
(19) United States
(12) Patent Application Publication (10) Pub. No.: US 2016/0323190 A1

TESTICOGLU et al.

US 2016.0323 190A1

(43) Pub. Date: Nov. 3, 2016

(54)

(71)

(72)

(21)

(22)

(63)

HIGH-PERFORMANCE
QUALITY-OF-SERVICE PACKET
SCHEDULING FOR MULTIPLE PACKET
PROCESSING ENGINES

Applicant: Citrix Systems, Inc., Fort Lauderdale,
FL (US)

Inventors: Mustafa Kutluk TESTICIOGLU,
Mountain View, CA (US): Seth K.
KEITH, Scotts Valley, CA (US)

Appl. No.: 15/207,080

Filed: Jul. 11, 2016

Related U.S. Application Data
Continuation of application No. 13/963,936, filed on
Aug. 9, 2013, now Pat. No. 9,401,860.

- /
packstroke / M

s / A
:

RCKSENE

ACKE
ES

SES

AXE
EGE
3.

Publication Classification

(51) Int. Cl.
H04L 12/85 (2006.01)
H04L 12/863 (2006.01)

(52) U.S. Cl.
CPC H04L 47/24 (2013.01); H04L 47/628

(2013.01)
(57) ABSTRACT
A system and method is provided for optimizing network
traffic. The system includes a packet engine of a plurality of
packet engines configured to acquire a data packet, to store
the data packet in a queue, and to provide a request including
a packet token representing the data packet, information
regarding the size of the data packet, and a connection token.
The system also includes a packet scheduler configured to
receive the request; Schedule the data packet using the
connection token and the information regarding the size of
the data packet; and provide the packet token and a notifi
cation to the packet engine for allowing the packet engine
for transmitting the data packet.

OPTsA2ATIGh 8Y QoS
- EN: 3 &
es A.

(see f: k i: - - (6." 88: $383
x: Y.

KSRESPACE

SERSCE

Nov. 3, 2016 Sheet 1 of 9 US 2016/0323190 A1 Patent Application Publication

B01AB01 No.rio

Nov. 3, 2016 Sheet 2 of 9 US 2016/0323190 A1 Patent Application Publication

oºz | saolaag off |
TO?NOO ! {}}}|

Nov. 3, 2016 Sheet 3 of 9 US 2016/0323190 A1 Patent Application Publication

Nov. 3, 2016 Sheet 4 of 9 US 2016/0323190 A1 Patent Application Publication

| 0% | |saeläissvio|
§§§§ ${}{}

Nov. 3, 2016 Sheet 5 of 9 Patent Application Publication

US 2016/0323190 A1 Patent Application Publication

Patent Application Publication Nov. 3, 2016 Sheet 7 of 9

CS RESEE

US 2016/0323190 A1

A 3:
M Opia Aix YQS

MP. / / - ENGINE 330
NOTFICATION A / % 4.

i M / error
V / M - n-y
/ sy

Agoerciscatiostasis one s
M basick /Y

AKE ESNE
38;

AKE
EE
CEE

six
E3:
32

---------------------- i&is

------F3E isix pACKER

ENGINE
Q}EUE Pax

8APEXE

^-5798
- - -re rar rar rar r- --- rare rr. r 8.-----------------

yx
Q folls---. to St.
\A gi: - \le^

KERESPACE

SERSAC

Nov. 3, 2016 Sheet 8 of 9 US 2016/0323190 A1 Patent Application Publication

029

Nov. 3, 2016 Sheet 9 of 9 US 2016/0323190 A1 Patent Application Publication

US 2016/0323190 A1

HGH-PERFORMANCE
QUALITY-OF-SERVICE PACKET

SCHEDULING FOR MULTIPLE PACKET
PROCESSING ENGINES

PRIORITY CLAIM

0001. The present application is a continuation of U.S.
patent application Ser. No. 13/963,936, filed on Aug. 9.
2013, which is incorporated herein by reference in its
entirety.

FIELD

0002 The present disclosure generally relates to quality
control of data communication networks. Exemplary
embodiments relate to methods and systems for providing
high-performance packet optimization for multiple packet
processing engines.

BACKGROUND

0003. In high-performance packet processing, Such as
network-load balancing and deep packet inspection, it is
common to use multiple packet engines running on different
cores or even on different microprocessors. This configura
tion allows multiple packets to be processed in parallel since
multiple packet engines process different packets at the same
time. After the packet engine finishes processing the packet,
the packet can then be prioritized and/or regulated to a
certain rate using a central Quality-of-Service (QoS) device
for sending through a bottleneck link (i.e., a physical device
that transmits all packets processed by the multiple packet
engines).
0004. In order for the QoS device to send out all packets
processed by the multiple packet engines, the QoS device
can either receive a copy of a packet from the packet engine
or share a packet memory with the packet engine. But
performance penalties exist under both approaches. The first
approach involves an inefficient copy operation for each
packet provided to the QoS device, which must then process
received packets before providing them to the link. And the
second approach involves a central storage (such as a
memory of a parallel processing system or a cache of a
microprocessor) shared by the QoS device and the multiple
packet engines. The central storage would store all packets
and would allow the QoS device to have access to them. In
this latter approach, however, because multiple packet
engines can reside in different cores or different processors,
sharing the storage place can cause a cache coherency issue
Such that the cache contents can be undesirably invalidated.

BRIEF DESCRIPTION OF THE DRAWINGS

0005 Reference will now be made to the accompanying
drawings showing example embodiments of this disclosure.
In the drawings:
0006 FIG. 1 is a block diagram of an exemplary network
environment, consistent with embodiments of the present
disclosure.
0007 FIGS. 2A-2B are block diagrams of an exemplary
computing device, consistent with embodiments of the pres
ent disclosure.
0008 FIG. 3A is a block diagram of an exemplary
appliance illustrated in FIG. 1, consistent with embodiments
of the present disclosure.

Nov. 3, 2016

0009 FIG. 3B is a block diagram of a portion of an
exemplary appliance illustrated in FIG. 3A, consistent with
embodiments of the present disclosure.
0010 FIG. 4 is a diagram of an exemplary classification
tree, consistent with embodiments of the present disclosure.
0011 FIG. 5 is a block diagram of an exemplary embodi
ment for Scheduling data packets, consistent with embodi
ments of the present disclosure.
0012 FIG. 6 is a flowchart representing an exemplary
method of optimizing network traffic, consistent with
embodiments of the present disclosure.
0013 FIG. 7 is a flowchart representing an exemplary
method of requesting for scheduling of data packets, con
sistent with embodiments of the present disclosure.

DETAILED DESCRIPTION

0014 Reference will now be made in detail to the exem
plary embodiments implemented according to the present
disclosure, the examples of which are illustrated in the
accompanying drawings. Wherever possible, the same ref
erence numbers will be used throughout the drawings to
refer to the same or like parts.
0015 The embodiments described herein provide high
performance QoS packet scheduling for multiple packet
processors, such as packet engines. The high performance
QoS packet scheduling embodiments can avoid or mitigate
the network traffic bottleneck and cache coherency issues
and thus can improve the efficiency of the network traffic
optimization.
0016 FIG. 1 is a block diagram of an exemplary network
environment 100. While exemplary network environment
100 is directed to a virtual network environment, it is
appreciated that the network environment can be any type of
network that communicates using packets. Network envi
ronment 100 can include one or more client devices 102, a
public network 104, a gateway 106, an appliance 108, a
private network 110, a data center 120, and a branch office
140.
0017. One or more client devices 102 are devices that can
acquire remote services from data center 120 through vari
ous means. Client devices 102 can communicate with data
center 120 either directly (e.g., client device 102e) or
indirectly through a public network 104 (e.g., client devices
102a-d) or a private network 110 (e.g., client device 102f).
When client device 102 communicates through public net
work 104 or private network 110, a communication link can
be established. For example, a link can be established by
public network 104, gateway 106, and appliance 108,
thereby providing a client device (e.g. client devices 102a-d)
access to data center 120. A link can also be established by
branch office 140 including appliance 108, private network
110, and appliance 108, thereby providing a client device
(e.g. client device 102?) access to data center 120. While
client devices 102 are portrayed as a computer (e.g., client
devices 102a, 102e, and 102f), a laptop (e.g., client device
102b), a tablet (e.g., client device 102c), and a mobile smart
phone (e.g., client device 102d), it is appreciated that client
device 102 could be any type of device that communicates
packets to and from data center 120.
(0018 Public network 104 and private network 110 can be
any type of network such as a wide area network (WAN), a
local area network (LAN), or a metropolitan area network
(MAN). As an example, a WAN can be the Internet or the
World Wide Web, and a LAN can be a corporate Intranet.

