EP 0072910 B1

Europdisches Patentamt
European Patent Office

v 9

Office européen des brevets

(@) Publication number:

0072910
B1

® EUROPEAN PATENT SPECIFICATION

@ Date of publication of patent specification: 01.03.89

@ Application number: 82106247.8

@ Date of filing: 13.07.82

® Int.c*: G06 K7/14, G 06 K7/016

® Decoding method for muiticharacter labels.

Priority: 20.08.81 US 294594

Date of publication of application:
02.03.83 Bulletin 83/09

@ Publication of the grant of the patent:
01.03.89 Bulletin 89/09

Designated Contracting States:
DEFRGBIT

References cited:
FR-A-2 387 478
US-A-3916 154

1BM TECHNICAL DISCLOSURE BULLETIN, vol.

17, no. 3, August 1974, pages 724-725, New
York, US; R.PUJDOWSKI et al.: "Optical
scanner compensation for bar codes”

IBM TECHNICAL DISCLOSURE BULLETIN, vol.

17, no. 7, December 1974, pages 2080-2081,
New York, US; R.A.BRECKE et al.: "Code
validation in an optical bar-code reader”

@ Proprietor: International Business Machines

Corporation
Old Orchard Road
Armonk, N.Y. 10504 (US)

Inventor: Laurer, George Joseph
4608 Oak Park Road

Raleigh, NC 27612 (US)

Inventor: Stokes, Olen Lee, Jr.
1033 Ilvy Lane

Cary, NC 27511 (US)

Representative: Vekemans, André
Compagnie IBM France Département de
Propriété Intellectuelle

F-06610 La Gaude (FR)

Note: Within nine months from the publication of the mention of the grant of the European patent, any person may
give notice to the European Patent Office of opposition to the European patent granted. Notice of opposition shall
be filed in a written reasoned statement. It shall not be deemed to have been filed untii the opposition fee has been

paid. {Art. 99(1) European patent convention).

Courier Press, Leamington Spa, England.

1 EP 0072910 B1 2

Description

This invention relates to bar code scanners and
more particularly to a decoding method for select-
ing a bar-coded candidate from several possible
candidates.

One of the more significant changes in the
supermarket industry in recent years has been the
general acceptance of product-identifying labels
encoded using a standard bar code format. Such
labels can be automatically read at a checkout
stand by an optical scanning component of a
point-of-sale system. Decoded label information
can be used for a number of purposes, including
look-up of item prices stored in the memory,
performance of inventory control operations,
tracking of monitoring of saies of particular items
and preparation of descriptive customer receipt
tapes.

Various versions of the code are in use in
different countries around the world. In a given
country, a UPC (Universal Product Code) format,
an EAN (European Article Number) format or a
JAN (Japanese Article Number) format may be in
use. While the formats may differ from each other
in details, all use the same basic encoding system
wherein a data character is represented by a
combination of two bars alternating with two
spaces.

The majority (0, 3, 4, 5, 6 and 9) of decimali
characters can be decoded using certain bar-
space pair measurements taken within the
character. There are, however, certain decimal
characters (1, 2, 7 and 8) which cannot be
uniquely identified by the bar-space pair
measurements alone. The bar-space pair
measurements are sufficient to identify each of
the two subsets (1, 7 and 2, 8) into which these
characters are grouped. The final identification of
a character within one of the subsets requires an
additional bar width measurement. Such a
method is disclosed in FR—A—2387478.

The bar code representations of the digits 1, 2,
7, 8 are often referred to as ambiguous characters
since they cannot be fully decoded with bar-space
pair measurements alone. The bar code
representations of the remaining digits, which
can be decoded with bar-space pair
measurements, are sometimes referred to as non-
ambiguous characters.

If the UPC labels_actually printed and in use
always conformed strictly to all stated standards
regarding bar widths, reflectance, etc., if the
scanners which read those Ilabels always
operated optimally, and if labels being scanned
were always optimally oriented relative to the
scanner, then multiple scans of a label would
probably always result in the same label candi-
date. However, because labels are printed, hand-
led and scanned under real (rather than optimal)
conditions, it is not unusual for multiple scans of a
singie label to result in two or more different label
candidates. For exampie, a five digit label
“47736" might be read as “42136", "“48136",
“42736" and "“48736" during four scans due to the

10

15

20

25

30

35

40

50

55

60

65

difficulty in distinguishing between ambiguous
characters.

The problem which then arises is how to select
the most likely of several different candidates for
further processing which will finally determine
whether the selected candidate is a valid one. The
further processing may take the form of a modulo
check. One of the characters in the label is
generated when the label is created by combining
the remaining characters in the label in accor-
dacne with a known algorithm. To determine
whether the label has been correctly read by a
scanner, those characters are recombined after
decoding using the same algorithm to determine
whether the calculated modulo character matches
the character actually detected on the label. If the
calcuiated and detected modulo. values don't
match, it is assumed that the label candidate is an
invalid one.

It would, of course, be possible to perform a
modulo check on every single different label
candidate to deteermine which of the candidates
would survive such a check. The obvious draw-
back to this approach is that it would require an
unreasonable amount of processor time and an
unreasonable amount of buffer storage. A
requirement for added buffer storage affects the
cost of the system. A requirement for added
processor time can adversely affect system
response time. If a more powerful processor is
used to achieve an acceptable level of system
response, the cost of the system is increased.

Another known technique is to fully decode
every possible label candidate before attempting
to select a particular candidate for modulo check-
ing. The label candidate that appears most fre-
quently is then selected for modulo checking. A
method for selecting the label candidate is
described in IBM Technical Disclosure Bulletin,
Volume 17, No. 7, December 1974, pages
2080—2081.

While this technique is better than the more
conservative technique described above, it still
has some drawbacks. While this technique may
require less time to carry out in practice since the
most frequently occurring candidate is probably
the correct candidate, a considerable amount of
processor time is still required to decode all of the
ambiguous characters in all of the potential can-
didates.

