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(57) Abstract

A preferred coding network uses an architecture called a Base-Filter—Resource (BFR) system. This approach integrates the advantages
of format—specific compression into a general-purpose compression tool serving a wide range of data formats, Source data is parsed into
blocks of similar data and each parsed blocks are compressed using a respectively selected compression algorithm. The algorithm can be

chosen from a static model of the data or can be adaptive to the data in the parsed block. The parsed blocks are then combined into an
encoded data file. For decoding, the process is reversed.
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DATA CODING NETWORK

BACKGROUND OF THE INVENTION

High performance data compression systems use models of the data to increase
their ability to predict values, which in turn leads to greater compression. The best
models can be achieved by building a compression system to support a specific data
format. Instead of trying to deduce a crude model from the data within a specific file,
a format-specific compressioh system can provide a precise pre-determined model.
The model can take advantage not just of the file format structure, but also of
statistical data gathered from sample databases.

Previous efforts at format-specific compression have been focused on solutions
to a few individual formats rather than on the development of a generalized method
that could be adapted to many formats. The models which have been created typically
involve a small number of components. This works adequately when most of the data

is included in a few components, such as an image file having mostly red, blue, and



10

15

20

25

WO 98/39699 PCT/US98/04453

green pixel values. But may formats are best modeled using a large number of

components, and the previous systems are not designed to build or encode such

models.

SUMMARY OF THE INVENTION

A preferred coding system in accordance with the invention solves both of
these problems in the prior art: it provides a generalized solution which can be
adapted to handle a wide range of formats, and it effectively handles models that use
large numbers of components. The system involves new approaches at many levels:
from the highest (interface) level to the lowest (core encoding algorithms) level. The
coding network includes a compression network for encoding data and a
decompression network for decoding data.

At the highest level, a preferred compression system in accordance with the
invention uses an architecture called a Base-Filter-Resource (BFR) system. This
approach integrates the advantages of format-specific compression into a general-

purpose compression tool serving a wide range of data formats. The system includes

- filters which each support a specific data format, such as for Excel XLS worksheets or

Word DOC files. The base includes the system control modules and a library used by

- all the fiiters. The resources include routines which are used by more than one filter,

but which are not part of the base. If a filter is installed which matches the format of
the data to be encoded, the advantages of format-specific compression can be realized
for that data. Otherwise, a "generic" filter is used which achieves performance
similar to other non-specific data compression systems (such as PKZip, Stacker, etc.).
At the next level, the system preferably includes a method for parsing source
data into individual components. The basic approach, called "structure flipping,"
provides a key to converting format information into compression models. Structure
flipping reorganizes the information in a file so that similar components that are

normally separated are grouped together.
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Upon this foundation are a numbers of tools, such as:

- a language to simplify the creation of parsing vroutines;

- tools to parse the source data using this method into separate

components; and

- tools to generate models for individual components by automated

analysis of sample data bases.
These tools can be applied to the filters for a wide range of file and data types.

The compression system preferably includes tools called customized array
transforms for specific filters and for certain types of filters. These techniques handle
a specific file type or certain data constructions used by several file types, such as
encoding two dimensional arrays of data as found in many database formats.

At the low-level of the system are preferably a number of mechanisms for
encoding data arrays, including:

- new low-level encoding algorithms;

- methods for integrating a large number of transforms and encoding

algorithms;

- methods for eliminating overhead so that small data blocks can be

efficiently coded; and

- a new method for integrating both static models (determined from

statistical analysis of sample databases) and dynamic models (adapted to
the data within a particular array) into the encoding of each component.

A preferred method of encoding source data comprising parsing the source
data into a plurality of blocks. The parsed blocks typically have a different format
than the source data format. In particular, similar data from the source data are
collected and grouped into respective blocks.

For each block, a compression algorithm is selected from a plurality of
candidate compression algorithms and applied to the block. The compression

algorithms can be determined based on the amount of data in the respective block.
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Furthermore, the compression algorithm can be adapted to the respective block,
including the use of a customized transform. The selection of an algorithm can also be
based on a compression model, which is derived from the format of the source data.
The compressed data from the plurality of blocks are then combined into encoded
data.

The coding network can also include a decompression network to convert the
encoded data back into the source data. First the data is decoded and then the parsing
is reversed. In a lossless system, the resulting data is identical to the source data.

Embodiments of the invention preferably take the form of machine executable
instructions embedded in a machine-readable format on a CD-ROM, floppy disk or
hard disk, or another machine-readable distribution medium. These instructions are
executed by one or more processing units to implement the compression and

decompression networks.

BRIEF DESCRIPTION OF THE DRAWINGS

The foregoing and other objects, features and advantages of the invention will

- be apparent from the following more particular description of preferred embodiments

of the invention, as illustrated in the accompanying drawings in which like reference
characters refer to the same parts throughout the different views. The drawings are
not necessarily to scale, emphasis instead being placed upon illustrating the principles
of the invention.

FIG. 1 is a high-level block diagram of a typical data compression system.

FIG. 2 is a block diagram of a preferred encoder using the BFR system in
accordance with the invention.

FIG. 3 is a flow chart of an array coder.

FIG. 4 is a block diagram of the string coder 40 of FIG. 3.

FIG. 5 is a block diagram of the float coder 50 of FIG. 3.

FIG. 6 is a flowchart of a preferred automated analysis system.
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FIG. 7 is a flowchart overviewing the high-level of the integer coder.

FIG. 8 is a flowchart overviewing the mid-level of the integer coder.

DETAILED DESCRIPTIONS OF PREFERRED
EMBODIMENTS OF THE INVENTION

FIG. 1 is a high-level block diagram of a typical data compression system.
The primary components of the system are a sending application 1, an encoder 3, a
decoder 5, and a receiving application 7. ’

The sending application 1 provides source data 2 to be encoded by the encoder
3. The sending application can be a file archiver, a communication system, or any
other application with a need to represent data using fewer bytes than in the native
format.

The encoder 3 receives the source data 2 and uses data compression algorithms
to represent the data using fewer bytes. The typical implementation of the encoder 3
is as software running on a general purpose computer, although the algorithms to be
described may also be implemented on specialized hardware.

The output of the encoder is encoded data 4, which can be stored in memory
(in which case the encoding allows more source data to be stored within the same
hardware), or transmitted to the decoder 5 (in which case the encoding the source data
to be transmitted faster when the transmission channel bandwidth is limited).

The decoder 5 retrieves or receives the encoded data 4 and reverses the
algorithms used to encode the data so as to reconstruct the source data as decoded data
6. In a lossless system, the decoded data 6 is identical to the source data. Depending
on the application, however, some data loss may be acceptable. As with the encoder
3, the decoder 5 is typically embodied as software running on a general purpose
computer, but can be implemented in specialized hardware.

The receiving application 7 receives the decoded data 6 for processing.
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A preferred compression engine includes filter-based encoders and decoders
which can be utilized by a large number of sending applications 1 and receiving
applications 7. While the applications 1,7 that store/retrieve or transmit/receive the
encoded data are not part of the compression system, they may adjust encoding and
decoding operations according to system conditions such as available transmission
channel bandwidth.

The descriptions to follow will mostly cover the encoder. The decoder just
reverses the encoder's actions, so a description of the encoder is sufficient to describe
the overall encoding/decoding system. The term "File" will be used to describe a
block of source data, which matches the conventional usage, but which should also be
understood to be applicable to many other types of data blocks such as a data

exchange in a Client-Server application.

ENCODER
FIG. 2 is a block diagram of a preferred encoder using a Base-Filter-Resource

(BFR) network in accordance with the invention. The encoder 3' is based on the use

- of a plurality of filters 10a,...,10x,...,10z which serve specific file formats. For

example, one filter 10a might support several versions of the DBF database format,
while another filter 10z might support several versions of the DOC format used by the
Microsoft Word software program. The individual filters provide respective selection
criteria 12 to a filter selection system 22.

The filter selection system 22 receives the source data 2 and checks the
selection criteria 12a,...,12x,...,12z of all filters 10a,...,10x,...,10z installed in the
system to see if any of them support the source data's format. If not, a "generic"
filter is used which provides compression performance similar to other generic
compression systems, such as Lempel-Ziv (LZ) engines. Ina particular preferred
embodiment of the invention, the generic compression system employs an SZIP

engine as described by Mr. Schindler in U.S. Application Serial No. 08/970,220 filed
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November 14, 1997, the teachings of which are incorporated herein by reference in
their entirety. The descriptions of the network will primarily cover the situations in
which a filter to support the data format is successfully found.