US 2016/0323190 A1

Public network 104 and private network 110 can be a wired
network or a wireless network.

0019 Gateway 106 is a physical device or is software
that is part of a physical device that interfaces between two
networks having different protocols. Gateway 106, for
example, can be a server, a router, a host, or a proxy server.
In some embodiments, gateway 106 can include or be
coupled to a firewall separating gateway 106 from public
network 104 (e.g., Internet). Gateway has the ability to
modify signals received from client device 102 into signals
that appliance 108 and/or data center 120 can understand
and vice versa.

0020 Appliance 108 is a device that optimizes wide area
network (WAN) traffic by including, for example, a QoS
engine. In some embodiments, appliance 108 optimizes
other types of network traffic, such as local area network
(LAN) traffic, metropolitan area network (MAN) traffic, or
wireless network traffic. Appliance 108 can optimize net
work traffic by, for example, Scheduling data packets in an
established communication link so that the data packets can
be transmitted or dropped at a scheduled time and rate. In
Some embodiments, appliance 108 is a physical device. Such
as Citrix Systems Branch Repeater, Netscaler, or Cloud
Bridge. In some embodiments, appliance 108 can be a
virtual appliance. In some embodiments, appliance 108 can
be a physical device having multiple instances of virtual
machines (e.g., virtual Branch Repeater). In some embodi
ments, a first appliance (e.g., appliance 108) works in
conjunction with or cooperation with a second appliance
(e.g., appliance 108") to optimize network traffic. For
example, the first appliance can be located between the
WAN and a corporate LAN (e.g., data center 120), while the
second appliance can be located between a branch office
(e.g., branch office 140) and a WAN connection. In some
embodiments, the functionality of gateway 106 and appli
ance 108 can be located in a single physical device. Appli
ances 108 and 108" can be functionally the same or similar.
Appliance 108 is further described below corresponding to
FIG 3A

0021 Data center 120 is a central repository, either
physical or virtual, for the storage, management, and dis
semination of data and information pertaining to a particular
public or private entity. Data center 120 can be used to house
computer systems and associated components, such as one
or physical servers, virtual servers, and storage systems.
Data center 120 can include, among other things, one or
more servers (e.g., server 122) and a backend system 130. In
Some embodiments data center 120 can include gateway
106, appliance 108, or a combination of both.
0022 Server 122 is an entity represented by an IP address
and can exist as a single entity or a member of a server farm.
Server 122 can be a physical server or a virtual server. In
Some embodiments, server 122 can include a hardware layer,
an operating system, and a hypervisor creating or managing
one or more virtual machines. Server 122 provides one or
more services to an endpoint. These services include pro
viding one or more applications 128 to one or more end
points (e.g., client devices 102a for branch office 140). For
example, applications 128 can include WindowsTM-based
applications and computing resources.
0023 Desktop delivery controller 124 is a device that
enables delivery of services, such as virtual desktops 126 to
client devices (e.g., client devices 102a-for branch office

Nov. 3, 2016

140). Desktop delivery controller 124 provides functionality
required to manage, maintain, and optimize all virtual desk
top communications.
0024. In some embodiments, the services include provid
ing one or more virtual desktops 126 that can provide one or
more applications 128. Virtual desktops 126 can include
hosted shared desktops allowing multiple user to access a
single shared Remote Desktop Services desktop, virtual
desktop infrastructure desktops allowing each user to have
their own virtual machine, streaming disk images, a local
virtual machine, individual applications (e.g., one or more
applications 128), or a combination thereof.
0025 Backend system 130 is a single or multiple
instances of computer networking hardware, appliances, or
servers in a server farm or a bank of servers and interfaces
directly or indirectly with server 122. For example, backend
system 130 can include Microsoft Active Directory, which
can provide a number of network services, including light
weight directory access protocol (LDAP) directory services,
Kerberos-based authentication, domain name system (DNS)
based naming and other network information, and synchro
nization of directory updates amongst several servers. Back
end system 130 can also include, among other things, an
Oracle backend server, a SQL Server backend, and/or a
dynamic host configuration protocol (DHCP). Backend sys
tem 130 can provide data, services, or a combination of both
to data center 120, which can then provide that information
via varying forms to client devices 102 or branch office 140.
0026. Branch office 140 is part of a local area network
(LAN) that is part of the WLAN having data center 120.
Branch office 140 can include, among other things, appli
ance 108' and remote backend 142. In some embodiments,
appliance 108" can sit between branch office 140 and private
network 110. As stated above, appliance 108" can work with
appliance 108. Remote backend 142 can be set up in similar
manner as backend system 130 of data center 120. Client
device 102f can be located on-site to branch office 140 or can
be located remotely from branch office 140.
(0027 Appliances 108 and 108' and gateway 106 can be
deployed as or executed on any type and form of computing
device. Such as a computer or networking devices capable of
communicating on any type and form of network described
herein. As shown in FIGS. 2A-2B, each computing device
200 includes a central processing unit (CPU) 221 and a main
memory 222. CPU 221 can be any logic circuitry that
responds to and processes instructions fetched from the main
memory 222. CPU 221 can be a single or multiple micro
processors, field-programmable gate arrays (FPGAs), or
digital signal processors (DSPs) capable of executing par
ticular sets of instructions stored in a memory (e.g., main
memory 222) or cache (e.g., cache 240). The memory
includes a tangible non-transitory computer-readable
medium, such as a flexible disk, a hard disk, a CD-ROM
(compact disk read-only memory), MO (magneto-optical)
drive, a DVD-ROM (digital versatile disk read-only
memory), a DVD-RAM (digital versatile disk random
access memory), or a semiconductor memory. Main memory
222 can be one or more memory chips capable of storing
data and allowing any storage location to be directly
accessed by CPU 221. Main memory 222 can be any type of
random access memory (RAM), or any other available
memory chip capable of operating as described herein. In the
exemplary embodiment shown in FIG. 2A, CPU 221 com
municates with main memory 222 via a system bus 250.

