Title: PROCESS FOR DECODING ALAMOUTI BLOCK CODE IN AN OFDM SYSTEM, AND RECEIVER FOR THE SAME

Abstract: 1. Process for decoding a signal being representative of a Space Time or Frequency Block coding during two signaling periods (STBC) or two parallel channels (SFBC), comprising: - receiving an OFDM signal received from at least one antenna; - performing an OFDM demodulation in order to generate N frequency domain representations of said received signal, each associated to one carrier; - performing a decoding process applied on said OFDM demodulated signal, in order to group the received signal in word code Y = (y₁, y₂) being representative of the received signal received during two signaling periods (STBC) or two parallel channels (SFBC), - decoding said word code Y = (y₁, y₂) in order to compute the transmitted symbols X₁ and X₂ in accordance with the following formulation (I). The process further comprises the steps of - applying a lattice reduction algorithm on said matrix H = (b₁, b₂) in order to transform said matrix in a reduced matrix Hred = (b₁, b₂) having vector basis close to orthogonal; - performing a detection process on said reduced matrix in order to improve immunity with respect to noise and interference.

Fig. 5
Process for decoding ALAMOUTI block code in an OFDM system, and receiver for the same

Technical field

The invention relates to the field of wireless communication and more particularly to a process for decoding ALAMOUTI block code in an OFDM system, and a receiver for doing the same.

Background Art

Digital wireless communications are being widely used throughout the world particularly with the latest development of the Orthogonal Frequency Division Multiplex (OFDM systems) and the latest evolution, namely the so-called Long Term Evolution (LTE), DVB-H, WiFi 802.1 1 and WiMax 802.16 systems.

OFDM is a frequency-division multiplexing (OFDM) scheme utilized as a digital multi-carrier modulation method. As it is well-known to one skilled in the art, OFDM systems demonstrate significant advantages in comparison to single-carrier schemes, particularly in their ability to cope with severe channel conditions (i.e. channel attenuation, narrowband interference, frequency-selective fading).

The combination of OFDM and multiple antennas in either the transmitter or receiver is attractive to increase a diversity gain.

In that respect, the well-known ALAMOUTI scheme, as disclosed in document "A simple transmit diversity technique for wireless communications", by in S. M. ALAMOUTI, IEEE J. Selected Areas of Communications, vol. 16, pp. 1451-
1458, Oct. 1998, has revealed to be extremely efficient in allowing wireless and cellular systems to increase link reliability. Its efficiency proves because of the extremely simple encoding technique at the transmitter and more importantly in the low complexity linear and optimal decoding which can also easily be extended to multiple receiving antenna case.

With respect to figure 1, there is recalled the general principle of the transmission scheme in accordance with the ALAMOUTI Space Time Block coding.

Considering, as shown in the figure that the following sequence of complex symbols should be transmitted: \(x_1, x_2, x_3, x_4 \ldots \). In normal transmission, a first time slot would be allocated for the transmission of \(x_1 \), a second time slot would be allocated for \(x_2 \) etc..

Now, considering the ALAMOUTI scheme and more particularly the Space-Time Block Code (STBC), those symbols are now grouped in two.

During the first time slot, \(x_1 \) and \(x_2 \) are respectively transmitted by the first and second antenna while, in the second time slot, \(-x_2^*\) and \(x_1^*\) are respectively sent through the first and second antenna. In the third time slot, \(x_3 \) and \(x_4 \) are transmitted by the first and second antenna while, in the fourth time slot, the two antennas transmit \(-x_4^*\) and \(x_3^*\), respectively, and so on...

It can be noticed that such block coding has no effect on the data rate since two time slots are still required for the transmission of two symbols.

In the first time slot, the receiver receives the signal:

\[
y_1 = h_1 x_1 + h_2 x_2 + n_1
\]

In the second time slot, the received signal is,

\[
y_2 = -h_1 x_2^* + h_2 x_1^* + n_2
\]
where

\(y_1, y_2 \) is the received symbol on the first and second time slot respectively,

\(h_1 \) is the channel from 1st transmit antenna to receive antenna,

\(h_2 \) is the channel from 2nd transmit antenna to receive antenna,

\(x_1, x_2 \) are the transmitted symbols and

\(n_1, n_2 \) is the noise on 1st and 2nd time slots.