Disclosure of invention

According to the present invention there is
provided a decoding method for more effectively
selecting the best label candidate from among a
plurality of label candidates resulting from
several scans of the same label.

The label is a multi-character label having one
or more ambiguous positions, each of which is
occupied by a character included in the set of
characters which is ambiguously decoded during
each of multipie scans of the label. The decoding
method includes the steps of deriving and storing
a preliminary labei value following each scan. The
preliminary label value has a common set-iden-

3 EP 0072910 Bt 4

tifying character assigned to any ambiguous posi-
tion. A tentative ambiguity-resolving value is
derived and stored for each ambiguous position.
The tentative values for each ambiguous position
are combined to select a final character value for
that ambiguous position as a function of a
number of times a specific character has been
tentatively identified as occupying that position.

The advantage of the corroboration technique
is that no effort is made to forward a label
candidate for further processing until ambiguities
between ambiguous characters are resolved by
the majority vote technique. As a result, there will
be a savings in processor time.

The details of a preferred implementation of the
invention may be more readily ascertained from
the following description when read in conjunc-
tion with the accompanying drawings wherein:

Figure 1 is a generalized block diagram of a bar
code scanning system within which the present
invention may be used.

Figure 2 shows the generai format of one
commonly-used type of label employing bar code
characters.

Figures 3 and 4 represent the two forms of the
bar coded representation digit 4" as that charac-
ter would appear both to the left (odd) and to the
right (even) of the center character in a label.

Figure 5 depicts a UPC character and is labelled
to show certain measurements used in the decod-
ing of characters.

Figure 6 is a general flow chart of a decoding
method employing the present invention, and

Figures 7 through 10, taken together, are a
more detailed flow chart of the decoding method
represented generally in Figure 6.

Referring to Figure 1, a checkout stand is
represented generally by a surface 10 having a
transparent scanner window 12. As a grocery
item 14 is moved over window 12, a bar coded
label 16 on the product surface is swept one or
more times by a light beam 18 which originates
below the checkout stand surface in an optical
subsystem 20. Light reflected from the label 16
impinges on a photosensitive element in the
optical subsystem 20. Reflected light, the level of
which varies as a function of the reflectance of the
particular point on the package being scanned, is
converted into a roughly sinusoidal electrical
signal which is applied to threshold and shaping
circuits 22. A function of the circuits 22 is to
convert the roughly sinusoidal signal to a square
wave pulse train in which the duration of each
pulse bears a temporal relation to a particular
light or dark area being traversed by the beam 18.

In almost all instances, a bar-coded label is
surrounded by printed matter, graphics, pictorial
material, etc., which may produce code-like
reflections. Candidate select logic circuits 24
serve to “find’’ the actual {abel signals among the
extraneous and meaningless signals produced
upon scanning of printed matter, etc. When one
or more label candidates has been found, those
candidates are transferred to a candidate decod-
ing processor 26, the functions of which are to

10

15

20

25

30

35

40

45

50

55

80

65

select the most likely label candidate from a
possible plurality of different candidates and to
generate numeric representations of the selected
candidates. The finally selected decoded label is
then passed on to a point-of-sale terminal 28 or
possibly a store controller to permit price lookup
operations, inventory control operations, and
perhaps other functions, to be performed.

Referring to Figure 2, a widely used type of UPC
label includes guard characters 30 at the ieft and,
right margins of the label. The data characters in
the label are divided by a center character 32 into
a left (odd) set of data characters and a right
{even) set of data characters. The difference
between the data characters to the left of the
center character 32 and the data characters to the
right of the center character 32 and the meanings
of the terms “odd”’ and “even” are explained with
reference to Figures 3 and 4.

Figure 3 is a UPC representation of the digit ‘4"
as it would appear in the bank of the characters to
the left of the center character 32. Like all data
characters, the “4” character is considered to be
seven modules long with each bar or space being
one of more modules in width. The odd “4”
character consists of a single module space 34, a
single module bar 36, a three module space 38,
and a two module bar 40. This particular character
has at least two things in common with all of the
characters appearing to the left of the center
character 32. First, every character begins with a
space and ends with a bar. Second, the combined
width of the bars 36 and 40 is an odd number of
modules; in this case, three.

Referring to Figure 4, when the UPC representa-
tion of the digit 4" appears to the right of the
center character, the coded character is the binary
complement or ‘‘negative image” of the left or
odd “4"”. That is, the encoded representation has
a bar in each moduie occupied by a space in the
odd ““4" and a space in each module occupied by
a bar in the odd “’4". Characters appearing to the
right of center are referred to as even characters,
since the bars occupy an even number of
modules: in this case, four.

The following table is an encodation of the
digits 0—9 as those digits wouid be represented
to the left and right of the center character on a
UPC label. A 0" represents a white bar or space
while a 1" represents a black or dark bar.

Double or wider bars and spaces are repre-
sented by two or more adjacent identical binary
characters. An inspection of the table shows that
all “left” characters exhibit odd parity; that is, the
combined width of the bars in each character is
equal to either three or five modules. In contrast,
all “right”” characters exhibit even parity; i.e., the
combined width of the bars in a character is
always two or four modules.

5 EP 0072910 B1 6

TABLE 1
Left (odd) Right (even)
Digits characters characters
0 0001101 1110010
1 0011001 1100110
2 0010011 1101100
3 0111101 1000010
4 0100011 1011100
5 0110001 1001110
6 0101111 1010000
7 0111011 1000100
8 0110111 1001000
8 0001011 1110100

A label of the type shown in Figure 2 is found or
framed and then decoded 1/2 at a time. That is,
the candidate select logic will identify as a
possible label any stream of data characters
bounded by a center character and a guard
character. The actual decoding of any candidate
begins at the center character and proceeds one
character at a time toward the guard characters.
The left and right label halves are combined only
after decoding.

