WO 2004/018578 A1

(12) Nach dem Vertrag über die internationale Zusammenarbeit auf dem Gebiet des Patentwesens (PCT) veröffentlichte internationale Anmeldung

(19) Weltorganisation für geistiges Eigentum
Internationales Büro

(25) Einreichungssprache: Deutsch

(26) Veröffentlichungssprache: Deutsch

(30) Angaben zur Priorität:

(71) Erfinder: und

(74) Anwalt: FITZNER, Uwe; Lintorfer Str. 10, 40878 Ratingen (DE).

Veröffentlicht: — mit internationalem Rechenbericht

Zur Erklärung der Zweibuchstaben-Codes und der anderen Abkürzungen wird auf die Erklärungen ("Guidance Notes on Codes and Abbreviations") am Anfang jeder regulären Ausgabe der PCT-Gazette verwiesen.

(54) Title: COATING MATERIAL, RELATING PRODUCTION METHOD AND USE

(54) Bezeichnung: BESCHICHTUNGsstoff, VERFAHREN ZU SEINER HERSTELLUNG UND SEINE VERWENDUNG

(57) Abstract: The invention concerns a coating material containing: A) at least one type of hydrophobic silicon dioxide nanoparticles, and B) at least one type of hydrophilic silicon dioxide nanoparticles, with an inner BET surface area > 300 m²/g. The invention also concerns a method for producing said material and use thereof.

(57) Zusammenfassung: Beschichtungsstoff, enthaltend: A) mindestens eine Art von hydrophoben Nanopartikeln auf der Basis von Siliziumdioxid und B) mindestens eine Art von hydrophilen Nanopartikeln auf der Basis von Siliziumdioxid mit einer inneren Oberfläche nach BET > 300 m²/g; Verfahren zu seiner Herstellung und seine Verwendung.
Beschichtungsstoff, Verfahren zu seiner Herstellung und seine Verwendung

Gebiet der Erfindung

Stand der Technik

Die Verwendung von hydrophilen oder hydrophoben Nanopartikeln auf der Basis von pyrogenem Siliziumdioxid in Beschichtungsstoffen ist bekannt.

Die Nanopartikel werden den Beschichtungsstoffen zu unterschiedlichen Zwecken zugesetzt. So können sie in Wasserbasislackschichten das Einbrechen (strike-in) bei der Applikation von Klarlacken nach dem Naß-in-Naß-Verfahren verhindern. In konventionellen, d. h. organische Lösemittel
enthaltenden, Beschichtungsstoffen können sie als Rheologiehilfsmittel eingesetzt werden und können die Neigung der Beschichtungsstoffe zur Läuferbildung reduzieren. Darüber hinaus können sie die Kratzfestigkeit der aus den betreffenden Beschichtungsstoffen hergestellten Beschichtungen verbessern.

Bei allen Vorteilen, welche die Verwendung der hydrophilen und hydrophoben Nanopartikel auf der Basis von Siliziumdioxid in Beschichtungsstoffen bietet, bereitet sie im Falle von transparenten Beschichtungsstoffen oder Klarlacken, die vor allem der Herstellung von klaren, transparenten, kratzfesten Klarlackierungen dienen, erhebliche Probleme.

Werden die hydrophoben Nanopartikel in den Klarlacken in Mengen verwendet, die eine gute Kratzfestigkeit bewirken, sind die betreffenden Klarlackierungen zwar kratzfest aber matt und von einem vergleichsweise unbefriedigenden Verlauf. Die Verwendung von hydrophilen Nanopartikeln verbessert dagegen die Klarheit, die Transparenz und den Verlauf der betreffenden Klarlackierungen, sie vermag aber nicht deren Kratzfestigkeit signifikant zu verbessern.

Aufgabe der Erfindung

Aufgabe der vorliegenden Erfindung ist es, einen neuen Beschichtungsstoff bereitzustellen, der die Nachteile des Standes der Technik nicht mehr länger aufweist, in einfacher Weise und sehr gut reproduzierbar hergestellt
werden kann und Beschichtungen, insbesondere Klarlackierungen, liefert, die kratzfest, klar, transparent, hoch glänzend und brillant sind und einen sehr guten Verlauf und eine sehr gute Oberflächenglätté haben.

5 **Die erfindungsgemäße Lösung**

Demgemäß wurde der neue Beschichtungsstoff, enthaltend

(A) mindestens eine Art von hydrophoben Nanopartikeln auf der Basis von Siliziumdioxid und

(B) mindestens eine Art von hydrophilen Nanopartikeln auf der Basis von Siliziumdioxid mit einer inneren Oberfläche nach BET >300 m²/g,

gefunden, der im Folgenden als »erfindungsgemäßer Beschichtungsstoff« bezeichnet wird.

Weitere Erfindungsgegenstände ergeben sich aus der Beschreibung.

20 **Die Vorteile der erfindungsgemäßen Lösung**

Im Hinblick auf den Stand der Technik war es überraschend und für den Fachmann nicht vorhersehbar, daß sich trotz der Verwendung von hydrophilen Nanopartikeln (B) auch konventionelle erfindungsgemäße Beschichtungsstoffe in einfacher Weise und sicher reproduzierbar herstellen ließen.

Außerdem war es überraschend, daß die erfindungsgemäßen Beschichtungsstoffe lagerstabil waren und ein sehr gutes Applikationsverhalten
aufwiesen. Insbesondere neigten sie nach der Applikation nicht mehr zur Läuferbildung an senkrechten Flächen.

Die ausführliche Beschreibung der Erfindung

Die wesentlichen Bestandteile des erfindungsgemäßen Beschichtungstoffes sind

(A) mindestens eine, insbesondere eine, Art von hydrophoben Nanopartikeln auf der Basis von Siliziumdioxid und
(B) mindestens eine, insbesondere eine, Art von hydrophilen Nanopartikeln auf der Basis von Siliziumdioxid mit einer inneren Oberfläche nach BET >300, vorzugsweise >340 und insbesondere >350 m²/g.

Das Gewichtsverhältnis von hydrophoben Nanopartikeln (A) zu hydrophilen Nanopartikeln (B) kann sehr breit variieren richtet sich nach den Erfordernissen des Einzelfalls. Vorzugsweise liegt das Gewichtsverhältnis (A) : (B) bei 1 : 4 bis 4 : 1, bevorzugt 3 : 7 bis 7 : 3 und insbesondere 2 : 3 bis 3 : 2.

Der Gehalt der Beschichtungsstoffe an den hydrophoben Nanopartikeln (A) und den hydrophilen Nanopartikeln (B) kann ebenfalls sehr breit variieren und richtet sich nach den Erfordernissen des Einzelfalls, beispielsweise nach der Höhe der Kratzfestigkeit, die eingestellt werden soll. Vorzugsweise liegt der Gehalt bei 0,3 bis 6, bevorzugt 0,6 bis 4, besonders bevorzugt 0,8 bis 3 und insbesondere 1 bis 2,4 Gew.-%, jeweils bezogen auf den Gesamtfestkörpergehalt des erfindungsgemäßen Beschichtungsstoffes.

Vorzugsweise ist die Primärteilchengröße der Nanopartikel (A) und (B) <35, bevorzugt <20 und insbesondere <10 nm.

Das Siliziumdioxid, das die Basis der Nanopartikel (A) und (B) bildet, kann nach den unterschiedlichsten üblichen und bekannten Verfahren hergestellt werden. Vorzugsweise handelt es sich um pyrogenes Siliziumdioxid. Die Agglomerate und Aggregate seiner Primärpartikel haben eine kettenförmige Struktur und werden durch die Flammenhydrolyse von Siliziumtetrachlorid in einer Knallgasflamme hergestellt.

Das Siliziumdioxid, insbesondere das pyrogene Siliziumdioxid, ist als solches hydrophil und kann ohne weitere Modifizierung seiner Oberfläche als
hydrophile Nanopartikel (B) eingesetzt werden, d.h., diese bestehen bevorzugt aus pyrogenem Siliziumdioxid.

Vorzugsweise werden die hydrophoben Nanopartikel (A) durch die Oberflächenmodifizierung von pyrogenem Siliziumdioxid mit hydrophobe Gruppen enthaltenden Verbindungen hergestellt.

Als hydrophobe Nanopartikel (A) geeignet sind bevorzugt anorganische Nanopartikel, die an ihrer Oberfläche hydrophobe Gruppen tragen. Beispiele für geeignete hydrophobe Nanopartikel (A) sind Umsetzungsprodukte von hydrophilen Nanopartikel, wie insbesondere die weiter unten als Nanopartikel (B) beschriebenen Nanopartikel, mit Verbindungen mit hydrophoben Gruppen, insbesondere mit organofunktionellen Silicium-Verbindungen (I) mit mindestens einer gegenüber den hydrophilen Gruppen der Nanopartikel (B) reaktiven funktionellen Gruppe (Ia) und mit mindestens einem hydrophoben Rest (Ib). Bevorzugt haben die Verbindungen (I) keine weiteren, gegenüber den weiteren Bestandteilen des Beschichtungsmittels reaktive Gruppen, insbesondere keine weiteren, gegenüber den Bindemitteln und/oder Vernetzern reaktive Gruppen.