~ Briefly, a parsing system 24 parses the source data 2 into a large number of
parsed Arrays 25, which each include all the instances of a particular component in
the source file. The term "Array", described in further detail below, is capitalized to
indicate that this refers to a type of structure specific to the network, as opposed to the
usual use of the term "array". The algorithm used to parse the source data 2 is called
"Structure Flipping", an important aspect of the network, described in further detail
below.

The BFR system uses an automated analysis system (also described in detail
below) to build a model for each Array 25, which will be used when the Arrays 25
are encoded in an array coder 28. In some cases, better compression can be achieved
if customized array transforms 26 are first used. While the models generated by the
automated analysis system process each component Array 25 independently, the
customized routines can take advantage of inter-component relationships.

The array coder 28 encodes the Arrays 25 using a count-dependent modeling
system, which includes a mixture of static models (constant for all databases) and
dynamic adjustment to each particular Array 25.

The filter 10x has components to support each of the four sections of the
encoder 3'. The selection criteria 12x, determined by the file format specification,
includes information needed to recognize files served by the filter 10x, such as byte
values at the beginning of the file or file title suffices. Parsing instructions 14, also
determined by the file format specification, include the information needed to parse
the source file into parsed Arrays 25 having all the instances of a particular
component in the source file. The custom component models 16 are constructed by
referencing both the file format specification and sample databases. They can take

advantage of inter-component relationships to transform some of the component
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Arrays 25 to make them more compressible. Encoding parameters 18 are generated
by an automated analysis system which examines component Arrays 25 parsed from a
large number of sample databases. The encoding parameters 18 provide the data

necessary to support the count-dependent modeling system in the array coder 28.

FILTER SELECTION SYSTEM

A preferred compression system uses an expandable architecture that allows
users to support new or updated formats by adding or replacing ﬁlters 10. As noted
above, a filter 10 can support more than one format. For example, a filter called
"LOTUS123v4" might support all file formats associated with the Lotus 123 program,
such as the current WK4 format and the earlier WK3 and FM3 formats. If a Filter
was later developed for a new Lotus WKS format, a user replaces the old filter with
one supporting the new format and which would also be backwardly compatible with
the earlier filter with respect to the older formats.

In the Microsoft W_indows environment, each Filter is a separate dynamically
linked library (DLL) file. In addition to data tables, a filter includes executable code.
“If a filter is found for a file, then it is dynamically linked and then called to encode the
file. The encoded data stream includes an identification (ID) code indicating which

filter was used to encode the data, and the decoder has to have a corresponding
decoding filter.

To implement the filter selection system 22, the base module maintains a
registry of the currently installed files, which includes the data need to identify source
files of that type as well as the path to the DLL. This registry is updated each time a
filter is added or replaced. The identification data can include both a list of file title
suffices and a method to identify files via byte values near the beginning of the file.
The identification procedure uses a search tree method to reduce the time needed to
check the list when many filters are installed. From this registry, the appropriate

filter 10 is invoked for the file type.
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To handle compound file formats such as Microsoft's OLE2, one filter can
invoke another filter to encode a sub-file or stream within the compound file. For
example, a Winword Filter might call an Excel Filter to encode some Excel data

which was embedded within a compound document file.

S PARSING SYSTEM
As noted above, the parsing system 24 creates a large number of parsed Arrays
25. Each parsed Array 25 includes all instances of a particular component in a file.

A separate component is created for each member of each defined structure type.

Example 1
10 For example, consider the following description of a record defined in a file format
description.
Cell Value:
The format uses a special method of coding numbers in an internal
number type, called an RK number, to save memory and disk space.
15 Record Data:
Offset Name Size Contents
4 W 2 Row number
6 col 2 Column number
8 fmt 2 Index to the record that includes
20 the cell format
10 num 4 the coded number

The parsing system 24 creates parsed Arrays 25 for each of the four

components of this record. Each time an RK record is found, an entry is added to
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each array. The parsed Arrays 25 are much more compressible than the raw source

data, as shown by data from five records:

Rec Row Col Index Num Val

1 0x0001 0x0002 0x0055 0x3£fle100
5 2 0x0001 0x0003 0x005f 0x3ff1a300

3 0x0001 0x0004 0x0053 0x3£f1d000

4 0x0001 0x0006 0x005f 0x3£flc400

5 0x0001 0x0007 0x005f 0x3£f1d300

The source data would appear almost random to a byte-matching algorithm

10 (shown in hex):

01 00 02 00 55 00 00 el fl1 3f 01 00 03 00 5f 00 00 a3 f1 3f 01 00 04 00 53 00
00 do f1 3f

01 00 06 00 5f 00 00 c4 el fl 3f 01 00 07 00 5f 00 00 d3 fl 3f

But when handled as four separate Arrays 25 (Row, Col, Index, and Num)
15 using algorithms optimized for each component, the data can compress significantly.
This approach is referred to herein as "structure flipping" because of the way it
rearranges the data. ’
To encode together the instances of the same component in a database is a
common compression technique, and the file format is often used to identify such
20 components. But in the prior art, this approach has been limited to isolating a few
major components of a specific file format, and the file format description used only

as a technique of finding these major components. In accordance with preferred

embodiments of the invention, a file format is actually converted into a compression
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model, which is then interfaced into an automated system for analyzing the data and
optimizing the coding performance of each component. While this compression
model is usually enhanced by the customized array transforms 26, it is still an aspect
of the overall system.
5 The extent to which preferred approaches differ from prior art systems is
reflected in the new tools constructed in order to implement it. This approach creates
a large number of Arrays 25. Each Array 25 requires a different compression model,
and the number of entries in each can change significantly from file to file. In order
to work effectively in such a case, preferred embodiments of the invention employ
10 new approaches in how the low-level coding is handled such as the elimination of
overhead, count-dependent processing, and the use of a processing network instead of
fixed coding algorithms. These techniques, described above, are preferred in order to
handle the output of the parsing system 24.
All of these implementation features are integrated at a high level, so that high-
15 level calls can handle all of the operations needed to initialize the system, parse the
data, and encode the Arrays.
In accordance with a particular preferred embodiment of the invention, the file

parsing system 24 uses three sub-systems:

FILE BUFFER Input\Output Interface
20 ARRAYS To store the data for a single component
PVSTRUCT To parse the input into Arrays or to write the decoded

Arrays into the Output stream

A purality of FILE BUFFER routines provide a flexible input/output interface
using FILE BUFFER structures, so the same set of parsing routines can be used
25  regardless of the input/output formats. This allows the compression system to be

independent of the 1/0 format. The file parsing system preferably supports two file
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formats: DOS and OLE2, but this can expanded to other file formats as well as to
interfaces to communication ports and other I/O options. For DOS files, the logical
stream positions are usually the same as the raw file positions. The OLE2 format
requires an extensive layer of code to follow an OLE2 stream within the container
file.

A purality of ARRAY routines provide a system for managing the process of
initializing, adding data to, encoding, and freeing arrays of data. Each ARRAY
structure includes one array of data and the information needed to manage these
processes, such as the number of entries in the Array 25, the size of the buffer
currently allocated for the array, and information which will be useful in encoding the
array.

In particular, ARRAY XX structure stores all the data from a component, and
includes mechanisms to support fast sequential read/write access to the data, an
expandable buffer for the data, and storage of model data. This structure also allows

a simple set of tools to handle all allocation, parsing, and coding functions. The XX

- nomenclature indicates that slightly different ARRAY structures are defined for

 different data types, such as different integer word sizes, strings, and floating point
types, although many of the processing routines work on all of the variations.

A plurality of PVSTRUCT routines make up an automated system for parsing
the file data. During encoding, they read data from the FILE BUFFER structure and
write data into Arrays 25. During decoding, they take data from the Arrays 25 and
write it into the FILE_BUFFER structures. These routines can take a high-level
description of a file format and handle all the tasks associated with managing the
parsing as well as the encoding of the parsed data. Many of the Filters 10 will also
include customized parsing routines which call the FILE BUFFER and ARRAY
routines directly instead of using the PVSTRUCT routines. But an aspect of the
parsing system 24 is the PVSTRUCT routines, and this discussion will be concerned

primarily with their operation.
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A PVSTRUCT structure includes all information needed to parse and code a
data structure defined in a file format. This usually involves multiple components, so
it provides and handles individual Arrays 25 for each component. The term
"pvstruct” comes from Predictor Variable Structure, where Predictor refers to the use
of statistical data gained from analyzing a large number of sample files-to assist in the
encoding of the data, and Variable indicates that it supports structures where the
component counts can vary at run time for each instance (called "dynamic structures"
in some téxtbooks).