What can be expressed as follows:

\[
\begin{bmatrix}
 y_1 \\
 y_2
\end{bmatrix} =
\begin{bmatrix}
 h_1 & h_2 \\
 h_2^* & -h_1^*
\end{bmatrix}
\begin{bmatrix}
 x_1 \\
 x_2
\end{bmatrix} +
\begin{bmatrix}
 n_1 \\
 n_2^*
\end{bmatrix}
\]

(1)

Let us define

\[
H =
\begin{bmatrix}
 h_1 & h_2 \\
 h_2^* & -h_1^*
\end{bmatrix}
\]

And \(H^+ \) being the pseudo inverse defined as: \(H^+ = (H^H H)^{-1} H^H \)

Solving the equation \(Y = A X \) above, leads to the following

\[
\begin{bmatrix}
 x_1^* \\
 x_2^*
\end{bmatrix} = (H^H H)^{-1} H^H \begin{bmatrix}
 y_1 \\
 y_2
\end{bmatrix}
\]

(2)

Applied to the frequency domain rather than in the time domain, the ALAMOUTI block coding results, in the so-called Space-Frequency Block Code (SFBC), two consecutive and neighboring subcarriers within the same OFDM symbol, instead of two consecutive time slots.
The use of such space block significantly increases the link reliability of wireless and cellular systems without requiring a significant increase in the complexity of the receiver.

It is particularly effective because of the extremely simple encoding technique at the transmitter and more importantly in the low complexity linear and optimal decoding which can also easily be extended to multiple receiving antenna case.

However, such benefit strongly relies on the assumption that the channel remains constant over two time slots or, in OFDM, between two neighboring subcarriers or resources.

Such assumption of static conditions over the two periods or channel uses spanning its transmission is actually never verified in practice and remains ideal.

In OFDM, the channel is selective because of the time-varying or frequency selective nature of the terminal mobility and the rich scattering of the wireless environment:

- long channel delay spread, e.g. hilly terrain propagation
- low channel coherence bandwidth, i.e. high relative speed between the base station (BS) and the wireless mobile receiver

When the static assumption is not verified, the demodulation process tends to become much more complicated.

Indeed, the conventional low complexity methods - such as the very basic matched filter - and even the more sophisticated linear processings (Zero-forcing, MMSE equalization) shows little efficiency and remain sub-optimal.

The well-known Maximum Likelihood would be optimal but becomes highly complex as the size of the modulation increases (exponential complexity of the
order of 2^M, where M is the order of the modulation used, i.e. $M=2$ for QPSK, $M=4$ for 16-QAM and $M=6$ for 64-QAM.

On the other hand, the Near-ML detection based on Sphere Decoding: optimal (slight decrease in coding gain) could be another solution, but still shows high level of complexity (polynomial complexity in function of modulation order M^3 in average)

Therefore, there is a desire for a new method which allows decoding of the ALAMUTI code, with low complexity, even in the case where the channel shows variation between two neighboring subcarriers or OFDM blocks.

Summary of the invention

It is an object of the present invention to provide a process for decoding ALAMOUTI block code in an OFDM system which requires little complexity.

It is another object of the present invention to provide a new process for performing improved signal detection in ALAMOUTI block-codes (SFBC or STBC) in presence of highly selective channels (long delay spread or high Doppler, respectively).

These and other objects of the invention are achieved by means of the process for decoding a signal being representative of a STBC or SFBC, comprising the transmission, firstly, of a pair of finite-alphabet complex symbols x_1 and x_2 with, secondly, the symbols $-x_2^*$ and x_1^* (* being the conjugate operation) during two signaling periods (STBC) or two parallel channels (SFBC), which comprises the steps of:

- receiving an OFDM signal received from at least one antenna;
- performing an OFDM demodulation in order to generate N frequency domain representations of said received signal, each associated to one carrier;
- performing a decoding process applied on said OFDM demodulated signal, in order to group the received signal in word code $Y = (y_1, y_2)$ being representative of the received signal received during two signaling periods (STBC) or two parallel channels (SFBC),

- decoding said word code $Y = (y_1, y_2)$ in order to compute the transmitted symbols x_1 and x_2 in accordance with the following formulation:

$$
\begin{bmatrix}
 y_1 \\
 y_2^*
\end{bmatrix} =
\begin{bmatrix}
 h_1 & h_2 \\
 \tilde{h}_1^* & -\tilde{h}_2^*
\end{bmatrix}
\begin{bmatrix}
 x_1 \\
 x_2
\end{bmatrix}
+
\begin{bmatrix}
 n_1 \\
 n_2^*
\end{bmatrix}
$$

