Title: WIRELESS SETUP PROCEDURE ENABLING MODIFICATION OF WIRELESS CREDENTIALS

Abstract: Methods, systems, and computer readable media may be operable to facilitate an overwrite of wireless credentials with user-input credentials. An extended wireless setup may be initiated at an access point when a predetermined input is received. During the extended wireless setup period, the access point may request updated wireless credentials from a user via a direct message or through a web page interface. The access point may overwrite currently used wireless credentials with the updated wireless credentials received from user input, and the access point may use the updated wireless credentials for establishing future wireless connections with one or more stations.
This disclosure relates to updating wireless credentials at an access point. One or more access points may be installed within a customer premise for the purpose of providing a wireless network for connecting and delivering services to one or more client devices or wireless stations. Generally, an access point is associated with wireless credentials (e.g., password of passphrase, pre-shared key string, service set identifiers, etc.) that provide a security layer for access to the wireless network. Typically, a wireless access point is pre-configured with a default wireless profile including preset wireless credentials. For example, credentials may be a simple password or a random, pre-shared key (PSK) string preset according to vendor specifications.

In order to join a network provided by an access point, or to otherwise associate a wireless client with the access point, a user will typically need to follow one or more of the existing setup procedures. A Wi-Fi protected setup (WPS) button may be used to associate one or more wireless clients with the access point. However, the increasing number of wireless devices within a premise makes this a time-consuming process as the WPS push-button method needs to be completed for each wireless device. A user might enter a preset WPS access point personal identification number (PIN) code to associate a wireless client with the access point. However, this method still requires that a user read or remember the preset PIN code from an access point label. Another method might include a WPS station PIN code that may be entered into a web or software
setup wizard graphical user interface (GUI). However, this method requires that the user be familiar with the setup wizard associated with the access point.

A user might wish to change preset or default credentials to enhance network security or to create more easily remembered credentials. For example, preset credentials may be too simple to provide strong protection against hacking or may be too random to be easily remembered by a user. Currently, credentials may be changed by a user through a web or software based setup wizard associated with the access point, but this may be troublesome for a user that is unfamiliar with the setup wizard. For example, it may take time to install a wireless setup wizard utility, to use a wired computer for web GUI access by default, to locate an access point Internet protocol (IP) address for a web GUI configuration login, to find the password for web GUI login, or to locate the proper configuration field in a web GUI. Therefore, a need exists for improving methods and systems for updating wireless credentials at an access point.

BRIEF DESCRIPTION OF THE DRAWINGS

[0005] FIG. 1 is a block diagram illustrating an example network environment operable to facilitate an overwrite of wireless credentials with user-input credentials.

[0006] FIG. 2 is a block diagram illustrating an example access point operable to facilitate an overwrite of wireless credentials with user-input credentials.

[0007] FIG. 3 is a flowchart illustrating an example process operable to facilitate an overwrite of wireless credentials with user-input credentials.

[0008] FIG. 4 is a communication flow diagram illustrating an example communication exchange operable to facilitate the request and retrieval of updated wireless credentials through keying messages.
It is desirable to improve upon methods and systems for updating wireless credentials at an access point. Methods, systems, and computer readable media may be operable to facilitate an overwrite of wireless credentials with user-input credentials. An extended wireless setup may be initiated at an access point when a predetermined input is received. During the extended wireless setup period, the access point may request updated wireless credentials from a user via a direct message or through a web page. The access point may overwrite currently used wireless credentials with the updated wireless credentials received from user input, and the access point may use the updated wireless credentials for establishing future wireless connections with one or more stations.

An embodiment of the invention described herein may include a method comprising: (a) receiving a predetermined input at an access point, wherein the
predetermined input signals an initiation of an extended wireless protected setup between
the access point and a station; (b) establishing a wireless association between the access
point and the station; (c) outputting a request for updated wireless credentials, wherein
the request is output to the station; (d) receiving updated wireless credentials from the
station, wherein the updated wireless credentials are input by a user to the station; and (e)
overwriting pre-existing wireless credentials with the updated wireless credentials.

[0015] According to an embodiment of the invention, the request for updated
wireless credentials comprises a keying message, wherein the keying message, when
received at the station, causes a prompt for user-input of updated wireless credentials to
be displayed at a display interface associated with the station.

[0016] According to an embodiment of the invention, the updated wireless
credentials are received at the access point within an encrypted message output from the
station, and the encrypted message is decrypted to retrieve the updated wireless
credentials.

[0017] According to an embodiment of the invention, the method described above
further comprises: (a) preventing an output of traffic from the access point to a wide area
network or local area network; (b) directing a web application at the station to a web page
network or local area network; (c) directing a web application at the station to a web page
graphical user interface, wherein the web page graphical user interface prompts a user for
input of updated wireless credentials; and (c) wherein the updated wireless credentials are
received at the access point as user input to the web page graphical user interface.

[0018] According to an embodiment of the invention, the web page graphical user
interface is hosted by a server at the access point.
According to an embodiment of the invention, the output of traffic from the access point to a wide area network or local area network is prevented when a response to the request for updated wireless credentials is not received from the station after a predetermined period of time.

According to an embodiment of the invention, the predetermined input comprises depressing a button for a predetermined duration of time, wherein the button is physically located at the access point and is designated for initiating a wireless protected setup.

