PCT

WORLD INTELLECTUAL PROPER
International Bur

INTERNATIONAL APPLICATION PUBLISHED UNDER '

Wo 9605556A1

(51) International Patent Classification 6.

GO6F 11/00 Al

(11) International Publication Number:

(43) International Publication Date:

WO 96/05556

22 February 1996 (22.02.96)

(21) International Application Number: PCT/US95/09691

(22) International Filing Date: 9 August 1995 (09.08.95)

(30) Priority Data:

289,148 US

10 August 1994 (10.08.94)

(71) Applicant: INTRINSA CORPORATION [US/US}; 101 Uni-
versity Avenue, Palo Alto, CA 94301 (US).

(72) Inventors: HALEY, Matthew, A.; 3929 Woodcreek Lane,
San Jose, CA 95117-3445 (US). PINCUS, Jonathan, D.;
4026 18th Street, San Francisco, CA 94114 (US). BUSH,

(81) Designated States: AM, AT, AU, BB, BG, BR, BY, CA, CH,
CN, CZ, DE, DK, EE, ES, FI, GB, GE, HU, IS, JP, KE,
KG, KP, KR, KZ, LK, LR, LT, LU, LV, MD, MG, MN,
MW, MX, NO, NZ, PL, PT, RO, RU, SD, SE, SG, SI, SK,
TJ, TM, TT, UA, UG, UZ, VN, European patent (AT, BE,
CH, DE, DK, ES, FR, GB, GR, [E, IT, LU, MC, NL, PT,
SE), OAPI patent (BF, BJ, CF, CG, CI, CM, GA, GN, ML,
MR, NE, SN, TD, TG), ARIPO patent (KE, MW, 8D, SZ,
UG).

Published
With international search report.
Before the expiration of the time limit for amending the
claims and to be republished in the event of the receipt of

William, R.; 1739 Lexington Avenue, San Mateo, CA 94402 amendments.
(US).
(74) Agent: MACPHERSON, Alan, H.; Skjerven, Momill,

MacPherson, Franklin & Friel, 25 Metro Drive, Suite 700,
San Jose, CA 95110 (US).

(54) Title: COMPUTER PROCESS RESOURCE MODELLING METHOD AND APPARATUS

(57) Abstract

An error detection mechanism for detecting programming errors in a computer program. A component of the computer program, ¢.g.,
a procedure or function of the computer program, is analyzed to determine the effect of the component on resources used by the computer
program. A component is analyzed by traversing the computer instructions, i.c., statements, of the component and tracking the state of
resources used by the components as affected by the statements of the component. Each resource has a prescribed behavior represented by
a number of states and transition between states. Violations in the prescribed behavior of a resource resulting from an emulated execution
of the statements of the component are detected and reported as programming errors. Resources used by two or more components are
modelled by modelling externals of the components. The effect of execution of a component on externals and resources of the component is
determined by traversing one or more possible control flow paths through the component and tracking the use of each external and resource
by each statement of each control flow path. Once the effect of execution of a component on externals and resources of the component is
determined, a model of the component is created and used to model externals and resources of other components which invoke the modelled

component.

applications under the PCT.

FOR THE PURPOSES OF INFORMATION ONLY

Codes used to identify States party to the PCT on the front pages of pamphlets publishing international

Austria
Australia
Barbados
Belgium
Burkina Faso
Bulgaria

Benin

Brazil

Belarus
Canada

Central African Republic
Congo
Switzeriand
Cdee d'Ivoire
Cameroon
China
Czechoslovakia
Czech Republic
Germany
Denmark

Spain

Finland

France

Gabon

GB
GE
GN
GR
HU
1IE
IT
JP
KE

KG
KP

KERE

LU
LV
MC

8

MG

United Kingdom
Georgia

Guinea

Greece

Hungary

Ireland

Ttaly

Japan

Kenya

Kyrgystan
Democratic People's Republic
of Korea
Republic of Korea
Kazakhstan
Liechtenstein

Sri Lanka
Luxembourg
Latvia

Monaco

Republic of Moldova
Madagascar

Mali

Mongolia

Mauritania

Malawi

Niger

Netherlands
Norway

New Zealand
Poland

Portugal

Romania

Russian Federation
Sudan

Sweden

Slovenia

Slovakia

Senegal

Chad

Togo

Tajikistan

Trinidad and Tobago
Ukreine

United States of America
Uzbekistan

Viet Nam

WO 96/05556 PCT/US95/09691

10

15

20

25

30

35

COMPUTER PROCESS RESOURCE MODELLING
METHOD AND APPARATUS

REFERENCE TO APPENDIX A

Appendix A, which is a part of this disclosure, is
a list of computer programs and related data in one
embodiment of the present invention, which is described
more completely below.

A portion of the disclosure of this patent
document contains material which is subject to
copyright protection. The copyright owner has no
objection to the facsimile reproduction by anyone of
the patent document or the patent disclosure, as it
appears in the Patent and Trademark Office patent files
or records, but otherwise reserves all copyright rights
whatsoever. A

BACKGROUND OF THE INVENTION
Fie;d of the Invention

The present invention relates to the analysis of
computer programs and, in particular, to the detection
of programming errors in a computer program through
analysis of the use of resources prescribed by the
computer program.

Discussion of Related Art

Some existing programming error detection methods
detect violations in the computer instruction protocol
with which a particular program comports. Such a
programming error detection method is called "static
checking" since the syntax of the computer
instructioné, or "statements", of the computer program
is analyzed outside the context of the behavior

WO 96/05556 PCT/US95/09691

10

15

20

25

30

35

resulting from the execution of those statements. The
term "statement" is used herein as it is defined in

Section 6.6 of American National Standard for
Programming Lanquages--C (American National Standards

Institute/International Organization for
Standardization ANSI/ISO 9899-1990), which is
reproduced in Herbert Schildt, The Annotated ANSI C
Standard, (Osborne McGraw-Hill 1990) (hereinafter the C
Standard). Briefly, in the context of the C computer
language, a statement is a computer instruction other
than a declaration. In other words, a statement is a
any expression or instruction which directs a computer
to carry out one or more processing steps. Static
checking in the context of the C computer language
includes, for example, (i) making sure that no two
variables in the computer program are identified by the
same name; (ii) ensuring that each "break" statement
corresponds to a preceding "while", "for", or "“switch"
statement; and (iii) verifying that operators are
applied to compatible operands. Static checking is
discussed, for example, in Alfred V. Aho et al.,
Compilers, (Addison Wesley 1988).

Some existing static checking methods, which are
generally called "data flow analysis" techniques,
analyze data flow through a program to detect
programming errors. Such analysis includes use of
control flow information, such as sequencing of
statements and loop statements, to detect the improper
use of data objects, e.g., the use of a variable before
a value has been assigned to the variable. Flow of
control in a computer program is the particular
sequence in which computer instructions of the computer
program are executed in a computer process defined by
the computer program. Computer programs and processes
and the relation therebetween are discussed more
completely below. Data flow techniques are discussed

-2 -

WO 96/05556 PCT/US95/09691

10

15

20

25

30

35

in Beizer, Softwa esti Te i s, (1990) at pp.
145-172.

Existing static checking techniques suffer from
the inability to track use of resources through several
discrete components of a computer program such as
several functions which collectively form a computer
program. For example, a variable may be initialized in
a first function and used in a calculation in a second,
subsequently executed function. By analysis of only
the computer instructions of the second function, the
variable appears to be used before the variable is
initialized which can be erroneously reported as an
error. In addition, existing static checking
techniques are static in nature and do not consider
particular data values associates with particular data
objects. Static analysis is limited to what can be
determined without considering the dynamic effects of
program execution. Beizer describes several areas for
which static analysis is inadequate, including: arrays,
especially dynamically calculated indices and
dynamically allocated arrays; records and pointers;
files; and alternate state tables, representing the
different semantics of different types in the same
program.

Static checkers do not detect errors involving
calculated addresses corresponding to dynamically
allocated memory or calculated indices into arrays.
Calculated addresses and indices are addresses and
indices, respectively, which are calculated during the
execution of a computer process. Static checkers do
not detect such errors in a computer program because
checking for such errors typically involves determining
the precise values of calculated addresses and indices,
which in turn involves consideration of the behavior of
the computer program during execution, i.e., as a
computer process.

WO 96/05556 PCT/US95/09691

10

15

20

25

30

35

Static checkers do not detect errors involving the
use of questionably allocated resources or the use of
resources whose state is determined by the value of a
variable or other data object. 1In the C computer
language, a resource, e.g., dynamically allocate memory
or a file, is questionably allocated. In other words,
a function which allocates the resource completes
successfully, even if allocation of the resource
failed. Whether the allocation succeeded is determined
by comparison of the returned item of the function,
which is a pointer to the allocated resource, to an
invalid value, e.g., NULL. Static checkers do not
consider the behavior of a called function but instead
only verify that the syntax of the call to the called
function comports with the syntax prescribed in the
particular computer language. Therefore, static
checkers do not detect errors involving use of a
resource which is questionably allocated.

As described above, a static checker does not
consider the behavior of a called function. Thus,
verifying the use of a resource which spans multiple
functions is impossible. For example, if a first
function allocates a resource, a second function uses
the resource, and a third function deallocates the
resource, static checking of any of the first, second,
and third functions alone or a function calling all
three functions, cannot verify the proper use of the
resource.

When using an error detection technique, which
employs insufficient information regarding the behavior
of a computer program during execution, the errors
reported by such a technique are either under-inclusive
or over-inclusive. For example, if a function accepts
as a parameter a pointer to an allocated resource,
e.g., a file, and uses the parameter without comparing
the parameter to an invalid pointer, the function

- -

WO 96/05556 PCT/US95/09691

10

15

20

25

30

35

contains a possible error. Whether the function
contains an error depends on circumstances which are
unknown within the context of the function. For
example, if the pointer is verified to be a valid
pointer before the function is called, there is no
error in the function. To report the use of the
pointer as an error would clutter an analysis of the
function with a falsely reported error, and thus would
be over-inclusive. Falsely reporting errors in
analysis of a large program, at best, is an
inconvenience to a program developer and, at worst,
renders analysis of a computer program useless. If the
pointer is not checked to be valid prior to calling the
function, failure to report the error results in
failure to detect an error which can cause an execution
of the computer program to be aborted abruptly and can
result in the corruption of data structures and
possibly in the loss of valuable data.

One particular drawback of the failure of statici
checking techniques to consider the dynamic behavior of
a computer program is the reporting of apparent, but
"false", errors, i.e., errors resulting from computer
instructions through which control cannot flow. 1In
functions in which control flow paths depend on
particular values associated with particular data
structures and program variables, control flow cannot
be determined without considering the values associated
with those data structures and variables which
generally in turn cannot be determined without »
consideration of the behavior of the function during
execution. As a result, instructions which are not
executed or which are executed only under specific
circumstances are generally assumed to always be
executed by static checkers.

Another type of existing programming error
detection technique is called program verification. 1In

-5-

WO 96/05556 PCT/US95/09691

10

15

20

25

30

35

program verification, a computer program is treated as
a formal mathematical object. Errors in the computer
program are detecting by proving, or failing to prove,
certain properties of the computer program using
theoretical mathematics. One property for which a
proof is generally attempted is that, given certain
inputs, a computer process defined by the computer
program produées certain outputs. If the proof fails,
the computer program contains a programming error.

Such program verification techniques are described, for
example, in Eric C.R. Hehner et al., A Practical Theory
of Programming, (Verlag 1993) and Ole-Johan Dahl,
Verifiable Programming, (Prentice Hall 1992).

Verified programming techniques are limited in at
least two ways: (i) only properties of computer
programs which can be expressed and automatically
proven using formal logic can be verified, and (ii) a
person developing a computer program generally must
formally specify thé properties of the computer
program. Formally specifying the properties of a
computer program is extremely difficult in any case and
intractable for larger programs. As a result,
commercially successful products employing verified
programming techniques are quite rare.

In another type of programming error detection
technique, a computer program is executed, thus forming
a computer process, and the behavior of the computer
process is monitored. Since a computer program is
analyzed during execution, such a programming error
detection technique is called "runtime checking". Some
runtime checking techniques include automatically
inserting computer instructions into a computer program
such that execution of the inserted computer
instructions note, during execution of the computer
program, the status of variables and resources of the

WO 96/05556 PCT/US95/09691

10

15

20

25

30

35

computer program. Such an error detection technique is
described by U.S. Patent Number 5,193,180 to Hastings.
Runtime checking can typically detect errors such
as array indices out of bounds and memory leaks.
Examples of runtime checking include Purify which is
available from Pure Software Inc. of Sunnyvale,
California and Insight which is available from Parasoft
Corporation of Pasadena, California. Purify inserts
into a computer program monitoring computer
instructions after a computer program has been compiled
in to an object code form, and Insight inserts into a
computer program monitoring computer instructions
before a computer program is compiled, i.e., while the
computer program is still in a source code form.
Runtime checking is generally limited to what can
be determined by actually executing the computer
instructions of a computer program with actual,
specific inputs. Runtime checking does not consider
all possible control flow paths through a computer
program but considers only those control flow paths
corresponding to the particular inputs to the computer
program supplied during execution. It is generally
impracticable to coerce a computer process, formed by
execution of the computer instructions of a computer
program, to follow all possible control flow paths. To
do so requires that a programmer anticipate all
possible contingencies which might occur during
execution of the computer instructions of a computer
program and to cause or emulate all possible
combinations of occurrences of such contingencies.
Furthermore, runtime checking can only be used
when the computer program is complete. Analysis of a
single function before the function is incorporated
into a complete program is impossible in runtime
checking since the function must be executed to be
analyzed. Analysis of a function using runtime

-7

WO 96/05556 PCT/US95/09691

10

15

20

25

30

35

checking therefore requires that (i) all functions of a
computer program be developed and combined to form the
computer program prior to analysis of any of the
functions or (ii) that a special purpose test program,
which incorporates the function, be developed to test
the function. Top-down programming, which involves the
design, implementation, and testing of individual
functions prior to inclusion in a complete computer
program and which is a widely known and preferred
method of developing more complex computer programs,
therefore does not lend itself well to runtime
analysis.

What is needed is a programming error detection
technique which considers the dynamic behavior of a
computer program, which automatically considers
substantially all possible control flow paths through
the computer program, and which does not require a
programmer of such a computer program to express the
computer program in an alternative, e.g., mathematical,
form. What is further needed is a programming error
detection technique which analyzes an individual
component of a program, considering the behavior of the
component during execution. What is further needed is
a programming error detection technique which considers
the behavior of a component whose execution is invoked
by a computer program component under analysis.

SUMMARY OF THE INVENTION

In accordance with the present invention, a
computer program is analyzed, and programming errors in
the computer program are detected, by modelling the
behavior of resources used by the computer program and
detecting potential state violations in the those
resources. A resource is modelled according to
resource states and resource state transitions which
describe the behavior of the resource. The computer

WO 96/05556 PCT/US95/09691

10

15

20

25

30

35

instructions of the computer program are dynamically
inspected, i.e., the dynamic behavior of the computer
instructions is determined and the states of resources
are changed according to the dynamic behavior of the
computer instructions.

Each component of a computer program is analyzed
individually. Use of a resource whose use spans more
than one component, e.g., a resource which is allocated
by a first component, used by a second component and
deallocated by a third component, is analyzed by
modelling the externals of each component. Two
components of a computer program communicate with one
another through the externals of each component. For
example, information regarding a resource allocated by
a first component is transmitted to a second component,
which uses the resource, through the externals of the
first and second components. By analyzing the behavior
of each component with respect to the externals of thg
component, resources whose use span more than one
component are properly modelled.

Each component is analyzed and the effect of
exeqution of the component on each external of the
component is determined. From the analysis of the
component, a model of the component is created. The
model of the component describes the effect of
execution of the component on each external of the
component in terms of changes in the respective states
of the externals and the introduction of new resources
associated with any external of the -component.
Execution of the modelled component can have any of a
number of effects on any individual external, and those
effects are represented in a composite state of the
external. The model of the component can then be used
in the analysis of other components which invoke
execution of the modelled component.

WO 96/05556

10

15

20

25

30

PCT/US95/09691

BRIEF DESCRIPTION OF THE DRAWINGS

Figure 1 is a block diagram of a computer.

Figure 2 is a block diagram of a computer process
component, resources of the component, and other

components.

Figures 3A and 3B are state diagrams representing
the modelling of a resource according to one embodiment

of the present invention.

Figures 4A, 4B, 5A and 5B are state diagranms
representing the modelling of an external according to
one embodiment of the present invention.

Figures 6 and 7 are block diagrams of a resource
checker in accordance with the present invention.

Figure 8 is a block diagram of a dynamic
inspection engine in accordance with the present
invention.

Figure 9 is a logic flow diagram of the analysis
of a computer program in accordance with the present
invention.

Figure 10 is a logic flow diagram of the
initialization of a model in the logic flow diagram of
Figure 9.

Figure 11 is a block diagram of a function model

structure in accordance with an embodiment of the

present invention.

-10-

WO 96/05556 PCT/US95/09691

10

15

20

25

30

35

Figure 12 is a block diagram of an external model
structure in accordance with an embodiment of the

present invention.

Figure 13 is a block diagram of a function model
structure and two external model structures associated
with the function model structure.

Figure 14 is a block diagram of a function

.structure in accordance with an embodiment of the

present invention.

Figure 15 is a block diagram of an external list
structure in accordance with an embodiment of the

present invention.

Figure 16 is a block diagram of a declaration
structure in accordance with an embodiment of the

present invention.

Figure 17 is a block diagram of a type structure
in accordance with an embodiment of the present

invention.

Figure 18 is a block diagram of a field structure
in accordance with an embodiment of the present
invention.

Figure 19 is a block diagram of a two-field data
object.

Figure 20 is a block diagram of a type structure
and two field structures representing the data object

of Figure 19.
Figure 21 is a block diagram of a statement

structure in accordance with an embodiment of the

present invention.

-]ll-

WO 96/05556 PCT/US95/09691

10

15

20

25

30

35

Figure 22 is a block diagram of an expression
structure in accordance with an embodiment of the
present invention.

Figure 23 is a block diagram of an expression
structure, an associated declaration structure and an
associated item structure in accordance with an
embodiment of the present invention.

Figure 24 is a logic flow diagram of the analysis
of an individual computer program component according
to an embodiment of the present invention.

Figure 25 is a logic flow diagram of a step in the
logic flow diagram of Figure 24.

Figure 26 is a logic flow diagram of a single
iterative evaluation of a computer program component
according to logic flow diagram 24.

Figure 27 is a block diagram of an item structure
in accordance with an embodiment of the present
invention.

Figure 28 is a logic flow diagram of the analysis
of a statement in accordance with an embodiment of the
present invention.

Figure 29 is a logic flow diagram of the
evaluation of an expression in accordance with an
embodiment of the present invention.

Figure 30 is a block diagram of an external
structure in accordance with an embodiment of the
present invention.

Figure 31 is a block diagram of a resource
structure in accordance with an embodiment of the
present invention.

Figure 32 is a logic flow diagram of the
application of an operation to an item in accordance
with an embodiment of the present invention.

Figures 33A, 33B, and 33C are a logic flow diagram
of the processing of an operator in accordance with an
embodiment of the present invention.

-12-

WO 96/05556 PCT/US95/09691

10

15

20

25

30

Figure 34 is a logic flow diagram of the
processing of a declaration in accordance with an
embodiment of the present invention.

Figure 35 is a logic flow diagram of the
processing of an "if" statement in accordance with an
embodiment of the present invention.