Beispiele für geeignete organofunktionelle Verbindungen (I) sind auch die in der DE-A-100 49 628 beschriebenen organofunktionellen Siliciumverbindungen.

Beispiele für geeignete Verbindungen (I) sind ferner die im Handel erhältlichen und bekannten Produkte, die beispielsweise von der Firma Hüls unter der Marke DYNASILAN® vertrieben werden.

Besonders bevorzugt werden als Verbindungen (I) Dimethylidichlorsilan und/oder Hexamethyldisilazan und/oder Octyltrimethoxysilan und/oder Dimethylpolysiloxan eingesetzt.

Ganz besonders bevorzugt werden als hydrophobe Nanopartikel (A) Nanopartikel auf Basis der Reaktionsprodukte von SiO₂ und Dimethylidichlorsilan und/oder Hexamethyldisilazan, insbesondere Reaktionsprodukte von SiO₂ und Dimethylidichlorsilan, eingesetzt.

Bezüglich verwendbarer Kieselsäuren wird z.B. auf die Firmenschrift „Pyrogene Kieselsäuren-Aerosil®“ der Sivento, Degussa-Hüls AG verwiesen.

Als hydrophile Nanopartikel (B) geeignet sind bevorzugt anorganische Nanopartikel, die an ihrer Oberfläche hydrophile Gruppen tragen. Beispiele für geeignete anorganische hydrophile Nanopartikel (B) sind Nanopartikel auf Basis der Oxide und/oder Mischoxide einschließlich der Oxidhydrate mindestens eines Metalls oder Halbmetalls der zweiten bis sechsten Hauptgruppe, der ersten bis achten Nebengruppe des Periodensystems der Elemente oder der Lanthaniden, insbesondere Oxide und/oder Misch-
oxide einschließlich Oxidhydrate aus der Reihe der Elemente Si, Al, Ti, Zr und/oder Ce. Beispiele hierfür sind Nanopartikel auf Basis SiO₂, wie pyro-
gen hergestellte Kieselsäure, Silikate, Al₂O₃, Aluminiumhydroxid, Alumosi-
livate, TiO₂, Titanate, ZrO₂ oder Zirkonate, CeO₂, insbesondere Nanoparti-
kel auf Basis von pyrogener Kieselsäure. Besonders bevorzugt werden als
hydrophile Nanopartikel (B) anorganische Nanopartikel eingesetzt, die an
Oberfläche nicht durch Umsetzung mit verschiedenen organischen Ver-
bindungen modifiziert wurden, ganz besonders bevorzugt nichtmodifizierte
pyrogene Kieselsäure.

Beispiele für geeignete hydrophile Nanopartikel (B) sind auch die im Han-
del erhältlichen üblichen und bekannten Produkte auf Basis von SiO₂, die
beispielsweise von der Firma Degussa unter der Marke Aerosil® R 380
oder von der Firma Wacker unter der Typenbezeichnung T 40 vertrieben
werden.

Die erfindungsgemäßen Beschichtungsstoffe können flüssig oder fest
sein.

Die flüssigen erfindungsgemäßen Beschichtungsstoffe können konvention-
nelle Beschichtungsstoffe oder im wesentlichen oder völlig wasserfreie
und lösemittelfreie Beschichtungsstoffe (100%-Systeme) sein. Die festen
erfindungsgemäßen Beschichtungsstoffe können Pulverlacke sein.

Dabei können die erfindungsgemäßen Beschichtungsstoffe physikalisch,
thermisch, mit aktinischer Strahlung oder thermisch und mit aktinischer
Strahlung härtestbar sein. Unter aktinischer Strahlung ist hier und im folgen-
den elektromagnetische Strahlung, wie nahes Infrarot (NIR), sichtbares
Licht, UV-Strahlung oder Röntgenstrahlung, insbesondere UV-Strahlung,
und Korpuskularstrahlung, wie Elektronenstrahlung, zu verstehen. Die
gemeinsame Härting mit Wärmeenergie und aktinischer Strahlung wird auch als Dual-Cure bezeichnet.

Die erfindungsgemäßen Beschichtungsstoffe können pigmentiert oder unpigmentiert sein.

Vorzugsweise enthalten die pigmentierten erfindungsgemäßen Beschichtungsstoffe mindestens ein Pigment, ausgewählt aus der Gruppe, bestehend aus farbgebenden, optisch effektgebenden, elektrisch leitfähigen, magnetischen, magnetisch abschirmenden, fluoreszierenden, phosphoreszierenden, korrosionshemmenden und füllenden Pigmenten sowie Pigmenten, die mindestens zwei dieser Eigenschaften aufweisen. Bevorzugt werden die farbgebenden und/oder effektgebenden Pigmente verwendet.

Bevorzugt werden die flüssigen erfindungsgemäßen Beschichtungsstoffe, besonders bevorzugt die konventionellen erfindungsgemäßen Beschichtungsstoffe, ganz besonders bevorzugt die pigmentfreien, konventionellen erfindungsgemäßen Beschichtungsstoffe und insbesondere die pigmentfreien, konventionellen, thermisch oder Dual-Cure-härtbaren erfindungsgemäßen Beschichtungsstoffe verwendet.
Die erfindungsgemäßen Beschichtungsstoffe können somit für die unterschiedlichsten Verwendungszwecke, insbesondere als Füller oder Stein-
enschlagschutzgrundierungen, Basislacke, Unidecklacke oder Klarlacke,
insbesondere als Klarlacke, eingesetzt werden.

Die konventionellen erfindungsgemäßen Einkomponentenklarlacke enthal-
ten bekanntermaßen hydroxylgruppenhaltige Bindemittel und Vernet-
zungsmittel, wie blockierte Polysisocyanate,
Tris(alkoxycarbonylamino)triazine und/oder Aminoplastharze (vgl. die
deutschen Patentanmeldungen DE 199 24 172 A 1 oder DE 199 24 171 A 1). In einer weiteren Variante enthalten sie als Bindemittel Polymere mit
seitenständigen Carbamat- und/oder Allophanatgruppen und gegebenen-
falls carbamat- und/oder allophanatmodifizierte Aminoplastharze als Ver-
netzungsmittel (vgl. die amerikanischen Patentschriften US 5,474,811 A 1,
US 5,356,669 A 1 oder US 5,605,965 A 1, die internationalen Patentan-
meldungen WO 94/10211, WO 94/10212 oder WO 94/10213 oder die eu-
ropäischen Patentanmeldungen EP 0 594 068 A 1, EP 0 594 071 A 1 oder
EP 0 594 142 A 1).

Die erfindungsgemäßen Zweikomponentenklarlacke, insbesondere die
konventionellen, enthalten als wesentliche Bestandteile bekanntermaßen
hydroxylgruppenhaltige Bindemittel und Polysisocyanate als Vernetzung-
mittel, welche bis zu ihrer Verwendung getrennt gelagert werden (vgl. die

Die erfindungsgemäßen Dual-Cure-Klarlacke sind vorzugsweise konven-
tionelle Einkomponenten- oder Zweikomponentenklarlacke, die zusätzlich
mit aktinischer Strahlung aktivierbare funktionelle Gruppen und/oder zu-
sätzliche Bestandteile mit solchen funktionellen Gruppen enthalten. Be-

Bevorzugt werden Beschichtungsmittel auf Basis von hydroxylgruppenhaltigen Bindemitteln, insbesondere Polyacrylatharzen und hydroxylgruppenreaktiven Vernetzern, insbesondere isocyanatgruppenhaltigen Vernetzern und/oder Tris(alkoxy-carbonylamino)triazenen und/oder Aminoplastharzen, eingesetzt. Die OH-Zahl geeigneter Bindemittel kann dabei im allgemeinen 15 bis 300, bevorzugt 30 bis 250, besonders bevorzugt 50 bis 200, ganz besonders bevorzugt 70 bis 180 und insbesondere 80 bis 170, betragen.

Im folgenden wird ein erfindungsgemäße bevorzugtes Beschichtungssystem beschrieben:

Es werden bevorzugt Polyacrylatharze als Bindemittel eingesetzt. Im Falle der Polyacrylatharze für nichtwäßrige Beschichtungsstoffe kann das Bindemittel insbesondere ein Polyacrylatharz sein, welches herstellbar ist, indem (a) 16 bis 51 Gew.-%, vorzugsweise 16 bis 28 Gew.-%, eines hydroxylgruppenhaltigen Esters der Acrylsäure oder Methacrylsäure oder eines Gemisches aus solchen Monomeren, (b) 32 bis 84 Gew.-%, vorzugsweise 32 bis 63 Gew.-%, eines von (a) verschiedenen aliphatischen oder cycloaliphatischen Esters der Acrylsäure oder Methacrylsäure mit vorzugsweise mindestens 4 C-Atomen im Alkoholrest oder eines Gemisches aus solchen Monomeren, (c) 0 bis 2 Gew.-%, vorzugsweise 0 bis 1 Gew.-%, einer ethylenisch ungesättigten Carbonsäure oder einer Mischung aus ethylenisch ungesättigten Carbonsäuren und (d) 0 bis 30 Gew.-%, vorzugsweise
0 bis 20 Gew.-%, eines von (a), (b) und (c) verschiedenen ethylenisch un-
gesättigten Monomers oder eines Gemisches aus solchen Monomeren zu
einem Polyacrylnatharz mit einer Säurezahl von 0 bis 25, vorzugsweise 0
bis 8, einer Hydroxylzahl von 80 bis 200, vorzugsweise 80 bis 120, und ei-
ner zahlenmäßigen Molekulargewicht von 1.500 bis 10.000, vorzugswei-
se 2.000 bis 5.000 polymerisiert werden, wobei die Summe der Gewichts-
anteile der Komponenten (a), (b), (c) und (d) stets 100 Gew.-% ergibt.

