

US 20180327892A1

(19) **United States**

(12) **Patent Application Publication**

Wu et al.

(10) **Pub. No.: US 2018/0327892 A1**

(43) **Pub. Date: Nov. 15, 2018**

(54) **METAL OXY-FLOURIDE FILMS FOR CHAMBER COMPONENTS**

C23C 4/11 (2006.01)

C23C 14/08 (2006.01)

C23C 14/22 (2006.01)

C23C 16/40 (2006.01)

C23C 16/455 (2006.01)

C23C 14/58 (2006.01)

C23C 16/56 (2006.01)

(71) Applicant: **Applied Materials, Inc.**, Santa Clara, CA (US)

(72) Inventors: **Xiaowei Wu**, San Jose, CA (US); **David Fenwick**, Los Altos Hills, CA (US); **Guodong Zhan**, Dhahran (SA); **Jennifer Y. Sun**, Mountain View, CA (US); **Michael R. Rice**, Pleasanton, CA (US)

(52) **U.S. Cl.**

CPC **C23C 4/18** (2013.01); **C23C 4/134** (2016.01); **C23C 4/11** (2016.01); **C23C 14/081** (2013.01); **C23C 16/56** (2013.01); **C23C 16/403** (2013.01); **C23C 16/45525** (2013.01); **C23C 14/5826** (2013.01); **C23C 14/5846** (2013.01); **C23C 14/221** (2013.01)

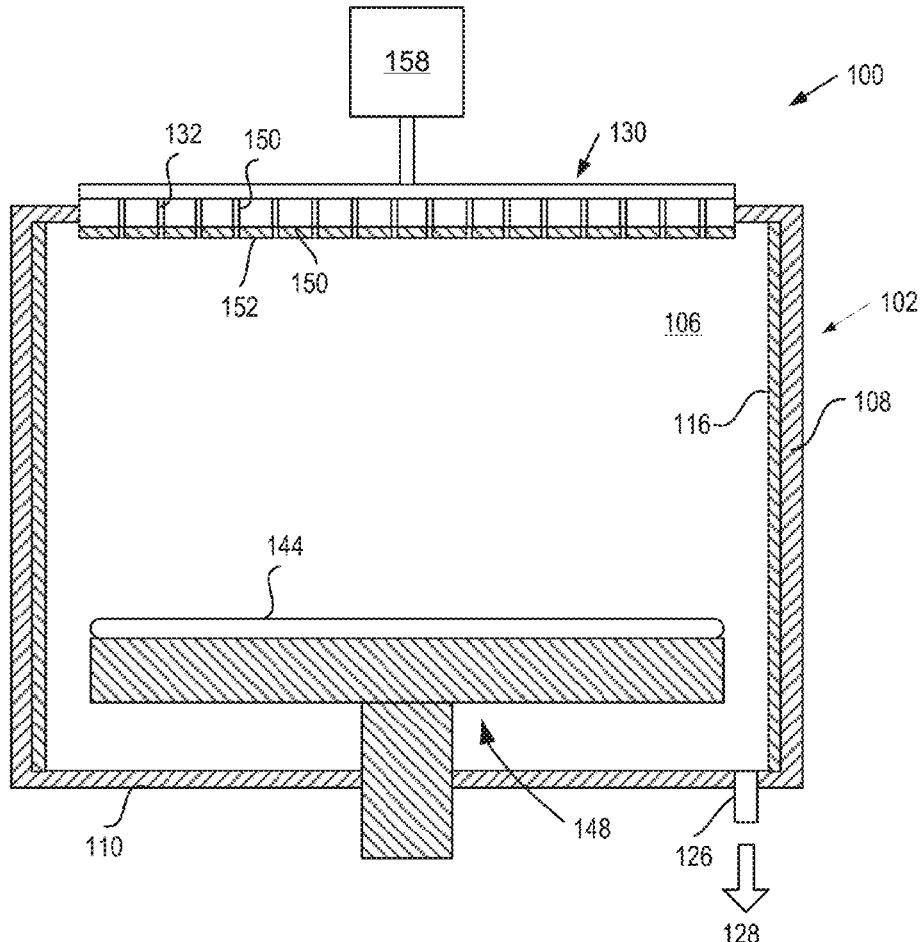
(21) Appl. No.: **15/965,810**

(22) Filed: **Apr. 27, 2018**

Related U.S. Application Data

(60) Provisional application No. 62/504,470, filed on May 10, 2017.

ABSTRACT


Publication Classification

(51) **Int. Cl.**

C23C 4/18 (2006.01)
C23C 4/134 (2006.01)

(57)

An article comprises a body having a coating. The coating comprises a Y—O—F coating or other yttrium-based oxy-fluoride coating generated either by performing a fluorination process on a yttrium-based oxide coating or an oxidation process on a yttrium-based fluorine coating.

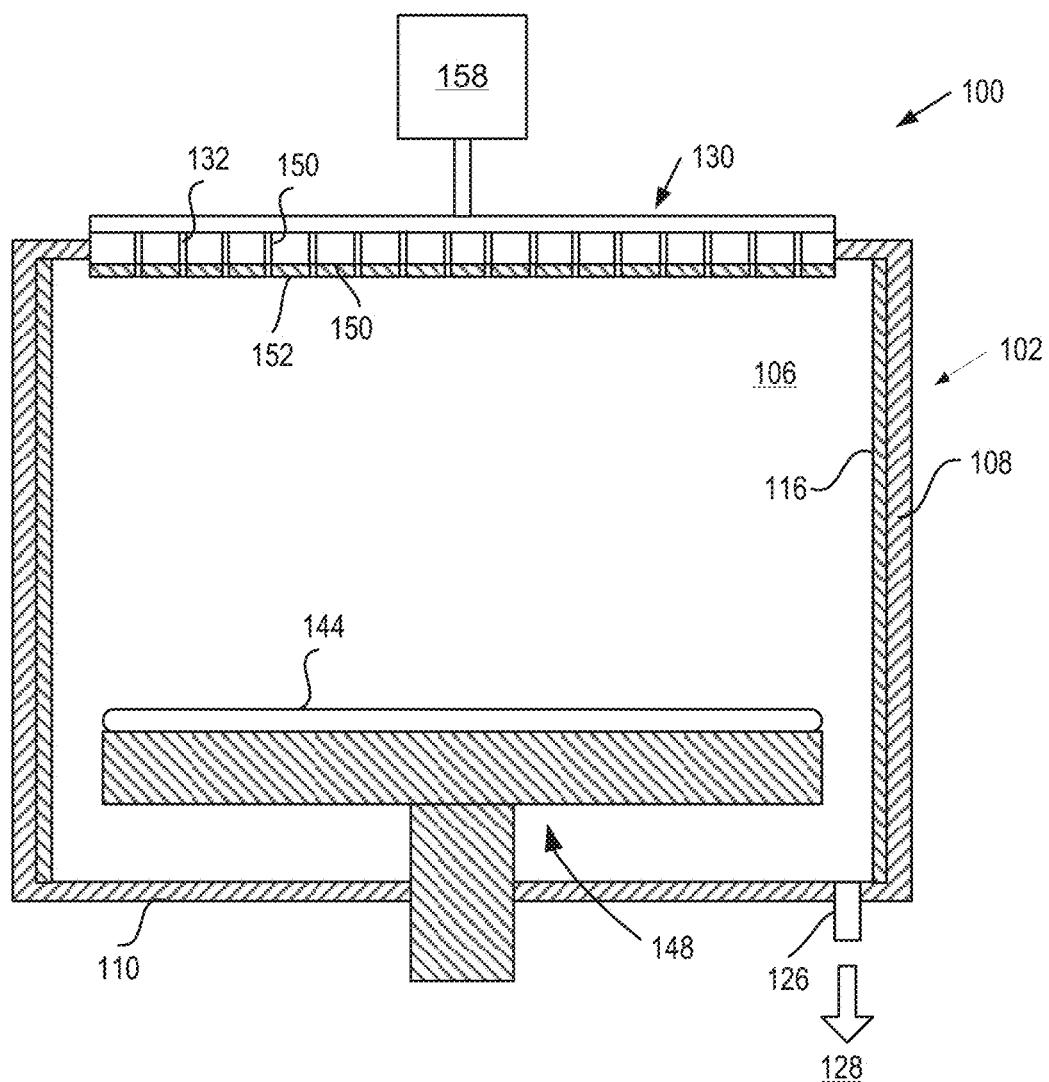


FIG. 1

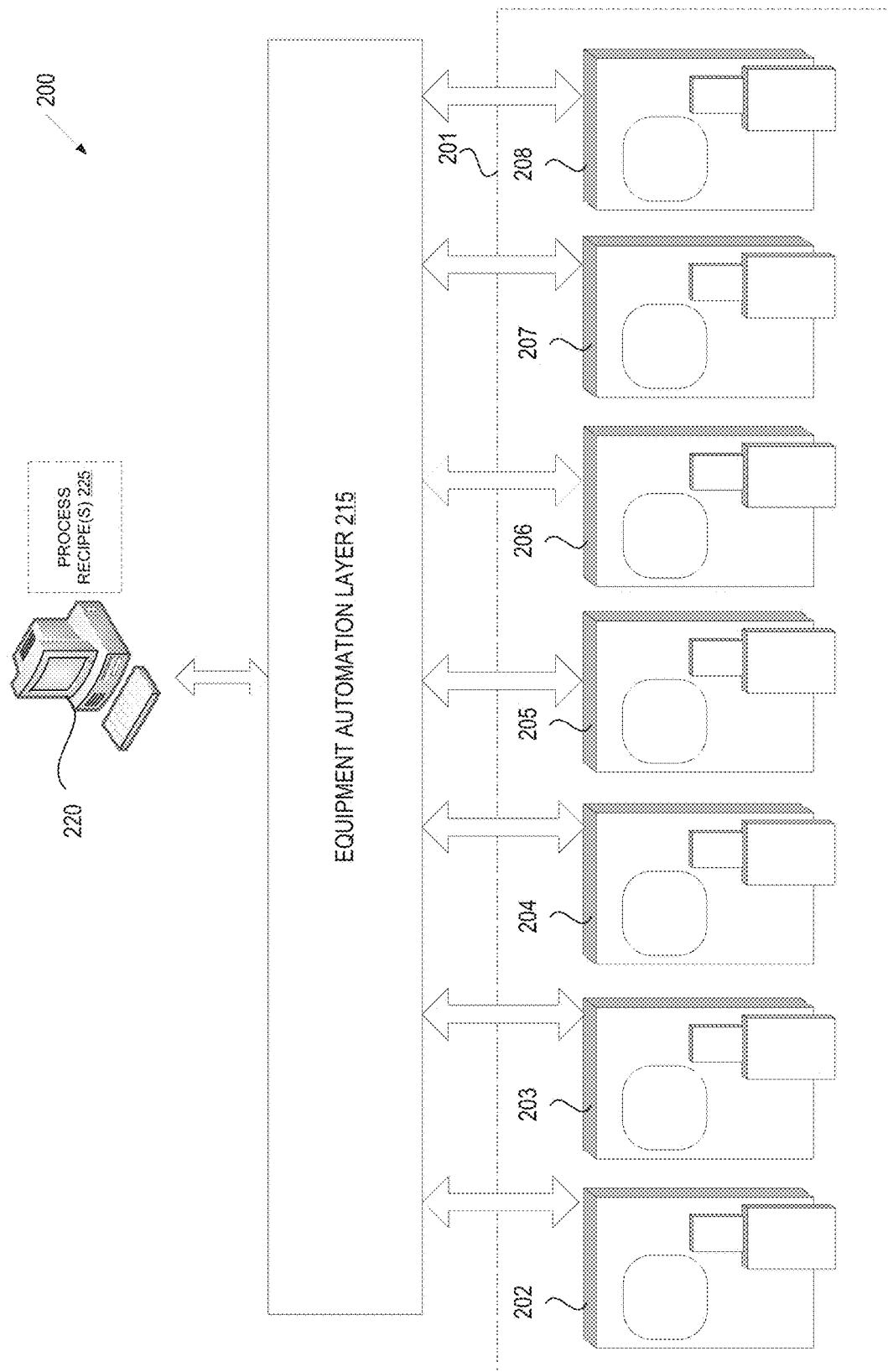
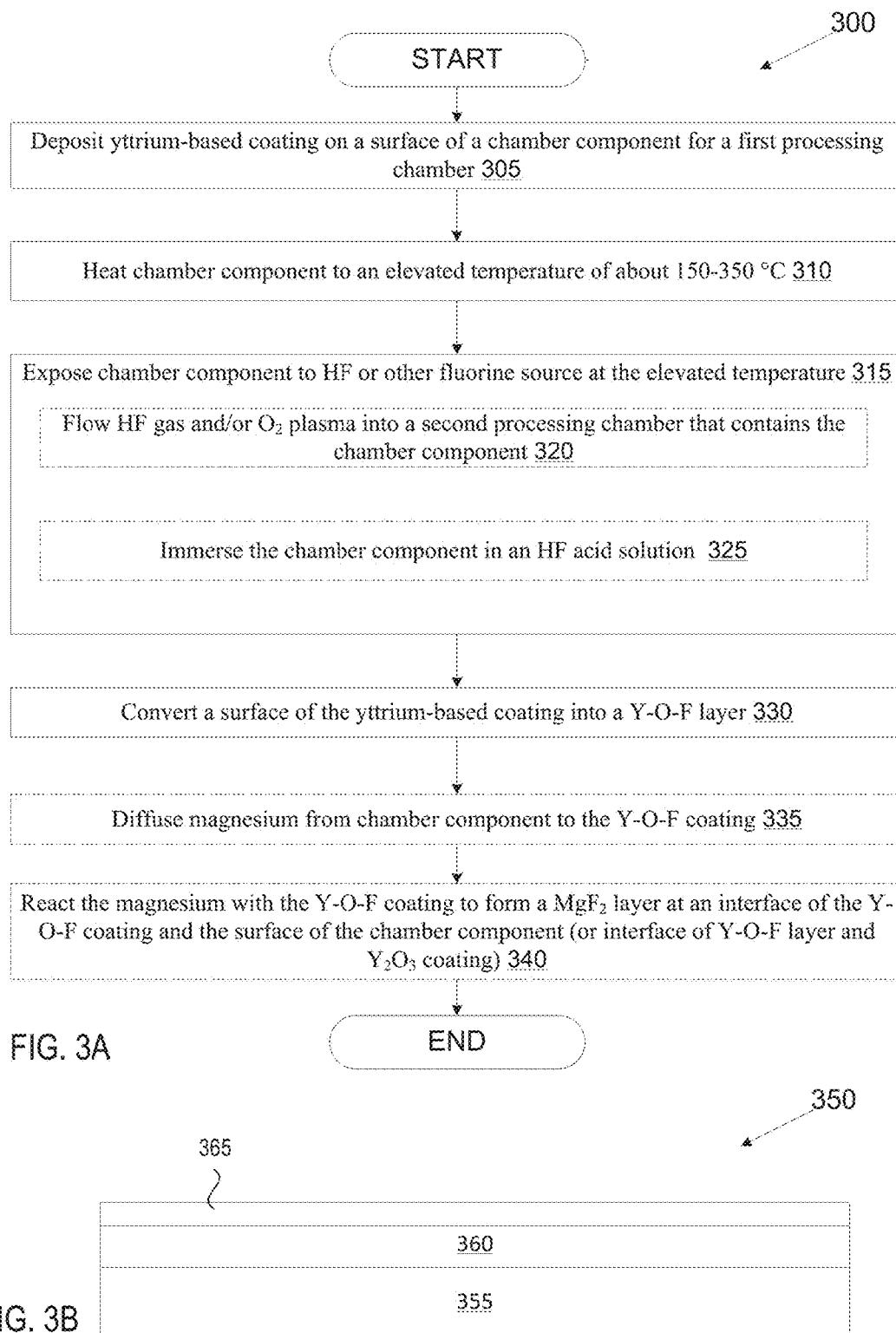
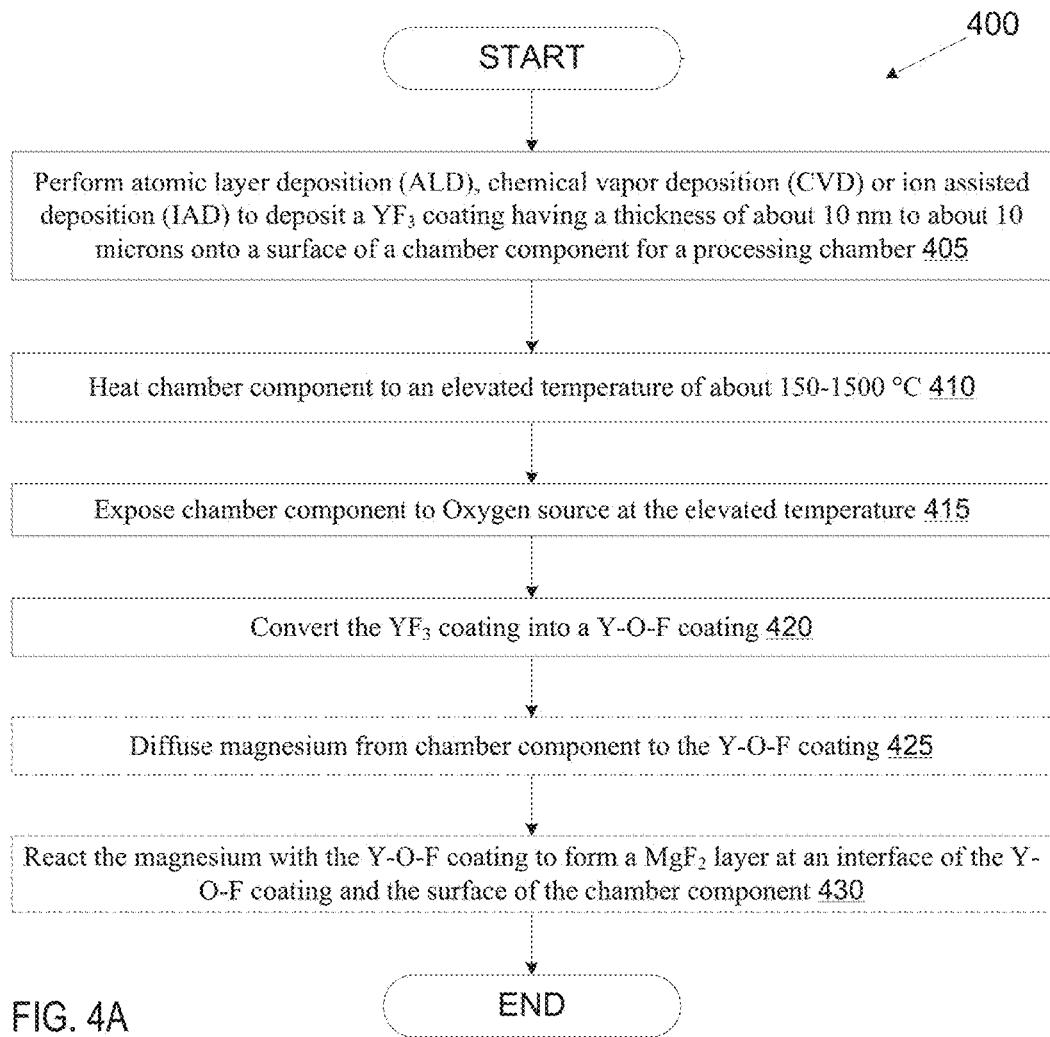




