average molecular weight, siloxane units, and sequence.

[0020] Methods of preparing organopolysiloxanes suitable for use in the silicone composition, such as hydrolysis and condensation of organohalosilanes or equilibration of cyclic polydiorganosiloxanes, are well known in the art.

[0021] Component (B) is a curing agent selected from (1) a mixture comprising (a) an organohydrogensiloxane having an average of at least two silicon-bonded hydrogen atoms per molecule and (b) a hydrosilylation catalyst, and (2) a mixture comprising (a) a mercapto-functional compound in an amount sufficient to cure the composition, wherein the mercapto-functional compound is selected from (i) a mercapto-functional organosiloxane having an average of at least two mercaptoalkyl groups per molecule and (ii) a mercapto-functional organic compound having an average of at least two mercapto groups per molecule, and (b) a catalytic amount of a photoinitiator, provided when the curing agent is component (B)(2), the alkenyl groups in component (A) are not norbornanyl.
[0022] Component (B)(1)(a) is at least one organohydrogensiloxane having an average of at least two silicon-bonded hydrogen atoms per molecule. It is generally understood that crosslinking occurs when the sum of the average number of alkenyl groups per molecule in component (A) and the average number of silicon-bonded hydrogen atoms per molecule in component (B)(1)(a) is greater than four. The silicon-bonded hydrogen atoms in the organohydrogensiloxane can be located at terminal, pendant, or both terminal and pendant positions.

[0023] The organohydrogensiloxane can be a disiloxane, trisiloxane, or polysiloxane. The structure of the organohydrogensiloxane can be linear, branched, cyclic, or resinous. The organohydrogensiloxane typically has a number-average molecular weight less than 1,000, alternatively less than 800, alternatively less than 600.

[0024] Examples of organohydrogensiloxanes include, but are not limited to, disiloxanes such as 1,1,3,3-tetramethyldisiloxane and 1,1,3,3-tetraphenyldisiloxane; trisiloxanes such as phenyltris(dimethylsiloxy)silane and 1,3,5-trimethylcyclotrisiloxane; and polysiloxanes such as a trimethylsiloxy-terminated poly(methylhydrogensiloxane), a trimethylsiloxy-terminated poly(dimethylsiloxane/methylhydrogensiloxane), a dimethylhydrogensiloxyl-terminated poly(methylhydrogensiloxane), and a resin consisting essentially of H(CH3)2SiO1/2 units, (CH3)3SiO1/2 units, and SiO4/2 units.

[0025] Component (B)(1)(a) can be a single organohydrogensiloxane or a mixture comprising two or more organohydrogensiloxanes that differ in at least one property, such as structure, average molecular weight, viscosity, siloxane units, and sequence.

[0026] The concentration of component (B)(1)(a) in the silicone composition of the present invention is sufficient to cure (crosslink) the composition. The exact amount of component (B)(1)(a) depends on the desired extent of cure, which generally increases as the ratio of the number of moles of silicon-bonded hydrogen atoms in component (B)(1)(a) to the number of moles of alkenyl groups in component (A) increases. The concentration of component (B)(1)(a) is typically sufficient to provide from 0.5 to 2.5 silicon-bonded hydrogen atoms, alternatively from 0.9 to 1.9 silicon-bonded hydrogen atoms, per alkenyl group in component (A).

[0027] Methods of preparing organohydrogensiloxanes, such as hydrolysis and condensation of organohalosilanes, are well known in the art.
Component (B)(1)(b) is at least one hydrosilylation catalyst that promotes the addition reaction of component (A) with component (B)(1)(a). The hydrosilylation catalyst can be any of the well-known hydrosilylation catalysts comprising a platinum group metal, a compound containing a platinum group metal, or a microencapsulated platinum group metal-containing catalyst. Platinum group metals include platinum, rhodium, ruthenium, palladium, osmium and iridium. Preferably, the platinum group metal is platinum, based on its high activity in hydrosilylation reactions.

Examples of hydrosilylation catalysts include the complexes of chloroplatinic acid and certain vinyl-containing organosiloxanes disclosed by Willing in U.S. Pat. No. 3,419,593, which is hereby incorporated by reference. A specific example of such a catalyst is the reaction product of chloroplatinic acid and 1,3-divinyl-1,1,3,3-tetramethyldisiloxane.

The hydrosilylation catalyst can also be a photoactivated hydrosilylation catalyst. The photoactivated hydrosilylation catalyst can be any hydrosilylation catalyst capable of catalyzing the hydrosilylation of component (A) with component (B)(1)(a) upon exposure to radiation having a wavelength of from 150 to 800 nm.

