wO 2014/099046 A1 I 1N AR

(12) INTERNATIONAL APPLICATION PUBLISHED UNDER THE PATENT COOPERATION TREATY (PCT)

(19) World Intellectual Property
Organization
International Bureau

(43) International Publication Date

—~
é

=

\

(10) International Publication Number

WO 2014/099046 A1

26 June 2014 (26.06.2014) WIPO I PCT
(51) International Patent Classification: 74)
GO6F 11/07 (2006.01)
(21) International Application Number: (81)
PCT/US2013/054753

(22) International Filing Date:

13 August 2013 (13.08.2013)

(25) Filing Language: English
(26) Publication Language: English
(30) Priority Data:

13/719,574 19 December 2012 (19.12.2012) US

Agents: CARTIER, Lois, D. et al.; Xilinx, Inc., Attn: Leg-
al Dept., 2100 Logic Drive, San Jose, CA 95124 (US).

Designated States (uniess otherwise indicated, for every
kind of national protection available). AE, AG, AL, AM,
AO, AT, AU, AZ, BA, BB, BG, BH, BN, BR, BW, BY,
BZ, CA, CH, CL, CN, CO, CR, CU, CZ, DE, DK, DM,
DO, DZ, EC, EE, EG, ES, FI, GB, GD, GE, GH, GM, GT,
HN, HR, HU, ID, IL, IN, IS, JP, KE, KG, KN, KP, KR,
KZ, LA, LC, LK, LR, LS, LT, LU, LY, MA, MD, ME,
MG, MK, MN, MW, MX, MY, MZ, NA, NG, NI, NO, NZ,
OM, PA, PE, PG, PH, PL, PT, QA, RO, RS, RU, RW, SA,
SC, SD, SE, SG, SK, SL, SM, ST, SV, SY, TH, TJ, T™M,

(71) Applicant: XILINX, INC. [US/US]; Attn: Legal Dept.,

2100 Logic Drive, San Jose, CA 95124 (US).

(72) Imventors: ROY, Debraj; 2100 Logic Drive, San Jose, CA

95124 (US). ALAPATI, Achutha, R.; 2100 Logic Drive,
San Jose, CA 95124 (US). MUDDEY, Shrinivasraj; 2100
Logic Drive, San Jose, CA 95124 (US).

TN, TR, TT, TZ, UA, UG, US, UZ, VC, VN, ZA, ZM,
ZW.

(84) Designated States (uniess otherwise indicated, for every

kind of regional protection available): ARIPO (BW, GH,
GM, KE, LR, LS, MW, MZ, NA, RW, SD, SL, SZ, TZ,
UG, ZM, ZW), Eurasian (AM, AZ, BY, KG, KZ, RU, TJ,
TM), European (AL, AT, BE, BG, CH, CY, CZ, DE, DK,
EE, ES, FL, FR, GB, GR, HR, HU, IE, IS, IT, LT, LU, LV,

[Continued on next page]

(54) Title: ON-THE-FLY TECHNICAL SUPPORT

- 40 /7 AD2 ;403

| nitiate debugger (e.g., |

tj £rror stops toal flow =M Error Message } . PRI
i \ Y. user clicks on fcan)

v

| — N 17
i Read eror message to obtain error |/

— 404

code and error contant [' 413
: /405 [A report(s) of \
| Sesrch working project directory of a k compieted ‘
| 100l and obtain recerd(s) | iprocess(es) L 414 |
L | - report of a failed | ’
Jr U process ! |

";e‘ak down efror message to identify \‘”he‘ files i/
| “source” {e.g., nels), signal(s), 408

| bioc k{s), andlor instance(s) from error
i content} of the error

T
| Open repori(s) (e.g., sequentially) for |
! completed module(s) and perform a L s07
| :
I !

search {e.g.. a keyword search)

UOebugger |
4 thereof using “source”

3t

! Nute (e.g., tag} and store any hifs,
| including without imitation any
| warmings, in storage (e.g., cache)

;
- 408
1
1

Cuen report for modute that failed j 409

¥

feantify subsection {e.g., phase ar |~ 44n
stage) where faliure occurred

v

Access network server

Sending a case inquiry i 412

a0’

FIG. 4

(57) Abstract: A method performed by an information hand-
ling system for on-the-fly technical support is described. In an
exemplary method, an error message (402) is read to obtain an
error code (323) therefrom. A project directory (413) is
searched to obtain a report (414); where the report (414) in-
dicates a failed module of a plurality of executable modules
(321), and where the report (414) is associated with the error
message (402). A source of an error is identified from the er-
ror message (402). A failed stage of the failed module is iden-
tified from the report (414). A case inquiry (415) for the error
message (402) is prepared for searching a document (320) for
resolution of the error, where the case inquiry (415) identities
the failed stage. A network is accessed, and the case inquiry is
sent over the network.

WO 2014/099046 A1 |IIWAT 00T 0000 O

MC, MK, MT, NL, NO, PL, PT, RO, RS, SE, SL SK, Published:
SM, TR), OAPI (BF, BJ, CF, CG, CL, CM, GA, GN, GQ,

GW, KM, ML, MR, NE, SN, TD, TG). — with international search report (Art. 21(3))

WO 2014/099046 PCT/US2013/054753

10

15

20

25

30

ON-THE-FLY TECHNICAL SUPPORT

TECHNICAL FIELD
The invention relates to on-the-fly technical support. More particularly,
the invention relates to an application for automatically retrieving information for

error resolution.

BACKGROUND

Heretofore, if a user encountered any error while running an application,
they might check for a solution by performing a web-based keyword search, and
accessing information in any of a variety of possible networked databases. This
may involve multiple iterations of manual user input to obtain relevant
information, which may be a time consuming process for resolving an error.
Furthermore, information returned responsive to such searching may not be
consistent, reliable, and/or trustworthy. Additionally, there may be a high
dependency on the keywords selected by the user for performing such search in
order to obtain relevant information.

Accordingly, it would be desirable and useful to provide on demand

support that overcomes one or more of the above-mentioned issues.

SUMMARY

One or more embodiments generally relate to on-the-fly technical support.

A method performed by an information handling system for on-the-fly
technical support is described. In an exemplary method, an error message is
read to obtain an error code therefrom. A project directory is searched to obtain
a report; where the report indicates a failed module of a plurality of executable
modules, and where the report is associated with the error message. A source
of an error is identified from the error message. A failed stage of the failed
module is identified from the report. A case inquiry for the error message is
prepared for searching a document for resolution of the error, where the case
inquiry identifies the failed stage. A network is accessed, and the case inquiry is

sent over the network.

WO 2014/099046 PCT/US2013/054753

10

15

20

25

30

Optionally, the method can further include storing a portion of the
document retrieved responsive to the case inquiry, the portion being associated
with the failed stage; and searching the portion using the error code.

Optionally, the method can further include storing a matching entry of the
error code found in the portion from the searching thereof, and displaying the
matching entry in a window.

Optionally, the method can further include: opening a second report
indicating a completed module; searching the second report using the source;
storing a warning having the source found in the second report from the
searching thereof; storing a matching entry of the error code found in the portion
from the searching thereof, combining the warning and the matching entry for
display in a window; and displaying the warning and the matching entry in the
window.

Optionally, the method can further include opening a second report
indicating a completed module; searching the second report using the source;
and storing each match from the searching of the second report.

Optionally, the method can further include: storing a portion of the
document retrieved responsive to the case inquiry, the portion being associated
with the failed stage; searching the portion using the error code; responsive to
not finding any matching entry of the error code in the portion from the searching
thereof, initiating a webcase including the failed stage and the error message;
and sending the webcase over a network.

Optionally, the method can further include: opening a second report
indicating a completed module; searching the second report using the source;
storing a warning having the source found in the second report from the
searching thereof; and adding the warning to the webcase.

Optionally, the method can further include generating a title for the
webcase, the title including a name and a location of the failed module as
associated with the failed stage; and appending the title to the webcase.

Optionally, the sending can include providing the webcase to both a user

forum address and a technical support address over the network.

WO 2014/099046 PCT/US2013/054753

10

15

20

25

30

An exemplary system is also described. The system includes a first
server for hosting a document online, where the document includes a plurality of
sections and a plurality of subsections for the plurality of sections. The plurality
of subsections is associated with one or more error records. The one or more
error records are associated with one or more error codes in association with
one or more errors that can occur under the plurality of subsections. At leasta
second server communicatively coupled with the first server is also included in
the system, for hosting a plurality of databases. The error records have at least
one link to at least one of the plurality of databases for fetching relevant
information therefrom for resolving the one or more errors.