Die Herstellung der bevorzugt eingesetzten Polyacrylnatharze kann nach
gleichzeitig gut bekannten Polymerisationsverfahren in Masse, Lösung oder
Emulsion erfolgen. Polymerisationsverfahren zur Herstellung von Polyac-
rylnatharzen sind allgemein bekannt und vielfach beschrieben (vgl. z.B.:
Houben Weyl, Methoden der organischen Chemie, 4. Auflage, Band 14/1,
Seite 24 bis 255 (1961)).

Weitere Beispiele geeigneter (Co)Polymerisationsverfahren für die
Herstellung der Polyacrylnatharze werden in den Patentschriften DE-A-197

Vorteilhaft sind Taylorreaktoren, insbesondere für die Copolymerisation in
Masse, Lösung oder Emulsion.

Die eingesetzten Polyacrylnatharze werden vorzugsweise mit Hilfe des Lö-
sungspolymerisationsverfahrens hergestellt. Hierbei wird üblicherweise ein
organisches Lösungsmittel bzw. Lösungsmittelgemisch vorgelegt und zum Sieden
erhitzt. In dieses organische Lösungsmittel bzw. Lösungsmittelgemisch werden
dann das zu polymerisierende Monomergemisch sowie ein oder mehrere
Polymerisationsinitiatoren kontinuierlich zugegeben. Die Polymerisation
erfolgt bei Temperaturen zwischen 100 und 160°C, vorzugsweise zwischen
130 und 150°C. Als Polymerisationsinitiatoren werden vorzugsweise freie
Radikale bildende Initiatoren eingesetzt. Initiatorkraft und -menge werden üblicherweise so gewählt, daß bei der Polymerisationstemperatur während der Zulaufphase ein möglichst konstantes Radikalangebot vorliegt.

Die Polymerisationsbedingungen (Reaktionstemperatur, Zulaufzeit der Monomerenmischung, Menge und Art der organischen Lösungsmittel und Polymerisationsinitiatoren, eventuelle Mitverwendung von Molekulargewichtsreglern, wie z.B. Mercaptanen, Thiolglykolsäureestern und Chlorwasserstoffen) werden so ausgewählt, daß die eingesetzten Polyacrylatharze ein zahlenmäßiges Molekulargewicht von 1.500 bis 10.000, vorzugsweise 2.000 bis 5.000 (bestimmt durch Gelpermeationschromatographie unter Verwendung von Polystyrol als Eichsubstanz) aufweisen.

Die Säurezahl der erfindungsgemäß eingesetzten Polyacrylatharze kann vom Fachmann durch Einsatz entsprechender Mengen der Komponente (c) eingestellt werden. Analoges gilt für die Einstellung der Hydroxylzahl. Sie ist über die Menge an eingesetzter Komponente (a) steuerbar.

Als Komponente (a) kann im Prinzip jeder hydroxygruppenhaltige Ester der Acrylsäure oder Methacrylsäure oder ein Gemisch aus solchen Monomeren eingesetzt werden. Als Beispiele werden genannt: Hydroxyalkylester der Acrylsäure, wie z.B. Hydroxyethylacrylat, Hydroxypropylacrylat, Hydroxybutylacrylat, insbesondere 4-Hydroxybutylacrylat; Hydroxyalkyl-

Die Zusammensetzung der Komponente (a) wird vorzugsweise so ausge wählt, daß bei alleiniger Polymerisation der Komponente (a) ein Polyacrylatharz mit einer Glasübergangstemperatur von -50 bis +70, vorzugsweise -30 bis +50°C erhalten wird. Die Glasübergangstemperatur kann vom Fachmann unter Zuhilfenahme der Formel

\[\frac{1}{T_G} = \sum_{n=1} W_n/T_{Gn} \]

\[T_G = \text{Glasübergangstemperatur des Polymeren} \]
\[x = \text{Anzahl der verschiedenen einpolymerisierten Monomere,} \]
\[W_n = \text{Gewichtsanteil des n-ten Monomers} \]
\[T_{Gn} = \text{Glasübergangstemperatur des Homopolymers aus dem n-ten Monomer} \]

näherungsweise berechnet werden.

Als Komponente (b) kann im Prinzip jeder von (a) verschiedene aliphatische oder cycloaliphatische Ester der Acrylsäure oder Methacrylsäure mit mindestens 4 C-Atomen im Alkoholrest oder ein Gemisch aus solchen Monomeren eingesetzt werden. Als Beispiele werden genannt: aliphatische Ester der Acryl- und Methacrylsäure mit 4 bis 20 C-Atomen im Alkoholrest, wie z.B. n-Butyl-, iso-Butyl-, tert.-Butyl, 2-Ethylhexyl-, Stearyl- und Laurylacrylat und -methacrylat sowie cycloaliphatische Ester der Acryl-
und Methacrylsäure wie z. B. Cyclohexylacrylat und Cyclohexylmethacrylat. Die Zusammensetzung der Komponente (b) wird vorzugsweise so ausgewählt, daß bei allenig Polymerisation der Komponente (b) ein Polyacrylthanraz mit einer Glasübergangstemperatur von 10 bis 100, vorzugsweise 20 bis 60°C erhalten wird.

Als Komponente (c) kann im Prinzip jede ethylenisch ungesättigte Carbonsäure oder eine Mischung aus ethylenisch ungesättigten Carbonsäuren eingesetzt werden. Als Komponente (c) werden vorzugsweise Acrylsäure und/oder Methacrylsäure eingesetzt.

Vorteilhafterweise sind die Bindemittel in dem Beschichtungsstoff in einer Menge von 10 bis 90 Gew.-%, besonders bevorzugt 15 bis 80 Gew.-% und insbesondere 20 bis 70 Gew.-%, jeweils bezogen auf den Gesamtfeststoffgehalt des Beschichtungsstoffs, enthalten.
Handelt es sich bei dem Beschichtungsstoff um ein Mehrkomponentensystem, werden Polyisocyanate und/oder Polyepeoxide, insbesondere aber Polyisocyanate als Vernetzungsmittel verwendet.

Beispiele geeigneter Polyisocyanate sind organische Polyisocyanate, insbesondere sogenannte Lackpolyisocyanate, mit aliphatischer, cydhaliphatischer, araliphatischer und/oder aromatisch gebundenen, freien Isocyanatgruppen. Bevorzugt werden Polyisocyanate mit 2 bis 5 Isocyanatgruppen pro Molekül und mit Viskositäten von 100 bis 10.000, vorzugsweise 100 bis 5000 und insbesondere 100 bis 2000 mPas (bei 23°C) eingesetzt. Gegebenenfalls können den Polyisocyanaten noch geringe Mengen organisches Lösungsmittel, bevorzugt 1 bis 25 Gew.-%, bezogen auf reines Polyisocyanat, zugegeben werden, um so die Einarbeitbarkeit des Isocyanates zu verbessern und gegebenenfalls die Viskosität des Polyisocyanats auf einen Wert innerhalb der obengenannten Bereiche abzusenken. Als Zusatzmittel geeignete Lösungsmittel die Polyisocyanate sind beispielsweise Ethoxyethylpropionat, Amyethylketon oder Butylacetat. Außerdem können die Polyisocyanate in üblicher und bekannter Weise hydrophil oder hydrophob modifiziert sein.

Weitere Beispiele geeigneter Polyisocyanate sind Isocyanurat-, Biuret-, Allophanat-, Iminooxadiazidon-, Urethan-, Hamstoff- und/oder Uretidiongruppen aufweisende Polyisocyanate. Urethangruppen aufweisende Polyisocyanate werden beispielsweise durch Umsetzung eines Teils der Isocyanatgruppen mit Polyolen, wie z.B. Trimethylpropan und Glycerin, erhalten. Vorzugsweise werden aliphatische oder cycloaliphatische Polyisocyanate, insbesondere Hexamethylenisocyanat, dimerisiertes und trimerisiertes Hexamethylenisocyanat, Isophorondiisocyanat, 2-Isocyanatpropylcyclohexylisocyanat, Dicyclohexylmethan-2,4'-diisocyanat, Dicyclohexylmethan-4,4'-diisocyanat oder 1,3-Bis(isocyanatomethyl)cyclohexan, Diisocyanate, abgeleitet von Dimerfettsäuren, wie sie unter der Handelsbezeichnung DDI 1410 von der Firma Henkel vertrieben werden, 1,8-Diisocyanato-4-isocyanatomethyl-oktan, 1,7-Diisocyanato-4-isocyanatomethyl-heptan oder 1-Isocyanato-2-(3-isocyanatopropyl)cyclohexan oder Mischungen aus diesen Polyisocyanaten eingesetzt.