Examples of photoactivated hydrosilylation catalysts include, but are not limited to, platinum(II) β-diketonate complexes such as platinum(II) bis(2,4-pentanedioate), platinum(II) bis(2,4-hexanedioate), platinum(II) bis(2,4-heptanedioate), platinum(II) bis(1-phenyl-1,3-butanedioate, platinum(II) bis(1,3-diphenyl-1,3-propanedioate), platinum(II) bis(1,1,1,5,5,5-hexafluoro-2,4-pentanedioate); (η-cyclopentadienyl)trialkylplatinum complexes, such as (Cp)trimethylplatinum, (Cp)ethylidimethylplatinum, (Cp)triethylplatinum, (chloro-Cp)trimethylplatinum, and (trimethylsilyl-Cp)trimethylplatinum, where Cp represents cyclopentadienyl; triazene oxide-transition metal complexes, such as Pt[C₆H₅NNNOCH₃]₄, Pt[p-CN-C₆H₄NNNOC₆H₁₁]₄, Pt[p-H₃COC₆H₄NNNOC₆H₁₁]₄, Pt[p-CH₃(CH₂)ₓC₆H₄NNNOCH₃]₄, 1,5-cyclooctadiene.Pt[p-CN-C₆H₄NNNOC₆H₁₁]₂, 1,5-cyclooctadiene.Pt[p-CH₃O-C₆H₄NNNOCH₃]₂, [(C₆H₅)₃P]₃Rh[p-CN-C₆H₄NNNOC₆H₁₁], and Pd[p-CH₃(CH₂)ₓC₆H₄NNNOCH₃]₂, where x is 1, 3, 5, 11, or 17; (η-diolefin)(σ-aryl)platinum complexes, such as (η⁴-1,5-cyclooctadienyl)diphenylplatinum, η⁴-1,3,5,7-cyclooctatetraenyl)diphenylplatinum, (η⁴-2,5-norbornadienyl)diphenylplatinum, (η⁴-1,5-cyclooctadienyl)bis-(4-dimethylaminophenyl)platinum, (η⁴-1,5-cyclooctadienyl)bis-(4-acetylphenyl)platinum, and
(η⁴-1,5-cyclooctadienyl)bis-(4-trifluormethylphenyl)platinum. Preferably, the photoactivated hydrosilylation catalyst is a Pt(II) β-diketonate complex and more preferably the catalyst is platinum(II) bis(2,4-pentanedioate).

[0032] Component (B)(1)(b) can be a single hydrosilylation catalyst or a mixture comprising two or more different catalysts that differ in at least one property, such as structure, form, platinum group metal, complexing ligand, and thermoplastic resin.

[0033] The concentration of component (B)(1)(b) is sufficient to catalyze the addition reaction of component (A) with component (B)(1)(a). The concentration of component (B)(1)(b) is typically sufficient to provide from 0.1 to 1000 ppm of a platinum group metal, alternatively from 1 to 500 ppm of a platinum group metal, or alternatively from 5 to 150 ppm of a platinum group metal, based on the combined weight of components (A), (B), and (C). The rate of cure is very slow below 0.1 ppm of platinum group metal. The use of more than 1000 ppm of platinum group metal results in no appreciable increase in cure rate, and is therefore uneconomical.

[0034] Methods of preparing photoactivated hydrosilylation catalysts are well known in the art. For example, methods of preparing platinum(II) β-diketonates are reported by Guo et al. (Chemistry of Materials, 1998, 10, 531-536). Methods of preparing (η-cyclopentadienyl)trialkylplatinum complexes and are disclosed in U.S. Patent No. 4,510,094. Methods of preparing triazene oxide-transition metal complexes are disclosed in U.S. Patent No. 5,496,961. And, methods of preparing (η-diolefin)(σ-aryl)platinum complexes are taught in U.S. Patent No. 4,530,879.

[0035] Component (B)(2)(a) is a mercapto-functional compound selected from (i) a mercapto-functional organosiloxane having an average of at least two mercaptoalkyl groups per molecule and (ii) a mercapto-functional organic compound having an average of at least two mercapto groups per molecule. It is generally understood that crosslinking occurs when the sum of the average number of alkenyl groups per molecule in component (A) and the average number of mercapto groups per molecule in component (B)(2)(a) is greater than four.

[0036] Component (B)(2)(a)(i) is at least one mercapto-functional organosiloxane having an average of at least two mercaptoalkyl groups per molecule. The mercapto-functional organosiloxane typically has a number-average molecular weight less than 5,000, alternatively less than 2,000, alternatively less than 1,000. The mercapto-functional organosiloxane can be a disiloxane, trisiloxane, or polysiloxane. The structure of the
mercapto-functional organosiloxane can be linear, branched, cyclic, or resinous. The mercaptoalkyl groups in the organosiloxane can be located at terminal, pendant, or both terminal and pendant positions. The mercaptoalkyl groups typically have from 1 to 10 carbon atoms, alternatively from 1 to 6 carbon atoms. Examples of mercaptoalkyl groups include, but are not limited to, mercaptomethyl, 2-mercaptopethyl, 4-mercaptopbutyl, 3-mercapto-2-methylpropyl, and 6-mercaptophexyl.

[0037] The remaining silicon-bonded organic groups (other than mercaptoalkyl) in the mercapto-functional organosiloxane are independently selected from hydrocarbonyl and halogen-substituted hydrocarbonyl, both free of aliphatic unsaturation. These monovalent groups typically have from 1 to 20 carbon atoms, alternatively from 1 to 10 carbon atoms, alternatively from 1 to 6 carbon atoms. Examples of hydrocarbonyl groups include, but are not limited to, alkyl, such as methyl, ethyl, propyl, 1-methylethyl, butyl, 1-methylpropyl, 2-methylpropyl, 1,1-dimethylethyl, pentyl, 1-methybutyl, 1-ethylpropyl, 2-methylbutyl, 3-methylbutyl, 1,2-dimethylpropyl, 2,2-dimethylpropyl, hexyl, heptyl, octyl, nonyl, decyl, undecyl, dodecyl, tridecyl, tetradecyl, pentadecyl, hexadecyl, heptadecyl, and octadecyl; cycloalkyl, such as cyclopentyl, cyclohexyl, and methylcyclohexyl; aryl, such as phenyl and naphthyl; alkaryl, such as tolyl and xylyl; and aralkyl, such as benzyl and phenethyl. Examples of halogen-substituted hydrocarbonyl groups include, but are not limited to, 3,3,3-trifluoropropyl, 3-chloropropyl, chlorophenyl, and dichlorophenyl.