Figure 36 is a logic flow diagram of the
processing of a logical operator in accordance with the
present invention.

Figure 37 is a logic flow diagram of the
processing of a step of the logic flow diagram of
Figure 36.

Figure 38 is a logic flow diagram of the
processing of another step of the logic flow diagram of
Figure 36.

Figure 39 is a logic flow diagram of the
processing of a "return" statement in accordance with
an embodiment of the present invention.

Figure 40 is a logic flow diagram of the
processing of a "block" statement in accordance with an
embodiment of the present invention.

Figure 41 is a logic flow diagram of the detection
of resource leaks in accordance with one embodiment of
the present invention. ’

Figure 42 is a logic flow diagram of the
composition of the composite states of an external in
accordance with an embodiment of the present invention.

Figure 43 is a logic flow diagram of the
production of a function model from the analysis of the
function in accordance with an embodiment of the
present invention.

Figure 44 is a logic flow diagram of the
processing of a step of the logic flow diagram of
Figure 43.

-13-

WO 96/05556 PCT/US95/09691

10

15

20

25

30

35

Figure 45 is a logic flow diagram of the
assignment of the value of one item to another item in
accordance with an embodiment of the present invention.

Figure 46 is a logic flow diagram of the emulation
of a called routine in accordance with an embodiment of
the present invention.

DETAILED DESCRIPTION
In accordance with the present invention, errors

in a computer program are detected by modelling
resources used by the computer program and detecting
potential state violations in those resources. A
resource is modelled by simulating the behavior of the
resource in terms of states of the resource and
transitions between those states. Each computer
instruction of the computer program is analyzed and the
state of the resource is changed according to the
effect execution of the computer instruction would have
on the resource. State violations, i.e., invalid
states and invalid state transitions in the state of
the resource, are detected and reported as programming
errors. In this way, errar detection according to the
present invention considers the behavior of a computer
process as defined by the computer program, thereby
overcoming many of the limitations of static checkers
of the prior art.

Each resource has a prescribed behavior which can
be described in terms of valid states and valid
transitions between those states. A common source of
errors in computer programs is the failure of the
developer of the computer program to observe the
prescribed behavior of a resource. When a computer
instruction in the computer program directs a computer
to use the resource in violation of the prescribed
behavior of the resource, a state violation occurs. An
example of a state violation is the reading of a record

-14-

WO 96/05556 PCT/US95/09691

10

15

20

25

30

35

from a file after the file has been closed when the
prescribed behavior of the file dictates that the file
must be open to be read.

A computer 100 (Figure 1) includes a central
processing unit (CPU) 102, memory 104, and input/output
circuitry (I/0 circuitry) 106, all of which are
interconnected through a bus 108. Memory 104 can
include any type of memory, including randomly-
accessible memory (RAM), read-only memory (ROM), and
secondary storage devices such as magnetic disks. CPU
102 executes from memory 104 a computer process 110,
which has access to library functions 112, dynamically
allocated memory 114, and a second computer process
116. I/O circuitry 106 includes drivers 106A, 106B,
106C, 106D, and 106E, which drive a video monitor 118,
secondary storage 120, a network 126, a locator device
such as a mouse 122, and a keyboard 124.

As used herein, a resource is a part of a computer
system which is used by a computer process and which
generally must be allocated before being used and
generally must be deallocated, i.e., freed, after being
used. Examples of resources include global memory,
files, windows, menus, and dialogs. Resources of
computer process 110 include, for example, dynamically
allocated memory 114, computer process 116, and
magnetic disk 120.

As used herein, a computer process is a series of
steps carried out by a computer. A computer program is
a series of instructions which can be carried out by a
computer. It should be understood that the
instructions of a computer program define the steps
which, when carried out by a computer, form a computer
process. Thus, to model the behavior of computer
process 110, the computer program defining computer

process 110 is analyzed.

-15-

WO 96/05556 PCT/US95/09691

10

15

20

25

30

35

Analyzing at the Function Level

Computer programs are typically a combination of
previously developed components and newly developed
code. As used herein, "code" refers to source code,
i.e., computer instructions in human intelligible form,
and/or object code, i.e., computer instructions in
computer intelligible form. A component of a computer
program is a collection of computer instructions and/or
data structures which are previously developed to
perform a specified process fragment and which have
typically been tested to ensure that the process
fragment is performed faithfully by the component. A
process fragment is one or more of the steps of a
computer process, i.e., is a fragment of the computer
process. A developer of a computer program uses such
components to perform the specified process fragments
and typically trusts that the components, when
executed, perform as specified. Such components can
include invocations of execution of, i.e., calls to,
components previously developed by the developer or
components acquired commercially. Thus, redundancy in
developing a computer program is avoided.

A new computer program is typically developed by
combining previously developed components and
interconnecting those components using newly written
computer instructions. The result of such combining
and interconnecting can be either a new computer
program or a new component that can be used by other
components or computer programs. A component of a
computer program defines a process fragment of the
computer process defined by the computer program. Each
process fragﬁent of a computer process can alter the
state of a resource used by the computer process.
Thus, to properly analyze the state and state
transitions of a resource used by a computer process,
the effect on the state of the resource resulting from

-16-

WO 96/05556 PCT/US95/09691

10

15

20

25

30

35

execution of the process fragment as defined by the
component of the computer program must be ascertained.
As an example, properly analyzing the use of a
resource, which is allocated in a first process
fragment defined by a first component, used in a second
process fragment defined by a second component, and
deallocated in a third process fragment defined by a
third component, requires analysis of the effect of
each of the first, second and third process fragments
on the resource.

Computer programs can be written in any of a
number of computer languages. Traditional computer
languages are procedural in that the computer
instructions of a computer program are organized into
components, sometimes called procedures or "functions",
each of which is designed to carry out a particular
process fragment when executed. Examples of
procedural languages include C, Ada, Pascal, Fortran,
and Basic. Some procedural languages are object-
oriented, such as C++ and SmallTalk. In object-
oriented computer languages, functions and data
structures are combined into objects which are in turn
organized into components known as "classes".

Some computer languages are graphics-based in that
instructions are represented as graphical images which
are displayed on a computer screen and which are linked
by a programmer to form a computer program. For
example, Microsoft Visual Basic, which is available
from Microsoft Corporation of Redmond, Washington, is
such a graphics-based computer language. Some computer
languages are specific to a particular software product
such as the Microsoft Word Basic computer language for
the Microsoft Word word processor available from
Microsoft Corporation or the Lotus 1-2-3 macro language
for the Lotus 1-2-3 Spreadsheet product available from
Lotus Development Corporation of Cambridge,

-17~

WO 96/05556 PCT/US95/09691

10

15

20

25

30

35

Massachusetts. The present invention is applicable to
any computer language, i.e., to any computer
instruction protocol, in which resources are used.
While source code computer instruction protocols are
described above, it is appreciated that the teachings
herein are equally applicable to computer instructions
in the form of object code. 1In the illustrative
embodiment described herein, the particular computer
language analyzed is the well-known C computer language
as described in the C Standard.

Computer programs written in the C computer
language are typically divided into a number of
functions. A function, when executed, accepts as input
zero or more parameters and produces as output one
returned item or no returned item. The parameters and
the returned item are data structures which are stored
in memory, such as memory 104, and which include data
accessible by the function. An illustrative example of
a function defined in the C computer language is givén
below in computer code excerpt (1).

In the illustrative embodiment described herein,
each function of a computer program is analyzed
individually. A function is analyzed by modelling
changes to and uses of the resources, externals and
items of the function effected by the computer
instructions of the function. An item of a function
represents a location in memory, such as memory 104,
that is accessible by the function.. An item has a type
and a value. Types of items supported in one
embodiment of the present invention include integer,
floating point, and pointer data. The value of an item
is the value represented by the particular data stored
in the location of memory represented by the item. An
external and a resource can be associated with each
item of a function. Items are described more

-18~-

WO 96/05556 PCT/US95/09691

10

15

20

25

30

35

completely below. A variable is an association between
an identifier and one or more items.

An external of a function represents a part of a
computer process which exists outside of the context of
the function, i.e., before execution of the function
begins or after execution of the function terminates.
Examples of externals of a function include the
parameters and returned item of the function, globally
defined variables, and static variables. The terms (i)
"globally defined variables" and (ii) "static
variables" are used herein to describe, respectively,
(i) variables with "extern" linkage and (ii) variables
with "intern" linkage and "static" storage duration.
"Locally-defined variables" are variables with "intern"
linkage and "automatic" storage duration. Linkage is
discussed in the C Standard at Section 6.1.2.2, and
storage duration is discussed in the C Standard at
Section 6.1.2.4. Briefly, a globally-defined variable
is defined for all process fragments of a computer
process, and a static variable is defined for a number
of process fragments, but not necessarily all process
fragments, of a computer process.

Each process fragment uses a number of resources.
For example, function 202 (Figure 2) of process 110
(Figure 1) uses dynamically allocated memory 114, and
computer process 116. Function 202 (Figure 2) also
uses (i) globally defined memory 204, which is also
accessible by functions 202A and 202B and other
functions, (ii) local memory, (iii) parameters 208A-
208C, and (iv) returned item 210. Function 202 is
analyzed by modelling one or more of these resources.

Each resource and external has a state. Execution
of each computer instruction of a function is emulated,
modelling any changes in the state of any externals or
resources of the function which would result from
actual execution of the computer instruction. If the

-19-

WO 96/05556 PCT/US95/09691

10

15

20

25

30

35

state of an external or resource is changed, the state
change is compared to a corresponding external behavior
model or resource behavior model, respectively, to
determine whether the change in state reflects
appropriate use of the external or resource,
respectively. If the state change is inappropriate, a
state violation occurs and an error is reported. The
error can be reported to the user (i) by displaying an
error message on video monitor 118 (Figure 1) or
similar output device, (ii) by recording an error
message in an error log file in memory 104 or in
secondary storage 120, or (iii) by both displaying an
error message and recording an error message.

Behavior Models

A function model represents the abstraction of a
function in terms of operations applied by the function
to the externals of the function and any new resources
the function allocates.

As described above, a resource has a state. The
valid states and valid transitions between states of a
resource is represented by a resource behavior model.
The modelling of the behavior of a resource can be
substantially simpler than the actual behavior of the
resource. For example, the state of a resource is
modelled according to a resource behavior model
represented by state diagram 300 (Figure 3A).

According to state diagram 300, a resource can have any
of the following states.

Table A
Unallocated

Allocated

Questionably allocated
Invalid ("NULL")

Error or unknown state

H X O » C
i

-20-

WO 96/05556 PCT/US95/09691

10

15

20

25

30

35

States U and X are similar but distinct: an item
associated with an unallocated resource has an
indeterminate value, and an item associated with an
invalid resource has a known, invalid value. A
resource behavior model can be as complex as the actual
behavior of the resource whose behavior is modelled.
However, even substantially simplified resource
behavior models such as that represented in state
diagram 300 are effective in detecting a substantial
majority of all possible errors in the use of such a
resource.

Resources are initially in state U since a
resource is initially unallocated. Emulated execution
of each computer instruction, actual execution of which
causes a change in the state of a resource, applies an
operation to the resource. By application of an
operation to a resource, the state of the resource
changes according to state diagram 300. The following
are the operations which can be applied to a resource.

Table B
= definitely allocates

= maybe allocates

= kills, i.e., frees or deallocates
uses in a calculation

= uses in a predicate

= uses in an indirection

X D Q0 ® H o
]

= mark invalid

Thus, according to state diagram 300, if an
unallocated resource, i.e., a resource in state U, is
definitely allocated by an instruction in a function,
thereby applying operation a, the resource is then in
state A, i.e., allocated. However, if an unallocated
resource, i.e, in state U, is used in a calculation,

thereby applying operation c, the resource is then in

-21-

WO 96/05556 PCT/US95/09691

10

15

20

25

30

35

state E. State E indicates that a state violation has
occurred as a result of a programming error. State E
is optional in that state E does not describe the
prescribed behavior of a resource, but is used in the
disclosed embodiment as a convenient way to represent a
state violation. In an alternative embodiment, state E.
is omitted and a violation is detected in the above
example by noting that, when a resource is in state U,
operation ¢ is undefined.

State diagram 300 (Figure 3A) is summarized in
Table C below.

Table C
New States Resulting from Operations

operation: a n k c p i b4
old state:
U: A Q v E E E E
A: A Q 19] A A A X
Q: A Q U aA* A At X
X: A Q v E¢ X E* X
E: A Q U E E E E

Superscript numerals.corresponding to operation
identifiers in state diagram 300 and to new state
identifiers in Table C indicate specific errors. The
errors are listed in Table D.

Tab
1 - Freeing an unallocated or freed resource.
2 - Using an unallocated or freed-resource.

3 - Freeing potentially-allocated data without
‘checking.

4 - Using potentially-allocated data without checking.

5 - Freeing NULL data.

6 - Using (e.g., dereferencing) NULL data.

-22-

WO 96/05556 PCT/US95/09691

10

15

20

25

30

35

In the example given above, applying operation c
to a resource in state U places the resource in state E
as indicated in state diagram 300 by an arrow from
state U to state E identified by "c?". Thus, the error
in this example is error number 2 in Table D, namely,
the use of an unallocated resource.

Each function model specifies which operations are
applied to each external of a corresponding function.
For example, function fopen(), which is defined for the
C computer language and which is described in the C
Standard at Section 7.9.5.3, defines two parameters,
the first of which is accepted as input and which
specifies a file to be opened, and defines a returned
item which is a file pointer corresponding to the
opened file. File pointers, i.e., pointers to items of
the type "FILE", are well-known and are described in
the C Standard at Section 7.9.1. The file pointer is
an external of function fopen() and the file specified
by the parameter is the resource associated with the
external. The function model for function fopen()
specifies that a new resource whose initial state is
state Q is created. The initial state of the resource
is state Q rather than state A because function fopen()
does not guarantee that the file is opened
successfully.

Function fclose(), which is defined for the C
computer language and which is described in the C
Standard at Section 7.9.5.1, defines a parameter which
is a file pointer. Execution of function fclose()
closes the file to whose file descriptor the parameter
points. The function model for function fclose()
specifies that an operation k is applied to the
parameter to reflect closing, and thus deallocating,
the associated file. Similarly, function models for
functions of the C computer language defining read and
write operations to the file specify application of an

-23=

WO 96/05556 PCT/US95/09691

10

15

20

25

30

35

operation ¢ to a resource representing the file to
reflect use of the file.

If an item corresponding to a resource, e.g., the
file pointer which is the returned item of function
fopen(), is used as a predicate in a decision
instruction, operation p is applied to the resource to
thereby change the state of the resource according to
state diagram 300. An item is used in a predicate if
the item appears as an operand in a relational
expression (e.g., an operation involving any of
operators >, <, <=, >=, and !=) or a boolean expression
(e.g., an operation involving any of operators &&, ||,
and !) or if the item is used as the control expression
in a "switch" statement. The "switch" statement is
defined for the C computer language and controls flow
of a function according to the value of the control
expression. The "switch" statement is described more
completely in the C Standard at Section 6.6.4.2.

If an item corresponding to a resource is used in
a calculation, operation c is applied to the resource
to thereby change the state of the resource according
to state diagram 300. An item is used in a calculation
(i) if the item appears as an operand to a mathematical
operation (e.g., +, /, *, or =), (ii) if the resource
appears as a dereference of a pointer or as an access
into an array, or (iii) if the resource appears as an
array index.

Pointers and arrays are well-known and are
described in the C Standard. For completeness,
pointers and arrays are briefly described herein. 1In
the context of the C computer language, a pointer is an
item whose value is the address in memory of another
item. Thus, a pointer "points" to the other item.
Dereferencing a pointer is retrieving the item to which
the pointer points.

-24-

WO 96/05556 PCT/US95/09691

10

15

20

25

30

35

Data structures, which are used to implement the
disclosed embodiment of the present invention and which
are described below in greater detail, are described as
including pointers to other data structures. It is
appreciated that mechanisms other than pointers are
known for uniquely identifying a data structure and
that these mechanisms can be substituted for pointers
without deviating from the principles of the present
invention.

An array is a collection of one or more items of
similar structure. The items of an array are called
elements and are numbered sequentially. An access to
an array is an access to an element of the array by
reference to the number of the element, i.e., the index
of the element.

Operation x is applied to a resource corresponding
to an item which is assumed to be NULL. NULL is
generally an invalid value and is assigned to an item
to indicate that the item has no valid value. For
example, a pointer whose value is NULL points to no
item. 1In the context of the C computer language, NULL
is also a boolean value of "false". An item is assumed
to be NULL, i.e., to have a value of NULL, if the item
is compared to NULL and the result of the comparison is
assumed to be true. As described more completely
below, analysis of a function requires that assumptions
be made regarding the particular behavior of the
function when executed. For example, function fopen()
either successfully opens a file or fails to do so. If
the returned item, i.e., the file pointer, is compared
to NULL and the result is assumed to be true, i.e., if
function fopen() is assumed to have failed, operation x
is applied to the resource representing the file as
described more completely below.

-25-

WO 96/05556 PCT/US95/09691

10

15

20

25

30

35

40

s v amples of the Basj i s e
Present Invention

The utility of the modelling of resources is
described by way of example. The following source code
excerpt (1) includes a programming error which is
detected by the disclosed embodiment of the present
invention. Source code excerpt (1) comports with the
known C computer language and defines a function
example_1(). Line numbers, which are not part of the C
computer language, are added for clarity in the
discussion below.

1 #include <stdio.h> (1)
2

3 #define MAX_STR_LEN 100

4 #define FALSE 0

S #define TRUE 1

6

7 int example_1l(input_file_name) /* begin function */

8 char *input file name; /* parameter to function */
9 {

10 char *str; /* Declaration of local variable "str" »/
11 FILE *fptr; /* Declaration of local variable "fptr" =/
12 -

13 /* try to open a file */

14 fptr = fopen(input_file name, "r");

15 if (fptr == NULL)

16 {

17 /* could not open the file */

18 fprintf(stderr, "Could not open file %s\n",

19 input_file name);

20 return FALSE; /* an error */

21 }

22 /* allocate some memory for a string buffer */

23 str = (char *)malloc(MAX STR_LEN);

24 /* get some input from the file */

25 fgets(str, MAX STR _LEN - 1, fptr);

26 /* print out the information */

27 printf(str);

28 /* clean up */

29 free(str);

-26-

WO 96/05556 PCT/US95/09691

10

15

20

25

30

35

30 fclose(fptr);
31 return TRUE; /* no error */
32 }

As function example 1() is analyzed, the state of
each item, including each external, is tracked.
Variable "str" is locally-defined, i.e., is defined
only in the context of function example_1(). Variable
"str" is a pointer to data whose type is "char" as
defined in line 10. However, variable "str" is
initially uninitialized and points to no specific data.
Therefore, variable "str" is not associated with a
resource.

Execution of function malloc(), which is defined
for the C computer language and which is described in
the C Standard at Section 7.10.3.3, accepts a request
for allocated memory, e.g., memory 104 (Figure 1), and
either allocates the memory or fails to do so.
Function malloc() returns, as the returned item, a
pointer to the allocated memory if the memory is
successfully allocated or a NULL pointer otherwise.
Therefore, function malloc() creates a new resource
whose initial state is state Q and associates the new
resource with the returned item of function malloc().
After variable "str" is assigned the value of the
returned item of function malloc() at line 23, variable
"str" points to newly allocated memory if such memory
is allocated or is a NULL pointer otherwise.