US 2016/0323190 A1

Computing device 200 can also include a visual display
device 224 and an input/output (I/O) device 230 (e.g., a
keyboard, mouse, or pointing device) connected through I/O
controller 223, both of which communicate via system bus
250. One of ordinary skill in the art would appreciate that
CPU 221 can also communicate with memory 222 and other
devices in manners other than through system bus 250, such
as through serial communication manners or point-to-point
communication manners. Furthermore, I/O device 230 can
also provide storage and/or an installation medium for the
computing device 200.
0028 FIG. 2B depicts an embodiment of an exemplary
computing device 200 in which CPU 221 communicates
directly with main memory 222 via a memory port 203. CPU
221 can communicate with a cache 240 via a secondary bus,
Sometimes referred to as a backside bus. In some other
embodiments, CPU 221 can communicate with cache 240
via system bus 250. Cache 240 typically has a faster
response time than main memory 222. In some embodi
ments, such as the embodiment shown in FIG. 2B, CPU 221
can communicate directly with I/O device 230 via an I/O
port. In further embodiments, I/O device 230 can be a bridge
270 between system bus 250 and an external communication
bus, such as a USB bus, an Apple Desktop Bus, an RS-232
serial connection, a SCSI bus, a FireWire bus, a FireWire
800 bus, an Ethernet bus, an AppleTalk bus, a Gigabit
Ethernet bus, an Asynchronous Transfer Mode bus, a HIPPI
bus, a Super HIPPI bus, a SerialPlus bus, a SCI/LAMP bus,
a FibreChannel bus, or a Serial Attached small computer
system interface bus.
0029. As shown in FIG. 2A, computing device 200 can
Support any Suitable installation device 216. Such as a floppy
disk drive for receiving floppy disks such as 3.5-inch,
5.25-inch disks or ZIP disks; a CD-ROM drive; a CD-R/RW
drive; a DVD-ROM drive; tape drives of various formats; a
USB device; a hard-drive; or any other device suitable for
installing software and programs such as any client agent
220, or portion thereof. Computing device 200 can further
comprise a storage device 228. Such as one or more hard disk
drives or redundant arrays of independent disks, for storing
an operating system and other related Software, and for
storing application Software programs such as any program
related to client agent 220. Optionally, any of the installation
devices 216 could also be used as storage device 228.
0030. Furthermore, computing device 200 can include a
network interface 218 to interface to a LAN, WAN, MAN,
or the Internet through a variety of connections including,
but not limited to, standard telephone lines, LAN or WAN
links (e.g., 802.11, T1, T3, 56 kb, X.25), broadband con
nections (e.g., ISDN. Frame Relay, ATM), wireless connec
tions, or some combination of any or all of the above.
Network interface 218 can comprise a built-in network
adapter, network interface card, PCMCIA network card,
card bus network adapter, wireless network adapter, USB
network adapter, modem or any other device suitable for
interfacing computing device 200 to any type of network
capable of communication and performing the operations
described herein.
0031 FIG. 3A is a block diagram of an exemplary
appliance 108 illustrated in FIG. 1, consistent with embodi
ments of the present disclosure. Appliance 108 can include
one or more network interfaces 218A-N consistent with
network interface 218 of FIG. 2A, a QoS engine 310, one or
more packet engines 320A-N, one or more network traffic

Nov. 3, 2016

detectors 330, one or more classifiers 340, a policy engine
346, and a cache/cache manager 350.
0032. QoS engine 310, which is also referred to as a QoS
controller, a QoS engine, or a packet scheduler, can perform
one or more optimization techniques (e.g., Quality of Ser
Vice (QoS) techniques) to improve the performance, opera
tion, or quality of service of any type of network traffic. QoS
engine 310 can perform these techniques, for example, by
using defined logic, business rules, functions, or operations.
In some embodiments, QoS engine 310 can perform net
work traffic optimization and management mechanisms that
provide different priorities to different users, applications,
data flows, or connections. QoS engine 310 can also control,
maintain, or assure a certain level of performance to a user,
application, data flow, or connection. For example, QoS
engine 310 can control, maintain, or assure a certain portion
of bandwidth or network capacity of a communication link
for a user, application, data flow, or connection. In some
embodiments, QoS engine 310 can monitor the achieved
level of performance or the quality of service (e.g., the data
rate and delay) corresponding to a user, application, data
flow, or connection and then dynamically control or adjust
scheduling priorities of data packets to achieve the desired
level of performance or quality of service.
0033 QoS engine 310 can determine the service class or
connection prioritization using configuration information
acquired from the data packets received and stored at, for
example, packet engines 320A-N, but without the data
packets being physically forwarded to QoS engine 310. The
data packets received and stored at packet engines 320A-N
may or may not include configuration information. To
include configuration information, the data packets received
and stored at packet engines 320A-N can be modified by, for
example, one or more classifiers 340. After determining the
service class or connection prioritization, QoS engine 310
can establish or update a classification tree. Using the
classification tree and data-packet information received
from one or more packet engines, QoS engine 310 can
authorize the corresponding packet engine to transmit the
data packet. The data-packet information can include a
packet token, a connection token, information regarding the
size of the data packet, and, for Some embodiments, con
figuration information, all of which are further described
below.

0034. In some embodiments. QoS engine 310 uses the
classification tree to prioritize, schedule, and instruct packet
engines 320A-N to process data packets according to a
defined policy of network traffic optimization and a classi
fication of network connections. Such classification mecha
nisms can include or be based on the Hierarchical Packet
Fair Queuing (H-PFQ) algorithm, the Hierarchical Worst
case Fair Weighted Fair Queuing (H-WFO), the H-WFO+
algorithm, or a variation thereof. The implementation of the
classification tree can be a data structure constructed in any
language, some of which include C++, Boost C++, Java,
Python, PHP, Perl, Apple Core Foundation library, Go
library, etc. It is appreciated that the classification tree can be
implemented in firmware source code, hardware source
code, or a combination of Software source code, firmware
Source code, and/or hardware source code. The use of an
exemplary classification tree will be further described
below.

0035. One or more packet engines 320A-N, which are
also referred to as packet processing engines, packet pro

US 2016/0323190 A1

cessors, or data processors, are responsible for controlling
and managing the processing of data packets received and
transmitted by appliance 108 via network interfaces 218A
N. Packet engines 320A-N can operate at the data link layer
(layer 2), network layer (layer 3), or the transport layer
(layer 4) of a network Stack (e.g., Such as the layers and
protocols of the Open System Interconnection communica
tions model). In some embodiments, the data packets can be
carried over the data link layer via the Ethernet communi
cation protocol, which can comprise any of the family of
WAN or LAN protocols, such as those protocols covered by
the IEEE 802.3. In some embodiments, the network stack
can have any type and form of wireless protocols, such as
IEEE 802.11 and/or mobile internet protocols. In some
embodiments, one or more packet engines 320A-N intercept
or receive data packets at the network layer, Such as via the
IP communication protocol. In some embodiments, one or
more packet engines 320A-N intercept or receive data
packets at the transport layer, such as via the TCP or UDP
communication protocols. In some embodiments, one or
more packet engines 320A-N can operate at any session or
any application layer above the transport layer.
0036. One or more packet engines 320A-N can include a
buffer for queuing one or more data packets during process
ing of the data packets. Additionally, one or more packet
engines 320A-N can communicate via one or more com
munication protocols to transmit and receive network data
packets via network interfaces 218A-N. In some embodi
ments, one or more packet engines 320A-N can send sched
uling requests to QoS engine 310 for scheduling of data
packets received and stored at packet engines 320A-N. After
one or more packet engines 320A-N receive responses from
QoS engine 310, packet engines 320A-N process, e.g., send
or drop, the stored data packets according to the received
response.
0037. During operations of appliance 108, packet engines
320A-N can be interfaced, integrated, or be in communica
tion with any portion of appliance 108, Such as QoS engine
310, network traffic detectors 330, classifiers 340, policy
engine 346, and/or cache manager 350. As such, any of the
logic, functions, or operations of QoS engine 310, network
traffic detectors 330, classifiers 340, policy engine 346,
and/or cache manager 350 can be performed in conjunction
with or in responsive to packet engines 320A-N.
0038. One or more network traffic detectors 330 can
include any logic, business rules, functions, or operations for
automatically detecting the type of network traffic corre
sponding to data packets acquired by packet engines 320A
N. As described above, packet engines 320A-N can store
and transmit data packets from any type of network traffic,
Such as data packets from any communication protocols
including WAN, MAN, LAN, and wireless communication
protocols. In some embodiments, not all network traffic is
optimized by QoS engine 310. For example, QoS engine 310
can be used to optimize the WAN traffic, but not the LAN
traffic or traffic directed to management. Network traffic
detectors 330 can detect the type of network traffic received
at packet engines 320A-N by any available techniques, such
as by using IP addresses.
0039. Using the type of network traffic detected by net
work traffic detectors 330, one or more classifiers 340 can
identify data packets for Scheduling and also provide con
figuration information. Identifying the data packets and
providing configuration information can be performed either