Or

$$y = Hx + n$$

where h_1 and h_2 being representative of the channel applicable to the transmission of x_1 and x_2 while \tilde{h}_1^* and \tilde{h}_2^* are representative of the channel applicable to the transmission of $-x_2^*$ and x_i^*;

$\eta_1 \Pi \xi$, being the noise

The process further involves a lattice reduction on matrix $H = (b_1, b_2)$ in order to transform said matrix in a reduced matrix $H_{\text{red}} = (b_1', b_2')$ having vector being close to orthogonal, then followed by a detection process applied on said reduced matrix in order to improve immunity with respect to noise and interference.

Such process is a non linear method - which efficiency is close to that of the Maximum Likelihood (Near ML) but which offers a complexity which is in average polynomial (cube) in the channel matrix size but remains independent on the size of the constellation.
Therefore, the complexity can be greatly reduced exploiting channel coherence.

Furthermore, in the particular 2x2 ALAMOUTI case, the use of the Lattice Reduction method defined above proves very efficient.

The process is applicable for both STBC coding, wherein the transmission of symbol \(x_1\) (resp. \(x_2\)) and symbol \(-x_2^*\) (resp. \(x_1^*\)) are performed during two consecutive OFDM frames, or for SBFC wherein the same are transmitted through two consecutive carriers within the same OFDM frame.

In one embodiment, the lattice reduction applied on each carrier \(k\) is based on an iterative algorithm with an initialization performed with the values of the reduced channel processed for carrier \(k-1\). This has for result of significant lowering the complexity of the receiver.

In one embodiment, the lattice reduction comprises the steps of:

- checking the correlation by testing whether

\[
\text{Re}\{b_1, b_2\} \leq \frac{1}{2} \|b_1\|^2 \quad \text{and}
\]
\[
\text{Im}\{b_1, b_2\} \leq \frac{1}{2} \|b_1\|^2, \quad \text{and, if not,}
\]

\[
b_2 \rightarrow \left(\frac{b_1, b_2}{\|b_1\|^2}\right) b_1
\]

and repeat again.

Optionally, the process further comprises testing the modulus of \(b_1\) and \(b_2\), i.e. square root of the sum of the squared value of each element of the vector.

The invention also provides a receiver for a OFDM communication system which can decode ALAMOUTI SFBC or STBC decoding, which comprises:

- means for receiving an OFDM signal received from at least one antenna;
- means for performing an OFDM demodulation in order to generate \(N\) frequency domain representations of said received signal, each associated to one carrier;
- means for performing a decoding process applied on said OFDM demodulated signal, in order to group the received signal in word code \(Y = (y_1, y_2) \) being representative of the received signal received during two signaling periods (STBC) or two parallel channels (SFBC),

- means for decoding said word code \(Y = (y_1, y_2) \) in order to compute the transmitted symbols \(x_1 \) and \(x_2 \) in accordance with the following formulation:

\[
\begin{bmatrix}
 y_1 \\
 y_2^*
\end{bmatrix} =
\begin{bmatrix}
 h_1 & h_2 \\
 \tilde{h}_2^* & -\tilde{h}_1^*
\end{bmatrix}
\begin{bmatrix}
 x_1 \\
 x_2
\end{bmatrix} +
\begin{bmatrix}
 n_1 \\
 n_2^*
\end{bmatrix}
\]

where \(h_1 \) and \(h_2 \) being representative of the channel applicable to the transmission of \(x_1 \) and \(x_2 \) while \(\tilde{h}_1 \) and \(\tilde{h}_2 \) are representative of the channel applicable to the transmission of \(-x_2^* \) and \(x_1^* \);

\(n_1, n_2 \), being the noise

The receiver further comprises:

- means for applying a lattice reduction algorithm on said matrix \(H = (b_1, b_2) \) in order to transform said matrix in a reduced matrix \(H_{\text{red}} = (b'_1, b'_2) \) having vector being close to orthogonal;

- means for performing a detection process on said reduced matrix in order to improve immunity with respect to noise and interference.

In one embodiment, the lattice reduction can be combined with Zero Forcing (2F), Matched Filter (MF) or Decision Feedback (DF) detection.

The invention is particularly suitable for embodying a US equipment for the Long Term Evolution (LTE), such as a mobile telephone.
Description of the drawings

Other features of one or more embodiments of the invention will best be understood by reference to the following detailed description when read in conjunction with the accompanying drawings.