A parsing language is a defined instruction set which provides a concise way to
specify the parsing of a PVSTRUCT structure. The instrﬁction set includes support
for a wide range of dynamic variation, including where the counts of components are
dependent on file counts of other components as well as on external factors. It
incorporates other file format data, such as defined values or range restrictions. It
also provides a means of exchanging data between the parser and the filter.

The compression system is based on parsing a file so as to place items together
that aresimilar. In the following description of the compression system, examples

" llustrating some structures which might be found in a typical spreadsheet file format.

Example 2

Spreadsheet files typically include a series of records. Each record begins
with a 16-bit word indicating the type of record followed by a 16-bit word giving the
number of bytes in the body of the record. The file specification then describes the

contents of each record. A specification for a TABLE SIZE record might be:
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6 MaxRow

8 MinCol

10 MaxCol

12 (Reserved)
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Size Contents

2 First defined row on the sheet

2 Last defined row on the sheet, plus 1

2 First defined column on the sheet

2 Last defined column on the sheet, plus 1
4

Reserved

There can be more than one such record in the data. When there is more than

one record, the values of the same component in each record are going to be similar to

each other. This enables the compression system to take advantage of the similarities

to increase the compression ratio.

The compression system is preferably based on the ARRAY XX structures,

including:

ARRAY US:

ARRAY _16:

ARRAY 32:

ARRAY F32:

ARRAY_F64
ARRAY _F80:

for 8-bit data items, treated by the encoding system as
being unsigned

for 16-bit data items, treated by the encoding system as
being signed

for 32-bit data items, treated by the encoding system as
being signed

for 32-bit floats

for 64-bit floats ("doubles")

for 80-bit floats ("long doubles")
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ARRAY STR: each entry includes several bytes whose count is given

by a size (string size).

For the TABLE SIZE record, five arrays would be created (referring to the
record specification). Each time a record is parsed, an entry is added into each of the
five arrays.

When all the records had been parsed, a function is invoked to encode the
items in each array. This function includes a large number of algorithms, which can
exploit a wide variety of relationships to achieve maximum compression. The
implementation is extremely efficient in that it requires virtually no overhead: an
array with only one entry can even be efficiently compressed. This is necessary
because the parsing system can transform a file into a huge number of these small
arrays. The encoding function can also free the data after it finishes encoding it.

The decoding process reverses the sequence. First, each of the component
arrays is decoded. Then the parsing is reversed.

As this type of parsing has to be done extensively, a number of tools are used

“to simplify the process. They are based on the use of instructions called vstruct_defs.
To continue with the TABLE SIZE example, the instruction set to parse such a record

would be:

// the first 3 instructions always provide general info about the record:

8, // num instructions in this set
12, // size of the record body, which is a fixed sz of 12 bytes
5, // num arrays to be created

// the remaining instructions tell how to parse the record:
INTI16, // Parse a 16 bit integer for the first component ("MinRow")
INT16,
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INT16,
INT16,

INT32 }; // Parse a 32 bit integer for the last component ("Reserved")

The vstruct_def instructions are 16 bit integers. The first three words always
include the same general info about the record. The rest of the words include
instructions which tell the automated parsing system how to proceed when
encountering such a record. In this case, the instructions are the simplest possible -
just a list of data types for each component of the record. The parser would create an
array for each component, and load one entry of that type into the array each time it
parses a record of that type:

Functions are then provided to automate the parsing and encoding of records
based on these instructions. Again, the decoding process reverses the actions of the
encoder.

The vstruct_def instructions can handle situations much more complex than the
previous example. For convenience, a summary of the construction of these
instructions will be summarized next. The upper byte of the 16 bit instruction is an
argument as required by the lower byte. The lower byte is divided into two 4-bit
codes. The lowest 4 bits describe the type of instruction and determine the meaning
of the next 4 bits. This bitfield structure makes the instructions very readable in
hexadecimal notation, which is used in the following description of the codes. The
character 'x' represents hexadecimal values that do not affect the code word being

described:

Bits 0=3 set the Instruction type (opcode)

If opcode < =b, this value gives the component's data type. The upper fields are

then used as follows:
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Bits 8-15 are the arguments (ARG) when used.

Bits 4-7 are used as:

xx0x:

xx1x:

XX2X:

xx8x:

xxfXx:

If opcode = xxxd:
If opcode = xxxe:
If opcode = xxxf:

simple entry. Read one data item of this type

add ARG entries of that type into a single array

also adds multiple items into the same array, but the count is
given in DataBuf [ARG]

Value item is defined in spec. Value is read & checked, but
does not need to be stored. |

value range is restricted to less than the range allowed by the

data type. ARG selects a defined range or a defined list

Start sub-structure
Start sub-sub-structure
Special instruct, type determined by Bits 4-7:
xx0x: end sub structure
xx1x: end sub-sub structure
xx2x: add value to DataBuf (position given by ARG)
xx5x: stores the number of words of size ARG

remaining in the externally-supplied record length

The data types selected by the opcode are defined as:

#define CHAR
#define UCHAR
#define INT16
#define UINT16
#define INT32
#define UINT32

NN = = O O
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#define FLOAT?32

- #define FLOAT64

3

4
#define FLOAT80 5
#define STRING 6
#define STRINGZ 7
#define SYS_S1 8
#define SYS_SZ1 9
#define SYS_S2 Oxa
#define SYS_SZ2  Oxb

In the encoder, no distinction is made between signed and unsigned integers.
8-bit values are always processed as unsigned; 16 and 32-bit values as signed. This
convention is used to simplify and speed up the routines, such as to have fewer cases
to check in a switch statement. It has little impact on compression performance, but
where the file data is also used in parsing (such as when element counts are part of the
file data), care should be éxercised.

The STRINGZ refers to zero terminated strings. They are stored in the same
ARRAY STR as normal strings, but can be handled differently during parsing. For
example, the string length needs to be provided when parsing a regular string, but a
STRINGZ can find its own length. The STRINGZ also does not need to store the
zero terminating char.

The SYS_Sxx types refer to system strings. Normally, each component of
each pvstruct is self contained, in that each is placed into a separate array and coded
independently. Having many small but highly correlated arrays is very efficient for
numerical data when using the encode routines. But for strings, the compression can
often be improved by placing many component strings into a single array, such as to

combine text data from multiple records. The system allows for two "System" strings
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to hold these combined components. The strings added into these system data may be

regular or STRINGZ types.

To illustrate, two simple examples are described below.

Example 3
5 In this example, water depth at a particular location is measured 8 different

times and stored in a database:

Record Components
intl6 locationX;
intl6 locationY;

10 intl6 depth[8];

The depth measurements would be very similar, so one would want to place

them into a single Array. The instruction set would be:

“vstruct_def VD_ex2[}={

6, // 6 instruction words
15 20, /1 20 bytes per record
3, // num arrays to be created
INT16,
INT16,

0x811); /1 8 int16 entries into single array
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where the 0x811:

xxx1: data type is INT16
xx1x: num instances for this component in each
record is given by the ARG
5 08xx: ARG=38

Example 4

In this example, a record stores the ages for someone's friends:
Record Components
int16 num_friends;

10 uchar ages[num_friends};

An array with a variable size such as this cannot be declared within a structure
in the 'C' programming language, but it occurs frequently in file formats. This type

of construction is often called a dynamic structure. It can be parsed via the instruction

set:

15 vstruct def VD ex3[]={

6, // 6 instruction words
INTERN_SZ, /1 Size of record determined by internal data
2, // num arrays to be created
INT16, // the num_friends entry
20 O0x12f, // store the previous val in register 1

0x120); // U8 vals: ct from register 1



WO 98/39699

where the 0x12f:

and the 0x120:

10

-21-

xxxf:

XX2X:

O1xx:

xxx0:

XX2X:

O1xx:

PCT/US98/04453

special instruction

store the data value parsed by the previous
instruction in the register specified by the
ARG

ARG=1, use register 1

data type is uchar

multiple entries, count found in register
given in ARG

ARG=1: use register 1

Registers are allocated as part of the PVSTRUCT structure and are used for

" temporary storage of data while processing a record. Register 0 is used for special

purposes (see the following example). The programmer designing a filter can use the

15 rest of the entries arbitrarily. The registers can also be used to exchange data between

a pvstruct and the rest of the program. For example, if one item buried in a large

record is needed for control purposes, it can be dumped into a register with a xx2f

instruction following the instruction that read the data item. The data item will then

be available in the register after the call to read or write the file.
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Example 35

A file specification for a record called COLUMN TYPES might be:

RecType
Rec Body Size

Record Data:

Offset Name

4 AlignCode
5 Style

6 Font

8 Offsets

= 0x413

= Variable

Size Contents

1 Alignment Code

1 Column Style Code

2 Default Font Used for Column
var Column Offsets

Offsets are 1 byte values. The number of offsets is determined by the record size

The instruction set for this record would be:

vstruct_def VD_413[]={

8,

EXTERN_SZ,

4,

UCHAR, UCHAR,
INT16

0x15f,

0x020};

/! 8 instructions
// the size of the record body is set externally

// num arrays to be created

// load num 1byte words left in file: register O used by
default for this
/JTENDTO count

// U8 vals: ct from register O
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The last component of the record is a list of 1-byte column offsets. These will
be similar to each other and should all be placed in a single array. In this case, the
number of such entries cannot be determined internally: have to use the record size
which would have been previously parsed. The 0x15f instruction tells the parser to
determine the number of 1-byte words remaining in the record, and this count is
always stored in register 0. The 0x020 telis the parser that multiple 1 byte items are
to be added into a single array, and that the number of such items can be found in

register 0.

Example 6
An example of a record called RANGE DEFINITION including a string might
be:
RecType = 0x215
Rec Body Size =24

Record Data:

Offset Name Size Contents

4 Name 16 Name of Range

20 StartRow 2 First Row in Range

22 EndRow 2 Last Row in Range

24 StartCol 2 First Column in Range
26 EndCol 2 Last Column in Range
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The instruction set for this record is:
vstruct_def VD_215[]={
8, /1 8 instructions
24, /] fixed sz = 24 bytes
5 5, // num arrays to be created
0x1018, // 8=SYS_STR1,; sz 16 (0x10)
INT16,
INT16,
INT16,
10 INT16};
where 0x1018:
xxx8: indicate that the string will be stored in the
SYS STR1 array.
_ xx1x: length is given by ARG
15 10xx: ARG = 16 (0x10)

A subjective decision has been made here by the person writing the filter. The
component which was handled as a string could also have been handled as multiple

entries as previously shown. Its instruction would have been:

0x1010
20 where
xxx0 = UCHAR type
xx1x = fixed count given in arg

10xx = ARG = 16 (0x10 hex)
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The decision to use a String Array was based on the nature of the entry. The
record includes a text string. The array encoding system provides a number of special
features to handle strings. For example, it checks for full string matches (all 16 chars
of one entry match another), which can be encoded very efficiently. Consequently,
text strings are always compressed more efficiently when stored as Strings. In
contrast, the offsets in the previous section would be better handled within the

numeric compressor, which does not use string sizes.

Example 7
The file specification for another record called EXTERNAL REFERENCES

including a string might be:

RecType = Ox17A

Rec Body Size = var

Record Data:

Offset Name Size Contents

4 StartRow 2 First Row in Range

6 EndRow 2 Last Row in Range

8 StartCol 2 First Column in Range

10 EndCol 2 Last Column in Range

12 Name var Zero-terminated String Containing Range

Reference
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The instruction set for this record is:

vstruct def VD_17af]={

8, // 8 instructions

INTERN SZ, // rec body size not fixed, but will be set by
internal data

5, // num arrays to be created

INT16,

INT16,

INT16,

INT16,

SYS S7Z2};

The last component of the record is a zero terminated string. The length of the
string can be found by searching for the terminating character. As the string array
will store and encode the string size, the terminating character does not need to be
saved. The INTERN_SZ indicates that the size of the record, while not known in
advance, will be determined internally, so that the record size would not need to be

encoded, as was needed for the Column Types record of Example 5.

Exampie 8

A structure can be nested within another structure. The parent structure can
include multiple instances of the nested structure. A description of such a COLUMN

STATUS record might be:
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RecType = 0x7

Rec Body Size = var
Record Data:
Offset Name Size ntent:
4 Default Status 1 Default Status for Columns
5 Col Data var The list of ColData entries as

defined below
The ColData entries give the offset to each column whose status doe not equal the
default, and the status of that column. Each entry is 2 bytes:
Offset 1 byte
Status 1 byte

The instruction for this record is:

vstruct_def VD_7[]={

8, : /! 8 instructions

EXTERN SZ, // variable size needing extern input

3, // num arrays to be created

UCHAR, /1 the "Default Status" is part of the parent
| structure

// ready to start the sub-structure. Count is the number that can fit into the
remaining space

// in the externally supplied record body size:
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0x25f, // load num 2byte words left in file into register
0, the defined location
// for ENDTO data
0x02d, // start sub; ct from register O
5 UCHAR, // the "Offset" is the first component of the sub-
structure
UCHARY}; // the "Status" is the second component of the

sub-structure

The last component of the record is a series of offset/status pairs. Separate
10 arrays need to be created for the offset component and for the width component. The
parser has to go through the sequence of pairs and place the items into their proper
array. This general procedure is handled by sub-structures. In this case, the sub-
structure has two uchar components. Two instructions were involved in setting up the

sub-structure.

15 - 0x25f: Used to set the count in this case
xxxf: the f indicates a special instruction
xx5x: determine the number of ARG length units left in the
record and store it in register O

02xx: The unit size is 2 (2 bytes per sub-structure)

20 0x02d: The actual command to start a sub-structure
xxxd: Start a substructure
xx2x: Num instances of the sub-structure in the record is found
in the register [ARG]
00xx: ARG=0 (so count is at register 0)
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All subsequent components are treated as elements of the sub-structure until a
End_SubStructure instruction is encountered (0x000f). If none is encountered prior to
the end of the instruction list, all remaining components are part of the sub-structure.
If an End_Substructure command is found, subsequent instructions refer to
components to be included as part of the main structure.

Although the parsing system also supports a sub-sub-structure (a sub structure
within a sub-structure), higher levels of nesting are preferably not allowed because no
file specs so complicated have yet been identified. As many sub-structures or sub-
sub-structures can be defined as needed within a pvstruct, preferably as long as the
resting goes no deeper than two levels at a time: i.e., return back to the parent

nesting level via an End_SubStructure instruction.

Example
In some case, the range of data to be written into an array is defined by the file
format as being less than the full numerical range allowed by the word size. For
example, a file specification might specify a one byte entry that is either O or 1. This
information can be used both by the parsing system as a sanity check and by the

encoding system to increase compression. The description of an illustrative
COLUMN OPEN record is:

RecType = Ox11
Rec Body Size =1

Record Data:

2
—~
=
Z.
o
=
o
2
o

Contents

N
O
=
Q

ao]
o
=

Either O (column closed) or 1

(column open)



10

15

20

WO 98/39699 PCT/US98/04453

-30-
The instruction set for this record is:
vstruct_def VD_11[]={
4, // 4 instructions
1, /I fixed sz = 1 byte
1, // num arrays to be created

D8 1}; // defined constant as a described below

Instead of entering UCHAR, D8 1 is entered, a defined code indicating an 8-
bit word size and a 1-bit range of values actually used. These range restrictions do
not affect the parsing of the file: a range restriction entry is parsed according to its
word size. The range restrictions are used to assist the automated generation of the
PREDICTOR structure, which includes the static model for a component and controls

the encoding of the Arrays. The code words currently defined use the format:

Defined ranges where min_val=0; max_val=(1 < <nbits)-1;
DX Y: X =word size (8 =uchar;16=int16;32=int32)
Y =nbits

Defined ranges starting at 1:min_val=1; max_val=(1< <nbits),
DX Ysl: X =word size (8=uchar;16=int16;32=int32)
Y -nbits

Specially defined Ranges

DX rY: X =word size (§=uchar;16=int16;32=int32)
Y =index of RANGE entry in PREDICTOR_CONTROL-
> spec_rangef]
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Specially defined list of Values:

DX vY: X=word size (8 =uchar;16=int16;32 =int32)
Y =index of VALUE_LIST entry in
PREDICTOR_CONTROL- > spec_dlist[]

The parsing system 24 (FIG. 2) is preferably implemented as a function library
written in the C programming language. This description of the librafy is divided into
three sections: the FILE I/O routines, the ARRAY routines, and the PVSTRUCT
routines.