Optionally, in such a system: the first server can be programmed to
search the document responsive to receipt of a case inquiry; the first server can
be programmed to create a copy of a subsection of the subsections responsive
to the case inquiry; and the first server can be programmed to send the copy of
the subsection to a client originating the case inquiry.

Optionally, the first server can be programmed to update the document to
create an entry for a webcase.

Optionally, the webcase can include a section of the plurality of sections,
a subsection of the plurality of subsections, and an error message having an
error code of the one or more error codes.

Optionally, the webcase can further include a first link to a technical
support request in the one or more of the plurality of databases; and a second
link to a community forum post in the one or more of the plurality of databases.

Optionally, the webcase can further include a third link to documentation
in the one or more of the plurality of databases.

A computer program product for on-the-fly technical support is also
described. The computer program product includes a tangible computer-
readable storage medium, and a computer-readable program stored on the
tangible computer-readable storage medium. The computer-readable program
is processed by an information handling system for causing the information
handling system to perform operations, as follows. An error message generated
by an application program is read to obtain an error code from the error
message. A project directory is searched to obtain a report generated by the

application program. The application program includes a plurality of executable

3

WO 2014/099046 PCT/US2013/054753

10

15

20

25

30

modules, and the report indicates a failed module of the plurality of executable
modules associated with the error message. A source of an error is identified
from the error message. A failed stage of the failed module is identified from the
report. A case inquiry for the error message is prepared for searching an online
document for resolution of the error, where the case inquiry includes the failed

stage. A network is accessed, and the case inquiry is sent over the network.

BRIEF DESCRIPTION OF THE DRAWINGS

Accompanying drawings show exemplary methods and systems.
However, the accompanying drawings should not be taken to limit the examples
shown, but are for explanation and understanding only.

FIG. 1 is a simplified block diagram depicting an exemplary columnar
Field Programmable Gate Array (“FPGA”) architecture.

FIG. 2 is a block/perspective diagram depicting an exemplary
conventional debug flow.

FIG. 3 is a block/perspective diagram depicting an exemplary on-the-fly
technical support flow.

FIG. 4 is a flow diagram depicting an exemplary debug flow.

FIG. 5 is a flow diagram depicting an exemplary web-accessible server
flow.

FIG. 6 is a flow diagram depicting an exemplary debug flow, which may
be an extension of the debug flow of FIG. 4.

FIG. 7 is a flow diagram depicting an exemplary webcase entry
generation flow.

FIG. 8 is a flow diagram depicting an exemplary document creation flow.

FIG. 9 is a flow diagram depicting another exemplary web-accessible
server flow.

FIG. 10 is a flow diagram depicting an exemplary webcase flow for the
server flow of FIG. 9.

FIG. 11 is a block diagram depicting an exemplary of a computer system.

WO 2014/099046 PCT/US2013/054753

10

15

20

25

30

DETAILED DESCRIPTION

In the following description, numerous specific details are set forth to
provide a more thorough description of the specific examples. It should be
apparent, however, to one skilled in the art, that one or more examples may be
practiced without all the specific details given below. In other instances, well
known features have not been described in detail so as not to obscure the one or
more examples. For ease of illustration, the same number labels are used in
different diagrams to refer to the same items; however, in alternative
embodiments the items may be different.

In the following description, for purposes of explanation, specific
nomenclature is set forth to provide a thorough understanding of the various
inventive concepts disclosed herein. However, it will be apparent to one skilled
in the art that these specific details are not required in order to practice the
various inventive concepts disclosed herein.

Some portions of the detailed descriptions that follow are presented in
terms of algorithms and symbolic representations of operations on data bits
within a computer memory. These algorithmic descriptions and representations
are the means used by those skilled in the data processing arts to most
effectively convey the substance of their work to others skilled in the art. An
algorithm is here, and generally, conceived to be a self-consistent sequence of
steps leading to a desired result. The steps are those requiring physical
manipulations of physical quantities. Usually, though not necessarily, these
guantities take the form of electrical or magnetic signals capable of being stored,
transferred, combined, compared, and otherwise manipulated. It has proven
convenient at times, principally for reasons of common usage, to refer to these
signals as bits, values, elements, symbols, characters, terms, numbers, or the
like.

It should be borne in mind, however, that all of these and similar terms are
to be associated with the appropriate physical quantities and are merely
convenient labels applied to these quantities. Unless specifically stated
otherwise as apparent from the following discussion, it is appreciated that
throughout the description, discussions utilizing terms such as “processing” or
‘computing” or “calculating” or “determining” or “displaying” or the like, refer to

the action and processes of a computer system, or similar electronic computing

5

WO 2014/099046 PCT/US2013/054753

10

15

20

25

30

device, that manipulates and transforms data represented as physical
(electronic) quantities within the computer system’s registers and memories into
other data similarly represented as physical quantities within the computer
system memories or registers or other such information storage, transmission or
display devices.

The present system and methods also relate to an apparatus for
performing the operations herein. This apparatus may be specially constructed
for the required purposes, or it may comprise a general-purpose computer
selectively activated or reconfigured by a computer program stored in the
computer. Such a computer program may be stored in a computer readable
storage medium, such as, but is not limited to, any type of disk including floppy
disks, optical disks, CD-ROMs, and magnetic-optical disks, read-only memories
(“ROMSs”), random access memories (‘RAMs”), EPROMs, EEPROMs, magnetic
or optical cards, or any type of media suitable for storing electronic instructions,
and each coupled to a computer system bus.

The algorithms and displays presented herein are not inherently related to
any particular computer or other apparatus. Various general-purpose systems
may be used with programs in accordance with the teachings herein, or it may
prove convenient to construct a more specialized apparatus to perform the
required method steps. The structure for a variety of these systems will appear
from the description below. In addition, the examples included herein are not
described with reference to any particular programming language. It will be
appreciated that a variety of programming languages may be used to implement
the teachings as described herein.

Before describing the examples illustratively depicted in the several
figures, a general introduction is provided to further understanding. As described
below, an application may include or have access to a debugger to provide on
demand (“on-the-fly”) technical support, which may be used to avoid time
consuming manual searching. Such debugger may be used or invoked
responsive to an error message, and thereafter check to determine if an answer
record exists for such error, and if not, to create a request for technical support
(“webcase”) and/or a post for a community of users to address such error for the

user. Along those lines, relevant information for debugging an error may be

WO 2014/099046 PCT/US2013/054753

10

15

20

25

30

automatically fetched from one or more available databases, whether local to a
user’s computer or online accessible by a user’s computer.

With the above general understanding borne in mind, various exemplary
debuggers for on-the-fly support are generally described below. Because one or
more of these examples are exemplified using a particular type of IC, a detailed
description of such an IC is provided below. However, it should be understood
that other types of applications may benefit from one or more of the examples
described herein.

Programmable logic devices (“PLDs”) are a well-known type of integrated
circuit that can be programmed to perform specified logic functions. One type of
PLD, the field programmable gate array (“FPGA”), typically includes an array of
programmable tiles. These programmable tiles can include, for example,
input/output blocks (“IOBs”), configurable logic blocks (“CLBs”), dedicated
random access memory blocks (“‘BRAMs”), multipliers, digital signal processing
blocks (“DSPs”), processors, clock managers, delay lock loops (“DLLs”), and so
forth. As used herein, “include” and “including” mean including without limitation.

Each programmabile tile typically includes both programmable
interconnect and programmable logic. The programmable interconnect typically
includes a large number of interconnect lines of varying lengths interconnected
by programmable interconnect points (“PIPs”). The programmable logic
implements the logic of a user design using programmable elements that can
include, for example, function generators, registers, arithmetic logic, and so forth.

The programmable interconnect and programmable logic are typically
programmed by loading a stream of configuration data into internal configuration
memory cells that define how the programmable elements are configured. The
configuration data can be read from memory (e.g., from an external PROM) or
written into the FPGA by an external device. The collective states of the
individual memory cells then determine the function of the FPGA.