Weiterer Beispiele geeigneter Polyisocyanate sind die vorstehend bei der Herstellung der Thixotropierungsmittel beschrieben.

Im Falle der Einkomponentensysteme werden Vernetzungsmittel verwendet, welche bei höheren Temperaturen mit den funktionellen Gruppen der Bindemittel reagieren, um ein dreidimensionales Netzwerk aufzubauen. Selbstverständlich können solche Vernetzungsmittel in untergeordneten Mengen in den Mehrkomponentensystemen mit verwendet werden. Im Rahmen der vorliegenden Erfindung bedeutet „untergeordnete Menge“ einen Anteil, welcher die hauptsächliche Vernetzungsreaktion nicht stört oder gar ganz verhindert.

Beispiele geeigneter Vernetzungsmittel dieser Art sind blockierte Polyisocyanate. Beispiele geeigneter Polyisocyanate sind die vorstehend beschriebenen.

i) Phenole wie Phenol, Cresol, Xylenol, Nitrophenol, Chlorophenol, Ethylphenol, t-Butylphenol, Hydroxybenzoësäure, Ester dieser Säure oder 2,5- di-t-Butyl-4-hydroxytoluol;

ii) Lactame, wie ε-Caprolactam, δ-Valerolactam, γ-Butyrolactam oder β-Propiolactam;

iii) aktive methylenische Verbindungen, wie Diethylmalonat, Dimethylmalonat, Acettesigsäureethyl- oder -methylester oder Acetylaceton;

iv) Alkohole wie Methanol, Ethanol, n-Propanol, Isopropanol, n-Butanol, Isobutanol, t-Butanol, n-Amylalkohol, t-Amylalkohol, Laurylalkohol, Ethylenglykolmonomethylether, Ethylenglykolmonoethylether, Ethylenglykolmonobutylether, Diethylenglykolmonomethylether, Diethylenglykolmonoethylether, Propylenenglykolmonomethyl-
lether, Methoxymethanol, Glykolsäure, Glykolsäureester, Milchsäure, Milchsäureester, Methylolharnstoff, Methylolmelamin, Diacetonalkohol, Ethylenchlorhydrin, Ethylenbromhydrin, 1,3-Dichloro-2-propanol, 1,4-Cyclohexyldimethanol oder Acetocyanhydrin;

v) Mercaptane wie Butylmercaptan, Hexylmercaptan, t-Butylmercaptan, t-Dodecylmercaptan, 2-Mercaptobenzothiazol, Thiophenol, Methylthiophenol oder Ethylthiophenol;

vi) Säureamide wie Acetoanilid, Acetoanisidinamid, Acrylamid, Methacrylamid, Essigsäureamid, Stearinsäureamid oder Benzamid;

vii) Imide wie Succinimid, Phthalimid oder Maleimid;

viii) Amine wie Diphenylamin, Phenylnaphthylamin, Xyldin, N-Phenylxylidin, Carbazol, Anilin, Naphthylamin, Butylamin, Dibutylamin oder Butylphenylamin;

ix) Imidazole wie Imidazol oder 2-Ethylimidazol;

x) Harnstoffe wie Harnstoff, Thioharnstoff, Ethylenharnstoff, Ethylenthioharnstoff oder 1,3-Diphenylharnstoff;

xi) Carbamate wie N-Phenylcarbamidsäurephenylester oder 2-Oxazolidon;

xii) Imine wie Ethylenimin;

xiii) Oxime wie Acetonoxim, Formaldoxim, Acetaldoxim, Acetoxim, Methylethylketoxim, Diisobutylketoxim, Diacetylmonoxim, Benzophenonomoxim oder Chlorohexanonoxime;
xiv) Salze der schwefeligen Säure wie Natriumbisulfat oder Kaliumbisulfat;

xv) Hydroxamsäureester wie Benzylmethacrylohydroxamat (BMH) oder Allylmethacrylohydroxamat; oder

xvi) substituierte Pyrazole, Ketoxime, Imidazole oder Triazole; sowie

Gemische dieser Blockierungsmittel, insbesondere Dimethylpyrazol und Triazole, Malonester und Acetessigsäureester oder Dimethylpyrazol und Succinimid.

Als Vernetzungsmittel können auch Tris(alkoxycarbonylamino)triazine der allgemeinen Formel

![Chemical Structure](image)

eingesetzt werden.

Von Vorteil sind die Methyl-Butyl-Mischester, die Butyl-2-Ethylhexyl-Mischester und die Butylester. Diese haben gegenüber dem reinen Methylester den Vorzug der besseren Löslichkeit in Polymerschmelzen und neigen auch weniger zum Auskristallisieren.

Weitere Beispiele geeigneter Vernetzungsmittel sind beta-Hydroxyalkylamide wie N,N,N',N'-Tetrakis(2-hydroxyethyl)adipamid oder N,N,N',N'-Tetrakis(2-hydroxy-propyl)adipamid.

Weitere Beispiele geeigneter Vernetzungsmittel sind Siloxane, insbesondere Siloxane mit mindestens einer Trialkoxy- oder Dialkoxyasilangruppe.

Weitere Beispiele geeigneter Vernetzungsmittel sind Polyanhydride, insbesondere Polysuccinsäureanhydrid.

Die Menge der Vernetzungsmittel in dem Beschichtungsstoff kann breit variieren und richtet sich insbesondere zum einen nach der Funktionalität der Vernetzungsmittel und zum anderen nach der Anzahl der im Bindemit-
tel vorhandenen vernetzenden funktionellen Gruppen sowie nach der Vernetzungsdichte, die man erzielen will. Der Fachmann kann daher die Menge der Vernetzungsmittel aufgrund seines allgemeinen Fachwissens, gegebenenfalls unter Zuhilfenahme einfacher orientierender Versuche ermitteln. Vorteilhafterweise ist das Vernetzungsmittel in dem Beschichtungsstoff in einer Menge von fünf bis 60 Gew.-% besonders bevorzugt 10 bis 50 Gew.-% und insbesondere 15 bis 45 Gew.-%, jeweils bezogen auf den Gesamtfeststoffgehalt des Beschichtungsstoffs, enthalten. Hierbei empfiehlt es sich des weiteren, die Mengen an Vernetzungsmittel und Bindemittel so zu wählen, daß in dem Beschichtungsstoff das Verhältnis von funktionellen Gruppen im Vernetzungsmittel und funktionellen Gruppen im Bindemittel zwischen 2 : 1 bis 1 : 2, vorzugsweise 1,5 : 1 bis 1 : 1,5, besonders bevorzugt 1,2 : 1 bis 1 : 1,2 und insbesondere 1,1 : 1 bis 1 : 1,1 liegt.

Bevorzugt ist es, daß der Beschichtungsstoff ein nichtwäßriger Beschichtungsstoff, vorzugsweise ein nichtwäßriger, transparenter Glanzklarlack, ist. Der Ausdruck Glanzklarlack meint, daß ein möglichst hoher Glanz angestrebt ist, im Gegensatz zu den Mattlacken.

Im Falle von nichtwäßrigen Beschichtungsstoffen enthalten diese 20 bis 70 Gew.-%, vorzugsweise 40 bis 60 Gew.-%, (bezogen auf den applikationsfertige Beschichtungsstoff) organische Lösungsmittel, wie z.B. aliphatische, aromatische und/oder cycloaliphatische Kohlenwasserstoffe, Alkylester der Essigsäure oder Propionsäure, Alkanole, Ketone, Glykolether und/oder Glykoletherester.

Darüber hinaus kann der Beschichtungsstoff mindestens ein übliches und bekanntes Lackadditiv in wirksamen Mengen, d.h. in Mengen vorzugsweise bis zu 40 Gew.-%, besonders bevorzugt bis zu 30 Gew.-% und insbesondere bis zu 20 Gew.-%, jeweils bezogen auf den Gesamtfeststoffgehalt
des Beschichtungsstoffs, enthalten. Wesentlich ist, daß die Lackadditive
die Transparenz und Klarheit des Beschichtungsstoffs nicht negativ beein-
flussen.

5 Beispiele geeigneter Lackadditive sind

- UV-Absorber;

- Lichtschutzmittel wie HALS-Verbindungen, Benztriazole oder Oxa-

10 laniiide;

- Radikalfänger;

- Katalysatoren für die Vernetzung wie Dibutylzinndilaurat oder Li-

15 thiumdecanoat;

- Slipadditive;

- Polymerisationsinhibitoren;

20 - Entschäumer;

- Reaktivverdünnern, wie sie aus dem Stand der Technik allgemein

25 bekannt sind;

Beispiele besonders geeigneter thermisch härterbarer Reaktivver-
dünnern sind stellungsisomere Diethylctandiole oder Hydroxylgru-
pen enthaltende hyperverzweigte Verbindungen oder Dendrimere,
wie sie in den Patentanmeldungen DE 198 09 643 A 1, DE 198 40
605 A 1 oder DE 198 05 421 A 1 beschrieben werden.