The parsing system 24 includes a flexible input/output interface, so the same
set of parsing routines can be used regardless of the input/output formats. Two file
formats are supported: DOS and OLE2, but this can be expanded to other file formats
as well as to interfaces to communication ports and other I/O options. The DOS
format is trivial, in that the logical stream position is usually the same as the raw file
position. The OLE2 formét requires an extensive layer of code to reconstruct an

OLE?2 stream using the internal allocation table.

CUSTOMIZED ARRAY TRANSFORMS

The parsing system 24 creates Arrays 25 for each component in the source
file, and the array coder 28, assisted by the encoding parameters 18 generated by the
automated analysis system, finds the best way to encode each Array 25 using the
algorithms available to it. In some cases, these automated default mechanisms can be
improved upon using custom routines. The custom routines are called transforms,
because they begin with parsed Arrays 25 and the result is a different set of Arrays 25
sent to the array coder 28.

The primary role of the customized array transforms 26 is to implement inter-

component models: when the data from one component can assist in the coding of
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another component. The automated default mechanisms process each component
individually, and the compression performance can sometimes be improved by
exploting inter-component relationships. Such a system is one that can accurately
predict all the values in an Array 25, so that no code is required for the Array 25.
The customized array transforms 26 becomes a simulator: duplicating the
functionality of the program which generated the source data file. Each custom
routine is a separate creation solving a specific problem associated with a single Filter
10. Many of these routines could be independently applied as a solution to that
particular problem.

Because custom routines require more labor to construct and inflate the size of
the executable, their use is preferably restricted to cases which are likely to produce a
significant boost in the overall performance. In many file formats, a few of the
components make up most of the data. Customized array transforms 26 can usually
improve the compression of these frequent components, while the automated default
mechanisms achieve adequate compression of the remaining components.

The other parts of f.he system play a significant role even on components for

- which customized array transforms 26 are written. The parsing system 24 simplifies

the isolation of the components and the identification and analysis of components
needing custom work. The array coder 28 and the automated analysis routines still
process the Arrays generated by the customized array transforms 26. The capabilities
of the array coder 28 allow for innovative approaches to the custom modeling. One
such approach is compression via sub-division: transforming an Array 25 into
multiple Arrays 25, each of which being internally correlated in a way that can be
exploited by the array coder 28.

As an example of this, consider the coded numbers above in Example 1.
These values would be parsed into a single Array 25 of 32-bit integers. But these
values are not integers but rather are codes in which two of the bits indicate that the

entry is one of four different types, and the remaining bits have different meanings for
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each type. A new Array 25 can be created for the 2-bit flags, and then separate arrays
can be created for each of the four types. The automated analysis system and the
array coder 28 can find different and optimal models for each of these five Arrays,
and the system's efficiency at handling Arrays with fewer entries eliminates the
overhead from using the multiple Arrays. As a result, the total codes size resulting
from coding these five highly correlated Arrays is significantly less than encoding the
single original Array.

If a customized array transform can be used by more than one filter 10, it can
be turned into a resource. Resources are separate modules (DLLs in the Windows
environment) which are used by more than one filter. The main reasons for using

resources is to reduce the redundant code.

ARRAY CODER

Most compression algorithms involve transforming a data block and then
encoding the results using a method that represents the most frequent values using
fewer bits. Several successive transforms can be used, and each transform may create
multiple output blocks. In a typical LZ77 coder, for example, the source data is
transformed into four different arrays: a block of 1-bit flags indicating whether a
matching sequence was found, an array of bytes which did not match any previous
sequence, and the length and position of a matching sequence when one was found.
The first three arrays are often combined into a single array and then Huffman coded,
while the match positions are range-transformed and then Huffman coded.

This type of compression system can be viewed as a processing network,
where the source Array undergoes transforms which convert it into one or more
different Arrays which in turn may go through other transforms. At the end of each
path is the low-level coder, such as the Huffman coder or arithmetic coder, which
converts a probabilistic model into the encoded output. Conventional approaches to

data compression are based on "compression algorithms” having a small number of
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transforms and defining a fixed path through them. These fixed systems handle the
encoding needs of conventional parsing systems which generate a small number of
components.

A preferred parsing system 24 in accordance with the invention creates large
numbers of Arrays 25 representing different components in the different Filters 10.
The data type (strings, floating point values and integers of various word sizes) can be
different for each component. The data within each of these component Arrays can be
internally correlated in many different ways. To achieve optimum cdmpression
requires using a compression algorithm which exploits these patterns. The optimum
algorithm is also affected by the current availability of memory and the desired trade-
off between speed and compression performance. The number of entries in each
Array also varies widely, and different coding approaches can work better at different
Array counts.

The preferred coder system has available a static model of each component.
This model is obtained by analyzing instances of this component in a large number of
source files of the type being served by a Filter. The system is neither "static" nor

-"adaptive", but rather uses information from the static model wherever it is helpful,
while being fully able to respond to the unique data set found in each Array. The
static model can both guide the selection of transform algorithms and provide pre-
computed encoding tables for the various algorithms.

Consequently, the preferred coder system has to support thousands of different
ways to encode each Array. The processing system is not a fixed algorithm, but
rather a dynamic network and each path through this network creates a different
encoding algorithm. The path of the data through the network is guided by both static
models and dynamic considerations, such as the number of entries in the Array, the
speed and memory constraints.

An aspect of the preferred coder system is the extensive use of the Array

counts (the number of entries in an Array) to control the network. At lower counts,
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the system relies heavily upon a static model, generated from analysis of sample
databases. As the count increases, the system uses approaches which adapt more to
the characteristics a specific Array, because the gains from using adaptive models
begin to outweight the overhead of encoding the adaptive model. The overhead at low
counts is almost completely eliminated, so that Arrays with only a single entry can
even be encoded efficiently. This elimination of overhead in turn allows new types
of approaches to be used which might be called compression by sub-division, wherein
source Arrays are transformed into large numbers of highly correlated, smaller
Arrays.

The preferred coder system also includes a number of original algorithms
which provide increased compression performance for many of the components which
have been encountered. Routines such as the floating point and string Array
transforms provide significant benefits over previous methods for encoding these
components.

FIG. 3 is a flow chart of an array coder. To simplify the interface with other
routines, a preferred implémentation of the array coder includes a single encoding

" routine which handles all Array types (integers and floating point values of various
word sizes, strings, etc.). The master routine then routes each Array to a specialized
encoding routine for that data type as shown.

In particular at step 32, the Array 25 type is checked as a string array. If the
Array is a string array, then a string coder 40 is called. If the array is not a string
array, the Array type is checked at step 34 as a float type. If the Array is a float type,
then a float coder 50 is called. If the Array is neither a string nor a float type, then it
is an integer type and an integer coder 70 is called.

FIG. 4 is a block diagram of the string coder 40 of FIG. 3. The term "String"
is used herein to describe a multi-byte sequence of characters. A string Array can
include one or more such strings, each of which can have a different string size (the

number of bytes in that sequence). The string coder first may check for string
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matches in received string data using a string matcher 41- cases where an entire string
matches all another string in the Array. The string matcher 41 can operate on string
data from the array coder 28 or a list of predicted strings supplied by a static model
43. Afterward, the Array may be encoded by several mechanisms. Smaller Arrays
such as unmatched strings can be processed by a text coder 47 which uses a variation
of the LZ transform, which in turn takes advantage of the string positions and which
can also use static models to prime the dictionary or suggest coding tables. Larger
arrays of match codes can be serviced by standard text compression_foutines provided
by the array coder 28, such as block sorting algorithms and other well known
techniques. If the text coder 47 is used by the static model 43, the coder is primed by
the static model 43.