At line 25 of source code excerpt (1), variable
"str" is used as a parameter in function fgets(), which
is defined for the C computer language and which is
described in the C Standard at Section 7.9.7.2.
Execution of function fgets() dereferences the first
parameter, which is variable "str" in the context of
line 25 of source code excerpt (1). Therefore,
operation i is applied to the resource associated with
variable "str". As shown in state diagram 300

-27-

WO 96/05556 PCT/US95/09691

10

15

20

25

30

35

(Figure 3A) and Tables C and D, application of
operation i to a resource in state Q places the
resource in state A, producing an error message
indicating that potentially allocated data is used
without checking.

At line 29 of source code excerpt (1), variable
"str" is passed as a parameter to function free(),
which frees, i.e., deallocates, the memory to which
variable "str" points. Therefore, operation k is
applied to the resource associated with variable "str".
As shown in state diagram 300 and Tables C and D,
application of operation k to a resource in state A
places the resource in state U. Since deallocation of
an allocated resource is proper, no error is reported.

Text (2) below illustrates the error messages
produced by the disclosed embodiment of the present
invention in analyzing function example 1() of source
code excerpt (1).

example_l.c: In function ‘example 1': (2)
example_l.c:25: warning: (6): dereferencing invalid
data (argument 0)

In text (2), "example_1l.c" refers to a file
containing source code excerpt (1) above, and thus
defining function example 1(). Thus, function
example 1() fails to account for the contingency that
there may be insufficient memory to allocate the amount
of memory requested in calling, i.e., invoking
execution of, function malloc() at line 23 of source
code excerpt (1). If function malloc() fails to
allocate the requested memory during execution of
function example_1(), the computer process in which
function example_1() is executed aborts abruptly
without giving to a user an indication of the reason
for the unexpected termination of processing. However,
detecting and reporting the failure to account for such

-28~-

WO 96/05556 PCT/US95/09691

10

15

20

25

30

35

a contingency using, for example, text (2) above
provides the developer of function example 1() with the
necessary information to correct the defect in function
example_1() and to properly provide for such a
contingency.

The utility of the present invention is further
illustrated by considering the tracking of the state of
file pointer "fptr" in function example_1() of source
code excerpt (1). File pointer "fptr" is a locally-
defined variable of function example 1(). File pointer
"fptr" is a pointer to data of the type "FILE".
Initially, file pointer "fptr" is uninitialized and is
not associated with any resource.

The returned item of function fopen() is assigned
to file pointer "fptr" at line 14. As described above,
function fopen() creates a new resource, whose initial
state is state Q, and associates the new resource with
the returned item of function fopen(). The "“if"
statement at line 15 determines whether the file to
which file pointer "fptr" points is successfully opened
by comparing file pointer "fptr" to NULL. If file
pointer "fptr" is NULL, the file is not successfully
opened and function example 1() terminates after
reporting to a user the failure to open the file.
Conversely, if file pointer "fptr" is not NULL, the
file to which file pointer "fptr" points is known to be
successfully opened and function example_1() continues
at line 22. The comparison of file pointer "fptr" in
line 15 applies operation p to the resource associated
with file pointer "fptr". Thus, the state of the
resource associated with file pointer "fptr" is changed
from state Q to state A. As a result, any uses of file
pointer "fptr", either in calculation (applying
operation c) or in a predicate (applying operation p)
do not produce any error messages as shown in state
diagram 300 and Table C. Therefore, no errors with

-29-

WO 96/05556 PCT/US95/09691

10

15

20

25

30

35

respect to the treatment of file pointer "fptr" are
detected.

As described above, functions fopen() and
malloc(), when executed, perform specific processing on
resources of parameters and returned items. Functions
such as functions fopen() and malloc() are included in
library functions 112 (Figure 1) which are accessed by
computer process 110. Calls to such functions are
included in function 202 (Figure 2). As used herein, a
"call" to a function is a statement which, when
executed, causes a processor, such as CPU 102 (Figure
1), to (i) supply zero or more items as parameters to
the function, (ii) execute the function, and (iii)
produce a returned item representing the value to which
the function evaluates if a returned item is defined by
the function. A first function, which includes a call
to a second function, is called a "calling function."
The second function is called a "called function."

To properly analyze resources of function 202
(Figure 2) affected by execution of functions called by
statements of function 202, function models describing
the behavior of such called functions are maintained.
In one embodiment, such function models are created
from well-known textual descriptions of the behavior of
such functions, e.g., from the C Standard, and those
function models are stored in memory 104 of computer
100. Those function models are then retrieved from
memory 104 prior to analyzing a computer program as
described more completely below.

The following are illustrative examples of
function models of some of the functions called by
function example_1() of source code excerpt (1) above.
All of the called functions are from the C standard
library's "stdio" (input/output) header file which is a
well~-known file for use with the C computer language

-30-

WO 96/05556 PCT/US95/09691

10

15

20

25

30

and which is described in the C Standard in Sections

7.9 et seq.

(malloc /* model for function malloc() */ (3)
(retval (new Q "memory")) /* returned item:
creates a new, possibly
allocated resource */
({param 0) (op c)) /* parameter O: used in
a computation */)

A function model structure, which represents in
memory 104 (Figure 1) a function model according to the
disclosed embodiment of the present invention, is
described more completely below. Function model (3)
defines the effect of execution of function malloc() on
the respective states of the externals of function
malloc(). According to function model (3), a new
resource is created, initialized to state Q, and
associated with the returned item of function malloc().
Function model (3) also specifies that operation c is
applied to parameter 0, i.e., the first parameter, of
function malloc().

(free /* model for function free() */ (4)
((param 0) (op k))) /* parameter 0: free (kill) */

Function model (4) represents the effect of
execution of function free() on the externals of
function free() and specifies that operation k is
applied to parameter 0, i.e., the first parameter in
the argument 1list.

=-3]1-

WO 96/05556 PCT/US95/09691

10

15

20

25

30

35

(fgets /* model for function fgets() */ (5)
((param 0) (op 1)) /* parameter 0 (string
buffer): apply operation i,
indirection */

((param 1) (op c)) . /* parameter 1 (buffer
length): use in computation
(op c) */

((param 2) (op i)) /* parameter 2 (the file):
indirection (op i =- file must
be open) */

Function model (5) specifies that (i) operation i
is applied to parameter 0, i.e., the first parameter,
(ii) operation c is applied to parameter 1, i.e., the
second parameter, and (iii) operation i is applied to
parameter 2, i.e., the third parameter, by calling
function fgets().

Detection of Resource Leaks

By modelling resources and tracking associations
of resources with externals of a function, the
disclosed error detection mechanism provides a
convenient mechanism for detecting resource leaks. A
resource is "leaked" by a function when execution of
the function terminates, leaving the resource in an
allocated state, when the resource cannot be accessed
by any external of the function. When a resource is
leaked, the resource cannot be used since no pointer to
the resource remains after execution of the leaking
function terminates. If the resource is reusable, such
as dynamically -allocated memory 114 (Figure 1), failure
to free the resource prior to termination of execution
of the function prevents other functions from reusing
the resource. A process fragment which repeatedly
leaks dynamically allocated memory can ultimately cause
exhaustion of all memory which is available to the

-32-

WO 96/05556

10

15

20

25

30

35

40

PCT/US95/09691

computer process of which the process fragment is a

part.

As an example of detection of a resource leak,

function example 2() of source code excerpt (6) is

considered.

0 #include <stdio.h>

1 #include <string.h>

2

3 #define MAX STR LEN 100

4 #define FALSE O

s #define TRUE 1

6

7 char *example 2(input_file name) /* begin function */
8 char *input_file name; /* parameter to the function */
9 {

10 char *str; /* declare local variable "str" */

11 FILE *fptr; /* declare local variable "fptr" */
12

13 /* allocate some memory for a string buffer */

14 str = (char *)malloc(MAX STR_LEN);

15 /* check to ensure that the allocation succeeded */
16 if (str == NULL)

17 return NULL;

18 /* try to open a file */

19 fptr = fopen(input_file name, "r");

20 if (fptr == NULL)

21 {

22 /* could not open the file */

23 fprintf(stderr, "Could not open file %8\n",
24 input_file name);

25 return NULL; /* error condition */

26 }

27 fgets(str, MAX STR_LEN - 1, fptr);

28 fclose(fptr); /* close file */

29 return str; /* no error */

30 }

and is therefore not accessible to any function other

than function example_2(). Since the memory to which

Variable "str" is local to function example_2()

(6)

variable "str" points is not freed prior to instruction

-33-

WO 96/05556 PCT/US95/09691

10

15

20

25

30

"return" of line 25 of source code excerpt (6), that
memory is not useable and cannot be deallocated or
reallocated until computer process 110, which function
example 2() partly defines, terminates. That resource
therefore "leaks" from computer process 110.

Since an external of a function is an item which
exists past the termination of execution of the
function, any allocated resource reachable through an
external is not leaked. A resource which is not
associated with a particular external can, in some
circumstances, be reachable through the external. For
example, a resource which is associated with a
particular element of an array of items is reachable
through an external which is a different element of the
array of items. This is true since the location in
memory of an element of an array can be calculated from
the location of any other element of the array
according to the C computer language.

Leaks are checked at the conclusion of a traveréal
of a function. The detection of leaks is described
more completely below and is summarized briefly here.
All resources reachable through any external are
marked. Any resource which is not marked and which is
allocated is reported as leaked. Since variable "str",
at line 25, is not returned, variable "str" is not an
external. The memory pointed to by variable "str" is
therefore allocated and not marked at the conclusion of
the traversal of function example 2(). The memory
pointed to by variable "str" is therefore leaked.

Analysis of function example_2() produces the
following error message.

-34-

WO 96/05556 PCT/US95/09691

10

15

20

25

30

35

example_2.c: In function ‘example_2': (7
example_2.c:25: warning: (15): leaking resources
allocated on line 14

Static checkers of the prior art cannot detect
resource leaks. Run-time checkers of the prior art
often do not consider all potential events which might
cause a function to leak a resource and generally
cannot analyze a single function outside of the context
of a larger computer program to detect resource leaks
in that single function. 1In contrast, the disclosed
embodiment of the present invention provides for
efficient detection of resource leaks by analysis of a
single function of a larger computer program. As
described more completely below, the disclosed error
detection mechanism considers all possible events which
might cause a function to leak a resource. The present
invention therefore represents a significant
improvement over the prior art.

Composite States of Externals

As described more completely below, a function is
analyzed by following the flow of control of the
function, emulating execution of individual statements
of the function, and tracking the state of externals
and resources. The flow of control through a function
is the particular sequence of computer instructions of
the function executed during a particular execution of
the function. When control transfers from a first
computer instruction to a second computer instruction,
the second computer instruction is executed following
execution of the first computer instruction. The flow
of control through a function is sometimes called
herein the control flow path through the function.
Flow of control through a function is often dependent
upon particular events which occur during execution of

-35-

WO 96/05556 PCT/US95/09691

10

15

20

25

30

35

the process fragment, defined by the function, in a
computer process.

In analyzing a function, it is preferred to
consider all possible control flow paths through the
function. It is therefore preferred to consider all
events which can influence the control flow path
through the function. Static checkers of the prior art
often do not consider control flow paths at all. Run-
time checkers only consider all control flow paths
through a particular function to the extent a user can
coerce, through manipulation of the events which
influence the control flow path of the function, a
computer process to follow each possible control flow
path during execution of the computer process. 1In
contrast, the disclosed error detection mechanism
analyzes each possible control flow path through a
function automatically without user intervention.
Furthermore, the disclosed error detection mechanism
can analyze a function outside of the context of a
computer program or computer process which includes the
function. Thus, individual functions can be more
completely checked for errors prior to inclusion in a
larger function or computer program or process.

As an example, function example 2() of source code
excerpt (6) is considered. The precise control flow
path through function example 2() is not known until
function example 2() is executed in a computer process.
For example, control flows from the "if" statement at
line 16 to a call to function fopen() at line 19 if
function malloc(), called at line 14, successfully
allocates memory as requested. In other words, if
function malloc() successfully allocates memory as
requested when called at line 14, the call to function
fopen() at line 19 follows execution of the "if"
statement at line 16. Conversely, control flows from
the "if" statement at line 16 to the "return" statement

-36-

WO 96/05556 PCT/US95/09691

10

15

20

25

30

35

at line 17 if the allocation of memory fails. Whether
memory is successfully allocated by function malloc()
as called at line 14 is typically not known until
function example 2() is executed in a computer process.

In analyzing function example_2(), it is preferred
that each possible control flow path through function
example 2() is considered. Multiple control flow paths
through a function are considered by multiple
traversals of the function under varying assumptions.
For example, function example 2() is traversed once
under the assumption that function malloc(), called at
line 14, successfully allocates the requested memory
and once under the assumption that function malloc()
fails to allocate the requested memory.

In one embodiment of the present invention which
is described below in greater detail, a function is
traversed repeatedly, and, during each traversal,
assumptions are made by random chance. Each traversal
of function example_2() tracks the state of the
externals of function example_2(). Each external has a
composite state which reflects the states of the
external resulting from multiple traversals of function
example 2().

Externals have composite RS, CP, and DK states.
These composite states are used for the dual purposes
of (i) detecting inconsistent uses of an external when
varying control flow paths through the function are
considered and (ii) building a function model
describing the effect of execution of the function on
the externals of the function. The function model can
then be used to analyze other functions which call the
modelled function.

Within the context of a particular function, each
external has a CP state, a DK state, and a RS state.
The CP state of an external is used to determine
whether the external is checked before being used. The

-37-

WO 96/05556 PCT/US95/09691

10

15

20

25

30

35

term "CP" is derived from the operations of primary
concern: operation c, which represents use of the
external, before operation p, which represents checking
of the external. The DK state of an external is used
to determine whether the function allocates and/or
frees the external. The term "DK" is derived from the
purpose of the DK state: to determine whether a
resource is defined ("D") before being killed ("K"),
i.e., freed. The RS state of an external is the state
of the resource associated with the external if a
resource is so associated. The term "RS" is derived
from resource ("R") state ("S").

Each external of a function also has a composite
CP state, a composite DK state, and a composite RS
state reflecting multiple CP, DK, and RS states,
respectively, resulting from multiple traversals of the
function. After each iterative traversal of a
function, a new composite RS state of an external is
composed, as described more completely below, from fhe
previous composite RS state of the external and the RS
state of the resource associated with the external
resulting from the most recent traversal of the
function. In a similar fashion, as described more
completely below, new composite CP and DK states are
composed from previous composite CP and DK states,
respectively, and CP and DK states, respectively,
resulting from the most recent traversal of the
function.

State diagram 350 (Figure 3B) -represents states
and state transitions for a composite RS state. Arrows
are used in state diagram 350 to represent composite RS
state transitions from a previous composite RS state
according to an RS state resulting from a traversal of
the function. State diagram 350 is summarized in Table
E.

-38-

WO 96/05556 PCT/US95/09691

10

15

20

25

Table E
New Composite RS States

next RS state: u A Q X E
U: U Q Q Q E
previous A: Q A Q Q E
composite Q: Q Q Q Q E
RS state: X: Q Q Q X E
E: E E E E E

State diagram 400 (Figure 4A) represents states
and state transitions for a CP state of an external.
Arrows are used in state diagram 400 to represent CP
state transitions resulting from application of
operations. An external can have any of the following
CP or composite CP states.

Table G
O = Used in neither a predicate nor a computation

(initial state).
= Used in computation before checking.
= Used for indirection before checking.
Checked (used in predicate) before using.

Z YHO
n

= Neither; assigned to before checking or using.
The operations which can be applied to an external

are described above with respect to Table B. State
diagram 400 is summarized in Table H below.

-39~

WO 96/05556 PCT/US95/09691

10

15

20

25

30

35

Iable H
New States Resulting from Operations
operation: a m Kk c P i X
old state:
o: N N C C P I N
: C C C C C C C
I: I I I I I I I
: P P P P P P P
N: N N N N N N N

State diagram 450 (Figure 4B) represents states
and state transitions for a composite CP state of an
external. Arrows are used in state diagram 450 to
represent composite CP state transitions from a
previous composite CP state according to a CP state
resulting from a traversal of the function. State
diagram 450 is summarized in Table I below.

Table I
New Composite CP States

next CP state: [o] c I P N
O: o C I P N
previous C: c c I (o] (o]
composite I: I I I I I
CP state: P: P P I } 2 P
N: N C I P N

State diagram 500 (Figure 5A) represents states
and state transitions for a DK state of an external.
Arrows are used in state diagram 500 to represent DK
state transitions resulting from application of
operations. An external can have any of the following
DK or composite DK states reflecting the effect of
execution of the function on a resource associated with
the external.

-40-

WO 96/05556 PCT/US95/09691
Table J
O = The function neither allocates nor kills the
resource (initial state).
A = The function definitely allocates the resource.
5 Q = The function questionably allocates the resource.
K = The function kills, i.e., deallocates, the
resource.
KA = The function kills, then definitely allocates, the

10

15

20

25

30

35

resource.

KQ = The function kills, then questionably allocates,

the resource.
E = Error (unknown state).

The operations which can be applied to an external
are described above with respect to Table B.
diagram 500 is summarized in Table K below.

State

New States Resulting from Operations

Table K

operation: a n k
old state:

O: A Q K

A: A A o)

Q: Q Q o)

K: KA KQ K

KA: KA KA K

RQ: KA KQ K

E: E E E

o

MggNlO?O

o)

msgxo»o

i

mggxon’o

X

msgxo:uo

State diagram 550 (Figure 5B) represents states
and state transitions for a composite DK state of an
external. Arrows are used in state diagram 550 to

represent composite DK state transitions from a

previous composite DK state according to a DK state
State

resulting from a traversal of the function.
diagram 550 is summarized in Table L below.

-4]1-

WO 96/05556 PCT/US95/09691

10

15

20

25

30

35

Table L
New Composite DK States

next DK state: Q A Q K KA KO E
o: (o] A Q K KA KQ E
A: A A Q E E E E
previous Q: Q Q Q E E E E
composite K: K E E K E KQ E
DK state: KA: KA E E E Ka KQ E
KQ: KQ E E KQ KQ KQ E
E: E E E E E E E

Function example 2() of source code excerpt (6)
above provides an illustrative example of the utility
of composite states of externals.

As described above, flow of control through
function example_2() can take any of several paths
depending on assumptions made with respect to events
during an emulated execution of the function. For -
example, the "if" statement at line 16 can be followed
by the "return" statement at line 17, if variable "“str"
is not NULL, or by the expression on line 19,
otherwise. The returned item of function example_ 2()
is an external of function example_2(). The returned
item of function example 2() is assigned at line 17,
line 25, or line 29 of source code excerpt (6)
depending only the particular assumptions made during a
particular traversal of function example_2().

At line 17 or line 25, the returned item has no
associated resource. Thus, after a traversal of
function example_2() in which control transfers through
either line 17 or line 25 of source code excerpt (6),
the composite RS state of the external representing the
returned item is state U. After a subsequent traversal
of function example 2() in which control transfers
through line 29, the external representing the returned

-42-

WO 96/05556 PCT/US95/09691

10

15

20

25

30

35

item is associated with a resource created within
function example 2() and is definitely allocated, i.e.,
in state A. The resource is definitely allocated
because lines 16-17 of source code excerpt (6) properly
prescribe an action to be taken in the event that
execution of function malloc() does not successfully
allocate memory.

As shown in state diagram 350 (Figure 3B), an
external, whose previous composite RS state is state U
and whose next RS state is state A, has a new composite
RS state of state Q. Such reflects the fact that
execution of function example 2 can allocate, but does
not necessarily allocate, memory to which the returned
item points. Thus, when forming a function model
describing the behavior of function example_2, the
returned item of function example_2 is described as
associated with a newly created resource whose initial
state is state Q.

