发明名称
高分子复合絮凝剂及其制备方法和应用

本发明是一种高分子复合絮凝剂及其制备方法和应用。属于水处理技术领域，特别涉及一种由聚合硫酸铝和聚二甲基二烯丙基氯化铵组合而成的高分子复合絮凝剂及其制备方法和应用。包括如下配比的原料组成：聚合硫酸铝水溶液 85－95％，聚二甲基二烯丙基氯化铵水溶液 5-15％。本发明提供了一种制备方法简单，生产成本低、原料来源广；对高色度、含高腐蚀酸的原水脱色效果好；用量少，处理后的水质清澈透明，饮用水质安全可靠；对含油污水的处理，脱油效果良好的理想的高分子复合絮凝剂及其制备方法和应用。广泛适用于饮用水、工业用循环水、工业废水、生活污水的絮凝澄清处理，脱色、去油处理。
1. 一种高分子复合絮凝剂，其特征在于包括如下重量配比的原料组分：
 a. 聚合硫酸铝水溶液 85~95%
 b. 聚二甲基二烯丙基氯化铵水溶液 5~15%

其中：所述聚合硫酸铝水溶液是将聚合硫酸铝溶于水，以 Al₂O₃ 计含聚合硫酸铝
7.8~12%的水溶液，所述聚二甲基二烯丙基氯化铵水溶液是将聚二甲基二烯丙基氯化铵
溶于水，经调节为特性粘度 0.8~2.8dL/g 的聚二甲基二烯丙基氯化铵的水溶液。

2. 根据权利要求 1 所述的高分子复合絮凝剂，其特征在于所述聚合硫酸铝的盐基度
 为 25%~65%。

3. 根据权利要求 1 所述的高分子复合絮凝剂，其特征在于用于饮用水处理时，所述
 聚合硫酸铝固体的杂质含量控制在如下技术指标：铁，以 Fe₂O₃ 计 ≤1.0%，砷 ≤0.0003%,
 重金属，以 Pb 计 ≤0.001%。

4. 一种权利要求 1 所述的高分子复合絮凝剂的制备方法，其特征在于包括如下步骤：
 a. 聚合硫酸铝水溶液制备：将准确计量的聚合硫酸铝投入事先加入计量水的反应釜
 中，4℃~42℃温度下，搅拌溶解，并调节至以 Al₂O₃ 计含聚合硫酸铝为 7.8%~12%的水
 溶液；
 b. 聚二甲基二烯丙基氯化铵水溶液的制备：将准确计量的聚二甲基二烯丙基氯化铵
 胶体投入事先投入计量水的反应釜中，4℃~42℃温度下，搅拌溶解，并调节特性粘度在
 0.8~2.8dL/g 之间；
 c. 高分子复合絮凝剂制备：将步骤 a 制备的聚合硫酸铝水溶液和步骤 b 制备的聚二
 甲基二烯丙基氯化铵水溶液，按照如下重量百分数：
 聚合硫酸铝水溶液 85~95%
 聚二甲基二烯丙基氯化铵水溶液 5~15%。
 加入到混合反应釜中，4℃~40℃温度下，搅拌均匀，得到稳定的聚合硫酸铝－聚二甲基
 二烯丙基氯化铵高分子复合絮凝剂，控制高分子复合絮凝剂中 Al₂O₃ 含量为 7%~10%，混
 合静止 2 小时，取样检测；
 d. 质量检验，合格后包装入库。

5. 根据权利要求 1 所述的高分子复合絮凝剂的应用，其特征在于用于饮用水、工业
 用循环水、生活污水、工业废水絮凝澄清处理，脱色、去油处理。
6. 根据权利要求1所述的高分子复合絮凝剂的应用，其特征在于将高分子复合混凝剂经水稀释后直接投加到原水或废水中参与各种水处理工艺过程。