[0038] Examples mercapto-functional organosiloxanes include, but are not limited to, disiloxanes such as [HSCH₂CH₂CH₂(Me)₂Si]₂O; trisiloxanes such as [HSCH₂CH₂CH₂(Me)₂SiO]₃Si; and polysiloxanes such as a 3-mercaptopropyl(dimethylsiloxy)-terminated poly(methylsiloxane) and a 3-mercaptopropyl(dimethylsiloxy)-terminated poly(dimethylsiloxane-3-mercaptopropylmethylsiloxane); and an organosiloxane resin consisting essentially of HSCH₂CH₂CH₂SiO₃/₂units and Me₃SiO₁/₂ units; wherein Me is methyl.

[0039] Component (B)(2)(a)(i) can be a single mercapto-functional organosiloxane or a mixture comprising two or more different mercapto-functional organosiloxanes. Methods of preparing mercapto-functional organosiloxanes are well known in the art.

[0040] Component (B)(2)(a)(ii) is at least one mercapto-functional organic compound having an average of at least two mercapto groups per molecule. The mercapto-functional
organic compound typically has a molecular weight less than 5,000, alternatively less than 2,000, alternatively less than 1,000.

Examples of mercapto-functional organic compounds include, but are not limited to, CH₃CH₂C(CH₂CO₂CH₂CH₂SH)₃, 2,2'-dimercaptodiethyl ether, dipentaerythritolhexa(3-mercaptopropionate), glycol dimercapto acetate, glycol dimercaptopropionate, pentaerythritol tetra(3-mercaptopropionate), pentaerythritol tetrathioglycolate, polyethylene glycol dimercaptoacetate having the formula HSCH₂COOCH₂(CH₂OCH₂)CH₂OOCCH₂SH, polyethylene glycol di(3-mercaptopropionate) having the formula HSCH₂CH₂COOCH₂(CH₂OCH₂)CH₂OOCCH₂CH₂SH, trimethylethene tri(3-mercapto propionate), trimethylethene tri thioglycolate, trimethylpropano tri(3-mercapto propionate), and trimethylol propane tri thioglycolate.

Component (B)(2)(a)(ii) can be a single mercapto-functional compound or a mixture comprising two or more different mercapto-functional compounds. Methods of preparing mercapto-functional organic compounds are well known in the art; many of these compounds are commercially available.

The concentration of component (B)(2)(a) in the silicone composition of the present invention is sufficient to cure (crosslink) the composition. The exact amount of component (B)(2)(a) depends on the desired extent of cure, which generally increases as the ratio of the number of moles of mercapto groups in component (B)(2)(a) to the number of moles of alkenyl groups in component (A) increases. The concentration of component (B)(2)(a) is typically sufficient to provide from 0.5 to 2 mercapto groups, alternatively from 0.9 to 1.1 mercapto groups, per alkenyl group in component (A).

Component (B)(2)(b) is at least one photoinitiator. The photoinitiator can be any free radical initiator capable of catalyzing the addition reaction of component (A) with component (B)(1)(a) upon exposure to ultraviolet radiation having a wavelength of from 250 to 400 nm.

Examples of photoinitiators include, but are not limited to, benzophenone, acetonaphthone, acetophenone, benzoin methylether, benzoin isobutylether, 2,2-diethoxyacetophenone,
[0046] The photoinitiator can also be a polysilane, such as the phenylmethylpolysilanes defined by West in U.S. Pat. No. 4,260,780, which is hereby incorporated by reference; the aminated methylpolysilanes defined by Baney et al. in U.S. Pat. No. 4,314,956, which is hereby incorporated by reference; the methylpolysilanes of Peterson et al. in U.S. Pat. No. 4,276,424, which is hereby incorporated by reference; and the polysilastyrene defined by West et al. in U.S. Pat. No. 4,324,901, which is hereby incorporated by reference.

[0047] Component (B)(2)(b) can be a single photoinitiator or a mixture comprising two or more different photoinitiators.

[0048] The concentration of component (B)(2)(b) is sufficient to catalyze the addition reaction of component (A) with component (B)(2)(a). The concentration of component (B)(2)(b) is typically from 0.1 to 6% (w/w), alternatively from 1 to 3% (w/w), based on the combined weight of components (A), (B), and (C).

[0049] Component (C) is a liquid crystal miscible in components (A) and (B) combined, wherein the liquid crystal is selected from (i) at least one compound having the formula:

\[
R^1 \begin{array}{c} \text{O} \end{array} \begin{array}{c} \text{n} \end{array} \begin{array}{c} \text{O} \end{array} \begin{array}{c} \text{R}^1 \end{array}
\]

and (ii) a mixture comprising (i) and from 1 to 10% of at least one terphenyl compound having the formula:

\[
R^1 \begin{array}{c} \text{O} \end{array} \begin{array}{c} \text{n} \end{array} \begin{array}{c} \text{O} \end{array} \begin{array}{c} \text{R}^1 \end{array}
\]

wherein each \(R^1 \) is independently selected from \(C_1 \) to \(C_{20} \) alkyl, \(C_5 \) to \(C_8 \) cycloalkyl, -OR\(^2\), -O(O=)CR\(^2\), -C=O, -N=O, -NO\(_2\), -CH=CHCOOR\(^2\), -F, -Cl, -Br, and -I, wherein \(R^2 \) is \(C_1 \) to \(C_{20} \) alkyl, X is a divalent organic group selected from -CH=N=, -N=N-, -N=N(O)-, -CH=CH-, -C=C-, -C(=O)O-, and -CH=N-N=CH-, and \(n \) is 0 or 1. As used herein, the term “miscible” means component (C) is completely soluble in components (A) and (B) combined in the stated proportions.
The liquid crystal can be nematic, smectic, or cholesteric. Furthermore, the liquid crystal can have either positive or negative diamagnetic anisotropy.