30 Beispiele besonders geeigneter mit aktinischer Strahlung härterbarer
Reaktivverdünnern werden in Römp Lexikon Lacke und Druckfar-

- Netzmittel wie Siloxane, fluorhaltige Verbindungen, Carbonsäure-
 halbester, Phosphorsäureester, Polyacrylsäuren und deren Copo-
 ymere oder Polyurethane;

- Haftvermittler wie Tricyclodecandimethanol;

- Verlaufmittel;

- filmbildende Hilfsmittel wie Cellulose-Derivate;

- weitere transparente Füllstoffe wie Nanopartikel auf der Basis von
 Siliziumdioxid, Aluminiumoxid oder Zirkoniumoxid; ergänzend wird
 noch auf das Römpp Lexikon »Lacke und Druckfarben« Georg
 Thieme Verlag, Stuttgart, 1998, Seiten 250 bis 252, verwiesen;

- Rheologiesteuernnder Additive wie die aus den Patentschriften WO
 bekannten; vernetzte polymere Mikroteilchen, wie sie beispielswei-
 se in der EP-A-0 008 127 offenbart sind; anorganische Schichtsil-
 kate wie Aluminium-Magnesium-Silikate, Natrium-Magnesium-
 und Natrium-Magnesium-Fluor-Lithium-Schichtsilikate des Montmorillo-
 nit-Typs; Kieselsäuren wie Aerosile; oder synthetische Polymere mit
 ionischen und/oder assoziativ wirksenden Gruppen wie Polyvinylal-
 kohol, Poly(meth)acrylamid, Poly(meth)acrylsäure, Polyvinylpyrrolid-
 on, Styrol-Maleinsäureanhydrid- oder Ethylen-Maleinsäure-
 anhydrid-Copolymere und ihre Derivate oder hydrophob modifizier-
 te ethoxylierte Urethane oder Polyacrylate;
- Flammschutzmittel und/oder
- Mattierungsmittel.

Hierbei kann das Vernetzungsmittel oder die Mischung von Vernetzungsmitteln gleichzeitig oder erst unmittelbar vor einer Applikation des Beschichtungsstoffs zugegeben werden. Im Falle von Zweikomponentensystemen wird das Vernetzungsmittel, beispielsweise unblockierte Polysocyanate, erst unmittelbar vor der Applikation des Beschichtungsstoffs zugegeben. Im Falle von Einkomponentensystemen kann das Vernetzungsmittel, beispielsweise blockierte Polysocyanate, bereits herstellerseitig zugegeben sein.

Dabei werden die erfindungsgemäß zu verwendenden Nanopartikel (A) und (B) sowie gegebenenfalls die Pigmente vorzugsweise in Form von Pasten mit den übrigen Bestandteilen vermischt.

Die Anreibung mit Bindemitteln kann dabei ggf. in Gegenwart von Dispergiermitteln erfolgen.
Als Reibharz eignen sich im Prinzip alle Stoffe, die auch für die Bindemittel oben schon ausgeführt wurden. Bevorzugt werden als Reibharze Polyester und/oder Polyacrylate eingesetzt; insbesondere hydroxylgruppenhaltige Polyacrylate.

Die erfindungsgemäßen Beschichtungsstoffe dienen der Herstellung der erfindungsgemäßen Folien, Formteile, insbesondere optischen Formteile, sowie Beschichtungen, insbesondere Beschichtungen auf gründierten oder ungründierten Substraten.

Demgemäß sind die erfindungsgemäßen Beschichtungsstoffe für das Lackieren oder Beschichten von Kraftfahrzeugkarosserien und Teilen hiervon, Kraftfahrzeugen im Innen- und Außenbereich, Bauwerken im Innen- und Außenbereich, Türen, Fenstern und Möbeln sowie im Rahmen der industriellen Lackierung für das Lackieren von Kunststoffteilen, insbesondere transparenten Kunststoffteilen, Kleinteilen, Coils, Container, Emballagen, elektrotechnischen Bauteilen und weißer Ware sowie für das Beschichten von Hohlglasartikeln besonders gut geeignet. Insbesondere sind die erfindungsgemäßen Beschichtungsstoffe für die Verwendung auf dem Automobilsektor geeignet.
Im Falle elektrisch leitfähiger Substrate können Grundierungen verwendet werden, die in üblicher und bekannter Weise aus Elektrotauglacken (ETL) hergestellt werden. Hierfür kommen sowohl anodische (ATL) als auch kathodische (KTL) Elektrotauglacke, insbesondere aber KTL, in Betracht.

Mit der erfindungsgemäßen Beschichtung können auch grundierte oder nicht grundierte Kunststoffe wie z. B. ABS, AMMA, ASA, CA, CAB, EP, UF, CF, MF, MPF, PF, PAN, PA, PE, HDPE, LDPE, LLDPE, UHMWPE, PET, PMMA, PP, PS, SB, PUR, PVC, RF, SAN, PBT, PPE, POM, PUR-RIM, SMC, BMC, PP-EPDM und UP (Kurzbezeichnungen nach DIN 7728T1) sowie deren Polymerblends oder die mit diesen Kunststoffen hergestellten faserverstärkten Kompositmaterialien lackiert werden.

Im Falle von nicht funktionalisierten und/oder unpolaren Substratoberflächen können diese vor der Beschichtung in bekannter Weise einer Vorbehandlung, wie mit einem Plasma oder mit Beflammen, unterzogen oder mit einer Hydrogrundierung versehen werden.

Besondere Vorteile zeigen die erfindungsgemäßen Beschichtungsstoffe und die erfindungsgemäßen Beschichtungen in der Automobilserien- und Reparaturlackierung als klare und transparente, hochkratzfeste, hochglänzende flexible, säure- und wasserbeständige, fest haftende, steinschlagfeste Klarlackierungen im Rahmen farb- und/oder effektgebender Mehrschichtlackierungen.

Da die aus den erfindungsgemäßen Beschichtungsstoffen hergestellten erfindungsgemäßen Beschichtungen auch auf bereits ausgehärterten Elektrotauchlackierungen, Füllerlackierungen, Basislackierungen oder üblichen und bekannten Klarlackierungen hervorragend haften, eignen sie sich ausgezeichnet für die Autoreparaturlackierung oder die Kratzfestausrüstung von exponierten Stellen von lackierten Automobilarosserien.

Die Applikation der erfindungsgemäßen Beschichtungsstoffe kann durch alle üblichen Applikationsmethoden, wie z.B. Spritzen, Rakeln, Streichen, Gießen, Tauchen, Tränken, Träufeln oder Walzen erfolgen. Dabei kann das zu beschichtende Substrat als solches ruhen, wobei die Applikationseinrichtung oder -anlage bewegt wird. Indes kann auch das zu beschichtende Substrat, insbesondere ein Coil, bewegt werden, wobei die Applikationsanlage relativ zum Substrat ruht oder in geeigneter Weise bewegt wird.

Die Aushärtung der applizierten erfindungsgemäßen Beschichtungsstoffe kann nach einer gewissen Ruhezeit erfolgen. Sie kann eine Dauer von 30 s bis 2 h, vorzugsweise 1 min bis 1 h und insbesondere 1 min bis 45 min haben. Die Ruhezeit dient beispielsweise zum Verlauf und zur Entgasung der Lackschichten oder zum Verdunsten von flüchtigen Bestandteilen wie Lösemittel. Die Ruhezeit kann durch die Anwendung erhöhter Temperaturen bis 90°C und/oder durch eine reduzierte Luftfeuchte <10g Wasser/kg Luft, insbesondere <5g/kg Luft, unterstützt und/oder verkürzt werden, sofern hierbei keine Schädigungen oder Veränderungen der Lackschichten eintreten, etwa eine vorzeitige vollständige Vernetzung.

Vorteilhafterweise erfolgt die thermische Härtung bei einer Temperatur von 50 bis 200°C, besonders bevorzugt 60 bis 190°C und insbesondere 80 bis 180°C während einer Zeit von 1 min bis zu 2 h, besonders bevorzugt 2 min bis zu 1 h und insbesondere 3 min bis 45 min.

Bei kompliziert geformten Werkstücken, wie sie für Automobilkarosserien vorgesehen sind, können die nicht direkter Strahlung zugänglichen Bereiche (Schattenbereiche) wie Hohlräume, Falzen und andere konstruktionsbedingte Hinterschnitte mit Punkte-, Kleinflächen- oder Rundumstrahlern verbunden mit einer automatischen Bewegungseinrichtung für das Bestrahlen von Hohlräumen oder Kanten (partiell) ausgehärtet werden.

Hierbei kann die Aushärtung stufenweise erfolgen, d.h. durch mehrfache Belichtung oder Bestrahlung mit aktinischer Strahlung. Dies kann auch alternierend erfolgen, d.h., daß abwechselnd mit UV-Strahlung und Elektronenstrahlung gehärtet wird.