FIG. 5 is a block diagram of the float coder 50 of FIG. 3. Floating point
Arrays may be in either 32, 64, or 80 bit formats. The float coder receives float data
from the array coder 28 and first checks for matches with previous values using an LZ
coder 51, which matches only full-words (such as all 8 bytes of a double-precision
floating point value) and returns an Array having the un-matched values. The un-
matched values are then be converted to base 10 notation in a base 10 converter 53, as
many databases include floating point values which were originally entered as base 10
values, and encoding the values through the array coder 28 in their native format is
more efficient. The base 10 mantissas, exponents and conversion errors are
processed separately by the array coder 28. For lossless coding an offset may have to
be stored to correct slight rounding errors in the conversion. Values which were not

effectively converted to base 10 are then encoded using the string coder 40 (FIG. 4).

AUTOMATED ANALYSIS SYSTEMS
The parsing system parses the source files into a large number of components.

By examining the same component in a number of sample files, a static model can be
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built of that component, which can increase compression of Arrays of that component
in the Array coder. The automated analysis system finds the best such model.

FIG. 6 is a flowchart of a preferred automated analysis system. At step 62,
the operation is simplified by first parsing all of the source data files into files having
all of the instances of a particular component in all of the source files. These parsed
files are then analyzed at step 64. This analysis does not have to be fast, because it is
done off-line. The results for all components for the Filter are then consolidated at
step 66 into a single "Predictor Data" file, which eliminates redundant data among the

multiple component models.

CODER FOR INTEGER DATA

The coder for integer data is preferably based on a three level system. The
highest level operations are based on models which exploit relationships between a
data item and specific previous items in the data block, such as a LZ algorithm, which
encodes the distance to a sequence of matching values, or as a difference transform,
which transforms a value into the offset from the previous value. The mid-level
operations are based on models which are independent of the position of the data
values in the source data block. They exploit characteristics of the data such as the
frequency at which specific values occur in the overall block or the frequency at
which the data values lie in various numerical ranges. They transform the data values
into a block of codes. The low level coder compresses these codes based on a
probabilistic model. Two well known low-level coders are the Huffman and
arithmetic, and either can be used in the current system. The following discussion
will only describe the mid and high level systems.

The high-level coder is not a single solution, but rather a collection of methods
and models, each of which being effective on a particular type of data set. There is
no single solution to this part of the problem, as many other methods could also serve

the same general purpose or provide a solution to data sets with different
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characteristics than those considered here. Some of the methods which will be

described are standard techniques, and the others are unique adaptations of standard

techniques. In addition to describing these methods, a general framework is described
for integrating these high-level models and to show how the data resulting from their
transforms is efficiently handled by the mid-level coder.

The mid-level coder has to reduce the size of the alphabet to one which can
effectively be handled by the low level coders. Common numerical word sizes often
require more symbols than can be handled by conventional implementations of either
Huffman or arithmetic codes. For example, over 4,000,000,000 symbols would be
required to represent the alphabet of 32-bit integers, which far exceeds the
bookkeeping capabilities of these coders. The mid-level coder takes advantage of two
characteristics which are common in numerical data blocks.

- First, specific data values often occur at a high frequency in data blocks. Each
data block can have a unique set of these magic values, and these values can
occur at any point in the numerical range.

- Second, data valués may be distributed unequally with respect to the numerical
range. For example, in some data blocks, smaller values tend to be more

frequent than larger values.

FIG. 7 is a flowchart overviewing the high-level of the integer coder. The
integer coder 70 begins, at step 71, by constructing the high-level model, which
determines which transforms will be used and the other parameters needed to
implement those transforms. This data is stored in an encoded module data structure
at step 73 and used at various steps during processing, as illustrated.

The first option is an initial splitter at step 75, which is used when the lower
bytes in a value are highly correlated independently of the upper bytes. A common
example of this is the occurance of zeroes in the lower digits of base 10 values at a

frequency much higher than the 10% expected under a random data set. When the
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high level modeler detects such a condition, it can cause the source array, at step 77,
to be split into separate arrays representing the upper and lower digits in the source
values. The plurality of Arrays returned by the splitter are processed separately.

Array data is next tested at step 79 to determine if a matching algorithm should
be applied to the data. The matching algorithms at step 81 eliminate redundant data
jitems: those which completely match a previous entry in the array. The matching
algorithms store Arrays having matched data at step 83. Unmatched values are
processed by an oversize array handler at step 85. |

The system preferably limits the size of an integer Array to a fixed maximum,
which improves efficiency and simplifies some of the design issues. If an Array count
exceeds this maximum, the oversize array handler (step 85) breaks the array up into a
series of smaller Arrays. These Arrays are then converted, at step 87, to int32s so
that the remaining routines can operate on a common data type. These transforms
take place after the matching algorithms (step 81), because the matching algorithms
work more efficiently on the larger blocks.

The int32 data is next checked at step 89 to determine if a numeric transform is

‘to be done next. At step 91, numeric algorithms transform the array into offsets from

a value predicted using previous values. These offsets from the model are then
provided to the splitter decision block at step 93.

As before, if a splitter function is needed, a splitter operation is performed at
step 95. The splitter function returns a plurality of Arrays, which are processed
separately. |

At step 97, a determination is made whether to use a repeat transform (step
99). The repeat transform at step 99 is a type of matching transform, but can be used
after all the other transforms. In either case, processing flows to the mid-level coder
100.

Note that the splitter is shown in two places (steps 77 and 95) in the flow

chart. This is because splitting is typically done before a numeric transform or after a
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matching transform, when one of these transforms is used. The matching, numeric,
and repeat transforms exploit the relationship between a data item and previous data
items in the block being encoded.

It should also be noted that the term "high-level” refers to the construction of
this coder, but not to the relation between this coder and the overall compression
system. Before sending a data block to this coder, the overall system can do many
things to enhance compression, such as parsing the source data so as to create arrays
of similar components and taking advantage of interrelationships between different
components. The operation described here excludes those which should be handled at
the system level. This description also assumes that the overall system is screening
out data types which are better served by specialized coders, such as bilevel data, text,
bit-mapped images, etc.

The purpose of the high-level coder is to exploit relationships between
different data items in a data block. Two types of relationships are currently handled:
numerical transforms and matching. The numerical transforms predict a data value
D[i] as a function of an arifhmetic operation performed on previously data values in
‘the block. The DIi] is then represented as an offset from the value predicted by the
transform equation. The transform is efficient if the number of bits needed to encode
the transformed value are less than that needed to encode the original value. The
matching algorithms encode matches between D[i} and a previous value in the data
block. The algorithm is efficient if the number of bits needed to encode the position
of the matching value is less than that needed to encode [i]. Both types of operations
may be performed on the same block. For an example, a difference transform which
represents D[i] as the offset from D[i-1], can be followed by a matching algorithm
which finds matches of these offsets.

The decision as to which operations to perform on a data block is made by a
modeler. Maximum compression can be achieved by encoding the full data block

using each possible combination of algorithms, but this requires more processing time
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than most real-world applications can spare. The evaluation can be speeded up by
testing an alternative on only a subset of the data block to be encoded and by building
models which estimate the encoding costs of the transformed data blocks without fully
encoding them. The coder provides the abilitiy to trade-off processing cycles against
compression performance: when the application environment is under less time
pressure, it can spend more time evaluating alternatives to improve compression
performance. The discussion of each algorithm wil include a description of the model
used to estimate the encoding costs if that algorithm is used. '

The first step in the high-level coder is to determine the costs of encoding the
data block if no transform is used, as the bypass coding tables will later be used to
evaluate the effectiveness of the other alternatives. The bypass mode can be tested by
creating a sample data block and sending it to the mid-level simulator. The mid-level
simulator, to be described below, provides a fast mechanism for estimating the costs
of encoding blocks sent to the mid-level coder. The size of the sample data block is
adjusted accoridng to time constraints. Because the mid-level coding is independent
of the position of data values, the samples can be randomly dispersed in the data
block, instead of selecting sample blocks as needed to evaluate a sequential algorithm.
When evaluating other high-level modes, the modeler can use the encoding tables
generated by the mid-level coder to estimate the cost of encoding each item in the
source data block.