Figure 1 illustrates the basic scheme of the STBC ALAMOUTI coding.

Figure 2 illustrates the block diagram of the transmitter and the receiver for respectively carrying out the coding and the decoding of the ALAMOUTI scheme.

Figure 3 illustrates the effect of the matrix reduction on the H vector.

Figure 4 illustrates an example of one embodiment of the algorithm, based on a MAT LAB formulation.

Figure 5 illustrates the process of a new receiver achieving ALAMOUTI decoding with the use of Lattice Reduction algorithm.

Figure 6 illustrates simulation results on the Block Error Rate for the new process in comparison with known linear and non linear algorithms.
Description of the preferred embodiment

There will now be described one particular embodiment of a process which is applicable to any OFDM communication systems, such as Long Term Evolution (LTE), Digital Video Broadcasting Handheld (DVB-H), IEEE 802.11b Direct Sequence Spread Spectrum or Wifi, Wimax etc. ...

Clearly, the process is more general and could be applied to any other form of OFDM system.

More generally, while the invention shows high efficiency in the simple 2x2 ALAMUTI case, it can be applied to more than two antennas.

With respect to figure 2, there is illustrated a block diagram of a Space-Time block coding communication system complying with the ALAMOUTI scheme and which can advantageously use the process described below.

A transmitter 20 comprises a block 21 consisting of a source of information symbol, which are forwarded to a Space Time Black encoder 22 complying with the ALAMOUTI space time coding. The symbols are grouped in blocks of two symbols and are then passed to a OFDM modulation 23, and then to the Transmit Radio Frequency front-end circuits 24 supplying two transmit antennas.

A receiver 30 comprises, in addition to a Receive Radio Frequency front-end circuits 31 and an OFDM demodulator 32, a ST Block decoder 33 achieving the reverse ALAMOUTI decoding for the purpose of regenerating the original sequence of symbols which are forwarded to the decoder 34.

In order to significant simplify the structure of the demodulation, the decoding applied by block 34 on the sequence of symbols resulting from the ALAMOUTI decoding is now based on a non linear process involving an iterative process based carriers of the OFDM symbol.
In addition, for each carrier, the iterative process is initialized with the result of
the lattice process computation performed on the preceding carrier.

1. Signal Model Definition

One consider a communication system between a transmitter with two
antennas and a receiver with one receiving antenna. Despite this simplification, the
results presented are general and can be extended to multiple receiving antennas
case. The transmitter employing ALAMOUTI transmit-diversity scheme requires two
signaling periods or two parallel channels to convey a pair of finite-alphabet complex
symbols x_1 and x_2: during the first symbol period, the first antenna sends x_1 and the
second antenna sends x_2: in the second period, the symbols $-x_2^*$ and x_1^* are
respectively transmitted by first and second antenna.

Denote h_1 and h_2 the complex flat-fading channel coefficients between the
two transmit antennas and the receiving antenna during the first period while \tilde{h}_1
and \tilde{h}_2 are the channel coefficients of the second symbol period. It is easy to show
that the received symbol vector can be conveniently written in matrix form as

$$
\begin{pmatrix}
y_1 \\
y_2^*
\end{pmatrix}
= \begin{pmatrix}
h_1 & h_2 \\
\tilde{h}_2^* & -\tilde{h}_1^*
\end{pmatrix}
\begin{pmatrix}
x_1 \\
x_2
\end{pmatrix}
+ \begin{pmatrix}
n_1 \\
n_2^*
\end{pmatrix}
$$

(3)

With * being the complex conjugate. The same expression can be written in a
more compact way as:

$$
y = Hx + n
$$

(4)
where

• n is the zero-mean circularly symmetric complex Gaussian noise vector
 whose covariance matrix is equal to I.

• Rayleigh fading channel coefficients such that h_1, h_2, \tilde{h}_1, and \tilde{h}_2 are zero-mean circularly symmetric complex Gaussian random variables each with variance equal to σ_h^2, i.e., $E[|h_1|^2] = E[|h_2|^2] = \sigma_h^2$ with $E[\cdot]$ denoting the expectation operator;

• uncorrelated transmitting antennas such that h_1 and h_2 are independent, i.e., $E[h_1, h_2^*] = 0$.