Another type of PLD is the Complex Programmable Logic Device, or
CPLD. A CPLD includes two or more “function blocks” connected together and
to input/output (“I/O”) resources by an interconnect switch matrix. Each function
block of the CPLD includes a two-level AND/OR structure similar to those used
in Programmable Logic Arrays (“PLAs”) and Programmable Array Logic (“PAL")

devices. In CPLDs, configuration data is typically stored on-chip in non-volatile

7

WO 2014/099046 PCT/US2013/054753

10

15

20

25

30

memory. In some CPLDs, configuration data is stored on-chip in non-volatile
memory, then downloaded to volatile memory as part of an initial configuration
(programming) sequence.

For all of these programmable logic devices (‘PLDs”), the functionality of
the device is controlled by data bits provided to the device for that purpose. The
data bits can be stored in volatile memory (e.g., static memory cells, as in
FPGAs and some CPLDs), in non-volatile memory (e.g., FLASH memory, as in
some CPLDs), or in any other type of memory cell.

Other PLDs are programmed by applying a processing layer, such as a
metal layer, that programmably interconnects the various elements on the
device. These PLDs are known as mask programmable devices. PLDs can also
be implemented in other ways, e.g., using fuse or antifuse technology. The
terms “PLD” and “programmable logic device” include but are not limited to these
exemplary devices, as well as encompassing devices that are only partially
programmable. For example, one type of PLD includes a combination of hard-
coded transistor logic and a programmable switch fabric that programmably
interconnects the hard-coded transistor logic.

As noted above, advanced FPGAs can include several different types of
programmable logic blocks in the array. For example, FIG. 1 illustrates an FPGA
architecture 100 that includes a large number of different programmable tiles
including multi-gigabit transceivers (“MGTs”) 101, configurable logic blocks
(“CLBs”) 102, random access memory blocks (“BRAMs”) 103, input/output
blocks (“IOBs”) 104, configuration and clocking logic (“CONFIG/CLOCKS”) 105,
digital signal processing blocks (“DSPs”) 106, specialized input/output blocks
(“1/0”) 107 (e.g., configuration ports and clock ports), and other programmable
logic 108 such as digital clock managers, analog-to-digital converters, system
monitoring logic, and so forth. Some FPGAs also include dedicated processor
blocks (“PROC”) 110.

In some FPGAs, each programmable tile includes a programmable
interconnect element (“INT”) 111 having standardized connections to and from a
corresponding interconnect element in each adjacent tile. Therefore, the
programmable interconnect elements taken together implement the
programmable interconnect structure for the illustrated FPGA. The

programmable interconnect element 111 also includes the connections to and

8

WO 2014/099046 PCT/US2013/054753

10

15

20

25

30

from the programmable logic element within the same tile, as shown by the
examples included at the top of FIG. 1.

For example, a CLB 102 can include a configurable logic element (“CLE")
112 that can be programmed to implement user logic plus a single
programmable interconnect element (“INT”) 111. A BRAM 103 can include a
BRAM logic element (“BRL”) 113 in addition to one or more programmable
interconnect elements. Typically, the number of interconnect elements included
in a tile depends on the height of the tile. In the pictured FPGA, a BRAM tile has
the same height as five CLBs, but other numbers (e.g., four) can also be used.
A DSP tile 106 can include a DSP logic element (“DSPL”) 114 in addition to an
appropriate number of programmable interconnect elements. An |OB 104 can
include, for example, two instances of an input/output logic element (“IOL”) 115
in addition to one instance of the programmable interconnect element 111. As
will be clear to those of skill in the art, the actual /0 pads connected, for
example, to the 1/O logic element 115 typically are not confined to the area of the
input/output logic element 115.

In the pictured FPGA, a horizontal area near the center of the die (shown
in FIG. 1) is used for configuration, clock, and other control logic. Vertical
columns 109 extending from this horizontal area or column are used to distribute
the clocks and configuration signals across the breadth of the FPGA.

Some FPGAs utilizing the architecture illustrated in FIG. 1 include
additional logic blocks that disrupt the regular columnar structure making up a
large part of the FPGA. The additional logic blocks can be programmable blocks
and/or dedicated logic. For example, processor block 110 spans several
columns of CLBs and BRAMSs.

Note that FIG. 1 is intended to illustrate only an exemplary FPGA
architecture. For example, the numbers of logic blocks in a row, the relative
width of the rows, the number and order of rows, the types of logic blocks
included in the rows, the relative sizes of the logic blocks, and the
interconnect/logic implementations included at the top of FIG. 1 are purely
exemplary. For example, in an actual FPGA more than one adjacent row of
CLBs is typically included wherever the CLBs appear, to facilitate the efficient
implementation of user logic, but the number of adjacent CLB rows varies with
the overall size of the FPGA.

WO 2014/099046 PCT/US2013/054753

10

15

20

25

30

FIG. 2 is a block/perspective diagram depicting an exemplary
conventional debug flow 200. A user 205 using a computer 206 may encounter
an error when executing a software application ("tool") 210. In the past, a user
205 would manually inquire over the Internet cloud 204 individually to one or
more databases 201 through 203 to look for a solution information for fixing the
error. In this example, database 201 may be a web accessible database of
answer records, such as from technical support answering user questions.
Open user questions being worked on by technical support personnel may be

” g,

referred to as “trouble tickets,” “webcases,” or other names. Database 202 may
be one or more web accessible user community forums having posts and
threads thereof answering user questions. Lastly, database 203 may be web
accessible documents, which may be provided by a manufacture of a product. If
searches of one or more databases 201 through 203 did not provide a helpful
solution, a user 205 generally would manually create a webcase for technical
support and forum post for a user community.

Debug flow 200 may be for any of a variety of tools which may generate
one or more errors. For purposes of clarity by way of example and not limitation,
an electronic design automation ("EDA”) tool is described, even though in other
instances other types of tools may be used. An EDA tool may be used for
transforming a user’s circuit design into configuration information for configuring
an FPGA, namely to instantiate a user’s circuit design in an FPGA, including
without limitation instantiation using programmable resources of such FPGA.

Once an EDA tool 210 generates an error, a user 205 may be given an
option to search answer records or solution statements online in answer records
database 201. To invoke such online searching, a user 205 may click on an
error message or right click on an error message and select a search in answer
records option. Once such online searching is invoked, a keyword search may
be performed by user 205. Results from such search may be displayed in a
webpage within EDA tool 210 or in a separate window. If this search of answer
records does not help user 205 in resolving an error, then user 205 may perform
one or more other searches in one or more user community forums databases
202 and/or documents databases 203. A user may further perform a World
Wide Web search using Google, Bing, Yahoo, or some other search engine. If

the searches failed to help user 205 resolve their error, user 205 may manually

10

WO 2014/099046 PCT/US2013/054753

10

15

20

25

30

create a webcase for a technical support team and/or post a query on a user
community forum.

Unfortunately, manual inquiry of different search spaces by a user 205 is
time-consuming. Such manual searching may result in inconsistent search
results due to dependency on keywords used by user to search. Furthermore,
too much information which may be irrelevant to fixing the error in question may
be returned. Additionally, manual creation of a webcase and/or a forum post
with all relevant information may vary among users leading to inconsistent and/or
prolonged resolutions.

FIG. 3 is a block/perspective diagram depicting an exemplary on-the-fly
technical support flow 300. Technical support flow 300 may be carried out with
an information handling system. Such an information handling system may
include a computer 206, a server 330, one or more servers 340, and a network
cloud 204. In this example, network cloud 204 is an Internet cloud.

A user 205 using a computer 206 may encounter an error when executing
a software tool ("tool") 310. Tool 310 may include an icon 311 for invoking a
technical support application (“debugger”), as described below in additional
detail. Again, in this example, database 201 may be a web accessible database
of answer records, such as from technical support answering user questions,
also known as “webcases.” Database 202 may be one or more web accessible
user community forums having posts threads thereof answering user questions.
Lastly, database 203 may be web accessible documents, which may be provided
by a manufacturer of a product.

Icon 311 or other graphical user interface (“GUI”) may be used to invoke a
debugger (hereinafter “debugger 311”) to automatically search one or more
databases. Databases may be local on computer 206 or may be online. For
purposes of clarity and not limitation, it shall be assumed that online databases
201 through 203 are used. If a helpful solution is not found, debugger 311 may
automatically create a webcase for technical support and a forum post for a user
community.

Technical support flow 300 may be for any of a variety of tools 310 which
may encounter one or more errors. For purposes of clarity by way of example
and not limitation, an electronic design automation ("EDA”) tool is described,

even though in other instances other types of may be used. Along those lines,

11

WO 2014/099046 PCT/US2013/054753

10

15

20

25

30

technical support module 311 may be a debugger, and technical support flow
300 may be a debug flow.