Component (C)(i) is at least one compound having the formula:

\[R^1 \text{--} (X) \text{n} \text{--} R^1 \]

wherein \(R^1 \), \(X \), and \(n \) are as defined above. When \(n \) is 0, component (C)(i) has the formula:

\[R^1 \text{--} \text{--} R^1 \]

wherein \(R^1 \) is as defined above.

Alkyl groups represented by \(R^1 \) and \(R^2 \) typically have from 1 to 20 carbon atoms, alternatively from 1 to 10 carbon atoms, alternatively from 1 to 6 carbon atoms. Alkyl groups containing at least 3 carbon atoms can have a branched or unbranched structure. Examples of alkyl groups include, but are not limited to, methyl, ethyl, propyl, 1-methylethyl, butyl, 1-methylpropyl, 2-methylpropyl, 1,1-dimethylethyl, pentyl, 1-methylbutyl, 1-ethylpropyl, 2-methylbutyl, 3-methylbutyl, 1,2-dimethylpropyl, 2,2-dimethylpropyl, hexyl, heptyl, octyl, nonyl, decyl, undecyl, dodecyl, tridecyl, tetradecyl, pentadecyl, hexadecyl, heptadecyl, and octadecyl.

Cycloalkyl groups represented by \(R^1 \) typically have from 5 to 8 carbon atoms. Examples of cycloalkyl groups include, but are not limited to, cyclopentyl, cyclohexyl, and methylcyclohexyl.

Examples of compounds suitable for use as component (C)(i) include, but are not limited to, 4-alkyl-4'-cyanobiphenyl compounds, such as 4-n-pentyl-4'-cyanobiphenyl, 4-n-hexyl-4'-cyanobiphenyl, 4-n-octyl-4'-cyanobiphenyl; 4-alkyl-4'-alkoxybiphenyl, such as 4-n-pentyl-4'-ethoxybiphenyl; 4-alkyl-4'-halobiphenyl, such as 4-n-butyl-4'-fluorobiphenyl; and compounds having the formula:

\[R^2 \text{O--} \text{C--O--} \text{--} R^1 \]

where \(R^1 \) and \(R^2 \) are C_1 to C_20 alkyl, as exemplified above.
Component (C)(i) can be a single compound or a mixture comprising two or more different compounds, each as described above.

Methods of preparing liquid crystals suitable for use as component (C)(i) are well known in the art; many of these compounds are commercially available.

Component (C)(ii) is a mixture comprising (C)(i) and from 1 to 10% of at least one terphenyl compound having the formula:

\[R^1 \quad \text{phenyl} \quad \text{phenyl} \quad \text{phenyl} \quad R^1 \]

wherein \(R^1 \) is as defined and exemplified above.

Examples of terphenyl compounds include, but are not limited to, 4-alkyl-4"-cyanoterphenyl compounds, such as 4-n-pentyl-4"-cyanoterphenyl, 4-n-hexyl-4"-cyanoterphenyl, 4-n-octyl-4"-cyanoterphenyl; 4-alkyl-4"-alkoxyterphenyl, such as 4-n-pentyl-4"-ethoxyterphenyl; and 4-alkyl-4"-halotterphenyl, such as 4-n-butyl-4"-fluoroterphenyl.

The concentration of the terphenyl compound in component (C)(ii) is typically from 1 to 10% (w/w), alternatively from 1 to 8% (w/w), alternatively from 4 to 7% (w/w), based on the total weight of component (C)(ii).

Methods of preparing terphenyl compounds suitable for use in component (C)(ii) are well known in the art; many of these compounds are commercially available.

Component (C) is present in an effective amount in the silicone composition. The term “effective amount” means the concentration of component (C) is such that the PDLC formed by curing the silicone composition has a transmittance of at least 80%, and a melting transition in the thermogram obtained by differential scanning calorimetry (DSC) corresponding to the liquid crystal phase in the PDLC. Alternatively, the PDLC has a transmittance of at least 90% or at least 95%. The concentration of component (C) depends on several factors, including the molecular weight and structure of the liquid crystal, and the nature of the other components in the composition. The concentration of component (C) is typically from 1 to 110 parts by weight, alternatively from 10 to 100 parts by weight, alternatively from 30 to 90 parts by weight, per 100 parts by weight of component (A). The effective amount of component (C) can be determined by routine experimentation.