The simplest relationship is to encode a value as an offset from a previous
value. This essentially predicts that D[i]=D{i-1], and transforms D[i} into the offset

from the predicted value:
D'[i}=D[i}-D[i-1] (D

The system also supports a variation on this which is less susceptable to noise,

in that it predicts that a value equals the average value over the N previous entries:
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/ 1 &
D'[i]=D[i}-=xY D[i-37] (2)
N j=1
Equation 1 can be viewed as a case of Equation 2 in which N=1. But they are
implemented using separate routines to take advantage of the increased speeds when
processing the simpler Equation 1.
While some data types (sound, images, etc.) could take advantage of more
5 complex relationships, such data types are preferably encoded using Specialized
routines, so that no other equation is integrated into the general purpose integer coder.
The modeler is done in two stages. The first stage selects the best numerical
model, which in ourcurrent set-up is just the selection of the optimum value of N in
Equation 2. It is adequate to check just a few values, such as N=1,2 and 4, and then
10 select the value of N which produces the smallest offsets. The most accurate
reflection of coding costs would be to compare the base 2 logarithms of the offsets,

but it is adequate just to evaluate the absolute values of the offsets:

i=ct-1
TmpCost,, = abs (D' [1]) (3)
i=0

where ct = number of entries in the data block

This routine can quickly find the optimum numeric relationship, so that the
15 more elaborate routine needed to estimate encoding costs only has to be run on one
numeric alternative. The current routine to estimate the actual encoding costs is based
on encoding a sample data set using the mid-level coder as was done for the bypass
assessment.
Three matching algorithms are preferably implemented: a version of the LZ
20 algorithm which has a number of improvements for working with integers; a repeat

transform, and a Move-to-Front (MTF) algorithm.
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While the basic LZ algorithm does not specify a word size, most
implementations are based on using 1-byte words. The preferred system allows a
flexible word size, which currently includes 1, 2 and 4 byte integers. The routine

generates three output arrays:

- Unmatched values: these are the integers in the data block whch are not part
of a match sequence. The data type is unchanged - if the
source array was int32s, the unmatched values will also
be int32s. This compacted array will be sent to the

lower levels of the integer coder for compression.

- Length: For match sequences, this gives the number of words which
were matched in that sequence. Otherwise, this gives the

number of unmatched values before the next match.

- Position: This gives the offset (number of words, not bytes) to the start of

the matching sequence.

Another innovation in the implementation of the algorithm is a dynamic system
for evaluating matches. Traditional LZ implementations assume a fixed cost for
encoding unmatched data items, but the results of the bypass evaluation are available
which give a good estimate of the cost of encoding each different unmatched data
value. For example, if the value 1019 occurs at a 25% frequency, its encoding cost as
an unmatched item would be 2 bits, which means that it would not be efficient to
encode a match of 2 such values as a match sequence, since the cost of encoding the
match would exceed the cost of encoding the value as an unmatched entry. The extent
to which this system of dynamic evaluation is implemented can be adjusted according

to the speed/compression trade-offs in each real-time situation.
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The repeat transform replaces repeated values with repeat codes. The
preferred system provides a few improvements over standard implementations. First,
repeat codes are dynamically adjusted. That is, the repeat codes used for each data
block are adjusted according to two characteristics of the data block: the size of the
data block and the number of repeated values in the block. Second, special run-to-end
code denotes that a repeat sequence continues to the end of the block. Finally, there
are also special codes to represent large values. To make room for the repeat codes,
unmatched positive values are shifted upward by the number of repeat cods. To avoid
increasing our numerical range, the values at the end of the positive range are encoded
using special codes.

Traditional MTF coders assume small word sizes, so they can represent all
possible symbols as match distances. Large word sizes are allowed for by using a
limited size buffer and creating an output array of unmatched values which can be sent
to subsequent levels of the integer coder for encoding. If a data value matches a value
in this buffer, it is represented using the index of the matching value in the buffer.
Otherwise, the number of ﬁnmatched values before the next buffer match are

-recorded. The size of the buffer is adjusted according to the bypass test results. When
time allows, the cost of encoding an item as an unmatched value is traded off against
the cost of encoding it as a buffer match, but because of the lower overhead, this is
not as critical to the MTF algorithm as it was to the LZ.

This MTF algorithm will outperform the integer LZ when individual items
match but there are few multi-word match sequences. To avoid redundant searching
for matches, both algorithms are preferably integrated into a single transform routine
which generates separate output arrays, and then afterward select the one which
performed better.

Rather than to evaluate the matching algorithms using small sample sets, the

transform can be run on the full data block, and then evaluate the results for sending
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them to the mid-level simulator. When the application environment is severely time-
constrained, this evaluation occurs after only a part of the biock has been transformed.
In many real-world data sets, the individual digits of the base 10
representations of the values have characteristics which can be exploited to increase
compression. These characteristics are exploited using a technique called "splitting".
The array of integers is split into two or more separate arrays of integers, where each
array is created from a subset of the digits in the source array. Splitting is efficient
when the total encoding cost of the split arrays is less than the cost of encoding the
input source array. One example of an array which is efficiently processed using

splitting would be:

Source Array Array 1: Array 2: Array 3:
10795484 107 95 484
11995460 119 95 460
13195399 131 95 399
12295501 122 95 501
11195453 111 95 453
11895469 118 95 469

Before the split, the source array appears as randomly varying within a 21 bit
range (10795484-13195399). But after the split, the first column can be encoded in 4
bits/entry, the second disappears, and the third falls within a 7 bit range (399-501).
The total coding cost is about half the cost of coding the source array. Furthermore,
each array can often be split in several ways.

Splitting is useful because it finds correlations which sometimes occur between
the digit fields which are not apparent to other methods of evaluating the numbers. It

is especially important here, because some of the transforms to be described for the



10

15

20

25

WO 98/39699 PCT/US98/04453

~46-

range-remapper will treat lower bits as random numbers. Without the use of splitting,
the correlations in the lower digits, such as the presence of many zeros, would be lost:

The high level modeler has to make several decisions concerning splitting.
First the modeler determines the best model to use and whether splitting is more
efficient than the other coding alternatives. Second, the modeler determines whether a
matching algorithm should be run before the splitting is done. Finally, the modeler
determineswhich high-level algorithms should be run on each of the split arrays after
splitting, such as a numerical transform or one of the matching algorithms.

The relationships which are amenable to splitting are usually only visible in the
base 10 representation, so the first action of the splitter is to convert the data into a
base 10 representation. In some cases, the source data may have been originally in
alphanumeric representation, and conversion time is saved in such cases by passing
the string representation of the data block as an optional argument to the integer
coder.

To evaluate the splitter algorithm, a histogram is built for each digit, giving

the frequency of occurrencé of each of the 10 possible values in that digit field. These

- histograms are then used to identify and group the digit fields which should be split

into separate arrays. The arrays are then checked to see if the repeat transform is
efficient, and then the coding costs can be estimated using the mid-level simulator.

FIG. 8 is a flowchart overviewing the mid-level of the integer coder. Array
data is input at step 101 and is first processed by a range mapper at step 103. Extra
bits to be packed are stored at step 105. From the resulting range codes a
determination is made whether to employ an MTF coder at step 107. If that
determination is affirmative, then the MTF coder is executed at step 109. The final
range codes are provided to the low-level coder at step 110.

This mid-level coder has to reduce the size of the alphabet to one which can
effectively be handled by the low level coders, and to do its function in a way which

maximizes compression. It includes a range remapper (step 103) and an optional post-
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transform MTF (Move to Front) transform (step 109). The range coding may
reintroduce a positional component into the data set, in that range codes may tend to
match the nearby range codes even when the original values did not match. If this has
occurred, the MTF transform is run before sending to the low-level coder, which
converts these symbols into the encoded data stream. The output of the mid-level
coder is sent to the low-level coder. The mid-level simulator can also be used by
higher level routines to estimate coding costs.

The range remapper converts the integer input into code words. Each input
value is represented by a single code word. Because the number of code words is
usually less than the number of possible data values, some of the code words can
represent more than one possible source value. In these cases, the code word
indicates a range of values, and the range-remapper bitpacks an offset within this
range. This is a standard compression technique.

The standard approaches tend to use pre-defined range tables and allow the
low-level coder to use fewer bits for the range codes for the ranges most common in

the data block. The preferred system creates range tables which are optimized for

- each data block, and significantly reduces the number of bits used to pack the offsets

within the ranges. For example, a fixed range tabie might define a range that begins
at 0x10000 and ends at 0x20000, which requires 16 bits to pack the offset for each
entry in that range. But all of the entries in that range may have the value 0x18000.
The preferred system would discover this and create a special range for this value
which requires no extra bits.