Composite states can also be used to detect
inconsistent use of an external by a function. For
example, if a function terminates with an external in
an allocated state, i.e., a RS state of state A, and,
in a subsequent traversal of the function, the function
terminates with the same external in a freed state,
i.e., a RS state of state K, the composite RS state of
the external is in state E. This can be viewed as an
error since a calling function generally would not
expect the function to allocate a resource associated
with an external in one execution and to free a
resource associated with the same external in another
execution.

Analysis of a Computer Program

A computer program 610 (Figure 6) is analyzed in
accordance with the present invention by a resource
checker 602 which analyzes the use of resources

-43-

WO 96/05556 PCT/US95/09691

10

15

20

25

30

35

prescribed by computer program 610 as described herein.
In the disclosed embodiment, resource checker 602 is a
computer process executing in CPU 102 from memory 104,
which is connected to CPU 102 through bus 108.

The analysis of computer program 610 according to
the present invention is illustrated by logic flow
diagram 900 (Figure 9). Processing begins in step 902
in which a command entered by a user, e.g., through
keyboard 124 (Figure 1) or mouse 122, initiates
analysis of computer program 610 (Figure 6) and
specifies characteristics of the environment in which
computer program 610 is analyzed. Characteristics of
the environment which can be modified by the user
include (i) specific types of errors to detect, (ii) a
maximum number of errors to report, (iii) a maximum
number of functions to analyze, (iv) a maximum number
of iterative traversals of each function, and (v) the
particular technique for traversing all possible
control flow paths through a function.

Processing transfers from step 902 (Figure 9) to
step 904 in which resource checker 602 (Figure 6)
initializes function models, which describe the effect
on resources of execution of the various functions used
by the computer program. Resource checker 602 includes
a model parser 702 (Figure 7) which reads models from a
model description file 604 (Figure 6) and constructs
therefrom function model structures which are described
more completely below. By creating function model
structures within resource checker 602, the function
models are initialized. Step 904 (Figure 9) is
described more completely below with respect to logic
flow diagram 904 (Figure 10).

Processing transfers from step 904 (Figure 9) to
step 906, in which a program parser 704 (Figure 7),
which is part of resource checker 602, reads and parses
computer program 610 (Figure 6), using conventional

-44~-

WO 96/05556 PCT/US95/09691

10

15

20

25

30

35

techniques, according to the language to which computer
program 610 comports. Program parser 704 (Figure 7)
parses computer program 610 (Figure 6) into smaller
program components, e.g., functions. In step 906
(Figure 9), a single function is parsed from computer
program 610 (Figure 6) and a function structure, which
represents the parsed function is transferred to a
dynamic inspection engine 706, which is described more
completely below. In an alternative embodiment, a
preprocessor, which is described in more detail below,
parses computer program 610 and stores a number of
function structures representing the parsed functions
of computer program 610. In this alternative
embodiment, program parser 704 retrieves a single
function structure and transfers the function structure
to dynamic inspection engine 706. Processing transfers
from step 906 (Figure 9) to step 908.

In step 908, dynamic inspection engine 706
(Figure 7), which is part of resource checker 602,
analyzes the "subject function", i.e., the function
represented by the function structure transferred to
dynamic inspection engine 706 by program parser 704 in
step 906 (Figure 9). In other words, the effect on the
resources used by computer program 610 resulting from
the execution of the subject function is determined and
the state transitions of each of the resources affected
by execution of the subject function are analyzed as
described more completely below. The function models
initialized in step 904 are used to analyze the states
and state transitions of the resources and externals of
the subject function. Any detected state violations
are reported as programming errors.

once the behavior of the subject function with
respect to resources and externals of the subject
function is determined, model parser 702 forms and
stores in model description file 604 a function model

-45-

WO 96/05556 PCT/US95/09691

10

15

20

25

30

35

describing the behavior of the subject function.
Step 908 (Figure 9) is described more completely below
with respect to logic flow diagram 908 (Figure 24).

Processing transfers from step 908 (Figure 9) to
test step 910 in which program parser 704 (Figure 7)
further parses computer program 610 (Figure 6) to
determine whether computer program 610 contains a
function which has yet to be analyzed by dynamic
inspection engine 706 (Figure 7) according to step 908
(Figure 9). In the alternative embodiment described
above, program parser 704 (Figure 6) determines whether
a function structure representing a function of
computer program 610 has yet to be analyzed by dynamic
inspection engine 706 (Figure 7) according to step 908
(Figure 9). If dynamic inspection engine 706
(Figure 7) has not processed a function structure
representing a function of computer program 610,
processing transfers to step 906 (Figure 9) in which
program parser 704 (Figure 6) transfers the functioﬁ
structure to dynamic inspection engine 706 (Figure 7)
as described above. Conversely, if dynamic inspection
engine 706 (Figure 7) has processed every function
structure representing a function of computer program
610, processing according to logic flow diagram 900
(Figure 9) terminates.
Initialjzation of Models

As described above with respect to step 904
(Figure 9) of logic flow diagram 900, function models
describing the behavior of functions are initialized.
Step 904 is shown in greater detail as logic flow
diagram 904 (Figure 10). Processing begins with
step 1002 in which model description file 604
(Figure 6), which contains function models as described
above, is opened.

In one embodiment, function models are stored in
textual format and are read in, then stored in data

-4 6-

WO 96/05556 PCT/US95/09691

10

15

20

25

30

35

structures within memory 104 (Figure 1), which are
described more completely below. A function model
includes information which identifies a function and a
singly-linked list of external models for the externals
of the function. The information which identifies the
function includes (i) the name of the function, (ii)
the name of the source code file in which the function
is defined, (iii) the number of the textual line within
the source code file at which the definition of the
function begins, and (iv) a short description of the
function. A source code file is a file stored in
memory 104 (Figure 1), typically in secondary storage
such as a magnetic disk, which contains a computer
program such as computer program 610. The external
models, as stored in a singly-linked list, define the
effect of execution of the function on externals of the
function in terms of operations applied to those
externals and any resources created on behalf of those
externals.

An external model includes information specifying
the type of external, information which identifies the
external, and information which specifies the effect on
the external of execution of the function. The
information which identifies the external is either a
parameter number, if the external is a parameter, a
variable name, if the external is a global or static
variable, or NULL, if the external is a returned item.
The information which specifies the effect on the
external of execution of the function includes (i) a
list of the operations to be applied to the external,
(ii) a flag specifying whether a new resource is
created on behalf of the external, and (iii) the
initial state of the new resource if one is created.

The textual format of the models as stored in
model description file 604 (Figure 6) is defined by the
following Backus-Naur Form (BNF) definition (8).

-47-

WO 96/05556 PCT/US95/09691

10

15

20

25

30

35

Backus-Naur Form is a well-known format for describing
a formal language.

<function-spec> ::= (<function-prefix> <extern-list>) (8)
<function-prefix> ::=
<function-name>
[<defining-file> [<defining-line> [<description>)]]
<extern-list> ::= <extern> | <extern> <extern-list>
<extern> ::= (<extern-type> <result-list>)
<extern-type> ::=

retval // returned item
! (param <param-number>) // parameter
! (var <var-name>) // global/static item

<result-list> ::= <result> | <result> <result-list>
<result> ::=
(op <state-op>)
! (new <initial-state> [<description>])
<initial-gtate> ::= A | Q | U} X | E
<ptate-op> ::=a | m | k |} x| ijeclp

A function model, in textual format, is
represented by non-terminal <function-spec> of BNF
definition (8). 1In BNF, a terminal is a term that is
not expanded further in a particular BNF definition,
and, conversely, a non-terminal is a term that is
expanded further. Terminal <function-name> is the
identifier assigned to the function, i.e., is the
identifier used by another function to call the
function represented by the function model. Terminal
<function-name> can be any function identifier which is
valid according to the computer language with which the
function is defined. Terminal <defining-file> is an
alphanumeric identification of the source code file
within which the function is defined. The alphanumeric
identification can be a path description of the source
code file, for example. Terminal <defining-line> is a
textual representation of a non-negative number, i.e.,
using digits 0-9, specifying at which textual line of

-48-

WO 96/05556 PCT/US95/09691

10

15

20

25

30

35

the source code file identified by terminal <defining-
file> the definition of the modelled function begins.

It should be noted that, in BNF, terms which are
optionally present are enclosed in brackets ("[]").
Therefore, in the definition of terminal <function-
prefix>, terminals <defining-file>, <defining-line>,
and <description> are optionally present. If should be
further noted that successive slashes ("//") denote the
beginning of a comment and the slashes, and any text
following the slashes to the end of a textual line, are
not considered part of the BNF definition.

Terminal <description> of BNF definition (8) is a
series of one or more characters (i.e., letters,
numerals, and/or symbols). Terminal <description> is
not used by the resource checker 602 (Figure 6) but is
instead provided for the convenience and understanding
of a user reading the model in the textual format.
Terminal <param-number> of BNF definition (8) is a
textual representation of a non-negative integer using
the digits 0-9 and specifies a particular parameter in
a list of parameters. Parameter zero is the first,
i.e., leftmost, parameter in a list of parameters in a
call to a function. Subsequent parameters are numbered
sequentially. Terminal <var-name> of BNF definition
(8) is an identifier of a variable.

Thus, function models retrieved from model
description file 604 (Figure 6) each describe the
effect of execution of a respective function on
externals of the function. Processing transfers from
step 1002 (Figure 10) to loop step 1004 in which each
function model stored in model description file 604
(Figure 6) is retrieved and processed according to a
loop defined by loop step 1004 (Figure 10) and next
step 1014. During each iteration of the loop, the
function model which is processed is called the current
function model. When each and every function model

-49-

WO 96/05556 PCT/US95/09691

10

15

20

25

30

35

stored in the model description file has been processed
according to the loop defined by loop step 1004 and
next step 1014, processing transfers from loop

step 1004 to step 1006 in which model description

file 604 (Figure 6) is closed and processing according
to logic flow diagram 904 (Figure 10) terminates.

For each function model retrieved from the model
description file, processing transfers from loop
step 1004 to step 1008 in which the portion of the
current function model corresponding to non-terminal
<function-prefix> of BNF definition (8) above is parsed
from the current function model. Processing transfers
to step 1010 in which a function model structure is
initialized and the information parsed from the current
function model in step 1008 is stored in a function
model structure.

A function model structure 1100 (Figure 11)
includes a field "name" 1102, a field "file"™ 1110, a
field "line" 1112, and a field "description" 1108. -
Portions of the function model corresponding to
terminals <function-name>, <defining-file>, <defining-
line>, and <description> of BNF definition (8), all of
which are part of non-terminal <function-prefix>, are
parsed from the function model and stored in field
"name" 1102, field "file" 1110, field "line" 1112, and
field "description" 1108, respectively, of function
model structure 1100. Processing transfers from
step 1010 (Figure 10) to loop step 1012.

Loop step 1012 and next step 1028 definera loop,
in each iteration of which an external specified in the
portion of the function model corresponding to non-
terminal <extern-list> of BNF definition (8) above is
processed. During each iteration of the loop defined
by loop step 1012 and next step 1028, the currently
processed external is called the subject external.
After every external defined in the current function

-50-

WO 96/05556 PCT/US95/09691

10

15

20

25

30

35

model has been processed according to the loop defined
by loop step 1012 and next step 1028, processing
transfers from loop step 1012 to next step 1014.
Processing transfers from next step 1014 to loop

step 1004 in which another function model retrieved
from model description file 604 (Figure 6) is processed
or, if all function models have been processed, from
which processing transfers to step 1006 (Figure 10) as
described above.

For each external specified in the portion of the
current function model corresponding to non-terminal
<extern-list> of BNF definition (8), processing
transfers from loop step 1012 to step 1016. In
step 1016, a new external model structure, e.g.,
external model structure 1200 (Figure 12), is created.

External model structure 1200 includes a field
"equivalent" 1202, a field "type" 1204, a field
"parameter number" 1206, a field "name" 1208, a field
"next" 1210, a field "number of operations" 1212, a
field "operations" 1214, a field "new_resource" 1218, a
field "initial_ state" 1220, and a field
"description" 1222. 1In step 1016 (Figure 10), the
portion of the subject external model corresponding to
terminal <param-number> in the definition of non-
terminal <external> of BNF definition (8) is parsed
from the subject external model and is stored in field
"parameter number" 1206 (Figure 12) of external model
structure 1200.

In one embodiment, field “equivalent" 1202 is used
to identify a second external model structure. By
doing so, external model structure 1200 is related to
the second external model structure. Such would be
appropriate if, for example, the returned item of a
function is the first parameter. The embodiment
described herein does not make use of field
"equivalent" 1202, which is therefore initialized to a

=51~

WO 96/05556 PCT/US95/09691

10

15

20

25

30

35

NULL value. From step 1016 (Figure 10), processing
transfers to step 1018.

In step 1018, the portion of the subject external
model corresponding to non-terminal <extern-type> of
BNF definition (8), which specifies the type of
external represented by the subject external model, is
parsed from the subject external model. As shown in
BNF definition (8) above, an external represented by an
external model can be a returned item, a parameter, or
a globally-defined or static variable. Data specifying
the type of external represented by the subject
external model are stored in field "type" 1204
(Figure 12) of external model structure 1200.
Processing transfers from step 1018 (Figure 10) to a
loop step 1020.

As shown in BNF definition (8) above, execution of
a function can have one or more effects or "results" on
each external of the function. Each result is
represented in BNF definition (8) as non-terminal
<result>. One or more results are included in non-
terminal <result-list>. Loop step 1020 and next
step 1024 define a loop in which each result in the
list of non-terminal <result-list> of the subject
external model is processed. During an iteration of
the loop defined by loop step 1020 and next step 1024,
the result being processed is called the subject
result. After every result of the subject external
model has been processed according to the loop defined
by loop step 1020 and next step 1024, processing
transfers from loop step 1020 to step 1026 which is
described below.

For each result for the subject external model,
processing transfers from loop step 1020 to step 1022.
In step 1022, the subject result is parsed from the
subject external model. The result is then stored in
an external model structure such as external model

-52-

WO 96/05556 PCT/US95/09691

10

15

20

25

30

35

structure 1200 (Figure 12). For example, function
model (3), which is defined above, specifies one result
for a first external, i.e., the returned item, and one
result for a second external, i.e., parameter zero.

The result of the returned item is specified as '(new Q
"memory") ', indicating that a new resource is created
for the returned item, the initial state of the
resource is state Q, and provides "memory" as a brief
description of the resource. Accordingly, if external
model structure 1200 represents the external model for
the returned item, (i) field "new_resource" 1218 is set
to a boolean value of "true" to indicate that a new
resource is created, (ii) field "initial state" 1220 is
set to indicate that the initial state of the new
resource is state Q, and (iii) the text "memory" is
stored in field description 1222.

As a second example, function model (3) above
specifies a result "(op c)" for the second external,
i.e., parameter zero. Result "(op c)" specifies that
operation c is applied to the external. Accordingly,
if external model structure 1200 represents the
external model for parameter zero, field
"number_ of operations" 1212, which initially has a
value of zero, is incremented and an operation
identifier "c" is stored in field "operations" 1214
corresponding to a position indicated by field
"number_of_ operations" 1212. In this example, field
"number_of_ operations" 1212 stores a value of one and
the first operation identifier in field
"operations" 1214 is an identifier of operation c. If
a second operation is applied to the second external,
field "number of_ operations" 1212 is again incremented
to a value of two and the second operation identifier
in field "operations" 1214 is the identifier of the

second operation.

-53-

WO 96/05556 PCT/US95/09691

10

15

20

25

30

Processing transfers from step 1022 (Figure 10)
through next step 1024 to loop step 1020 which is
described above. As described above, processing
transfers from loop step 1020 to step 1026 once all
results for the subject external model have been
processed.

In step 1026, the external model structure
representing the subject external model is added to a
singly linked list of externals in the current function
model structure. An illustrative example is discussed
in the context of function model (3) above. An
external model structure 1200A (Figure 13) is first
added to a function model structure 1100A by storing in
fields "first external" 1104A and "last_external" 1106A
pointers to external model structure 1200A. A second
external model structure 1200B is then added to
function model structure 1100A by storing in field
"next" 1210A of external model structure 1200A, and_in
field "last_external" 1106A of function model |
structure 1100A (superseding the pointer previously
stored in field "last_external" 1106A), a pointer to
external model structure 1200B as shown in Figure 13.

Processing transfers from step 1026 (Figure 10)
through next step 1028 to loop step 1012. After every
external model has been processed as described above,
processing transfers from loop step 1012 through next
step 1014 to loop step 1004. After every function
model has been processed as described above, processing
transfers from loop step 1004 to step 1006 in which the
file containing function models in the textual format
described above is closed as described above.
Processing according to logic flow diagram 904
terminates after step 1006.

-54-

WO 96/05556 PCT/US95/09691

10

15

20

25

30

35

Internal Representation of a Function
Once computer program 610 (Figure 6) is parsed by

program parser 704 (Figure 7), computer program 610 is
represented in memory 104 by a series of function
structures. In an alternative embodiment as described
above, program parser 704 retrieves from computer
program 610 function structures which have been formed
by a previous parsing of a source computer program
conforming to a particular computer language, e.g., the
C computer language. The source computer program is
parsed by a source code preprocessor which parses the
source computer program according to the computer
language to which the source computer program comports
and forms and stores in computer program 610 function
structures representing the functions defined in the
source computer program. The source code preprocessor
(not shown) is a separate computer process from
resource checker 602.

In this alternative embodiment, the source code
preprocessor is based on the known GNU C compiler
available from Free Software Foundation, Inc. of
Cambridge, Massachusetts. Appendix B, which is a part
of this disclosure and is incorporated herein in its
entirety, is a list of computer instructions which
define data structures and functions for transporting
parsed functions of a computer program from a source
code preprocessor into data structures described more
completely below for representing a parsed function.
In one embodiment, a conventional compiler, such as the
known GNU C compiler described above, is used to parse
a computer program and the parsed program is
represented in data structures such as those defined in
Appendix B.

The following is a description of a function
structure. Familiarity with fields and relationships
within a function structure facilitates the subsequent

=55~

WO 96/05556 PCT/US95/09691

10

15

20

25

30

35

description of the processing of dynamic inspection
engine 706 (Figure 7).

Function structure 1400 (Figure 14) represents a
function defined by computer program 610 or, in an
alternative embodiment as described above, the source
computer program and includes (i) a field "name" 1402,
(ii) a field "line" 1404, (iii) a field "file" 1406,
(iv) a field "result" 1408, (v) a field
"externals" 1410, and (vi) a field "statement". Field
"name" 1402 of function structure 1400 specifies the
identifier of the function represented by function
structure 1400. For example, the identifier of
function example_1() of source code excerpt (1) above
is "example 1".

Field "file" 1406 and field "line" 1404 specify
the source code file and line number within that file,
respectively, at which the function represented by
function structure 1400 is defined. For example, if
source code excerpt (1) above represents the entire
contents of a single source code file whose file name
is "example_1.c", field "file" 1406 and field
"line" 1404 of a function structure representing
function example_1() contain, respectively, data
specifying the text "example_l.c" and an integer value
of seven (7).

Field "result" 1408 points to a declaration
structure 1418, which is analogous to declaration
structure 1506 described below and which specifies the
type of result returned by the function represented by
function structure 1400. For example, function
example 1() of source code excerpt (1) above returns a
result which is an integer, i.e., data of the type
"int", as specified at line 7 of source code excerpt
(1). Thus, if function structure 1400 represents
function example 1(), field "result" 1408 points to

-56-

WO 96/05556 PCT/US95/09691

10

15

20

25

30

35

declaration structure 1418 which specifies integer
data.