Werden die thermische Härtung und Härtung mit aktinischer Strahlung zusammen angewandt, können diese Methoden gleichzeitig oder alternierend eingesetzt werden. Werden die beiden Härtungsmethoden alternierend verwendet, kann beispielsweise mit der thermischen Härtung begonnen und mit der Härtung mit aktinischer Strahlung geendet werden. In an-
deren Fällen kann es sich als vorteilhaft erweisen, mit der Härtung mit ak
tinischer Strahlung zu beginnen und hiermit zu enden.

Die erfindungsgemäßen Mehrschichtlackierungen weisen ein hervorra-
gendes Eigenschaftsprofil auf, das hinsichtlich der Mechanik, Optik, Kor-
rosionsbeständigkeit und Haftung sehr gut ausgewogen ist. So weisen die
erfindungsgemäßen Mehrschichtlackierungen die vom Markt geforderte
hohe optische Qualität und Zwischenschichthaftung auf und werfen keine
Probleme wie mangelnde Schwitzzwasserbeständigkeit, Rißbildung (mud-
cracking) oder Verlaufsstörungen oder Oberflächenstrukturen in den erfin-
dungsgemäßen Klariackierungen auf.

Im Falle von nicht-wäßrigen Beschichtungsstoffen können diese z.B. 20
bis 70 Gew.-%, vorzugsweise 40 bis 60 Gew.-% (bezogen auf den appli-
kationsfertigen Beschichtungsstoff) organische Lösungsmittel, wie z.B.
aliphatische, aromatische und/oder cycloaliphatische Kohlenwasserstoffe,
Alkylester der Essigsäure oder Propionsäure, Alkanole, Ketone, Glykol-
ether und/oder Glykoletherester enthalten.

Insbesondere weisen die erfindungsgemäßen Mehrschichtlackierungen
einen hervorragenden Metallic-Effekt, einen hervorragenden D.O.I. (di-
stinctiveness of the reflected image), eine ganz besonders hohe Kratzfe-
stigkeit und eine hervorragende Oberflächenglätte auf.

Demzufolge weisen die erfindungsgemäßen grundierten oder ungrundier-
ten Substrate, die mit mindestens einer erfindungsgemäßen Beschichtung
beschichtet sind, bei einem besonders vorteilhaften anwendungstechni-
schen Eigenschaftsprofil eine besonders lange Gebrauchsdauer auf, was
sie wirtschaftlich, ästhetisch und technisch besonders wertvoll macht.
Beispiele und Vergleichsversuche

Die Herstellung eines Polyacrylats 1 (Bindemittel)

Die Herstellung eines Polyacrylats 2 (Bindemittel)

In einem geeigneten Reaktor, ausgerüstet mit einem Rührer, zwei Tropftrichtern für die Monomermischung und die Initiatorlösung, Stickstoffeinleitungsrohr, Thermometer, Heizung und Rückflußkühler, wurden 650 Gewichtsteile einer Fraktion aromatischer Kohlenwasserstoffe mit einem Sie-

Die resultierende Lösung wies einen Feststoffgehalt von 65%, bestimmt in einem Umluftofen (1 h/130°C), eine Säurezahl von 15 mg KOH/g Festkör per, eine OH-Zahl von 175 mg KOH/g Festkörper und eine Glasübergangstemperatur von -21°C auf.

Die Herstellung eines Polyacrylats 3 (Bindemittel)

In einem Laborreaktor mit einem Nutzvolumen von 4 l ausgestattet mit einem Rührer, zwei Tropftrichtern für die Monomermischung resp. Initiatorlösung, Stickstoffeinleitungsrohr, Thermometer und Rückflußkühler wurden 720 g einer Fraktion aromatischer Kohlenwasserstoffe mit einem Siedebereich von 158 - 172°C eingewogen. Das Lösemittel wurde auf 140°C aufgeheizt. Nach Erreichen von 140°C werden eine Monomermischung aus 212 g n-Butylmethacrylat, 367 g Cyclohexanmethacrylat, 282 g Styrol, 254 g Hydroxyethylmethacrylat, 282 g Hydroxypropylmethacrylat und 14 g Acrylsäure innerhalb von 4 h, und eine Initiatorlösung von 141 g t-

Die Herstellung einer Paste von hydrophoben Nanopartikeln (A)

In einer Labor-Rührwerksmühle der Firma Vollrath wurden 800 g Mahlgut, bestehend aus 592 g des Polyacrylates 1,80 g Butylacetat, 64 g XyloI und 64 g Aerosil® 972 (Degussa AG, Hanau, Oberfläche nach BET = 110±20 m²/g), zusammen mit 1100 g Quarzsand (Korngröße 0.7 - 1 mm) eingewogen und unter Wasserkühlung 30 min angerieben. Anschließend wurde von den Mahlkörpern abgetrennt.

Die Herstellung einer Paste von hydrophilen Nanopartikeln (B)

In einer Labor-Rührwerksmühle der Firma Vollrath werden 800 g Mahlgut, bestehend aus 600 g des Polyacrylates 3, 130,4 g Butylacetat und 69,6 g Aerosil® R 380 (Degussa AG, Hanau – Oberfläche nach BET = 380±30 m²/g), zusammen mit 1100 g Quarzsand (Korngröße 0.7 - 1 mm) eingewogen und unter Wasserkühlung 30 min angerieben. Anschließend wurde von den Mahlkörpern abgetrennt.
Beispiel 1 und Vergleichsversuche V'1 und V 2

Die Herstellung eines erfindungsgemäßen Zweikomponentenklarlacks (Beispiel 1) und nicht erfindungsgemäßer Zweikomponentenklarlacke (Vergleichsversuche V'1 und V 2)

Ein erfindungsgemäßer Zweikomponentenklarlack (Beispiel 1) und zwei herkömmliche Zweikomponentenklarlacke (Vergleichsversuche V 1 und V 2) wurden aus den in der Tabelle 1 aufgeführten Bestandteilen durch Vermischen und Homogenisieren hergestellt und auf Prüftafeln appliziert.

Tabelle 3: Zusammensetzung des erfindungsgemäßen Zweikomponentenklarlacks (Beispiel 1) und der herkömmlichen Zweikomponentenklarlacke (Vergleichsversuche V 1 und V zwei)

<table>
<thead>
<tr>
<th>Bestandteile</th>
<th>Beispiel 1</th>
<th>Vergleichsversuche V'1</th>
<th>V 1</th>
<th>V 2</th>
</tr>
</thead>
<tbody>
<tr>
<td>Polyacrylat 2</td>
<td>35,0</td>
<td>35,0</td>
<td>35,0</td>
<td></td>
</tr>
<tr>
<td>Polyacrylat 3</td>
<td>18,0</td>
<td>14,0</td>
<td>23,0</td>
<td></td>
</tr>
<tr>
<td>Setalux® 81198</td>
<td>10,0</td>
<td>10,0</td>
<td>10,0</td>
<td></td>
</tr>
<tr>
<td>(Akzo Nobel Resins,</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Bergen op Zoom)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Disperbyk 161</td>
<td>1,0</td>
<td>1,0</td>
<td>1,0</td>
<td></td>
</tr>
<tr>
<td>(Byk Chemie, Wesel)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Nanopartikel</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Nanopartikelpaste (A)</td>
<td>8,3</td>
<td>-</td>
<td>8,3</td>
<td></td>
</tr>
<tr>
<td>Ingredient</td>
<td>Amount (g)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>---</td>
<td>------------</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Nanopartikelpaste (B)</td>
<td>9.7</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Substit. Hydroxyphenylbenztriazol (95%-ig in Xylol)</td>
<td>1.2</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Aminoethermodifizierter 2,2,6,6-Tetramethylpiperydinylester</td>
<td>1.0</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Byk® 390 (Byk Chemie)</td>
<td>0.2</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Byk® 325 (Byk Chemie)</td>
<td>0.2</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Byk® ES80</td>
<td>0.2</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Butanol</td>
<td>1.5</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Butyldiglykolacetat</td>
<td>5.0</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Butylacetat</td>
<td>3.7</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Ethoxypropylacetat</td>
<td>5.0</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Setalux® 81198 is ein Harstoffderivat in einem Bindemittel gelöst bzw. dispergiert.</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Vernetzer</td>
<td>33</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Anlösung eines Polyisocyanats auf der Basis Hexamethylenidisocyanat (80%-ige Anlsg. von Desmodur N 3390 von Bayer AG in Butylacetat/Solventn.)</td>
<td></td>
<td>33</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Die Mengenangaben sind jeweils bezogen auf den Festkörpergehalt.</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
| Zur Herstellung der Prüftafeln wurden nacheinander ein Elektrotauchlack mit einer Schichtdicke von 18 - 22 μm und ein Wasserfüller mit einer Schichtdicke von 35 - 40 μm appliziert und eingebraunt. Hierbei wurden der Elektrotauchlack während 20 min bei 170°C und der Füller während 20 min bei 160°C eingebraunt. Anschließend wurde ein schwarzer Was-

Beschreibung des Rotahub-Test zur Ermittlung der Kratzfestigkeit

Die Verkratzung der Prüftafel wird durch eine zweidimensionale Bewe-
gung und zusätzlicher Rotation des Prüfkörpers erzeugt.