Nov. 3, 2016

in-band or out of band. When they are performed in-band,
the data packets can be modified. For example, one or more
classifiers 340 can modify the data packet to identify the data
packet for scheduling and to provide configuration informa
tion for maintaining, updating, or generating a classification
tree. As a result, the identification of data packets for
scheduling and configuration information can be transmitted
with the data packet itself (i.e., in-band) or a representation
of the data packet. In-band transmission can avoid the need
to copy data packets and can also avoid packet fragmenta
tion due to an increasing packet size.
0040. As an example of modifying the data packet for
in-band transmission, one or more classifiers 340 can mark
a source MAC address to indicate that the associated data
packet needs Scheduling, and also encode the source MAC
address with configuration information. For example, one or
more classifiers 340 can mark one or more bits in the most
significant byte of the source MAC address to indicate that
the source MAC address is encoded. The encoded source
MAC address can indicate that the particular data packet
will be scheduled by QoS engine 310. As an example, if one
or more network traffic detectors 330 determine that a first
data packet is from a WAN protocol connection, Such as a
TCP connection, one or more classifiers 340 can then encode
the source MAC address to indicate that the first data packet
needs to be scheduled by QoS engine 310. Subsequently,
one or more packet engines 320A-N can send a scheduling
request to QoS engine 310 for scheduling the first data
packet.
0041 As another example, if one or more network traffic
detectors 330 determine that a second data packet is from a
LAN protocol connection, such as an IEEE 802.3 type
connection, then one or more classifiers 340 may not encode
the source MAC address of the second data packet, and thus
the second data packet will not be scheduled by QoS engine
310. In some embodiments, one or more network traffic
detectors 330 can be combined or integrated physically or
functionally with one or more classifiers 340 or other
devices of appliance 108.
0042. One or more classifiers 340 can also provide con
figuration information. In some embodiments, one or more
classifiers 340 can provide configuration information of the
data packets to packet engines 320A-N according to a
predefined traffic optimization configuration policy provided
by, for example, policy engine 346. Configuration informa
tion can include, for example, a link identification, a link rate
for the identified link, an identification of a service class, a
priority associated with the service class, a service class rate,
an identification of a Sub-class, and a priority associated with
the Sub-class. As an example, one or more classifiers 340 can
identify a plurality of communication links and assign link
identification to the identified communication links. For a
particular link and a service class corresponding to one or
more data packets received and stored by packet engines
320, one or more classifiers 340 can determine, for example,
that the link rate is 4 GBps and that the service class is a high
priority. One or more classifiers 340 can then provide the
link rate and the service class by modifying the one or more
data packets, such as by encoding them into the source
Media Access Control (MAC) addresses of the one or more
data packets.
0043. In some embodiments, one or more classifiers 340
can provide configuration information by accessing one or
more queues that store data packets, and modifying the data

US 2016/0323190 A1

packets, for example, by encoding Source MAC addresses.
One or more packet engines 320A-N can also forward the
received data packets to one or more classifiers 340 for
providing the configuration information. When in-band mes
sage data are used for identifying data packets for Schedul
ing and providing configuration information, one or more
classifiers 340 can modify the data packets (with, e.g.,
encoded source MAC addresses) and send the modified data
packets back to one or more packet engines 320A-N. In
Some embodiments, when identifying data packets for
scheduling and providing configuration information are per
formed out of band, data packets stored at packet engines
320A-N are not modified, and the identification and con
figuration information can be communicated to QoS engine
310 in other manners. Additionally, one or more classifiers
340 can also buffer, queue, amplify, repeat, or store data
packets received from the packet engines 320.
0044. In some embodiments, one or more classifiers 340
can construct the classification tree, Such as classification
tree 400 described below. One or more classifiers 340, can
receive and analyze network traffic from network traffic
detectors 330, and construct or revise the classification tree.
In some embodiments, network traffic detector 330 analyzes
the traffic and provides information to one or more classifiers
340. It is appreciated that one or more classifiers 340 and
other classifiers can access the classification tree from a
central location, in memory 222, storage 228, and/or
memory/storage associated with one or more network inter
faces 218A-N. In some other embodiments, one or more
classifiers 340 and other classifiers can maintain separate
copies of the classification tree, in separate memories,
storage devices, and/or memory/storage devices associated
with one or more network interfaces.

0045. As described above, QoS engine 310 can construct
or update a classification tree. QoS engine 310 can also
maintain a copy of the classification tree that one or more
classifiers 340 construct. The classification tree can be
implemented, in part, by using the H-WF2Q+ algorithm or
Some other algorithms. It is appreciated that the classifica
tion tree can be stored in a central location, in memory 222,
storage 228, and/or memory/storage associated with one or
more network interfaces 218A-N, allowing QoS engine 310
and one or more classifiers 340 to access it. It is also
appreciated that QoS engine 310 and the one or more
classifiers 340 can have separate copies of the classification
tree, in separate memories, storage devices, and/or memory/
storage devices associated with one or more network inter
faces.

0046. Appliance 108 can also include a policy engine
346, also referred to as a policy controller or a policy
provider. Policy engine 346 can include any logic, function,
or operations for providing and applying one or more
policies or rules to the function, operation, or configuration
of any portion of the appliance 108. In some embodiments,
policy engine 346 provides a configuration mechanism to
allow a user to identify, specify, define, or configure a policy
for appliance 108, or any portion thereof. For example,
policy engine 346 can provide a predefined traffic optimi
Zation configuration policy including the number of priori
ties, the priorities associated with each service class, the
number of connections allowed under each service class,
connection bandwidth configuration, and any other policy
information. Policy engine 346 can also provide policies for
what data to cache, when to cache the data, for whom to