Field "externals" 1410 of function structure 1400
is a pointer to an external list structure 1414, which
is described below in greater detail. As described
more completely below, external list structures such as.
external list structure 1414 include a pointer which is
used to link external list structures in a singly-
linked list. Thus, pointing to an external list
structure is to point to a singly-linked list of
external list structures, even if the length of the
list is one. Such a singly-linked list, which is
pointed to by field "externals" 1410 of function
structure 1400, includes external list structures
representing the externals of the function represented
by function structure 1400.

Field "first_stmt" 1412 of function structure 1400
is a pointer to a statement structure 1416, which is
described below in greater detail. As described more
completely below, statement structures such as
statement structure 1416 include a pointer which is
used to link statement structures in a singly-linked
list. Thus, pointing to a statement structure is to
point to a singly-linked list of statement structures,
even if the length of the list is one. Such a singly-
linked list, which is pointed to by field
"first stmt" 1412 of function structure 1400, includes
statement structures representing the statements of the
function represented by function structure 1400.

External List Structures

External list structure 1414 is shown in greater
detail in Figure 15. External list structure 1414
represents an external of the function represented by
function structure 1400 (Figure 14) and includes a
field "first decl" 1502 (Figure 15), a field

-57-

WO 96/05556 PCT/US95/09691

10

15

20

25

30

35

"next" 1504, and a field "first_external" 1510. Field
"first_decl" 1502 is a pointer to a declaration
structure 1506, which specifies the data type of the
external represented by external list structure 1414
and which is described below in greater detail. Field
"next" 1504 is a pointer to another external list
structure 1508 if external list structure 1508
immediately follows external list structure 1414 in the
singly-linked list of externals. If no external list
structure follows external list structure 1414 in the
singly-linked list of external list structures, field
"next" 1504 of external list structure 1414 is NULL,
i.e., contains NULL data. Field "first_external" 1510
is a pointer to an external state structure (not shown)
which specifies the state of the external represented
by external list structure 1414 and which is described
below in greater detail.

Declaratjon Structures

Declaration structure 1506 is shown in greater
detail in Figure 16. A declaration structure is a
structure which specifies_a declared variable or
function, i.e., a variable or function, respectively,
specified in a declaration. Declarations in the
context of the C computer language are well-known and
are described in the C Standard. Declaration
structure 1506 includes a field "kind" 1602, a field
"name" 1604, and field "type" 1606, a field
"item" 1608, and a field "model" 1610.

Field "kind" 1602 contains data specifying whether
the declared item or function is globally defined,
static, or a locally defined. Field "name" 1604
contains textual data specifying an identifier of the
item or function. As described above, in the context
of the C computer language, an item or function is
identified by a textual identifier and identifiers must

-58-

WO 96/05556 PCT/US95/09691

10

15

20

25

30

35

conform to a specific format, which is described in
Section 6.1.2 of the C Standard.

Field "type" 1606 of declaration structure 1506 is
a pointer to a type structure 1612 which specifies the
particular type of data represented by the declared
item or function. Type structure 1612 is described
below. Field "item" 1608 is a pointer to item
structure 2700 which represents the declared item. If
declaration structure 1506 represents a declared
function, field "item" 1608 is NULL and therefore
points to no item structure.

Field "model" 1610 of declaration structure 1506
is a pointer to function model structure 1100 if
declaration structure 1506 represents a declaration of
a function whose model is represented by function model
structure 1100. If declaration structure 1506 does not
represent a declaration of a function, field
"model" 1610 is NULL, i.e., contains NULL data, and
therefore points to no function model structure.
Furthermore, if declaration structure 1506 represents a
declaration of a function for which no function model
structure exists, field "model" 1610 is NULL.

Iype Structures
Type structure 1612 is shown in greater detail in

Figure 17. A type structure such as type

structure 1612 specifies a particular data type, such
as integer, floating point, alphanumeric characters,
and user-defined types such as structures. Type
structure 1612 includes a field "kind" 1702, a field
“"name" 1704, a field "size" 1706, a field

"points_to" 1708, and a field "fields"™ 1710. Field
"kind" 1702 contains data specifying whether the type
represented by type structure 1612 is integer, real
(i.e., floating point numerical data), pointer, array,
structure (i.e., data type "struct" as defined for the

-59-

WO 96/05556 PCT/US95/09691

10

15

20

25

30

35

C computer language), or union. Each of these types
are well-known and are described in the C Standard at
Sections 6.1.2.5 and 6.5 et seq.

Field "name" 1704 of type structure 1612 contains
alphanumeric data specifying the identifier of the type
if the type represented by type structure 1612 is user- .
defined. Otherwise, if the type represented by type
structure 1612 is predefined by the C computer
language, field "name" 1704 is NULL.

Field "size" 1706 specifies the size of the type
represented by type structure 1612. If the type is not
an array, field "size" 1706 specifies the number of
bits of data included in an item of the type
represented by type structure 1612. For example, if
the type is a 32-bit integer, field "size" 1706 of type
structure 1612 specifies the value 32. If the type is
an array, field "size" 1706 specifies the number of
bits of data included in the entire array, i.e., the
number of bits of data included in an item of the type
represented by an element of the array multiplied by
the number of elements in the entire array. For
example, a declaration "int array[10]);" declares an
array with ten (10) elements. If the type "int" is a
32-bit integer, the size of the declared array is
therefore ten (10) elements multiplied by 32 bits. The
size of the array is therefore 320 bits.

If the type represented by type structure 1612 is
a pointer to a second type of data, field
"points_ to" 1708 is a pointer to a type structure
representing the second type of data, i.e., to type
structure 1712. Type structure 1712 is analogous to
type structure 1612. Conversely, if the type
represented by type structure 1612 is not a pointer,
field "points_to" 1708 is NULL.

If the type represented by type structure 1612 is
a structure type (i.e., type "struct" of the C computer

-60-

WO 96/05556 PCT/US95/09691

10

15

20

25

30

35

language) or a union type, field "fields" 1710 is a
pointer to field structure 1714 representing the first
field of the structure type or union type,
respectively. As described more completely below,
field structures corresponding to fields of a
particular structure type or union type are linked to
form a singly-linked list. If the type represented by
type structure 1612 is neither a structure type nor a
union type, field "fields" 1710 of structure type 1612
is NULL.

Field Structures

Field structure 1714 is shown in greater detail in
Figure 18. Field structure 1714 includes a field
"name" 1802, a field "size" 1804, a field
"offset" 1806, and a field "next" 1808. Field
structure 1714 is described in the context of the
illustrative example of the following type definition
according to the C computer language. '

typedef struct { (9)
int x;
int y;
} point;

The type definition of source code excerpt (9)
defines a structure type whose identifier is "point"
and which has two fields. Type "point" is therefore a
structure type. Each field is of the type "int", which
is typically a 32-bit integer, and has either of
respective identifiers "x" and "y".

Field "name" 1802 of field structure 1714 contains
alphanumeric data specifying the identifier of the
field represented by field structure 1714. For
example, field "name" of a field structure representing

-61-

WO 96/05556 PCT/US95/09691

10

15

20

25

30

35

the first field of the structure defined in source code
excerpt (9) contains the text "x".

Field "size" 1804 of field structure 1714
specifies the number of bits of data contained in the
field represented by field structure 1714. For
example, in a typical implementation of the C computer
language, such as that compiled by the SunOS C compiler
available from Sun Microsystems, Inc. of Mountain View,
California, an item of type "int" is 32 bits in length.
In the example of source code excerpt (9), each field
is a 32-bit integer and therefore contains 32 bits of
data. Accordingly, field "size" of each field
structure representing each respective field specifies
the integer value 32.

Field "offset" 1806 of field structure 1714
specifies the offset from the beginning of the
structure to the data of the field represented by field
structure 1714. For example, field "x" in source code
excerpt (9) is the first field of type "point" and -
therefore has an offset of zero. Type "point" is shown
diagrammatically in Figure 19. Field "x" of type
"point" is 32 bits in length and begins at offset zero
(0) . Field "y" of type "point" is 32 bits in length
and begins at offset 32. Accordingly, field
"offset" 1806X (Figure 20) of field structure 1714X,
which is directly analogous to field structure 1714
(Figure 18) and which represents field "x" of type
"point", specifies the integer value of zero (0).
Similarly, field "offset" 1806Y (Figure 20) of field
structure 1714Y, which is also directly analogous to
field structure 1714 (Figure 18) and which repreéénts
field "y" of type "point", specifies the integer value
of thirty-two (32).

Field "next" 1808 (Figure 18) of field
structure 1714 is a pointer to the next field structure
in a singly-linked list of field structures of a given

-62-

WO 96/05556 PCT/US95/09691

10

15

20

25

30

35

structure type. For example, field "fields" 1710P
(Figure 20) of type structure 1612P representing type
"point" points to field structure 1714X, which
represents field "x" which in turn is the first field
of type "point". The next field of type "point" is
field "y". Field "next" 1808X of field structure 1714X.
therefore points to field structure 1714Y which
represents field "y" of type "point". Field "y" of
type "point" is the last field of type "point" and is
therefore not followed by any other field of type
"point". Accordingly, field "next" 1810Y of field
structure 1714Y is NULL.

Statement Structures
As described above, field "first_ stmt" 1412

(Figure 14) of function structure 1400 points to
statement structure 1416. Statement structure 1416 is
shown in greater detail in Figure 21. Statement
structures such as statement structure 1416 represent
statements which collectively form a function according
to the C computer language. Statement structure 1416
includes the following fields: (i) a field

"kind" 2102, (ii) a field "line" 2104, (iii) a field
"next" 2106, (iv) a field "flags" 2108, and (v) a field
"pointers" 2110.

Field "kind" 2102 of statement structure 1416
specifies the kind of statement represented by
statement structure 1416. Field "kind" 2102 identifies
one of the following kinds of statement: error,
declaration, expression, block, "if", "else", "return",
loop, "switch", "break", "“continue", and "goto". The
representation of each of these kinds of statement by a
statement structure is described below more completely.

Field "line" 2104 of statement structure 1416
specifies the textual line on which the statement
represented by statement structure 1416 appears within

-63-

WO 96/05556 PCT/US95/09691

10

15

20

25

30

35

the source code file defining the function represented
by function structure 1400 (Figure 14), and therefore
including the statement represented by statement
structure 1416. The line on which the statement
appears is maintained in statement structure 1416 so
that reports of detected errors can specify to the user.
the specific statement causing the error.

Field "next" 2106 (Figure 21) of statement
structure 1416 is a pointer to a second statement
structure 2112, which represents the statement
immediately following the statement represented by
statement structure 1416 in a block of statements. 1In
this way, the statements of a block of statements are
represented by statement structures which are linked to
form a singly-linked list. If the statement
represented by statement structure 1416 (Figure 21) is
the last statement of the block of statements, field
"next" 2106 is NULL, and therefore points to no other
statement structure.

Field "flags" 2108 of statement structure 1416 is
an unsigned 32-bit integer whose individual bits are
used as flags to indicate which errors associated with
the statement represented by statement structure 1416
have been reported to the user. Each time an error is
to be reported, the flag of field "flags" 2108
corresponding to the error to be reported is checked.
If the flag is set, the error is not reported since the
flag indicates that the error has already been reported
in the context of the statement represented by
statement structure 1416. If the flag is not set, the
error is reported and the flag is set to reflect the
reporting of the error. 1In this way, each type of
error is reported only once with respect to any
particular statement.

Field "pointers" 2110 of statement structure 1416
is an array of one or more pointers to structures

-64-

WO 96/05556 PCT/US95/09691

10

15

20

25

30

35

representing the respective parts of the statement
represented by statement structure 1416. The number of
pointers in the array depends on the particular kind of
statement represented by statement structure 1416.

Error, "break", and "continue" statements have no
parts; therefore, field "pointers" 2110 is NULL if
statement structure 1416 represents an error, break",
or "continue" statement. An error statement is a
statement which does not conform to the C computer
language. "Break" and "continue" statements are well-
known and are described in the C Standard at Sections
6.6.6.3 and 6.6.6.2, respectively.

A declaration statement includes a declared
variable having data of a specified type and perhaps an
initial value for that variable. Accordingly, if
statement structure 1416 represents a declaration
statement, field "pointers™ 2110 is an array of two
pointers. The first pointer points to a declaration
structure representing the declared variable. The
second pointer points to an expression structure
representing an expression which evaluates to the
initial value of the declared variable, if an initial
value is specified. Conversely, if no initial value is
specified for the declared variable, the second pointer
is NULL.

An expression statement is a statement which is
itself an expression. An expression is a well-known
component of the C computer language and is a
collection of one or more items, calls to functions,
and operators. Every expression in the C computer
language has a value. Evaluation of an expression
results in an item, whose value is the value of the
expression and which is sometimes called the item of
the expression. The value of the item of an expression
is sometimes called herein the value of the expression.

-65-

WO 96/05556 PCT/US95/09691

10

15

20

25

30

35

The evaluation of an expression is described more
completely below.

If statement structure 1416 represents an
expression statement, field "pointers" 2110 is an array
of one pointer which points to an expression structure,
such as expression structure 2200 (Figure 22).
Expression structure 2200 includes a field "kind" 2202,
a field "type" 2204, a field "item" 2206, a field
"num_operands" 2208, and a field "operands" 2210.

Field "kind" 2202 specifies the kind of expression
represented by expression structure 2200. If the

expression involves an operator, field "kind" 2202
specifies that operator.

Field "type" 2204 is a pointer to a type
structure 2212 which represents the data type of the
expression, i.e., the type of item to which the
expression evaluates. Type structure 2212 is analogous
to type structure 1612 described above. Field
"item" 2206 of expression structure 2200 is a pointef
to an item structure 2214 which represents the item to
which the expression evaluates. Item structure 2214 is
analogous to item structure 2700 (Figure 27) described
above. Prior to evaluation of the expression
represented by expression structure 2200, field
"item" 2206 is NULL.

Field "num_operands" 2208 specifies the number of
operands in the expression represented by expression
structure 2200. Field "operands" 2210 is an array of
expression structures, each of which represents an
operand of the expression represented by expression
structure 2200. The length of the array is equal_to
the number of operands specified in field
"num _operands" 2208. The various types of expression,
which are defined in the C computer language, and the
number and type of operands of each type of expression,
are well-known and are described in the C Standard.

-66—

WO 96/05556 PCT/US95/09691

10

15

20

25

30

35

A block statement is a statement which groups
together one or more statements. Execution of a block
statement is execution of the one or more statements.

A block statement has one part, namely, the one or more
statements. If statement structure 1416 (Figure 21)
represents a block statement, field "pointers" 2110 is
a single pointer which in turn points to the statement
structure representing the first statement of the one
or more statements. The statement structures
representing the one or more statements are linked to
form a singly-linked list by using field "next" 2106 as
described above.

An "if" statement evaluates an expression, which
is sometimes called the predicate of the "if"
statement, and causes a second statement to be executed
if the expression evaluates to a boolean value of
"true". If statement structure 1416 represents an "if"
statement, field "pointers"™ 2110 is an array of two
pointers. The first pointer points to an expression
structure which represents an expression whose value
determines whether the second statement is executed.
The second pointer points to a statement structure
representing the second statement.

An "else" statement is immediately preceded by an
"jf" statement and causes a third statement to be
executed if the predicate of the "if" statement
evaluates to a boolean value of "false". If statement
structure 1416 represents an "else" statement, field
"pointers" 2110 is an array of two pointers. The first
pointer points to a statement structure which
represents the third statement. The second pointer
points to an expression structure or is NULL. The
expression represented by the expression structure is
sometimes called the predicate of the "else" statement.
If the second pointer points to an expression
structure, the third statement is executed only if the

-67-

WO 96/05556 PCT/US95/09691

10

15

20

25

30

35

predicate of the "if" statement evaluates to a boolean
value of "false" and the predicate of the "else"
statement evaluates to a boolean value of "true". This
represents an "else if" statement which is generally
known and described in the C Standard. If the second
pointer is NULL, the third statement is executed only
if the predicate of the "if" statement evaluates to a
boolean value of "false".

A "return" statement terminates execution of a
called function and transfers control to a calling
function while optionally supplying to the calling
function a returned item. Transferring control to a
calling function while supplying a returned item to the
calling function is called returning the returned item
to the calling function. If statement structure 1416
represents a "return" statement, field "pointers" 2110
is a single pointer which points to an expression
structure or is NULL. If the pointer points to an
expression structure, the expression structure
represents the expression which is evaluated to an item
which in turn is returned to the calling function.

A loop statement causes a second statement to be
executed zero or more times. Examples of loop
statements in the C computer language are a "for"
statement, a "do" statement, and a "while" statement,
each of which is generally known and described in the C
Standard at Section 6.6.5. If statement structure 1416
represents a loop statement, field “pointers" 2110 is a
single pointer which points to a statement structure
representing the second statement.

A "switch" statement evaluates an expression and
transfers control within a block statement to a
particular statement within the block statement
according to the value to which the expression
evaluates. The expression is sometimes called the
predicate of the "switch" statement. If statement

-68-

WO 96/05556 PCT/US95/09691

10

15

20

25

30

35

structure 1416 represents a "switch" statement, field
"pointers" 2110 is an array of two pointers. The first
pointer points to an expression structure which
represents an expression according to whose value
control transfers. The second pointer points to a
statement structure representing the block statement.

A "goto" statement causes a transfer of control to
a second statement. In one embodiment, if statement
structure 1416 represents a "goto" statement, field
"pointers" 2110 is an array of a single pointer, which
points to a statement structure representing the second
statement. In a simpler embodiment, a "goto" statement
is treated as terminating execution of the called
routine. In this embodiment, a "goto" statement has no
parts, and field "pointers" 2110 is an array of zero
pointers.

Thus, function structure 1400 (Figure 14)
represents a function to be analyzed by dynamic
inspection engine 706.

Analysis of a Function

As described above, dynamic inspection engine 706
(Figure 7) analyzes each function structure resulting
from parsing of computer program 610 (Figure 6)
step 908 (Figure 9). Step 908 is shown in greater
detail in logic flow diagram 908 (Figure 24). The
function structure processed in a performance of
step 908 is called the subject function structure.
Similarly, the function represented by the subject
function structure is called the subject function. 1In
steps 2404 and 2408 of logic flow diagram 908, the
subject function is analyzed under different
assumptions.

As described above in greater detail, the control
flow path through a particular function sometimes
depends on events which are not know until the function

-69-

WO 96/05556 PCT/US95/09691

10

15

20

25

30

35

is executed. Even then, the events of one execution of
the function may not always occur in every execution of
the function. Thus, a function whose flow of control
depends on an unknown event is repeatedly analyzed
under different assumptions with respect to the unknown
event.

In one embodiment, every possible control flow
path through the function is determined and analyzed.
For example, control can flow along one of two possible
paths for every "if" statement in the function, and
control can flow along one of a number of possible
paths for every "switch" statement in the function. 1In
the case of a "switch" statement, the number of
possible paths is equal to the number of “case"
statements, including a "default" statement if one is
present, associated with the "switch" statement. Once
all of the possible control flow paths through a
function are determined, the function is repeatedly
analyzed, once using each possible control flow path
through the function. In this way, the function is
analyzed in view of all possible events which might
affect flow of control through the function.