An embodiment of the invention described herein may include an apparatus comprising: (a) an interface configured to be used to receive a predetermined input, wherein the predetermined input signals an initiation of an extended wireless protected setup between an access point and a station; (b) a module configured to establish a wireless association between the access point and a station; (c) an interface configured to be used to: (i) output a request for updated wireless credentials, wherein the request is output to the station; and (ii) receive updated wireless credentials from the station, wherein the updated wireless credentials are input by a user to the station; and (d) a module configured to overwrite pre-existing wireless credentials with the updated wireless credentials.

An embodiment of the invention described herein may include one or more non-transitory computer readable media having instructions operable to cause one or more processors to perform the operations comprising: (a) receiving a predetermined input at an access point, wherein the predetermined input signals an initiation of an extended wireless protected setup between the access point and a station; (b) establishing an extended wireless protected setup between the access point and a station;
a wireless association between the access point and the station; (c) outputting a request for updated wireless credentials, wherein the request is output to the station; (d) receiving updated wireless credentials from the station, wherein the updated wireless credentials are input by a user to the station; and (e) overwriting pre-existing wireless credentials with the updated wireless credentials.

[0023] FIG. 1 is a block diagram illustrating an example network environment operable to facilitate an overwrite of wireless credentials with user-input credentials.

In embodiments, one or more customer premise equipment (CPE) devices (e.g., a station 110, access point 120, and other devices that are not shown) may provide video and/or data services to a subscriber. An access point 120 may communicate with one or more stations 110 over a local network 130 (e.g., a local area network (LAN), a wireless local area network (WLAN), a personal area network (PAN), etc.) and may communicate with an upstream wide area network (WAN) 140 through a connection to a provider network ISO. Stations 110 may include a set-top box (STB), computer, mobile device, tablet, or any other device operable to communicate wirelessly with an access point 120. An access point 120 may include a gateway device, a modem, a wireless router including an embedded modem, a wireless network extender or any other device operable to deliver data and/or video services from the WAN 130 to the station 110.

[0024] In embodiments, an access point 120 may communicate with a station 110 over a wired or a wireless connection. A wireless connection between the station 110 and access point 120 may be established through a protected setup sequence (e.g., Wi-Fi protected setup (WPS)). The protected setup sequence may include the steps of scanning multiple wireless channels for an available access point, exchanging one or more
messages between a station and access point, exchanging key messages (e.g., pre-shared key (PSK)) between the station and access point, and installing a key (e.g., PSK) at the station.

[0025] In embodiments, an access point 120 may be configured to initiate an extended wireless setup upon reception of a predetermined input. For example, when a physical button (e.g., WPS button) located at the access point 120 is depressed for a predetermined duration (e.g., 5, 6, 7 seconds, etc.), the access point 120 may initiate an extended wireless setup with a station 110, wherein the extended wireless setup includes a wireless setup with the station 110 and a configuration of wireless credentials based upon user input received from the station 110. The predetermined input may be defined within the access point 120 static configuration file, and the button sequence may be altered by a service provider or subscriber.

[0026] In embodiments, when an extended wireless setup is initiated at the access point 120, the access point 120 may output a request to a station 110 for a user-input of updated wireless credentials. The request may be output from the access point 120 as a keying message (e.g., extensible authentication protocol (EAP) message, lightweight extensible authentication protocol (LEAP) message, etc.). The keying message, when received by the station 110, may cause a prompt for user-input of wireless credentials to be displayed (e.g., within a textual user interface (TUI) or graphical user interface (GUI)) at the station 110 or at a display device associated with the station 110. The user may input updated wireless credentials at the station 110, and the updated wireless credentials may be output from the station 110 to the access point 120.
In embodiments, user input of updated wireless credentials may be received at an access point 120 via a web page hosted at the access point 120. When traffic is received from a station 110 at the access point 120 during an extended wireless setup period, the access point 120 may block the output of the traffic and may direct the station 110 to a web page GUI prompting a user for the input of updated wireless credentials. A web server hosting the web page GUI from the access point 120 may receive updated wireless credentials input by a user at the web page GUI that is presented to the user through a web page application operating on the station 110.

In embodiments, the access point 120 may overwrite currently used wireless credentials with updated wireless credentials received from user input (e.g., user input credentials received in response to a keying message or received through a web page GUI). The access point 120 may use the updated wireless credentials for establishing future wireless connections with one or more stations.

FIG. 2 is a block diagram illustrating an example access point 120 operable to facilitate an overwrite of wireless credentials with user-input credentials. The access point 120 may include a wireless setup interface 20S, wireless setup module 210, wireless interface 215, wireless credentials module 220, and web GUI server 225.

In embodiments, the access point 120 may receive, through the wireless setup interface 205, a predetermined input for initiating an extended wireless setup with a setup interface 205, a predetermined input for initiating an extended wireless setup with a station 110. The wireless setup interface 205 may include one or more physical buttons station 110. The wireless setup interface 205 may include one or more physical buttons (e.g., WPS button), and the predetermined input for initiating an extended wireless setup between the access point 120 and a station 110 may be the depressing of one or more of the physical buttons for a predetermined duration. For example, when a physical button
(e.g., WPS button) located at the wireless setup interface 205 is depressed for a
predetermined duration (e.g., 5, 6, 7 seconds, etc.), the access point 120 may initiate an
extended wireless setup with a station 110, wherein the extended wireless setup includes
a wireless setup with the station 110 and a configuration of wireless credentials based
upon user input received from the station 110. It should be understood that various other
upon user input received from the station 110. It should be understood that various other
methods may be used for delivering a predetermined input to an access point 120.