The silicone composition can comprise additional ingredients, provided the ingredient does not prevent the composition from curing to form a polymer dispersed liquid crystal, as described below. For example, the silicone composition can further comprise at
least one organic solvent. Examples of organic solvents include, but are not limited to, saturated aliphatic hydrocarbons such as n-pentane, hexane, n-heptane, isoctane and dodecane; cycloaliphatic hydrocarbons such as cyclopentane and cyclohexane; aromatic hydrocarbons such as benzene, toluene, xylene and mesitylene; cyclic ethers such as tetrahydrofuran (THF) and dioxane; ketones such as methyl isobutyl ketone (MIBK); halogenated alkanes such as trichloroethane; and halogenated aromatic hydrocarbons such as bromobenzene and chlorobenzene. The organic solvent can be a single organic solvent or a mixture comprising two or more different organic solvents, each as defined above. The concentration of the organic solvent in the silicone composition of the present invention is typically from 1 to 60% (w/w), alternatively from 1 to 10% (w/w), based on the total weight of the composition.

[0063] When the silicone composition contains component (B)(1)(b), the composition can further comprise at least one hydrosilylation catalyst inhibitor. Examples of hydrosilylation catalyst inhibitors include various “ene-yne” systems such as 3-methyl-3-penten-1-yne and 3,5-dimethyl-3-hexen-1-yne; acetylenic alcohols such as 3,5-dimethyl-1-hexyn-3-ol, 1-ethynyl-1-cyclohexanol, and 2-phenyl-3-butyn-2-ol; maleates and fumarates, such as the well known dialkyl, dialkenyl, and dialkoxyalkyl fumarates and maleates; and cyclovinylsiloxanes.

[0064] The concentration of the hydrosilylation catalyst inhibitor in the present silicone composition is sufficient to retard curing of the composition at ambient temperature without preventing or excessively prolonging cure at elevated temperatures. Inhibitor concentrations as low as one mole of inhibitor per mole of platinum group metal will in some instances yield a satisfactory storage stability and cure rate. In other instances, inhibitor concentrations of up to 500 or more moles of inhibitor per mole of platinum group metal may be required. The optimum concentration for a particular inhibitor in a given silicone composition can be readily determined by routine experimentation.

[0065] The silicone composition of the present invention can be a one-part composition comprising components (A), (B), and (C) in a single part or, alternatively, a multi-part composition comprising components (A), (B), and (C) in two or more parts. In a multi-part composition containing component (B)(1), components (A), (B)(1)(a), and (B)(1)(b) are typically not present in the same part unless an inhibitor is also present. Similarly, in a multi-part composition containing component (B)(2), components (A), (B)(2)(a), and (B)(2)(b) are
typically not present in the same part, unless the composition is protected from light. For example, a multi-part silicone composition can comprise a first part containing a portion of component (A), all of component (B)(1)(b), and all of component (C), and a second part containing the remaining portion of component (A) and all of component (B)(1)(a).

[0066] The one-part silicone composition of the instant invention can be prepared by combining components (A) through (C) and any optional ingredients in the stated proportions at ambient temperature with or without the aid of a solvent, which is described above. Although the order of addition of the various components is not critical when the silicone composition is to be used immediately, the hydrosilylation catalyst, component (B)(1)(b), is preferably added last at a temperature below about 30 °C to prevent premature curing of the composition. Also, the multi-part silicone composition of the present invention can be prepared by combining the particular components designated for each part.

[0067] Mixing can be accomplished by any of the techniques known in the art such as milling, blending, and stirring, either in a batch or continuous process. The particular device is determined by the viscosity of the components and the viscosity of the final silicone composition.

[0068] According to the present invention, a PDLC is prepared by a method comprising curing the aforementioned silicone composition, wherein the PDLC is transparent and has a refractive index of from 1.42 to 1.6 at 25 °C for light having a wavelength of 589 nm (sodium D line). The PDLC typically has a transmittance of at least 80%, alternatively at least 90%, alternatively at least 95%, for light in the visible region (~400 to ~700 nm) of the electromagnetic spectrum. The PDLC typically has a refractive index of from 1.42 to 1.6, alternatively from 1.48 to 1.54, at 25 °C for light having a wavelength of 589 nm.

[0069] The silicone composition can be cured by exposure to ambient temperature, elevated temperature, or radiation, depending on the cure mechanism. For example a one-part hydrosilylation-curable silicone composition comprising components (A), (B)(1)(a), (B)(1)(b), and (C), wherein component (B)(1)(b) is not a photoactivated hydrosilylation catalyst, is typically cured by exposing the composition to a temperature of from room temperature (~22 °C) to 150 °C, alternatively from room temperature to 75 °C for an amount of time sufficient to form the PDLC of the present invention. For example, the silicone composition is typically cured by exposing the composition to a temperature of from 20 to 30 °C for 30 min to 24 h, alternatively from 40 to 75 °C for 1 to 60 min.
[0070] A hydrosilylation-curable silicone composition comprising components (A), (B)(1)(a), (B)(1)(b), and (C), wherein component (B)(1)(b) is a photoactivated hydrosilylation catalyst is typically cured by exposing the composition to radiation having a wavelength of from 150 to 800 nm, alternatively from 250 to 400 nm. The light source is typically a medium pressure mercury-arc lamp. The dose of radiation is typically from 5 to 200 mJ/cm², alternatively from 20 to 100 mJ/cm².

[0071] A radiation-curable silicone composition comprising components (A), (B)(2)(a), (B)(2)(b), and (C) is typically cured by exposing the composition to radiation having a wavelength of from 250 to 400 nm. The light source is typically a medium pressure mercury-arc lamp. The dose of radiation is typically from 5 to 200 mJ/cm², alternatively from 20 to 100 mJ/cm².