FIG. 2

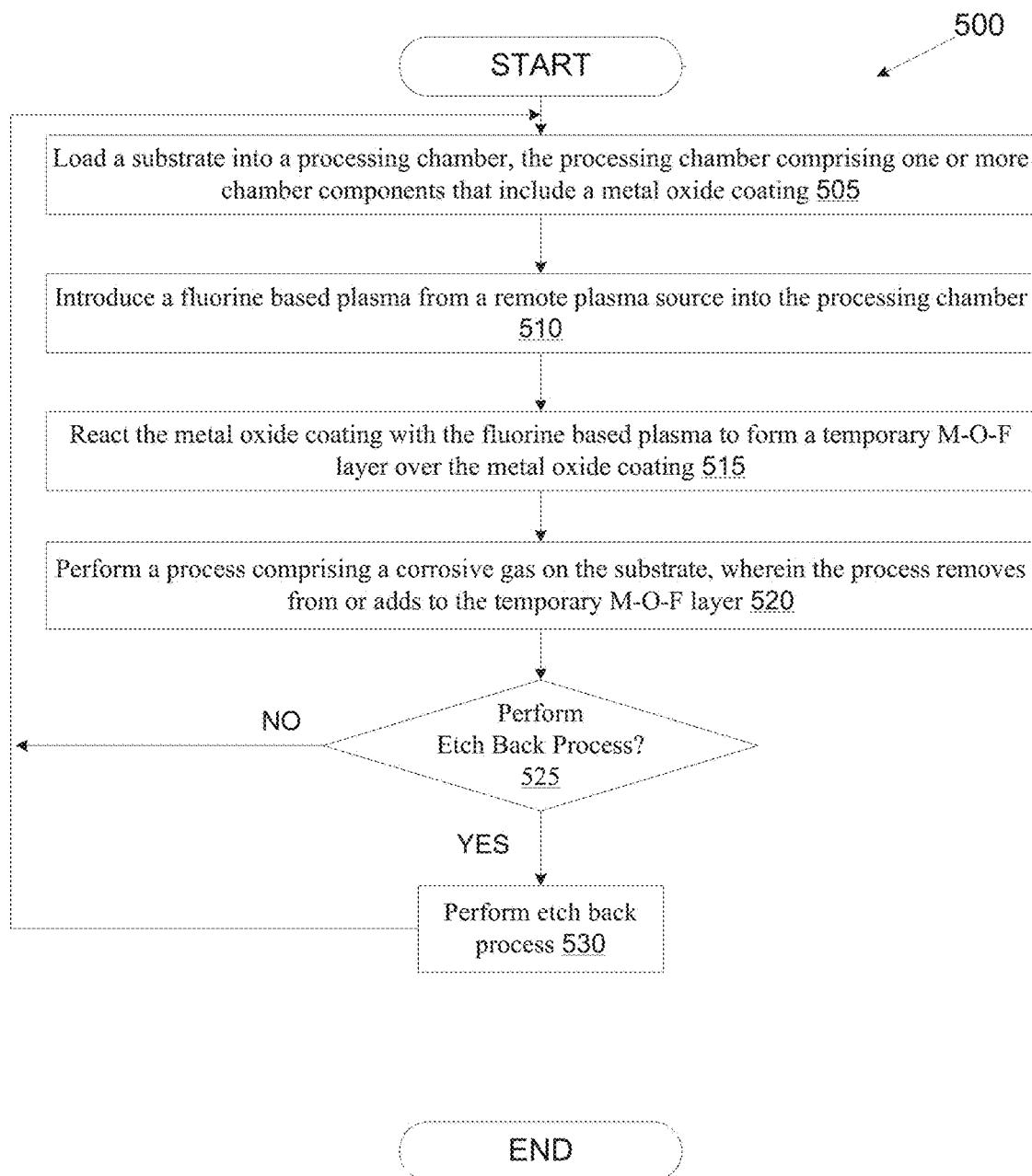


FIG. 5

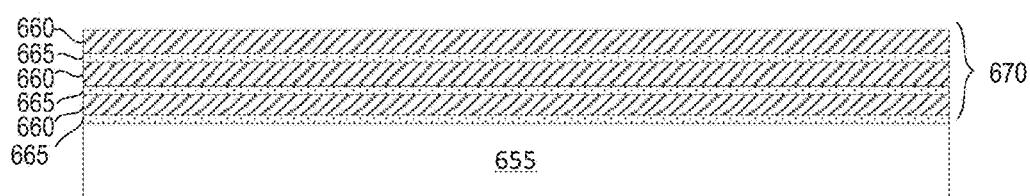
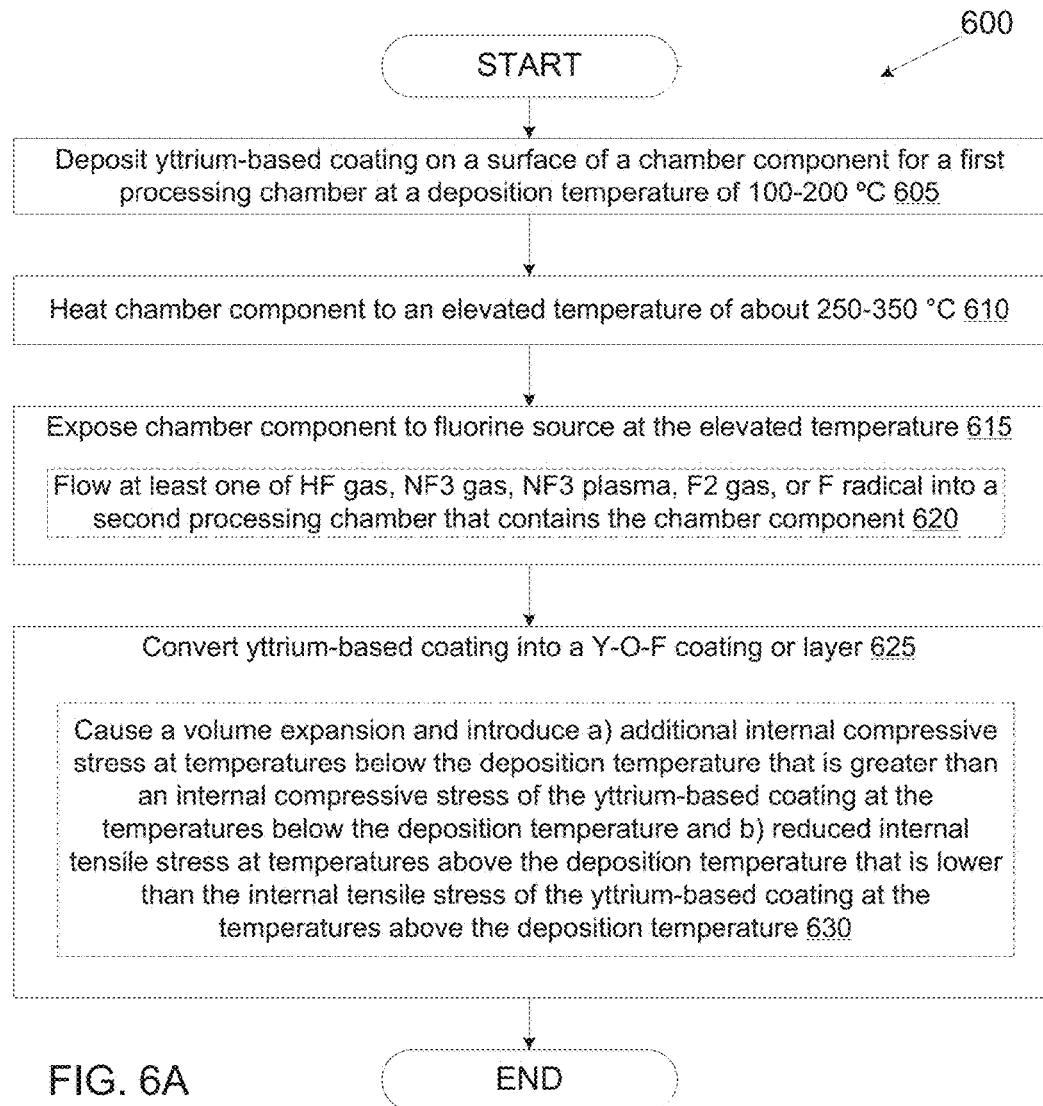



FIG. 7B

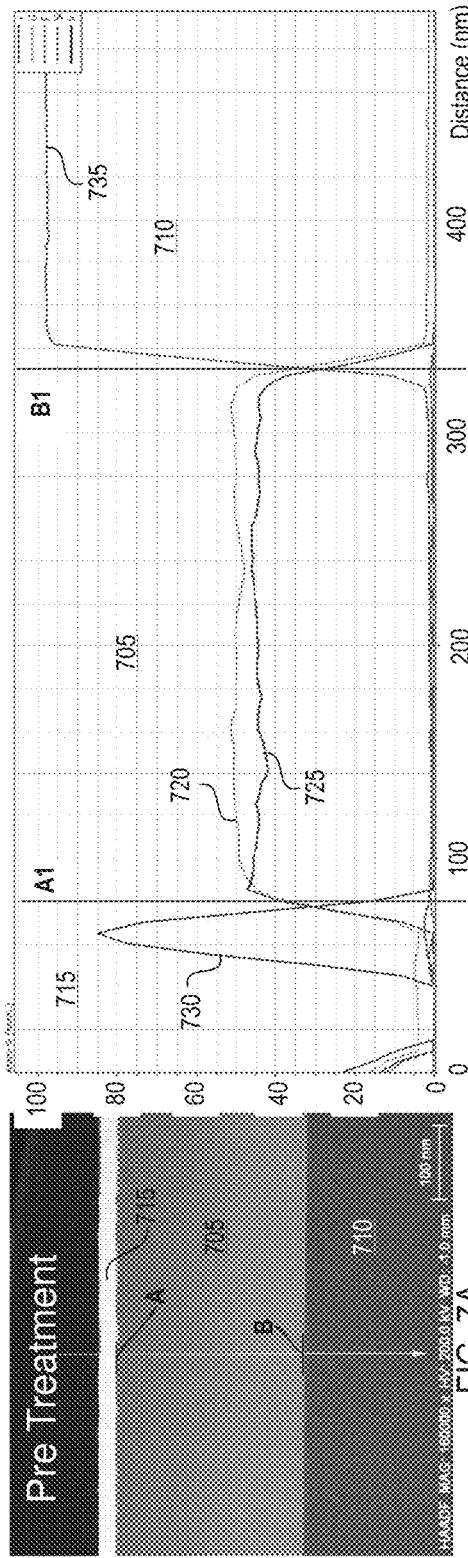


FIG. 7A

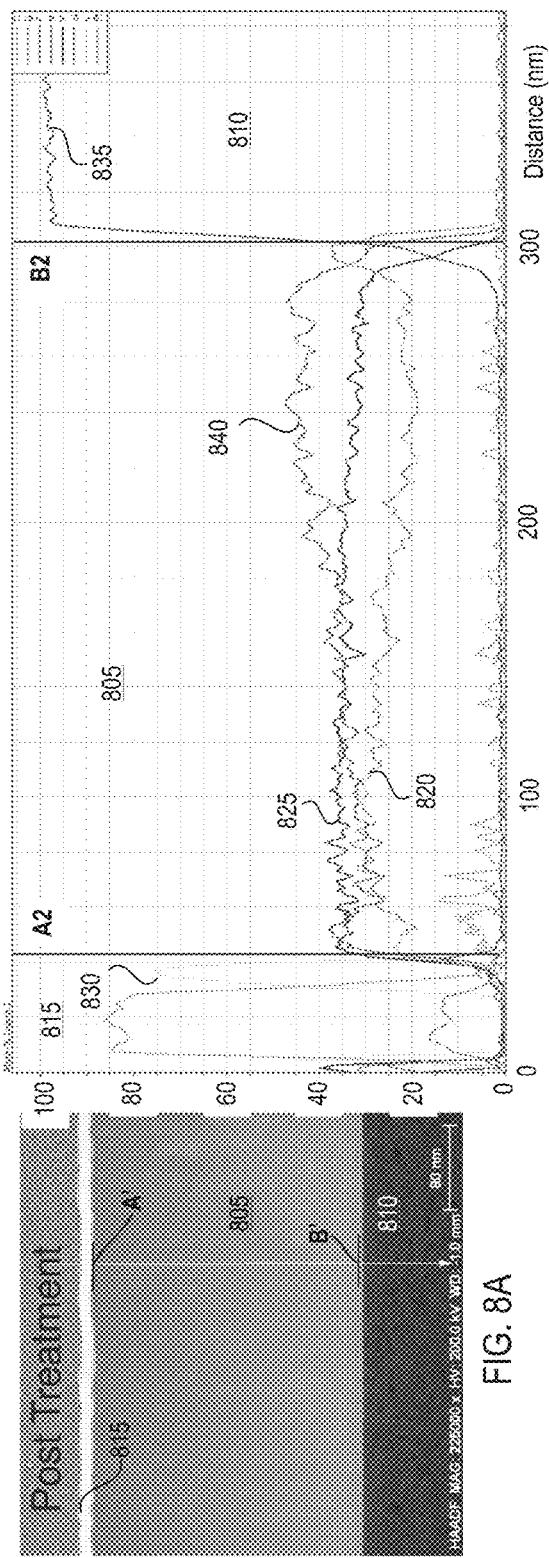
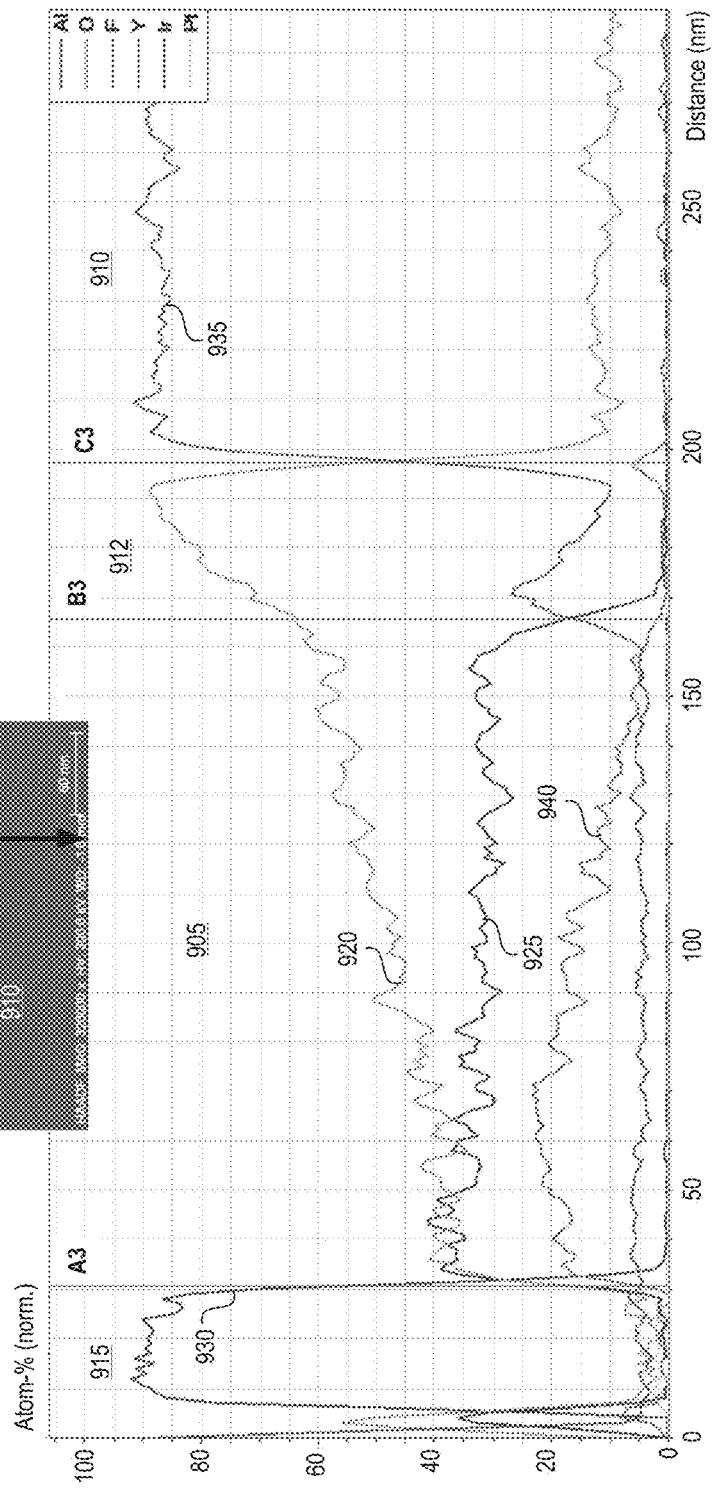
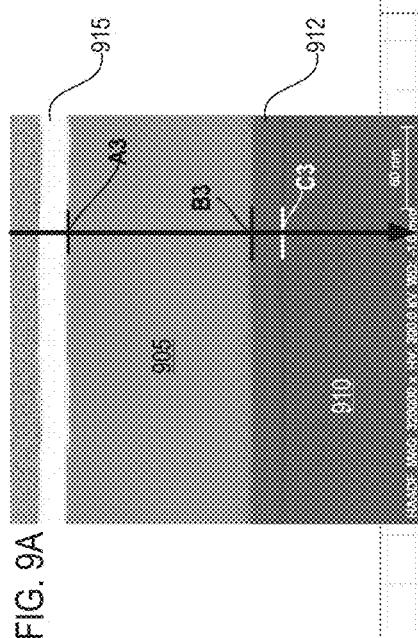




FIG. 8A

FIG. 8B

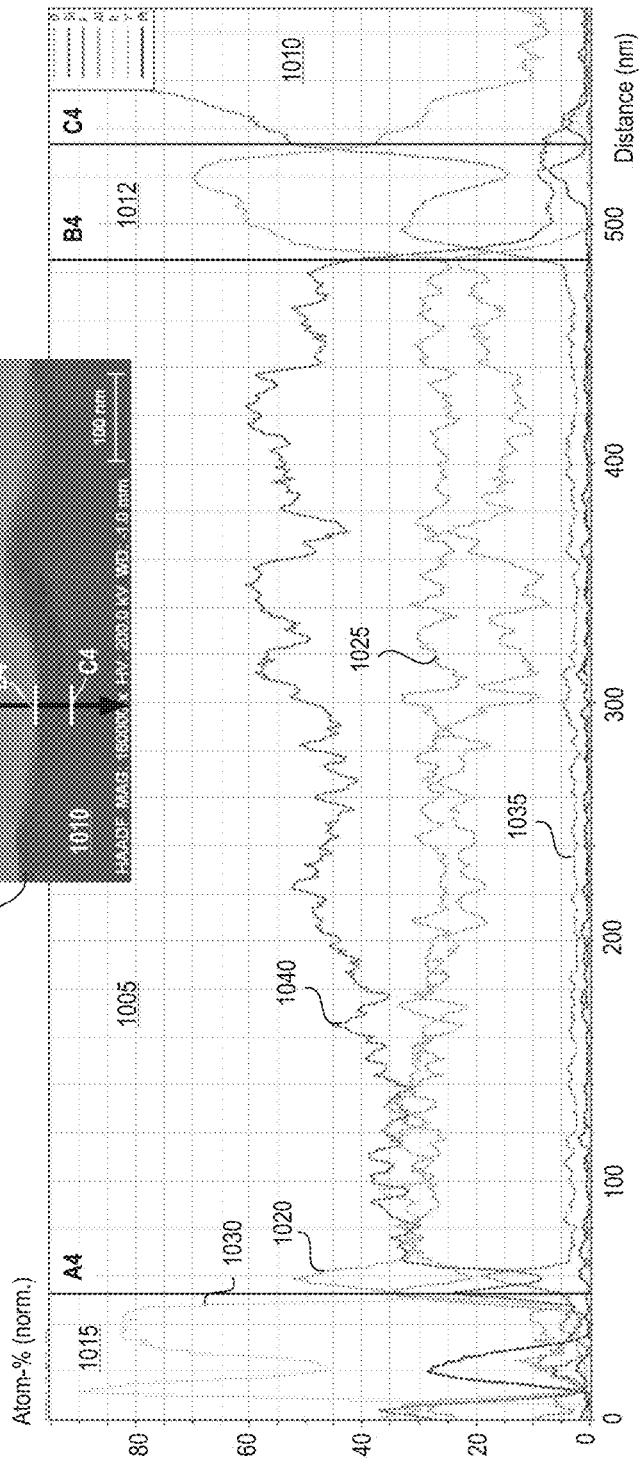
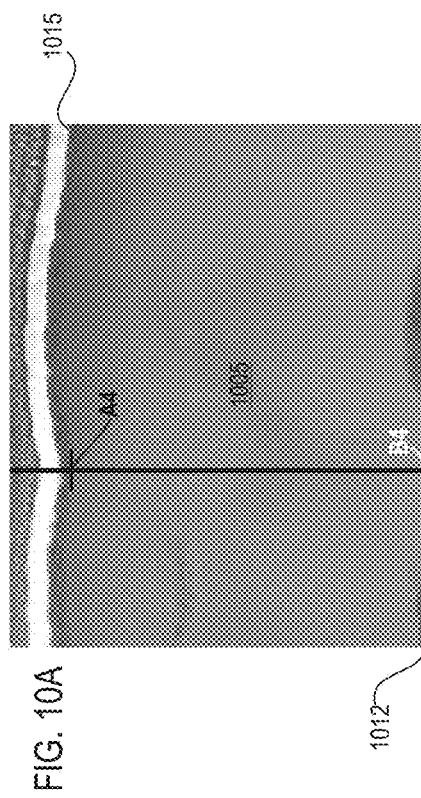