The system uses the term "magic values" to describe specific values which
occur at a high frequency in the data block. These values are given special treatment
because they should be packed without using extra bits regardless of where they occur
in the data range. For the remaining "non-magic", optimized ranges are created

which adapt to the distribution of values within the data block.
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The first step is to determine a target table size. Each table entry requires a

fixed overhead in both the range remapper and in the low-level coder. Smaller data

blocks should use smaller table. But data blocks with a large numerical range may

save more bits using better tables, so the size of the table is also to be adjusted for the

5 data range. The target number of entries for each table entry, called the min_freq, is

then calculated as:

min _freq = num_entries / target_tab_size; | 4

The final table sizes will be substantially different from the targets, but this

gives a value to use in the table construction. A sorted histogram giving the

10 frequency of each value in the data block is created next. The table is built in two

sections: one for positive values, and one for negative. The general procedure for

creating an adaptive range table is described for the positive table:

15

20

Start at the smallest value with a freq>0 and call it the "base" of our first
range. If its frequency is less than min_freq, expand the range by adding
another value to it until the total frequency of values included in the range
>min_freq. At this point, the range will have the size

range size = last_val - base; (5)

Get the number of bits nbits needed to express all possible values in the range.
Expand the range to the size 1 < < nbits. The next range will begin at
base[i+1] = base[i] + (1 < <nbits[i]); (6)

Skip over the hist values until get to the next value > = base[i+1], and then
create the next range. The negative table is done at the same way, beginning

at -1 and moving to larger negative values.



10

15

20

WO 98/39699 PCT/US98/04453.

-49-

Example 10

While this introduces the general approach, it is modified to handle the magic
values. Any value whose freq>min_freq is a magic value which should get a
separate table entry that requires no extra bits. If one is encountered during the
process of building the table, it is added to a special list which will be maintained of
the magic values. The data range is compacted so as to remove the magic value from

the range:

If min freq = 10:

Yal Freq Freq After Removing Base Offset Ebits
Magic Val

100 4 4 100 0 2

101 3 3 100 1 2

102 12 0 (magic) 0)

103 3 3 100 2 2

104 2 2 100 3 2

If the min_freq in this example was 10, and a new range was to be started at
value 100, value '102' is a magic value and is deleted from the range whose base is at
100. All four values remaining in that range (100,101,103,104) can then be expressed
using a 2 bit offset.

The range tables can be reconstructed using the list of magic values and the
ebits (the number of extra bits to encode the offsets) for each range. To encode the
ebits a 2 bit code whose values represent offsets from the previous ebits entry is

created for each entry:
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: ebits[i] = ebits[i-1] - 1

: ebits[i] = ebits[i-1]

: ebits[i] = ebits[i-1] + 1

: ebits[i] = ebits[i-1] + offset

where offset is packed as a signed value using a number of

extrabits.

Four of these codes are packed into a 1 byte value, and then a low-level coder

is used with a pre-defined static table to code the 1 byte code words. A sampling

interval is defined, and the extrabits value (the maximum number of bits needed for

any offset) are adjusted, for each sample group. Several sets of low-level encoding

tables are also created, and the code table is selected according to the amount of

activity (total bits changed) in a sample group.

To encode the list of magic values, the list is sorted and converted to offsets

from the previous value. These offsets are then encoded using 2-bit codes:

0: offset =
1: offset =
2 offset >
3:
0:
1:
2:
3:

1

2-5. Pack 2 extra bits to select which

=6. Use special coding procedure for oversize offsets

repeat previous offset rpt_ct times. 2 bit code used to find the rpt_ct:

mpt ct = 1

rpt_ct = 2,3. pack extra bit to select

pt_ct = 4-6. Pack 2 extra bits to select. Code 2 with
offset=3 used to indicate special MAX_ RPT value
rpt_ct = 7-22 pack 4 extra bits to select.

Four of these 2-bit codes are packed into a 1 byte word, and then this word is

encoded using a pre-defined static table selected according to the last 2-bit code in the
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previous word. The oversize offsets are encoded using a statically defined
base +offset range table. The range codes are encoded using the low-level encoder
with a table selected according to the previous range code. The offsets are bit-packed.

The range codes may sometimes be positionally correlated: similar codes may
be clustered near each other. In such cases, running the codes through a standard
MTF transform may improve the coding in the low level coder. This is tested for
using a sample block of codes prior to sending the codes to the low level coder. The
transform is then used of it is efficient.

The high level modeler often needs an estimate of the encoding cost of a block
to select among competing high-level algorithms. The simulator receives a block of
sample values as well as the size of the full data block. It uses the samples to generate
an estimate of the cost of encoding the full data block.‘ When making this estimate,

several modifications are made in the operation of the mid-level coder:

- Estimate of costs of encoding the tables using a model based on the number of

entries and the total number of bits changed for the entire table;

- Estimate of costs of encoding the range codes from the frequencies of each

code using a fast approximation of the standard equation:

fregli]
£=-y1 i)
cos 2 °g, tot freq (7)
where: freqli] = frequency of codeli]
tot freq = total frequency of all codes
log2 = base 2 algorithm
cost = numbits needed to encode the block;

- Compute the cost of extra bits needed to code the offsets within the ranges;
and

- Delete the mid-level MTE.
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EQUIVALENTS

While this invention has been particularly shown and described with references
to preferred embodiments thereof, it will be understood by those skilled in the art that
various changes in form and details may be made therein without departing from the
spirit and scope of the invention as defined by the appended claims. Those skilled in
the art will recognize or be able to ascertain using no more than routine
experimentation, many equivalents to the specific embodiments of the invention
described specifically herein. Such equivalents are intended to be enéompassed in the

scope of the claims.
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CLAIMS

What is claimed is:

A method of coding data, comprising the steps of:

parsing source data into a plurality of blocks;

for each block, selecting a compression algorithm from a plurality of
candidate compression algorithms; '

for each block, applying the selected compression algorithm to the
source data; and

combining the compressed data from the plurality of blocks into

encoded data.

The method of Claim 1 wherein the source data is structured in a first data
format and the step of parsing comprises converting the source data into a

second data format.

The method of Claim 2 wherein the step of converting comprises collecting

similar data from the source data into respective blocks.

The method of Claim 2 wherein the step of converting comprises forming a

compression model based on the first data format.

The method of Claim 1 wherein the compression algorithms are determined

based on the amount of data in the respective block.
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The method of Claim 1 wherein a compression algorithm is adapted to the

respective block.

The method of Claim 1 wherein the step of selecting comprises forming a

customized transform.

The method of Claim 1 further comprising the step of recovering the source

data from the encoded data.

An article of manufacture, comprising:
a machine-readable medium,;
a set of instructions recorded in the machine-readable medium to
implement a data coding network, comprising the steps of:
parsing source data into a plurality of blocks;
for each block, selecting a compression algorithm from a
plurality of candidate compression algorithms;
for each block, applying the selected compression algorithm to
compress the source data; and
combining the compressed data from the plurality of blocks into

encoded data.

The article of Claim 9 wherein the source data is structured in a first data
format and the step of parsing comprises converting the source data into a

second data format.

The article of Claim 10 wherein the step of converting comprises collecting

similar data from the source data into respective blocks.
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The article of Claim 10 wherein the step of converting comprises forming a

compression model based on the first data format.

The article of Claim 9 wherein the compression algorithms are determined

based on the amount of data in the respective blocks.

The article of Claim 9 wherein a compression algorithm is adapted to the

respective block.

The article of Claim 9 wherein the step of selecting comprises forming a

customized transform.

The article of Claim 9 further comprising the step of recovering the source

data from the encoded data.

An apparatus to code data, comprising:

a parser to parse source data into a plurality of blocks;

a selection system for selecting a compression algorithm for a block
from a plurality of candidate compression algorithms;

a coder for applying the selected compression algorithm to compress
the data in the blocks and for combining the compressed data from the

plurality of blocks into encoded data.

The apparatus of Claim 17 wherein the parser groups like data from the source

data into respective blocks.

The apparatus of Claim 17 wherein the selection system is adaptive to the data

in the block.
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20.  The apparatus of Claim 17 further comprising a recovery system for

recovering the source data from the encoded data.
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