[0031] In embodiments, the wireless setup module 210 may recognize a
predetermined input for initiating an extended wireless setup when the predetermined
input is received at the wireless setup interface 205. When the predetermined input is
recognized, the wireless setup module 210 may initiate a wireless setup procedure (e.g.,
WPS) with a station 110. For example, the wireless setup module 210 may pass one or
more wireless communications to a station 110 through a wireless interface 215. The
wireless interface 215 may be used to provide an interface with a variety of wireless
networks (e.g., Wi-Fi repeater/bridge/extender, Bluetooth network, ZigBee network,
etc.).

[0032] In embodiments, when a successful connection between the access point
120 and station 110 has been established through the wireless interface 215, a user-input
of wireless credentials may be requested, and user-input wireless credentials may be
applied at the access point 120. While operating in an extended wireless setup mode, the
access point 120 may output a request for new or updated wireless credentials. The
request for new or updated wireless credentials may be output from the wireless setup
module 210 to a station 110. For example, the request for new or updated wireless
credentials may be output to the station 110 that successfully connected to the access
credentials may be output to the station 110 that successfully connected to the access
point 120 during the extended wireless setup procedure. In embodiments, the request for new or updated wireless credentials may be output from the wireless setup module 210 as a keying message (e.g., extensible authentication protocol (EAP) message, lightweight EAP (LEAP) message, etc.). The keying message, when received by the station 110, may cause a prompt for user-input of wireless credentials to be displayed (e.g., within a textual user interface (TUI) or graphical user interface (GUI)) at the station 110 or at a display device associated with the station 110.

In embodiments, a response to the request for user-input of wireless credentials may be received at the wireless setup module 210 from the station 110 via the wireless interface 215. The response may include user-input wireless credentials (e.g., PSK) to be applied at the access point 120 for use in future connections with one or more stations. User-input credentials may be encrypted before being output from the station 110. For example, a decodable public encryption algorithm (e.g., base64) or a decodable private encryption algorithm may be used to encrypt the user-input credentials before being output from the station 110 to the access point 120. The wireless setup module 210 may be configured to decode the encrypted credentials received from the station 110.

In embodiments, outbound traffic from the access point 120 to a wide-area network (WAN) or local-area network (LAN) may be blocked. For example, outbound traffic may be blocked when a response to a request for user-input of wireless credentials is not received at the access point 120. The wireless router associated with the access point 120 may cause all outbound traffic to a WAN or LAN to be blocked. For example, routing rules (e.g., iptables rules) may be created such that traffic to a WAN or LAN is blocked, thus the only allowed traffic...
destination is the Internet protocol (IP) address of the access point 120. In embodiments, outbound traffic from the access point 120 may be blocked in response to a determination that the station 110 is not configured to respond to a private keying message that is delivered to the station 110 from the access point 120.

[0035] In embodiments, when a station 110 is unable to respond to a private keying message, a user may be directed to a web page prompting user input of updated wireless credentials that are to be applied. For example, when outbound traffic to a WAN or LAN is blocked, a station 110 (e.g., mobile device, tablet, etc.) may detect that Internet access is being blocked. The station 110 may notify a user of the blocked or limited Internet access by outputting or displaying a notification at the station 110 or display device associated with the station 110 (e.g., pop-up notification such as a request that the user login to a wireless network). When the user responds to the displayed notification (e.g., by attempting to login into a wireless network), the user may be directed to a web page prompting input of wireless credentials.

[0036] In embodiments, the web page may be generated and provided by the web GUI server 225, and may be accessed by a user through a browsing application associated with the station 110. Wireless credentials input by a user at the provided web page may be received at the web GUI server 225. The web page GUI presented to the user may include a text field within which the user may input an updated wireless user credential (e.g., PSK). The wireless credentials input into the web page GUI may be received by the web GUI server 225 at the access point 120.

[0037] In embodiments, wireless credentials may be stored at the wireless credentials module 220. When user-input wireless credentials are received from a station
110 at the wireless setup module 210 (e.g., from an encrypted message received directly from a station 110 or from an entry made in a webpage provided by the web GUI server 225), the wireless setup module 210 may update the wireless credentials stored at the wireless credentials module 220. In embodiments, the wireless credentials module 220 may include storage (e.g., non-volatile memory), and wireless credentials associated with may include storage (e.g., non-volatile memory), and wireless credentials associated with the access point 120 and/or one or more stations 110 may be maintained within storage. Previously used or current wireless credentials may be replaced or overwritten by user-input credentials received at the access point 120. For example, a PSK field within non-volatile memory of the wireless credentials module 220 may be updated with the user-input wireless credentials received from the station 110. The new PSK may be used by the access point 120 for future wireless connections with one or more stations.

FIG. 3 is a flowchart illustrating an example process 300 operable to facilitate an overwrite of wireless credentials with user-input credentials. The process 300 may begin at 305, when a predetermined input for initiating an extended wireless setup between a station 110 and access point 120 is received at the access point 120. In embodiments, the predetermined input for initiating an extended wireless setup between a station 110 and an access point 120 may be the depressing of a button associated with a wireless setup procedure for a predetermined duration. For example, when a physical button (e.g., WPS button) located at the access point 120 (e.g., wireless setup interface 205 of FIG. 2) is depressed for a predetermined duration (e.g., 5, 6, 7 seconds, etc.), the access point 120 may initiate an extended wireless setup with a station 110, wherein the extended wireless setup includes a wireless setup with the station 110 and a configuration of wireless credentials based upon user input received from the station 110. It should be
understood that various other methods may be used for delivering a predetermined input to an access point 120.