FIG. 10B

FIG. 11A

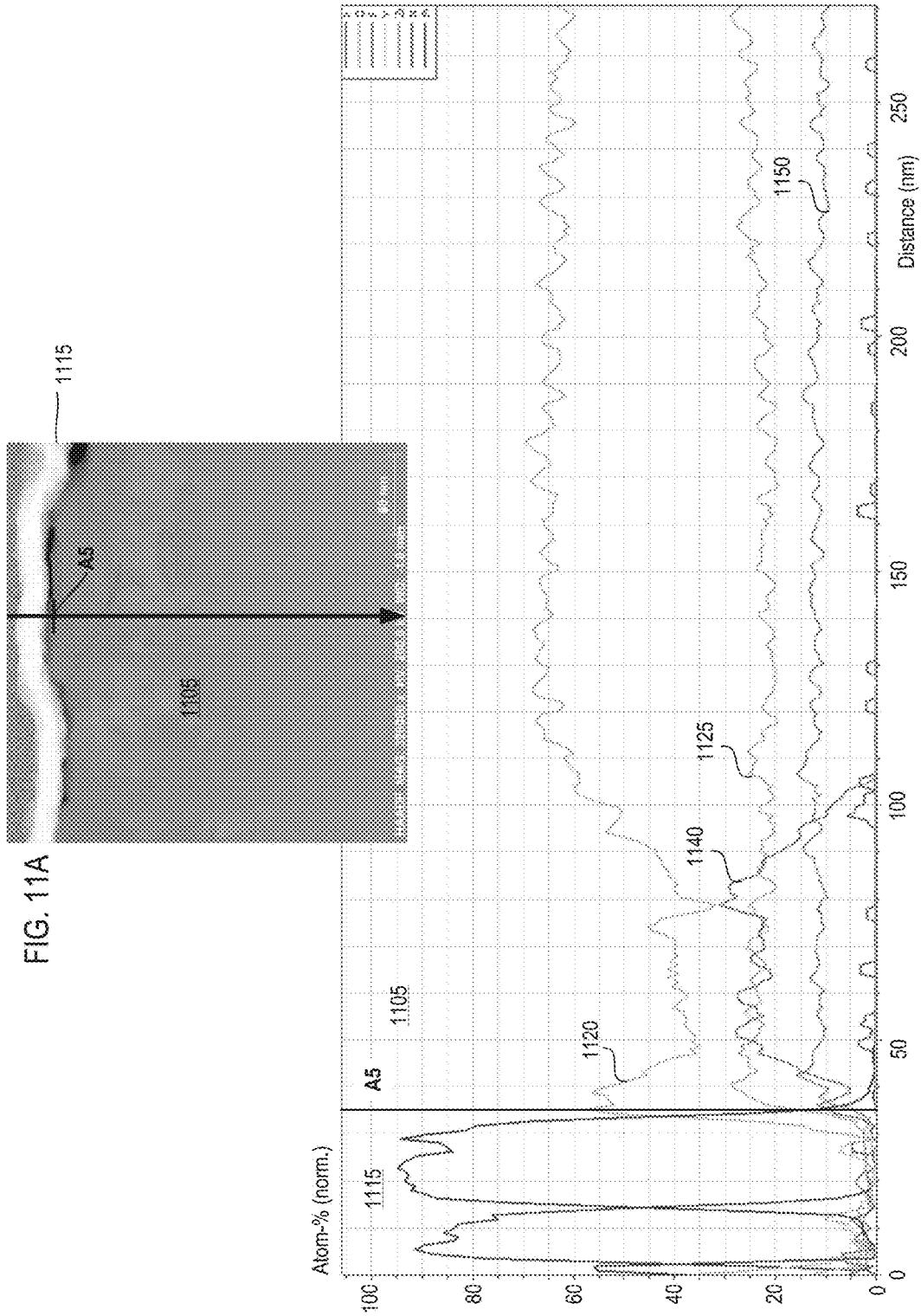
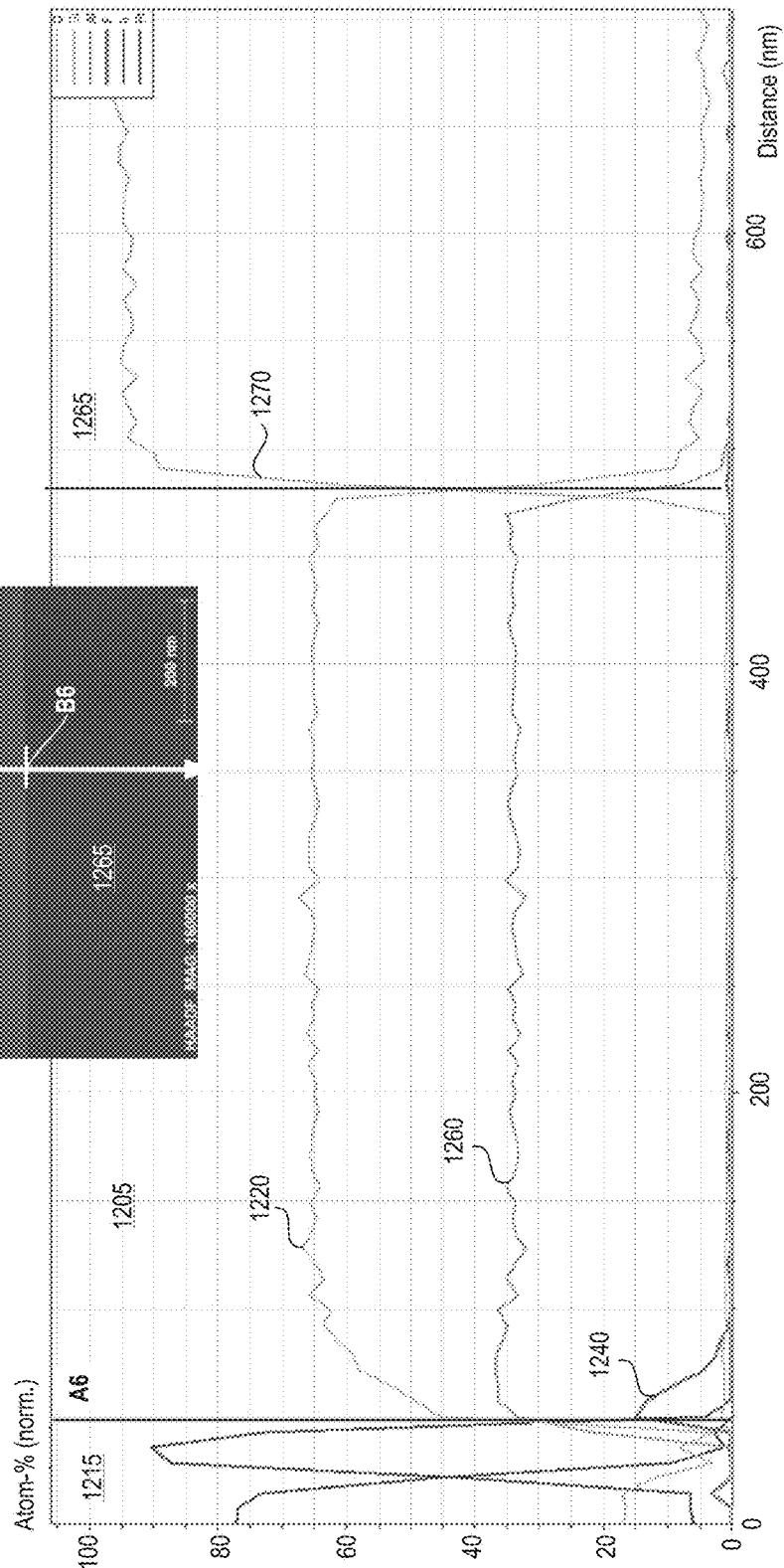
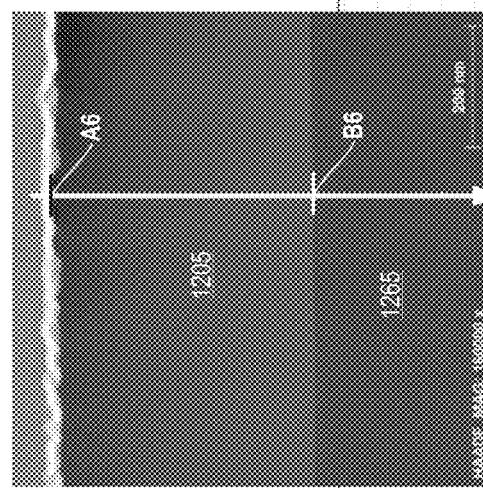
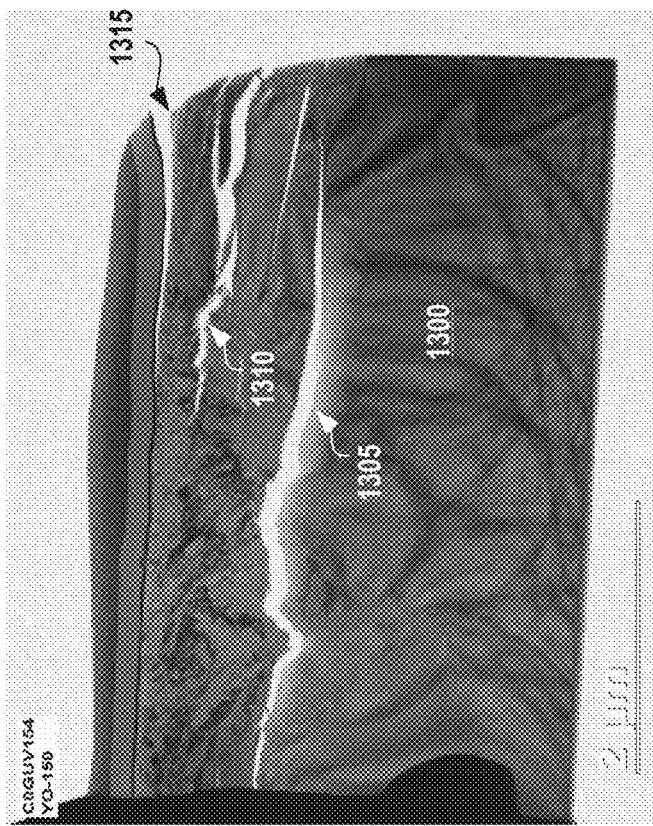
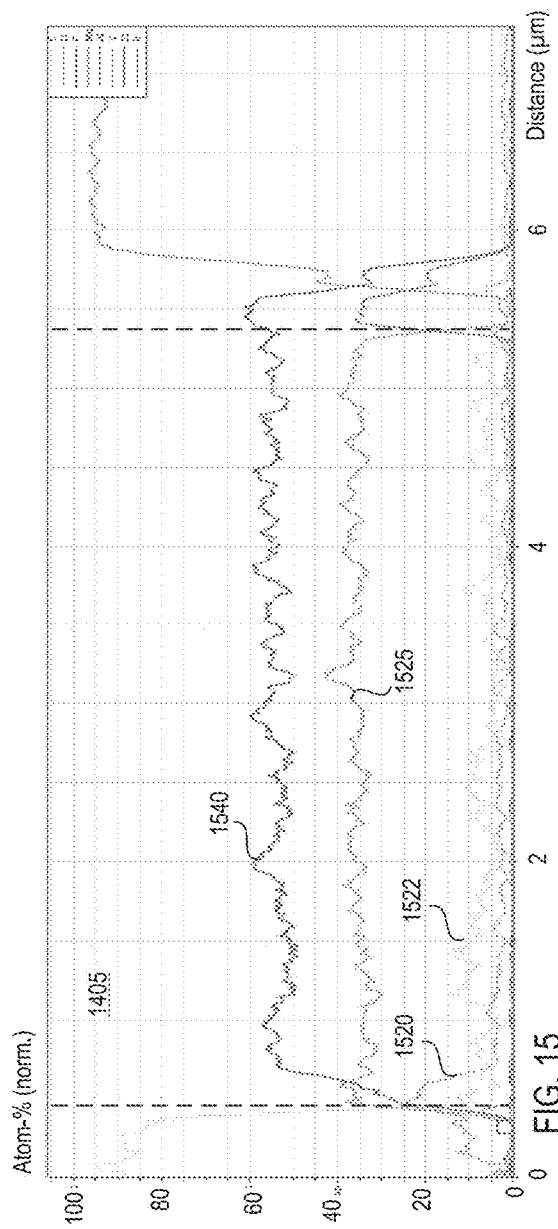
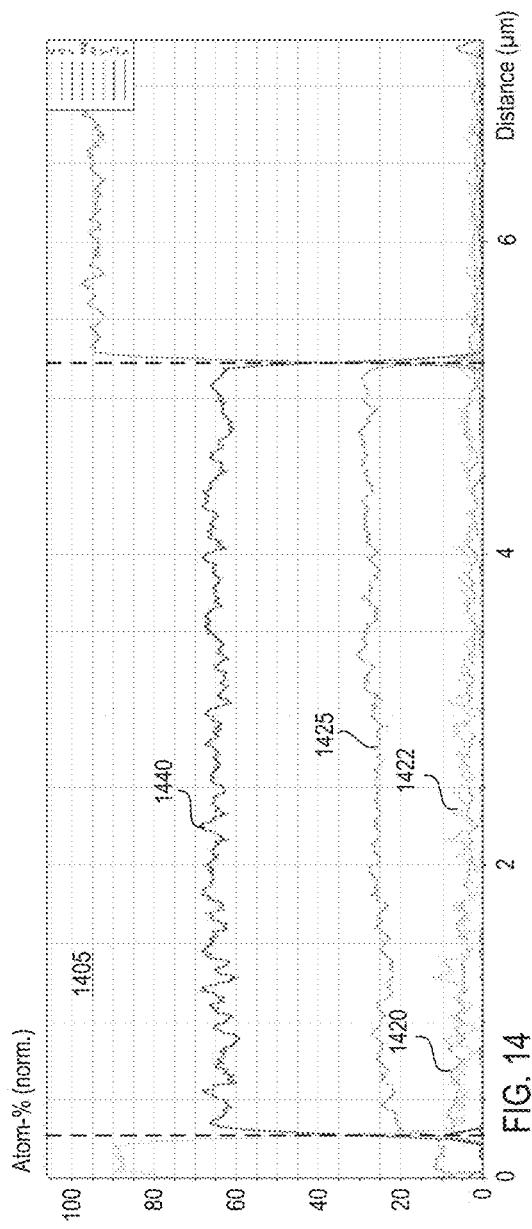


FIG. 11B

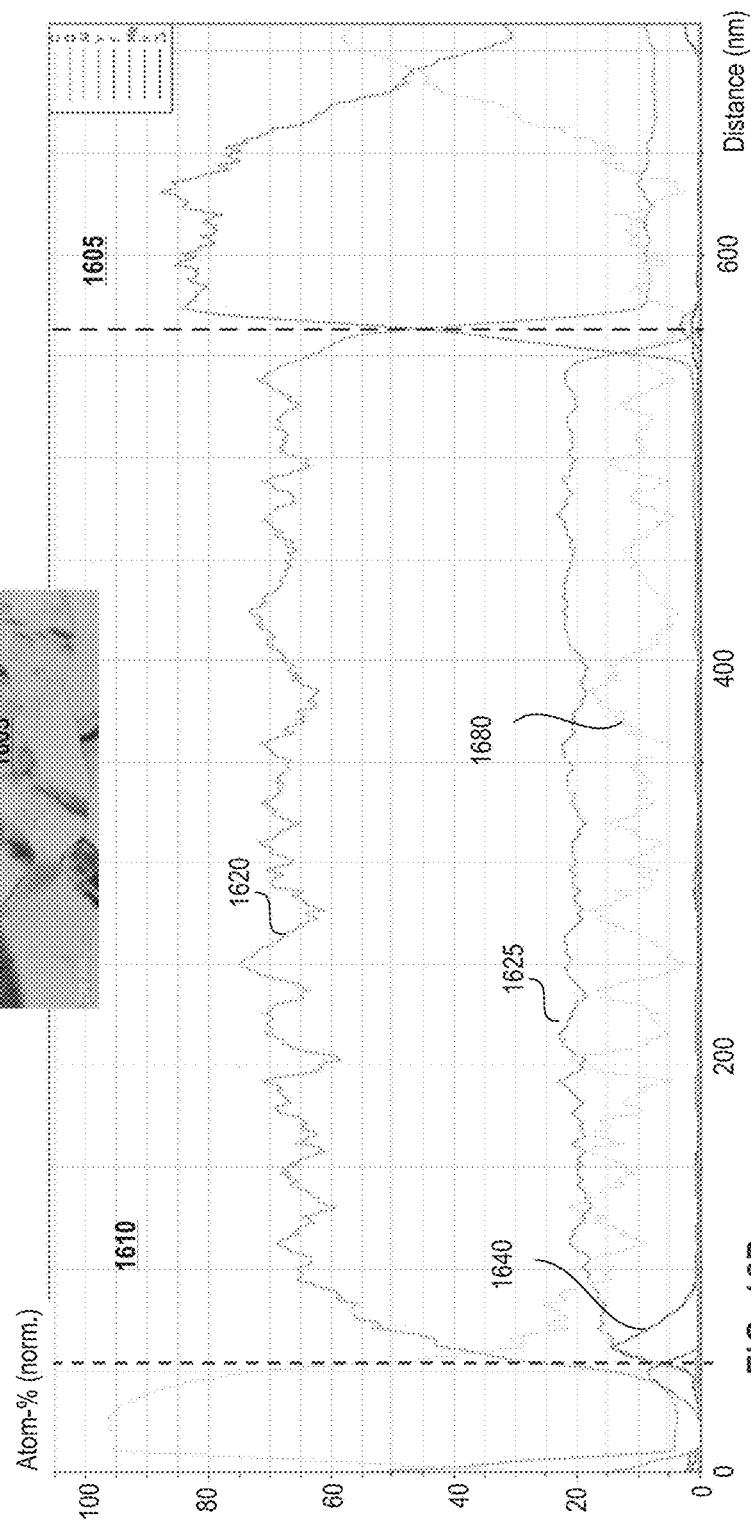
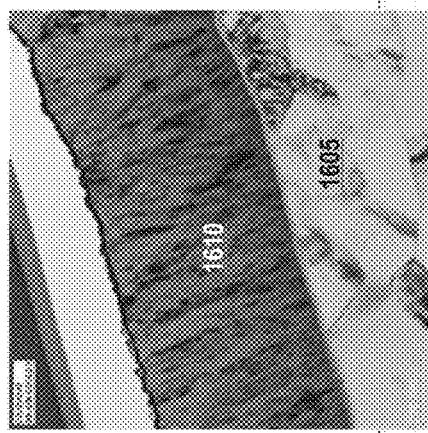



FIG. 13B

13A

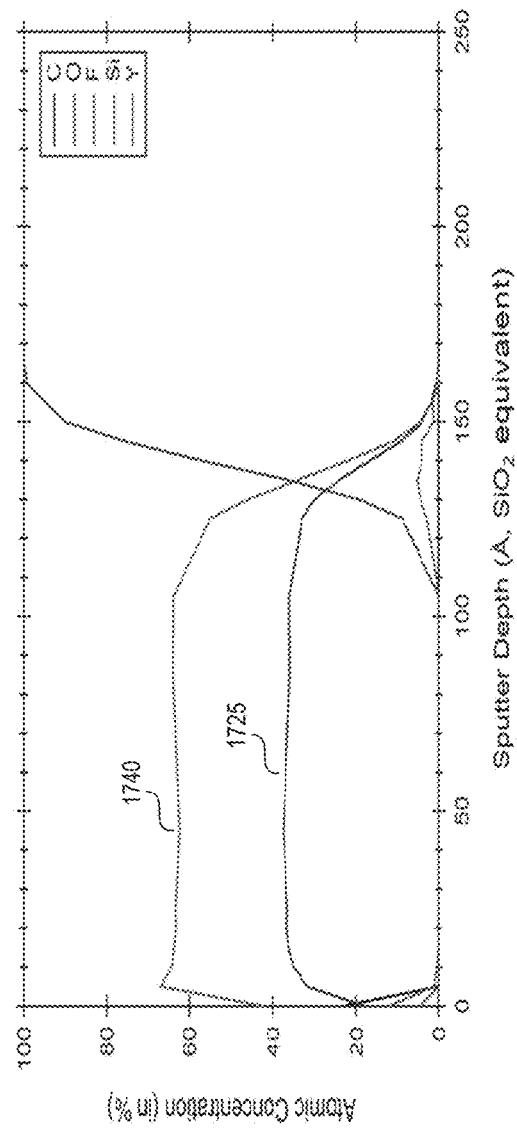


FIG. 17

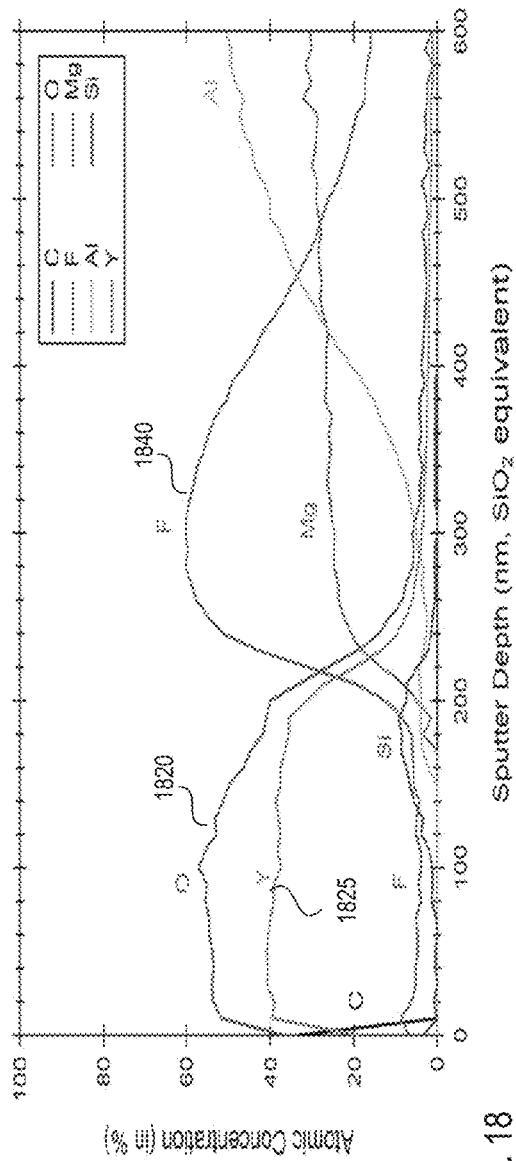


FIG. 18

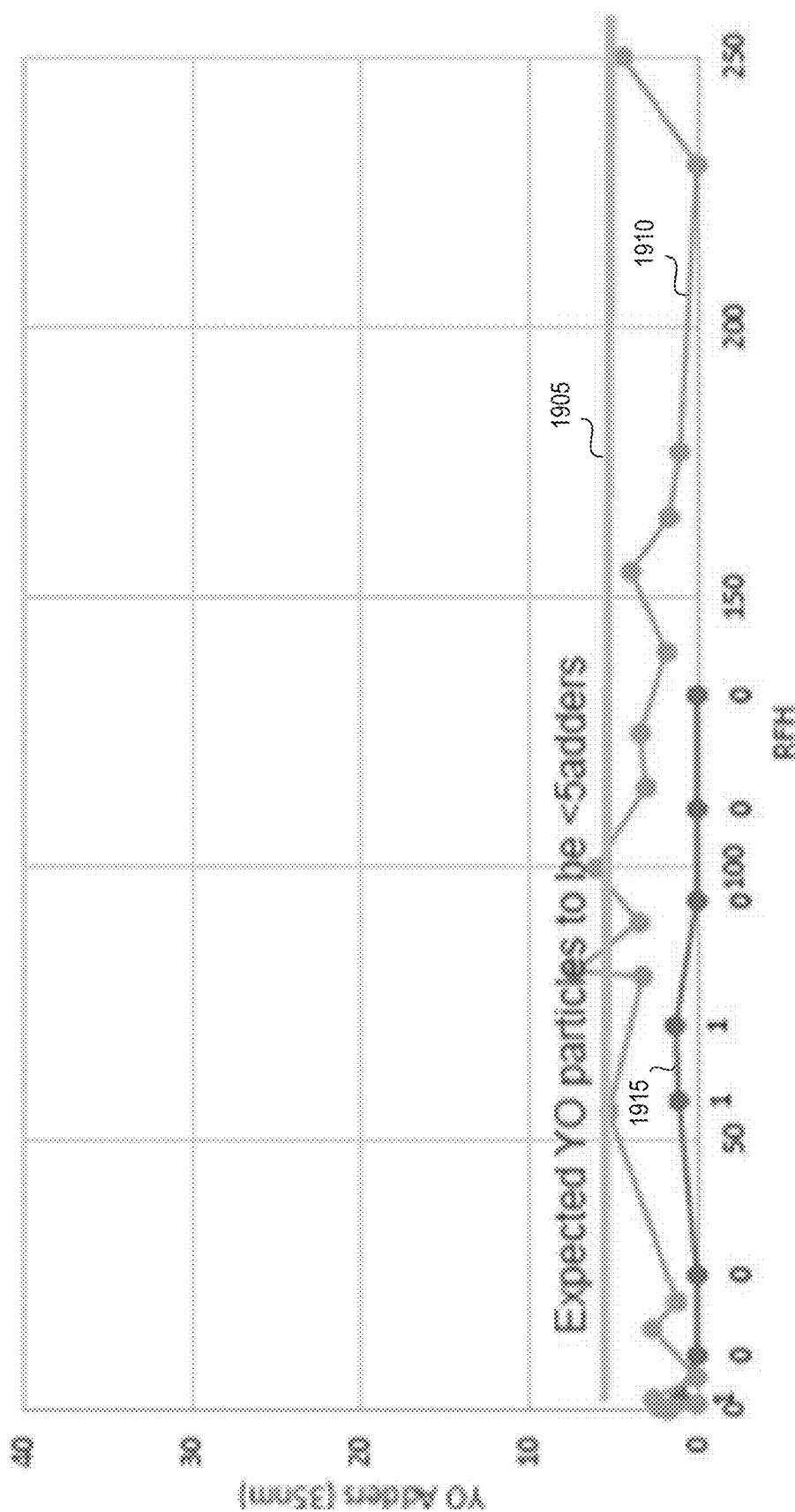


FIG. 19

METAL OXY-FLOURIDE FILMS FOR CHAMBER COMPONENTS

RELATED APPLICATIONS

[0001] This patent application claims the benefit under 35 U.S.C. § 119(e) of U.S. Provisional Application No. 62/504,470, filed May 10, 2017, which is incorporated by reference herein.

TECHNICAL FIELD

[0002] Embodiments of the present disclosure relate, in general, to methods of converting metal fluoride and/or metal oxide coatings into M-O—F layers and coatings. Embodiments additionally relate to in-situ formation of temporary metal fluoride and/or M-O—F layers over metal oxide surfaces.

BACKGROUND

[0003] Various manufacturing processes expose chamber components and their coating materials to high temperatures, high energy plasma, a mixture of corrosive gases, high stress, and combinations thereof. Rare earth oxides are frequently used in chamber component manufacturing due to their resistance to erosion from plasma etch chemistries. However, exposure of rare earth oxides to fluorine based plasma can cause cracking and shedding of particles onto wafers.

[0004] Furthermore, oxide coatings such as Y_2O_3 are permeable to water and can cause the adsorption of water. As a result, exposure of oxide coatings such as Y_2O_3 coatings to air generally causes a brittle M(OH) layer (e.g., a $Y(OH)_3$ layer) to form at a surface of the oxide coating, where M is a metal. Tests have shown the presence of multiple —OH groups at the surface of Y_2O_3 coatings exposed to air. The M(OH) layer is brittle and can shed particles onto processed wafers. Additionally, the M(OH) layer causes increased leakage current in the metal oxide coating (e.g., in the Y_2O_3 coating).

[0005] In some instances YF_3 has been used as a coating for chamber components. Use of the YF_3 coating can mitigate the issue of yttrium based particles on processed wafers. However, applying a YF_3 coating to chamber components of an etch reactor has been shown to cause a significant etch rate drop (e.g., an etch rate drop of as much as 60%), process drift and chamber matching issues.

SUMMARY

[0006] In an example implementation of a first method for forming a Y—O—F layer or coating, a yttrium-containing coating (e.g., a Y_2O_3 coating or Y_2O_3 — ZrO_2 solid solution coating) is deposited on a surface of a chamber component for a first processing chamber. Alternatively a M_xO_y coating may be deposited, where M is a metal such as Al or a rare earth metal. The chamber component is heated to an elevated temperature of about 150-1000° C. (e.g., 150-500° C.). The chamber component is exposed to a fluorine source such as HF, NF_3 , NF_3 plasma, F_2 , F radicals, etc. at the elevated temperature for a duration of time. As a result, at least a surface of the yttrium-containing oxide coating is converted into a Y—O—F layer or other yttrium-based oxy-fluoride layer or coating. In some instances, an entirety of the yttrium-containing oxide coating is converted to

Y—O—F or other yttrium containing oxy-fluoride. Alternatively, at least a surface of the M_xO_y coating is converted to a M-O—F layer.

[0007] In an example implementation of a second method for forming a Y—O—F layer or coating, atomic layer deposition (ALD), chemical vapor deposition (CVD) or ion assisted deposition (IAD) is performed to deposit a YF_3 coating having a thickness of about 10 nm to about 10 microns onto a surface of a chamber component for a processing chamber. The chamber component is heated to an elevated temperature of about 150-1500° C. The chamber component is exposed to an oxygen source at the elevated temperature for a duration of about 12-24 hours. As a result, the YF_3 coating is converted into a Y—O—F coating.