7. 根据权利要求1所述的高分子复合絮凝剂的应用，其特征在于将高分子复合絮凝剂经水稀释，每100ml水中含有5～15g高分子复合絮凝剂的浓度后投加至欲处理水中使用。
高分子复合絮凝剂及其制备方法和应用

技术领域

本发明是一种高分子复合絮凝剂及其制备方法和应用。属于水处理技术领域，特别涉及一种由聚合硫酸铝和聚二甲基二烯丙基氯化铵复合而成的高分子复合絮凝剂及其制备方法和应用。

背景技术

采用无机絮凝剂和有机高分子絮凝剂复合的方法来优化絮凝剂的性能，已有文献报道：中国专利号 200410024480.1 《聚合铝—二甲基二烯丙基氯化铵均聚合物无机有机复合絮凝剂及其制备工艺》，公开了聚合铝与二甲基二烯丙基氯化铵均聚合物复合絮凝剂及其制备工艺；中国专利申请号 200510043802.1 《聚合铝—二甲基二烯丙基氯化铵均聚合物无机有机复合絮凝剂及其制备方法》，公开了聚合铝与二甲基二烯丙基氯化铵均聚合物复合絮凝剂及其制备方法；中国专利申请号 200710024361.X 《聚合硫酸铁—聚二甲基二烯丙基氯化铵复合絮凝剂及其制备与应用方法》，公开了聚合硫酸铁与聚二甲基二烯丙基氯化铵复合絮凝剂及其制备与应用方法。它们的不足之处在于：

1. 聚合铝—二甲基二烯丙基氯化铵均聚合物复合絮凝剂对高色度含高腐殖酸水的去色作用不明显，用量大，对含油污水的去油效果较差。

2. 聚合硫酸铁—聚二甲基二烯丙基氯化铵复含絮凝剂对高色度含高腐殖酸的原水的脱色作用非常小，用量大时，反而增加水的色度，难以达到国家饮用水标准。

一种制备方法简单，投资省，生产成本低，原料来源广泛，产品对待处理水质针对性强；对高色度、含高腐殖酸的水质调色效果好；用量少，处理后的水质清澈透明，饮用水安全可靠；亦可用于工业废水、生活污水、含油污水的水质处理，脱油效果良好的理想的高分子复合絮凝剂是人们所期待的。

发明内容

本发明的目的在于避免上述现有技术的不足而提供一种制备方法简单，投资省，生产成本低，原料来源广泛，产品对待处理水质针对性强；对高色度、含高腐殖酸的水质调色效果好；用量少，处理后的水质清澈透明，饮用水安全可靠；亦可用于工业废水，生活污水、含油污水的水质处理，脱油效果良好的理想的高分子复合絮凝剂。
本发明的目的还在于提供一种本发明的高分子复合絮凝剂的制备方法简单，投资省，生产成本较低，原料来源广泛的制备方法。

本发明的目的还在于提供本发明的高分子复合絮凝剂的应用方法。

本发明的目的可以通过如下措施来达到：

本发明的高分子复合絮凝剂，其特征在于包括如下配比的原料组分（重量百分数）：

a. 聚合硫酸铝水溶液 85－95%
b. 聚二甲基二烯丙基氯化铵水溶液 5－15%。

高分子聚合硫酸铝与传统无机絮凝剂以及聚合氯化铝、聚合硫酸铁相比，具有极佳的脱色，去氟和低温去浊性能，进入水体后，水解速度快，有强大的电中和和吸附性能，在水中形成的絮凝体呈单个网状结构。

高分子聚二甲基二烯丙基氯化铵的分子量是聚合硫酸铝分子量的几千倍，电荷密度大，进入水体后，形成的絮体呈链状，用聚合硫酸铝和聚二甲基二烯丙基氯化铵做成的复合絮凝剂进入水体，不仅大大增大了电中和能力，而且有机高分子形成的长链把无机高分子形成的单个网状絮体连接起来，形成絮状大几倍乃至几十倍，净水功能极大提高。