Within a given label, all data characters have
the same physical width. From one label to the
next, the absolute width of the data characters
may vary over roughly two-to-one range. For that
reason, a UPC label is decoded as much as
possible using relative width measurements
rather than absolute width measurements.
Referring to Figure 5, three of the width
measurements used in the decoding process are
defined there. Measurement T1 represents the
combined width of the first bar-space pair in the
character in the direction of decoding.
Measurement T2 is equal to the combined width
of the first space-bar pair in the direction of
decoding. The measurement TR represents the
total width of the two bars and two spaces which
make up the character. A fourth measurement,
not illustrated, which may be needed to decode
the “ambiquous” characters 1, 2, 7, 8 is 2TB
which is equal to the combined widths of the two
black bars in the particular data character. In
practice, all of these measurements are expressed
as the number of constant frequency pulses or
counts produced by a high speed oscillator as the
relevant region is traversed by the scanning
beam. For example, assume the system uses a 7
MHz oscillator and that the scanning beam
requires 30 microseconds to traverse an entire
character. Under those conditions, TR would
equal 30x107° sec, 7x10° counts/sec or 210
counts.

The majority of UPC representations of digits
(0, 3, 4, 5, 6 and 9) can be decoded using the T1,
T2 and TR measurements. These measurements
are normalized within the decoding process into
N1 and N2 values in accordance with the follow-
ing equations.

5

20

25

30

35

45

50

55

60

65

7T

N1=—— (1)
TR
772

N2=—r {2)
TR

Since each data character is considered to be
seven modules wide, the N1 and N2 values are
actually normalized representations of the T1 and
T2 mesaurements, respectively.

TABLE 2
Left Right
(odd) N1 N2 {even} N1 N2
0 2 3 0 5 3
1 3 4 1 4 4
2 4 3 2 3 3
3 2 5 3 5 5
4 5 4 4 2 4
5 4 5 5 3 5
6 5 2 6 2 2
7 3 4 7 4 4
8 4 3 8 3 3
9 3 2 9 4 2

The values of N1 and N2 for the odd and even
UPC representation of the digits are shown in
Table 2. The various unique combinations of N1
and N2 values which result from the application
of equations 1 and 2 are sufficient to fully identify
the six non-ambiguous digits 0, 3, 4, 5, 6 and 9.
The table shows, however, that 1 cannot be
distinguished from 7 in either the odd or the even
set of characters since both have the same N1 and
N2 values. Similarly, 2 cannot be distinguished
from 8 on the basis of N1 and N2 values alone.

To distinguish a 1 from a 7 or a 2 from an 8, an
additional measurement is required. The
additional measurement is the bar width
measurement ZTB, representing the combined
width of the two bars in the data character. In the
decoding process, the ZTB is normalized to yield
an NB value in accordance with the formula:

7278
NB=—— (3)
TR

The combined widths of the bars of the two
possible characters in a subset (for example, odd
1, odd 7) are always different and can be used to
distinguish one of the subset characters from the
other. For example, NB for odd 1 is equal to three
while NB for odd 7 is equal to five.

The idealized, normalized NB values for the
ambiguous characters 1, 2, 8, 8 are listed below in
Table 3. These NB values are needed to fully
decode those characters.

7 EP 0072910 Bt 8

TABLE 3
Left Right
{odd) NB (even) NB
1 3 1 4
2 3 2 4
7 5 7 2
8 5 8 2

The N1, N2 values are sufficient to determine
whether an ambiguous character is in the odd or
the even set of ambiguous characters. Similarly,
the N1, N2 values indicate whether the
ambiguous character is in the 1, 7 subset or the 2,
8 subset. To determine at least tentatively which
of the two possible characters has been read, the
N1, N2, NB values are used in one of the two
following formulas, depending on whether the
character is in the odd or even set:

2NB
(for odd characters) (4)
1+N1+N2
2{7—NB)
(for even characters) (5)
1+{(7—-N1)+N2

For odd characters, the results of formula 4 will
always be less than 1 for a 1 or a 2 and greater
than or equal to 1 for a 7 or an 8. Similarly, for
even characters, the results of formula 5 will
always be less than 1 for a 1 or a 2 and greater
than or equal to 1 for a 7 or an 8. This is
summarized in Table 4 below.

TABLE 4
Identified Value of
subset formula (4), (5)
<1 =1

obD 1,7 OoDD 1 oDD 7
oDD 2,8 oDD 2 OoDD 8
EVEN 1,7 EVEN 1 EVEN 7
EVEN 2, 8 EVEN 2 EVEN 8

For reasons which will be explained in more
detail below, algebraic values of equal magnitude
and opposite polarity are assigned depending on
whether the selected formula produces a result
less than 1 or greater than or equal to 1. For
example, if either formula 4 of formula 5 produces
a result less than 1, an arbitrary value of —1 is
assigned. If either formula produces a result
greater than or equal to 1, an algebraic value of
+1 is assigned. The actual results of the computa-
tions are referred to as D. The algebraic values
assigned as a function of the resuits are referred
to as D'.

In the decoding method to be described below,
the term “character identifiers” is frequently
used. For a non-ambiguous character, the charac-
ter identifiers are the N1, N2 values defined

10

15

20

25

30

35

40

45

50

55

60

65

above. For ambiguous characters, the identifiers
are N1, N2 and D’, also defined above.

Referring now to Figure 6, which is a block
diagram showing the decoding method in very
general terms, the bar coded label to be decoded
must obviously be scanned (block 602) before
decoding can be performed. When all possibie
label candidates are selected (block 604) from the
scan results, one label candidate is entered {block
606). The identifiers for each of the characters in
that candidate are computed (block 608) and then
compared on a character-by-character basis with
stored identifiers (block 610) for a previously
entered label candidate, if any. If not all of the
character identifiers for the entered candidate
match corresponding identifiers for the stored
candidate (block 612), a check is made (block 614)
to determine whether another buffer is yet to be
checked from the array of candidate buffers. If all
of the buffers have been checked and no match
has been found, the currently entered candidate is
discarded. If another buffer has yet to be checked,
then it must be determined (block 618) whether
that buffer is empty. If the buffer is not empty,
meaning a previously selected candidate is stored
therein, the program returns to block 610 and the
identifiers for the entered candidate are com-
pared with the identifiers for the candidate in the
newly selected buffer. If, however, the check of
block 618 shows the newly selected buffer to be
empty, the identifiers for the entered candidate
are written into the previously empty buffer (block
620).