Once an EDA tool 310 encounters an error, a user 205 may select an icon
thereof to invoke debugger 311 of EDA tool 310 to thereafter automatically
search databases, as described below in additional detail. In another
embodiment, EDA tool 310 may automatically search databases, as described
below in additional detail, responsive to generation of an error. However, for an
expert user, an icon may be more useful, as an expert user 205 may not wish to
automatically search databases responsive to each error generated.

Debugger 311 may communicate with a server 330 over Internet cloud
204 to access document 320. Server 330 may be a secure server. Server 330
may host document 320. Document 320 may be subdivided into a plurality of
sections 321, and one or more of such sections 321 may be further subdivided
into a plurality of subsections 322. Sections 321 may be for a plurality of
executable modules of an EDA tool 310. One or more error codes 323
associated with a section-subsection may be located in such an associated
subsection.

For an EDA example, sections or EDA processes may include
implementation and synthesis, among others. Subsections may be stages within
such EDA processes. Stages or subsections of an implementation process or
section for example may include a translate stage, a map stage, and a place and
route stage. Hardware Description Languages (“HDLs”) may include without
limitation Verilog, VHDL, and SystemC. Stages or subsections of a synthesis
process or section may include an HDL parsing and elaboration stage, an HDL
synthesis stage, an advanced synthesis stage, and a low-level synthesis stage.
Each stage may contain all known error codes such EDA tool 310 can generate
for such stage, generally due to contention when executing a stage.

Each error code 323 may have information associated therewith
embedded under it. Such information embedded under an error code 323 may
include one or more online answer record links 324 to database 201, one or
more user community forum links 325 to database 202, and/or one or more
documentation links 326 to database 203 to provide an error record 327.
Subsections 322 may be associated with one or more error records 327, as

described below in additional detail. One or more error records 327 may be

12

WO 2014/099046 PCT/US2013/054753

10

15

20

25

30

associated with one or more error codes in association with one or more errors
that can occur under associated subsections or stages 322.

For example, an error record 327 of document 320 is shown as an
example for an ISE Synthesis section 321, an HDL Parsing Subsection 322, an
HDL Compiler error code 323, an answer record (“AR”) link 324, a user
community forum link 325, and a web accessible document link 326. Thus, for
example, a link to a matching online answer record may be provided, where
such answer record has sufficient information/workaround for debugging an
encountered error. Answer records may be created by Product Application
Engineers of the manufacturer/producer of such EDA tool 310, where such
answer records may highlight resolved errors and steps taken to achieve same.
A link to a matching online user community forum link may be provided, where
such forum post and threads thereof may contain various guidance/debugging
steps provided by forum members. Such a forum may employ social networking
technology. A link to a matching online documentation reference may be
provided, which may help a user debug such an encountered error by referring
to one or more portions of such online reference.

At least one server 340 may be used for hosting of databases 201
through 203. Error records 327 may have at least one link to at least one of
databases 201 through 203 for fetching relevant information therefrom for
resolving one or more errors.

Server 330 may be programmed to search document 320 responsive to
receipt of a case inquiry. A case inquiry may be sent from debugger 311 to
server 330 in response to an error. More particularly, an error message
generated by EDA tool 310 in response to an encountered error may be a basis
for debugger 311 sending such a case inquiry. Server 330 may be programmed
to create a copy of a subsection 322 of such subsections 322 of document 320
responsive to such case inquiry. Along those lines, all error codes 323 in an
identified section-subsection may be sent to computer 206 to provide a local
copy 312 on computer 206. Such local copy 312 may be stored on computer
206 and may be displayed in a window 312 of EDA tool 310. Server 330 may be
programmed to send such copy of a subsection 322 of document 320 to a client,

such as computer 206, originating such case inquiry.

13

WO 2014/099046 PCT/US2013/054753

10

15

20

25

30

If no error record 327 is present in document 320 to respond to a case
inquiry, or if a user does not find a solution to an error in such local copy,
debugger 311 may initiate a webcase, and an entry may be created in document
320 for such unresolved issue, namely a trouble ticket or a webcase. Server 330
may be programmed to update document 320 to create an entry for a webcase.
For purposes of clarity by way of example and not limitation, error record 329 is
an example of a webcase. Error record 329 may include a section of sections
321, a subsection of subsections 322, and an error message having an error
code of error codes 323. Error record 329 may further include a webcase
number and date 328 indicating that technical support is involved. Error record
329 may further include a link 325 to a community forum post in database 202 in
order to put others on notice that such error is currently being addressed in a
community users forum. Error record 329 may yet further include a link 326 to
documentation in databases 203 associated with where such error arose.
Continuing the illustrated example, suppose an error occurred while running
synthesis, which debugger 311 has already identified, a link to a synthesis user
guide may be provided. Once a webcase is resolved an application engineer,
such application engineer may document such resolution in an answer record
and link a corresponding webcase number to a new answer record

FIG. 4 is a flow diagram depicting an exemplary debug flow 400, which
may be performed by an information handling system. Debug flow 400 may be
used for on-the-fly technical support flow 300 of FIG. 3. Again, for purposes of
clarity by way of example and not limitation, it shall be assumed that debug flow
400 is a debug flow for users of an EDA tool. With simultaneous reference to
FIGS. 3 and 4, debug flow 400 is further described.

At 401, an encountered error may stop a process or module of a tool 310,
namely stops such tool’s flow. In response to such error, such tool 310 may
generate an error message 402. In response to error message 402, at 403, a
debugger 311 may be initiated. Again, for purposes of clarity and not limitation,
a user 205 may click on a debug icon of a GUI of tool 310.

Operations 404 through 412 may be performed by a debugger 311
executing on computer 206. Debugger 311 may be a computer-readable
program stored on a tangible computer-readable storage medium, as described

elsewhere herein, where debugger 311 is capable of being processed by

14

WO 2014/099046 PCT/US2013/054753

10

15

20

25

30

computer 206 or other information handling system for causing computer 206 to
perform operations 404 through 412. Other operations described herein may be
performed by other components of an information handling system as described
with reference to FIG. 3.

At 404, debugger 311 reads an error message 402 generated by tool 310
to obtain an error code from such error message. Debugger 311 may further
read such error message to obtain error content associated with such error
message.

Tool 310 may have an information handling system project directory for a
design currently being processed. EDA tools may have a dependency flow, and
S0 a current process being executed by EDA tool 310 may depend on one or
more inputs from one or more prior completed modules or processes for a
current activity. This may help debugger 311 to narrow down to a failing module
and identify a last completed module, as well as any other completed modules, if
any. For example, if an error occurs in a mapping process, debugger 311 may
be able to identify past completed modules for a current activity, which are
synthesis and translation.

At 405, an information handling system project directory 413 may be
searched to obtain a report. As an EDA tool 310 progresses through a current
EDA activity, such EDA tool 310 may generate a report of one or more reports
414 for each module, whether completed or not. Thus, one or more reports 414
of one or more corresponding completed modules may be present, as well as a
report of reports 414 for a failed module. Files other than reports may be
present in project directory 413. For example, debugger 311 may pull out a
summary xml file for a top module for a current EDA activity.

At 405, a report of reports 414 may indicate a failed module of a plurality
of executable modules of EDA tool 310. Accordingly such report obtained may
be associated with an error message read at 404. Even a report for a completed
module may indicate one or more warnings of one or more potential errors.
These one or more warnings obtained from one or more summary reports,
whether for completed or failed modules, may be helpful in debugging an error.

At 406, debugger 311 may break down error message 402 to identify one
or more of circuit elements, if any, associated with an error. Such circuit

elements for example may be one or more nets, signals, blocks, ports, and/or

15

WO 2014/099046 PCT/US2013/054753

10

15

20

25

30

instances and may be part of error content in an error message. Such circuit
elements are generally referred to as a “source” of an error. In other words, a
“source” may identify what is in an error message with respect to circuitry in this
example.

At 407, with information fetched at 405, debugger 311 may optionally
open reports 414 sequentially for all completed modules and perform a keyword
search in each of such reports using “source” information. Information obtained
from such keyword searching may be used to identify warnings which a user has
ignored but which may be a cause behind an error associated with error
message 402.