[0072] The silicone composition of the present invention can be conveniently formulated as a one-part composition having good shelf-stability. Also, the composition can be applied to a substrate by conventional high-speed methods such as spin coating, printing, and spraying. Also, the silicone composition can be readily cured by exposure either to moderate temperatures or radiation, depending on the curing agent. Importantly, the liquid crystal, component (B), is miscible in components (A) and (B) combined. As a result the composition cures to form a PDLC containing liquid crystal droplets having very small diameter.

[0073] The PDLC of the present invention has very low light-scattering and high transparency in both the absence and presence of an applied electric field. The degree of light-scattering in a PDLC is directly related to the difference in refractive indices between the liquid crystal and the polymer matrix, and also to the diameter of the liquid crystal droplets. Conventional PDLCs are typically opaque in the off state (zero electric field) due to the mismatch between the refractive index of the liquid crystal and the refractive index of the polymer matrix, and the relatively large droplet size, which causes light scattering. They are transparent in the on state (applied electric field) because the refractive index of the liquid crystal, measured in the direction of light transmission, matches that of the polymer matrix, which reduces light-scattering. Such PDLCs can be regulated to transmit light having a different intensity than the incident light by varying the electric field. On the other hand, the PDLC of the present invention is transparent in both the on state and off state because it contains liquid crystal droplets having a very small diameter, typically less than 1 μm, which
greatly reduces light-scattering. Importantly, the PDLC can be tuned to transmit light having a phase shift from the incident light by varying the electric field.

[0074] The silicone composition of the present invention can be used to prepare a PDLC. The PDLC is useful in tunable waveguide devices for controlling the phase of transmitted light for a particular application. Examples of waveguide devices include interferometric modulators, attenuators, switches, splitters, routers, filters, and gratings.

EXAMPLES

[0075] The following examples are presented to better illustrate the silicone composition and PDLC of the present invention, but are not to be considered as limiting the invention, which is delineated in the appended claims. Unless otherwise noted, all parts and percentages reported in the examples are by weight. The following methods and materials were employed in the examples:

Refractive Index

[0076] The refractive index of a PDLC film as a function of applied voltage was determined using a prism coupler employing a plane polarized laser having a wavelength of 633 nm, a gold-coated prism in contact with one side of the film, and an aluminum substrate in contact with the opposite side of the film. Refractive index was determined from the critical angle for total internal reflection according to the following equation:

$$n_{\text{sample}} = n_{\text{prism}} / (\sin \theta_c)$$

where:
n_{sample} = refractive index of sample (PDLC)
n_{prism} = refractive index of prism
θ_c = critical angle (radians) for total internal reflection

Reported values for refractive index represent the average of ten measurements performed on different regions of the same PDLC film.
Glass Transition, Cold Crystallization Transition, and Melting Transition Temperatures

[0077] The thermal properties of a free-standing PDLC were determined by differential scanning calorimetry using a TA Instruments 2920 DSC. Samples were heated to 75 °C, cooled to −150 °C at 5 °C/min, and re-heated to 75 °C at 10 °C/min.

Comparative Example 1

[0078] A silicone base was prepared by blending the following components in order to form a homogeneous mixture: a dimethylvinylsiloxo-terminated organopolysiloxane (3.14 g) consisting essentially of 70 mol% of PhMeSiO2/2 units, 27 mol% of Me2SiO2/2 units, and 3 mol% of Me2ViSiO1/2 units, wherein the organopolysiloxane has a number-average molecular weight of 6,161 and a weight-average molecular weight of 11,320; 0.141 g of an organohydrogensiloxane having the formula Si(OSiMe2H)4; and 0.0261 g of 1,3,5,7-tetramethyl-1,3,5,7-tetravinylcyclotetrasiloxane. The mixture was then de-aired at ~30 torr (~4,000 Pa) for 10 min.

[0079] A curable silicone composition was prepared by combining 1.074 g of the silicone base and 0.0096 g of a solution consisting of 0.38% of 1,3-divinyl-1,1,3,3-tetramethyldisiloxane, 0.62% of a platinum(IV) complex of 1,3-divinyl-1,1,3,3-tetramethyldisiloxane, and 99% of the aforementioned dimethylvinylsiloxo-terminated organopolysiloxane. A free-standing silicone film (~300-400 μm) was prepared by compressing a sample of the silicone composition between two sheets of Teflon, curing the composition at room temperature overnight, and then removing the Teflon sheets. The silicone film exhibited a glass transition temperature of −51.4 °C, as determined by DSC.

Example 1

[0080] A curable silicone composition was prepared by combining the silicone base of Comparative Example 1 (1.074 g) and 0.607 g of liquid crystal K15 (4-n-pentyl-4′-cyanobiphenyl, H.W. Sand Corporation) to form a transparent mixture. A solution (0.0096 g) consisting of 0.38% of 1,3-divinyl-1,1,3,3-tetramethyldisiloxane, 0.62% of a platinum(IV) complex of 1,3-divinyl-1,1,3,3-tetramethyldisiloxane, and 99% of the dimethylvinylsiloxo-terminated organopolysiloxane of comparative Example 1 was blended with the mixture using a spatula. A free-standing PDLC film (~300-400 μm) was prepared by compressing a sample of the silicone composition between two sheets of Teflon, curing the composition at room
temperature overnight, and then removing the Teflon sheets. The PDLC exhibited a glass transition temperature of \(-50.6^\circ C\), a cold crystallization temperature of \(-0.5^\circ C\), and melting temperatures of 16 \(^\circ C\) and 21\(^\circ C\), as determined by DSC. These results are consistent with the presence of liquid crystal domains in the PDLC.