[0008] In an example implementation of a third method for forming a M-O—F layer or coating, a substrate is loaded into a processing chamber, the processing chamber comprising one or more chamber components that include a metal oxide coating. A fluorine-based plasma from a remote plasma source is introduced into the processing chamber. The metal oxide coating is reacted with the fluorine-based plasma to form a temporary M-O—F layer or metal fluoride layer over the metal oxide coating. A process that utilizes a corrosive gas is then performed on the substrate. The process removes or adds to the temporary M-O—F layer or metal fluoride layer, but the temporary M-O—F layer or metal fluoride layer protects the metal oxide coating from the corrosive gas.

BRIEF DESCRIPTION OF THE DRAWINGS

[0009] The present disclosure is illustrated by way of example, and not by way of limitation, in the figures of the accompanying drawings in which like references indicate similar elements. It should be noted that different references to “an” or “one” embodiment in this disclosure are not necessarily to the same embodiment, and such references mean at least one.

[0010] FIG. 1 depicts a sectional view of one embodiment of a processing chamber.

[0011] FIG. 2 illustrates an example architecture of a manufacturing system, in accordance with one embodiment of the present invention;

[0012] FIG. 3A illustrates a process for forming a M-O—F layer at a surface of a metal oxide coating according to an embodiment.

[0013] FIG. 3B illustrates a cross sectional side view of a chamber component that includes a Y_2O_3 coating and a Y—O—F layer according to an embodiment.

[0014] FIG. 4A illustrates a process for converting a YF_3 coating into a Y—O—F coating according to an embodiment.

[0015] FIG. 4B illustrates a cross sectional side view of a chamber component that includes a Y—O—F coating according to an embodiment.

[0016] FIG. 5 illustrates an in-situ process for forming a temporary M-O—F layer or metal fluoride layer on a metal oxide coating or metal oxide article prior to a manufacturing process according to an embodiment.

[0017] FIG. 6A illustrates a process for relieving the stress of a yttrium-based coating by converting at least a portion of the yttrium-based coating into a Y—O—F coating or layer according to an embodiment.

[0018] FIG. 6B illustrates a cross sectional side view of a chamber component that includes a Y—O—F/M—O—F coating on a body of a chamber component according to an embodiment.

[0019] FIG. 7A illustrates a cross sectional side view of a chamber component that includes a Y_2O_3 coating as viewed by a transmission electron microscope (TEM), according to an embodiment.

[0020] FIG. 7B illustrates a material composition of the chamber component of FIG. 7A.

[0021] FIG. 8A illustrates a cross sectional side view of a chamber component that includes a Y—O—F coating after a fluorination process as viewed by a TEM, according to an embodiment.

[0022] FIG. 8B illustrates a material composition of the chamber component of FIG. 8A.

[0023] FIG. 9A illustrates a cross sectional side view of a chamber component that includes an alternating stack of Y—O—F layers and Al—O—F layers after a fluorination process as viewed by a TEM, according to an embodiment.

[0024] FIG. 9B illustrates a material composition of the chamber component of FIG. 9A.

[0025] FIG. 10A illustrates a cross sectional side view of a chamber component that includes an alternating stack of Y—O—F layers and Al—O—F layers after a fluorination process as viewed by a TEM, according to an embodiment.

[0026] FIG. 10B illustrates a material composition of the chamber component of FIG. 10A.

[0027] FIG. 11A illustrates a cross sectional side view of a chamber component that includes a solid sintered (bulk) ceramic composed of a Y_2O_3 — ZrO_2 solid solution after a fluorination process as viewed by a TEM, according to an embodiment.

[0028] FIG. 11B illustrates a material composition of the chamber component of FIG. 11A.

[0029] FIG. 12A illustrates a cross sectional side view of a chamber component that includes a coating of Al_2O_3 after a fluorination process as viewed by a TEM, according to an embodiment.

[0030] FIG. 12B illustrates a material composition of the chamber component of FIG. 12A.

[0031] FIG. 13A illustrates a Y—O—F coating resulting from fluorination of a Y_2O_3 coating, according to an embodiment.

[0032] FIG. 13B illustrates a Y—Z—O—F coating resulting from fluorination of a Y_2O_3 — ZrO_2 solid solution coating, according to an embodiment.

[0033] FIG. 14 illustrates an energy dispersive electron microscopy (EDS) line scan showing the material composition of a YF_3 coating.

[0034] FIG. 15 illustrates an EDS line scan showing the material composition of the YF_3 coating of FIG. 14 after an oxidation process, where the YF_3 coating includes a Y—O—F layer, according to an embodiment.

[0035] FIG. 16A illustrates a cross sectional side view of a chamber component that includes a coating of Y_2O_3 after a fluorination process in a HF acid solution as viewed by a TEM, according to an embodiment.

[0036] FIG. 16B illustrates a material composition of the chamber component of FIG. 16A.

[0037] FIG. 17 illustrates an x-ray photoelectron spectroscopy (XPS) surface analysis showing the material composition of a YF_3 coating deposited by ALD.

[0038] FIG. 18 illustrates an XPS surface analysis showing the material composition of a Y—O—F coating formed from oxidation of the YF_3 coating of FIG. 17, according to an embodiment.

[0039] FIG. 19 illustrates particle performance of a Y—O—F coating and a Y—Z—O—F coating.

DETAILED DESCRIPTION OF EMBODIMENTS

[0040] Embodiments of the invention are directed to processes for forming Y—O—F layers and coatings as well as other M—O—F layers and coatings, where M is a metal such as Al, a rare earth or a combination of multiple metals. Y—O—F coatings and layers and other yttrium-containing oxy-fluoride coatings and layers are highly resistant to erosion and corrosion by fluorine-based plasmas. Additionally, M—O—F coatings are generally resistant to fluorination by fluorine-based plasmas. Additionally, M—O—F coatings may be resistant to formation of M(OH) such as Y(OH)₃. Moreover, M—O—F coatings do not cause the etch rate reductions that have been observed when YF_3 is used to coat chamber components. As a result of these properties, Y—O—F and other M—O—F coatings and layers as described herein offer significant reduction in particles and also improve etch rate uniformity and chamber to chamber uniformity when used on chamber components for processing chambers. In embodiments, the nomenclature “M—O—F” means 1-99 at. % M, 1-99 at. % O and 1-99 at. % F.

[0041] In some embodiments, a metal oxide coating is formed via atmospheric pressure plasma spray (APPS), low pressure plasma spray (LPPS), suspension plasma spray (SPS), ion assisted deposition (IAD), chemical vapor deposition (CVD), atomic layer deposition (ALD) or another deposition technique. The metal oxide coating may be expressed as M_xO_y , where M is a metal such as Al or a rare earth metal, and x and y are positive numerical values (e.g., positive integers from 1-9). In some examples, the metal oxide coating may be Al_2O_3 or a rare earth oxide such as Gd_2O_3 , Yb_2O_3 , Er_2O_3 or Y_2O_3 . The metal oxide coating may also be more complex oxides such as $Y_3Al_5O_{12}$ (YAG), $Y_4Al_2O_9$ (YAM), Y_2O_3 stabilized ZrO_2 (YSZ), $Er_3Al_5O_{12}$ (EAG), a Y_2O_3 — ZrO_2 solid solution, or a composite ceramic comprising $Y_4Al_2O_9$ and a solid solution of Y_2O_3 — ZrO_2 . At least a surface of the metal oxide coating is converted to M—O—F by exposing the metal oxide coating to a fluorine source such as HF, NF_3 , F_2 , NF_3 plasma, F radicals, etc. at an elevated temperature for a time period. The time period may be about 0.1-72 hours (e.g., about 1-24) hours in some embodiments.

[0042] Thin dense coatings such as those deposited using IAD and ALD are susceptible to cracking when deposited over articles having a coefficient of thermal expansion (CTE) that is different from a CTE of the thin dense coating. Unlike thick and porous plasma sprayed yttrium-based coatings, thin dense yttrium-based coatings are not tolerable of tensile stress. Tensile stress often causes through cracks in thin dense yttrium-based coatings that offer highly reactive species a direct passage to attack an underlying coated surface during processing. For example, Y_2O_3 has a CTE of around 6-8 ppm/K (also expressed as $\times 10^{-6}$ PC, ppm/°C. and $\times 10^{-6}/K$, all of which are equivalent), YF_3 has a CTE of around 14 ppm/K, and aluminum has a CTE of about 22-25 ppm/K. The mismatch in CTE between the aluminum article and the Y_2O_3 or YF_3 coatings can cause the dense coatings of YF_3 and Y_2O_3 on aluminum to crack at process tempera-

tures (e.g., of around 250-350° C.) due to tensile stress caused by the mismatch in CTE. In some instances, the cracking can be mitigated by heating the article during the deposition of the thin dense yttrium-based coating. However, some deposition processes such as ALD should be performed in a particular range of temperatures that may be lower than a range of process temperatures at which the article will be used. Accordingly, it may not be feasible to increase the deposition temperature for the yttrium-based coating.

[0043] YF_3 has a molar volume that is about 60% larger than the molar volume of Y_2O_3 . For example, YF_3 has a molar volume of 36.384 cm^3/mol and Y_2O_3 has a molar volume of about 22.5359 cm^3/mol . $\text{Y}-\text{O}-\text{F}$ has a molar volume that is between the molar volumes of Y_2O_3 and YF_3 . As a result, there is a volume expansion of up to about 60% when Y_2O_3 converts to YF_3 , and a lesser volume expansion when Y_2O_3 converts to $\text{Y}-\text{O}-\text{F}$. In embodiments, a fluorination process is performed on a yttrium-based oxide coating to convert at least a portion of the yttrium-based coating into a $\text{Y}-\text{O}-\text{F}$ coating or layer, as discussed above. Due to the larger molar volume of $\text{Y}-\text{O}-\text{F}$ as compared to Y_2O_3 , the conversion of the yttrium-based oxide coating to a $\text{Y}-\text{O}-\text{F}$ coating or layer introduces compressive stress to the coating at room temperature. The added compressive stress at room temperature translates to a lesser tensile stress at process temperatures of (e.g., of around 250-350° C.). The reduced tensile stress at process temperatures can reduce or eliminate cracking of the thin dense yttrium-based coating.

[0044] In some embodiments, a YF_3 or other yttrium-based fluoride coating is formed via ion assisted deposition (IAD), atomic layer deposition (ALD), CVD or another deposition technique. The YF_3 coating or other yttrium-based fluoride coating is converted to $\text{Y}-\text{O}-\text{F}$ or $\text{M}-\text{O}-\text{F}$ by exposing the metal oxide coating to an oxygen source at an elevated temperature for a time period.

[0045] In some embodiments, the YF_3 coating or other yttrium-based fluoride coating is formed on an article having a lower CTE than YF_3 or the other yttrium-based fluoride coating. For example, the YF_3 or the other yttrium-based fluoride coating may be formed on a graphite article having a CTE of around 4 ppm/K. The conversion of the YF_3 coating to a $\text{Y}-\text{O}-\text{F}$ coating (or other yttrium-based fluoride coating to a $\text{M}-\text{O}-\text{F}$ coating where M is a combination of Y and another metal) can cause the molar volume of the coating to reduce, which can reduce the compressive stress in the coating at room temperature and at process temperatures. This can reduce cracking during thermal cycling caused by the CTE mismatch.

[0046] In some embodiments, an in-situ fluorination process is performed to form a thin $\text{M}-\text{O}-\text{F}$ layer (e.g., a thin $\text{Y}-\text{O}-\text{F}$ layer or a thin $\text{Y}-\text{Z}-\text{O}-\text{F}$ layer) or a thin metal fluoride layer (e.g., a thin YF_3 layer) at the surface of a metal oxide coating on one or more chamber components prior to performing a manufacturing process on a substrate. For example, the in-situ fluorination process may be performed prior to a plasma etch process or a plasma cleaning process. The fluorination process may include introducing a fluorine-based plasma from a remote plasma source into a processing chamber that includes the one or more chamber components. The fluorine-based plasma may be introduced using process parameter values that are optimal for formation of a thin $\text{M}-\text{O}-\text{F}$ or metal fluoride layer and that are different from the parameters of the manufacturing process that will be

subsequently performed. The metal oxide coating is reacted with the fluorine-based plasma to form a temporary $\text{M}-\text{O}-\text{F}$ layer or metal fluoride layer over the metal oxide coating. The manufacturing process that utilizes a corrosive gas (e.g., a fluorine-based plasma or a reducing chemistry such as an ammonia based chemistry or a chlorine based chemistry) is then performed on the substrate. The manufacturing process may remove the temporary $\text{M}-\text{O}-\text{F}$ layer or metal fluoride layer or may add to the temporary $\text{M}-\text{O}-\text{F}$ layer or metal fluoride layer depending on the manufacturing process, but the temporary $\text{M}-\text{O}-\text{F}$ layer or metal fluoride layer protects the metal oxide coating from the corrosive gas.

[0047] In another embodiment, the in-situ fluorination process may include exposing one or more chamber components of the processing chamber to a fluorine-based acid solution (e.g., an HF acid solution and/or NH_4F acid solution). For example, a fluorine-based acid solution may be used to perform fluorination for non-vacuum chambers such as chambers for chemical mechanical planarization (CMP) or wet clean benches. The fluorine-based acid solution may be introduced using process parameter values that are optimal for formation of a thin $\text{M}-\text{O}-\text{F}$ or metal fluoride layer. The metal oxide coating is reacted with the fluorine-based plasma to form a temporary $\text{M}-\text{O}-\text{F}$ layer or metal fluoride layer over the metal oxide coating. The manufacturing process that utilizes a corrosive gas (e.g., a fluorine-based plasma or a reducing chemistry such as an ammonia based chemistry or a chlorine based chemistry) is then performed on the substrate. The manufacturing process may remove the temporary $\text{M}-\text{O}-\text{F}$ layer or metal fluoride layer or may add to the temporary $\text{M}-\text{O}-\text{F}$ layer or metal fluoride layer depending on the manufacturing process, but the temporary $\text{M}-\text{O}-\text{F}$ layer or metal fluoride layer protects the metal oxide coating from the corrosive gas.

[0048] In some embodiments an etch back process is performed periodically to remove at least a portion of the temporary $\text{M}-\text{O}-\text{F}$ layer or metal fluoride layer from the metal oxide coating. The etch back may be used to ensure that a thickness of the $\text{M}-\text{O}-\text{F}$ layer or metal fluoride layer does not reach a threshold thickness. Beyond the threshold thickness, the $\text{M}-\text{O}-\text{F}$ layer or metal fluoride layer may begin shedding particles due to added stress caused by volume expansion from the conversion of metal oxide to $\text{M}-\text{O}-\text{F}$ or metal fluoride. However, below the threshold thickness particle adders may be mitigated or prevented.

[0049] The term "heat treating" is used herein to mean applying an elevated temperature to a ceramic article, such as by a furnace. "Plasma resistant material" refers to a material that is resistant to erosion and corrosion due to exposure to plasma processing conditions. The plasma processing conditions include a plasma generated from halogen-containing gases, such as C_2F_6 , SF_6 , SiCl_4 , HBR , NF_3 , CF_4 , CHF_3 , CH_2F_3 , F , Cl_2 , CCl_4 , BCl_3 and SiF_4 , among others, and other gases such as O_2 , or N_2O . The resistance of the material to plasma is measured through "etch rate" (ER), which may have units of Angstrom/min ($\text{\AA}/\text{min}$), throughout the duration of the coated components' operation and exposure to plasma. Plasma resistance may also be measured through an erosion rate having the units of nanometer/radio frequency hour (nm/RFhr), where one RFhr represents one hour of processing in plasma processing conditions. Measurements may be taken after different processing times. For example, measurements may be taken before processing, after 50 processing hours, after 150

processing hours, after 200 processing hours, and so on. An erosion rate lower than about 100 nm/RFHr is typical for a plasma resistant coating material. A single plasma resistant material may have multiple different plasma resistance or erosion rate values. For example, a plasma resistant material may have a first plasma resistance or erosion rate associated with a first type of plasma and a second plasma resistance or erosion rate associated with a second type of plasma.

[0050] When the terms “about” and “approximately” are used herein, these are intended to mean that the nominal value presented is precise within $\pm 10\%$. Some embodiments are described herein with reference to chamber components and other articles installed in plasma etchers for semiconductor manufacturing. However, it should be understood that such plasma etchers may also be used to manufacture micro-electro-mechanical systems (MEMS) devices. Additionally, the articles described herein may be other structures that are exposed to plasma or other corrosive environments. Articles discussed herein may be chamber components for processing chambers such as semiconductor processing chambers. For example, the articles may be chamber components for a plasma etcher, a plasma cleaner, a plasma propulsion system, or other processing chambers. Examples of chamber components that may benefit from embodiments of the invention include a substrate support assembly, an electrostatic chuck (ESC), a ring (e.g., a process kit ring or single ring), a chamber wall, a base, a gas distribution plate, a face plate, a showerhead, a nozzle, a lid, a liner, a liner kit, a shield, a plasma screen, a flow equalizer, a cooling base, a chamber viewport, a chamber lid, and so on.

[0051] Moreover, embodiments are described herein with reference to M-O—F layers and coatings that cause reduced particle contamination when used in a process chamber for plasma rich processes. However, it should be understood that the M-O—F layers and coatings discussed herein may also provide reduced particle contamination when used in process chambers for other processes such as non-plasma etchers, non-plasma cleaners, chemical vapor deposition (CVD) chambers physical vapor deposition (PVD) chambers, plasma enhanced chemical vapor deposition (PECVD) chambers, plasma enhanced physical vapor deposition (PEPVD) chambers, plasma enhanced atomic layer deposition (PEALD) chambers, and so forth. Additionally, the techniques discussed herein with regards to formation of M-O—F layers and coatings are also applicable to articles other than chamber components for processing chambers.

[0052] Moreover, embodiments are described herein with reference to converting metal fluoride coatings (e.g., yttrium-based fluoride coatings) and metal oxide coatings (or portions of such coatings) into Y—O—F layers and other M-O—F layers. However, it should be understood that embodiments also apply to conversion of the surfaces of bulk metal oxides into M-O—F. For example, the surface of a sintered Y_2O_3 ceramic article may be converted into Y—O—F by the processes described with reference to FIGS. 3A and 5 below.

[0053] Moreover, some embodiments are discussed with reference to yttrium based oxides and/or yttrium based fluorides. Erbium is completely miscible with yttrium. Accordingly, it should be understood that these embodiments may be modified with similar results by replacing any amount of the yttrium with erbium. Accordingly, yttrium may be substituted with erbium in any of the embodiments discussed herein with regards to yttrium based fluorides,

yttrium based oxides and yttrium based oxy-fluorides. Some of the yttrium may be substituted with erbium, or all of the yttrium may be substituted with erbium in embodiments. Accordingly, any of the embodiments discussed herein may replace between 0% and 100% of the recited yttrium with erbium. In an example, rather than Y_2O_3 , a coating may instead be a mixture of 1-99 mol % Y_2O_3 and 1-99 mol % Er_2O_3 . The resulting metal oxy-fluoride may then be Y—Er—O—F in which the ratio of Y to Er is anywhere from 1:99 to 99:1.

[0054] FIG. 1 is a sectional view of a processing chamber 100 (e.g., a semiconductor processing chamber) having one or more chamber components that include a M-O—F layer or coating in accordance with embodiments of the present invention. The processing chamber 100 may be used for processes in which a corrosive plasma environment is provided. For example, the processing chamber 100 may be a chamber for a plasma etch reactor (also known as a plasma etcher), a plasma cleaner, and so forth. Examples of chamber components that may include a M-O—F layer or coating are a substrate support assembly 148, an electrostatic chuck (ESC), a ring (e.g., a process kit ring or single ring), a chamber wall, a base, a showerhead 130, a gas distribution plate, a liner, a liner kit, a shield, a plasma screen, a flow equalizer, a cooling base, a chamber viewport, a chamber lid, a nozzle, process kit rings, and so on.

[0055] In one embodiment, the processing chamber 100 includes a chamber body 102 and a showerhead 130 that enclose an interior volume 106. The showerhead 130 may or may not include a gas distribution plate. For example, the showerhead may be a multi-piece showerhead that includes a showerhead base and a showerhead gas distribution plate bonded to the showerhead base. Alternatively, the showerhead 130 may be replaced by a lid and a nozzle in some embodiments, or by multiple pie shaped showerhead compartments and plasma generation units in other embodiments. The chamber body 102 may be fabricated from aluminum, stainless steel or other suitable material. The chamber body 102 generally includes sidewalls 108 and a bottom 110.

[0056] An outer liner 116 may be disposed adjacent the sidewalls 108 to protect the chamber body 102. The outer liner 116 may be a halogen-containing gas resist material such as Al_2O_3 or Y_2O_3 .

[0057] An exhaust port 126 may be defined in the chamber body 102, and may couple the interior volume 106 to a pump system 128. The pump system 128 may include one or more pumps and throttle valves utilized to evacuate and regulate the pressure of the interior volume 106 of the processing chamber 100.

[0058] The showerhead 130 may be supported on the sidewalls 108 of the chamber body 102 and/or on a top portion of the chamber body. The showerhead 130 (or lid) may be opened to allow access to the interior volume 106 of the processing chamber 100, and may provide a seal for the processing chamber 100 while closed. A gas panel 158 may be coupled to the processing chamber 100 to provide process and/or cleaning gases to the interior volume 106 through the showerhead 130 or lid and nozzle. Showerhead 130 may be used for processing chambers used for dielectric etch (etching of dielectric materials). The showerhead 130 includes multiple gas delivery holes 132 throughout the showerhead 130. The showerhead 130 may be aluminum, anodized aluminum, an aluminum alloy (e.g., Al 6061), or an anod-

ized aluminum alloy. In some embodiments, the showerhead includes a gas distribution plate (GDP) bonded to the showerhead. The GDP may be, for example, Si or SiC. The GDP may additionally include multiple holes that line up with the holes in the showerhead.

[0059] Examples of processing gases that may be used to process substrates in the processing chamber 100 include halogen-containing gases, such as C_2F_6 , SF_6 , $SiCl_4$, HBr , NF_3 , CF_4 , CHF_3 , CH_2F_3 , F , Cl_2 , CCl_4 , BCl_3 and SiF_4 , among others, and other gases such as O_2 , or N_2O . Examples of carrier gases include N_2 , He, Ar, and other gases inert to process gases (e.g., non-reactive gases).

[0060] A substrate support assembly 148 is disposed in the interior volume 106 of the processing chamber 100 below the showerhead 130. The substrate support assembly 148 holds a substrate 144 (e.g., a wafer) during processing. The substrate support assembly 148 may include an electrostatic chuck that secures the substrate 144 during processing, a metal cooling plate bonded to the electrostatic chuck, and/or one or more additional components. An inner liner (not shown) may cover a periphery of the substrate support assembly 148. The inner liner may be a halogen-containing gas resist material such as Al_2O_3 or Y_2O_3 .

[0061] Any of the showerhead 130 (or lid and/or nozzle), sidewalls 108, bottom 110, substrate support assembly 148, outer liner 116, inner liner (not shown), or other chamber component may include a M-O—F coating or a metal oxide coating with a M-O—F layer on the metal oxide coating, in accordance with embodiments. For example, as shown showerhead 130 includes a M-O—F coating 152. In some embodiments, a M-O—F layer is temporarily formed using an in-situ fluorination process prior to performing another process on the substrate 144. In some embodiments, the M-O—F coating 152 is a Y—O—F coating. The Y—O—F coating may have a single Y—O—F phase or multiple different Y—O—F phases. Some possible Y—O—F phases that the Y—O—F coating may have are YOF ht, YOF rt, YOF tet, Y_2OF_4 (e.g., Y_2OF_4 ht-hp), $Y_3O_2F_5$ (e.g., $Y_3O_2F_5$ ht-hp), $YO_{0.4}F_{22}$ (e.g., $YO_{0.4}F_{22}$ ht-hp), $Y_5O_4F_7$, $Y_6O_5F_8$, $Y_7O_5F_9$, and $Y_{17}O_{14}F_{23}$. In some embodiments, the M-O—F coating is a Y—Zr—O—F coating.