If the check made at block 612 indicates that the
identifiers for all characters in the entered candi-
date match the identifiers for all characters in the
candidate stored in the selected buffer, the 1—7,
2—8 identifier or “D’’ value for each ambiguous
character is updated in the seiected buffer {block
622). A check is then made (block 624) to deter-
mine whether any more candidates are to be
entered. The program is also re-entered at biock
624 after a candidate has been discarded (biock
616) or after a candidate has been written into a
previously empty buffer (block 620).

If there are more candidates to be processed,
the program loops back to block 606 and a new
candidate is entered and processed. If the check
made at block 624 indicates that there are no
additional candidates to be processed, a “plu-
rality’” vote is taken (block 626} to determine
which candidate appeared the greatest number of
times. This candidate is selected as the final
buffer candidate. It should be noted the buffer
candidate is selected for full decoding without
attempting to distinguish betweena1anda7ora
2 and an 8. All non-ambiguous characters are
decoded using N1, N2 values and choices
between a 1 and a 7 or a 2 and an 8 in the final
candidate are made on a majority vote basis
(block 628). The fully decoded final candidate is
transferred within the system for modulo check-
ing.

The decoding method is described in much
greater detail in figures 7, 8, 9 and 10 which, taken

9 EP 0072910 Bi 10

together, constitute a detailed flow diagram of the
entire technique. Referring to Figure 7, when the
label has been scanned (block 702) and all can-
didates have been selected and stored as a series
of pulse width counts {block 704}, the number of
buffers to be used for decoding the particular type
of scanned label is initialized at a quantity K (block
706). The character count or number of characters
in the label to be decoded is initialized at a
quantity M (block 708). A buffer pointer b is then
set to 1 (block 710) to point to the first of the
available buffers. After a candidate is entered
{block 712), an equal flag is set (block 714). As will
be explained in more detail later, the value of the
equal flat at the end of a comparison phase is an
indication whether or not an entered candidate
matches a previously entered candidate.

A character pointer m is then set to 1 {block 716)
to point to the first character to be decoded in the
entered label. The values N1, N2 are computed
(block 718) in accordance with the equations (1)
and (2). The computed N1, N2 values are used
(block 720) to obtain a parity value T from a
lookup table which is the electronic equivalent of
Table 2 above. The parity value obtained is stored
{block 722) in a temporary type register.

A check must then be made (block 724) as to
whether the computed N1, N2 values have iden-
tified an ambiguous character. if a 1—7 or a 2—8
is indicated by the N1, N2 values, then either
formula 4 or formula 5 must be called up {block
726) as a function of the parity of the decoded
character. The value of D is computed (block 728).
If D is less than 1, D' is set to —1. If D is greater
than or equal to 1, a +1 value is assigned to D’.

If the check at block 724 resulted in identifica-
tion of, a non-ambiguous character, there is no
need for a computation of a D value. The program
would skip blocks 726 and 728 and go directlyto a
block 730 where a check is made as to whether or
not the currently entered candidate is the first
candidate to be processed. If it is the first candi-
date, the character being decoded obviously
cannot be compared with any corresponding
character in a previously entered candidate. The
program skips a number of steps which will be
discussed below and goes directly to an operation
806 in which the computed identifiers for the
character are stored in a temporary register. The
character pointer m is incremented (block 808)
and a check is made as to whether the value of m
is greater than M, which would indicate that all of
the characters in the entered candidate have been
processed. If the check in block 810 indicates
there are characters in the label yet to be pro-
cessed, the program loops back to operation 718
at which the values of N1, N2 are computed for
the next character in the label. If, however, the
check at block 810 indicated that all of the charac-
ters have been processed, another check 812
must then be made as to whether the equal flag is
set. Since the first candidate to be entered can't
be compared to any other candidate, the equal
flag will always be reset for the first candidate.

Assuming the equal flag is set, a tag value

70

15

20

25

30

35

40

50

55

60

65

(which would be 0 for the first candidate) is
incremented (block 902) in the selected buffer b.
The character identifiers for all of the characters in
the candidate are written into buffer b (block 904).
For non-ambiguous characters, the identifiers are
N1, N2. Ambiguous characters are identified by
N1, N2 and 2D’ value which is obtained in a
manner to be described in more detail later.

After the character identifiers for the first label
candidate are written into the buffer b, a check is
made (block 920) as to whether there are any
more candidates to be processed. If there are, the
program is resumed at the entry of block 710. The
buffer pointer is again set to the first buffer and
the next candidate is entered.

The process of computing character identifiers
is repeated for the second candidate. When the
program reaches block 730, however, the check
made there will indicate that the currently entered
candidate is not the first candidate. At this point,
the stored identifiers for each character under
consideration are retrieved from storage in buffer
b (block 732) and comparisons are performed
(block 734 and 736) between the stored and
computed values of N1 and N2, respectively. If
any mismatch is found in either of these checks,
the equal flag is reset (biock 738) and the program
proceeds to decision block 802. If the stored and
computed N values are equal, the program goes
directly to block 802 where a check is made as to
whether the character is an ambiguous one. If it
is, a stored value of ZD’ is altered by the mag-
nitude of the computed quantity D’ (block 804). If
the character is not an ambiguous character,
operation 804 is bypassed. The computed identi-
fiers for the character under consideration are
stored in the temporary register (block 806) and
character pointer m is incremented to permit the
same set of comparisons to be made for the next
character in the currentiy entered label candidate.
When all of the characters in the entered candi-
date have been compared to corresponding
characters in the previously entered and stored
candidate, a check is made (block 812) to deter-
mine whether the equal flag remains set. If the
equal flag is set, indicating that the entered
candidate matches the stored candidate, the tag
value in the accessed buffer (block 902) is
incremented to indicate that the same label candi-
date has been found a number of times equal to
the tag value.