本发明的高分子复合絮凝剂，其特征在于 a 中所述之聚合硫酸铝的盐基度为 25%－65%，是优选的技术方案。

本发明的高分子复合絮凝剂，其特征在于 a 中所述之聚合硫酸铝水溶液是首先将聚合硫酸铝溶于水，并调节为含聚合硫酸铝 7.8%－12%（以 Al₂O₃ 计）的水溶液，作为高分子复合絮凝剂的组分使用。

本发明的高分子复合絮凝剂，其特征在于用于饮用水处理时，所述之原料聚合硫酸铝（固体）的杂质含量控制在如下技术指标范围内：铁（以 Fe₂O₃ 计）≤1.0%，砷≤0.0003%，重金属（以 Pb 计）≤0.001%。

本发明的高分子复合絮凝剂，其特征在于 b 中所述聚二甲基二烯丙基氯化铵水溶液首先将聚二甲基二烯丙基氯化铵溶于水，并调节为特性粘度 0.8～2.8d1/g 的聚二甲基二烯丙基氯化铵的水溶液，作为高分子复合絮凝剂的组分使用。

本发明的发明人经多次试验结果证明，聚二甲基二烯丙基氯化铵胶体经定量水溶解后与聚合硫酸铝溶液混合，在常温范围内制成的复合混凝剂，含量稳定，无沉淀产生。

本发明的高分子复合絮凝剂，其特征在于达到如下技术指标：Al₂O₃ 的质量含量 ≥7%（一般为 7～10%），盐基度 25%～65%，相对质量密度大于 1.28，水不溶物小于 0.5%。

下面提供一种本发明的高分子复合絮凝剂的制备方法，其特征在于包括如下步骤：
a. 聚合硫酸铝水溶液制备：将准确计量的聚合硫酸铝投入事先加入计量水的反应釜中，4℃－42℃温度下，搅拌溶解，并调节至含聚合硫酸铝为7.8-12%（以Al₂O₃计）的水溶液；

b. 聚二甲基二烯丙基氯化铵溶液的制备：将准确计量的聚二甲基二烯丙基氯化铵胶体投入事先投入计量水的反应釜中，4℃－42℃温度下，搅拌溶解，并调节特性粘度在0.8-2.8dL/g之间；

c. 高分子复合絮凝剂制备：将步骤a制备的聚合硫酸铝水溶液和步骤b制备的聚二甲基二烯丙基氯化铵水溶液，按照如下比例：

聚合硫酸铝水溶液 85－95%
聚二甲基二烯丙基氯化铵水溶液 5－15%。

加入到混合反应釜中，4℃－40℃温度下，搅拌混匀，得到稳定的聚合硫酸铝－聚二甲基二烯丙基氯化铵高分子复合絮凝剂。控制高分子复合絮凝剂中Al₂O₃含量为7%－10%；混合静止2小时，取样检测。

d. 质量检验，合格后包装入库。

下面提供本发明的高分子复合絮凝剂的应用，其特征在于用于饮用水、工业用循环水、生活污水、工业废水絮凝澄清处理，脱色、去油处理。

本发明的高分子复合絮凝剂的应用，其特征在于将高分子复合絮凝剂经水稀释后直接投加到原水或废水中参与各种水处理工艺过程。

本发明的高分子复合絮凝剂的应用，其特征在于将高分子复合絮凝剂经水稀释至5～15g/100ml水后，投加至欲处理水中使用。

本发明相比现有技术有如下突出的实质性和显著的进步：

1. 提供了一种制备方法简单，投资省，生产成本低、原料来源广泛，产品对待处理水质针对性强；对高色度、含高氟酸的废水处理原水脱色效果好；用量少，处理后的水质清澈透明，饮用水安全可靠；亦可用于工业废水，生活污水、含油污水的水质处理，脱油效果良好的理想的高分子复合絮凝剂。