In a simpler embodiment, the particular control
flow path through a function is chosen randomly by
making random assumptions with respect to events at
each "if" statement and each "switch" statement within
the function. The function is analyzed repeatedly and
different control flow paths are selected randomly.
The number of times the function is analyzed is chosen
such that there is a substantial likelihood that every
possible control flow path through the function is
analyzed, or alternatively can be chosen to limit the
amount of effort that is expended to analyze any one
routine.

Steps 2404 and 2408 (Figure 24) illustrate the
latter, simpler embodiment. In step 2404, the number

-70-

WO 96/05556 PCT/US95/09691

10

15

20

25

30

35

of times the subject function is analyzed is
determined. Step 2404 is shown in greater detail as
logic flow diagram 2404 (Figure 25). 1In step 2502, the
number of times an "if" statement is used in the
subject function is determined. Specifically,
execution engine 802 (Figure 8) compares field

"kind" 2102 (Figure 21) of each statement structure in
the singly-linked list of statement structures pointed
to, directly or indirectly, by field

"first statement" 1412 (Figure 14) of the function
structure 1400 to data indicating an "if" statement.
The number of times field "kind" of a statement
structure matches data indicating an "if" statement is
recorded as the number of times an "if" statement is
used in the subject function.

From step 2502, processing transfers to step 2504
in which the number of times the subject function is
analyzed is determined. In one embodiment, the number
of times the subject function is analyzed corresponds
to the number of times the "if" statement is used in
the subject function as shown in Table M.

Table M
No. of "if"s No. of times the function is
analyzed
0.+« 1
1 ¢ . 3
2 . ¢ s o e o e o 5
3 ¢ ¢« o o o o o o« 10
4 . . ¢+ e o + o 15
5=6 . .« ¢+ « < « . « 20
7-8 « ¢« « « « « « « 30
9ormore 50

After step 2504, processing according to logic
flow diagram 2404, and therefore step 2404 (Figure 24),

-71-

WO 96/05556 PCT/US95/09691

10

15

20

25

30

35

terminates. Processing transfers from step 2404 to
step 2408 in which the subject function is analyzed
repeatedly as many times as determined in step 2404
described above. A single iteration of step 2408,
i.e., a single analysis of the subject function is
shown in logic flow diagram 2600 (Figure 26).

A single iterative analysis of the subject
function begins in step 2602 in which an external state
structure for each external is initialized. An
external state structure is initialized by first
creating an item structure corresponding to the
external state structure, and therefore corresponding
to the external whose state is represented in the
external state structure, then setting the DK and CP
states of the external to state 0. An item structure
is a structure in memory 104 (Figure 1) representing an
iten.

Item structure 2700 (Figure 27) includes the
following fields: a field "resource" 2702, a field
“external" 2704, a field "value" 2706, a field
"first_in bunch" 2708, a field "size_of_bunch" 2710, a
field "type_code" 2712, a field "initialized" 2714, a
field "head_in_bunch" 2716, a field
"known_bunch_size" 2718, and a field
"invalid_pointer" 2720.

An item can be associated with a resource and/or
an external. If the item represented by item
structure 2700 is associated with a resource, field
"resource" 2702 of item structure 2700 points to a
resource state structure representing that resource.
Conversely, if the item is not associated with a
resource, field "resource" 2702 is NULL to so indicate.
If the item represented by item structure 2700 is
associated with an external, field "external" 2704 of
item structure 2700 points to an external state
structure representing that external. Conversely, if

-72-

WO 96/05556 PCT/US95/09691

10

15

20

25

30

35

the item is not associated with an external, field
"external" 2704 is NULL to so indicate.

Field "value" 2706 of item structure 2700 includes
data defining the actual value of the item represented
by item structure 2700. In other words, the data
stored in field "value" 2706 represents the actual data.
stored in the location of memory 104 (Figure 1)
represented by the item represented in turn by item
structure 2700 (Figure 27). Field "type_code" 2712 of
item structure 2700 specifies the type of data stored
at the memory location of the item. The types of data
supported in the disclosed embodiment include long,
pointer, and double. As is true in most currently
available implementations of the C computer language,
"long" is a 32-bit signed integer, "pointer" is a value
specifying an address in memory, e.g., memory 104, and
"double" is a 64-bit floating point number. Within
field "value" 2706 is a sub-field corresponding to each
type. Only one sub-field is used, namely, the sub-
field corresponding to the type of data specified in
field "type_code" 2712.

Field "initialized" 2714 of item structure 2700
indicates whether the item represented by item
structure 2700 is initialized, i.e., whether the item
represented by item structure 2700 has a known value.
Field "invalid_pointer" 2720 of item structure 2700
indicates whether the item represented by item
structure 2700 is known to be an invalid pointer.
According to the C computer language, a pointer is
valid if the pointer identifies a valid location in
memory 104 (Figure 1). Otherwise, the pointer is
invalid. A NULL pointer is a specific invalid pointer
which is chosen to be zero in many implementations of
the C computer language. In one embodiment, fields
"initialized" 2714 and "invalid_pointer" 2720 are each

a single bit.

-73-

WO 96/05556 PCT/US95/09691

10

15

20

25

30

Fields "first_in_bunch" 2708,

"size of bunch" 2710, "head_in_bunch" 2716, and
"known_bunch_size" 2718 are used in analyzing bunches
of memory. Bunches of memory are described in greater
detail below.

Once the externals of the subject function are
initialized in step 2602 (Figure 26), processing
transfers to step 2604. 1In step 2604, each statement
of the subject function is evaluated. A statement is
evaluated by emulating execution of the statement.
Evaluation of a statement can result in the application
of an operation to an external and/or to a resource
resulting in a change in the state of the external
and/or resource, respectively. Each statement is
evaluated individually according to logic flow
diagram 2800 (Figure 28) as described more completely
below.

Once each statement of the subject function is
evaluated, processing transfers from step 2604
(Figure 26) to step 2606. In step 2606, the states of
the various resources of the subject function are
checked for leaks. Step 2606 is shown in greater
detail as logic flow diagram 2606 (Figure 41) which is
described more completely below. From step 2606,
processing transfers to step 2608 in which each
external of the subject function is updated. An
external is updated by updating the composite DK, CP
and RS states of the external according to the DK and
CP states of the external, and according to the RS
state of any resource associated with the external,
resulting from the current iterative analysis of the
subject function. The updating of a single external is
illustrated by logic flow diagram 4200 (Figure 42)
which is described more completely below.

-74-

WO 96/05556 PCT/US95/09691

10

15

20

25

30

35

After step 2608 (Figure 26), processing according
to logic flow diagram 2600, and therefore a single
jterative analysis of the subject function, terminates.

Evaluation of a Statement

As described above, each statement of the subject
function is evaluated individually according to logic
flow diagram 2800 (Figure 28). Processing begins in a
test step 2802 in which execution engine 802 (Figure 8)
determines whether the statement is an expression by
retrieving field "kind" 2102 (Figure 21) of the
statement structure representing the statement, i.e.,
the subject statement structure. The statement
represented by the subject statement structure, i.e.,
the statement currently evaluated according to logic
flow diagram 2800 (Figure 28), is called the subject
statement.

If the subject statement is an expression, i.e.,
if field "kind" 2102 indicates that the subject
statement is an expression, processing transfers from
test step 2802 (Figure 28) to step 2804 in which
execution engine 802 (Figure 8) evaluates the
expression, i.e., the subject statement. Execution
engine 802 evaluates an expression by emulating
execution of the functions and operators on the items
included in the expression. Step 2804 (Figure 28) is
carried out according to logic flow diagram 2900
(Figure 29) which is described in greater detail below.

As described more completely below, processing
according to logic flow diagram 2900 can apply an
operation to the item resulting from evaluation of an
expression. In the context of step 2804, no operation
is applied to the item of the expression. If, in test
step 2802 (Figure 28), the subject statement is not an
expression, processing transfers to test step 2806.

-75=-

WO 96/05556 PCT/US95/09691

10

15

20

25

30

35

In test step 2806, execution engine 802 (Figure 8)
compares field "kind" 2102 the subject statement
structure to data indicating that the subject statement
is a declaration. A defining declaration is a
statement according to the C computer language which
causes the creation of an item. A declaring
declaration is a statement according to the C computer
language directing CPU 102 (Figure 1) to treat an item
as if the item were of a specified type. Unless
otherwise stated herein, a declaration is a defining
declaration.

If the subject statement is a declaration,
processing transfers from test step 2806 (Figure 28) to
step 2808 in which the declaration is processed and
which is described in greater detail below.

Conversely, if the subject statement is not a
declaration, processing transfers from test step 2806
to test step 2810.

In test step 2810, execution engine 802 (Figure 8)
compares field "kind" 2102 (Figure 21) of the subject
statement structure to data indicating that the subject
statement is an "if" statement. If the statement is an
"if" statement, processing transfers from test
step 2810 (Figure 28) to step 2812 in which the subject
statement is processed. Step 2812 is shown in greater
detail as logic flow diagram 2812 (Figure 35) which is
described below. Conversely, if the subject statement
is not an "if" statement, processing transfers from
test step 2810 (Figure 28) to test step 2814.

In test step 2814, execution engine 802 (Figure 8)
compares field "kind" 2102 (Figure 21) of the subject
statement structure to data indicating that the subject
statement is a "return" statement. If the subject
statement is a "return" statement, processing transfers
from test step 2814 (Figure 28) to step 2816 in which
the statement is processed. Step 2816 is shown in

-76-

WO 96/05556 PCT/US95/09691

10

15

20

25

30

35

greater detail as logic flow diagram 2816 (Figure 39)
which is described below. Conversely, if the subject
statement is not a "return" statement, processing
transfers from test step 2814 (Figure 28) to test
step 2818.

In test step 2818, execution engine 802 (Figure 8) .
compares field "kind" 2102 (Figure 21) of the subject
statement to data indicating that the subject statement
is a loop or a block statement. If the subject
statement is a loop or a block statement, processing
transfers from test step 2818 (Figure 28) to step 2820
in which the statement is processed. Step 2820 is
shown in greater detail as logic flow diagram 2820
(Figure 40) which is described below. Conversely, if
the subject statement is neither a loop statement nor a
block statement, processing transfers from test step
2818 (Figure 28) to test step 2822.

In test step 2822, execution engine 802 (Figure 8)
compares field "kind" 2102 (Figure 21) of the subject
statement structure to data indicating that the subject
statement is a "goto" statement. If the subject
statement is a "goto" statement, processing transfers
from test step 2822 (Figure 28) to step 2824 in which
execution engine 802 (Figure 8) stores in a control
record, which is described more completely below, data
indicating an "return" condition. The control record
is used as described more completely below to properly
transfer control through an emulated execution of the
subject function. A "return" condition terminates an
iterative analysis of the subject function.

If the subject statement is not a "goto"
statement, processing according to logic flow
diagram 2800 terminates.

After performance of any of
steps 2804, 2808, 2812, 2816, 2820, or 2824, processing
according to logic flow diagram 2800 terminates. Thus,

-77-

WO 96/05586 PCT/US95/09691

10

15

20

25

30

35

evaluation of a statement by execution engine 802
(Figure 8) is carried out by step 2804

(Figure 28), 2808, 2812, 2816, 2820, 2824, or 2828
according to whether the statement is an expression, a
declaration, an "if" statement, a "return" statement, a
block statement, a loop statement, or a "goto"
statement, respectively.

Evaluation of an Expression

As described above, an expression is evaluated
according to logic flow diagram 2900 (Figure 29), in
which execution engine 802 (Figure 8) causes a state
machine 804, which is part of dynamic inspection
engine 706, to apply an operation to the item of the
expression if an operation is specified by execution
engine 802. As further described above, in the context
of step 2804 (Figure 28), no such operation is
specified by execution engine 802 (Figure 8). By
evaluating expressions, the disclosed embodiment of the
present invention determines the effect of execution of
a statement which is or includes an expression on the
items which are operands Qf the expression.

Processing according to logic flow diagram 2900
(Figure 29) begins in step 2902 in which processing
prescribed by an operator in the expression is carried
out to evaluate the expression. As described above, an
expression is represented within dynamic inspection
engine 706 (Figure 7) by an expression structure such
as expression structure 2200 (Figure 22). Field
"kind" 2202 of expression structure 2200 specifies the
nature of the operator of the expression, and field
"operands" 2210 contains the operands to which the
operator is applied. Since the subject function is
analyzed outside the context of an execution of the
subject function within a computer process, initial
values of externals of the subject function are not

=78~

WO 96/05556 PCT/US95/09691

10

15

20

25

30

35

Xnown. Therefore, an expression in the subject
function may not evaluate to a known value. Thus,
evaluation of an expression by execution engine 802
(Figure 8) in step 2902 (Figure 29) produces an item,
if evaluating the expression produces a known or
partially known value, or NULL, otherwise. As
discussed more completely below, an item can have a
partially known value. For example, an item can be
known to have a value not equal to zero but the precise
value of the item can still be unknown, in which case
the value of the item is partially known. Step 2902 is
shown in greater detail as logic flow diagram 2902
(Figures 33A, 33B, and 33C) and is described more
completely below.

From step 2902 (Figure 29), processing transfers
to test step 2904 in which execution engine 802
(Figure 8) determines whether evaluation of the
expression produces an item rather than a NULL and
whether an operation is to be applied to the item by
state machine 804. If evaluation of the expression
produces no item or if no operation is to be applied to
the item, processing transfers from test step 2904
(Figure 29) to step 2908 which is described below.
Conversely, if evaluation of the expression produces an
item and an operation is to be apply to the itenm,
processing transfers from test step 2904 to step 2906
in which state machine 804 (Figure 8) applies the
operation to the itenm.

To apply an operation to the item of the evaluated
expression, state machine 804 applies the operation to
the external and the resource associated with the item
if an external and a resource, respectively, are
associated with the item. For example, field
"external" 2704 of item structure 2700 (Figure 27)
points to an external state structure representing the
external associated with the item represented by item

-79-

WO 96/05556 PCT/US95/09691

10

15

20

25

30

35

structure. Similarly, field "resource" 2702 of item
structure 2700 points to a resource state structure
representing the resource associated with that item.

The operation is applied to the external, for
example, by updating fields "DK" 3004 (Figure 30) and
"CpP" 3008 of external state structure 3000, which is
the external state structure representing the external.
Field "DK" 3004 is updated according to the operation
applied to the external and according to state
diagram 500 (Figure 5A) as described above. For
example, if field "DK" 3004 (Figure 30) indicates state
O and operation m is applied to the external, field
"DK" 3004 is updated to indicate state Q. Field
"CP" 3008 is updated according to state diagram 400
(Figure 4a).

The operation is applied to the resource, for
example, by updating fields "state" 3102 (Figure 31)
and "modified" 3108 of resource state structure 3100,
which is the resource state structure representing the
resource. Field "state" 3102 is updated according to
state diagram 300 (Figure 3A) as described above.

Field "modified" 3108 (Figure 31) is updated by storing
in field "modified" 3108 data specifying the current
line number, thereby indicating the statement last
modifying the resource. The current line number is the
line number of computer program 610 (Figure 6) on which
the subject statement is located. Reporting a
programming error associated with a resource while
indicating to the user the statement last modifying the
resource assists the developer of the subject function
in removing that programming error.

If updating either of fields "DK" 3004 (Figure 30)
or "CP" 3008 of external state structure 3000 or if
updating field "state" 3102 (Figure 31) of resource
state structure 3100 produces an error according to
state diagrams 300, 400, or 500 (Figures 3A, 4, and 5,

-80-

WO 96/05556 PCT/US95/09691

10

15

20

25

30

35

respectively) as described more completely above, the
error is reported to the user. The item produced by
evaluation of the expression is also checked for state
violations according to logic flow diagram 3200
(Figure 32).

In test step 3202 (Figure 32), state machine 804
(Figure 7) checks field "initialized" 2714 (Figure 27)
of item structure 2700 to determine whether the item
represented by item structure 2700 is initialized. If
the item is not initialized, processing transfers from
test step 3202 (Figure 32) to 3204 in which an error is
reported. Since the steps of logic flow diagram 3200
are only performed within step 2906 (Figure 29), an
operation is being applied to the item in logic flow
diagram 3200 (Figure 32). Therefore, if the item is
uninitialized, the item is used, as indicated by the
application of an operation, before the item is
initialized and this is an error.

If the item is initialized, processing transfers
from test step 3202 to test step 3206. 1In test
step 3206, state machine 804 (Figure 8) determines
whether the item is an invalid pointer, by examination
of field "invalid_pointer" 2720 (Figure 27) of item
structure 2700, and compares the operation to be
applied to operation i, i.e., an indirection operation.
If the item is an invalid pointer and operation i is
applied, processing transfers to step 3208 (Figure 32)
in which an error is reported. Conversely, if the item
is not an invalid pointer or if an operation other than
operation i is applied, processing transfers from test
step 3206 to test step 3210.

In test step 3210, state machine 804 (Figure 7)
determines whether the item is an invalid pointer in
the manner described above with respect to test
step 3206 and compares the operation to be applied to
operation k. In the context of the C computer

-81-

WO 96/05556 PCT/US95/09691

10

15

20

25

30

35

language, it is an error to free an invalid pointer
since doing so can corrupt data structures used by
library functions to manage files and dynamically
allocated memory. It is generally not an error to free
a NULL pointer but such is generally considered poor
programming practice and is reported as an error. If
the item is an invalid pointer and operation k is
applied to the item, processing transfers to step 3212
in which an error is reported. Conversely, if the item
is not an invalid pointer or if an operation other than
operation k is applied, processing according to logic
flow diagram 3200 terminates. Additionally, after any
of steps 3204, 3208, and 3212, processing according to
logic flow diagram 3200 terminates.

Thus, in step 2906 (Figure 29), an operation is
applied to an item, including any resource or external
associated with the item, and any errors are detected
and reported to the user. From step 2906, processing
transfers to step 2908. 1In addition, processing)
transfers directly from test step 2904 to step 2908 if
no item is produced by evaluation of the expression or
if no operation is to be applied to the expression as
described above. 1In step 2908, execution engine 802
includes in the expression, i.e., the subject
statement, the item, if one is produced, or an item
whose value is NULL, otherwise. Specifically,
execution engine 802 stores in field "item" 2206
(Figure 22) of expression structure _2200, which
represents the subject statement, a-pointer to the
item. Thus, future evaluations of the expression
simply return the item to which field "item" 2206
points, thereby avoiding redundant processing. After
step 2908 (Figure 29), processing according to logic
flow diagram 2900 terminates.

Constants

-82=

WO 96/05556 PCT/US95/09691

10

15

20

25

30

35

As described above, in step 2902 (Figure 29),
which is shown in greater detail as logic flow
diagram 2902 (Figures 33A-C), execution engine 802
(Figure 8) processes an expression as prescribed by an
operator in the expression. Execution engine 802
processes the expression according to the type of
operation. In test step 3301 (Figure 33A), in which
processing according to logic flow diagram 2902 begins,
execution engine 802 (Figure 8) determines whether the
expression contains no operator but instead is a
constant. If expression structure 2200 (Figure 22)
represents the expression of the subject statement,
execution engine 802 (Figure 8) makes such a
determination by comparing field "kind" 2202
(Figure 22) of expression structure 2200 to data
indicating that the expression is a constant. A
constant is an item whose value does not change during
the execution of a computer process. For example, the
expression, "10%, is a constant which is an integer and
always has a value of ten.

If the expression is not a constant, processing
transfers to test step 3303 (Figure 33A) which is
described below. Conversely, if the expression is a
constant, processing transfers from test step 3301 to
step 3302. 1In step 3302, execution engine 802
(Figure 8) creates an item structure representing the
constant and initializes the item structure to have the
value of the constant. After step 3302, processing
according to logic flow diagram 2902, and thus
step 2902 (Figure 29), terminates.