At 310, a connection with a station may be established through a wireless setup procedure. When the predetermined input is received by an access point 120, the setup procedure may be initiated. The setup procedure may result in a successful wireless connection between the access point 120 and station 110, the connection being sufficient to support the delivery of wireless communications between the access point 120 and station 110. In embodiments, the determination may be made that the setup procedure resulted in a successful connection between the access point 120 and station 110 when a final key message is sent from the access point 120 and received by the station 110. During the setup procedure, default or predefined credentials (e.g., passcode, passphrase, PSK, etc.) may be output to the access point 120 to the station 110.

At 315, a request for new or updated wireless credentials may be output. The request for new or updated wireless credentials may be output from an access point 120 while the access point 120 is still operating in the extended wireless setup mode. The request for new or updated wireless credentials may be output to the station 110. In embodiments, the request for new or updated wireless credentials may be output as a keying message (e.g., extensible authentication protocol (EAP) message, lightweight EAP (LEAP) message, etc.). The keying message, when received by the station 110, may cause a prompt for user-input of wireless credentials to be displayed (e.g., within a graphical user interface (GUI)) at the station 110 or at a display device associated with the station 110.
At 320, user-input wireless credentials may be received. User-input wireless credentials may be received at the access point 120 from the station 110 that is connected to the access point 120 through the extended wireless setup. The user-input credentials may be received at the access point 120 through the extended wireless setup. The user-input credentials may be input at the station 110 or at a display device associated with the station 110 in response to a prompt for the input of wireless credentials. In embodiments, the prompt for the input of wireless credentials may be displayed as a GUI. A user may input new wireless credentials that is to be used by the access point 120 during wireless setup with other stations. PSK that is to be used by the access point 120 during wireless setup with other stations.

User-input credentials may be encrypted before being output from the station 110. For example, a decodable public encryption algorithm (e.g., base64) or a decodable private encryption algorithm may be used to encrypt the user-input credentials before being output from the station 110 to the access point 120. The access point 120 may decrypt the encrypted credentials received from the station 110.

At 325, user-input wireless credentials may be used to overwrite wireless credentials that are currently configured at the access point 120. Wireless credentials may be stored at the access point 120 (e.g., at non-volatile memory), and the access point 120 may overwrite the currently stored wireless credentials with the user-input wireless credentials received from the station 110. For example, a PSK field within non-volatile credentials received from the station 110. For example, a PSK field within non-volatile memory (e.g., wireless credentials module of FIG. 2) may be updated with the user-input memory (e.g., wireless credentials module of FIG. 2) may be updated with the user-input wireless credentials received from the station 110. The new PSK may be used by the wireless credentials received from the station 110. The new PSK may be used by the access point 120 for future wireless connections with one or more stations.

FIG. 4 is a communication flow diagram illustrating an example communication exchange 400 operable to facilitate the request and retrieval of updated wireless credentials. When an extended wireless setup is initiated at an access point 120, wireless credentials.
a station 110 may begin a wireless protected setup (WPS) with the access point 120 by
outputting a WPS request 405 to the access point 120. The access point 120 may respond
outputting a WPS request 405 to the access point 120. The access point 120 may respond
to the WPS request 405 by outputting a WPS Acknowledgment 410 to the station 110,
to the WPS request 405 by outputting a WPS Acknowledgment 410 to the station 110.
the WPS acknowledgment 410 serving to inform the station 110 that the WPS has started.
the WPS acknowledgment 410 serving to inform the station 110 that the WPS has started.

[0045] In embodiments, as part of the WPS procedure, a key request 415 may be
output from the station 110 to the access point 120. The key request 415 may be a
request for a key associated with the access point 120, wherein the key is used by the
access point 120 to establish a successful connection with the access point 120. The access
point 120 may respond to the key request 415 with one or more key exchange messages
420. The one or more key exchange messages 420 may include one or more elements of
a key associated with the access point 120.

[0046] In embodiments, the access point 120 may output a credential request 425
to the station 110. The credential request 425 may be a keying message (e.g., extensible
authentication protocol (EAP) message, lightweight EAP (LEAP) message, etc.). The
keying message, when received by the station 110, may cause a prompt for user-input of
wireless credentials to be displayed (e.g., within a graphical user interface (GUI)) at the
station 110 or at a display device associated with the station 110. The user may input
wireless credentials at the station 110 (e.g., input into the displayed GUI) in response to
wireless credentials at the station 110 (e.g., input into the displayed GUI) in response to
the credential request 425, and the user-input wireless credentials may be output to the
access point 120 as a credential response 430. In embodiments, a decodable public
access point 120 as a credential response 430. In embodiments, a decodable public
encryption (e.g., base64 encryption) or decodable private encryption may be used to
encrypt the user-input credentials (e.g., PSK) before being output from the station 110 to

the access point 120. The access point 120 may decode the encrypted credentials received from the station 110.