Optionally, at 408, hits, including without limitation any warnings, from
such keyword searching at 407 may be noted, such as tagged for example, and
stored in storage, such as cache for example. For example, if an error in a map
module identifies a signal named pcie_0, debugger 311 may first open a
synthesis module report (e.g., with an extension “syr”) and look for warnings
related to pcie_0, and If debugger 311 finds any matching warning, then
debugger 311 may save each of such warnings in debugger 311 cache. If,
however, debugger 311 does not find any matches from a search at 407 in a
synthesis module, then debugger 311 may open a translate module report (e.g.,
extension “bld”) and continue processing modules sequentially according to
dependency.

At 409, a report of a failed module is opened. At 410, a failed subsection,
phase, or stage of such failed module is identified from a report obtained at 405.
For example, debugger 311 may open a report file for a module where EDA tool
310 failed and scans down to a subsection, phase or stage (“stage”) in which
such failure occurred.

With a stage where a failure occurred, a case inquiry 415 of an online
document 320 may be made, where such case inquiry 415 includes a section-
subsection to be searched, namely a failed stage of a module for example.
Optionally, case inquiry 415 may include an error code from error message 402
for a configuration where server 330 performs a search of online document 320,
as described below in additional detail.

Debugger 311 may access a network server 330 at 411, where such

network server 330 hosts such online document 320, and a case inquiry may be

16

WO 2014/099046 PCT/US2013/054753

10

15

20

25

30

sent at 412 for error message 402 to such network server 330 to search in a
corresponding stage or subsection 322 of such online document 320. Such
online document 320 may be structured, as previously described, with one or
more known error codes 323 for each subsection 322 of each section 321 being
listed, along with associated links.

FIG. 5 is a flow diagram depicting an exemplary web-accessible server
flow (“server flow”) 500 for server 330. In other words, server 330 may be a
programmed computer to execute instructions to carry out operations of server
flow 500. With simultaneous reference to FIGS. 3 through 5, server flow 500 is
further described.

At 501, a document 320 hosted by server 330 is provided. Again, server
330 may be a secure server. At 502, using a module and stage, or section and
subsection, in a case inquiry sent at 412, a search of such subsection of
document 320 is performed. This search is relative fast, as only a subsection is
searched for an error code for example, and subsequent searching is done at
the client level using a local copy.

At 503, a copy of such subsection is created. This copy of a subsection
322 includes a list of one or more error codes 323 associated with such
subsection. Each error code 323 may include content, which may include one or
more links to one or more databases having information associated with such
error code. At 504, such copy may be sent to a client, such as computer 206 for
example, in response to a case inquiry sent at 412. In other words, in response
to a case inquiry sent at 412, server 330 may fetch and send a subsection of
document 320 client computer for use as a local copy 312 of such client
computer 206.

Furthermore, a user 205 performing debugging may be an iterative
activity, involving multiple accesses of a local copy. By having a local copy 312,
a user 205 may not have to go back to server 330 over and over for a same
error. Also, by searching of a local copy, searching for error codes may be off-
loaded from server 330 to client computer 206. Additionally, by providing a client
computer 206 with a local copy 312, as previously described, debugger 311 may
quickly display webcase information in the event such error is seen again by
user 205. With respect to an open webcase, a user 205 would be informed that

such an error has been identified, as described below in additional detail.

17

WO 2014/099046 PCT/US2013/054753

10

15

20

25

30

With simultaneous reference to FIGS. 3 through 6, where FIG. 6 is a flow
diagram depicting an exemplary debug flow 600, which may be performed by an
information handling system in response to receiving a local copy 312 of a
subsection 322 of document 320 in response to a case inquiry sent at 412.
Debug flow 600 may be an extension of debug flow 400. Along those lines,
operations of debug flow 600 may be executed by debugger 311, as described
below in additional detail.

At 601, a subsection 322 or other portion of an online document 320 is
received by client computer 206 in response to a case inquiry sent at 412 and
stored as a local copy 312. Such subsection 322 is associated with a failed
stage of an EDA tool 310, and such subsection 322 is provided responsive to
execution of debugger 311.

At 602, such local copy 312 may be searched using an error code
obtained from error message 402. At 603, it is determined whether such error
code obtained from error message 402 is present in such local copy 312. If at
603 a match to such error code is found in such local copy 312, at 604 such
matching entry may be copied and stored. Such matching entry may be stored
in cache memory of computer 206. More than one matching entry may be found
in a subsection. In such an example, each such matching entry may be copied
and stored in cache memory.

For purposes of clarity by way of example, if EDA tool 310 fails in
synthesis with error HDL Complier Error 718 such as illustratively depicted in
FIG. 3, debugger 311 may open a.syr file therefor and may look for a phase
where EDA tool 310 failed. If EDA tool 310 fails in HDL parsing, server 330 may
search a same section-subsection in online document 320, and return complete
content under such section-subsection as a local copy 312. Debugger 311 may
search for error code 718 in such local copy 312 and return content under such
error code, e.g. a matching answer record link 324, forums entry link 325, and
documentation link 326. Debugger 311 may automatically execute one or more
of links 324 through 326 to display information in associated databases 201
through 203 in a console window EDA tool 310 or other window.

At 605, all warnings obtained at 408 from completed reports in directory
413 may be concatenated or otherwise combined or grouped with all matching

entries stored at 604, and such result may be displayed in a console window of

18

WO 2014/099046 PCT/US2013/054753

10

15

20

25

30

EDA tool 310. Using this information, a user 205 may be able to debug an error
causing invocation of error message 402. Debugging may be an iterative activity
involving some trial and error. So by providing a user 205 with all identified
relevant information for resolving such error, a user 205 may be more likely to fix
a cause of such error on their own without having to resort to contacting a
technical support representative.

If, however, at 603 no matching entry to an error code of error message
402 is found in local copy 312 from searching at 602, a webcase may be
automatically initiated by debugger 311 using operations 606 through 608.

At 606, responsive to not finding any matching entry of an error code in
local copy 312, identification of a failing module of EDA tool 310 may be
concatenated or otherwise combined or grouped with any and all warnings
stored at 408 and error message 402 to provide a webcase. Furthermore, for an
EDA example, associated design files may be concatenated to provide such a
webcase. Identification of a failing module of EDA tool 310 may be provided by
providing a section 321 and subsection 322, namely a module and stage for
example, where such failure occurred.

Accordingly, any and all relevant information associated with error
message 402 may be obtained for providing to technical support. For example,
design files and reports associated with such webcase may be automatically
attached to such a webcase for application engineers of a technical support help
desk. This may speed up resolution of errors, as well as provide more
consistency in resolving errors.

Optionally, at 607, a title may be automatically generated for and
appended to such webcase provided at 606. Such title may include a name and
a location of an identified failing module by module name and stage thereof. At
608, such a webcase 609 may be sent over a network, such as Internet cloud
204, to server 330.

FIG. 7 is a flow diagram depicting an exemplary webcase entry
generation flow 700. As described below in additional detail, webcase entry
generation flow 700 may include generating both a webcase entry and a
community user forum post.

At 701, server 330 may receive webcase 609. At 702, received webcase

609 may be sent by server 330 to technical support to generate and receive

19

WO 2014/099046 PCT/US2013/054753

10

15

20

25

30

therefrom a webcase number. At 703, server 330 may create and send a post
for a user community forum using webcase 609. An abbreviated version of
webcase 609 may be sent to user community forum database 202 to create a
post therein. Thus, webcase 609 may be sent to both a user community forum
address and a technical support address over Internet cloud 204.

At 704, server 330 may update online document 320 to create an entry for
webcase 609. Such entry may include a link to technical support database 201
using a webcase number for webcase 609, a link to a post associated with
webcase 609 in user community forum database 202, and/or a link to
documentation associated with webcase 609.

By creating such an entry in online document 320, one or more
subsequent users encountering the same error may be made aware that such
error is a known error which is currently being worked on. This may be used to
prevent duplication of error searching and/or webcase creation by other users.
Furthermore, repetitions of such error may more easily and accurately be
addressed in future by having consistency due to automation of providing
debugging information, as previously described.

FIG. 8 is a flow diagram depicting an exemplary document creation flow
800. Document creation flow 800 may be a script 820 for creation of document
320 of FIG. 3, where such script or computer-readable program 820 may be
stored in a tangible computer-readable storage medium, and where such script
820 is capable of being processed by an information handling system for causing
such information handling system to perform operations of script 820. Document
creation flow 800 is further described with simultaneous writ reference to FIGS. 3
through 8.