Variables

As described above, if the expression is not a
constant, processing transfers from test step 3301
(Figure 33A) to test step 3303. 1In test step 3303,
execution engine 802 (Figure 8) determines whether the

-83 -

WO 96/05556 PCT/US95/09691

10

15

20

25

30

35

expression is a variable by comparing field "kind" 2202
(Figure 22) of the expression structure representing
the expression to data indicating that the expression
is a variable. An expression which is a variable
evaluates to the current value of the item of the
variable. For example, if a previously processed
statement of the subject function declares a variable
whose identifier is "i", i.e., a variable "i", to be of
the type "int", i.e. integer, the expression, "i",
evaluates to the current value of the item of variable
wj®, 1If the expression is not a variable, processing
transfers to test step 3305 (Figure 33A) which is
described below. Conversely, if the expression is a
variable, processing transfers from test step 3303 to
step 3304.

In step 3304, execution engine 802 (Figure 8)
retrieves the item of variable i. If expression
structure 2300 (Figure 23) represents the expression,
i.e., represents a variable, (i) field
"num_ operands" 2308 contains the value one (1)
specifying a single operand, and (ii) field
"operands" 2310 is an array of a single pointer which
points to a declaration structure 2316. Field
"item" 2324 of declaration structure 2316 is retrieved
as the value of expression 2300. If no item is
associated with declaration structure 2316, then field
"item" 2324 is NULL. Thus, either an existing item
structure or NULL is retrieved in step 3304
(Figure 33A). After step 3304, processing according to
logic flow diagram 2902, and therefore step 2902
(Figure 29), terminates.

Binary Operators
As described above, if the expression is not a

declaration, processing transfers from test step 3303
(Figure 33A) to test step 3305. In test step 3305,

-84 -

WO 96/05556 PCT/US95/09691

10

15

20

25

30

35

execution engine 802 (Figure 8) determines whether the
operator of the expression is a binary operator by
comparing field "kind" 2202 (Figure 22) of the
expression structure representing the expression to
data indicating a binary operator. A binary operator
is an operator which operates on two operands and which.
is not a relational operator. For example, the
expression "a+b" includes the binary operator "+"
signifying addition. Relational operators are
described below.

If the operator of the expression processed
according to logic flow diagram 2902 (Figure 33A) is
not a binary operator, processing transfers from test
step 3305 to test step 3309. Conversely, if the
operator of the expression is a binary operator,
processing transfers from test step 3305 to step 3306.
In step 3306, the left-hand side operand, i.e., the
"lhs", is evaluated as an expression according to logic
flow diagram 2900 (Figure 29). The lhs of an
expression which has two operands and which is
represented by expression structure 2200 (Figure 22) is
represented by an expression structure which is the
first element of field "operands" 2210. The 1lhs is
evaluated according to logic flow diagram 2900
(Figure 29) while applying operation c. The
application of an operation according to logic flow
diagram 2900 is described more completely above. Thus,
evaluation of an expression according to logic flow
diagram 2900 is performed recursively. In other words,
evaluation of an expression according to logic flow
diagram 2900 can cause evaluation of a subexpression of
the expression according to logic flow diagram 2900.
Recursive programming is a well-known technique.

A binary operator has a left-hand side operand and
a right-hand side operand, i.e., "rhs". For example,
the expression, "(a+b)*c", has a lhs of "(a+b)" and a

-85-

WO 96/05556 PCT/US95/09691

10

15

20

25

30

35

rhs of "c", since the operator of the expression of
highest precedence is "*", j.e., multiplication. The
rhs of an expression which has two operands and which
is represented by expression structure 2200 (Figure 22)
is represented by an expression structure which is the
second element of field "operands" 2210. After the lhs.
of the expression is evaluated in step 3306

(Figure 33A), processing transfers to step 3307 in
which execution engine 802 (Figure 8) evaluates the rhs
of the expression according to logic flow diagram 2900
(Figure 29) applying operation c. Operation c is
applied to both the lhs and rhs of the expression since
each is used in a calculation. Inappropriate use of
either the lhs or rhs of the expression in such a
calculation generates an error message by application
of the operation as described above.

From step 3307 (Figure 33A), processing transfers
to step 3308 in which the binary operator of the
expression is used to evaluate the expression. The .
data type of the lhs and the rhs of the expression
influence the type of operation invoked by the
operator. The types of operations performed for
specific operators on specific types of operands
according to the C computer language are well-known and
are described in the C Standard at Section 6.3 et seq.

An operator of an expression is applied to the
operand or operands of the expression in accordance
with the prescribed application of the operator
described in the C Standard. For example, if the
operator is the arithmetic addition operator (i.e.,
"+%), the result of application of the operator to two
operands is the arithmetic sum of the two operands. As
a second example, if the operator is the relational
greater than operator (i.e., ">"), the result of
application of the operator to two operands, i.e., the
lhs and the rhs, is a boolean value of "true" if the

-86~—

WO 96/05556 PCT/US95/09691

10

15

20

25

30

35

value of the lhs is greater than the value of the rhs,
or a boolean value of "false" otherwise.

It is not imperative that every operator of the C
computer language be properly applied by execution
engine 802 (Figure 8) for resource checker 602
(Figure 6) to detect improper uses of resources in
computer program 610. If an expression includes an
operator which cannot be applied by execution
engine 802 (Figure 8), the expression evaluates to a
NULL to indicate that the expression evaluates to an
item whose value is unknown. However, it is preferred
that execution engine 802 can apply as many of the
operators of the C computer language as possible as
such improves the accuracy in detection of improper
uses of resources by resource checker 602.

After step 3308 (Figure 33A), processing according
to logic flow diagram 2902, and therefore step 2902
(Figure 29), terminates.

Relatjonal Operators

As described above, if the operator of the
expression is not a binary operator, processing
transfers from test step 3305 (Figure 33A) to test
step 3309. 1In test step 3309, execution engine 802
(Figure 8) determines whether the operator of the
expression is a relational operator. A relational
operator is an operator which operates on two operands,
i.e., an lhs and a rhs, to produce as a result an item
whose value corresponds to a boolean value by
comparison of the values of the two operands. A
boolean value is either "true" or "false". Examples of

relational operators include "==" (equal to), ">="
(greater than or equal to), "<=" (less than or equal
to), and "!=" (not equal to).

-87-—

WO 96/05556 PCT/US95/09691

10

15

20

25

30

35

If the operator of the expression is not a
relational operator, processing transfers from test
step 3309 (Figure 33A) to test step 3313 which is
described below. Conversely, if the operator of the
expression is a relational operator, processing
transfers from test step 3309 to step 3310. 1In
step 3310, execution engine 802 (Figure 8) evaluates
the lhs of the expression as an expression according to
logic flow diagram 2900 (Figure 29) while applying
operation p. From step 3310 (Figure 33A), processing
transfers to step 3311 in which execution engine 802
(Figure 8) evaluates the rhs of the expression
according to logic flow diagram 2900 (Figure 29)
applying operation p. Operation p is applied to both
the lhs and rhs of the expression since each is used in
a comparison. Inappropriate use of either the lhs or
rhs of the expression in such a comparison generates an
error message by application of the operation as
described above.

Processing transfers from step 3311 (Figure 33A)
to step 3312 in which the relational operator of the
expression is used to evaluate the expression.

Step 3312 is analogous to step 3308, which is described
above. After step 3312, processing according to logic

flow diagram 2902, and therefore step 2902 (Figure 29),
terminates.

Unary Operators
As described above, if the operator of the

expression is not a relational operator, processing
transfers from test step 3309 (Figure 33A) to test
step 3313. 1In test step 3313, execution engine 802
(Figure 8) determines whether the operator of the
expression is a unary operator by comparison of field
"kind" 2202 (Figure 22) of the expression structure
representing the expression to data indicating a unary

-88-—

WO 96/05556 PCT/US95/09691

10

15

20

25

30

35

operator. A unary operator is an operator which
specifies an operation having a single operand. For
example, the expression, "-a", includes the single
operand "a" and a unary operator "-" which specifies a
numeric negation operation on operand "a". If an
expression has one operand and is represented by
expression structure 2200, the single operand of the
expression is represented by the expression structure
that is the first element of field "operands" 2210.

If the operator of the expression is not a unary
operator, processing transfers from test step 3313
(Figure 33A) to test step 3317 (Figure 33B) as
described below. Conversely, if the operator of the
expression is a unary operator, processing transfers
from test step 3313 (Figure 33A) to step 3314. 1In
step 3314, execution engine 802 (Figure 8) evaluates
the operand of the expression as an expression
according to logic flow diagram 2900 (Figure 29) while
applying operation c. Operation c is applied to the
operand of the expression since the operand is used in
a calculation. Inappropriate use of the operand of the
expression in such a calculation generates an error
message by application of the operation as described
above.

Processing transfers from step 3314 (Figure 33A)
to step 3315 in which the unary operator of the
expression is used to evaluate the expression.

Step 3315 is analogous to step 3308, which is described
above. After step 3315, processing according to logic

flow diagram 2902, and therefore step 2902 (Figure 29),
terminates.

Processing by Specific Operator

As described above, if the operator of the
expression is not a unary operator, processing
transfers from test step 3313 (Figure 33A) to test

-89~

WO 96/05556 PCT/US95/09691

10

15

20

25

30

35

step 3317 (Figure 33B). As further described above,
the above-described steps of logic flow diagram 2902
process the expression according to the type of
operator of the expression. In test step 3317 and the
steps with follow, execution engine 802 (Figure 8)
processes the expression according to the specific
operator of the expression if the operator of the
expression is not among the types of operators for
which test steps 3301 (Figure 33a), 3303, 3305, 3309
and 3313 test.

Incrementing or Decrementing Operator
In step 3317 (Figure 33B), execution engine 802

(Figure 8) compares the operator of the expression to
an incrementing operator and to a decrementing
operator. In other words, if expression structure 2200
(Figure 22) represents the expression, execution
engine 802 compares field "kind" 2202 (Figure 22) to
data specifying an incrementing or decrementing -
operator. An incrementing or decrementing operator
operates on a single operand and increments or
decrements, respectively, the operand. If the operator
of the expression is neither an incrementing nor a
decrementing operator, processing transfers to test
step 3320 (Figure 33B) which is described below.
Conversely, if the operator of the expression is an
incrementing or a decrementing operator, processing
transfers from test step 3317 to step 3318.

In step 3318, execution engine- 802 (Figure 8)
evaluates the operand according to logic flow
diagram 2900 (Figure 29) applying operation c since the
operand is used in a computation. As described above,
any errors resulting from application of operation c to
the operand are detected and reported.

Processing transfers from step 3318 (Figure 33B)
to step 3319 in which the incrementing or decrementing

-90-

WO 96/05556 PCT/US95/09691

10

15

20

25

30

35

operator of the expression is used to evaluate the
expression. Step 3319 is analogous to step 3308
(Figure 33A), which is described above. After

step 3319 (Figure 33B), processing according to logic
flow diagram 2902, and therefore step 2902 (Figure 29),

terminates.

"Not" Operator

As described above, if the operator of the
expression is neither an incrementing nor a
decrementing operator, processing transfers from test
step 3317 (Figure 33B) to test step 3320. 1In test
step 3320, execution engine 802 (Figure 8) compares the
operator of the expression to the "not" operator of the
C computer language by comparing field "kind" 2202
(Figure 22) of the expression structure representing
the expression to data specifying the "not" operator.
The "not" operator operates on a single operand and
produces an item having a value corresponding to the
boolean value which is the result of the logical
negation of the operand, treating the operand as a
boolean item itself. A boolean item is an item whose
value corresponds to a boolean value of either true or
false.

If the operator of the expression is not a "not"
operator, processing transfers from test step 3320
(Figure 33B) to test step 3323. Conversely, if the
operator of the expression is a "not" operator,
processing transfers from test step 3320 to step 3321.
In step 3321, execution engine 802 (Figure 8) evaluates
the operand according to logic flow diagram 2900
(Figure 29) applying operation p since the operand is
used in a truth computation. As described above, any
errors resulting from application of operation p to the
operand are detected and reported.

-9}-

WO 96/05556 PCT/US95/09691

10

15

20

25

30

35

Processing transfers from step 3321 (Figure 33B)
to step 3322 in which the "not" operator is used to
evaluate the expression. Step 3322 is analogous to
step 3308 (Figure 33A), which is described above.
After step 3322 (Figure 33B), processing according to
logic flow diagram 2902, and therefore step 2902
(Figure 29), terminates.

” and" gng "OI" OQeIaths

As described above, if the operator of the
expression is not a "not" operator, processing
transfers from test step 3320 (Figure 33B) to test
step 3323. 1In test step 3323, execution engine 802
(Figure 8) compares the operator of the expression to
the "and" and the "or" operators of the C computer
language by comparison of field "kind" 2202 (Figure 22)
of the expression structure representing the expression
to data specifying the "and" and the "or" operators.
The "and" and the "or" operators operate on two
operands, i.e., lhs and rhs, and produce an item having
a boolean value which is the result of the logical
conjunction or disjunction, respectively, of the
operands, treating the operands as boolean items.

If the operator of the expression is neither an
"and" nor an "or" operator, processing transfers from
test step 3323 (Figure 33B) to test step 3327.
Conversely, if the operator of the expression is an
"and" or an "or" operator, processing transfers from
test step 3323 to step 3324.

In step 3324, execution engine 802 (Figure 8)
evaluates the lhs of the expression as an expression
itself according to logic flow diagram 2900 (Figure 29)
while applying operation p. From step 3324
(Figure 33B), processing transfers to step 3325 in
which execution engine 802 (Figure 8) evaluates the rhs
of the expression according to logic flow diagram 2900

-92-

WO 96/05556 PCT/US95/09691

10

15

20

25

30

35

(Figure 29) applying operation p. Operation p is
applied to both the lhs and rhs of the expression since
each is used in a truth computation. Inappropriate use
of either the 1lhs or rhs of the expression in such a
truth computation generates an error message by
application of operation p as described above.
Processing transfers from step 3325 (Figure 33B)
to step 3326 in which the "and" or "or" operator of the
expression is used to evaluate the expression.
Step 3326 is analogous to step 3308 (Figure 33A), which
is described above. After step 3326 (Figure 33B),
processing according to logic flow diagram 2902, and
therefore step 2902 (Figure 29), terminates.

Compound Operator
As described above, if the operator of the

expression is neither an "and" nor an "or" operator,
processing transfers from test step 3323 (Figure 33B)
to test step 3327. 1In test step 3327, execution
engine 802 (Figure 8) determines whether the operator
of the expression is a compound operator by comparison
of field "kind" 2202 (Figure 22) of the expression
structure representing the expression to data
specifying a compound operator. According to the C
computer language, a compound operator, i.e., a comma
(","), operates on two operands, i.e., the lhs and rhs
of the expression, and produces as a result an item
having the value to which the rhs evaluates. In other
words, the two operands are evaluated independently and
the value to which the rhs of the expression evaluates
is the value of the expression.

If the operator of the expression is not a
compound operator, processing transfers from test
step 3327 (Figure 33B) to test step 3330. Conversely,
if the operator of the expression is a compound

=93 -

WO 96/05556 PCT/US95/09691

10

15

20

25

30

35

operator, processing transfers from test step 3327 to
step 3328.

In step 3328, execution engine 802 (Figure 8)
evaluates the lhs of the expression as an expression
itself according to logic flow diagram 2900 (Figure 29)
while applying no operation. From step 3328
(Figure 33B), processing transfers to step 3329 in
which execution engine 802 (Figure 8) evaluates the rhs
of the expression according to logic flow diagram 2900
(Figure 29). The operation applied in the evaluation
of the expression containing the compound operator
according to logic flow diagram 2900 is similarly
applied to the rhs in evaluating the rhs in step 3329
(Figure 33B). The item produced by evaluation of the
rhs of the expression is returned as the item of the
expression itself. After step 3329 (Figure 33B),
processing according to logic flow diagram 2902, and
therefore step 2902 (Figure 29), terminates.

Indirection Operator

As described above, if the operator of the
expression is not a compound operator, processing
transfers from test step 3327 (Figure 33B) to test
step 3330. 1In test step 3330, execution engine 802
(Figure 8) determines whether the operator of the
expression is an indirection operator by comparison of
field "kind" 2202 (Figure 22) of the expression
structure representing the expression to data
specifying an indirection operator. . According to the C
computer language, an indirection operator (i.e., "#*")
operates on a single operand and produces as a result
an item whose value is the value stored in memory,
e.g., memory 104 (Figure 1), at the address indicated
by the operand. For example, the expression "*a"
evaluates to an item whose value is the value stored in
memory at address "a". An indirection operator can
also be used to reference an element of an array. For

-94-

WO 96/05556 PCT/US95/09691

10

15

20

25

30

35

example, the second element of the array defined by the
declaration "int array[10]" can be specified by either
"array[1]" or "*(array+l)". The latter expression
refers to the value stored at an offset from the begin
of the array of the size of an element of the array,
i.e., to the value of the item of the second element of.
the array.

If the operator of the expression is not an
indirection operator, processing transfers from test
step 3330 (Figure 33B) to test step 3335. Conversely,
if the operator of the expression is an indirection
operator, processing transfers from test step 3330 to
test step 3331.

In test step 3331, execution engine 802 (Figure 8)
determines whether the operand is an array. If
expression structure 2200 (Figure 22) represents the
operand, field "“type" 2204 (Figure 22) points to a type
structure specifying the type of the operand. If, for
example, type structure 1612 (Figure 17) is pointed to
by field "type" 2204 (Figure 22) of expression
structure 2200, execution engine 802 (Figure 8)
determines whether the operand is an array by
comparison of field "kind" 1702 (Figure 17) to data
specifying an array.

If the operand is an array, processing transfers
from test step 3331 (Figure 33B) to step 3332 in which
execution engine 802 (Figure 8) evaluates the operand
as an expression itself according to logic flow
diagram 2900 (Figure 29) while applying no operation
and treating the operator as an array indirection,
i.e., as a reference to an element of an array of the
form "*(array+l1l)" described above. Conversely, if the
operand is not an array, processing transfers from test
step 3331 (Figure 33B) to step 3333 in which execution
engine 802 (Figure 8) evaluates the operand of the
expression according to logic flow diagram 2900

-95-

WO 96/05556 PCT/US95/09691

10

15

20

25

30

35

(Figure 29) applying operation i and treating the
operator as a pointer indirection, e.g., as described
above for the expression "*a",

Processing transfers from either step 3332
(Figure 33B) or step 3333 to step 3334 in which
execution engine 802 (Figure 8) dereferences the
operand. In dereferencing the operand, the expression
evaluates to the item to which the operand points. If
the operand does not point to an item, the expression
evaluates to a NULL. After step 3334 (Figure 33B),
processing according to logic flow diagram 2902, and
therefore step 2902 (Figure 29), terminates.

c o) e ence Operator

As described above, if the operator of the
expression is not an indirection operator, processing
transfers from test step 3330 (Figure 33B) to test
step 3335. 1In test step 3335, execution engine 802
(Figure 8) determines whether the operator of the
expression is a component reference operator by
comparison of field "kind" 2202 (Figure 22) of the
expression structure representing the expression to
data specifying a component reference operator.
According to the C computer language, a component
reference operator (i.e., "." or "->") operates on two
operands, i.e., the lhs and rhs of the expression, and
produces as a result the field item of the lhs
specified by the rhs. For example, the declaration
"struct {int a; char #*b} c, *d" declares an item "c"
and a pointer "d" to a second item, each having a first
field item "a" of type "int", i.e., integer, and a
second field item "b" which points to data of type
“char", i.e., character. The expression "c.a"
evaluates to the integer field item of item "c".
Similarly, the expression "d->a" evaluates to the

-96—-

WO 96/05556 PCT/US95/09691

10

15

20

25

30

35

integer field item of the item to which pointer "d"
points.