[0047] FIG. 5 is a flowchart illustrating an example process 500 operable to facilitate an overwrite of wireless credentials with user-input credentials received through a webpage GUI. The process 500 can begin at 505, when a predetermined input for initiating an extended wireless setup between a station 110 and access point 120 is received at the station 110. In embodiments, the predetermined input for initiating an extended wireless setup between a station 110 and access point 120 may be the depressing of a button associated with a wireless setup procedure for a predetermined duration. For example, when a physical button (e.g., WPS button) located at the access point 120 (e.g., wireless setup interface 20S of FIG. 2) is depressed for a predetermined duration (e.g., 5, 6, 7 seconds, etc.), the access point 120 may initiate an extended wireless setup with a station 110, wherein the extended wireless setup includes a wireless setup with the station 110 and a configuration of wireless credentials based upon user input received from the station 110. It should be understood that various other methods may be used for delivering a predetermined input to an access point 120.

[0048] At 510, a connection with a station may be established through a wireless setup procedure. When the predetermined input is received by an access point 120, the setup procedure (e.g., WPS) between the station 110 and the access point 120 can be initiated. The setup procedure may result in a successful wireless connection between the access point 120 and station 110, the connection being sufficient to support the delivery of wireless communications between the access point 120 and station 110. In embodiments, the determination may be made that the setup procedure resulted in a
successful connection between the access point 120 and station 110 when a final key
message is sent from the access point 120 and received by the station 110. During the
setup procedure, default or predefined credentials (e.g., passcode, passphrase, PSK, etc.)
may be output from the access point 120 to the station 110.

At 515, outbound traffic from the access point 120 to a wide-area network
(WAN) or local-area network (LAN) may be blocked. In embodiments, a wireless router
associated with the access point 120 may be configured to block traffic from being output
to a WAN or LAN. For example, routing rules (e.g., iptables rules) may be created such
that outbound traffic to a WAN or LAN is blocked, thus the only allowed traffic
destination is the Internet protocol (IP) address of the access point 120. In embodiments,
outbound traffic from the access point 120 may be blocked in response to a determination
that the station 110 is not configured to respond to a private keying message that is
delivered from the access point 120.

At 520, a user may be directed to a web page prompting user input of
updated wireless credentials to be applied at the access point. In embodiments, when
outbound traffic to a WAN or LAN is blocked, a station 110 (e.g., mobile device, tablet,
devices) may detect that Internet access is blocked. The station 110 may output a notification
(e.g., by attempting to login into a wireless network), the user may be directed to a web page
prompts user input of wireless credentials. The web page may be accessed using a browsing application associated with the station 110, and the
At 525, user-input wireless credentials may be received at the access point 120. User-input credentials may be received at the access point 120 from the webserver (e.g., web GUI server 225 of FIG. 2) providing the web page GUI through which a user may input wireless credentials. The web page GUI presented to the user may include a text field within which the user may input an updated wireless credential (e.g., PSK).

The wireless credentials input into the web page GUI may be received by the webserver at the access point 120.

At 535, user-input wireless credentials may be used to overwrite wireless credentials that are currently configured at the access point 120. Wireless credentials may be stored at the access point 120 (e.g., at non-volatile memory), and the access point 120 may overwrite the currently stored wireless credentials with the user-input wireless credentials received via the web page GUI presented to a user. For example, a PSK field within non-volatile memory (e.g., wireless credentials module 220 of FIG. 2) may be updated with the user-input wireless credentials received from the user. The new PSK may be used by the access point 120 for future wireless connections with one or more stations.

At 535, the output of outbound traffic to a WAN and/or LAN may be unblocked. In embodiments, traffic blocking rules (e.g., iptable rules) may be cleared and traffic routing functions by the access point 120 may resume according to a default set of rules.
FIG. 6 is a communication flow diagram illustrating an example communication exchange 600 operable to facilitate the request and retrieval of updated wireless credentials received through a webpage GUI. When an extended wireless setup is initiated at an access point 120, a station 110 may begin a wireless protected setup (WPS) with the access point 120 by outputting a WPS request 405 to the access point 120. The access point 120 may respond to the WPS request 405 by outputting a WPS Acknowledgment 410 to the station 110, the WPS acknowledgment serving to inform the station 110 that the WPS has started.

In embodiments, as part of the WPS procedure, a key request 415 may be output from the station 110 to the access point 120. The key request 415 may be a request for a key associated with the access point 120, wherein the key is used by the station 110 to establish a successful connection with the access point 120. The access point 120 may respond to the key request 415 with one or more key exchange messages 420. The one or more key exchange messages 420 may include one or more elements of a key associated with the access point 120.

In embodiments, the access point 120 may request updated wireless credentials (e.g., credential request 605) from a web GUI server 225. The credential request 605 may be output to the web GUI server 225, for example, when the access request 605 is output to the web GUI server 225, for example, when the access point 120 does not receive a response to a keying message (e.g., credential request 425 of point 120 does not receive a response to a keying message (e.g., credential request 425 of FIG. 4) that is output to the station 110. The credential request 605 may be output to the web GUI server 225 in response to the reception of a communication from the station 110 that is targeted at a WAN or LAN. For example, the access point 120 may block the communication targeted at the WAN or LAN, and may output the credential request 605.
to the web GUI server 225. It should be understood that the web GUI server 225 may be
embedded within the access point 120.