[0062] FIG. 2 illustrates an example architecture of a manufacturing system 200, in accordance with embodiments of the present invention. The manufacturing system 200 may be a ceramics manufacturing system. In one embodiment, the manufacturing system 200 includes processing equipment 201 connected to an equipment automation layer 215. The processing equipment 201 may include a furnace 202, a wet cleaner 203, a plasma spraying system 204, an atomic layer deposition (ALD) system 205, an IAD system 206, a plasma etch reactor 207, a bead blaster (not shown), a CVD system (not shown), a plasma cleaner 208, and/or another processing chamber uses a fluorine-based plasma. The manufacturing system 200 may further include one or more computing device 220 connected to the equipment automation layer 215. In alternative embodiments, the manufacturing system 200 may include more or fewer components. For example, the manufacturing system 200 may include manually operated (e.g., off-line) processing equipment 201 without the equipment automation layer 215 or the computing device 220.

[0063] Furnace 202 is a machine designed to heat articles such as ceramic articles. Furnace 202 includes a thermally insulated chamber, or oven, capable of applying a controlled

temperature on articles (e.g., ceramic articles) inserted therein. In one embodiment, the chamber is hermetically sealed. Furnace 202 may include a pump to pump air out of the chamber, and thus to create a vacuum within the chamber. Furnace 202 may additionally or alternatively include a gas inlet to pump gasses (e.g., inert gasses such as Ar or N_2 and/or reactive gases such as hydrogen fluoride (HF)) into the chamber. Furnace 202 may be used to perform an HF heat treatment process in embodiments.

[0064] Wet cleaner 203 is an apparatus that includes a bath and a heating element. Wet cleaner 203 may clean articles (e.g., chamber components) using a wet clean process. Wet cleaner 203 includes a wet bath filled with an HF acid solution or other fluorine-based acid solution (e.g., such as an acid solution containing fluoroantimonic acid, ammonium fluoride (NH_4F) and/or sulfurofluoridic acid). A chamber component having a metal oxide coating may be immersed in the HF acid solution (or other fluorine-based acid solution) at a temperature of about 0-100° C. (or about room temperature to about 100° C.) to convert at least a portion of the metal oxide to a M-O—F. In some embodiments, the HF acid solution (or other fluorine-based acid solution) may remove surface contaminants from the article and/or may remove a M(OH) layer oxide from a surface of a metal oxide coating. In one embodiment, an acid solution containing approximately 0.05-50 vol % HF and 50-95 vol % water is used. In one embodiment, an acid solution containing about 0.05-1.0 (or 0.05-0.1) vol % HF, 99.5-99.95 vol % water and an amount of ammonium fluoride as a buffering agent is used.

[0065] Plasma spraying system 204 is a machine configured to plasma spray a ceramic coating to the surface of an article. Plasma spraying system 204 may be a low pressure plasma spraying (LPPS) system or an atmospheric pressure plasma spraying (APPS) system. Both LPPS systems and APPS systems may be used to deposit a porous, low density plasma resistant layer (e.g., a second plasma resistant layer for a multi-layer plasma resistant coating). An LPPS system includes a vacuum chamber that can be pumped down to reduced pressure (e.g., to a vacuum of 1 Mbar, 10 Mbar, 35 Mbar, etc.), while an APPS system does not include any vacuum chamber, and may instead include an open chamber or room.

[0066] In a plasma spraying system 204, an arc is formed between two electrodes through which a gas is flowing. As the gas is heated by the arc, the gas expands and is accelerated through a shaped nozzle of a plasma torch, creating a high velocity plasma jet. Powder composed of a ceramic and/or metal material is injected into the plasma jet by a powder delivery system. An intense temperature of the plasma jet melts the powder and propels the molten ceramic and/or metal material towards an article. Upon impacting with the article, the molten powder flattens, rapidly solidifies, and forms a layer of a ceramic coating that adheres to the article. The parameters that affect the thickness, density, and roughness of the plasma sprayed layer include type of powder, powder size distribution, powder feed rate, plasma gas composition, gas flow rate, energy input, pressure, and torch offset distance. Alternatively, suspension plasma spray (SPS) may be performed and the powder may be dispersed in a liquid suspension before being injected into the plasma jet. The plasma sprayed layer may have a porosity of about 2-5% in embodiments. Porosity is a measure of a void (e.g.,

empty space) in a material, and is a fraction of the volume of voids over the total volume of the material.

[0067] ALD system 205 is a system that performs atomic layer deposition to form a thin dense conformal layer on an article. ALD allows for a controlled self-limiting deposition of material through chemical reactions with the surface of the article. Aside from being a conformal process, ALD is also a uniform process. All exposed sides of the article, including high aspect ratio features (e.g., about 10:1 to about 300:1) will have the same or approximately the same amount of material deposited. A typical reaction cycle of an ALD process starts with a precursor (i.e., a single chemical A) flooded into an ALD chamber and adsorbed onto the surface of the article in a first half reaction. The excess precursor is then flushed out of the ALD chamber before a reactant (i.e., a single chemical R) is introduced into the ALD chamber for a second half reaction and subsequently flushed out. This process may be repeated to build up an ALD layer having a thickness of up to about 1 micron in some embodiments.

[0068] Unlike other techniques typically used to deposit coatings on articles, such as plasma spray coating and ion assisted deposition, the ALD technique can deposit a layer of material within high aspect ratio features (i.e., on the surfaces of the features). Additionally, the ALD technique produces relatively thin (i.e., 1 μ m or less, or in some cases 10 μ m or less) coatings that are porosity-free (i.e., pin-hole free). The term "porosity-free" as used herein means absence of any pores, pin-holes, or voids along the whole depth of the coating as measured by transmission electron microscopy (TEM).

[0069] The precursors used by the ALD system 205 to form a plasma resistant layer depend on the plasma resistant layer that is formed. In some embodiments, the plasma resistant layer is Al_2O_3 , and is formed from an aluminum precursor such as diethylaluminum ethoxide, tris(ethylmethyldiamido)aluminum, aluminum sec-butoxide, aluminum tribromide, aluminum trichloride, triethylaluminum, triisobutylaluminum, trimethylaluminum, or tris(diethylamido)aluminum. In some embodiments, the plasma resistant layer is Y_2O_3 or YF_3 , and is formed from a yttrium precursor such as tris(N,N-bis(trimethylsilyl)amide)yttrium (III), tris(2,2,6,6-tetramethyl-3,5-heptanedionato)yttrium(III) or yttrium (III)butoxide. In some embodiments, the plasma resistant layer is Er_2O_3 , and is formed from an erbium precursor such as tris-methylcyclopentadienyl erbium(III) ($\text{Er}(\text{MeCp})_3$), erbium boranamide ($\text{Er}(\text{BA})_3$), $\text{Er}(\text{TMHD})_3$, erbium(III)tris(2,2,6,6-tetramethyl-3,5-heptanedionate), and tris(butylcyclopentadienyl)erbium(III).

[0070] The reactants that are used by the ALD system 205 to form the plasma resistant layer may be oxygen, water vapor, ozone, pure oxygen, oxygen radicals, or another oxygen source if the deposited plasma resistant layer is an oxide. The reactants may be a fluoride (e.g., TiF_4) if a YF_3 plasma resistant layer is to be formed.

[0071] A CVD system performs chemical vapor deposition (CVD). CVD is a chemical process in which an article is exposed to one or more volatile precursors that react with and/or decompose onto the article to form a layer (e.g., to form a YF_3 layer or a Y_2O_3 layer).

[0072] The EB-IAD system 206 is a system that performs electron beam ion assisted deposition. Alternatively, other types of IAD systems may be used in embodiments, such as activated reactive evaporation ion assisted deposition (ARE-

IAD) or ion beam sputtering ion assisted deposition (IBS-IAD). EB-IAD may be performed by evaporation. IBS-IAD may be performed by sputtering a solid target material (e.g., a solid metal target). Any of the IAD methods may be performed in the presence of a reactive gas species, such as O_2 , N_2 , halogens, etc.

[0073] For the various types of IAD, a thin film plasma resistant layer is formed by an accumulation of deposition materials in the presence of energetic particles such as ions. The deposition materials include atoms, ions, radicals, or their mixture. The energetic particles may impinge and compact the thin film plasma resistant layer as it is formed.

[0074] For IAD, a material source provides a flux of deposition materials while an energetic particle source provides a flux of the energetic particles, both of which impinge upon an article throughout the IAD process. The energetic particle source may be an Oxygen or other ion source. The energetic particle source may also provide other types of energetic particles such as radicals, atoms, ions, and nano-sized particles which come from particle generation sources (e.g., from plasma, reactive gases or from the material source that provide the deposition materials). The material source (e.g., a target body) used to provide the deposition materials may be a bulk sintered ceramic corresponding to the same ceramic that the plasma resistant layer is to be composed of.

[0075] IAD may utilize one or more plasmas or beams to provide the material and energetic ion sources. Reactive species may also be provided during deposition of the plasma resistant coating. With IAD processes, the energetic particles may be controlled by the energetic ion (or other particle) source independently of other deposition parameters. The energy (e.g., velocity), density and incident angle of the energetic ion flux may be selected to achieve a target composition, structure, crystalline orientation and grain size of the plasma resistant layer. Additional parameters that may be adjusted are a temperature of the article during deposition as well as the duration of the deposition. EB-IAD and IBS-IAD depositions are feasible on a wide range of surface conditions. However, IAD performed on polished surfaces may achieve increased breakdown voltages.

[0076] Plasma etch reactor 207 is a processing chamber that uses plasmas to perform etch processes. Plasma cleaner 208 is a processing chamber that uses plasmas to perform clean processes. Plasma etch reactor 207 and/or plasma etch cleaner 208 may correspond to processing chamber 100 of FIG. 1 in embodiments.

[0077] The equipment automation layer 215 may interconnect some or all of the manufacturing machines 201 with computing devices 220, with other manufacturing machines, with metrology tools and/or other devices. The equipment automation layer 215 may include a network (e.g., a location area network (LAN)), routers, gateways, servers, data stores, and so on. Manufacturing machines 201 may connect to the equipment automation layer 215 via a SEMI Equipment Communications Standard/Generic Equipment Model (SECS/GEM) interface, via an Ethernet interface, and/or via other interfaces. In one embodiment, the equipment automation layer 215 enables process data (e.g., data collected by manufacturing machines 201 during a process run) to be stored in a data store (not shown). In an alternative embodiment, the computing device 220 connects directly to one or more of the manufacturing machines 201.

[0078] In one embodiment, some or all manufacturing machines 201 include a programmable controller that can load, store and execute process recipes. The programmable controller may control temperature settings, gas and/or vacuum settings, time settings, etc. of manufacturing machines 201. The programmable controller may include a main memory (e.g., read-only memory (ROM), flash memory, dynamic random access memory (DRAM), static random access memory (SRAM), etc.), and/or a secondary memory (e.g., a data storage device such as a disk drive). The main memory and/or secondary memory may store instructions for performing heat treatment processes described herein.

[0079] The programmable controller may also include a processing device coupled to the main memory and/or secondary memory (e.g., via a bus) to execute the instructions. The processing device may be a general-purpose processing device such as a microprocessor, central processing unit, or the like. The processing device may also be a special-purpose processing device such as an application specific integrated circuit (ASIC), a field programmable gate array (FPGA), a digital signal processor (DSP), network processor, or the like. In one embodiment, programmable controller is a programmable logic controller (PLC).

[0080] In one embodiment, the manufacturing machines 201 are programmed to execute recipes that will cause the manufacturing machines to heat treat an article, coat an article, and so on. In one embodiment, the manufacturing machines 201 are programmed to execute process recipes 225 that perform operations of a multi-step process for manufacturing an article or coating, as described with reference to FIGS. 3A, 4A and 6A. In one embodiment, one or more of the manufacturing machines 201 are programmed to execute a process recipe for an in-situ fluorination process to protect chamber components prior to performing a process recipe that uses a fluorine-based plasma to process a substrate, as described with reference to FIG. 5. The computing device 220 may store one or more process recipes 225 that can be downloaded to the manufacturing machines 201 to cause the manufacturing machines 201 to manufacture articles in accordance with embodiments of the present invention.

[0081] FIG. 3A illustrates a process 300 for converting at least a surface of a Y_2O_3 coating or other yttrium-based oxide coating into a $\text{Y}-\text{O}-\text{F}$ layer or other metal oxy-fluoride layer or coating according to an embodiment. Alternatively, process 300 may be performed to form a $\text{Y}-\text{O}-\text{F}$ layer or other metal oxy-fluoride layer at a surface of a sintered ceramic article of Y_2O_3 or another metal oxide. Note that process 300 may be modified to apply to the formation of a M-O-F layer from other metal oxide coatings as well. Some examples of other metal oxides that may be used in embodiments include Al_2O_3 , Er_2O_3 , Y_2O_3 stabilized ZrO_2 (YSZ), $\text{Er}_3\text{Al}_5\text{O}_{12}$ (EAG), a solid solution of $\text{Y}_2\text{O}_3-\text{ZrO}_2$, and a composite ceramic comprising $\text{Y}_4\text{Al}_2\text{O}_9$ and a solid solution of $\text{Y}_2\text{O}_3-\text{ZrO}_2$. In one embodiment, the yttrium-based oxide coating includes a stack of alternating layers of Y_2O_3 and another oxide such as ZrO_2 and/or Al_2O_3 . The Y_2O_3 layers may be substantially thicker than the Al_2O_3 layers (e.g., anywhere from 5-10 times thicker than the Al_2O_3 layers) in some embodiments. For example, if the Y_2O_3 layers and other oxide layers are formed using ALD, then the Y_2O_3 layers may be formed by applying a 8-10 ALD deposition cycles and the additional oxide layers may be

formed by applying 1-2 ALD deposition cycles, where each ALD deposition cycle produces approximately 1 monolayer.

[0082] In one embodiment, the metal oxide coating is a coating that includes or consists of a solid solution of yttria and zirconia ($\text{Y}_2\text{O}_3-\text{ZrO}_2$). The solid solution of $\text{Y}_2\text{O}_3-\text{ZrO}_2$ may include 20-80 mol % Y_2O_3 and 20-80 mol % ZrO_2 in one embodiment. In a further embodiment, the solid solution of $\text{Y}_2\text{O}_3-\text{ZrO}_2$ includes 30-70 mol % Y_2O_3 and 30-70 mol % ZrO_2 . In a further embodiment, the solid solution of $\text{Y}_2\text{O}_3-\text{ZrO}_2$ includes 40-60 mol % Y_2O_3 and 40-60 mol % ZrO_2 . In a further embodiment, the solid solution of $\text{Y}_2\text{O}_3-\text{ZrO}_2$ includes 50-80 mol % Y_2O_3 and 20-50 mol % ZrO_2 . In a further embodiment, the solid solution of $\text{Y}_2\text{O}_3-\text{ZrO}_2$ includes 60-70 mol % Y_2O_3 and 30-40 mol % ZrO_2 . In other examples, the solid solution of $\text{Y}_2\text{O}_3-\text{ZrO}_2$ may include 45-85 mol % Y_2O_3 and 15-60 mol % ZrO_2 , 55-75 mol % Y_2O_3 and 25-45 mol % ZrO_2 , 58-62 mol % Y_2O_3 and 38-42 mol % ZrO_2 , and 68-72 mol % Y_2O_3 and 28-32 mol % ZrO_2 .

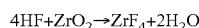
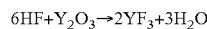
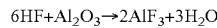
[0083] Any of the aforementioned metal oxide coatings may contain one or more dopants that combined comprise up to about 2 mol % of the coating. Such dopants may be rare earth oxides from the lanthanide series, such as Er (erbium), Ce (cerium), Gd (gadolinium), Yb (ytterbium), Lu (lutetium), and so on. Such dopants may additionally or alternatively include Al (aluminum) and/or Si (silicon).

[0084] The M-O-F layer that is formed will depend on the specific metal oxide coating that is used. Process 300 is described with reference to yttrium-based oxide coatings (e.g., Y_2O_3) and $\text{Y}-\text{O}-\text{F}$. However, it should be understood that process 300 may equally apply to formation of other M-O-F layers on other metal oxide coatings.

[0085] At block 305 of process 300, a Y_2O_3 coating or other yttrium-based oxide coating is deposited on a surface of a chamber component for a first processing chamber. The yttrium-based oxide coating may be deposited using any of the deposition techniques described herein, such as plasma spraying, ALD, IAD, and so on. If APPS is performed, then the yttrium-based oxide coating may have a thickness of about 100-300 microns and have a porosity of about 2-5%. If SPS is performed, then the yttrium-based oxide coating may have a thickness of about 50-100 microns and have a porosity of about 1-3%. If IAD is performed, then the yttrium-based oxide coating may have a thickness of about 1-20 microns and have a porosity of less than about 0.1% (e.g., effectively 0%). If ALD is performed, then the yttrium-based oxide coating may have a thickness of about 10 nm to about 10 microns (e.g., about 1 micron) and have a porosity of about 0%. If ALD or IAD are performed, then the yttrium-based oxide coating is a conformal coating. As used herein the term conformal as applied to a layer means a layer that covers features of an article with a substantially uniform thickness. In one embodiment, conformal layers discussed herein have a conformal coverage of the underlying surface that is coated (including coated surface features) with a uniform thickness having a thickness variation of less than about +/-20%, a thickness variation of +/-10%, a thickness variation of +/-5%, or a lower thickness variation.

[0086] Alternatively, in some embodiments no yttrium-based oxide coating or other metal oxide coating is deposited. Instead the chamber component body may be composed of a metal oxide such as Al_2O_3 or Y_2O_3 .

[0087] At block 310, the chamber component may be placed in a second processing chamber and may be heated




to an elevated temperature of about 50-500° C. In one embodiment, the chamber component is heated to about 150-350° C. The second processing chamber may be a furnace or may be a wet cleaner that includes an HF acid bath (or acid bath containing another fluorine-based acid solution such as NH₄For a mixture of HF and NH₄F), for example. At block 315, the chamber component is exposed to HF at the elevated temperature. Alternatively, the chamber component may be exposed to another fluorine source, such as NF₃ gas, NF₃ plasma, CF₄ plasma (e.g., a CF₄/Ar plasma), F₂, and/or F radicals. If an HF acid solution (or other fluorine-based acid solution) is used, then the HF acid solution (or other fluorine-based acid solution) may be maintained at a temperature of about 0-100° C. (or about room temperature to about 100° C.). In such embodiments, the second processing chamber may or may not be heated. The combination of exposure to the elevated temperature and the HF may be referred to as an HF heat treatment process.

[0088] In one embodiment, at block 320 a flow of HF gas (e.g., anhydrous hydrogen fluoride gas) is introduced into the second processing chamber that contains the chamber component. A flow rate of the HF gas may be about 100-1000 SCCM. In one embodiment, an O₂ plasma is also flowed into the second processing chamber. A power of about 100-1000 Watts may be used for the O₂ plasma. The O₂ plasma may be generated by a remote plasma source in embodiments. The elevated temperature in one embodiment is 150-200° C.

[0089] In one embodiment, at block 325 the chamber component is immersed in an HF acid bath solution (or other fluorine-based acid solution). The HF acid bath solution may contain about 50-99.5 vol % water and 0.5-50 vol % HF acid. In one embodiment, the HF acid bath solution contains about 0.5-1.0 vol % HF acid and about 99.99.95 vol % water. In one embodiment the HF acid bath solution is any of the aforementioned HF acid bath solutions and additionally contains an ammonium fluoride (NH₄F) buffering agent. In one embodiment, the HF acid bath solution contains 0.5 mol % of the NH₄F buffering agent. The temperature in one embodiment is 0-100° C. Alternatively, the temperature may be 250-350° C.

[0090] In one embodiment, at block 328 NF₃ plasma or CF₄ plasma (e.g., CF₄/Ar plasma) is flowed into the second chamber. The plasma may be inductively coupled plasma (ICP) or capacitively coupled plasma (CCP). A power of the plasma may be, for example, 150-500 Watts.

[0091] The treatment in the presence of the HF gas or the HF acid solution (or other fluorine source) causes a chemical reaction at the surface of the metal oxide coating (or metal oxide ceramic article) that replaces a portion of the bonds to oxygen with bonds to fluorine. In the case of an HF acid solution, the solution may not be heated as discussed above. As a result of the HF treatment, a Y₂O₃ becomes Y—O—F starting at the surface of the Y₂O₃ coating. Some example reactions are shown below:

[0092] The water that results from the reaction may evaporate at the treatment temperature and/or may become part of the HF acid solution, leaving behind the fluoride. Accord-

ingly, a chemical reaction is performed that replaces a portion of the oxygen molecules in the yttrium oxide (or other metal oxide) coating with fluorine molecules at a surface of the article or coating. The reaction depth is a function of time and temperature. The reaction may penetrate into the surface of the article or coating to a depth of from about 10 nm to a depth of up to about 5 μm (e.g., to about 200 nm) in some embodiments. In some embodiments, an entirety of the yttrium-based oxide coating (or other metal oxide coating) is converted into a Y—O—F coating (or other M—O—F coating).

[0093] The fluorine concentration in the M—O—F layer and depth or thickness of the metal oxide that is converted into the M—O—F layer depends on the composition of the metal oxide being fluorinated, the fluorine concentration in the fluorine-based plasma (or HF acid solution), the temperature, and the duration of the fluorination treatment. Experimentation has shown that relatively low temperature fluorination treatment (e.g., at below about 100° C.) for 1-5 hours results in a fluorination of about the top 50-70 nm of a Y₂O₃ coating or Y₂O₃ bulk sintered article. High temperature fluorination (e.g., at above about 400° C.) results in fluorination of an entire Y₂O₃ coating for coatings having a thickness of about 50 nm to about 5 μm (e.g., about 200 nm). Examples of fluorination treatment conditions and resultant metal oxy-fluoride layers are provided in FIGS. 7B-12B below.

[0094] Exposure of metal oxides to air generally causes a layer of —OH groups to form on the surface of the metal oxides (e.g., forming a M(OH) layer). The M(OH) layer has multiple undesirable effects, as described above. Exposure of the M(OH) layer (e.g., a Y(OH)₃ layer) to the HF at the temperature cause the M(OH) layer to convert into a M—O—F layer in a similar manner to the metal oxide coating or article. Accordingly, M(OH) layers can be removed by the HF heat treatment. Furthermore, the M—O—F layer or coating is not susceptible to further formation of —OH groups on its surface.

[0095] If the yttrium-based oxide coating is an alternating stack of Y₂O₃ layers and additional oxide layers as described above, then the Y₂O₃ layers may transform into Y—O—F layers and the additional oxide layers may transform into additional M—O—F layers in embodiments.

[0096] In some embodiments the chamber component contains magnesium (e.g., is an aluminum alloy that contains magnesium). In one embodiment, at block 335 magnesium from the chamber component is diffused towards the surface of the chamber component and to the Y—O—F coating or other M—O—F coating. The diffusion may occur as a result of the HF treatment. At block 340, the magnesium reacts with the M—O—F coating to form an MgF₂ layer at an interface of the M—O—F coating. The interface of the M—O—F coating may be an interface between the M—O—F coating and the chamber component if all of the yttrium-based oxide coating was converted into M—O—F. Alternatively, the interface of the M—O—F coating may be an interface between the M—O—F layer and the yttrium-based oxide coating if not all of the yttrium-based oxide coating is converted to M—O—F. The MgF₂ layer acts as a barrier layer for magnesium, and prevents the magnesium from diffusing past the MgF₂ layer. Similarly, other metals may diffuse towards the M—O—F layer and react with the M—O—F layer to form other metal fluoride barrier layers.