Example 2.

[0081] A curable silicone composition was prepared by thoroughly mixing the following components in an amber bottle: 12.02 g of a dimethylvinylsiloxane-terminated organopolysiloxane consisting essentially of 70 mol\% of PhMeSiO\(_2/2\) units, 27 mol\% of Me\(_2\)SiO\(_2/2\) units, and 3 mol\% of Me\(_2\)ViSiO\(_1/2\) units, wherein the organopolysiloxane has a number-average molecular weight of 6,161 and a weight-average molecular weight of 11,320; 0.497 g of a mercapto-functional compound having the formula CH\(_3\)CH\(_2\)C(CH\(_2\)CO\(_2\)CH\(_2\)CH\(_2\)SH)\(_3\); and 0.12 g of Darocur 4265 (BASF Corporation), a photoinitiator consisting of 50\% of 2-hydroxy-2-methyl-1-phenyl-propan-1-one and 50\% of 2,4,6-trimethylbenzoyl diphenylphosphine oxide. A free-standing silicone film (~300-400 \(\mu m\)) was prepared by compressing a sample of the silicone composition between two sheets of Teflon, curing the composition at room temperature overnight, and then removing the Teflon sheets. The silicone film exhibited a glass transition temperature of \(-48^\circ C\), as determined by DSC.

[0082] Four PDLCs were prepared by combining the silicone composition and liquid crystal K15 (4-n-pentyl-4'-cyanobiphenyl, H.W. Sand Corporation) in the amounts specified in Table 1. Free-standing PDLC films (~300-400 \(\mu m\)) were prepared by compressing each composition between two sheets of Teflon, curing the composition under nitrogen with a portable UV lamp at 365 nm for 2 min, and then removing the Teflon sheets. The PDLC prepared from the silicone composition containing 36\% of K15 exhibited a glass transition temperature of \(-50.6^\circ C\), a cold crystallization temperature of 7.54 \(^\circ C\), and a melting temperature of 17.7 \(^\circ C\), as determined by DSC. These results are consistent with the presence of liquid crystal domains in the PDLC. The refractive index of each PDLC as a function of applied voltage is shown in Table 1.
Table 1

<table>
<thead>
<tr>
<th>Base (g)</th>
<th>K15 (g)</th>
<th>K15 (wt%)</th>
<th>Refractive Index</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td>0 V</td>
</tr>
<tr>
<td>0.403</td>
<td>0.101</td>
<td>20.0</td>
<td>1.53390</td>
</tr>
<tr>
<td>0.348</td>
<td>0.147</td>
<td>29.7</td>
<td>1.54016</td>
</tr>
<tr>
<td>5.12</td>
<td>2.89</td>
<td>36.0</td>
<td>1.54408</td>
</tr>
<tr>
<td>0.276</td>
<td>0.230</td>
<td>45.0</td>
<td>1.55100</td>
</tr>
</tbody>
</table>

nc denotes no change from value at 0 V.
That which is claimed is:

1. A silicone composition comprising:
 (A) 100 parts by weight of an organopolysiloxane having an average of at least two alkenyl groups per molecule, a number-average molecular weight of from 1,000 to 50,000, and an average of from 10 to 90 mol% of silicon-bonded phenyl groups per molecule;
 (B) a curing agent selected from (1) a mixture comprising (a) an organohydrogensiloxane having an average of at least two silicon-bonded hydrogen atoms per molecule in an amount sufficient to cure the composition and (b) a catalytic amount of a hydrosilylation catalyst, and (2) a mixture comprising (a) a mercapto-functional compound in an amount sufficient to cure the composition, wherein the mercapto-functional compound is selected from (i) a mercapto-functional organosiloxane having an average of at least two mercaptoalkyl groups per molecule and (ii) a mercapto-functional organic compound having an average of at least two mercapto groups per molecule, and (b) a catalytic amount of a photoinitiator, provided when the curing agent is component (B)(2), the alkenyl groups in component (A) are not norbornenyl; and
 (C) an effective amount of a liquid crystal miscible in components (A) and (B) combined, wherein the liquid crystal is selected from (i) at least one compound having the formula:

\[
R^1 \begin{array}{c}
\text{X} \end{array} \begin{array}{c}
\text{R} \end{array}
\]

and (ii) a mixture comprising (i) and from 1 to 10% of at least one terphenyl compound having the formula:

\[
R^1 \begin{array}{c}
\text{X} \end{array} \begin{array}{c}
\text{R} \end{array}
\]

wherein each \(R^1 \) is independently selected from \(C_1 \) to \(C_{20} \) alkyl, \(C_5 \) to \(C_8 \) cycloalkyl, \(-\text{OR}^2\), \(-\text{O(O=)CR}^2\), \(-\text{C=N}\), \(-\text{NO}_2\), \(-\text{CH=CHCOOR}^2\), \(-\text{F}\), \(-\text{Cl}\), \(-\text{Br}\), and \(-\text{I}\), wherein \(R^2 \) is \(C_1 \) to \(C_{20} \) alkyl, \(X \) is a divalent organic group selected from \(-\text{CH=N}\), \(-\text{N=N}\), \(-\text{N=N(O)}\), \(-\text{CH=CH}\), \(-\text{C=C}\), \(-\text{C(=O)O}^-\), and \(-\text{CH=N-N=CH}^-\), and \(n \) is 0 or 1.