The web GUI server 225 may generate and output a credential web page 610 to the station 110. In embodiments, the credential web page 610 may be displayed
within a browsing application associated with the station 110. The credential web page 610 may be a textual user interface (TUI) or graphical user interface (GUI) and may include a text field within which the user may input an updated wireless credential (e.g., PSK).

A user may input wireless credentials (e.g., PSK) into the credential web page 610 that is displayed to the user. The credential web page input(s) 615 may be received by the web GUI server 225 and updated credentials 620 may be stored at the access point 120 for future use in connecting one or more other stations.

FIG. 7 is a block diagram of a hardware configuration 700 operable to facilitate an overwrite of wireless credentials with user-input credentials. The hardware configuration 700 can include a processor 710, a memory 720, a storage device 730, and an input/output device 740. Each of the components 710, 720, 730, and 740 can, for example, be interconnected using a system bus 750. The processor 710 can be capable of processing instructions for execution within the hardware configuration 700. In one implementation, the processor 710 can be a single-threaded processor. In another implementation, the processor 710 can be a multi-threaded processor. In another implementation, the processor 710 can be a multi-threaded processor. The processor 710 can be capable of processing instructions stored in the memory 720 or on the storage device 730.
The memory 720 can store information within the hardware configuration 700. In one implementation, the memory 720 can be a computer-readable medium. In another implementation, the memory 720 can be a volatile memory unit. In another implementation, the memory 720 can be a non-volatile memory unit.

In some implementations, the storage device 730 can be capable of providing mass storage for the hardware configuration 700. In one implementation, the storage device 730 can be a computer-readable medium. In various different implementations, the storage device 730 can, for example, include a hard disk device, an optical disk device, flash memory or some other large capacity storage device. In other implementations, the storage device 730 can be a device external to the hardware configuration 700.

The input/output device 740 provides input/output operations for the hardware configuration 700. In one implementation, the input/output device 740 can include one or more of a network interface device (e.g., an Ethernet card), a serial communication device (e.g., an RS-232 port), one or more universal serial bus (USB) interfaces (e.g., a USB 2.0 port), one or more wireless interface devices (e.g., an 802.11 card), and/or one or more interfaces for outputting video and/or data services to a CPE device (e.g., access point 120 of FIG. 1, cable modem, router, wireless extender, or other device (e.g., a subscriber device) or subscriber device (e.g., station 110 of FIG. 1, television, mobile device, access device)). In another implementation, the input/output device can include driver devices configured to send communications to, and receive communications from one or more networks (e.g., WAN 140 of FIG. 1, local network 130 of FIG. 1, etc.).

In another implementation, the input/output device can include driver devices configured to send communications to, and receive communications from one or more networks (e.g., WAN 140 of FIG. 1, local network 130 of FIG. 1, etc.).
Those skilled in the art will appreciate that the invention described herein improves upon methods and systems for updating wireless credentials at an access point. Methods, systems, and computer readable media may be operable to facilitate an overwrite of wireless credentials with user-input credentials. An extended wireless setup may be initiated at an access point when a predetermined input is received. During the extended wireless setup period, the access point may request updated wireless credentials, and the access point may overwrite currently used wireless credentials with the updated wireless credentials received from user input, and the access point may use the updated wireless credentials for establishing future wireless connections with one or more stations.

The subject matter of this disclosure, and components thereof, can be realized by instructions that upon execution cause one or more processing devices to carry out the processes and functions described above. Such instructions can for example, comprise interpreted instructions, such as script instructions, e.g., JavaScript or ECMAScript instructions, or executable code, or other instructions stored in a computer readable medium.

Implementations of the subject matter and the functional operations described in this specification can be provided in digital electronic circuitry, or in computer software, firmware, or hardware, including the structures disclosed in this specification and their structural equivalents, or in combinations of one or more of them. Implementations of the subject matter described in this specification can be implemented as one or more computer program products, i.e., one or more modules of computer program one or more computer program products, i.e., one or more modules of computer program products.
instructions encoded on a tangible program carrier for execution by, or to control the
operation of, data processing apparatus.

A computer program (also known as a program, software, software application, script, or code) can be written in any form of programming language, including compiled or interpreted languages, or declarative or procedural languages, and
it can be deployed in any form, including as a stand-alone program or as a module,
it can be deployed in any form, including as a stand-alone program or as a module,
component, subroutine, or other unit suitable for use in a computing environment. A
computer program does not necessarily correspond to a file in a file system. A program
can be stored in a portion of a file that holds other programs or data (e.g., one or more
scripts stored in a markup language document), in a single file dedicated to the program
in question, or in multiple coordinated files (e.g., files that store one or more modules,
subprograms, or portions of code). A computer program can be deployed to be executed
on one computer or on multiple computers that are located at one site or distributed
across multiple sites and interconnected by a communication network.

The processes and logic flows described in this specification are
performed by one or more programmable processors executing one or more computer
programs to perform functions by operating on input data and generating output thereby
tying the process to a particular machine (e.g., a machine programmed to perform the
processes described herein). The processes and logic flows can also be performed by,
and apparatus can also be implemented as, special purpose logic circuitry, e.g., an FPGA
and apparatus can also be implemented as, special purpose logic circuitry, e.g., an FPGA
(field programmable gate array) or an ASIC (application specific integrated circuit).