[0097] In some embodiments, chemical treatments may be performed to the yttrium-based oxide coating before the HF treatment and/or after the HF treatment. These chemical treatments may improve a quality (e.g., stability) of the M-O—F layer.

[0098] FIG. 3B illustrates a cross sectional side view of a chamber component 350 that includes a Y_2O_3 coating 360 on a body 355 of the chamber component 350 and a Y—O—F layer 365 over the Y_2O_3 coating 360 according to an embodiment. The chamber component 350 may have a metal body (e.g., aluminum or an aluminum alloy such as Al 6061) or a ceramic body (e.g., Al_2O_3 , AlN, SiC, etc.).

[0099] FIG. 4A illustrates a process 400 for converting a YF_3 coating or other rare earth fluoride coating into a Y—O—F coating or other M-O—F coating according to an embodiment. Process 400 may also be performed to convert other yttrium-based fluoride coatings into Y—O—F coatings or other yttrium based oxy-fluorides. Examples of other yttrium-based fluoride coatings include $\text{Y}_{x}\text{F}_{y}\text{Zr}_z$ (where x, y and z are positive integer or fractional values), ErF_3 , $\text{Y}_x\text{Er}_y\text{F}_{z-}$ (where x, y and z are positive integer or fractional values), and so on. For example, a yttrium-based fluoride may include a mixture of 20-80 mol % YF_3 and 20-80 mol % ZrF_4 . Other examples may include 45-85 mol % YF_3 and 15-60 mol % ZrF_4 , 55-75 mol % YF_3 and 25-45 mol % ZrF_4 , 58-62 mol % YF_3 and 38-42 mol % ZrF_4 , and 68-72 mol % YF_3 and 28-32 mol % ZrF_4 . In another example, a yttrium-based fluoride may include 50-90 mol % YF_3 and 10-50 mol % ErF_3 , 10-90 mol % YF_3 and 10-90 mol % ErF_3 , 30-70 mol % YF_3 and 30-70 mol % ErF_3 , 60-80 mol % YF_3 and 20-40 mol % ErF_3 , and so on. Process 400 is discussed with reference to conversion of YF_3 to Y—O—F. However, it should be understood that process 400 may also be performed to convert other yttrium-based fluorides into yttrium-based oxy-fluorides. Accordingly, YF_3 in the below discussion may be replaced with any other yttrium-based fluoride and Y—O—F in the below discussion may be replaced with any other yttrium-based oxy-fluoride.

[0100] In an example, the yttrium-based fluorides may be a YF_3 — ZrF_4 solid solution, an alternating stack of YF_3 layers and AlF_3 layers or other metal fluoride layers, or a composite ceramic comprising a first phase of Y-AL-F and a second phase of Y—Zr—F. The YF_3 — ZrF_4 solid solution may comprise about 50-75 mol % YF_3 and about 25-50 mol % ZrF_4 , and may be converted into Y—Zr—O—F with a ratio of Y to Zr of about 1:1 to 3:1. In embodiments, the YF_3 — ZrF_4 solid solution may comprise 55-65 mol % YF_3 and about 35-45 mol % ZrF_4 . In embodiments, the YF_3 — ZrF_4 solid solution may comprise 65-75 mol % YF_3 and about 25-55 mol % ZrF_4 . For the alternating stack of YF_3 layers and AlF_3 layers (or other metal fluoride layers), the YF_3 layers may have a thickness that is about 5-10 times a thickness of the AlF_3 layers or other metal fluoride layers. For example, the YF_3 layers may have a thickness of about 5-100 angstroms and the AlF_3 layers may have a thickness of about 1-20 angstroms. The YF_3 layers may be converted into Y—O—F layers approximately having a thickness of the original YF_3 layers and the AlF_3 layers may be converted into Al—O—F layers having approximately a thickness of the original AlF_3 layers. For the composite ceramic, the first phase of Y—Al—F may be converted to Y—Al—O—F and the second phase may be converted to Y—Zr—O—F.

[0101] At block 405 of process 400 ALD, CVD or IAD is performed to deposit a YF_3 or other rare earth fluoride

coating onto a chamber component for a processing chamber. If ALD is performed, then the YF_3 coating (or other yttrium-based fluoride coating) has a thickness of about 10 nm to 10 microns. If EB-IAD is performed, then the YF_3 coating (or other yttrium-based fluoride coating) has a thickness of about 0.5-10 microns. If CVD is performed, then the YF_3 coating (or other yttrium-based fluoride coating) has a thickness of about 100 nm to about 10 microns. In one embodiment, the IAD deposited YF_3 coating (or other yttrium-based fluoride coating) has a thickness of 5 microns. Both the ALD coating and the IAD coating are conformal coatings having a very low porosity of about 0% (e.g., having no porosity). The YF_3 coating (or other yttrium-based fluoride coating) may be an amorphous coating in embodiments, as has been determined through x-ray powder diffraction (XRD) phase investigation.

[0102] At block 410, the chamber component may be placed in a processing chamber (e.g., a processing chamber of a furnace) and may be heated to an elevated temperature of about 100-1500° C. Some example temperatures to which the chamber component may be heated include 200° C., 250° C., 300° C., 400° C., 500°, 600° C., 650° C., 750° C. and 800° C. At block 415, the chamber component is exposed to an oxygen source at the elevated temperature for a time period. The oxygen source may be air, O_2 gas, water vapor, O_3 gas, an O_2 plasma, and/or other oxygen-based plasma or oxygen-based radicals. Other oxygen sources include ion bombardment of the YF_3 coating (or other yttrium-based fluoride coating) using O_2 ions and/or radicals. The combination of exposure to the elevated temperature and the oxygen source may be referred to as an oxygen heat treatment process. The time period may be 12-24 hours in embodiments. In other embodiments, the time period may be 0.1-72 hours. In some embodiments the processing chamber is or contains metal, and the elevated temperature is 150-650° C. In some embodiments, the elevated temperature is 300-400° C. In some embodiments the processing chamber is ceramic and has a coefficient of thermal expansion (CTE) that closely matches a CTE of the YF_3 coating (or other yttrium-based fluoride coating). In such embodiments the elevated temperature may be as high as 1500° C.

[0103] In one embodiment, at block 420 the YF_3 coating (or other yttrium-based fluoride coating) is converted into a Y—O—F coating (or other M-O—F coating). In one embodiment, a portion of the YF_3 coating (or other yttrium-based fluoride coating) is converted to a Y—O—F layer or other M-O—F layer (e.g., a surface of the YF_3 coating is converted). In one embodiment, an entirety of the YF_3 coating (or other yttrium-based fluoride coating) is converted to a Y—O—F coating or other M-O—F coating. The Y—O—F coating may be a crystalline coating without any cracking, as has been shown in XRD phase investigation. Film thicknesses of 10 microns and above have been shown to experience vertical cracking when converted from YF_3 to Y—O—F. Accordingly, YF_3 films of less than 10 microns is used in embodiments.

[0104] The heat treatment in the presence of an oxygen source causes a chemical reaction at the surface of the coating that replaces a portion of the bonds to fluorine with bonds to oxygen. Accordingly, a chemical reaction is performed that replaces a portion of the fluorine molecules in the YF_3 coating with oxygen molecules at a surface of the article or coating. The reaction depth is a function of time and temperature.

[0105] In some embodiments the chamber component contains magnesium (e.g., is an aluminum alloy that contains magnesium). In one embodiment, at block 335 magnesium from the chamber component is diffused towards the surface of the chamber component and to the Y—O—F coating. The diffusion may occur as a result of the HF treatment. At block 340, the magnesium reacts with the Y—O—F coating to form an MgF₂ layer at an interface of the Y—O—F coating. The interface of the Y—O—F coating may be an interface between the Y—O—F coating and the chamber component if all of the YF₃ coating was converted into Y—O—F.

[0106] In one example, a 1 micron thick amorphous YF₃ coating was exposed to air at 350° C. for 12 hours. A result was that a majority of the YF₃ coating was converted to a crystalline Y—O—F coating with no cracking. In particular, the coating contained 83.7 wt. % Y—O—F and 13.7 wt. % YF₃ after the oxygen heat treatment. In the example test, the chamber component was Al 6061 and contained magnesium. The magnesium diffused to the Y—O—F coating and formed MgF₂. Accordingly, the XRD phase investigation shows a minor phase of 2.6 wt. % MgF₂ at the interface between the coating and the substrate. The emissivity of as-deposited YF₃ is 0.351 and the emissivity of the Y—O—F layer is 0.149.

[0107] Y—O—F has a lower molar volume than YF₃. Accordingly, a compressive stress of the YF₃ coating may be reduced when the YF₃ coating is converted into the Y—O—F coating. Accordingly, the conversion can be performed to adjust the “zero stress state” of the coating. The term “zero stress state” means the state at which the coating is not under any tensile or compressive stress (e.g., does not have any internal compressive or tensile stress). The zero stress state generally occurs at the deposition temperature.

[0108] FIG. 4B illustrates a cross sectional side view of a chamber component 450 that includes a Y—O—F coating 460 on a body 455 of the chamber component 450 according to an embodiment. The chamber component 450 may have a metal body (e.g., aluminum or an aluminum alloy such as Al 6061) or a ceramic body (e.g., Al₂O₃, AlN, SiC, etc.). The Y—O—F coating 460 may originally have been a YF₃ coating, and may have been completely converted to the Y—O—F coating 460. Similar results may be achieved by the conversion of other yttrium-based fluorides into yttrium-based oxy-fluorides.

[0109] FIG. 5 illustrates an in-situ process 500 for forming a temporary Y—O—F layer, yttrium based oxy-fluoride layer or other M—O—F layer on a metal oxide coating prior to a manufacturing process, referred to herein as an in-situ fluorination process, according to an embodiment. Alternatively, process 500 may be performed to form a M—O—F (e.g., Y—O—F or yttrium based oxy-fluoride) layer on a sintered metal oxide chamber component that lacks a metal oxide coating. Moreover, process 500 may also be performed to form a temporary YF₃ layer or other metal fluoride layer at the surface of the metal oxide coating or article rather than forming a M—O—F layer.

[0110] At block 505 of process 500, a substrate is loaded into a processing chamber. The processing chamber includes one or more chamber components that have a metal oxide coating. The metal oxide coating (or sintered metal oxide article) may be Al₂O₃, Er₂O₃, Y₂O₃, Y₂O₃ stabilized ZrO₂ (YSZ), Er₃Al₅O₁₂ (EAG), a solid solution of Y₂O₃—ZrO₂, or a composite ceramic comprising Y₄Al₂O₉ and a solid

solution of Y₂O₃—ZrO₂, to name a few examples. The metal oxide coating may be an ALD coating having a thickness of 10 nm to 1 micron, a IAD coating having a thickness of 1-10 microns, a plasma sprayed coating having a thickness of 100-300 microns, an SPS coating having a thickness of 50-100 microns, a chemical vapor deposition (CVD) coating, or another type of coating (e.g., a coating of Al₂O₃ formed by anodization). Alternatively, the chamber component may be a bulk sintered ceramic article of a metal oxide that lacks a metal oxide coating.

[0111] At block 510, a fluorine-based plasma from a remote plasma source is introduced into the processing chamber in which the one or more chamber components are installed. Alternatively, a different fluorination source may be used, such as an HF gas. In one embodiment, a fluorine-based acid solution (e.g., an HF acid solution) is used as a fluorination source.

[0112] At block 515, the metal oxide coating (or metal oxide article) is reacted with the fluorine-based plasma or other fluorine source to form a temporary M—O—F layer or metal fluoride layer over the metal oxide coating (or metal oxide article). The temporary M—O—F layer or metal fluoride layer may be a very thin layer that is not meant to last more than a single process or a few processes. The temporary M—O—F layer may have a thickness of 1-50 nm (e.g., 1-5 nm) in embodiments.

[0113] The fluorine based plasma may be introduced to the processing chamber while the chamber at a temperature of about room temperature to about 1000° C. in embodiments. The chamber may have to a temperature of about room temperature to about 400° C. in further embodiments. The fluorine-based plasma may be introduced to the processing chamber for a duration of about 0.5-10 minutes in embodiments. The fluorine based plasma may be any of the aforementioned fluorine based plasmas. In one embodiment, an oxygen plasma and an HF gas are used rather than a fluorine based plasma.

[0114] In an alternative embodiment, the fluorine-based acid solution may be introduced to the processing chamber at room temperature up to about 100° C. The acid solution itself may be heated and/or the chamber may be heated in embodiments. In one embodiment, the fluorine-based acid solution is an HF acid solution comprising 50-95 vol % water and 5-50 vol % HF acid. The fluorine-based acid solution may be flowed into the chamber to fully or partially fill the chamber. Alternatively, the fluorine-based acid solution may be sprayed onto the one or more chamber components to be fluorinated. The exposure time of the one or more chamber components to the fluorine-based acid solution may be about 0.5-10 minutes (e.g., 0.8 minutes, 1.0 minutes, 1.2 minutes, 1.5 minutes, etc.). In some instances, the exposure time may be lower (e.g., around 0.2-0.4 minutes). Once the exposure time is complete, the chamber components may be rinsed (e.g., with DI water).

[0115] In some embodiments, the operations of block 505 are performed after the operations of block 515 and before the operations of block 520.

[0116] At block 520, the manufacturing process is performed. The manufacturing process may be, for example, a plasma etch process or a plasma clean process and may etch or clean a substrate secured within the processing chamber (e.g., a wafer having semiconductor circuits formed thereon). The manufacturing process may include the use of a corrosive gas (e.g., a fluorine-based plasma that will enable

the plasma etch process or the plasma cleaning process, a chlorine based chemistry, an ammonia based chemistry, and so on). The corrosive gas may not erode, corrode or otherwise damage the metal oxide coating due to the presence of the M-O—F layer or the metal fluoride layer over the metal oxide coating (or metal oxide article). The corrosive gas may remove an entirety of the M-O—F layer or metal fluoride layer by the end of the manufacturing process in some embodiments, such as embodiments in which a chlorine based chemistry or ammonia based chemistry is used. Alternatively, the corrosive gas may remove just a portion of the M-O—F layer or metal fluoride layer (e.g., if a chlorine based chemistry or ammonia based chemistry is used). In some embodiments, the manufacturing process includes a fluorine based plasma under conditions that cause the M-O—F layer or metal fluoride layer to grow. In each of these examples, the M-O—F layer or metal fluoride layer may protect the underlying metal oxide coating and/or metal oxide article throughout the manufacturing process.

[0117] The in-situ fluorination process may be performed prior to each manufacturing process that will expose the processing chamber to corrosive gases. The M-O—F layer or metal fluoride layer may have a much lower erosion rate than the metal oxide coating when exposed to reducing chemistries such as chlorine chemistries, fluorine chemistries and ammonia chemistries. As a result, the useful life of the chamber components for the processing chamber may be greatly extended, process drift may be mitigated, and on wafer particles from chemical reaction of the corrosive gases with the metal oxide coating may be mitigated. Additionally, the M-O—F layer or metal fluoride layer may act as a diffusion barrier to block metal diffusion during the manufacturing process and may reduce metal contamination on processed substrates.

[0118] In some instances where the manufacturing process is a fluorine based process (e.g., that uses a fluorine gas or fluorine plasma), the manufacturing process itself may cause some portion of a metal oxide coating to convert to a metal fluoride or metal oxy-fluoride. However, other manufacturing processes (e.g., those that use chlorine or ammonia) will not cause such a metal fluoride or metal oxy-fluoride conversion. Moreover, in many cases there is a large surface area of chamber components that have the metal oxide coating. It can take many iterations of the manufacturing process before a sufficient metal oxy-fluoride or metal fluoride layer is built up on the metal oxide coating to protect the metal oxide coating. During this time process drift may occur due to the changing chamber conditions. The in-situ fluorination process can act as an in-situ seasoning process that quickly forms the metal oxy-fluoride layer or metal fluoride layer and that immediately protects the metal oxide coating and mitigates process drift. Additionally, with use of the in-situ fluorination process fluorination conditions may be controlled to achieve target M-O—F layer or metal fluoride thickness with controlled stresses. The controlled fluorination conditions may prevent particle generation from the M-O—F layer or metal fluoride layer.

[0119] It has been determined through experimentation that there is a first threshold layer thickness in the temporary M-O—F or metal fluoride layer beyond which particles are generated. Accordingly, in some embodiments the thickness of the M-O—F layer or metal fluoride layer is further controlled by periodically performing an etch back process. For example, the in-situ fluorination process may be per-

formed at the beginning of each manufacturing process, and the etch back process may be performed after the manufacturing process has been performed a threshold number of times (e.g., 5 times, 10 times, 24 times, 30 times, etc.). The etch back process may also be performed as an in-situ process, which may periodically be performed at the end of the manufacturing process or at the beginning of the manufacturing process before the fluorination process.

[0120] Accordingly, in one embodiment at block 525 a determination is made as to whether to perform an etch back process. The determination may be made based on a thickness of the M-O—F or metal fluoride layer or other etch back criteria. In one embodiment, once the M-O—F layer or metal fluoride layer reaches a first threshold thickness that is less than a second threshold thickness at which particle generation occurs it is time to perform the etch back process. In one embodiment, the determination is made based on a count of a number of iterations of the manufacturing process that have been performed since the etch back process was last performed. For example, it may be known through testing how much thickness is added to the M-O—F layer or metal fluoride layer after each iteration of the in-situ fluorination process plus the manufacturing process. This information may be used to determine when the M-O—F layer or metal fluoride layer has reached the first threshold thickness and satisfied an etch back criterion.

[0121] Additionally or alternatively, particle count tests may be performed on substrates after processing. If a particle count for yttrium containing particles increases by a threshold amount (e.g., the number of yttrium containing particles reaches a threshold), then an etch back criterion is satisfied and a determination may be made that the etch back process should be performed.

[0122] If the etch back process is not to be performed (e.g., the M-O—F layer or metal fluoride layer has not reached the first threshold thickness or the threshold particle count has not been reached), then the method returns to block 505 and another substrate is loaded into the processing chamber for processing. If the etch back process is to be performed, then the method continues to block 530.

[0123] At block 530, the etch back process is performed. In one embodiment, the etch back process is performed after removal of the substrate from the processing chamber. This may prevent the etch back process from affecting the substrate. Alternatively, in some instances the etch back process may be performed as an in-situ process after the manufacturing process or before a subsequent manufacturing process on another substrate.

[0124] The etch back process is used to control a net thickness of the M-O—F layer or the metal fluoride layer. The etch back process is performed using a corrosive chemistry that can etch a metal fluoride or metal oxy fluoride. In one embodiment, the etch back process is performed using silicon tetra chloride ($SiCl_4$) gas or $SiCl_4$ plasma. The $SiCl_4$ reacts with the metal fluoride or M-O—F layer to form SiF_x , which is highly volatile and has a high vapor pressure (x may be any positive value). The SiF_x may then react with the M-O—F or metal fluoride layer to form MF_z , which may then be pumped out of the processing chamber (z may be any positive value). In one embodiment, the etch back process is performed using a combination of $SiCl_4$ gas or plasma and Cl_2 gas or plasma. The addition of the Cl_2 to the $SiCl_4$ increases the etch back rate of the M-O—F layer or metal fluoride layer. In one embodiment,

about 1-5 SCCM of the SiCl_4 and optionally 1-5 SCCM of Cl_2 is flowed into the processing chamber for a duration of 1-5 seconds. In one embodiment, about 1-2 SCCM of the SiCl_4 and optionally 1-2 SCCM of Cl_2 is flowed into the processing chamber for a duration of 1-3 seconds.

[0125] In one embodiment, the processing chamber is equipped with an optical emission spectroscopy (OES) device. During the etch back process a plasma is generated, where at least a portion of the plasma is from the M-O—F layer or metal fluoride layer that is being etched. The OES device can measure the intensity levels of various wavelengths of light output by the plasma. Based on the detection of the intensity levels of the various wavelengths of light, the OES device can detect an optical signature for SiF_x , which is being formed from the etching of the M-O—F or metal oxide by the SiCl_4 . Additionally or alternatively, an optical signature of YCl_x may be detected using OES (x may be any positive value). Once the M-O—F layer or metal fluoride layer is completely removed, SiF_x and/or YCl will no longer be generated and the detected wavelength intensities will change. Accordingly, the OES device may detect when the M-O—F layer or metal fluoride layer has been removed. At this time the etch back process may be terminated and the gases/plasmas may be pumped out of the processing chamber. Additionally, the ratio of fluorine in the M-O—F layer or metal fluoride layer may decrease with depth, so that a lower amount of fluorine is present near the interface with the metal oxide coating. The OES device may detect this change in the amount of fluorine, and may trigger a termination of the etch back process when a certain optical signature is detected. The certain optical signature may be an optical signature that includes some amount of SiF_x and/or YCl . Accordingly, the OES device may be used to perform a partial etch back that ensures that some portion of the M-O—F layer or metal fluoride layer still remains at the end of the etch back process.

[0126] Each of methods 300, 400 and 500 may cause a metal fluoride or a metal oxide coating and/or article to be at least partially converted into a metal oxy-fluoride (M-O—F) layer or coating. A yttrium oxy-fluoride layer or coating and other metal oxy-fluoride layers or coatings are shown to be stable and highly resistant to plasma erosion and to reaction with fluorine-based chemistries in testing. Additionally, Y—O—F coatings and other yttrium-based oxy-fluoride coatings are inert to attack from hydroxides (OH attack). Accordingly, yttrium hydroxide (Y(OH)) does not form when the Y—O—F coatings or layers are exposed to air. Tests have shown reduced particle levels when Y—O—F coatings are used on chamber components. Moreover, even in the presence of Cl^* , Br^* , F^* and H^* species, the etch rate of the Y—O—F coating is very stable and low as compared to a YF_3 coating.

[0127] FIG. 6A illustrates a process 600 for relieving the stress of a yttrium-based coating by converting at least a portion of the yttrium-based coating into a Y—O—F coating or layer (or other yttrium-based oxy-fluoride coating or layer) according to an embodiment. Process 600 is initially described with reference to converting a yttrium-based oxide coating into a yttrium-based oxy-fluoride coating. However, method 600 may also be performed to convert a yttrium-based fluoride coating into a yttrium-based oxy-fluoride coating. In embodiments, the chamber component may be a metal chamber component such as an aluminum component (e.g., made of pure aluminum or an aluminum alloy such as

Al 6061) or a stainless steel component. Aluminum has a CTE of about 22-25 ppm/K, and stainless steel has a CTE of about 13 ppm/K. However, yttrium-based coatings have a significantly lower CTE (e.g., of about 6-8 ppm/K for Y_2O_3). Other oxides also generally have low CTEs. For example, Al_2O_3 has a CTE of 8 ppm/K. This difference in CTE between the yttrium-based coating and the chamber component can cause the yttrium-based coating to crack during thermal cycling. Dense coatings such as those produced by IAD, PVD, CVD and ALD are particularly prone to cracking during thermal cycling when formed over metal articles.

[0128] At block 605 of process 600, a yttrium-based coating is deposited on a surface of a chamber component for a first processing chamber. The yttrium-based oxide coating may be a Y_2O_3 coating, a coating consisting of a solid solution of Y_2O_3 — Er_2O_3 , a coating consisting of a solid solution of Y_2O_3 — ZrO_2 , or any of the other yttrium-based coatings discussed herein. In some embodiments, the yttrium-based coating includes an alternating stack of thicker Y_2O_3 layers and thinner layers of another metal oxide (e.g., of ZrO_2 or Al_2O_3). The thinner metal oxide layers may prevent crystal formation in the Y_2O_3 layers or may limit a size of crystals formed in the Y_2O_3 layers.