• Correlated channel coefficients between the two symbol such that

$$E[h_1\tilde{h}_1^*] = E[h_2\tilde{h}_2^*] = \rho$$

where ρ is the complex correlation factor with $|\rho|^2 \leq 1$. We stress the fact about ρ being complex as this is the general case. The correlated processes are generated using a first-order auto-regressive model as

$$\tilde{h}_i = \rho h_i + \sqrt{1 - \rho^2} w_i$$

with w_i being again a zero-mean circularly symmetric complex Gaussian random variable with variance equal to σ_h^2.

• x being a vector such, for example, a vector of Binary Phase-Shift Keying (BPSK) symbols with $x_i \in \{\pm 1\}$.

II. Lattice Reduction for reducing the H matrix in the receiver

As mentioned in the prior art section, the ALAMOUTI decoding applied on the equation (4) above leads to a complex demodulation because of the non-static condition of the channel during the two consecutive time interval (in Space-Time Block Coding) or between the two consecutive carriers in the OFDM symbol (in Space-Frequency Block Coding).

Such complexity in the demodulation entails the need of non-linear decoding method to be applied in the receiver 30 of figure 2.

The inventors have discovered that one particular non-linear method, based on an iterative process using lattice reduction, can provide advantageous decoding without high level of complexity.

Lattice reduction is a non-linear method whose complexity is in average polynomial (cube) in the channel matrix size but independent on constellation size, its complexity can be greatly reduced exploiting channel coherence.

It is a near ML method, hence provides quasi ML performance (at the expense of some coding gain loss). While feasible Lattice Reduction algorithms are sub-optimal compared to theoretical one (exponential complexity), it has been discovered for a 2x2 matrix case, an optimal formulation of Lattice Reduction does exist (i.e. Lattice Reduction algorithm is exactly as Korkine-Zolotarev).

Considering that \(H \) in formula (4) can be written as two vectors \(b_1 \) and \(b_2 \), such as:

\[
H = (b_1, b_2),
\]
the following algorithm below can be used for generating a reduced matrix X which can be used in the detection process of the Receiver.

step 1: check the correlation.

If $\Re \{ <b_i, b_2> \} \leq \frac{1}{2} \| b_i \|^2$ and $\Im \{ <b_i, b_2> \} \leq \frac{1}{2} \| b_i \|^2$,
Then stop.
Where $<b_i, b_2>$ being the inner product defined as equal to $b_i^H . b_2$. The inner product is representative of the projection of b_2 on b_i.

Otherwise, replace b_2 with $b_2 - \left[\frac{\{b_1, b_3\}}{\|b_1\|^2} \right] b_1$ and go to step 2.

Step 2 (optional): check the modulus (or relative power):

If $\| b_2 \| \geq \| b_i \|$, then stop. Otherwise, swap b_1 and b_2 and go to step 1.

Step 2 is optional in the case of only 2 transmitting antennas.

Such algorithm achieves, even with highly correlated values of b_1 and b_2, to find a more orthogonal basis by generating a reduced matrix H_{red} which improves the performance of the linear detection of the receiver (be it a ZF, MF etc..) by providing decision regions more robust against noise and interference.

Figure 3 illustrates the change of basis resulting from the Lattice Reduction (LR) algorithm which is described above, in comparison with the so-called Maximum Likelihood Detector (MLD).

It has been discovered that such algorithm finds regions which are slightly smaller (representative of a coding gain loss) compared to the Maximum Likelihood (ML) method, but which still shows to be optimal. Therefore, there is achieved optimal diversity gain retrieval.
In OFDM the process is carried out for all the subcarriers \(k \) coded with ALAMOUTI scheme, and the overall complexity should scale as the complexity for one sub-carrier times the number of subcarriers.

In one embodiment, the lattice reduction algorithm is applied for each carrier \(k \) in the OFDM symbol, and the algorithm processing \(H^k \) uses initialization values for parameters \(b_1^k \) and \(b_2^k \), which are set to be equal to the values of \(b_1^{k-1} \) and \(b_2^{k-2} \) \(b_1 \) computed at the preceding iteration.

It has been shown such initialization causes the iterative LR algorithm to converge on its own very rapidly, thus decreasing the complexity of the whole mechanism. For instance, it has been noticed that complexity can be decreased by a factor 10 (one Lattice reduction is computed for 10 neighboring sub-carriers) for low-to-medium delay spread channels.

With figure 4, there is illustrated an example of one embodiment of the algorithm, based on a MAT LAB formulation, allowing iterative computation of the reduction matrix \(H_{\text{red}} \), required for carrying out the optimal Lattice reduction (optLR).