Die Prüftafeln haben eine Größe von 500 x 200 mm, entsprechend des Probenaufnahmetisches.

Beliebig läßt sich der Fahrweg über die Koordinaten der x- und y-Ächse anwählen, bei einer Vorschubgeschwindigkeit der x-Achse von bis zu 70 mm/sec. und 20 mm/sec auf der y-Achse.

Die Prüfbedingungen sind veränderbar durch einen frei wählbaren Werk-
stücknullpunkt und eine in Geschwindigkeit und Zyklenanzahl einstellbare Vorschubbewegung des Prüfkörpers.

Zudem ist die Rotationsgeschwindigkeit der Scheibe bis zu 500 U/min. stufenlos wählbar und der Anpressdruck des Prüfkörpers über die Ge-
wichtskraft des jeweils verwendeten Bürstentopfes veränderbar.

Eine Heizplatte, die als Probenaufnahmetisch dient kann über ein externes Temperiergerät bis 80°C beheizt werden.

Als Aufnahme für den Prüfkörper dient eine kreisförmige Kunststoffschei-
be, der sogenannte Bürstentopf, mit einem Durchmesser von 70 mm. Durch sein Eigengewicht selbst stellt der Bürstentopf einen der Versuchs-
parameter dar.
Der Prüfkörper (das Reibmaterial) wird mit der Schaumstoffseite über einen Klettschluß auf dem Bürstentopf befestigt. Der Prüfkörper besteht aus Papier der Qualität AGFA 701 und verursacht durch den Anteil an abrasiven Inhaltsstoffen das Schadensbild. Der Prüfkörper ist aufgebaut aus einer 4 mm starken Moltopren-Schaumplatte, auf die Papier der Sorte AGFA 701 mit doppelseitigem Klebeband fixiert ist. Als Prüfkörper wird ein Kreisring mit den Maßen 70 x 40 mm verwendet. Somit ist die Kreisfläche der Mitte, mit einem Durchmesser von 30 mm herausgeschnitten.

Parameter der Rotahubprüfung für den erfindungsgemäßen Klarlack und den Vergleichslack. Gewicht der kompletten Prüfscheibe 304.8 g, Geschwindigkeit in x-Richtung 45.3 mm/s, Geschwindigkeit in y-Richtung 20 mm/s, Rotation der Prüfscheibe 2.4 Umdrehung/s, Meßtemperatur 23.0°C, Rel. Luftfeuchtigkeit 53 %. Der y-Versatz der münderischen Bewegung über das Prüfblech betrug 3.67 mm. Die Mänderzahl betrug 26 (=26 mal x- + y-Weg).

Gemessen wurde nach der Verkratung der DIN-Restglanz 20° zur Beurteilung der Schädigung.

Lacktechnische Ergebnisse

Die Prüfbleche mit den Klarlacken auf schwarzem Wasserbasislack wurden mittels des vorher beschriebenen Rotahubtests geprüft.

Der Klarlack des Vergleichsversuchs 2 wies mangelnde Transparenz auf, insbesondere bei Schichtdicken über 50 µm, wie sie in der Praxis gefordert werden. Sowohl der Klarlack des Vergleichsversuchs 1, als auch der erfindungsgemäße Klarlack zeigten auch bei hohen Schichtdicken über 50 µm bis 60 µm ausgezeichnete Transparenz.

Die Tabelle beschreibt die Verlaufseigenschaften der Klarlacke.

Tabelle 2: Verlaufseigenschaften und DOI des erfindungsgemäßen Klarlacks des Beispiels 1 und der herkömmlichen Klarlacke der Vergleichsversuche V 1 und V 2

<table>
<thead>
<tr>
<th>Beispiel 1</th>
<th>Vergleichsversuche</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>V 1</td>
</tr>
<tr>
<td></td>
<td>hydrophil 380</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Verlauf (visuell)</th>
<th>glatte Oberfl.</th>
<th>glatte Oberfl.</th>
<th>welligere Oberfl.</th>
</tr>
</thead>
<tbody>
<tr>
<td>(flache Narbe)</td>
<td>(flache Narbe)</td>
<td>(ausgeprägte Narbe)</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Verlauf (meßtechn.) Wavescan a):</th>
</tr>
</thead>
<tbody>
<tr>
<td>longwave waagrecht</td>
</tr>
<tr>
<td>shortwave waagrecht</td>
</tr>
<tr>
<td>longwave senkrecht</td>
</tr>
<tr>
<td>shortwave senkrecht</td>
</tr>
<tr>
<td>DOI</td>
</tr>
</tbody>
</table>

Patentansprüche

1. Beschichtungsstoff, enthaltend

(A) mindestens eine Art von hydrophoben Nanopartikeln auf der Basis von Siliziumdioxid und

(B) mindestens eine Art von hydrophilen Nanopartikeln auf der Basis von Siliziumdioxid mit einer inneren Oberfläche nach BET >300 m²/g.

2. Beschichtungsstoff nach Anspruch 1, dadurch gekennzeichnet, daß die hydrophilen Nanopartikel (B) eine innere Oberfläche nach BET >340 m²/g haben.

3. Beschichtungsstoff nach Anspruch 1 oder 2, dadurch gekennzeichnet, daß das Gewichtsverhältnis von hydrophoben Nanopartikel (A) zu hydrophilen Nanopartikeln (B) bei 1 : 4 bis 4 : 1 liegt.

4. Beschichtungsstoff nach Anspruch 3, dadurch gekennzeichnet, daß das Gewichtsverhältnis (A) : (B) bei 3 : 7 bis 7 : 3 liegt.

5. Beschichtungsstoff nach Anspruch 4, dadurch gekennzeichnet, daß das Gewichtsverhältnis (A) : (B) bei 2 : 3 bis 3 : 2 liegt.

6. Beschichtungsstoff nach einem der Ansprüche 1 bis 3, dadurch gekennzeichnet, daß die Primärteilchengröße der Nanopartikel (A) und (B) <35 nm ist.

7. Beschichtungsstoff nach Anspruch 6, dadurch gekennzeichnet, daß die Primärteilchengröße <20 nm ist.
8. Beschichtungsstoff nach Anspruch 7, dadurch gekennzeichnet, daß die Primärteilchengröße <10 nm ist.

9. Beschichtungsstoff nach einem der Ansprüche 1 bis 8, dadurch gekennzeichnet, daß die hydrophoben Nanopartikel (A) durch die Oberflächenmodifizierung von pyrogenem Siliziumdioxid herstellbar sind.

10. Beschichtungsstoff nach einem der Ansprüche 1 bis 9, dadurch gekennzeichnet, daß die hydrophilen Nanopartikel (B) aus pyrogenem Siliziumdioxid bestehen.

11. Beschichtungsstoff nach einem der Ansprüche 1 bis 10, dadurch gekennzeichnet, daß er die Nanopartikel (A) und (B) in einer Menge von 0,3 bis 6 Gew.-%, bezogen auf die Gesamtmenge, enthält.

12. Beschichtungsstoff nach Anspruch 11, dadurch gekennzeichnet, daß er die Nanopartikel (A) und (B) in einer Menge von 0,8 bis 3 Gew.-%, bezogen auf die Gesamtmenge, enthält.

13. Beschichtungsstoff nach Anspruch 12, dadurch gekennzeichnet, daß er die Nanopartikel (A) und (B) in einer Menge von 1 bis 2,4 Gew.-%, bezogen auf die Gesamtmenge, enthält.

14. Verfahren zur Herstellung des Beschichtungsstoffs gemäß einem der Ansprüche 1 bis 13 durch Vermischen seiner Bestandteile und Homogenisieren der resultierenden Mischung, dadurch gekennzeichnet, daß man die hydrophoben Nanopartikel (A) und die hydrophilen Nanopartikel (B) in Form von Pigmentpasten mit den übrigen Bestandteilen vermischt.
15. Verwendung des Beschichtungsstoffs gemäß einem der Ansprüche 1 bis 13 und des nach dem Verfahren gemäß Anspruch 14 hergestellten Beschichtungsstoffs für die Herstellung kratzfester, transparenter Beschichtungen, Formteile und Folien.