Nov. 3, 2016

cache the data, when to expire an object in cache, or when
to refresh the cache. Policy engine 346 can also include any
logic, rules, functions, or operations for determining and
providing access, control, and management of data packets
received and stored by packet engines 320A-N. Policy
engine 346 can also include any logic, rules, functions, or
operations for determining and providing access, control and
management of security, network traffic, network access,
compression, or any other function or operation performed
by appliance 108.
0047. In some embodiments, policy engine 346 can apply
one or more policies based on any one or more of the
following: a user, an identification of the client, an identi
fication of the server, the type of connection, the time of the
connection, the type of network, the contents of the network
traffic, a field or header of a data packet received via any
communication protocol, or any payload of a data packet.
For example, policy engine 346 can apply a policy based on
identifying a certain portion of content of an application
layer (layer 7) communication protocol carried as a payload
of a transport layer packet. In another example, policy
engine 346 can apply a policy based on any information
identified by a client, server, or user certificate. Policy
engine 346 can also apply a policy based on any attributes
or characteristics obtained about a client 102. Such as via any
type and form of endpoint detection.
0048 Cache manager 350 can include software, hard
ware, or any combination of Software and hardware to store
data, information, and objects to a cache in memory or
storage; to provide cache access; and to control and manage
the cache. The data, objects, or content processed and stored
by cache manager 350 can include data in any format. Such
as a six-byte MAC address, a TCP data packet, or any type
of data communicated via any communication protocol.
Cache manager 350 can duplicate original data stored in a
slow-access storage and store the data in a fast-access cache
memory, such as cache 240. After the data is stored in the
cache, future use can be made by accessing the cached copy
rather than refetching or recomputing the original data,
thereby reducing the access time. In some embodiments, the
cache can comprise a data object in memory of the appliance
108. In some embodiments, the cache can comprise any type
and form of storage element of the appliance 108. Such as a
portion of a hard disk. In some embodiments, as described
above, the processing unit of the device, such as CPU 221,
can provide cache memory for use by cache manager 350.
Cache manager 350 can use any portion and combination of
main memory 222, storage 228, or CPU 221 for caching
data, objects, and other content. Cache manager 350 can
comprise any type of general purpose processor (GPP), or
any other type of integrated circuit, such as a Field Pro
grammable Gate Array (FPGA), Programmable Logic
Device (PLD), or Application Specific Integrated Circuit
(ASIC).
0049 FIG. 3B is a block diagram of a portion of exem
plary appliance 108 illustrated in FIG. 3A, consistent with
embodiments of the present disclosure. In some embodi
ments, the operating system of appliance 108 allocates,
manages, or otherwise segregates the available system
memory into what is referred to as kernel space (system
space) and user space (application space). The kernel space
is typically reserved for running the kernel, including any
device drivers, kernel extensions, or other kernel related
Software. The kernel can be the core of the operating system,

US 2016/0323190 A1

and provides access, control, and management of resources
and hardware-related elements of the appliance 108. In
accordance with some embodiments of the appliance 108,
the kernel space can also include a number of network
services or processes working in conjunction with QoS
engine 310 and one or more packet engines 320A-N, or any
portion thereof. Additionally, the embodiments of the kernel
can depend on the operating system installed, configured, or
otherwise used by appliance 108.
0050. User space is the memory area or portion of the
operating system used by user mode applications or pro
grams otherwise running in user mode. A user mode appli
cation cannot access kernel space directly and uses service
calls to access kernel services. The operating system uses the
user space for executing or running applications and provi
Sioning of user level programs, services, processes, and/or
tasks. As an example, the operating system can execute
software of network interfaces 218A-N in the user space.
0051. In some embodiments, within the kernel space,
QoS packet scheduling is performed by dispatching sched
uling requests to a packet Scheduling process performed by
QoS engine 310. The packet scheduling process performed
by QoS engine 310 is a process not executed by packet
engines 320A-N (i.e., a non-packet engine process). In the
packet scheduling process, QoS engine 310 communicates
with one or more packet engines 320A-N through, for
example, one or more of packet scheduling queues, such as
a pair of wait-free or lock-free queues, at QoS engine 310.
Packet Scheduling queues can be used, for example, to carry
or store scheduling requests, which can include connection
tokens, information regarding the size of the data packet,
and packet tokens. In some embodiments, the packet token
can be a pointer to the data packet stored at the correspond
ing packet engine (or a queue associated with the corre
sponding packet engine). Moreover, in some embodiments,
the scheduling request can further include configuration
information Such as a link identification, a link rate for the
identified link, an identification of a service class, a priority
associated with the service class, a service class rate, an
identification of a sub-class, and a priority associated with
the Sub-class. The configuration information is used, for
example, when QoS engine 310 establishes or updates the
classification tree for Scheduling the data packets.
0052. In the packet scheduling process, QoS engine 310
receives a scheduling request for scheduling a data packet
stored at a packet engine of one or more packet engines
320A-N. Using the information contained in scheduling
request, QoS engine 310 can schedule the data packet
without having to possess or access the data packets
received and stored at the packet engine. Furthermore, in a
packet scheduling process, after QoS engine 310 schedules
the data packet based on the scheduling request and sends
QoS engine 310 a QoS Scheduling message to the packet
engine for transmission of the corresponding data packet.
0053. The QoS scheduling message can include the
packet token identifying the data packet being scheduled and
a notification for allowing the packet engine for transmission
of the corresponding data packet. As an example, QoS
engine 310 can send the QoS Scheduling message to the
packet engine by including a notification requesting that the
corresponding TCP data packet be transmitted immediately:
or can send a notification to another packet engine by
including another notification requesting that the corre
sponding TCP data packet be dropped.

Nov. 3, 2016

0054 FIG. 4 is a diagram of an exemplary classification
tree 400, consistent with embodiments of the present dis
closure. A packet scheduling process can use a classification
tree to schedule data packets in response to the scheduling
requests sent from one or more packet engines 320A-N.
Classification tree 400 can be, for example, an H-WFO+
tree for establishing priorities of connections corresponding
to the data packets. Classification tree 400 can include a link
node 410, one or more service class nodes 420A-N, and one
or more connection nodes 440A-N, 450A-N, and 460A-N.
Link node 410 can be implemented using one or more source
code modules alone or in combination with one or more data
structures (referencing its descendent nodes), all of which
can be stored in memory 222, storage 228, and/or memory/
storage associated with one or more network interfaces
218A-N. As shown in FIG. 4, link node 410 can be con
nected to one or more services nodes 420A-N, each of which
can in turn be connected to one or more connection nodes
440A-N, 450A-N, or 460A-N. In some embodiments, one or
more service Sub-class nodes (not shown) can exist between
a service class node (e.g., service class node 420A) and
connection nodes (e.g., connection nodes 440A-N). There
fore, classification tree 400 can have more than 3 levels of
hierarchy as shown in FIG. 4. Each internal node (i.e.,
service-class, Sub-service-class, and service-class connec
tion nodes) can represent a logical queue. QoS engine 310
can use these logical queues as a building block to organize
how packets will be scheduled for transmission, based on the
service classes and priority of these service classes in the
classification tree. The organization of link node 410 and
service class nodes 420A-N can be implemented using a
classification algorithm, such as the WFQ+ queuing algo
rithm into a hierarchical structure like the upper nodes of
classification tree 400 can be implemented using the
H-WFO+ algorithm. QoS engine 310 can prioritize the
transmission of packets using the algorithm mentioned
above by storing pending packets in one or more shared
memory pools encompassing all of memory 222 or some
portion thereof. Several single read single write queues can
be created using memory 222.
0055 For scheduling the data packets, one or more
packet engines 320 can provide a scheduling request to QoS
engine 310. As described above, a scheduling request can
include information Such as a packet token (e.g., a pointer to
the data packet stored at the corresponding packet engine),
a connection token, and information regarding the size of the
data packet. In addition, the scheduling request can also
include configuration information, such as a link identifica
tion, a link rate for the identified link, an identification of a
service class, a priority associated with the service class, a
service class rate, an identification of a sub-class, and a
priority associated with the Sub-class. This configuration
information is further described in application Ser. No.