At 801, a document 320 to be created may be organized with sections
321 and subsections 322 thereof corresponding to EDA tool 310 modules and
stages thereof. At 802, each of such subsections 322 may be populated with
associated error codes 323. At 803, a recursive search in a private webcase
database (not shown) may be performed using such error codes 323 to identify
webcases in a closed state having error codes 323 for such EDA tool 310. For
closed webcases found, webcase numbers may be obtained and added to

document 320 under corresponding error code sections.

20

WO 2014/099046 PCT/US2013/054753

10

15

20

25

30

At 804, a recursive search of a private answer records database (not
shown), which may be a separate database from public answer records
database 201, may be performed using webcase numbers obtained at 803 for
answer records linked to such webcases. Matching answer records may be best
matches for such particular errors.

At 805, answer record numbers of matching answer records from a
search at 804 may be copied and searched in a public answer records database
201. This is a check to determine if an answer record has been released for
public consumption. For matching answer record numbers in public answer
records database 201 for such search at 805, at 806 such matching public
answer record numbers may have their corresponding links copied over into
document 320 under corresponding error codes. At 807, webcase numbers
added to document 320 at 803 having corresponding public answer records may
be removed and replaced with corresponding public answer record numbers.

At 808, script 820 may perform a search in one or more user community
forum databases 202 and add each matching forums entry for each
corresponding error code in document320 under such error code. Each such
matching forum entry may be added below an answer record entry found at 807,
if present, under such error code.

At 809, a web search for links to relevant documentation for error codes
responsive to phase/stage of a tool may be performed and any found links may
be add to document 320 under corresponding error codes.

Whenever debugger 311 encounters a new error in EDA tool 310,
debugger 311 may submit a new technical support webcase and create a forum
entry, as previously described. This information is updated in document 320
along with documentation links.

A portion of script 820, which portion may be provided as a separate
script, may be scheduled run routinely to look for new errors which have
associated new webcases created with a closed resolution status, namely to
perform a search at 803 for such new webcases having a closed status, to
perform a search at 804 using such webcase numbers obtained for such new
webcases in order to fetch corresponding answer record details including answer
record numbers, as well as to verify status of such corresponding answer

records as being released to the public, a search at 805 for such released

21

WO 2014/099046 PCT/US2013/054753

10

15

20

25

30

answer records in public answer records database 201, and updating webcase
entries in document 320 with links to such answer records. Such portion of script
820 may be performed on all errors in document 320 which do not have an
associated answer record.

FIG. 9 is a flow diagram depicting another exemplary web-accessible
server flow (“server flow”) 900 for server 330. With simultaneous reference to
FIGS. 3 through 7, server flow 900 is further described.

At 501, a document 320 may be provided online as hosted by server 330
as previously described. At 902, server 330 may search document 320 at an
identified section-subsection with an error code provided in a case inquiry 415
sent at 412, where such case inquiry 415 includes an identified section-
subsection to search and an error code. At 603, it may be determined by server
330 whether there is any matching entry, as previously described though for
client computer 206 executing debugger 311. At 903, server 330 may create a
copy of any and all matching entries for sending to client computer 206 at 904 as
a local copy 312. Accordingly, in this configuration, server 330 performs an error
code search to provide a local copy, not of an entire subsection, but only of one
or more matching error code entries in an identified subsection in contrast to the
previously described configuration.

For this example, case inquiry 415 may further include any and all
warnings stored at 408 and error message 402. So, if at 603 there is no
matching entry, server 330 may perform operations 606, and optionally 607, as
previously described, though by client computer 206. Server 330 may further
perform operations 702 through 704, as previously described. At 908, a
webcase entry in document 320 prepared by server 330 may be copied and sent
to a client computer 206 to provide as a local copy 312. Thus, user 205 may be
informed that document 320 did not have any relevant information responsive to
error message 402, and that a webcase was initiated to obtain relevant
information for debugging to resolve an error code in error message 402.

FIG. 10 is a flow diagram depicting an exemplary webcase flow 1000 for
debugger 311 for server flow 900 of FIG. 9. At 1001, a local copy 312 from
server flow 900 may be received by a client computer 206. Such local copy 312

may be a copy of a webcase entry 329 in online document 320. After receipt of

22

WO 2014/099046 PCT/US2013/054753

10

15

20

25

30

such local copy 312 at 1001, operation 605 may be performed as previously
described using such local copy of a webcase entry.

FIG. 11 is a block diagram depicting an exemplary computer system
1100. Computer system 1100 may include a programmed computer 1110
coupled to one or more display devices 1101, such as Cathode Ray Tube
(“CRT”) displays, plasma displays, Liquid Crystal Displays (“LCD”), projectors
and to one or more input devices 1106, such as a keyboard and a cursor
pointing device. Other known configurations of a computer system may be used.
Computer system 1100 by itself or networked with one or more other computer
systems 1100 may provide an information handling system.

Programmed computer 1110 may be programmed with a known operating
system, which may be Mac OS, Java Virtual Machine, Real-Time OS Linux,
Solaris, iI0S, Android Linux-based OS, Unix, or a Windows operating system,
among other known platforms. Programmed computer 1110 includes a central
processing unit (CPU) 1104, memory 1105, and an input/output (“I/O”) interface
1102. CPU 1104 may be a type of microprocessor known in the art, such as
available from IBM, Intel, ARM, and Advanced Micro Devices for example.
Support circuits (not shown) may include cache, power supplies, clock circuits,
data registers, and the like. Memory 1105 may be directly coupled to CPU 1104
or coupled through I/O interface 1102. At least a portion of an operating system
may be disposed in memory 1105. Memory 1105 may include one or more of
the following: flash memory, random access memory, read only memory,
magneto-resistive read/write memory, optical read/write memory, cache
memory, magnetic read/write memory, and the like, as well as non-transitory
signal-bearing media as described below.

I/O interface 1102 may include chip set chips, graphics processors, and/or
daughter cards, among other known circuits. An example of a daughter card
may include a network interface card (“NIC”), a display interface card, a modem
card, and a Universal Serial Bus (“USB”) interface card, among other known
circuits. Thus, I/O interface 1102 may be coupled to a conventional keyboard,
network, mouse, display printer, and interface circuitry adapted to receive and
transmit data, such as data files and the like. Programmed computer 1110 may
be coupled to a number of client computers, server computers, or any

combination thereof via a conventional network infrastructure, such as a

23

WO 2014/099046 PCT/US2013/054753

10

15

20

25

30

company's Intranet and/or the Internet, for example, allowing distributed use for
interface generation.

Memory 1105 may store all or portions of one or more programs or data
to implement processes to provide program product 1120. Additionally, those
skilled in the art will appreciate that one or more embodiments hereof may be
implemented in hardware, software, or a combination of hardware and software.
Such implementations may include a number of processors or processor cores
independently executing various programs and dedicated hardware or
programmable hardware.

One or more program(s) of program product 1120, as well as documents
thereof, may define functions described herein and can be contained on a variety
of non-transitory signal-bearing media, such as computer-readable media having
code, which include, but are not limited to: (i) information permanently stored on
non-writable storage media (e.g., read-only memory devices within a computer
such as CD-ROM or DVD-ROM disks readable by a CD-ROM drive or a DVD
drive); or (ii) alterable information stored on writable storage media (e.g., floppy
disks within a diskette drive or flash drive or hard-disk drive or read/writable CD
or read/writable DVD). The above examples specifically include information
downloaded from the Internet and other networks. Such non-transitory signal-
bearing media, when carrying computer-readable instructions that direct
functions hereof, can also be used to implement the functions described herein.

Though a debugger for an EDA tool was described, such on-the-fly
technical support may be used for other applications and thus other industries.
Such on-the-fly technical support may be useful in improving overall consumer
experience in using an application, which may be impart due to consistent
results and relevant information provided to a user. Furthermore, manual
searching by a user may be eliminated in favor of more time efficient and more
accurate automatic searching. Additionally, duplicate entries may be reduced or
eliminated, which may reduce time wasted on handling errors which have
already been resolved. Along those lines, both application engineers and/or a
community of users may be solicited for error resolution.