17. Verwendung der Mehrschichtlackierungen gemäß Anspruch 16 in der Automobillackierung.
A. CLASSIFICATION OF SUBJECT MATTER

IPC 7 C09D175/04 C09D7/12 C08K3/36 C08K9/06

According to International Patent Classification (IPC) or to both national classification and IPC

B. FIELDS SEARCHED

Minimum documentation searched (classification system followed by classification symbols)

IPC 7 C08K C09D

Documentation searched other than minimum documentation to the extent that such documents are included in the fields searched

Electronic data base consulted during the international search (name of data base and, where practical, search terms used)

EPO-Internal, WPI Data, PAJ

C. DOCUMENTS CONSIDERED TO BE RELEVANT

<table>
<thead>
<tr>
<th>Category</th>
<th>Citation of document, with indication, where appropriate, of the relevant passages</th>
<th>Relevant to claim No.</th>
</tr>
</thead>
<tbody>
<tr>
<td>X</td>
<td>DATABASE WPI Section Ch., Week 200209 Derwent Publications Ltd., London, GB; Class A26, AN 2000-333356 XP002252595 ¬& JP 2000 104047 A (NITTO KAGAKU KK), 11 April 2000 (2000-04-11) abstract examples 1-4</td>
<td>1-4, 6-11, 14-17</td>
</tr>
</tbody>
</table>

X Further special categories of cited documents:

* Special categories of cited documents:

"A" document defining the general state of the art which is not considered to be of particular relevance

"E" earlier document but published on or after the international filing date

"L" document which may throw doubts on priority claim(s) or which is cited to establish the publication date of another citation or other special reason (as specified)

"O" document referring to an oral disclosure, use, exhibition or other means

"P" document published prior to the international filing date but later than the priority date claimed

"T" later document published after the international filing date or priority date and not in conflict with the application but cited to understand the principle or theory underlying the invention

"X" document of particular relevance, the claimed invention cannot be considered novel or cannot be considered to involve an inventive step when the document is taken alone

"Y" document of particular relevance, the claimed invention cannot be considered to involve an inventive step when the document is combined with one or more other such documents, such combination being obvious to a person skilled in the art

"Y" document of the same patent family

Date of the actual completion of the international search

27 August 2003

Date of mailing of the international search report

11/09/2003

Name and mailing address of the ISA

European Patent Office, P.B. 5818 Patentlaan 2 NL-2280 HV Rijswijk Tel: (+31-70) 340-2040, Tx. 31 651 epo nl, Fax: (+31-70) 340-2016

Authorized officer

Russell, G
<table>
<thead>
<tr>
<th>Category</th>
<th>Citation of document, with indication, where appropriate, of the relevant passages</th>
<th>Relevant to claim No.</th>
</tr>
</thead>
<tbody>
<tr>
<td>X</td>
<td>EP 0 076 377 A (DEGUSSA) 13 April 1983 (1983-04-13) page 2, line 33 - page 3, line 4 example 2</td>
<td>1, 6-10, 14, 15</td>
</tr>
<tr>
<td>X</td>
<td>US 4 614 683 A (BARSOTTI ROBERT J) 30 September 1986 (1986-09-30) examples 1, 2</td>
<td>1, 2, 6-17</td>
</tr>
<tr>
<td>A</td>
<td>US 5 976 701 A (BARANCYK STEVEN V ET AL) 2 November 1999 (1999-11-02) column 9, line 5 - line 19 examples</td>
<td>1-17</td>
</tr>
<tr>
<td>A</td>
<td>EP 1 092 758 A (CHUGOKU MARINE PAINTS; SHINETSU CHEMICAL CO (JP)) 18 April 2001 (2001-04-18) paragraphs '0074!, '0076!, '0080!</td>
<td>1-16</td>
</tr>
<tr>
<td>Patent document cited in search report</td>
<td>Publication date</td>
<td>Patent family member(s)</td>
</tr>
<tr>
<td>---------------------------------------</td>
<td>-----------------</td>
<td>-------------------------</td>
</tr>
<tr>
<td>JP 6184493</td>
<td>05-07-1994</td>
<td>NONE</td>
</tr>
<tr>
<td>JP 2000104047</td>
<td>11-04-2000</td>
<td>NONE</td>
</tr>
<tr>
<td></td>
<td></td>
<td>AT 16398 T</td>
</tr>
<tr>
<td></td>
<td></td>
<td>DE 3267304 D1</td>
</tr>
<tr>
<td></td>
<td></td>
<td>EP 0076377 A2</td>
</tr>
<tr>
<td></td>
<td></td>
<td>JP 1457555 C</td>
</tr>
<tr>
<td></td>
<td></td>
<td>JP 58070848 A</td>
</tr>
<tr>
<td></td>
<td></td>
<td>JP 63005326 B</td>
</tr>
<tr>
<td>US 4614683</td>
<td>30-09-1986</td>
<td>BE 904708 A1</td>
</tr>
<tr>
<td></td>
<td></td>
<td>CA 1272331 A1</td>
</tr>
<tr>
<td></td>
<td></td>
<td>ES 8801847 A1</td>
</tr>
<tr>
<td></td>
<td></td>
<td>FR 2581075 A1</td>
</tr>
<tr>
<td></td>
<td></td>
<td>AU 1535697 A</td>
</tr>
<tr>
<td></td>
<td></td>
<td>AU 1831897 A</td>
</tr>
<tr>
<td></td>
<td></td>
<td>WO 9726304 A1</td>
</tr>
<tr>
<td></td>
<td></td>
<td>WO 9726305 A1</td>
</tr>
<tr>
<td></td>
<td></td>
<td>US 5709950 A</td>
</tr>
<tr>
<td></td>
<td></td>
<td>AT 177447 T</td>
</tr>
<tr>
<td></td>
<td></td>
<td>AU 2296895 A</td>
</tr>
<tr>
<td></td>
<td></td>
<td>CA 2188832 A1</td>
</tr>
<tr>
<td></td>
<td></td>
<td>DE 69508234 D1</td>
</tr>
<tr>
<td></td>
<td></td>
<td>DE 69508234 T2</td>
</tr>
<tr>
<td></td>
<td></td>
<td>ES 2130609 T3</td>
</tr>
<tr>
<td></td>
<td></td>
<td>JP 3276152 B2</td>
</tr>
<tr>
<td></td>
<td></td>
<td>JP 9505632 T</td>
</tr>
<tr>
<td></td>
<td></td>
<td>WO 9529947 A1</td>
</tr>
<tr>
<td></td>
<td></td>
<td>US 5663244 A</td>
</tr>
<tr>
<td></td>
<td></td>
<td>EP 1092758 A2</td>
</tr>
<tr>
<td></td>
<td></td>
<td>JP 2001181509 A</td>
</tr>
<tr>
<td></td>
<td></td>
<td>NO 20005132 A</td>
</tr>
<tr>
<td></td>
<td></td>
<td>US 2002197490 A1</td>
</tr>
<tr>
<td></td>
<td></td>
<td>US 6451437 B1</td>
</tr>
</tbody>
</table>
A. KLASSEIFIZIERUNG DES ANMELDUNGSGEGENSTANDES

IPK 7 C09D17/04 C09D77/12 C08K3/36 C08K9/06

Nach der Internationalen Patentklassifikation (IPK) oder nach der nationalen Klassifikation und der IPK

B. RECHERCHEIERTE GEBIETE

Recherchierten Mindestprüfstoff (Klassifikationsystem und Klassifikationssymbole)

IPK 7 C08K C09D

Recherchierte aber nicht zum Mindestprüfstoff gehörende Veröffentlichungen, soweit diese unter die recherchierten Gebiete fallen

Während der internationalen Recherche konultierte elektronische Datenbank (Name der Datenbank und evtl. verwendete Suchbegriffe)

EPO-Internal, WPI Data, PAJ

C. ALS WESENTLICH ANGESEHENEN UNTERLAGEN

<table>
<thead>
<tr>
<th>Kategorie</th>
<th>Bezeichnung der Veröffentlichung, soweit erforderlich unter Angabe der in Betracht kommenden Teile</th>
<th>Betr. Anspruch Nr.</th>
</tr>
</thead>
</table>

Weitere Veröffentlichungen sind der Fortsetzung von Feld C entnommen

Siehe Anhang Patentfamilie

Datum des Abschlusses der internationalen Recherche

27. August 2003

Absendetermin des internationalen Recherchenberichts

11/09/2003

Name und Postanschrift der internationalen Recherchebehörde

Europäisches Patentamt, P.B. S316 Patentstrasse 2 NL—2220 HV RIJWijk Tel.: (+31—70) 340-2404, Ts. 31 651 epo nl, Fax: (+31—70) 340-3016

Brevetsnachrichten Behörnadelter

Russell, G

Formblatt PCT/ISA/010 (Blatt 2) (Juli 1992)
<table>
<thead>
<tr>
<th>Kategorie</th>
<th>Bezeichnung der Veröffentlichung, soweit erforderlich unter Angabe der in Betracht kommenden Teile</th>
<th>Anspruch Nr.</th>
</tr>
</thead>
<tbody>
<tr>
<td>X</td>
<td>US 4 614 683 A (BARSOTTI ROBERT J) 30. September 1986 (1986-09-30) Beispiele 1, 2</td>
<td>1, 2, 6-17</td>
</tr>
<tr>
<td>Patentnummer</td>
<td>Art der Publikation</td>
<td>Datum der Veröffentlichung</td>
</tr>
<tr>
<td>--------------</td>
<td>---------------------</td>
<td>---------------------------</td>
</tr>
<tr>
<td>JP 6184493</td>
<td>A</td>
<td>05-07-1994</td>
</tr>
<tr>
<td>JP 2000104047</td>
<td>A</td>
<td>11-04-2000</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>US 4614683</td>
<td>A</td>
<td>30-09-1986</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>