2. The composition according to claim 1, wherein the organopolysiloxane of component (A) has an average of from 20 to 60 mol% of silicon-bonded phenyl groups per molecule.
3. The composition according to claims 1 or 2, wherein component (B) is component (B)(1).

4. The composition according to claims 1 or 2, wherein component (B) is component (B)(2).

5. The composition according to claims 1, 2, 3 or 4, wherein component (C) is component (C)(i).

6. The composition according to claims 1, 2, 3, or 4, wherein component (C) is component (C)(ii).

7. The composition according to claims 1, 2, 3, 4, 5, or 6, wherein the concentration of component (C) is from 1 to 110 parts by weight per 100 parts by weight of component (A).

8. A PDLC prepared by a method comprising curing the silicone composition according to claims 1, 2, 3, 4, 5, 6, or 7, wherein the PDLC is transparent and has a refractive index of from 1.42 to 1.6 at 25 °C for light having a wavelength of 589 nm.
INTERNATIONAL SEARCH REPORT

A. CLASSIFICATION OF SUBJECT MATTER

IPC 7 C09K19/54

According to International Patent Classification (IPC) or to both national classification and IPC

B. FIELDS SEARCHED

Minimum documentation searched (classification system followed by classification symbols)

IPC 7 C09K

Documentation searched other than minimum documentation to the extent that such documents are included in the fields searched

Electronic database consulted during the International search (name of database and, where practical, search terms used)

EPO-Internal, WPI Data, PAJ, INSPEC

C. DOCUMENTS CONSIDERED TO BE RELEVANT

<table>
<thead>
<tr>
<th>Category</th>
<th>Citation of document, with indication, where appropriate, of the relevant passages</th>
<th>Relevant to claim No.</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>US 5 516 455 A (JACOBINE ET AL) 14 May 1996 (1996-05-14) cited in the application claims; examples 1,2,6</td>
<td>1-8</td>
</tr>
<tr>
<td>A</td>
<td>US 5 585 035 A (NERAD ET AL) 17 December 1996 (1996-12-17) cited in the application claims; examples</td>
<td>1,3,4,8</td>
</tr>
<tr>
<td>A</td>
<td>EP 0 743 350 A (DAINIPPON PRINTING CO LTD; JAPAN ENERGY CORP) 20 November 1996 (1996-11-20) page 7, line 6 - line 16; claims</td>
<td>1,5,6</td>
</tr>
</tbody>
</table>

Further documents are listed in the continuation of box C.

X Parent family members are listed in annex.

* Special categories of cited documents:

- **A** document defining the general state of the art which is not considered to be of particular relevance
- **E** earlier document but published on or after the international filing date
- **L** document which may throw doubts on priority claim(s) or which is cited to establish the publication date of another claim or other special reason (as specified)
- **O** document referring to an oral disclosure, use, exhibition or other means
- **P** document published prior to the international filing date but later than the priority date claimed

- **P** later document published after the international filing date or priority date and not in conflict with the application but cited to understand the principle or theory underlying the invention
- **X** document of particular relevance; the claimed invention cannot be considered novel or cannot be considered to involve an inventive step when the document is taken alone
- **Y** document of particular relevance; the claimed invention cannot be considered novel or cannot be considered to involve an inventive step when the document is combined with one or more other such documents, such combination being obvious to a person skilled in the art.
- **&** document member of the same patent family

Date of the actual completion of the international search: 1 December 2004

Date of mailing of the international search report: 10/12/2004

Name and mailing address of the ISA:
European Patent Office, P.B. 5818 Patentlaan 2 NL - 2280 HV Rijswijk
Tel. (+31-70) 340-2600, Tx. 31 651 epc nl, Fax (+31-70) 340-3016

Authorized officer:
Serbetsoğlu, A
<table>
<thead>
<tr>
<th>Patent document cited in search report</th>
<th>Publication date</th>
<th>Patent family member(s)</th>
<th>Publication date</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>DE 69411844 D1</td>
<td>27-08-1998</td>
</tr>
<tr>
<td></td>
<td></td>
<td>DE 69411844 T2</td>
<td>25-02-1999</td>
</tr>
<tr>
<td></td>
<td></td>
<td>ES 2118408 T3</td>
<td>16-09-1998</td>
</tr>
<tr>
<td></td>
<td></td>
<td>HK 1005993 A1</td>
<td>17-03-2000</td>
</tr>
<tr>
<td></td>
<td></td>
<td>JP 7509754 T</td>
<td>26-10-1995</td>
</tr>
<tr>
<td>US 5585035 A</td>
<td>17-12-1996</td>
<td>CA 2167286 A1</td>
<td>16-02-1995</td>
</tr>
<tr>
<td></td>
<td></td>
<td>JP 9501511 T</td>
<td>10-02-1997</td>
</tr>
<tr>
<td></td>
<td></td>
<td>WO 9504791 A1</td>
<td>16-02-1995</td>
</tr>
<tr>
<td></td>
<td></td>
<td>CN 1141329 A ,B</td>
<td>29-01-1997</td>
</tr>
<tr>
<td></td>
<td></td>
<td>DE 69614756 D1</td>
<td>04-10-2001</td>
</tr>
<tr>
<td></td>
<td></td>
<td>DE 69614756 T2</td>
<td>04-07-2002</td>
</tr>
<tr>
<td></td>
<td></td>
<td>ES 2161941 T3</td>
<td>16-12-2001</td>
</tr>
<tr>
<td></td>
<td></td>
<td>US 5932137 A</td>
<td>03-08-1999</td>
</tr>
</tbody>
</table>