At this point, no effort is made to distinguish
between a 1 and a 7 or a 2 and an 8. The final
choice between each of the two possible charac-
ters is made at a later point as a function of ZD’ for
the character position in question. The value N1,
N2, T and any 2D’ values for the entire label
candidate are then loaded into the accessed
buffer (block 904). Since the N1, N2 and T values
should match those already in the buffer, there
will be no change in buffer contents for these
values. Any ZID’ values which are loaded into the
buffer are necessarily different from the ZD’
values previously stored there. Once the write
operation is completed, a check (block 920) is

11 EP 0072910 Bt 12

made as to whether there are any more can-
didates to be processed. If there are, the program
loops back to block 710. The next candidate is
entered and is compared to the candidate pre-
viously stored in buffer 1 on a character-by-
character basis.

If, however, the check at block 812 had indi-
cated that the equal flag was reset due to a
mismatch in any character position, the tag value
in buffer b (block 910) is read. If the tag value is 0,
indicating that the buffer is empty, the program
branches to block 902 and causes the newly
entered candidate to be written into the empty
buffer. If the tag value in the accessed buffer is not
equal to 0, indicating that there is already a
dissimilar candidate stored in that buffer, the
buffer pointer is incremented (block 914) and a
check is made (block 916} as to whether the buffer
pointer is still pointing at a buffer within the
acceptable range. If the buffer pointer value is
greater than the number of buffers allocated for
this purpose, the candidate is discarded (block
918) and the check 920 is made as to whether
there are any more candidates to be processed.

if the incremented buffer pointer indicates that
there is another buffer in the set which either may
be empty or may contain a label candidate to be
compared with the currently entered candidate,
the program returns to block 714. The equal flag is
set and the characters in the entered candidate
are compared one at a time to the characters in
the newly accessed buffer.

This process is repeated with each newly
entered candidate being compared to the can-
didates previously stored in the buffers until:

{1) a match is found between the entered
candidate and a previously stored candidate, in
which case the tag value and the ZD’ values for
any ambiguous characters are altered in the
accessed buffer;

(2) no match can be found between the entered
candidate and any of the candidates stored in the
buffers but an empty buffer is available, in which
case the entered candidate is written into the
previously empty buffer; or

{3) mo match can be found between the entered
candidate and any previously stored candidates
and no buffers are available, in which case the
entered candidate is discarded.

Once the check 920 indicates that no more
candidates are available for processing, the pro-
gram enters a final decoding phase. This phase of
the program begins at block 1002 where the
buffer pointer b is set to point to the buffer in the
array having the maximum tag value; that is, the
buffer containing the partiaily decoded candidate
which appeared the greatest number of times.
The character pointer is set to point to the first
character in that buffer (block 1004). The vaiues of
N1, N2 and any =D’ for that character are read
from the buffer (block 1006). The N1 and N2
values are used (block 1008) to decode to one of
16 possible characters. The 16 characters consist
of odd 1—7 (treated as a single character}, odd
2—8 (treated as a single character), odd 3, odd 4,

10

15

20

25

30

35

40

45

50

55

60

65

odd 5, odd 9, odd 0, even 1—7 (treated as a single
character), even 2—S8 (treated as a single charac-
ter), even 3, even 4, even 5, even 6, even 9, and
even 0.

Once the partial decode has been performed, a
check (block 1010) is made to find out whether the
N1, N2 values indicates an ambiguous character.
if a non-ambiguous character is indicated, the
program branches to a write operation (block
1022) in which the decoded character is written
into a label buffer.

If check 1010 reveals an ambiguous character, a
second check (block 1012) is made to determine
whether the value of 2D’ is equal to 0. If 2D’ is
equal to 0, indicating that an ambiguous character
was tentatively identified as one of two possible
characters the same number of times that it was
identified as the other of the two possible charac-
ters, the candidate is discarded {block 1014) and a
“bad scan flag” is set {block 1015) to allow the
operator to be notified that the item should be re-
scanned. The program loops to its entry point at
block 702 under these conditions.

If block 1012 indicates that the value of 2D’ is
equal to something other than 0, then a decision
is made (block 1016) as to whether ZD’ is greater
than or less than 0. If 2D’ is less than 0, the
ambiguous character is either a 1 or a 2 (block
1018). If D’ is greater than 0, the ambiguous
character is taken to be a 7 or an 8 {block 1020).
The process of selecting one of the other of the
ambiguous characters amounts to a majority vote *
technique since the algebraic sign of ZD’ is clearly
a function of which of the two possible choices
occurred more often.

When a final choice is made between one of the
two possible ambiguous characters, that decoded
character is written into the label buffer {(block
1022) and the character pointer is incremented
{block 1024). If the character pointer is still within
the permissible range of characters (biock 1026)
the decode loop is re-entered at block 1006 to fully
decode the next character. When all of the charac-
ters in the label have been fully decoded, the now
fully decoded final candidate is forwarded within
the system for modulio checking.

Conceptually, both majority vote decisions and
a plurality vote decision are made in finally
choosing the label.candidate on which a modulo
check is performed. The plurality vote is used to
choose that partially decoded candidate which
appeared more frequently than any other com-
plete candidate. The majority vote is used to
choose one of two possible ambiguous charac-
ters in a given character position as a function of
which of those two characters appeared most
frequently during preliminary decoding.