While the foregoing describes exemplary methods and systems, other
and further embodiments in accordance with the one or more aspects may be

devised without departing from the scope thereof, which is determined by the

24

WO 2014/099046 PCT/US2013/054753

claims that follow and equivalents thereof. Claims listing steps do not imply any

order of the steps. Trademarks are the property of their respective owners.

25

WO 2014/099046 PCT/US2013/054753

10

15

20

25

30

CLAIMS

What is claimed is:

1. A method, comprising:

reading an error message to obtain an error code therefrom;

searching a project directory to obtain a first report indicating a failed
module of a plurality of executable modules;

wherein the first report is associated with the error message;

identifying a source of an error from the error message;

identifying a failed stage of the failed module from the first report; and

preparing a case inquiry for the error message for searching a document
for resolution of the error, the case inquiry identifying the failed stage;

wherein the reading, searching, identifying a source of an error, identifying
a failed stage, and preparing a case inquiry are performed by an information

handling system.

2. The method according to claim 1, further comprising:
storing a portion of the document retrieved responsive to the case inquiry,
the portion being associated with the failed stage; and

searching the portion using the error code.

3. The method according to claim 2, further comprising:
storing a matching entry of the error code found in the portion from the
searching thereof, and

displaying the matching entry in a window.

4. The method according to claim 2, further comprising:

opening a second report indicating a completed module;

searching the second report using the source;

storing a warning having the source found in the second report from the
searching thereof;

storing a matching entry of the error code found in the portion from the

searching thereof,

26

WO 2014/099046 PCT/US2013/054753

10

15

20

25

30

combining the warning and the matching entry for display in a window;
and

displaying the warning and the matching entry in the window.

5. The method according to any of claims 1-4, further comprising:
opening a second report indicating a completed module;
searching the second report using the source; and

storing each match from the searching of the second report.

6. The method according to any of claims 1-5, further comprising:

storing a portion of the document retrieved responsive to the case inquiry,
the portion being associated with the failed stage;

searching the portion using the error code;

responsive to not finding any matching entry of the error code in the
portion from the searching thereof, initiating a webcase including the failed stage
and the error message; and

sending the webcase over a network.

7. The method according to claim 6, further comprising:

opening a second report indicating a completed module;

searching the second report using the source;

storing a warning having the source found in the second report from the
searching thereof; and

adding the warning to the webcase.

8. The method according to claim 6, further comprising:
generating a title for the webcase, the title including a name and a
location of the failed module as associated with the failed stage; and

appending the title to the webcase.
9. The method according to claim 6, wherein the sending includes providing the

webcase to both a user forum address and a technical support address over the

network.

27

WO 2014/099046 PCT/US2013/054753

10

15

20

25

30

10. A system, comprising:

a first server for hosting a document online, the document including a
plurality of sections and a plurality of subsections for the plurality of sections;

wherein the plurality of subsections is associated with one or more error
records;

wherein the one or more error records are associated with one or more
error codes in association with one or more errors that can occur under the
plurality of subsections; and

at least a second server for hosting a plurality of databases, the second
server being communicatively coupled to the first server;

wherein the one or more error records have at least one link to at least
one of the plurality of databases for fetching relevant information therefrom for

resolving the one or more errors.

11. The system according to claim 10, wherein:

the first server is programmed to search the document responsive to
receipt of a case inquiry;

the first server is programmed to create a copy of a subsection of the
subsections responsive to the case inquiry; and

the first server is programmed to send the copy of the subsection to a

client originating the case inquiry.

12. The system according to claim 10 or claim 11, wherein the first server is

programmed to update the document to create an entry for a webcase.

13. The system according to claim 12, wherein the webcase includes a section
of the plurality of sections, a subsection of the plurality of subsections, and an

error message having an error code of the one or more error codes.

14. The system according to claim 13, wherein the webcase further includes:

a first link to a technical support request in the one or more of the plurality
of databases; and

a second link to a community forum post in the one or more of the plurality

of databases.

28

WO 2014/099046 PCT/US2013/054753

15. The system according to claim 14, wherein the webcase yet further includes:
a third link to documentation in the one or more of the plurality of

databases.

29

PCT/US2013/054753

1/8

WO 2014/099046

L OIld S
t i %
el : :
H i e ¥
Lot o0 | :
s |
O T M
¢
T
M NG
§ i
N |

IR S

VIV| o || EFF T
1dsd 148

(i) 4T R A

!

|

I

{

|

H

|

T L Lo b DI e her e TR
SN P I BN P P

ooy
o
=

R

DRNANACNN:

T AU R S M
\x ﬂ
S0 4© £04 /// :
gl >
I EEE : :
NoﬂJ HE orsion R

§

i

W TIT K 1
\ mtw ._xzw i! / A ™ bt D W |\
001 w i SOLNOLLNGHMLSIO X200 7/ DIHNGD

219

PCT/US2013/054753

WO 2014/099046

€0C

{sjqis50008
gem 02} asegrie(SKIBWNTOg

TAVAND S

{sjqissacve gam “H'e) asegeie(
(SN 4 AJUNWIWOYD J8sh

102 7

002

(2igisssnoe
gem Bs) sseqeieq (uoddng
oy ~ha) spioosy Jemsuy

(W Joud)
Z i

o
g
=~
=t
Te)
=
S~
o)
o)
=
I
n
=
S
[
o
A

o

e,

o0
©
=
=
3
N
S
S~
~
o)
=
3
W

e0C 4

AV AR

LOZ

9ZE uogroggndjusumosop/ dpt # JUSWMOI0]
) Gze .~ sod mrnuoy dny ¢ sumiog
Q2T (VL) I DSUIIPA

528 o <814 Ppdwo)y Ty Houy

ZZE o . Swsreg X - UONAOSYNS
LEE .~ SISOUIUAS HS] — uonsag
7
BEC

gz . ~UOTIRDMG nduswmoop,/diyg # Juaumoogy
i GZ8 wod wmaoy//dny # swniog
N e PIODRY FOMSTR/ LAWY # TV
€28 - < 1L> epdwoy TH Houy

28 e ouisiegd T(IH — UORIosqng

ZE .~ SISAUAG HS] — UONIAY

{ejgiss8008

m

m
gom “Ba) (s)esegeie(] SlULWINCO(_ﬂ ..

|-

(aygissaone gom “0a) (sloseqeie(] u
(SIUNID 4 AJUNUILLIOD 188N

A

USUINS00

(e|gissanoe 4
gem “B'8) esegeieq (uoddng W

[eoiulRe] 6'9) SpioDsy JaMmsUY

:
\

. ObE

o ooge

{s)opoD) 043
d uogossgng

{(s)yepop ou3 ~_, CZE
| LUonoesang

i} UORoRg

{8)epor J0u3
U UoBoesSqng

(3)9pos JouT
CLe) HORDesSang
i uohoeg
{s}epon ol
i UonRossyng

($)8pon 104
L UDHODSANG
Lge .~ uanoeg

218 -
}Hv)x ,_M,., e i |
vr\ " \.. //!v e
a\fv\ T\.) W.n_..‘! mew
} _
SO
-0z / goz -/e0g
e -
J@Cf.f/.
T Q08

4/9

WO 2014/099046 PCT/US2013/054753
;401 ;402 ;403
N Initiate debugger (8.g.,

o
Error stops ool flow ~m¥>{\ Error Message)-«««»

user clicks on con)

¥

_

: 404
Read error message to obtain error |/ -
code and error content 413
. ~ 405 {f’repert(s) of
Search working project directory of a i completed
tool and obtain record(s) . process(es) . . 414
I~ report of a failed
¥ { process
Break down error message to identify | \other files
‘source” {(e.g., nel(s), signal(s), N A08
block(s), and/or instance(s) from error
content) of the error
— — |
1 Open repori(s) (e.g., sequentially) for ;
v completed module(s) and performa 1, 407
Debugger | 1 Search (e.g., akeyword search)
311 ! thereof using “source” !
S R |
g Note (e.g., tag) and store any hits, ;
| including without limitationany ~ +~ 408
! warnings, in storage (2.g., cache) |
Soen report for module that failed |7 409
¥
lcentify subsection (e.g., phaseaor |~ 445
stage) where failure occurred
¥
Access network server - 41
¥
Sending a case inquiry < 412
¥
A (_ Case Inquiry) 415
400 7

FIG. 4

5/8

WO 2014/099046 PCT/US2013/054753

Server
330

Server
330

500

&)

Provide document {e.g., on secure server)