(Attorney Docket No. 09266.0047), which is hereby
incorporated by reference.
0056. A scheduling request can include a link identifier
and a link rate for the identified link and thus provide the link
rate to QoS packer scheduler 310 when, for example, QoS
engine 310 does not have the link rate information at
initiation. The link rate can be provided to QoS engine 310
when it schedules one or more initial data packets. The link
rate can also be provided to QoS engine 310 when, for
example, the link rate stored at QoS engine 310 needs to be
updated because of a link rate change. As described above,

US 2016/0323190 A1

the link rate information indicates, for example, the band
width of a particular communication link between two
endpoints (for example, a link between a main office in
Washington, D.C., and a branch office in Palo Alto, Calif.).
QoS engine 310 can thus define the link rate of link node 410
according to the link rate information in the scheduling
request. As an example, using the link identifier and the link
rate included in a scheduling request, QoS engine 310 can
define link node 410 to have a link rate of 4Gbps.
0057. A scheduling request can also include service class
related information including one or more of an identifica
tion of a service class, a priority associated with the service
class, a service class rate, an identification of a Sub-class,
and a priority associated with the sub-class. The service
class related information can also be provided to QoS engine
310 when scheduling one or more initial data packets or
when service class related information stored at the QoS
engine 310 needs to be updated. In some embodiments, each
unique service class included in a scheduling request creates
a service class node under link node 410. For example, in
FIG.4, service class node 420A can represent a UDP service
class and can be assigned a priority of 1; service class node
420B can represent an FTP service class and can be assigned
a priority of 3; and service class node 420N can represent a
TCP service class and can be assigned a priority of 8. In
Some embodiments, a priority with a higher number repre
sents a higher priority Such that the data packets correspond
ing to connections of that service class can have a higher
bandwidth than data packets corresponding to connections
of other service classes. In the above example, the TCP
service class has the highest priority and can be assigned or
allocated, e.g., a bandwidth of 2.666 Gbps out of the total 4
Gbps bandwidth that is available. On the other hand, the FTP
service class has a higher priority than the UDP service
class, but lower priority than the TCP service class. The FTP
service class can be assigned or allocated, e.g., a bandwidth
of 1 Gbps. Finally, the UDP service class has the lowest
priority and can be assigned or allocated, e.g., the remaining
bandwidth of 333 Mbps. The total bandwidth assigned or
allocated to service class nodes 420A-N cannot exceed the
available bandwidth of the communication link.

0058. A scheduling request can also include connection
tokens indicating the type of connections of the data packets.
In some embodiments, each connection token can represent
a unique connection via a communication link. As shown in
FIG. 4, one or more connection nodes (e.g. 440A-N, 450A
N, and 460A-N) corresponding to the connection tokens can
be created under the service class nodes 420A-N. Each of
the connection nodes can thus represent a unique connection
via a communication link. Moreover, one or more data
packets can correspond to the same connection and thus
have the same connection token. Therefore, one or more data
packets can correspond to a same connection node. As an
example, as described above, service class node 420A can
represent a UDP service class. If, for example, there are total
of 3 unique UDP connections under service class node
420A, then 3 connection nodes (e.g., 440A-C) can be
created under service node 420A. The 3 unique UDP con
nections correspond to 3 unique connections of a commu
nication link. Each of the 3 unique connections can in turn
correspond to one or more data packets transmitted through
the same corresponding connection. In some embodiments,

Nov. 3, 2016

QoS engine 310 can also create and maintain a connection
table, which can include all connection nodes corresponding
to unique connections.
0059. After QoS engine 310 establishes or updates clas
sification tree 400 using configuration information, the num
ber of connection nodes under each of service nodes
420A-N and the bandwidth assigned to each service node
can be determined. For example, if service class node 420A
has a bandwidth of 333 Mbps and there are total of 3
connection nodes under service class node 420A, each of the
3 connection nodes can then have a bandwidth of 111 Mbps
(i.e., 333 Mbps/3) if the bandwidth of the service class is
equally shared among all connections of the service class.
That is, each connection can share the assigned or allocated
bandwidth at the corresponding service class node for trans
mitting packets from that connection. But throughput of all
connections under a corresponding service class node may
not exceed the allocated bandwidth of that service class
node. In some embodiments, classification tree 400 can also
have more than 3 levels of hierarchy as shown in FIG. 4; and
can have any number of service class nodes and connection
nodes. Moreover, the bandwidth assigned to each connec
tion node may or may not equal to each other and can have
any desired bandwidth.
0060 FIG. 5 is a block diagram of an exemplary embodi
ment for Scheduling data packets, consistent with embodi
ments of the present disclosure. As described above, one or
more classifiers 340 can identify data packets for scheduling
and provide configuration information, either in-band or out
of band. When they are in-band packets, one or more packet
engines 320A-N can receive the modified data packets
including the identification and configuration information
(e.g. in the source MAC address of the data packets) and
store them at one or more packet engine queues 570A-N.
When packets are identified as out of band packets, one or
more packet engines 320A-N can receive the identification
and configuration information along with, but separate from,
the unmodified data packets. One or more packet engines
320 can also share the packet engine queues 570 with one or
more classifiers 340, thereby avoiding copying of the modi
fied or unmodified data packets. One or more classifiers 340
and one or more packet engines 320 can also be combined
or intergraded physically or functionally.
0061. One or more packet engines 320A-N can send
scheduling request 580 to QoS engine 310 for scheduling a
data packet stored at one or more packet engine queues
570A-N. The scheduling request 580 can include a packet
token corresponding to the data packet being scheduled, a
connection token, and information regarding the size of the
data packet. A packet token identifies the data packet stored
at a corresponding packet engine queue. In some embodi
ments, the packet token can be a pointer to the data packet
stored at the corresponding packet engine queue. The packet
token can also be a numerical value used by the packet
engine to identify a corresponding data packet. The packet
token can thus be used by a corresponding packet engine to
retrieve the data packet.
0062 Connection token corresponds to a unique network
connection (e.g., connection represented by connection node
440A) through which one or more corresponding data
packets are received. Connection tokens identify or repre
sent the connection nodes of classification tree 400. A
connection token thus can indicate a particular connection of
the corresponding data packet, Such as a TCP connection.

US 2016/0323190 A1

0063 Scheduling request 580 can also include packet
size information corresponding to the data packet being
scheduled. Packet size information can be determined, for
example, by packet engines 320 from calculating the length
of header sections and data sections of the data packet. In
Some embodiments, QoS engine 310 can use the packet size
information and the classification tree 400 to schedule a data
packet. As stated above, each connection can share the
allocated bandwidth at the corresponding service class node
or Sub-class node, for transmitting packets from that con
nection. The packet size information assists QoS engine 310
with identifying packets for transmitting. The packet size
information will be further described below.
0064. In some embodiments, scheduling request 580 can
also include the configuration information including at least
one of a link identification, a link rate for the identified link,
an identification of a service class, a priority associated with
the service class, a service class rate, an identification of a
Sub-class, and a priority associated with the Sub-class. As
described above, when QoS engine 310 needs configuration
information to establish or to update classification tree 400,
the configuration information can be included in scheduling
request 580.
0065 Based on the classification tree 400 and informa
tion regarding the size of the data packet, QoS engine 310
can schedule the data packets stored at one or more packet
engine queues 570A-N of packet engines 320A-N. For
example, QoS engine 310 can send QoS scheduling message
584 to one or more packet engines 320A-N. QoS scheduling
message 584 can include a notification for allowing packet
engines 320A-N to transmit the corresponding data packet
or to drop the corresponding data packet.
0066 QoS scheduling messages 584 can also include
Some similar information as that included in scheduling
requests 580, such as the packet token. By including the
packet token, for example, one or more packet engines
320A-N can locate the corresponding data packet for trans
mission or dropping according to the notification.
0067. In some embodiments, scheduling request 580 and
QoS scheduling message 584 can be stored in a same queue
of the packet scheduling process. Therefore, Scheduling
request 580 and QoS scheduling message 584 can also
include a message ID, indicating the type of message being
communicated between one or more packet engines 320A-N
and QoS engine 310. For example, if the message ID is set
to be a hexadecimal '4', it can indicate that the message is
scheduling request 580 sent from one or more packet
engines 320A-N to QoS engine 310 for scheduling a data
packet. If the message ID is set to be a hexadecimal “14, it
can indicate that the message is QoS Scheduling message
584 sent from QoS engine 310 to one or more packet engines
320A-N for allowing the corresponding packet engine for
transmitting the data packet.
0068 FIG. 6 is a flowchart representing an exemplary
method 600 of optimizing network traffic. It will be readily
appreciated that the illustrated procedure can be altered to
delete steps or further include additional steps. After initial
step 610, a packet scheduler (e.g., QoS engine 310) receives
(620) a scheduling request from a packet engine of a
plurality of packet engines (e.g., packet engines 320A-N).
As described above, a scheduling request can include a
packet token representing a data packet, information regard
ing the size of the data packet, and a connection token. A
scheduling request can also include a message ID, configu