[0129] The yttrium-based coating may be a thin dense oxide coating deposited using an IAD deposition process, a physical vapor deposition (PVD) deposition process, a chemical vapor deposition (CVD) deposition process, or an ALD deposition process in embodiments. The yttrium-based coating may be deposited using a deposition temperature of around 100-300° C. in some embodiments. For example, the chamber component may be heated to the temperature of 100-200° C. during the deposition. Accordingly, the yttrium-based coating may have a “zero-stress state” at the deposition temperature of about 100-300° C., low compressive stress at room temperature, and high tensile stress at processing temperatures (operating temperatures). The deposition temperature may be governed by a deposition process that is performed and/or by properties of the chamber component. When the chamber component is at room temperature, the yttrium-based coating may be placed under a slight compressive stress due to the chamber component shrinking more than the yttrium-based coating as the chamber component cools below the deposition temperature. However, at processing temperatures greater than the deposition temperature the yttrium-based coating is placed under tensile stress due to the chamber component expanding more than the yttrium-based coating. The tensile stress can cause the yttrium-based coating to crack. The chamber component may later be used at an elevated process temperature of about 250-350° C. in embodiments. As a result, the yttrium-based coating will be placed under tensile stress during future processing due to a difference in a CTE between the yttrium-containing coating and the chamber component.

[0130] The yttrium-based coating may have a very low porosity of less than 1% in embodiments, and less than 0.1% in further embodiments, and about 0% in embodiments or porosity-free in still further embodiments. If ALD is performed to form the yttrium-based coating, the yttrium-based coating may have a thickness of less than an atom to a few atoms (e.g., 2-3 atoms) after a single full ALD deposition cycle. Multiple ALD deposition cycles may be implemented to deposit a thicker yttrium-based coating, with each deposition cycle adding to the thickness by an additional fraction

of an atom to a few atoms. In embodiments, the yttrium-based coating may have a thickness of about 10 nm to about 1.5 μm . The yttrium-based coating may have a thickness of about 300 nm to about 500 nm in further embodiments.

[0131] In some embodiments, the yttrium-based coating includes a sequence of alternating layers of Y_2O_3 and an additional metal-containing oxide. For example, the yttrium-based coating may be a series of alternating layers of Y_2O_3 and Al_2O_3 , a series of alternating layers of Y_2O_3 and ZrO_2 , and so on. Using ALD, the chamber component may be introduced to one or more precursors for a duration until a surface of the chamber component is fully adsorbed with the one or more precursors to form an adsorption layer. Subsequently, the chamber component may be introduced to a reactant to react with the adsorption layer to grow a Y_2O_3 layer. This process may be repeated through approximately 5-10 cycles to grow the Y_2O_3 layer.

[0132] The chamber component having the Y_2O_3 layer may be introduced to one or more precursors for a duration until a surface of the Y_2O_3 layer is fully adsorbed with the one or more precursors to form an adsorption layer. Subsequently, the chamber component may be introduced to a reactant to react with the adsorption layer to grow an additional solid metal oxide layer. Accordingly, the additional metal oxide layer is fully grown or deposited over the Y_2O_3 layer using ALD. In an example, the precursor may be an aluminum containing precursor used in a first half cycle, and the reactant may be H_2O used in a second half cycle. The metal oxide layer may be ZrO_2 , Al_2O_3 , or another oxide. This process may be performed once to grow a very thin metal oxide layer, which may have a thickness of less than a single atomic layer to a few atomic layers. For example, an Al_2O_3 monolayer grown by TMA and H_2O typically has a growth rate of about 0.9-1.3 $\text{Å}/\text{cycle}$ while the Al_2O_3 lattice constant is $a=4.7 \text{ Å}$ and $c=13 \text{ Å}$ (for a trigonal structure).

[0133] The deposition of the Y_2O_3 layer and the additional metal oxide layer may be repeated n times to form a stack of alternating layers, where n is an integer value greater than 2. N may represent a finite number of layers selected based on the targeted thickness and properties. The stack of alternating layers may be considered as yttrium-based coating containing multiple alternating sub-layers.

[0134] The alternating layers described above may have a ratio of about 5:1 to 10:1 of the Y_2O_3 layer thickness to the additional metal oxide layer thickness in embodiments. Accordingly, the additional metal oxide layers may have a thickness that is $1/10$ to $1/5$ the thickness of the Y_2O_3 layers. In one embodiment, 8 ALD deposition cycles are performed for each Y_2O_3 layer and a single ALD deposition cycle is performed for each additional metal oxide layer. As a result, the Y_2O_3 layers may be amorphous. In another embodiment, 10 ALD cycles are performed for each Y_2O_3 layer and a single ALD deposition cycle is performed for each additional metal oxide layer. As a result, the Y_2O_3 layers may be nano-crystalline with a crystal size on the order of one or a few nanometers. Alternately, more or fewer ALD deposition cycles may be performed for the Y_2O_3 layers and/or for the additional metal oxide layers.

[0135] As described above, a Y_2O_3 layer is formed on the chamber component, followed by formation of an additional metal oxide layer, followed by formation of another Y_2O_3 layer, and so on. However, in other embodiments the first

layer may be the additional metal oxide layer, and the next layer may be the Y_2O_3 layer, followed by another additional metal oxide layer, and so on.

[0136] In one embodiment, a stress relief layer (e.g., of amorphous Al_2O_3 or another amorphous ceramic) is deposited prior to deposition of the yttrium-based coating. The stress relief layer may be deposited using the same deposition technique as, or a different deposition technique from, the yttrium-based coating. In an example where the stress relief layer is an alumina (Al_2O_3) stress relief layer, ALD may be performed and the chamber component may be introduced to a first precursor (e.g., trimethyl aluminum (TMA)) for a first duration until all reactive sites on a surface of the chamber component are consumed and an Al containing adsorption layer is formed in a first half reaction. The remaining first precursor is flushed away and then a first reactant of H_2O may be injected into a reactor containing the chamber component to start a second half cycle. A stress relief layer of Al_2O_3 is formed after H_2O molecules react with the Al containing adsorption layer created by the first half reaction.

[0137] The stress relief layer may be uniform, continuous and conformal. The stress relief layer may be porosity free (e.g., have a porosity of 0) or have an approximately 0 porosity in embodiments (e.g., a porosity of 0% to 0.01%). Multiple full ALD deposition cycles may be implemented to deposit a thicker stress relief layer, with each full cycle (e.g., including introducing precursor, flushing, introducing reactant, and again flushing) adding to the thickness by an additional fraction of an atom to a few atoms. In embodiments, the stress relief layer may have a thickness of about 10 nm to about 1.5 μm .

[0138] At block **610**, the chamber component is heated to an elevated temperature of about 250-500° C. (e.g., about 250-350° C.). At block **615**, the chamber component is exposed to a fluorine source at the elevated temperature for a time period. The time period may be about 0.1 hour to about 72 hours in embodiments. In further embodiments, the time period may be about 12-24 hours or about 1-12 hours. The fluorine source may be HF gas, NF_3 gas, NF_3 plasma, F_2 gas, F radicals in a gas, or other fluorine sources as set forth at block **620**.

[0139] At block **625**, the yttrium-based coating is converted to a M-O—F coating or layer. The F atoms diffuse into the yttrium-based coating, react with the Y_2O_3 in the coating, and form Y—O—F and possible other fluorinated phases. The depth and percentage of the conversion can be controlled by parameters such as process time, temperature, type of F containing gas, gas pressure and chamber pressure, for example. The target depth and percentage of the yttrium-based oxide coating that is to be converted to M-O—F may depend on the difference between the deposition temperature and the operating or processing temperature to adjust the “zero-stress state” for the coating. For example, if the yttrium-based coating is a Y_2O_3 coating, then an entirety of the Y_2O_3 coating may be converted to Y—O—F. If the yttrium-based coating is an alternating stack of Y_2O_3 layers and additional metal oxide layers, then the Y_2O_3 layers may be converted to Y—O—F layers and the additional metal oxide layers may be converted to M-O—F layers. In some instances the additional metal oxide layers may be so thin that their material composition does not change as a result of

the fluorination process. Accordingly, the Y_2O_3 layers may convert to $\text{Y}-\text{O}-\text{F}$ layers and the additional metal oxide layers may be unchanged.

[0140] Compared to Y_2O_3 , YO_xF_y has a larger molar volume (x and y may be positive values). Depending on values of x and y, the YO_xF_y molar volume is between the YF_3 molar volume of $36.384 \text{ cm}^3/\text{mol}$ and the $\frac{1}{2} \text{Y}_2\text{O}_3$ form molar volume of $22.5359 \text{ cm}^3/\text{mol}$. The conversion of the yttrium-based coating to a $\text{Y}-\text{O}-\text{F}$ coating or layer (e.g., YO_xF_y) causes a volume expansion and introduces additional internal compressive stress at temperatures below the deposition temperature that is greater than an internal compressive stress of the yttrium-based coating at the temperatures below the deposition temperature. Thus the zero stress state of the coating on a metal chamber component or other article is shifted to a higher temperature. Accordingly, when the chamber component is heated to an elevated processing temperature that is above the deposition temperature, the $\text{M}-\text{O}-\text{F}$ coating or layer (e.g., $\text{Y}-\text{O}-\text{F}$ coating or layer) has a reduced internal tensile stress that is lower than the internal tensile stress of the yttrium-based coating at the temperatures above the deposition temperature. The volume expansion is because YF_3 has a molar volume that is about 60% larger than the molar volume of Y_2O_3 . The molar volume of $\text{Y}-\text{O}-\text{F}$ is between the molar volume of YF_3 and the molar volume of Y_2O_3 . The reduced tensile stress can reduce or eliminate cracking of the $\text{Y}-\text{O}-\text{F}$ coating. The $\text{Y}-\text{O}-\text{F}$ is a plasma resistant coating that is resistant to erosion and corrosion by fluorine based plasmas.

[0141] Process 600 has been described to increase compressive stress for yttrium-based coatings on chamber components having a higher CTE than the CTE of the yttrium-based coatings. However, a similar process may also be performed to reduce the compressive stress for yttrium-based coatings on chamber components having a lower CTE than the CTE of the yttrium-based coatings. For example, the chamber component may be graphite (having a CTE of about 4 ppm/K), AlN (having a CTE of about 4.6 ppm/K), SiC (having a CTE of about 3.7 ppm/K) or SiN (having a CTE of about 2.8 ppm/K). In such instances, it may be desirable to reduce the compressive stress in the yttrium-based coatings. This may be accomplished, for example, by starting with deposition of a YF_3 or other yttrium-based fluoride coating at block 605. Then at block 615 the chamber component may be exposed to an oxygen source (e.g., any of the oxygen sources described herein above) to convert the yttrium-based fluoride coating into a $\text{Y}-\text{O}-\text{F}$ coating or layer or other yttrium-based oxy-fluoride coating or layer. Exposure to the oxygen source (e.g., O_2 plasma and/or O_2 radicals) may be performed at a temperature of 200-300° C. in embodiments. The conversion of YF_3 to $\text{Y}-\text{O}-\text{F}$ (or of another yttrium-based fluoride to a yttrium-based oxy-fluoride) may cause a volume contraction (e.g., due to a decrease in the molar volume), which may introduce tensile stress and/or reduce the compressive stress at room temperature and/or at an elevated processing temperature. Accordingly, process 600 may be performed to modulate the stress in a yttrium-based oxide coating or in a yttrium-based fluoride coating. Examples of yttrium-based fluoride coatings that may be converted to yttrium-based oxy-fluoride coatings are provided above with reference to FIG. 4A.

[0142] FIG. 6B illustrates a cross sectional side view of a chamber component 650 that includes a $\text{Y}-\text{O}-\text{F}/\text{M}-\text{O}-\text{F}$ coating 670 on a body 655 of the chamber component 650

according to an embodiment. The chamber component 650 may have a metal body (e.g., aluminum, an aluminum alloy such as Al 6061 or Al 6063, stainless steel such as SST316L, etc.) or a ceramic body (e.g., Al_2O_3 , AlN, SiC, etc.). The $\text{Y}-\text{O}-\text{F}/\text{M}-\text{O}-\text{F}$ coating 670 may include an alternating stack of thicker $\text{Y}-\text{O}-\text{F}$ layers 660 and thinner $\text{M}-\text{O}-\text{F}$ layers 665. Alternatively, the thinner layers may be M layers.

[0143] FIG. 7A illustrates a cross sectional side view of a chamber component 710 that includes a Y_2O_3 coating 705 as viewed by a transmission electron microscope (TEM), according to an embodiment. A capping layer 715 has been placed over the Y_2O_3 coating 705 for purpose of generating the TEM image. A surface A1 represents a top of the Y_2O_3 coating 705 and a surface B1 represents an interface between the chamber component 710 and the Y_2O_3 coating 705.

[0144] FIG. 7B illustrates a material composition of the chamber component of FIG. 7A. As shown, the capping layer 715 is composed of Ir. The Y_2O_3 coating 705 is composed of yttrium 725 and oxygen 720. The chamber component 710 is composed of Si 735.

[0145] FIG. 8A illustrates a cross sectional side view of a chamber component 810 that includes a $\text{Y}-\text{O}-\text{F}$ coating 805 after a fluorination process as viewed by a transmission electron microscope (TEM), according to an embodiment. The fluorination process was performed at 500° C. using NF_3 plasma with a power of 200 W for a duration of about 12 hours. A capping layer 815 has been placed over the $\text{Y}-\text{O}-\text{F}$ coating 805 for purpose of generating the TEM image. A surface A2 represents a top of the $\text{Y}-\text{O}-\text{F}$ coating 805 and a surface B2 represents an interface between the chamber component 810 and the $\text{Y}-\text{O}-\text{F}$ coating 805. A strain measurement by x-ray diffraction (XRD) showed an increased strain of about $1.34+/-0.13\%$ at room temperature and a crystallite size of $11.4+/-1.5 \text{ nm}$, which equates to increased compressive stress at room temperature. In comparison, the yttria coating without the fluorination process had a strain of $0.22+/-0.14\%$ and a crystallite size of $6.1+/-0.5 \text{ nm}$ at room temperature. The higher compressive stress at room temperature of the $\text{Y}-\text{O}-\text{F}$ coating results in a lower film stress for this coating at operating temperatures (e.g., of around 100° C. or above).

[0146] FIG. 8B illustrates a material composition of the chamber component of FIG. 8A. As shown, the capping layer 815 is composed of Ir. The $\text{Y}-\text{O}-\text{F}$ coating 805 is composed of yttrium 825, oxygen 820 and fluorine 840. The chamber component 810 is composed of Si 835. As shown, the $\text{Y}-\text{O}-\text{F}$ coating 805 includes about 30-50 at. % F, about 20-30 at. % O and about 30-40 at. % Y, depending on the depth of the coating. The fluorination process has replaced O molecules with F molecules throughout what had been the Y_2O_3 coating 705.

[0147] FIG. 9A illustrates a cross sectional side view of a chamber component 910 that includes a yttrium-based oxy-fluoride coating 905 made up of an alternating stack of $\text{Y}-\text{O}-\text{F}$ layers and $\text{Al}-\text{O}-\text{F}$ layers after a fluorination process as viewed by a transmission electron microscope (TEM), according to an embodiment. The yttrium-based oxy-fluoride coating was produced by fluorination of a yttrium-based oxide coating that included an alternating stack of Y_2O_3 layers and Al_2O_3 layers. The fluorination process may be performed at 250° C. A capping layer 915 has been placed over the yttrium-based oxide coating 905

for purpose of generating the TEM image. A surface A3 represents a top of the yttrium-based oxide coating 905, a surface B3 represents an interface between the yttrium-based oxide coating 905 and an alumina stress relief layer 912, and a surface C3 represents an interface between the alumina stress relief layer 912 and the chamber component 910.

[0148] FIG. 9B illustrates a material composition of the chamber component of FIG. 9A. As shown, the capping layer 915 is composed of Ir. The yttrium-based oxide coating 905 is composed of yttrium 925, oxygen 920, fluorine 940 and aluminum 935. The stress relief layer is composed of oxygen 920 and aluminum 935. The chamber component 810 is composed of a different ratio of aluminum 935 and oxygen 920.

[0149] Prior to fluorination, the yttrium-based oxy-fluoride coating 905 was a yttrium-based oxide coating that included an alternating stack of Y_2O_3 layers and Al_2O_3 layers. The Y_2O_3 layers may be approximately 2-12 times thicker than the Al_2O_3 layers in some embodiments. Some example thickness ratios of the rare earth oxide sub-layers to the additional metal oxide sub-layers include 2:1, 3:1, 4:1, 5:1, 8:1, 10:1 and 12:1. In some embodiments, Y_2O_3 layers are formed using about 5-12 cycles of an ALD process, where each cycle forms a nanolayer (or slightly less or more than a nanolayer) of the rare earth metal-containing oxide. Each layer of Al_2O_3 may be formed from a single ALD cycle (or a few ALD cycles) and may have a thickness of less than an atom to a few atoms. Layers of Y_2O_3 may each have a thickness of about 5-100 angstroms, and layers of the Al_2O_3 may each have a thickness of about 1-20 angstroms in embodiments. In the illustrated embodiment, a thickness ratio of the Y_2O_3 layers to the Al_2O_3 layers is about 10:1. The Al_2O_3 layers may prevent the Y_2O_3 layers from becoming crystalline in embodiments. As a result of the additional Al_2O_3 layers, the Y_2O_3 layers remain in a polycrystalline state.

[0150] As a result of the fluorination, the Y_2O_3 layers were converted into Y—O—F layers and the Al_2O_3 layers were converted into Al—O—F layers. Alternatively, some or all of the Al_2O_3 layers may not be converted into Al—O—F layers. As shown, the at. % of fluorine varies from about 2 at. % to about 25 at. %. The concentration of F is greater near a surface of the coating and less near a bottom of the coating.

[0151] FIG. 10A illustrates a cross sectional side view of another chamber component that includes a yttrium-based oxy-fluoride coating 1005 that includes an alternating stack of Y—O—F layers and Al—O—F layers after a fluorination process as viewed by a transmission electron microscope (TEM), according to an embodiment. The coating was created by fluorination of an ALD coating comprising an alternating stack of Y_2O_3 layers and Al_2O_3 layers. The coating 1005 has a thickness of about 500 nm. A capping layer 1015 has been placed over the yttrium-based oxy-fluoride coating 1005 for purpose of generating the TEM image. A surface A4 represents a top of the yttrium-based oxy-fluoride coating 1005, a surface B4 represents an interface between the yttrium-based oxy-fluoride coating 1005 and an alumina stress relief layer 1012, and a surface C4 represents an interface between the alumina stress relief layer 1012 and the chamber component 1010.

[0152] FIG. 10B illustrates a material composition of the chamber component of FIG. 10A. As shown, the capping layer 1015 is composed of Ir. The yttrium-based oxy-

fluoride coating 1005 is composed of yttrium 1025, oxygen 1020, fluorine 1040 and aluminum 1035. The stress relief layer is composed of oxygen 1020 and aluminum 1035. The chamber component 1010 is composed of a different ratio of aluminum 1035 and oxygen 1020. The fluorination process used to create the yttrium-based oxy-fluoride coating 1005 was a remote inductively coupled plasma (ICP) process at 450° C. using NF_3 plasma. As shown, an entire yttrium-based oxide coating was converted into the yttrium-based oxy-fluoride coating 1005. The fluorine concentration in the coating 1005 varies from about 35 at. % to about 60 at. %, and varies by depth. Notably, under these process conditions the fluorine concentration is greater near the middle and bottom of the coating 1005 than at a top of the coating 1005. Diffraction analysis showed that the Y—O—F layers of the coating 1005 remained polycrystalline after the fluorination process.

[0153] FIG. 11A illustrates a cross sectional side view of a chamber component that is a solid sintered (bulk) ceramic 1105 composed of a Y_2O_3 — ZrO_2 solid solution after a fluorination process as viewed by a transmission electron microscope (TEM), according to an embodiment. A capping layer 1015 has been placed over the solid sintered ceramic 1105 for purpose of generating the TEM image. A surface A5 represents a top of the solid sintered ceramic 1105.

[0154] FIG. 11B illustrates an EDS line scan showing material composition of the chamber component of FIG. 11A. As shown, approximately the top 70 nm of the solid sintered ceramic 1105 was converted from a Y_2O_3 — ZrO_2 solid solution to Y—Zr—O. The EDS line scan shows concentrations of oxygen 1120, fluorine 1140, yttrium 1125, and zirconium 1150. The Y_2O_3 — ZrO_2 solid solution initially contained about 60 mol % Y_2O_3 and about 40 mol % ZrO_2 , which resulted in an energy dispersive spectroscopy (EDS) line scan (as shown in FIG. 11A) showing about 23 at. % Y, about 65 at. % O and about 12 at. % Zr. After fluorination, the fluorine concentration varied from about 5 at. % to about 30 at. % in the top 100 nm of the solid sintered ceramic 1105. Processing conditions for the fluorination include direct capacitively coupled plasma (CCP) of NF_3 plasma at 200 W plasma power and 450° C. for 2 hours of processing.

[0155] Fluorination of the Y_2O_3 — ZrO_2 solid solution is slowed by Zr occupying vacancies in the Y lattice. The fluorine concentration and depth of fluorination may be increased by increasing the processing time and/or the density of fluorine radicals in the plasma.

[0156] Fluorination was also performed on other bulk sintered ceramic articles and coatings using similar test conditions of direct CCP of NF_3 plasma at 200 W plasma power and 450° C. for 2 hours of processing. Fluorination under these conditions of a 100 nm Y_2O_3 ALD coating produced using a first Y precursor resulted in the entire coating converting to a Y—O—F coating with a fluorine concentration that varied from about 25 at. % to about 55 at. %. Oxygen was found to be nearly depleted at a surface of the coating, resulting in a nearly YF_3 layer at the surface. Fluorine concentration then gradually decreased with depth. Fluorination under these conditions of another 100 nm Y_2O_3 ALD coating that was produced using a second Y precursor resulted in the entire coating converting to a Y—O—F coating with a fluorine concentration that varied from about 20 at. % to about 30 at. %. Fluorine concentration was found to be slightly higher in the bottom half of the coating than

the top half of the coating. There was found to be a slight microstructure difference between the Y_2O_3 ALD coating produced using the first Y precursor and the Y_2O_3 ALD coating produced using the second Y precursor, which resulted in unexpected differences in fluorination.

[0157] Fluorination was performed on a 100 nm Al_2O_3 ALD coating under conditions of direct CCP of NF_3 plasma at 200 W plasma power and 450° C. for 2 hours of processing. Such fluorination resulted in fluorination of approximately the top 20 nm of the coating. The fluorine concentration at the top 20 nm of the coating was about 5-7 at. % F. Accordingly, the top 20 nm converted to an $\text{Al}-\text{O}-\text{F}$ coating with about 35 at. % Al, 5-7 at. % F and 58-60 at. % O.

[0158] Fluorination was performed on a bulk sintered Y_2O_3 article under conditions of direct CCP of NF_3 plasma at 200 W plasma power and 450° C. for 2 hours of processing. Such fluorination resulted in fluorination of approximately the top 150 nm of the article. The fluorine concentration was about 30-40 at. % at the top 50 nm, and gradually decreased to about 5 at. % near 150 nm depth.

[0159] FIG. 12A illustrates a cross sectional side view of a chamber component 1265 that includes a coating 1205 of Al_2O_3 on an SiO_2 substrate 1265 after a fluorination process as viewed by a transmission electron microscope (TEM), according to an embodiment. A capping layer 1215 has been placed over the coating 1205 for purpose of generating the TEM image. A surface A6 represents a top of the coating 1205. A surface B6 represents a bottom of the coating 1205 and a top of the chamber component 1265.