With respect to figure 5, there is now described the different steps which are used in an new receiver achieving ALAMOUTI decoding with the use of Lattice Reduction algorithm.

In **step 51**, the process receives an OFDM signal received from at least one antenna.

In **step 52**, the process performs an OFDM demodulation in order to generate \(N \) frequency domain representations of said received signal, each associated to one carrier.

It should be noticed that such steps 51 and 52 are conventional in the technical field of OFDM communication and well known to a skilled man.
Then, in a step 53, the process proceeds with a decoding process applied on the OFDM demodulated signal, in accordance with the particular coding being utilized, namely the Space Time Block Code (STBC) or the Space-Frequency Block Code (SFBC).

Such ALAMOUTI decoding results in the generation of a word code \(Y = (y_1, y_2) \).

Then, the process proceeds with the decoding of the word code \(Y = (y_1, y_2) \) in order to compute the transmitted symbols \(x_1 \) and \(x_2 \) in accordance with the formula (3) above.

This is achieved, as shown in a step 54, by applying a lattice reduction algorithm on said matrix \(H = (b_1, b_2) \) in order to transform said matrix in a reduced matrix \(H_{\text{red}} = (b'_1, b'_2) \) having vector being close to orthogonal.

In one particular embodiment, the lattice reduction algorithm is applied with an initialization step which includes the values of the reducted matrix which were computed by the preceding iteration, thus taking a great advantage of the channel coherence.

Then, in a step 56, the process proceeds with the decoding of the received symbols using the reduced \(H_{\text{red}} \) matrix, and the proceed again with step 51 for the purpose of processing new samples.

With respect to figure 6, there is illustrates some simulation results showing the evolution of the Block Error Rate (BER) as a function of the Signal to Noise ration, for different combinations of the proposed method with conventional methods:

ML: Maximum Likelyhood;
ZF: Zero-forcing,
LR-ZF Lattice Reduction - Zero Forcing
MF: Matched Filter
DF: Decision Feedback
1. Process for decoding a signal being representative of a Space Time or Frequency Block coding based on the transmission, firstly, of a pair of finite-alphabet complex symbols x_1 and x_2 with, secondly, the symbols $-x_2^*$ and x_i^* (being the conjugate operation) during two signaling periods (STBC) or two parallel channels (SFBC),

Said process comprising the steps of:

- receiving an OFDM signal received from at least one antenna;
- performing an OFDM demodulation in order to generate N frequency domain representations of said received signal, each associated to one carrier;
- performing a decoding process applied on said OFDM demodulated signal, in order to group the received signal in word code $Y = (y_1, y_2)$ being representative of the received signal received during two signaling periods (STBC) or two parallel channels (SFBC),
- decoding said word code $Y = (y_1, y_2)$ in order to compute the transmitted symbols x_i and x_2 in accordance with the following formulation:

$$
\begin{bmatrix}
 y_1 \\
 y_2^*
\end{bmatrix} =
\begin{bmatrix}
 h_1 & h_2 \\
 \tilde{h}_2^* & -\tilde{h}_1^*
\end{bmatrix}
\begin{bmatrix}
 x_1 \\
 x_2
\end{bmatrix} +
\begin{bmatrix}
 n_1 \\
 n_2^*
\end{bmatrix}
$$

or $y = Hx + n$
where \(h_1 \) and \(h_2 \) being representative of the channel applicable to the
transmission of \(x_1 \) and \(x_2 \) while \(\tilde{h}_1 \) and \(\tilde{h}_2 \) are representative of the channel
applicable to the transmission of \(-x_2^* \) and \(x_1^* \);
\(n_1, n_2 \), being the noise.

Characterized in that said word code decoding comprises the following steps:

- applying a lattice reduction algorithm on said matrix \(H = (b_1, b_2) \) in order to
 transform said matrix in a reduced matrix \(H_{\text{red}} = (b'_1, b'_2) \) having vector being close
to orthogonal;

- performing a detection process on said reduced matrix in order to improve
 immunity with respect to noise and interference.

2. Process according to claim 1 characterized in that said coding is a STBC coding
allowing the transmission of symbol \(x_1 \) (resp. \(x_2 \)) and symbol \(-x_2^* \) (resp. \(x_1^* \))
during two consecutive OFDM frames.