2. 选用成本结构明确的聚合硫酸铝为原料，在工业化生产中，原料丰富，价格低廉，保证了产品质量的稳定性和供应的可靠性；

3. 生产工艺简单，产品质量稳定；

4. 严格控制产品的有害物质含量，保证处理后水的安全可靠性；

5. 复合絮凝剂经稀释后直接计量投加到原水中，使用方法简便；
6. 对高色度含高腐殖酸原水脱色效果独特，处理后的水清澈透明。与其它药剂相比，用药量少，成本低。

具体实施方式

本发明下面将结合实施例作进一步详述；

实施例 1 一种高分子复合絮凝剂的制备

a. 聚合硫酸铝水溶液制备：将准确计量的聚合硫酸铝投入事先加入计量水的反应釜中，4℃－42℃温度下，搅拌溶解，并调节至含聚合硫酸铝 10%（以 Al₂O₃ 计）的水溶液；

b. 聚二甲基二烯丙基氯化铵溶液的制备：将准确计量的聚二甲基二烯丙基氯化铵胶体投入事先投入计量水的反应釜中，4℃－42℃温度下，搅拌溶解，并调节特性粘度在 2.4dL/g 之间；

c. 高分子复合絮凝剂制备：将步骤 a 制备的聚合硫酸铝水溶液和步骤 b 制备的聚二甲基二烯丙基氯化铵溶液，按如下比例：

聚合硫酸铝水溶液 90%
聚二甲基二烯丙基氯化铵溶液 10%。

加入到混合反应釜中，4℃－40℃温度下，搅拌混匀，得到稳定的聚合硫酸铝－聚二甲基二烯丙基氯化铵高分子复合混凝剂；控制高分子复合混凝剂中氧化铝含量为 9%；混合静止 2 小时；取样检测。

d. 质量检验，合格后包装入库。

将实施例 1 制备的高分子复合混凝剂经水稀释后投加至所处理水中，对原水的处理除浊脱色效果见下表 1，试验条件按国家标准 15892 附录 A 的方法进行。
表 1 高分子复合絮凝剂用于黑龙江原水脱色去浊处理效果

<table>
<thead>
<tr>
<th>药品情况</th>
<th>原水情况</th>
<th>搅拌条件</th>
<th>结果</th>
</tr>
</thead>
<tbody>
<tr>
<td>药品名称</td>
<td>投加量</td>
<td>配制浓度</td>
<td>色度</td>
</tr>
<tr>
<td>聚氯化铝</td>
<td>30 mg/l</td>
<td>5 g/100 Ml 水</td>
<td>30</td>
</tr>
<tr>
<td>聚合硫酸铁</td>
<td>30</td>
<td>5</td>
<td>30</td>
</tr>
<tr>
<td>硫酸铝</td>
<td>30</td>
<td>5</td>
<td>30</td>
</tr>
<tr>
<td>聚合硫酸铝</td>
<td>30</td>
<td>5</td>
<td>30</td>
</tr>
<tr>
<td>高分子复合絮凝剂</td>
<td>30</td>
<td>5</td>
<td>30</td>
</tr>
</tbody>
</table>

注：沉淀出水浊度要小于等于 3NTU。
将实施例 1 制备高分子复合混凝剂经水稀释后投加至所处理水中，对黑龙江水去除腐殖酸处理，效果见下表 2，试验条件按国家标准 15892 附录 A 的方法进行。
表 2 高分子复合絮凝剂用于嫩江源水去除腐殖酸处理效果

<table>
<thead>
<tr>
<th>药品情况</th>
<th>原水情况</th>
<th>搅拌条件</th>
<th>结果</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>投加量</td>
<td>配制浓度</td>
<td>澄度</td>
<td>体积</td>
</tr>
<tr>
<td>mg/l</td>
<td>g/100ml水</td>
<td>(NTU)</td>
<td>ml</td>
</tr>
<tr>
<td>聚合氯化铝</td>
<td>40</td>
<td>10</td>
<td>20</td>
</tr>
<tr>
<td>聚合硫酸铁</td>
<td>40</td>
<td>10</td>
<td>20</td>
</tr>
<tr>
<td>硫酸铝</td>
<td>40</td>
<td>10</td>
<td>20</td>
</tr>
<tr>
<td>聚合硫酸铝</td>
<td>40</td>
<td>10</td>
<td>20</td>
</tr>
<tr>
<td>高分子复合絮凝剂</td>
<td>40</td>
<td>10</td>
<td>20</td>
</tr>
</tbody>
</table>