Nov. 3, 2016

ration information, and other information. In some embodi
ments, the scheduling request can be stored at, for example,
one or more of packet scheduling queues, such as a pair of
wait-free or lock-free queues, associated with the packet
scheduler. The packet scheduling queues can be managed by
a packet scheduling process, and can be separate queues
from the packet engine queues (e.g., packet engines queues
570A-N) for storing data packets.
0069. The packet token represent a data packet, such as
by using a pointer to the data packet stored at the corre
sponding packet engine. That is, a data packet can be stored
and remain in a packet engine queue at the corresponding
packet engine and is not forwarded to the packet scheduler
for scheduling. In some embodiments, each packet engine
has its own packet engine queue and data packets received
by a packet engine are stored in the corresponding packet
engine queue.
0070 The packet size information corresponds to the data
packet identified or represented by the packet token. Packet
size information can be determined, for example, by a
packet engine from calculating the length of header sections
and data sections of the data packet. In some embodiments,
the packet scheduler can use the packet size information and
a classification tree (e.g., classification tree 400) to schedule
the data packet. As stated above, each connection can share
an allocated bandwidth of a service class node or a sub-class
node for transmitting data packets from that connection. The
packet size information can assist the packet scheduler with
identifying packets for transmitting.
0071. After receiving the scheduling request, the packet
scheduler schedules (630) the data packet using the connec
tion token and the packet size information. The packet
scheduler can obtain the connection token included in the
scheduling request. The connection token corresponds to a
unique network connection through which the data packet is
received.

0072. Using the classification tree and the information
provided in the scheduling request, the packet scheduler can
schedule the data packet. The packet scheduler can also
schedule the data packet by taking into account the packet
size information. As an example, a data packet having a
larger packet size can be scheduled to transmit later than a
data packet having a smaller packet size, if the two data
packets correspond to a same connection. As another
example, the packet size information can also be used in a
Weighted Fair Queuing (WFQ) process for scheduling the
data packets. WFO is a data packet scheduling technique
allowing different scheduling priorities corresponding to
statistically multiplexed data flows. In a WFO process,
priority given to network traffic can be inversely propor
tional to the signal bandwidth. A WFO process can be
applied at various nodes, e.g., a link node, service class
nodes, Sub-class nodes, and connection nodes, in a classi
fication tree. For example, when a WFO process is applied
to one or more connection nodes under a common service
class node or Sub-class node, a virtual start time can be
computed by multiplying the packet size of each data packet
corresponding to the one or more connections by a normal
ized inverse of the priority (e.g. bandwidth) assigned or
allocated to the corresponding service class node or Sub
class node. And the data packets can be scheduled according
to their corresponding virtual start time. For example, a data
packet having the least virtual start time can be scheduled to
transmit first.

US 2016/0323190 A1

0073. After scheduling the data packet, the packet sched
uler provides (640) the packet token and a notification to the
corresponding packet engine for allowing the packet engine
to transmit the data packet over the link. The packet sched
uler can send, for example, a QoS Scheduling message 584
to one or more packet engines 320A-N. The packet token
and the notification can be included in QoS scheduling
message 584.
0074. Using the packet token, the corresponding packet
engine can locate the data packet in the corresponding
packet engine queue that stores the data packet, and either
transmit the data packet or drop the data packet depending
on the notification. The notification can be a command (e.g.,
send or drop) or a representation of a command. In some
embodiments, the notification can include an indication to
the packet engine when the data packet is to be sent. One of
ordinary skill in the art would appreciate that the notification
can be in any format including numerical, alphabetical,
binary, logical, etc., and the scheduling of the data packet
can also be indicated in any type of communication between
the packet scheduler and the packet engine.
0075. After step 640, process 600 for optimizing network

traffic proceeds to an end 650. In some embodiments,
process 600 can be repeated to optimize more data packets
that are received at the packet engine.
0076 FIG. 7 is a flowchart representing an exemplary
method 700 for providing a scheduling request. It will be
readily appreciated that the illustrated procedure can be
altered to delete steps or further include additional steps.
After an initial start step 710, a packet engine (e.g., packet
engine 320A) can acquire (715) information regarding a
classification tree (e.g., classification tree 400) or any nodes
of the classification tree. For example, this information can
include connection-node information that the packet engine
can map to a connection token representing a connection
node of the classification tree. The packet engine can assign
a unique connection token (or identifier) to each connection
node. In some embodiments, the value of the connection
token increments by one as compared to the connection
token value of the next connection node. For example, a first
connection node can have a connection-token real value of
“1” or a binary value of "0001, while the second connection
node can have a connection-token real value of '2' or a
binary value of "0010.”
0077. The packet engine can acquire (720) a connection
token to the data packet. In some embodiments, the con
nection token corresponds to a unique network connection.
For example, if one or more data packets are transmitted
through a same TCP connection, the connection token
assigned to the one or more data packets is the same. The
connection token can be assigned in any desired manner as
long as it corresponds to a unique network connection. In
Some embodiments, the connection token can be a 64-bit
integer that is monotonically incrementing. The connection
tokens can be stored, for example, in one or more connection
control blocks of the packet engine. The connection control
blocks are unique and can be looked up using information
from the data packet, including one or more of IP addresses,
packet direction, level 3 and level 4 protocols, and commu
nication ports. After assigning a connection token, the
packet engine can also include the connection token in the
scheduling request.
0078. The packet engine can also acquire (725) a packet
token to the data packet. As described above, the packet

Nov. 3, 2016

token can be used for locating the data packet stored at the
packet engine. For example, a packet token can be a pointer
to the data packet stored at the packet engine. After assign
ing the packet token, the packet engine can also include the
packet token in the scheduling request and send it to the
packet scheduler.
007.9 The packet engine can also acquire (730) informa
tion regarding the size of the data packet corresponding to
the data packet. The information regarding the size of the
data packet can be obtained, for example, from calculating
the length of header sections and data sections of the data
packet. After obtaining the information regarding the size of
the data packet, the packet engine can include the informa
tion regarding the size of the data packet in the scheduling
request as well. The packet engine can also include other
information, such as the message ID indicating the type of
message being communicated between the packet engines
and the packet scheduler, in the scheduling request. As
described above, a message ID can be used when the
scheduling request and the response to the scheduling
request are stored in a same packet scheduling queue.
0080. Using the acquired information, the packet engine
can prepare (735) a scheduling request (e.g., Scheduling
request message 580). The scheduling request includes the
connection token, the information regarding the size of the
data packet, the packet token. In some embodiments, the
scheduling request can also include configuration informa
tion, a message ID, and any other desired information. It is
appreciated that the preparation of the scheduling request
can occur at any point prior to its current position in method
700. For example, the scheduling request can be prepared
first and the acquired information from steps 720, 725,
and/or 730 can be inserted into the scheduling request after
the acquisition.
I0081. It is also appreciated that the scheduling request
can take any format that is desired, and scheduling request
message 580 is only for illustration purpose. For example,
the scheduling request can have any length and any format
conforming to any messaging or communication protocols.
I0082. After generating the scheduling request, the packet
engine can send (740) the scheduling request to the packet
scheduler. After a packet scheduler (e.g., QoS engine 310)
schedules the data packet according to the scheduling
request, the packet engine can receive (745) the packet token
and a notification from the packet scheduler and transmit
(750) the data packet accordingly. The packet token and the
notification can be included in, for example, QoS scheduling
message 584. The packet engine can use the packet token to
locate the corresponding data packet stored in its packet
engine queue and transmit the data packet or drop the data
packet depending on the notification. The notification can be
a command (e.g., send or drop) or a representation of a
command. In some embodiments, the notification can
include an indication to the packet engine when the data
packet is to be sent. One of ordinary skill in the art would
appreciate that the notification can be in any format includ
ing numerical, alphabetical, binary, logical, etc., and the
scheduling of the data packet can also be indicated in any
type of communication between the packet scheduler and
the packet engine.
I0083. After step 750, process 700 can proceed to an end
755. In some embodiments, the packet engine prepares and
sends one or more scheduling requests for one or more data