Computer readable media suitable for storing computer program
instructions and data include all forms of non-volatile memory, media and memory
devices, including by way of example semiconductor memory devices (e.g., EPROM,EEPROM, and flash memory devices); magnetic disks (e.g., internal hard disks or removable disks); magneto optical disks; and CD ROM and DVD ROM disks. The processor and the memory can be supplemented by, or incorporated in, special purpose processor and the memory can be supplemented by, or incorporated in, special purpose logic circuitry.

While this specification contains many specific implementation details, these should not be construed as limitations on the scope of any invention or of what may be claimed, but rather as descriptions of features that may be specific to particular embodiments of particular inventions. Certain features that are described in this specification in the context of separate embodiments can also be implemented in combination in a single embodiment. Conversely, various features that are described in the context of a single embodiment can also be implemented in multiple embodiments separately or in any suitable subcombination. Moreover, although features may be described above as acting in certain combinations and even initially claimed as such, one or more features from a claimed combination can in some cases be excised from the combination, and the claimed combination may be directed to a subcombination or variation of a subcombination.

Similarly, while operations are depicted in the drawings in a particular order, this should not be understood as requiring that such operations be performed in the particular order shown or in sequential order, or that all illustrated operations be performed in the particular order shown or in sequential order, or that all illustrated operations be performed, to achieve desirable results. In certain circumstances, multitasking and parallel processing may be advantageous. Moreover, the separation of various system components in the embodiments described above should not be understood as requiring
such separation in all embodiments, and it should be understood that the described program components and systems can generally be integrated together in a single software product or packaged into multiple software products.

[0071] Particular embodiments of the subject matter described in this specification have been described. Other embodiments are within the scope of the following claims. For example, the actions recited in the claims can be performed in a different order and still achieve desirable results, unless expressly noted otherwise. As one example, the processes depicted in the accompanying figures do not necessarily require the particular order shown, or sequential order, to achieve desirable results. In some implementations, multitasking and parallel processing may be advantageous.
We Claim:

1. A method comprising:
 receiving a predetermined input at an access point, wherein the predetermined input signals an initiation of an extended wireless protected setup between the access point and a station;
 establishing a wireless association between the access point and the station;
 outputting a request for updated wireless credentials, wherein the request is output to the station;
 receiving updated wireless credentials from the station, wherein the updated wireless credentials are input by a user to the station; and
 overwriting pre-existing wireless credentials with the updated wireless credentials.

2. The method of claim 1, wherein the request for updated wireless credentials comprises a keying message, wherein the keying message, when received at the station, causes a prompt for user-input of updated wireless credentials to be displayed at a display interface associated with the station.

3. The method of claim 2, further comprising:
 wherein the updated wireless credentials are received at the access point within an encrypted message output from the station; and
 decrypting the encrypted message to retrieve the updated wireless credentials.

4. The method of claim 1, further comprising:
 preventing an output of traffic from the access point to a wide area network or local area network;
directing a web application at the station to a web page graphical user interface,
directing a web application at the station to a web page graphical user interface,
wherein the web page graphical user interface prompts a user for input of updated
wireless credentials; and
wherein the updated wireless credentials are received at the access point as user
input to the web page graphical user interface.
5. The method of claim 4, wherein the web page graphical user interface is hosted
by a server at the access point.

6. The method of claim 4, wherein the output of traffic from the access point to a
wide area network or local area network is prevented when a response to the request for
updated wireless credentials is not received from the station after a predetermined period
of time.

7. The method of claim 4, wherein the predetermined input comprises depressing a
button for a predetermined duration of time, wherein the button is physically located at
the access point and is designated for initiating a wireless protected setup.

8. An apparatus comprising:
an interface configured to be used to receive a predetermined input, wherein the
predetermined input signals an initiation of an extended wireless protected setup between
an access point and a station;
an interface configured to be used to:
output a request for updated wireless credentials, wherein the request is
output to the station; and
receive updated wireless credentials from the station, wherein the updated
wireless credentials are input by a user to the station; and
a module configured to overwrite pre-existing wireless credentials with the
updated wireless credentials.
9. The apparatus of claim 8, wherein the request for updated wireless credentials
comprises a keying message, wherein the keying message, when received at the station,
causes a prompt for user-input of updated wireless credentials to be displayed at a display
interface associated with the station.
10. The apparatus of claim 8, further comprising:
 a module configured to:
 prevent an output of traffic to a wide area network or local area network;
 and
 direct a web application at the station to a web page graphical user
 interface, wherein the web page graphical user interface prompts a
 user for input of updated wireless credentials; and
 wherein the updated wireless credentials are received as user input to the web
 page graphical user interface.
11. The apparatus of claim 10, further comprising:
11. The apparatus of claim 10, further comprising:
 a web server configured to host the web page graphical user interface.
12. The apparatus of claim 10, wherein the output of traffic to a wide area network or
 local area network is prevented when a response to the request for updated wireless
 credentials is not received from the station after a predetermined period of time.
13. The apparatus of claim 8, further comprising:

a button designated for initiating a wireless protected setup, wherein the predetermined input comprises depressing the button for a predetermined duration of time.

14. One or more non-transitory computer-readable media having instructions operable to cause one or more processors to perform the operations comprising:

receiving a predetermined input at an access point, wherein the predetermined input signals an initiation of an extended wireless protected setup between the access point and the station;

establishing a wireless association between the access point and the station;

outputting a request for updated wireless credentials, wherein the request is output to the station;

receiving updated wireless credentials from the station, wherein the updated wireless credentials are input by a user to the station; and

overwriting pre-existing wireless credentials with the updated wireless credentials.