Claims

1. For use in a label scanning system of the type
wherein a plurality of multicharacter label can-
didates may be generated as a result of multiple
scans of a label, a decoding method wherein a set
of up to three indicators (N1, N2, ZD’} is derived

13 EP 0072910 B1 14

and stored for each character segment in each
label candidate, two (N1, N2} of said three indi-
cators being capable of identifying either indivi-
dual characters or subsets of characters, said
third indicator (ZD’) being capable of identifying a
particular character within a given subset; further
characterized in that it comprises the following
steps:

a) comparing the first two indicators (N1, N2)
for each character segment in a given candidate
to the corresponding indicators for a corre-
sponding character segment in at least one other
label candidate to determine whether the label
candidates have matching characters or matching
subsets of characters;

b) accumulating the third indicators (ZD’) for
corresponding character segments until all label
candidates have been compared; and

c) selecting a particular character for each
character segment identified as being occupied
by a subset as a function of the accumulated third
indicator values for that segment.

2. A decoding method as recited in claim 1
characterized in that the label to be decoded
consists of a plurality of bar-coded character
segments, each consisting of an equal number of
bars and spaces and wherein said first and
second indicators are derived by forming ratios of
the combined widths of successive bar-space
pairs to the total character segment width.

3. A decoding method as recited in claim 2
characterized in that said third indicator is derived
as a function of the combined bar widths in a

character segment and of the magnitudes of the

first and second indicators.

4. A decoding method as recited in claim 3,
characterized in that said first indicator N1 and
said second indicator are derived by the equg-
tions:

7T 772
Ni=—— N2=—
TR TR

where:

T1 is the combined width of the first bar-space
pair in the character segment,

T2 is the combined width of the first space-bar
pair in the character segment, and

TR is the combined width of the two bars and
spaces which comprise the character segment.

5. A decoding method as recited in claim 4
characterized in that individual characters or
subsets of characters are classified as odd or even
depending on the derived values N1 and N2 and
wherein the third indicator is established as

2NB
T+N1+N2

for odd characters or

10

15

20

25

30

35

40

45

50

55

60

65

2(7—-NB)

1+(7—N1)+N2

for even characters

where NB is the total bar width of the character
segment.

6. A decoding method as recited in claim 5
characterized in that an absolute value D' having
one algebraic sign is assigned to the third
indicator where that indicator value is equal to or
greater than a given threshoid vaiue while the
same absolute value D’ having the opposite
algebraic sign is assigned to the third indicator
where that indicator value is less than the given
threshold value. :

7. A decoding method as recited in claim 6
characterized in that the third indicator is
accumulated by summing the algebraic values D’
with a positive result representing one of two
possible characters in a subset and a negative
result representing the other of the two possible
characters.

8. A decoding method as recited in any one of
claims 1—7 characterized in that it includes the
additional steps of storing a tag value for each
label candidate representing the number of times
that candidate has been decoded and selecting
the label candidate having the greatest tag value
for further processing.

Patentanspriiche

1. Dekodiermethode zur Verwendung in einem
Etikettabtastsystem des Typs, bei dem eine Viel-
zahl von Mehrzeichenetikettkandidaten ais Ergeb-
nis mehrerer Abstastungen eines Etiketts erzeugt
werden kann, wobei ein Satz, der biz zu drei
Indikatoren (N1, N2, D’) enthaiten kann, flr jedes
Zeichensegment in jedem Etikettkandidat abgelei-
tet und gespeichert wird und zwei (N1, N2) der
genannten drei indikatoren fahig sind, entweder
einzelne Zeichen oder Zeichen-Teilsatze zu identi-
fizieren und der genannte dritte Indikator (D’)
fahig ist, ein einzelnes Zeichen innerhalb eines
gegebenen Teilsatzes zu identifizieren, weiter
dadurch gekennzeichnet, dass sie folgende
Schritte aufweist:

a) Vergleich der ersten zwei Indikatoren (N1,
N2) fir jedes Zeichensegment in einem gegebe-
nen Kandidaten mit den entsprechenden Indikato-
ren auf ein entsprechendes Zeichensegment in
zumindest einem anderen Etikettkandidaten um
zu erkennen, ob die Etikettkandidaten Uberein-
stimmende Zeichen oder Ubereinstimmende Zei-
chen-Teilsédtze aufweisen;

b) Speichern der driiten Indikatoren (D'} im
Hinblick auf entsprechende Zeichensegmente bis
alle Etikettkandidaten verglichen wurden, und

¢) Wahl eines Einzelzeichens fiir jedes Zeichen-
segment, das ais von einem Teilsatz besetzt im
Verhéltnis zu den gespeicherten dritten Indikator-
werten fiir des Segment identifiziert wurde.

2. Dekodiermethode nach Anspruch 1, dadurch
gekennzeichnet, dass das zu dekodierende Etikett

15 EP 0072910 Bi 16

aus einer Vielzahl von Strichmarkierungs-Zei-
chensegmenten besteht, wobei jedes Segment
davon eine gleiche Anzahl von Strichen und
Zwischenrdumen aufweist und die genannten
ersten und zweiten Indikatoren durch Bildung von
Verhéltnissen zwischen den kombinierten Breiten
der aufeinanderfolgenden Strich-Zwischenraum-
paare und der Gesamtbreite der Zeichenseg-
mente abgeleitet werden.

3. Dekodiermethode nach Anspruch 2, dadurch
gekennzeichnet, dass der genannte dritte Indika-
tor als Funktion der kombinierten Strichbreiten in
einem Zeichensegment und der Gréssen der
ersten und zweiten Indikatoren abgeleitet wird.

4. Dekodiermethode nach Anspruch 3, dadurch
gekennzeichnet, dass der genannte erste Indika-
tor N1 und der genannte zweite Indikator aus
folgenden Gleichungen abgeleitet werden:

7T 7T2
Ni=——— N2=—
TR TR

in denen:

T1 die kombinierte Breite des ersten Strich-
Zwischenraum-Paars im Zeichensegment ist,

T2 die kombinierte Breite des ersten Strich-
Zwischenraum-Paars im Zeichensegment und

T3 die kombinierte Breite der beiden Striche
und Zwischenrdume, aus denen das
Zeichensegment besteht.