[0160] FIG. 12B illustrates an EDS line scan showing a material composition of the chamber component of FIG. 12A. As shown, approximately the top 50 nm of the coating 1205 was converted from Al_2O_3 into $\text{Al}-\text{O}-\text{F}$. The Al_2O_3 initially contained about 63-67 at. % Al and about 33-37 at. % O, which resulted in the EDS line scan as shown in FIG. 12B. The EDS line scan shows concentrations of aluminum 1220, oxygen 1260, and fluorine 1240. After fluorination, the fluorine concentration varied from about 15 at. % at surface A6 to about 5 at. % or less at 50 nm depth. Processing conditions for the fluorination include direct CCP of CF_3/Ar plasma at 450 W plasma power for 5 hours of processing. Notably, fluorination of Al_2O_3 is significantly slower than fluorination of Y_2O_3 . The fluorine concentration and depth of fluorination may be increased by increasing the processing time and/or the density of fluorine radicals in the plasma.

[0161] Fluorination was also performed on other bulk sintered ceramic articles and coatings using similar test conditions of direct CCP of CF_3/Ar plasma at 450 W plasma power for 1-5 hours of processing. Fluorination under these conditions of a 100 nm Al_2O_3 ALD coating for 5 hours of processing resulted in the top 10-15 nm of the coating converting to $\text{Al}-\text{O}-\text{F}$ with a fluorine concentration of 3-30 at. %, where the fluorine concentration was about 30 at. % at a depth of about 3-5 nm. Fluorination under these conditions of a 100 nm Y_2O_3 ALD coating for a duration of 5 hours resulted in fluorination of approximately the top 70 nm of the coating. The Y_2O_3 coating converted to a $\text{Y}-\text{O}-\text{F}$ coating with a fluorine concentration of about 3-25 at. %, where the fluorine concentration was about 25 at. % at a depth of about 4-5 nm and the fluorine concentration at a depth of about 10-70 nm was around 5-10 at. %. Fluorination under these conditions of a 5 μm Y_2O_3 ALD

coating for a duration of 5 hours resulted in fluorination of about the top 70 nm of the coating. The Y_2O_3 coating converted to a $\text{Y}-\text{O}-\text{F}$ coating with a fluorine concentration of about 5-20 at. %, where the fluorine concentration was about 20 at. % at a depth of about 8-10 nm and gradually decreased with increased depth.

[0162] Fluorination was performed on a bulk sintered article composed of a composite ceramic comprising a first phase of $\text{Y}_2\text{Al}_4\text{O}_9$ and a second phase of a $\text{Y}_2\text{O}_3-\text{ZrO}_2$ solid solution under conditions of direct CCP plasma with CF_3/Ar plasma at 450 W plasma power for 5 hours of processing. Such fluorination resulted in fluorination of approximately the top 20 nm of the article. Lamella originally having the first phase of $\text{Y}_2\text{Al}_4\text{O}_9$ were converted to $\text{Y}-\text{Al}-\text{O}-\text{F}$ by the fluorination process, while lamella originally having the second phase of a $\text{Y}_2\text{O}_3-\text{ZrO}_2$ solid solution converted to $\text{Y}-\text{Zr}-\text{O}-\text{F}$ by the fluorination process. The concentration of the fluorine in the lamella originally having the second phase was about 4-18 at. %.

[0163] FIG. 13A illustrates a $\text{Y}-\text{O}-\text{F}$ layer 1300 resulting from fluorination of a Y_2O_3 coating. The fluorination was performed using a remote fluorine plasma source. The $\text{Y}-\text{O}-\text{F}$ layer 1300 has a thickness of 138-182 nm. As shown, the $\text{Y}-\text{O}-\text{F}$ layer includes cracks 1305, 1310 and delamination 1315. Such cracks 1305, 1310 and delamination 1315 can be mitigated by slowing down the fluorination process.

[0164] FIG. 13B illustrates a $\text{Y}-\text{Z}-\text{O}-\text{F}$ layer 1320 resulting from fluorination of a $\text{Y}_2\text{O}_3-\text{ZrO}_2$ solid solution coating. The illustrated $\text{Y}-\text{Z}-\text{O}-\text{F}$ layer 1320 is based on fluorination of a $\text{Y}_2\text{O}_3-\text{ZrO}_2$ that includes 60 mol % Y_2O_3 and 40 mol % ZrO_2 . However, similar results are achieved using 70 mol % Y_2O_3 and 30 mol % ZrO_2 . The $\text{Y}-\text{Z}-\text{O}-\text{F}$ layer has a thickness of about 32-60 nm. As shown, the $\text{Y}-\text{Z}-\text{O}-\text{F}$ layer 1320 does not include any cracking or delamination. It was discovered that a $\text{Y}_2\text{O}_3-\text{ZrO}_2$ solid solution reacts with a fluorine source at a slower rate than Y_2O_3 . Additionally, the microstructural integrity of a fluorinated $\text{Y}_2\text{O}_3-\text{ZrO}_2$ solid solution coating (e.g., a $\text{Y}-\text{Z}-\text{O}-\text{F}$ layer 1320) has been shown to possess a superior microstructural integrity that lacks cracking and delamination. As a result, the $\text{Y}-\text{Z}-\text{O}-\text{F}$ layer 1320 provides improved particle performance (reduced numbers of yttrium based particles on processed substrates) and longer useful lifetimes.

[0165] FIG. 14 illustrates an energy dispersive electron microscopy (EDS) line scan showing the material composition of a YF_3 1405 coating. As shown, the YF_3 coating 1405 includes approximately 25-30 at. % Y 1425 and about 60-70 at. % F 1440. The YF_3 coating additionally includes about 3-6 at. % F 1420 and about 2-10 at. % C 1422. The YF_3 coating was deposited by IAD and has a thickness of about 5 μm .

[0166] FIG. 15 illustrates an EDS line scan showing the material composition of the YF_3 coating 1405 of FIG. 14 after an oxidation process, where the YF_3 coating 1405 includes a $\text{Y}-\text{O}-\text{F}$ layer, according to an embodiment. The oxidation process was performed at processing conditions of a microwave O plasma at 50 W of plasma power and at about 350° C. The O plasma was flowed with Ar at a ratio of 1:1. As shown, the oxidation process converted about the top 500 nm of the YF_3 into a $\text{Y}-\text{O}-\text{F}$ layer. The concentration of O 1520 in the $\text{Y}-\text{O}-\text{F}$ layer is about 10-30 at. % and the concentration of F 1540 is about 30-50 mol. %, with

a higher O concentration at the surface of the YF_3 coating **1405**. The concentration of C **1522** is approximately unchanged.

[0167] FIG. 16A illustrates a cross sectional side view of a chamber component **1605** that includes a coating of Y_2O_3 **1610** after a fluorination process in a HF acid solution as viewed by a TEM, according to an embodiment. The Y_2O_3 coating **1610** has a thickness of about 600 nm and was deposited by ALD. The fluorination process was performed using an acid solution that included approximately 49% HF with ultrasonic agitation for a process time of about 1 minute.

[0168] FIG. 16B illustrates a material composition of the chamber component of FIG. 16A. As shown, the Y_2O_3 coating **1610** includes a Y—O—F layer having a thickness of about 50 nm at the top of the Y_2O_3 coating **1610**. The concentration of F **1640** in the Y—O—F layer is about 3-15 at. %, with a higher F concentration near the surface. The Y_2O_3 coating **1610** additionally includes about 60-70 at. % O **1620** and about 19-24 at. % Y **1625**. Additionally, the Y_2O_3 coating **1610** includes some C **1680**.

[0169] A fluorination process was performed using an acid solution that included approximately 49% HF with ultrasonic agitation for a process time of about 1 minute on multiple different yttrium-based coatings. This fluorination process was performed on a 1 micron thick coating comprising alternating layers of Y_2O_3 and Al_2O_3 (with a thickness ratio of Y_2O_3 to Al_2O_3 of 10:1) that was deposited by ALD with zone control. As a result, the top 50 nm of the coating converted to Y—O—F with a fluorine concentration of about 5 at. %. The fluorination process with these conditions was also tested on a 600 nm thick Y_2O_3 coating that was deposited by ALD without zone control. As a result, the top 500 nm of the coating converted to Y—O—F with a fluorine concentration of about 18 at. %. The fluorination process with these conditions was also tested on a 50 nm coating composed of a Y_2O_3 — ZrO_2 solid solution. As a result, the top 25 nm of the coating converted to Y—Zr—O—F with a fluorine concentration of about 5 at. %.

[0170] In another embodiment, a fluorination process was performed using an acid solution that included approximately 0.5 vol. % HF, 0.5 mol % NH_4F , 10 vol. % H_2O_3 and the remainder water for a duration of 1 minute with ultrasonication of the acid solution on different yttrium-based coatings. The fluorination process with these conditions was tested on a 1 micron thick coating comprising alternating layers of Y_2O_3 and Al_2O_3 (with a thickness ratio of Y_2O_3 to Al_2O_3 of 10:1) that was deposited by ALD with zone control. As a result, the top 50 nm of the coating converted to Y—O—F with a fluorine concentration of about 1 at. %. The fluorination process with these conditions was also tested on a 600 nm thick Y_2O_3 coating that was deposited by ALD without zone control. As a result, the top 25 nm of the coating converted to Y—O—F with a fluorine concentration of about 2.5 at. %. The fluorination process with these conditions was also tested on a 50 nm coating composed of a Y_2O_3 — ZrO_2 solid solution. As a result, the top 25 nm of the coating converted to Y—Zr—O—F with a fluorine concentration of about 1 at. %.

[0171] A fluorination process was performed and a Y_2O_3 coating was exposed to a fluorine-based acid solution. This acid-based fluorination recipe was used to test a 1 micron thick Y_2O_3 coating.

[0172] FIG. 17 illustrates an x-ray photoelectron spectroscopy (XPS) surface analysis showing the material composition of a YF_3 coating deposited by ALD. As shown, the YF_3 coating includes F **1740** and Y **1725** and has a depth of 160 nm.

[0173] FIG. 18 illustrates an XPS surface analysis showing the material composition of a Y—O—F coating formed from oxidation of the YF_3 coating of FIG. 17, according to an embodiment. The oxidation process was performed at processing conditions of a microwave O plasma at 50 W of plasma power and at about 350° C. The O plasma was flowed with Ar at a ratio of 1:1. As shown, the oxidation process converted the entire YF_3 coating into a Y—O—F coating having an oxygen concentration of about 35-60 at. %.

[0174] FIG. 19 is a chart showing Y_2O_3 particles detected on a processed substrate on the y-axis and number of radio frequency hours (RFH) on the x-axis. RFH refers to the number of hours of processing under processing conditions. FIG. 19 illustrates a first particle performance **1910** of a first processing chamber that includes a liner with a Y—O—F, a lid that is a composite ceramic comprising a first phase of $\text{Y}_4\text{Al}_2\text{O}_9$ (YAM) and second phase that is a Y_2O_3 — ZrO_2 solid solution, and a quartz nozzle. Also illustrated is a second particle performance **1915** of a second processing chamber that includes a Y—Z—O—F coating on a liner, a lid and a nozzle. As shown, a manufacturer's specification **1905** specifies that there should be fewer than five Y_2O_3 particles having a size of 35 nm or larger that are added to substrates that are processed in a processing chamber. The first particle performance **1910** of the first processing chamber exceeded the specification **1905** of 5 adders at around 80-100 radio frequency hours. As shown, the second particle performance **1915** of the second processing chamber is much better than the first particle performance **1910**, and is limited to only 1-2 adders at around 60 and 70 radio frequency hours. The Y—Z—O—F coating has been shown to produce remarkably low particle counts on processed substrates, even after 250 radio frequency hours. Moreover, no zirconium based particles (e.g., ZrO_2 particles) were detected with use of the Y—Z—O—F coating on the lid, nozzle and liner.

[0175] The preceding description sets forth numerous specific details such as examples of specific systems, components, methods, and so forth, in order to provide a good understanding of several embodiments of the present invention. It will be apparent to one skilled in the art, however, that at least some embodiments of the present invention may be practiced without these specific details. In other instances, well-known components or methods are not described in detail or are presented in simple block diagram format in order to avoid unnecessarily obscuring the present invention. Thus, the specific details set forth are merely exemplary. Particular implementations may vary from these exemplary details and still be contemplated to be within the scope of the present invention.

[0176] Reference throughout this specification to "one embodiment" or "an embodiment" means that a particular feature, structure, or characteristic described in connection with the embodiment is included in at least one embodiment. Thus, the appearances of the phrase "in one embodiment" or "in an embodiment" in various places throughout this specification are not necessarily all referring to the same embodiment. In addition, the term "or" is intended to mean an

inclusive "or" rather than an exclusive "or." When the term "about" or "approximately" is used herein, this is intended to mean that the nominal value presented is precise within $\pm 10\%$.

[0177] Although the operations of the methods herein are shown and described in a particular order, the order of the operations of each method may be altered so that certain operations may be performed in an inverse order or so that certain operation may be performed, at least in part, concurrently with other operations. In another embodiment, instructions or sub-operations of distinct operations may be in an intermittent and/or alternating manner.

[0178] It is to be understood that the above description is intended to be illustrative, and not restrictive. Many other embodiments will be apparent to those of skill in the art upon reading and understanding the above description. The scope of the invention should be determined with reference to the appended claims, along with the full scope of equivalents to which such claims are entitled.

What is claimed is:

1. A method comprising:

depositing a yttrium-based oxide coating on a surface of a chamber component for a first processing chamber; heating the chamber component to an elevated temperature of about 150-1000° C.; exposing the chamber component to at least one of CF_4 , HF , F_2 , F radicals or NF_3 at the elevated temperature for a duration of 0.1-72 hours; and converting at least a surface of the yttrium-based oxide coating into a yttrium-based oxy-fluoride layer.

2. The method of claim 1, wherein exposing the chamber component to NF_3 comprises introducing NF_3 plasma into a second processing chamber that contains the chamber component.

3. The method of claim 1, wherein exposing the chamber component to CF_4 comprises introducing a plasma of CF_4 and Ar plasma into a second processing chamber that contains the chamber component.

4. The method of claim 1, wherein a thickness of the yttrium-based oxy-fluoride layer is about 10 nm to about 5 μm .

5. The method of claim 1, wherein the yttrium-based oxide coating comprises a Y(OH) layer at the surface of the yttrium-based oxide coating, and wherein exposing the chamber component to the HF at the elevated temperature causes the Y(OH) layer to convert to the yttrium-based oxy-fluoride layer.

6. The method of claim 1, wherein the yttrium-based oxide coating is a Y_2O_3 coating, and wherein depositing the Y_2O_3 coating comprises performing one of:

performing a plasma spray process to deposit the Y_2O_3 coating, the Y_2O_3 coating having a thickness of about 100-300 μm ;

performing atomic layer deposition (ALD) to deposit the Y_2O_3 coating, the Y_2O_3 coating having a thickness of about 10 nm to about 10 μm ;

performing electron beam ion assisted deposition (EB-IAD) to deposit the Y_2O_3 coating, the Y_2O_3 coating having a thickness of about 1-10 μm ; or performing a suspension plasma spray process to deposit the Y_2O_3 coating, the Y_2O_3 coating having a thickness of about 50-100 μm .

7. The method of claim 1, wherein:

the chamber component comprises a metal having a first coefficient of thermal expansion (CTE) that is greater than a second CTE of the yttrium-based oxide coating; depositing the yttrium-based oxide coating comprises performing atomic layer deposition (ALD) or ion assisted deposition (IAD) to deposit the yttrium-based oxide coating at a deposition temperature of about 100-300° C., wherein the yttrium-based oxide coating has an internal compressive stress at temperatures below the deposition temperature and an internal tensile stress at temperatures above the deposition temperature; and converting the yttrium-based oxide coating into the yttrium-based oxy-fluoride layer causes a volume expansion and introduces a) additional internal compressive stress at the temperatures below the deposition temperature that is greater than the internal compressive stress of the yttrium-based oxide coating at the temperatures below the deposition temperature and b) reduced internal tensile stress at the temperatures above the deposition temperature that is lower than the internal tensile stress of the yttrium-based oxide coating at the temperatures above the deposition temperature.

8. The method of claim 7, wherein an entirety of the yttrium-based oxide coating is converted to the yttrium-based oxy-fluoride layer, and wherein the yttrium-based oxy-fluoride layer is resistant to cracking at temperatures of 250-350° C.

9. The method of claim 7, wherein the yttrium-based oxide coating comprises an alternating stack of Y_2O_3 layers having a first thickness and Al_2O_3 layers having a second thickness that is approximately $\frac{1}{10}$ to $\frac{1}{5}$ of the first thickness, and wherein the yttrium-based oxy-fluoride layer comprises an alternating stack of $\text{Y}-\text{O}-\text{F}$ layers having the first thickness and $\text{Al}-\text{O}-\text{F}$ layers having the second thickness.

10. The method of claim 1, wherein the yttrium-based oxide coating consists of a $\text{Y}_2\text{O}_3-\text{ZrO}_2$ solid solution, and wherein the yttrium-based oxy-fluoride layer consists of a $\text{Y}-\text{Zr}-\text{O}-\text{F}$ layer.

11. A chamber component for a processing chamber, comprising:

an article composed of at least one of a metal or a ceramic; and a yttrium-based oxy-fluoride layer on at least one surface of the article, the yttrium-based oxy-fluoride layer having a thickness of 10 nm to 300 μm , wherein the yttrium-based oxy-fluoride layer has a composition selected from a group consisting of:

$\text{Y}-\text{O}-\text{F}$;

$\text{Y}-\text{Al}-\text{O}-\text{F}$;

$\text{Y}-\text{Zr}-\text{O}-\text{F}$; and

a composite ceramic comprising a first phase of $\text{Y}-\text{Al}-\text{O}-\text{F}$ and a second phase of $\text{Y}-\text{Zr}-\text{O}-\text{F}$.

12. The chamber component of claim 11, wherein the yttrium-based oxy-fluoride layer has a thickness of 10 nm to 300 μm .

13. The chamber component of claim 11, wherein the article is a sintered ceramic article selected from a group consisting of Y_2O_3 , $\text{Y}_4\text{Al}_2\text{O}_9$, $\text{Y}_3\text{Al}_5\text{O}_{12}$, a $\text{Y}_2\text{O}_3-\text{ZrO}_2$ solid solution, and a second composite ceramic comprising a first phase of $\text{Y}_4\text{Al}_2\text{O}_9$ and a second phase of a $\text{Y}_2\text{O}_3-\text{ZrO}_2$ solid solution, and wherein at least one of:

the sintered ceramic article is Y_2O_3 and the yttrium-based oxy-fluoride layer is $\text{Y}—\text{O}—\text{F}$;

the sintered ceramic article is $\text{Y}_4\text{Al}_2\text{O}_9$ or $\text{Y}_3\text{Al}_5\text{O}_{12}$ and the yttrium-based oxy-fluoride layer is $\text{Y}—\text{Al}—\text{O}—\text{F}$;

the sintered ceramic article is the $\text{Y}_2\text{O}_3—\text{ZrO}_2$ solid solution and the yttrium-based oxy-fluoride layer is $\text{Y}—\text{Zr}—\text{O}—\text{F}$; or

the sintered ceramic article is the second composite ceramic comprising the first phase of $\text{Y}_4\text{Al}_2\text{O}_9$ and the second phase of a $\text{Y}_2\text{O}_3—\text{ZrO}_2$ solid solution and the yttrium-based oxy-fluoride layer is the composite ceramic comprising the first phase of $\text{Y}—\text{Al}—\text{O}—\text{F}$ and the second phase of $\text{Y}—\text{Zr}—\text{O}—\text{F}$.

14. The chamber component of claim 11, further comprising:

a yttrium-based coating on the at least one surface of the article, the yttrium-based coating comprising:

the yttrium-based oxy-fluoride layer; and

a yttrium-based oxide layer between the yttrium-based oxy-fluoride layer and the at least one surface of the article, wherein the yttrium-based oxide layer is selected from a group consisting of Y_2O_3 , $\text{Y}_4\text{Al}_2\text{O}_9$, $\text{Y}_3\text{Al}_5\text{O}_{12}$, a $\text{Y}_2\text{O}_3—\text{ZrO}_2$ solid solution, and a second composite ceramic comprising a first phase of $\text{Y}_4\text{Al}_2\text{O}_9$ and a second phase of a $\text{Y}_2\text{O}_3—\text{ZrO}_2$ solid solution, wherein at least one of:

the yttrium-based oxide layer is Y_2O_3 and the yttrium-based oxy-fluoride layer is $\text{Y}—\text{O}—\text{F}$;

the yttrium-based oxide layer is $\text{Y}_4\text{Al}_2\text{O}_9$ or $\text{Y}_3\text{Al}_5\text{O}_{12}$ and the yttrium-based oxy-fluoride layer is $\text{Y}—\text{Al}—\text{O}—\text{F}$;

the yttrium-based oxide layer is the $\text{Y}_2\text{O}_3—\text{ZrO}_2$ solid solution and the yttrium-based oxy-fluoride layer is $\text{Y}—\text{Zr}—\text{O}—\text{F}$; or

the yttrium-based oxide layer is the second composite ceramic comprising the first phase of $\text{Y}_4\text{Al}_2\text{O}_9$ and the second phase of a $\text{Y}_2\text{O}_3—\text{ZrO}_2$ solid solution and the yttrium-based oxy-fluoride layer is the composite ceramic comprising the first phase of $\text{Y}—\text{Al}—\text{O}—\text{F}$ and the second phase of $\text{Y}—\text{Zr}—\text{O}—\text{F}$.

15. The chamber component of claim 11, wherein the yttrium-based oxy-fluoride coating comprises an alternating stack of first layers having a first thickness and second layers having a second thickness that is approximately $\frac{1}{10}$ to $\frac{1}{5}$ of

the first thickness, wherein the first layers comprise $\text{Y}—\text{O}—\text{F}$ and the second layers comprise $\text{Al}—\text{O}—\text{F}$.

16. The method of claim 15, wherein the first thickness is about 5-100 angstroms and the second thickness is about 1-20 angstroms.

17. A method comprising:

depositing a yttrium-based oxide coating on a surface of a chamber component for a processing chamber; immersing the chamber component comprising the yttrium-based oxide into a fluorine-based acid solution; and

converting at least a surface of the yttrium-based oxide coating into a yttrium-based oxy-fluoride layer using the fluorine-based acid solution.

18. The method of claim 17, wherein the fluorine-based acid solution is an HF acid solution comprising 50-95 vol % water and 0.1-50 vol % HF acid.

19. The method of claim 17, wherein the fluorine-based acid solution has a temperature of 0-100° C.

20. The method of claim 17, wherein:

the chamber component comprises a metal having a first coefficient of thermal expansion (CTE) that is greater than a second CTE of the yttrium-based oxide coating; depositing the yttrium-based oxide coating comprises performing atomic layer deposition (ALD) or ion assisted deposition (IAD) to deposit the yttrium-based oxide coating at a deposition temperature of about 100-300° C., wherein the yttrium-based oxide coating has an internal compressive stress at temperatures below the deposition temperature and an internal tensile stress at temperatures above the deposition temperature; and

converting the yttrium-based oxide coating into the yttrium-based oxy-fluoride layer causes a volume expansion and introduces a) additional internal compressive stress at the temperatures below the deposition temperature that is greater than the internal compressive stress of the yttrium-based oxide coating at the temperatures below the deposition temperature and b) reduced internal tensile stress at the temperatures above the deposition temperature that is lower than the internal tensile stress of the yttrium-based oxide coating at the temperatures above the deposition temperature.

* * * * *