US 2016/0323190 A1

packets received at the packet engine and thus process 700
can be repeated or processed in parallel for each data packet
being scheduled.
0084. In the foregoing specification, embodiments have
been described with reference to numerous specific details
that can vary from implementation to implementation. Cer
tain adaptations and modifications of the described embodi
ments can be made. Other embodiments can be apparent to
those skilled in the art from consideration of the specifica
tion and practice of the embodiments disclosed herein. It is
intended that the specification and examples be considered
as exemplary only. It is also intended that the sequence of
steps shown in figures are only for illustrative purposes and
are not intended to be limited to any particular sequence of
steps. As such, those skilled in the art can appreciate that
these steps can be performed in a different order while
implementing the same method.
What is claimed is:
1. A system for optimizing network traffic, the system

comprising:
a packet engine of a plurality of packet engines configured

to acquire a data packet, to store the data packet in a
queue, and to provide a request including a packet
token representing the data packet, information regard
ing the size of the data packet, a connection token, and
configuration information for establishing or updating a
classification tree; and

a packet scheduler configured to:
receive the request:
Schedule the data packet using the connection token,

the classification tree, and the information regarding
the size of the data packet; and

provide the packet token and a notification to the packet
engine for allowing the packet engine for transmit
ting the data packet.

2. The system of claim 1, wherein the classification tree
comprises a link node, one or more service class nodes, and
one or more connection nodes.

3. The system of claim 1, wherein the packet engine is
configured to acquire the connection token to the data
packet, wherein the connection token is a unique represen
tation of a network connection.

4. The system of claim 1, wherein the packet engine is
configured to acquire the packet token to the data packet,
wherein the packet token includes a pointer to the data
packet stored in the queue.

5. The system of claim 1, wherein the packet engine is
further configured to receive the packet token and the
notification, acquire the data packet from the queue using the
packet token, and transmit the data packet based on the
notification.

6. The system of claim 1, wherein the request is stored in
a packet scheduling queue that is separate from the queue
storing the data packet.

7. The system of claim 1, wherein the queue storing the
data packet is associated with the packet engine or associ
ated with one or more other components of the system.

8. A method for optimizing network traffic, the method
being performed by one or more processors and comprising:

receiving a data packet at a packet engine;
storing the data packet in a queue associated with the

packet engine;
providing a request to a packet scheduler to schedule

transmission of the stored data packet, wherein the

Nov. 3, 2016

request includes a packet token representing the data
packet, information regarding the size of the data
packet, a connection token, and configuration informa
tion for establishing or updating a classification tree;

scheduling the data packet using the connection token, the
classification tree, and the information regarding the
size of the data packet; and

providing the packet token and a notification to the packet
engine for assisting the packet engine with transmitting
the data packet.

9. The method of claim 8, wherein the classification tree
comprises a link node, one or more service class nodes, and
one or more connection nodes.

10. The method of claim 8, wherein the providing the
request comprises acquiring the connection token to the data
packet, wherein the connection token is a unique represen
tation of a network connection.

11. The method of claim 8, wherein the providing the
request comprises acquiring the packet token to the data
packet, wherein the packet token includes a pointer to the
data packet stored in the queue associated with the packet
engine.

12. The method of claim 8, further comprising receiving
the packet token and the notification at the packet engine,
acquiring the data packet from the queue using the packet
token, and transmitting the data packet based on the notifi
cation.

13. A non-transitory computer readable storage medium
that stores a set of instructions that is executable by at least
one processor of a computer to cause the computer to
perform a method for optimizing network traffic, the method
comprising:

receiving a data packet at a packet engine;
storing the data packet in a queue associated with the

packet engine;
providing a request to a packet scheduler to schedule

transmission of the stored data packet, wherein the
request includes a packet token representing the data
packet, information regarding the size of the data
packet, a connection token, and configuration informa
tion establishing or updating a classification tree;

scheduling the data packet using the connection token, the
classification tree, and the information regarding the
size of the data packet; and

providing the packet token and a notification to the packet
engine for assisting the packet engine with transmitting
the data packet.

14. The non-transitory computer readable storage medium
of claim 13, wherein the providing the request comprises
acquiring the connection token to the data packet, wherein
the connection token is a unique representation of a network
connection.

15. The non-transitory computer readable storage medium
of claim 13, wherein the providing the request comprises
acquiring the packet token to the data packet, wherein the
packet token includes a pointer to the data packet stored in
the queue associated with the packet engine.

16. The non-transitory computer readable storage medium
of claim 13, wherein the set of instructions that is executable
by the at least one processor of a computer to cause the
computer to further perform:

US 2016/0323190 A1

receiving the packet token and the notification at the
packet engine, acquiring the data packet from the queue
using the packet token, and transmitting the data packet
based on the notification.

17. A method for optimizing network traffic, the method
being performed by one or more processors and comprising:

receiving a request from a packet engine to schedule
transmission of a data packet, wherein the request
includes a packet token representing the data packet,
information regarding the size of the data packet, a
connection token, and configuration information for
establishing or updating a classification tree;

Scheduling the data packet using the connection token, the
classification tree, and the information regarding the
size of the data packet; and

providing the packet token and a notification to the packet
engine for assisting the packet engine with transmitting
the data packet.

18. The method of claim 17, wherein the classification
tree comprises a link node, one or more service class nodes,
and one or more connection nodes.

19. The method of claim 17, wherein the connection token
is a unique representation of a network connection.

20. The method of claim 17, wherein the packet token
includes a pointer to the data packet stored in a queue
associated with the packet engine.

21. A non-transitory computer readable storage medium
storing a set of instructions that is executable by the at least

Nov. 3, 2016

one processor of an appliance to cause the appliance to
perform a method for optimizing network traffic, the method
comprising:

receiving a request from a packet engine to schedule
transmission of a data packet stored at the packet
engine, wherein the request includes a packet token
representing the data packet, information regarding the
size of the data packet, a connection token, and con
figuration information for establishing or updating a
classification tree;

scheduling the data packet using the connection token, the
information regarding the size of the data packet, and
the classification tree; and

providing the packet token and a notification to the packet
engine for assisting the packet engine with transmitting
the data packet.

22. The non-transitory computer readable storage medium
of claim 21, wherein the connection token is a unique
representation of a network connection.

23. The non-transitory computer readable storage medium
of claim 21, wherein the packet token includes a pointer to
the data packet stored in a queue associated with the packet
engine.

24. The non-transitory computer readable storage medium
of claim 21, wherein the classification tree comprises a link
node, one or more service class nodes, and one or more
connection nodes.