实施例 2 另一种高分子复合絮凝剂的制备

a. 聚合硫酸铝水溶液制备：将准确计量的聚合硫酸铝投入事先加入计量水的反应釜中，0℃－30℃温度下，搅拌溶解，并调节至含聚合硫酸铝9%（以Al₂O₃计）的水溶液；

b. 聚二甲基二烯丙基氯化铵溶液的制备：将准确计量的聚二甲基二烯丙基氯化铵胶体投入事先投入计量水的反应釜中，0℃－30℃温度下，搅拌溶解1小时，并调节特性粘度在2.6d/l之间；

c. 高分子复合絮凝剂制备：将步骤a制备的聚合硫酸铝水溶液和步骤b制备的聚二甲基二烯丙基氯化铵溶液，按照如下比例：

聚合硫酸铝水溶液 94%
聚二甲基二烯丙基氯化铵水溶液 6%。

加入到混合反应釜中，0℃－30℃温度下，搅拌混匀，得到稳定的聚合硫酸铝－聚二甲基二烯丙基氯化铵高分子复合絮凝剂；控制高分子复合絮凝剂中Al₂O₃含量为8.46%；混合静止2小时；取样检测。

d. 质量检验，合格后包装入库。
将实施例 2 制备的高分子复合絮凝剂经用水稀释至 10%～20% 后，投加至待处理水中，
对黄河原水去浊脱色去除腐殖酸处理，效果见表 3，试验条件按国家标准 15892 附录 A
的方法进行。

表 3 复合混凝剂用于黄河原水去浊脱色去除腐殖酸处理效果

<table>
<thead>
<tr>
<th>药品情况</th>
<th>药品名称</th>
<th>投加量 mg/l</th>
<th>配制浓度 g/100 ml 水</th>
<th>色度</th>
<th>浊度（NTU）</th>
<th>体积 ml</th>
<th>搅拌时间分钟</th>
<th>沉淀时间分钟</th>
<th>余浊 NTU</th>
<th>色度</th>
<th>腐殖酸去除率%</th>
</tr>
</thead>
<tbody>
<tr>
<td>高分子复合絮凝剂</td>
<td>聚合氯化铝</td>
<td>50</td>
<td>15</td>
<td>40</td>
<td>80</td>
<td>1000</td>
<td>15</td>
<td>30</td>
<td>2.9</td>
<td>6</td>
<td>25</td>
</tr>
<tr>
<td>高分子复合絮凝剂</td>
<td>聚合硫酸铁</td>
<td>50</td>
<td>15</td>
<td>40</td>
<td>80</td>
<td>1000</td>
<td>15</td>
<td>30</td>
<td>2.8</td>
<td>13</td>
<td>27</td>
</tr>
<tr>
<td>高分子复合絮凝剂</td>
<td>硫酸铝</td>
<td>50</td>
<td>15</td>
<td>40</td>
<td>80</td>
<td>1000</td>
<td>15</td>
<td>30</td>
<td>3.6</td>
<td>15</td>
<td>22</td>
</tr>
<tr>
<td>高分子复合絮凝剂</td>
<td>聚合硫酸铝</td>
<td>50</td>
<td>15</td>
<td>40</td>
<td>80</td>
<td>1000</td>
<td>15</td>
<td>30</td>
<td>3</td>
<td>10</td>
<td>26</td>
</tr>
</tbody>
</table>

注：沉淀池出水要求 2NTU 以下。