3. Process according to claim 1 characterized in that said coding is a SFBC coding
allowing the transmission of symbol \(x_1 \) (resp. \(x_2 \)) and symbol \(-x_2^* \) (resp. \(x_i^* \))
through two consecutive carriers in one OFDM frame.

4. Process according to claim 1 characterized in that said lattice reduction applied
on each carrier \(k \) is based on an iterative algorithm with an initialization performed
with the values of the reduced channel processed for carrier \(k-1 \).

5. Process according to anyone of claims 1 to 4 characterized in that said lattice
reduction algorithm involves the step of:

- checking the correlation by testing whether
 \[\left| \text{Re} \left\{ \langle b_1, b_2 \rangle \right\} \right| < \frac{1}{2} \| b_1 \|^2 \quad \text{and} \]
 \[\left| \text{Im} \left\{ \langle b_1, b_2 \rangle \right\} \right| < \frac{1}{2} \| b_2 \|^2 \quad \text{and, if not,} \]

\[\text{replace } b_2 \text{ with } b_2 - \frac{\langle b_1, b_2 \rangle}{\| b_1 \|^2} b_1 \quad \text{and repeat again.} \]
6. Process according to claim 5 characterized in that said algorithm further comprises an optional step of testing the length of \(b_1 \) and \(b_2 \).

7. Receiver for decoding a signal being representative of a Space Time or Frequency Block coding based on the transmission, firstly, of a pair of finite-alphabet complex symbols \(x_1 \) and \(x_2 \) with, secondly, the symbols \(x_2^* \) and \(x_i^* \) (\(^*\) being the conjugate operation) during two signaling periods (STBC) or two parallel channels (SFBC), Said receiver comprising:

- means for receiving an OFDM signal received from at least one antenna;
- means for performing an OFDM demodulation in order to generate \(N \) frequency domain representations of said received signal, each associated to one carrier;
- means for performing a decoding process applied on said OFDM demodulated signal, in order to group the received signal in word code \(Y = (y_1, y_2) \) being representative of the received signal received during two signaling periods (STBC) or two parallel channels (SFBC),
- means for decoding said word code \(Y = (y_1, y_2) \) in order to compute the transmitted symbols \(x_1 \) and \(x_2 \) in accordance with the following formulation:

\[
\begin{bmatrix}
y_1 \\
y_2^*
\end{bmatrix} = \begin{bmatrix}
h_1 & h_2 \\
\tilde{h}_2 & -\tilde{h}_1^*
\end{bmatrix} \begin{bmatrix}
x_1 \\
x_2
\end{bmatrix} + \begin{bmatrix}
n_1 \\
n_2^*
\end{bmatrix}
\]

Or

\[y = Hx + n \]

where \(h_1 \) and \(h_2 \) being representative of the channel applicable to the transmission of \(x_1 \) and \(x_2 \) while \(\tilde{h}_1 \) and \(\tilde{h}_2 \) are representative of the channel applicable to the transmission of \(-x_2^* \) and \(x_i^* \);

\(n_1, n_2 \), being the noise
Characterized in that it further comprises:

- means for applying a lattice reduction algorithm on said matrix \(H = (b_1, b_2) \) in order to transform said matrix in a reduced matrix \(\text{Hred} = (b'_1, b'_2) \) having vector being close to orthogonal;
- means for performing a detection process on said reduced matrix in order to improve immunity with respect to noise and interference.

8. Receiver according to claim 7 characterized in that said coding is a STBC coding allowing the transmission of symbol \(x_1 \) (resp. \(x_2 \)) and symbol \(-x_2^* \) (resp. \(x_1^* \)) during two consecutive OFDM frames.

9. Receiver according to claim 7 characterized in that said coding is a SFBC coding allowing the transmission of symbol \(x_1 \) (resp. \(x_2 \)) and symbol \(-x_2^* \) (resp. \(x_1^* \)) through two consecutive carriers in one OFDM frame.

10. Receiver according to claim 9 characterized in that said lattice reduction applied on each carrier \(k \) is based on an iterative algorithm with an initialization performed with the values of the reduced channel processed for carrier \(k-1 \).

11. Receiver according to anyone of claims 7 to 10 characterized in that it further includes:
- means for checking the correlation by testing whether
 \[|\text{Re} \{<b_1, b_2>|\} \leq \frac{1}{2} ||b_1||^2 \quad \text{and} \]
 \[|\text{Im} \{<b_1, b_2>|\} \leq \frac{1}{2} ||b_1||^2 \], and, if not,

 \[b_2 \Rightarrow \frac{(b_1, b_2)}{||b_1||^2} b_1 \]

 Means for replacing \(b_2 \) with \(b_2 \Rightarrow \frac{(b_1, b_2)}{||b_1||^2} b_1 \) and repeat again.