A

Search for subseaction in document

3
Create copy of subsection of document,
where such subsection includes a list of error
code(s) for the subsection, and where each
such error code is linked to one or more
databases associated therewith

4

Send copy of document subsection {o client
to provide a iocal copy thereof

™ 504

312 " _Local Copy)

FIG. 5

700

Receive a webcase

¥

Send the webcase to technical support to
generate and receive a webcase number

702

¥

Craate and send post for community forum
using the webcase

703

4

Update document to create an entry for the
webcase, including link(s) o technical
support link to the webcase number,
community forum link {o the post, andiar
documentation link

704

FIG. 7

6/9
WO 2014/099046 PCT/US2013/054753

. 600
&

Store subsection of document | /~ 501
received as a local copy

location of failing process) and

{
N\ oA
\ .
}

Al ann
Search subsectionflocal copy |/ 602
using error code
i
/5\ 803
<
\i\\/!atch’? N
y:/ /604 808
Z k A
Debugger Copy and store any matching Concatenate identification of
311 \ entry (elg_i store in Cache} faiilng module (e.g., section &
subsection), warning(s) and
¥ error message for a webcase
Concatenate warning{syandalt { _ v _ .
matching entry(ies) and display ' Generate a title for the webcase |
in tool console window I (e.g. including name and |
|
{

- 605 607 - 1___append tothe webcase |
¥
508 7 Send the webcase

609 (" Webcase)

o
emmmamna s am e e e

FIG. 6

WO 2014/099046

Script /
820

719

PCT/US2013/054753
. 80O
Y
Divide document into sections and subsections
respectively for tool processes and subprocesses)
~ 801
A
Populate 2ach of the subsections with associated error |~ 802
codes
¥
Perform a recursive search in a private webcase
database using error codes and add webcase numbers)
. Y S
located for closed webcases to document - 803
X
Perform a recursive search in 3 private answer records P
database using added webcase numbers < 804
%
Perform a recursive search in a public answer racords
database using matching answer record numbers ~ 805
y
For answer records in the public domain, corresponding | 506
links may b copied over to asscciated error codes inthe |
document
¥
Webcase numbers added having corresponding public
answer records may be removed and replaced with 807
corresponding public answer record numbers
¥
Ferform a search in forum(s) and added matching forum o~
posts for error codes in the document -~ 808
A
Search web for links to relevant documentation for error
codes responsive to phase/stage of a tool and add such |-~ gpg
finks to document for corresponding error codes.

FIG. 8

8/9

WO 2014/099046 PCT/US2013/054753
800
LN
Provide document {e.g., on secure sarver) 501
Search for subsection in document and then | 902
search in subsection using error code) ~ 808

Server
330

/Q\\ 603
e '

%tch?\ﬁ&—————-————p—

//

Yy

903 -

Create copy of any and
all matching entries

904 -

¥
Send copy of any and all
matching entries to client
to provide a local copy
thereof

3

703

808 -

FIG. 9

S

704

607 .
1o ~_{ Local Copy

702 ¢

/
/

Concatenate identification of
failing module {e.g., section &
subsection), and optionally
warning(s) and error message,
for a webcase

e L

! Generate a title for the webcase
¢ {e.g. including name and

| location of failing process) and
{

t

append to the webcase

S S e e den e i s e e i e e e e e

2

1
]
{
]

i
|
{
!

i

Send the webcase to technical

| support to generate and receive

a webcase number

¥

Create and send post for
community forum using the

webcase
v

Update document to create an

| entry for the webcase, including

link{s) to technical support link
to the webcase number,
community forum link to the
post, and/or documentation link

¥

Copy webcase entry and sent
as a local copy

¥

&G

WO 2014/099046 PCT/US2013/054753
1000
SUSSN—— e
e BN &
312 ”"*~~vkL0ca§ Copy)
¥
Receive local copy 1001
Debugger ¢ 4
311 Concatenate warning(s) and all
matching entry(ies) and display
in too! console window
- 605
FI1G. 10
1100
e yd
DISPLAY
DEVICE(S)
1161
* 1110
) /O INTERFACE | 1 CRU
h v 1102 b 1104
A A A
MEMORY
1105
P PROGRAM |
PRODUCT
1120
INPUT
DEVICE(S)
1108
FIG. 11

INTERNATIONAL SEARCH REPORT

International application No

PCT/US2013/054753

A. CLASSIFICATION OF SUBJECT MATTER

INV. GO6F11/07
ADD.

According to International Patent Classification (IPC) or to both national classification and IPG

B. FIELDS SEARCHED

GO6F

Minimum documentation searched (classification system followed by classification symbols)

Documentation searched other than minimum documentation to the extent that such documents are included in the fields searched

EPO-Internal, WPI Data

Electronic data base consulted during the international search (name of data base and, where practicable, search terms used)

C. DOCUMENTS CONSIDERED TO BE RELEVANT

Category* | Citation of document, with indication, where appropriate, of the relevant passages Relevant to claim No.
X US 2012/066547 Al (GILBERT ALLEN M [US] ET 1-15
AL) 15 March 2012 (2012-03-15)
paragraph [0033] - paragraph [0047]
X US 2006/242286 Al (HAWKINS JOSHUA [US] ET 1-15
AL) 26 October 2006 (2006-10-26)
abstract
sentence 40, paragraph 38
A US 2010/318846 Al (SAILER ANCA [US] ET AL) 1-15
16 December 2010 (2010-12-16)
the whole document
A US 2011/296243 Al (CALMAN MATTHEW 1-15
ALEXANDER [US] ET AL)
1 December 2011 (2011-12-01)
abstract

D Further documents are listed in the continuation of Box C.

See patent family annex.

* Special categories of cited documents :

"A" document defining the general state of the art which is not considered
to be of particular relevance

"E" earlier application or patent but published on or after the international
filing date

"L" document which may throw doubts on priority claim(s) or which is
cited to establish the publication date of another citation or other
special reason (as specified)

"Q" document referring to an oral disclosure, use, exhibition or other
means

"P" document published prior to the international filing date but later than
the priority date claimed

"T" later document published after the international filing date or priority
date and not in conflict with the application but cited to understand
the principle or theory underlying the invention

"X" document of particular relevance; the claimed invention cannot be
considered novel or cannot be considered to involve an inventive
step when the document is taken alone

"Y" document of particular relevance; the claimed invention cannot be
considered to involve an inventive step when the document is
combined with one or more other such documents, such combination
being obvious to a person skilled in the art

"&" document member of the same patent family

Date of the actual completion of the international search

8 October 2013

Date of mailing of the international search report

18/10/2013

Name and mailing address of the ISA/

European Patent Office, P.B. 5818 Patentlaan 2
NL - 2280 HV Rijswik

Tel. (+31-70) 340-2040,

Fax: (+31-70) 340-3016

Authorized officer

Renault, Sophie

Form PCT/ISA/210 (second sheet) (April 2005)

INTERNATIONAL SEARCH REPORT

Information on patent family members

International application No

PCT/US2013/054753
Patent document Publication Patent family Publication
cited in search report date member(s) date
US 2012066547 Al 15-03-2012 NONE
US 2006242286 Al 26-10-2006 US 2006242286 Al 26-10-2006
WO 2007106569 A2 20-09-2007
US 2010318846 Al 16-12-2010 NONE
US 2011296243 Al 01-12-2011 NONE

Form PCT/ISA/210 (patent family annex) (April 2005)

	Page 1 - front-page
	Page 2 - front-page
	Page 3 - description
	Page 4 - description
	Page 5 - description
	Page 6 - description
	Page 7 - description
	Page 8 - description
	Page 9 - description
	Page 10 - description
	Page 11 - description
	Page 12 - description
	Page 13 - description
	Page 14 - description
	Page 15 - description
	Page 16 - description
	Page 17 - description
	Page 18 - description
	Page 19 - description
	Page 20 - description
	Page 21 - description
	Page 22 - description
	Page 23 - description
	Page 24 - description
	Page 25 - description
	Page 26 - description
	Page 27 - description
	Page 28 - claims
	Page 29 - claims
	Page 30 - claims
	Page 31 - claims
	Page 32 - drawings
	Page 33 - drawings
	Page 34 - drawings
	Page 35 - drawings
	Page 36 - drawings
	Page 37 - drawings
	Page 38 - drawings
	Page 39 - drawings
	Page 40 - drawings
	Page 41 - wo-search-report
	Page 42 - wo-search-report