5. Dekodiermethode nach Anspruch 4, dadurch
gekennzeichnet, dass Einzelzeichen oder Zeichen-
Teilsatze je nach den abgeleiteten Werten N1 und
N2 als gerade oder ungerade klassiert werden
und dass der dritte indikator wie foigt bestimmt
wird:

2NB
1+N1+N2
als ungerades Zeichen

2(7—NB)

1+(7—-N1)}+N2

als gerades Zeichen

wo NB die gesamte
Zeichensegments bedeutet.

6. Dekodiermethode nach Anspruch 5, dadurch
gekennzeichnet, dass dem dritten Indikator ein
absoluter Wert D' mit einem Vorzeichen zugeteilt
wird, wenn dieser Indikatorwert gleich oder
grosser als ein gegebener Schwellenwert ist
wahrend derselbe absolute Wert D’ mit
umgekehrtem Vorzeichen dem dritten Indikator
zugeteilt wird, wenn dieser Indikatorwert kieiner
als der gegebenene Schwellenwert ist.

7. Dekodiermethode nach Anspruch 6, dadurch
gekennzeichnet, dass der dritte Indikator
gespeichert wird, indem die algebraischen Werte
D' mit einem positiven Ergebnis summiert
werden, das einem von zwei mdglichen Zeichen

Strichbreite des

170

15

20

25

30

35

40

45

50

55

60

65

in einem Teilsatz entspricht, und mit einem
negativen Ergebnis, das dem anderen der zwei
méglichen Zeichen entspricht.

8. Dekodiermethode nach den Anspriiche 1 bis
7, dadurch gekennzeichnet, dass sie ausserdem
noch zusitzliche Schritte aufweist, d.h. das
Speichern eines Hinweissymbolwertes fir jeden
Etikettkandidaten, der der Anzahi der
Dekodierungen des Kandidaten entspricht, und
Auswihl des Etikettkandidaten mit dem gréssten
Hinweissymbolwert fiir weitere Verarbeitung.

Revendications

1. Procédé de décodage utilisable dans un
systéme de balayage d’étiquettes du type dans
lequel une pluralité d’'étiquettes multicaractéres
(dites “‘candidates” ci-aprés) représentant diffé-
rentes interprétations possibles d'une méme éti-
quette peuvent étre engendrées consécutivement
3 de multiples balayages de cette derniére, pro-
cédé dans leque! un ensemble de trois indicateurs
ou moins (N1, N2, =D') est obtenu et stocké pour
chaque segment de caractére dans chaque candi-
date, deux (N1, N2) desdits trois indicateurs étant
capables d'identifier soit des caracteres indivi-
duels soit des sous-ensembles de caractéres, ledit
troisidme indicateur (ZD'} étant capable d'identi-
fier un caractére donné dans uns sous-ensemble
donné, ledit procédé étant caractérisé en outre en
ce qu‘il comprend les étapes suivantes consistant
a:

a) comparer les deux premiers indicateurs (N1,
N2) pour chaque segment de caractére dans une
candidate donnée avec les indicateurs correspon-
dants pour un segment de caractére correspon-
dant dans au moins une autre candidate afin de
déterminer si les candidates possédent des carac-
téres ou des sous-ensembles de caractéres identi-
ques;

b) accumuler les troisiémes indicateurs (ZD')
pour des segments de caractéres correspondants
jusqu’a ce que toutes les candidates aient été
comparées; et

¢) choisir un caractére particulier pour chaque
segment de caractére identifié comme étant
occupé par un sous-ensemble en fonction des
valeurs des troisiémes indicateurs accumulés
pour ce segment.

2. Procédé de décodage selon la revendication
1 caractérisé en ce que {'étiquette & décoder se
compose d'une pluralité de segments de carac-
téres codés au moyen de barres, chaque segment
comportant un méme nombre de barres et d’es-
paces, et en ce que lesdits premier et second
indicateurs sont obtenus en déterminant les rap-
ports des largeurs combinées de paires barre-
espace successives a la largeur totale du segment
de caractere.

3. Procédé de décodage selon la revendication
2 caractérisé en ce que ledit troisiéme indicateur
est déterminé en fonction des largeurs combinées
des barres d'un segment de caractére et des
valeurs des premier et second indicateurs.

4. Procédé de décodage selon la revendication

17 EP 0072910 Bt 18

3 caractérisé en ce que ledit premier indicateur N1
et ledit second indicateur sont déterminés au
movyen des équations suivantes:

7T1 7T2
N1=——— N2=——-
TR TR
ou
T1 est la largeur combinée de la premiére paire
barre-espace dans le segment de caractére,
T2 est la largeur combinée de la premiére paire
espace-barre dans le segment de caractére, et
TR est la largeur combinée des deux barres et
espaces qui constituent le segment de caractére.
5. Procédé de décodage selon la revendication
4 caractérisé en ce que les caractéres individuels
ou les sous-ensembles de caractéres sont classés
comme caractéres impairs ou pairs en fonction
des valeurs N1 et N2 obtenues, et en ce que le
troisiéme indicateur est établi comme suit:

2NB
1+N1+N2

pour les caractéres impairs ou

10

15

20

25

30

35

40

45

50

55

60

65

10

2(7—NB)

1+(7—N1)+N2

pour les caractéres pairs

ou NB est la largeur totale des barres du
segment de caractére.

6. Procédé de décodage selon la revendication
5 caractérisé en ce qu'une valeur absolue D’
pourvue d'un premier signe algébrique est
affectée au troisieme indicateur lorsque la valeur
de ce dernier est égale ou supérieure a une valeur
de seuil donnée tandis que la méme valeur
absolue D’ de signe algébrique opposé est
affectée au troisieme indicateur lorsque {a valeur
de celui-ci est inférieure a la valeur de seuil
donnée.