15. The one or more non-transitory computer-readable media of claim 14, wherein the request for updated wireless credentials comprises a keying message, wherein the keying message, when received at the station, causes a prompt for user-input of updated wireless credentials to be displayed at a display interface associated with the station.
16. The one or more non-transitory computer-readable media of claim 15, wherein the
instructions are further operable to cause one or more processors to perform the
operations comprising:
- wherein the updated wireless credentials are received at the access point within an
 encrypted message output from the station; and
- decrypting the encrypted message to retrieve the updated wireless credentials.

17. The one or more non-transitory computer-readable media of claim 14, wherein the
instructions are further operable to cause one or more processors to perform the
operations comprising:
- preventing an output of traffic from the access point to a wide area network or
 local area network;
- directing a web application at the station to a web page graphical user interface,
 wherein the web page graphical user interface prompts a user for input of updated
 wireless credentials; and
- wherein the updated wireless credentials are received at the access point as user
 input to the web page graphical user interface.

18. The one or more non-transitory computer-readable media of claim 17, wherein the
web page graphical user interface is hosted by a server at the access point.

19. The one or more non-transitory computer-readable media of claim 17, wherein the
output of traffic from the access point to a wide area network or local area network is
prevented when a response to the request for updated wireless credentials is not received
from the station after a predetermined period of time.
20. The one or more non-transitory computer-readable media of claim 14, wherein the predetermined input comprises depressing a button for a predetermined duration of time, wherein the button is physically located at the access point and is designated for initiating a wireless protected setup.
FIG. 3
Access Point 120

Station 110

WPS Request
405
WPS Acknowledge
410
Key Request
415
Key Exchange
420
Credential Request
425
Credential Response
430

FIG. 4
FIG. 5
FIG. 6
FIG. 7
INTERNATIONAL SEARCH REPORT

A. CLASSIFICATION OF SUBJECT MATTER

H04W 12/08(2009.01)

According to International Patent Classification (IPC) or to both national classification and IPC

B. FIELDS SEARCHED

Minimum documentation searched (classification system followed by classification symbols)

H04W

Documentation searched other than minimum documentation to the extent that such documents are included in the fields searched

Electronic database consulted during the international search (name of database and, where practicable, search terms used)

WPI, EPODOC, CNKI, CNPAT: credential, user, update+, station, AP, STA, accesspoint, certification, key, GUI

C. DOCUMENTS CONSIDERED TO BE RELEVANT

<table>
<thead>
<tr>
<th>Category*</th>
<th>Citation of document, with indication, where appropriate, of the relevant passages</th>
<th>Relevant to claim No.</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>CN 101895884 A (BEIJING STAR-NET COMMUNICATION CO., LTD.) 24 November 2010 (2010-11-24) the whole document</td>
<td>1-20</td>
</tr>
<tr>
<td>A</td>
<td>WO 20091066003 A (CHINA IWNCOMM CO., LTD. ET AL.) 03 September 2009 (2009-09-03) the whole document</td>
<td>1-20</td>
</tr>
</tbody>
</table>

Further documents are listed in the continuation of Box C. √ See patent family annex.

* Special categories of cited documents:

“A” document defining the general state of the art which is not considered to be of particular relevance

“E” earlier application or patent but published on or after the international filing date

“L” document which may throw doubts on priority claim(s) or which is cited to establish the publication date of another citation or other special reason (as specified)

“O” document referring to an oral disclosure, use, exhibition or other means

“P” document published prior to the international filing date but later than the priority date claimed

“T” later document published after the international filing date or priority date and not in conflict with the application but cited to understand the principle or theory underlying the invention

“X” document of particular relevance; the claimed invention cannot be considered as novel or cannot be considered to involve an inventive step when the document is taken alone

“Y” document of particular relevance; the claimed invention cannot be considered to involve an inventive step when the document is combined with one or more other such documents, such combination being obvious to a person skilled in the art

“&” document member of the same patent family

Date of the actual completion of the international search 06 May 2016

Date of mailing of the international search report 25 May 2016

Name and mailing address of the ISA/CN

STATE INTELLECTUAL PROPERTY OFFICE OF THE P.R.CHINA
6, Xitucheng Rd., Jimen Bridge, Haidian District, Beijing 100088, China

Facsimile No. (86-10)62019451

Authorized officer LIU Juan

Telephone No. (86-10)62413912

Form PCT/ISA/210 (second sheet) (July 2009)
<table>
<thead>
<tr>
<th>Patent document cited in search report</th>
<th>Publication date (day/month/year)</th>
<th>Patent family member(s)</th>
<th>Publication date (day/month/year)</th>
</tr>
</thead>
<tbody>
<tr>
<td>US 2011302411 A1</td>
<td>08 December 2011</td>
<td>WO 2010108347 A1</td>
<td>30 September 2010</td>
</tr>
<tr>
<td></td>
<td></td>
<td>EP 2413558 A1</td>
<td>01 February 2012</td>
</tr>
<tr>
<td></td>
<td></td>
<td>CN 101521883 A</td>
<td>02 September 2009</td>
</tr>
<tr>
<td>US 2008196090 A1</td>
<td>14 August 2008</td>
<td></td>
<td></td>
</tr>
<tr>
<td>CN 101895884 A</td>
<td>24 November 2010</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>