12. Receiver according to claim 11 characterized in that it further includes means for testing the length of \(b_i \) and \(b_2 \).
13. Receiver according to claim 12 wherein said lattice reduction is applied in combination with a ZF, MF, DF or PDF detector.

14. Mobile telephone for an OFDM communication network comprising a receiver as defined in anyone of claims 7 - 13.
Fig. 1

Fig. 2
Fig. 3
function [Hred, T]=optLR2(H)
 b1=H(:,1);
b2=H(:,2);
 while ~ok
 c=b1'*b2;
m=b1'*b1;
if -((abs(real(c))<=0.5*m) && (abs(imag(c))<=0.5*m))
 b2=b2-round(c/m)*b1;
end
if (b2'*b2)>(b1'*b1)
 % OK! H is reduced
 ok=1;
else
 % Swap vectors
 u=b1;
 b1=b2;
 b2=u;
end
end
Hred=[b1 b2];
T=inv(H'*H)'*H'*Hred;

Fig. 4
Receive an OFDM signal

Perform OFDM demodulation

Performing SFBC or STBC decoding

Apply lattice reduction on H matrix

Decode on the basis of Hred

Fig. 5
Fig. 6
INTERNATIONAL SEARCH REPORT

A. CLASSIFICATION OF SUBJECT MATTER

INV. H04L25/03 H04L1/06 H04L27/26

ADD.

According to International Patent Classification (IPC) or to both national classification and IPC.

B. FIELDS SEARCHED

Minimum documentation searched (classification system followed by classification symbols):

H04L

Documentation searched other than minimum documentation to the extent that such documents are included in the fields searched.

Electronic data base consulted during the international search (name of data base and, where practical, search terms used):

EPO-Internal, WPI Data, INSPEC

C. DOCUMENTS CONSIDERED TO BE RELEVANT

<table>
<thead>
<tr>
<th>Category</th>
<th>Citation of document, with indication, where appropriate, of the relevant passages</th>
<th>Relevant to claim No.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Y</td>
<td>I. Introduction to II. System Description Section IV. A</td>
<td>4-6, 10-13</td>
</tr>
</tbody>
</table>

Further documents are listed in the continuation of Box C. See patent family annex.

* Special categories of cited documents:

- "A" document defining the general state of the art which is not considered to be of particular relevance
- "E" earlier document but published on or after the international filing date
- "L" later document which may throw doubts on priority claim(s) or which is cited to establish the publication date of another document or other special reason (as specified)
- "O" document referring to an oral disclosure, use, exhibition or other means
- "P" document published prior to the international filing date but later than the priority date claimed

Date of the actual completion of the international search

10 March 2011

Date of mailing of the international search report

17/03/2011

Name and mailing address of the ISA:

European Patent Office, P.B. 5818 Patentlaan 2 NL - 2280 HV Rijswijk
Tel. (+31-70) 340-2040, Fax: (+31-70) 340-3016

Authorized officer

Moreno, Marta
<table>
<thead>
<tr>
<th>Category</th>
<th>Citation of document, with indication, where appropriate, of the relevant passages</th>
<th>Relevant to claim No.</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>EP 1 185 001 A2 (NORTEL NETWORKS LTD [CA]) 6 March 2002 (2002-03-06) paragraph [0063]</td>
<td>1, 2, 7, 8</td>
</tr>
<tr>
<td>Patent document cited in search report</td>
<td>Publication date</td>
<td>Patent family member(s)</td>
</tr>
<tr>
<td>--</td>
<td>-----------------</td>
<td>-------------------------</td>
</tr>
<tr>
<td></td>
<td></td>
<td>US 2008298225 A1</td>
</tr>
<tr>
<td>US 2006215773 A1</td>
<td>28-09-2006</td>
<td>NONE</td>
</tr>
<tr>
<td>EP 1185001 A2</td>
<td>06-03-2002</td>
<td>CA 2351140 A1</td>
</tr>
<tr>
<td></td>
<td></td>
<td>DE 60121397 T2</td>
</tr>
<tr>
<td></td>
<td></td>
<td>US 2002122383 A1</td>
</tr>
</tbody>
</table>