7. Procédé de décodage selon la revendication
6 caractérisé en ce que le troisieme indicateur est
accumulé en effectuant la somme des valeurs
algébriques D', un résultat positif représentant
I'un de deux caractéres possibles dans un sous-
ensemble et un résultat négatif représentant
I'autre des deux caractéres possibles.

8. Procédé de décodage selon ['une quelconque
des revendications 1 & 7 caractérisé en ce qu’il
inclut des étapes supplémentaires consistant a
stocker une valeur d’étiquette pour chaque
candidate, valeur représentant le nombre de
décodages dont cette candidate a fait 'objet, et &
sélectionner la candidate possédant la valeur
d'étiquette la plus élevée aux fins d’un traitement
complémentaire.

FIG. 1

EP 0072910 B1

SCANNER
OPTICS

20

1

THRESHOLD
& SHAPING
CIRCUITS

22

1

GANDIDATE

SELECT
LOGIC

///~24

CANDIDATE
DECODING
PROCESSOR

////26

Y

POINT
OF SALE
TERMINAL

///,28

EP 0072910 B1

FIG. 2
DATA (00D) DATA (EVEN)
¢
6 6
U ﬁ U
A N A
R E R
0 :]
07 3/ 50/
FIG. 5
FIG. 3
| TR
g34 36 /38 40 — Tf —

N\¢
ANANNNN

Y 7//
)

D

TS

t 23 4 56 1
00D "4*

FIG. 4

23 4 5617
EVEN "4~

EENNNNN\N

EP 0072910 B1

T0 BE ENTERED?

FIG. 6
SCAN 602
LABEL 4
SELECT /604 614
ALL POSS.
CANDIDATES YES fh&ﬂﬁ§§
BUFFER ? 616
‘ 606 /
ENTER / DISCARD THIS
CANDIDATE
ONE - |
CANDIDATE NO 1S i1 YES
® EMPTY ?
‘ 508 518
COMPUTE Ya —
F63E§}é$'55§R WRITE IN 620
: IDENTIFIERS
(E) FOR ENTERED
‘ CANDIDATE
COMPARE ENTERED | ..
CANDIDATE WITH V <%>
BUFFER
CANDiDATE
| ES IDENTIFIERS SELECT FINAL /
HATCH ¥ CANDIDATE
WITHOUT 4-T7, 2-8
DISTINCTIONS
Y 622
UPDATE 1-7,2-8 |/ * /828
IDENTIFIER M%m%|gég’%&8
[N BUFFER MAJORITY BASIS
c
624\; \ O
v (/’ ANY MORE
ES CANDIDATES ul

EP 0072910 B1

702
5 AN d FIG. 7
L ABEL @
704 ¥ 122
SELECT 4 store et 1
AND STORE TIN TEMP
CANDIDATES TYPE REGISTER
\ /106 ' Y 724
INTIALIZE NO N{,N2 IDENTIFY YES
BUFFER AMBIGUOUS - -
CNT AT K CHAR ?
Y 708
v vV ' 126
CHARACTER SELECT D -
COUNT AT M FORMULA AS
5 —® f(PARITY)
\ ' 128
SET BUFFER |, TH0 COMPUTE
POINTER D’
b=1
12 730
ENTER FIRST
CANDIDATE <:>1§§{:: CANDIDATE |
?
—®
EQUAL FLAG 7 RETRIEVE STORED |
] I DENTIFIERS
FOR m CHAR-
SET 116
CHARACTER Acgﬁngﬁog
POINTER m =1 :
@ - 734
1 VES STORED \\{/uo
COMPUTE N1, | 718 Nt =COMPUTED
N2 FRm | e 138
\ t /[RESET
USE N1 N2, TO | 720 YES STORED EQUAL
0BTAIN PARITY N2-COMPUTED FLAG
T FROM TABLE :

®

|3

EP 0072910 B1

AMBIGYOUS
CHARAGTER?

\

ser spr | 80

EQUAL TO

STORED 20D°
+ GOMP. D’

FIG. 8

NO
>N ?
(:).______< m M./

YES

P

STORE
IDENTIFIERS | 806
IN TEMP
REGISTER
Y
SET 808
m=m +{
810
YES
‘ 812
EQUAL
FLAG o

EP 0072910 B1

FIG. 9
® QD
910
er . V)
TAG IN
BUFFER b
. 942
N am— ‘//NO
~ TAG =07 !
|
INCREMENT |~ 302 ,
TAG IN , 944
BUFFER b SET g
b=b+1
‘ 904 946
WRITE 4 YES Loy NO
Nt N2 T : |
ANY TO° '
INTO ‘
BUFFER b TR
THIS
CANDIDATE

MORE

CANDIDATES
?

YES

7

EP 0072910 B1

FIG.

{0

1002
yd
SELECT * <;> t0z2
BUFFER TRITE
WITH DE CODED
X. TAG
MA CHARACTER
INTO LABEL BUFFER
\ 1004
SET / Y 1024
SET Y
CHARACTER St
POINTER mem 02t
m=1 1
~ N0~ m>n? >/Y_ETS
\ f
READ 1008
NI, N2, D' d ' 1028
FOR m FORWARD 4
CHARACTER FULLY
DECODED
1008 FINAL
USE Ni, N2 L/ AT
T0 DECODE | CANDIDATE
0§ OF 46
CHARACTERS !
-)
1010
N1, N2
YES IDENTIFY NO
AMBIGUOUS
CHARAGTER ?
1012
!§§—< $0'=07 ;;NO T
, NO YES
‘ Z0>0?
DISCARD //10’4 1020
THIS *
CANDIDATE seLecr 1018 SELECT
. 1
V 1015 He))
SET BAD [—
SCAN FLAG

®

END

	bibliography
	description
	claims
	drawings