If the operator of the expression is not a
component reference operator, processing transfers from
test step 3335 (Figure 33B) to test step 3338
(Figure 33C). Conversely, if the operator of the
expression is a component reference operator,
processing transfers from test step 3335 (Figure 33B)
to step 3336.

In step 3336, execution engine 802 (Figure 8)
evaluates the lhs of the expression according to logic
flow diagram 2900 (Figure 29) while applying no
operation. From step 3336 (Figure 33B), processing
transfers to step 3337 in which execution engine 802
(Figure 8) retrieves the field specified by the rhs of
the expression. After step 3337, processing according
to logic flow diagram 2902, and therefore step 2902
(Figure 29), terminates.

Array Reference Operator
As described above, if the operator of the

expression is not a component operator, processing
transfers from test step 3335 (Figure 33B) to test

step 3338 (Figure 33C). In test step 3338, execution
engine 802 (Figure 8) determines whether the operator
of the expression is an array reference operator by
comparison of field "kind" 2202 (Figure 22) of the
expression structure representing the expression to
data specifying an array reference operator. According
to the C computer language, an array reference operator
(i.e., "[]") operates on two operands, i.e., the lhs
and rhs of the expression, and produces as a result the
element of the array of the lhs specified by the rhs.
For example, the declaration "int array(10]" declares
an array of ten integers. The expression "“array([b]"
evaluates to the integer element of the array "array"

-97-

WO 96/05556 PCT/US95/09691

10

15

20

25

30

35

at the position indicated by item "b". 1Item "b", i.e.,
the rhs, is sometimes called an index.

According to the C computer language, an array
reference operator can also be used to reference
offsets from non-array pointers. For example, if
"datum" is a variable of the type "int", the expression .
"datum[2]" evaluates to the data stored in memory 104
(Figure 1) at an offset of two memory locations from
the item representing variable "datum". Two memory
locations is equal to the length of two variables of
the type of variable "datum", i.e., of the type "int".
As described above, in the context of the C computer
language, "array(i]" and "*(array+i)" are equivalent
expressions (see the C Standard at Section 6.3.2.1).

If the operator of the expression is not an array
reference operator, processing transfers from test
step 3338 (Figure 33C) to test step 3344. Conversely,
if the operator of the expression is an array reference
operator, processing transfers from test step 3338 t6
step 3339.

In step 3339, execution engine 802 (Figure 8)
evaluates the index of the_expression according to
logic flow diagram 2900 (Figure 29) while applying
operation ¢ since the index is used in a computation.
From step 3339 (Figure 33C), processing transfers to
test step 3340 in which execution engine 802 (Figure 8)
determines whether the lhs is an array in the manner
described above with respect to test step 3331
(Figure 33B). If the lhs is an array, processing
transfers from test step 3340 (Figure 33C) to step 3341
in which execution engine 802 (Figure 8) evaluates the
rhs of the expression as an index according to logic
flow diagram 2900 (Figure 29) while applying no
operation. Conversely, if the lhs is not an array,
processing transfers from test step 3340 (Figure 33C)
to step 3342 in which execution engine 802 (Figure 8)

-98-

WO 96/05556 PCT/US95/09691

10

15

20

25

30

35

evaluates the rhs of the expression as a pointer
according to logic flow diagram 2900 (Figure 29)
applying operation i.

Processing transfers from either step 3341
(Figure 33C) or step 3342 to step 3343 in which
execution engine 802 (Figure 8) retrieves the element,
which is specified by the rhs, of the array, which is
specified by the lhs. After step 3343 (Figure 33C),
processing according to logic flow diagram 2902, and
therefore step 2902 (Figure 29), terminates.

Address Operator

As described above, if the operator of the
expression is not an array operator, processing
transfers from test step 3338 (Figure 33C) to test
step 3344. 1In test step 3344, execution engine 802
(Figure 8) determines whether the operator of the
expression is an address operator by comparison of
field "kind" 2202 of the expression structure
representing the expression to data specifying an
address operator. According to the C computer
language, an address operator (i.e., "&") operates on a
single operand and produces as a result an item whose
value is the address of the operand. For example, the
expression "&a" evaluates to an item whose value is the
address within memory, e.g., memory 104, at which item
"a" is stored.

If the operator of the expression is not an
address operator, processing transfers from test
step 3344 (Figure 33C) to test step 3347. Conversely,
if the operator of the expression is an address
operator, processing transfers from test step 3344 to
step 3345.

In step 3345, execution engine 802 (Figure 8)
evaluates the operand according to logic flow
diagram 2900 (Figure 29) while applying no operation.
From step 3345 (Figure 33C), processing transfers to

-99-

WO 96/05556 PCT/US95/09691

10

15

20

25

30

35

test step 3346 in which the address operator is used to
evaluate the expression. In other words, the address
of the operand is determined. Step 3346 is analogous
to step 3308 (Figure 33A), which is described above.
After step 3346 (Figure 33C), processing according to
logic flow diagram 2902, and therefore step 2902
(Figure 29), terminates.

Call to a Functj

As described above, if the operator of the
expression is not an address operator, processing
transfers from test step 3344 (Figure 33C) to test
step 3347. 1In test step 3347, execution engine 802
(Figure 8) determines whether the operator of the
expression is a call to a function by comparison of
field "kind" 2202 (Figure 22) of the expression
structure representing the expression to data
specifying a call to a function. According to the C
computer language, a function operator (i.e., "()")
signifies a call to a function. A call to a function
evaluates to the returned item of the function. For
example, the expression "abc()" calls, i.e., invokes
execution of, a function whose identifier is "abc".
Similarly, the expression "xyz(d,e,f)" calls a function
whose identifier is "xyz" supplying items d, e, and £
as parameters.

If the operator of the expression is not a call to
a function, processing transfers from test step 3347
(Figure 33C) to test step 3353. Conversely, if the
operator of the expression is a call to a function,
processing transfers from test step 3347 to loop
step 3348.

Loop step 3348, step 3349, and next step 3350 form
a loop in which each parameter is evaluated. 1In
step 3349, execution engine 802 (Figure 8) evaluates
the parameter according to logic flow diagram 2900

=100-

WO 96/05556 PCT/US95/09691

10

15

20

25

30

35

(Figure 29) while applying no operation. If expression
structure 2200 (Figure 22) represents the expression,
i.e., represents a call to a function, (i) field
"num_operands" 2208 specifies as the number of operands
the number of parameters of the called function and
(ii) field "operands" 2210 is an array of expression
structures, each element of which is an expression
structure representing a parameter of the called
function. Each parameter is evaluated by evaluating
each element of field operands 2210. An array of items
representing the parameters of the called function is
constructed in the loop formed by loop step 3348, step
3349, and next step 3350 and is used as described more
completely below (with respect to Figure 46) to emulate
execution of the called function in step 3352.

Once each parameter of the called function is
evaluated, processing transfers from loop step 3348
(Figure 33C) to step 3351. 1In step 3351, execution
engine 802 (Figure 8) retrieves the function model
structure which represents the effect of execution of
the called function on externals of the called
function. Function model structures are described
above with respect to Figures 11-13. From step 3351
(Figure 33C), processing transfers to step 3352 in
which execution engine 802 (Figure 8) emulates
execution of the called function. The emulated.
execution of a called function is described more
completely below. Briefly, a called function is
emulated by applying operations specified in a function
model structure, such as function model structures
formed from function models (3), (4), and (5) above.
The function model structure corresponding to the
called function specifies operations which represent
the effect of execution of the called function on the
externals of the called function. After step 3352

-101-

WO 96/05556 PCT/US95/09691

10

15

20

25

30

35

(Figure 33C), processing according to logic flow
diagram 2902, and therefore step 2902 (Figure 29),
terminates.

ssignme

As described above, if the operator of the
expression is not a call to a function, processing
transfers from test step 3347 (Figure 33C) to test
step 3353. 1In test step 3353, execution engine 802
(Figure 8) determines whether the operator of the
expression is an assignment operator by comparison of
field "kind" 2202 (Figure 22) of the expression
structure representing the expression to data
specifying an assignment operator. According to the C
computer language, an assignment operator (i.e., "=")
operates on two operands, i.e., the lhs and the rhs,
and transfers the value of the rhs to the lhs. An
assignment evaluates to an item having the value
transferred. For example, the expression "a=b"
transfers the value of item "b" to item "a" and
evaluates to an item having the new value of item "a".

If the operator of the expression is not an
assignment operator, processing according to logic flow
diagram 2902 (Figures 33A-C), and therefore step 2902
(Figure 29) terminates and the expression processed
according to logic flow diagram 2902 evaluates to a
NULL. A NULL is generally used to indicate no valid
value. .

An expression evaluates to a NULL when execution
engine 802 (Figure 8) is unable to -properly evaluate
the expression absent the context of the execution of
the subject function within a computer process. Of
primary importance is not the proper evaluation of the
expression, but the tracking of changes in respective
states of externals and resources. Expressions are
evaluated as much as possible to ensure the most
accurate tracking of such states.

~102-

WO 96/05556 PCT/US95/09691

10

15

20

25

30

35

Conversely, in test step 3353 (Figure 33C), if the
operator of the expression is an assignment operator,
processing transfers to step 3354. 1In step 3354,
execution engine 802 (Figure 8) evaluates the lhs of
the expression as an expression itself according to
logic flow diagram 2900 (Figure 29) while applying no
operation. From step 3354 (Figure 33C), processing
transfers to step 3355 in which execution engine 802
(Figure 8) evaluates the rhs of the expression
according to logic flow diagram 2900 (Figure 29)
applying no operation. Processing transfers from
step 3355 (Figure 33C) to step 3356 in which execution
engine 802 (Figure 8) assigns the value of the item
produced by evaluation of the rhs of the expression to
the item produced by evaluation of the lhs of the
expression. Step 3356 is described in greater detail
below with respect to logic flow diagram 3356
(Figure 45). After step 3356 (Figure 33C), processing
according to logic flow diagram 2902, and therefore
step 2902 (Figure 29), terminates.

Thus, in step 2804 (Figure 28) execution
engine 802 (Figure 8) evaluates the expression
according to logic flow diagram 2900 (Figure 29). 1In
evaluating the expression, execution engine 802
(Figure 8) applies operations to the respective states
of externals and resources when appropriate as
described more completely above. As further described
above, any state violations resulting from application
of operations during evaluation of the expression are
reported to the user as errors in computer program 610.

Processing of a Declaration
As described above, a declaration statement is

processed in step 2808 (Figure 28), which is shown in
greater detail in logic flow diagram 2808 (Figure 34).
A declaration statement is represented by a statement

=103~

WO 96/05556 PCT/US95/09691

10

15

20

25

30

35

structure, such as statement structure 1416

(Figure 21), whose field "pointers" is an array of two
pointers. As described above, the first pointer of a
statement structure representing a declaration
statement points to a declaration structure, such as
declaration structure 1506 (Figure 16), and the second
pointer points to an expression structure which defines
an initial value of the declared item.

Processing according to logic flow diagram 2808
(Figure 34) begins in step 3402 in which an item
structure, such as item structure 2700 (Figure 27), is
created for the declared item. A pointer to the
created item structure is stored in field "item" 1608
(Figure 16) of declaration structure 1506. Field
"type code" 2712 (Figure 27) is set according to the
data type specified in the declaration, i.e., according
to field "type" 1606 (Figure 16) of declaration
structure 1506. Field "initialized"™ 2714 (Figure 27)
is set to indicate that the item is not initialized.

Processing transfers from step 3402 (Figure 34) to
test step 3404 in which execution engine 802 (Figure 8)
determines whether the declaration statement specifies
an initial value for the declared item, i.e., whether
the second pointer of the statement structure
representing the declaration statement points to an
expression structure or is NULL. If the declaration
statement specifies no initial value, i.e., if the
second pointer is NULL, processing according to logic
flow diagram 2808 (Figure 34) terminates. Conversely,
if the declaration statement includes an expression
specifying an initial value, i.e., if the second
pointer points to an expression statement, processing
transfers from test step 3404 to step 3406. In
step 3406, execution engine 802 (Figure 8) evaluates
the expression represented by the expression structure
according to logic flow diagram 2900 (Figure 29) as

=104~

WO 96/05556 ' PCT/US95/09691

10

15

20

25

30

35

described more completely above. In evaluating the
expression according to logic flow diagram 2900, no
operation is applied. Processing transfers from

step 3406 (Figure 34) to step 3408 in which the item to
which the expression evaluates is assigned to the
declared item. 1In addition, field "initialized" 2714
(Figure 27) of the item structure representing the
declared item is set to indicate that the item is
initialized. After step 3408 (Figure 34), processing
according to logic flow diagram 2808, and thus

step 2808 (Figure 28), terminates. Thus, in step 2808,
a new item is created and, if an initial value is
specified, the new item is initialized to that initial
value.

Decision Processing

As described above, execution engine 802
(Figure 8) processes a decision, i.e., an "if"
statement, in step 2812 (Figure 28), which is shown in
greater detail in logic flow diagram 2812 (Figure 35).
Processing begins in step 3502 in which execution
engine 802 (Figure 8) evaluates an expression, which is
the predicate of an "if" statement, according to logic
flow diagram 2900 (Figure 29) while applying operation
pP.- According to the C computer language, an "if"
statement includes a predicate and a second statement.
The predicate is an expression which evaluates to a
boolean item which determines whether the second
statement is executed. For example, the statement "if
(a==b) cil1;" specifies that the second statement, i.e.,
statement "cil", is executed if the predicate, i.e.,
the expression "a==b", evaluates to a boolean item
whose value is "true", i.e., if item "a" is equal to
item "b". If item "a" is not equal to item "b",
statement "cil" is not executed.

=105~

WO 96/05556 PCT/US95/09691

10

15

20

25

30

35

Processing transfers from step 3502 (Figure 35) to
test step 3504 in which execution engine 802 (Figure 8)
determines whether the predicate evaluates to an item
having a known value. Execution engine 802 makes such
a determination by comparison of the item produced by
evaluation of the predicate to NULL. As described
above, an expression evaluates to NULL if execution
engine 802 is unable to properly evaluate the
expression. If the predicate evaluates to an item
having a known value, i.e., to an value other than
NULL, processing transfers from test step 3504
(Figure 35) to test step 3506.

In test step 3506, execution engine 802 (Figure 8)
compares the value of the item produced by evaluation
of the predicate to a boolean value of "true". If the
predicate evaluates to a boolean item whose value is
"true", processing transfers to step 3508 (Figure 35)
in which execution engine 802 (Figure 8) executes the
second statement of the "if" statement. The second _
statement is processed according to logic flow
diagram 2800 (Figure 28) as described more completely
above. Thus, logic flow diagram 2800 is performed
recursively.

If, on the other hand, the predicate evaluates to
a boolean value of "false", processing transfers from
test step 3506 (Figure 28) to step 3510 in which
execution engine 802 (Figure 8) stores in a control
record, which is described more completely below, data
indicating an "else" condition. The control record is
used as described more completely below to properly
transfer control through an emulated execution of the
subject function. After either step 3508 (Figure 35)
or step 3510, processing according to logic flow
diagram 2812, and therefore step 2812 (Figure 28),
terminates.

-106-

WO 96/05556

10

15

20

25

30

35

PCT/US95/09691

As described above, execution engine 802
(Figure 8) determines whether the predicate evaluates
to a known value in test step 3504 (Figqure 35). If the
predicates does not evaluate to a known value, i.e.,
evaluates to a NULL or evaluates to an item whose value
is unknown, processing transfers from test step 3504 to
step 3512. 1In step 3512, execution engine 802
(Figure 8) simulates a boolean value to which the
predicate could evaluate. In one embodiment, execution
engine 802 (Figure 8) randomly chooses a boolean value

of "true" or a boolean value of "false". From
step 3512 (Figure 35), processing transfers to
step 3514.

In step 3514, execution engine 802 (Figure 8)
makes as many inferences as possible from the boolean
value selected in step 3512 (Figure 35). For example,
if the predicate is the expression "a&&b" (i.e., a AND
b), and the predicate is chosen to have a boolean value
of "true", execution engine 802 (Figure 8) |
infers that item "a" and item "b" each have a boolean
value of "true". This can be inferred because the
expression "a&&b" can only evaluate to "true" if a and
b are both "true". Step 3514 (Figure 35) includes
processing the predicate according to logic flow
diagram 3600 (Figure 36). The steps of logic flow
diagram 3600 infer values in an expression from an
assumed boolean value to which the expression is
assumed to evaluate.

"Not" Operator

Processing according to logic flow diagram 3600
begins in test step 3602 in which execution engine 802
(Figure 8) compares the operator of the expression to
the "not" operator, i.e., compares field "kind" 2202
(Figure 22) of the expression structure representing
the expression to data specifying the "not" operator.

-107-

WO 96/05556 PCT/US95/09691

10

15

20

25

30

35

The "not" operator (i.e. "!") operates on a single
operand and produces as a result an item whose value is
the logical negation of the value of the operand. For
example, the expression "!a" is the logical negation of
the operand, i.e., the expression "a'.

If the operator of the expression is not the "not" .
operator, processing transfers from test step 3602
(Figure 36) to test step 3606 which is described below.
Conversely, if the operator of the expression is the
"not" operator, processing transfers from test
step 3602 to step 3604. In step 3604, execution
engine 802 (Figure 8) processes the operand according
to logic flow diagram 3600 (Figure 36) assuming the
logical negation of the assumed value. For example, if
the expression "! (a&&b)", i.e., NOT (a AND b), is
assumed to be "true", the expression "a&&b" is assumed
to be "false". Thus, processing according to logic
flow diagram 3600 is performed recursively. After
step 3604, processing according to logic flow
diagram 3600 terminates.

"end" OZ “QI“ Qgglago:

As described above, if the operator of the
expression is not the "not" operator, processing
transfers from test step 3602 (Figure 36) to test
step 3606. In test step 3606, execution engine 802
(Figure 8) compares the operator of the expression to
the "And" and the "Or" operators. In other words,
execution engine 802 compares field "kind" 2202
(Figure 22) of the expression structure representing
the expression to data specifying the "And" and the
"Or" operators. As described above, the "And" and the
"Or" operators (i.e. "&&" and "} |", respectively)
operate on two operands, i.e., the lhs and the rhs, and
produce as a result an item whose value is the logical
conjunction and logical disjunction, respectively, of

=108~

WO 96/05556 PCT/US95/09691

10

15

20

25

30

35

the values of the two operands. If the operator of the
expression is neither the "And" nor the "Or" operator,
processing transfers from test step 3606 (Figure 36) to
test step 3610 which is described below. Conversely,
if the operator of the expression is either the "And"
or the "Or" operator, processing transfers from test
step 3606 to step 3608.

Step 3608 is shown in greater detail as logic flow
diagram 3608 (Figure 37) in which processing begins in
test step 3702. 1In test step 3702, execution
engine 802 (Figure 8) compares the operator of the
expression to the "And" operator and compares the
boolean value to which the expression is assumed to
evaluate, i.e., the assumed value, to a boolean value
of "true". If the operator is not the "And" operator
or the assumed value is not "true", processing
transfers from test step 3702 to test step 3706, which
is described below. Conversely, if the operator is the
"And" operator and the assumed value is "true",
processing transfers from test step 3702 to step 3704.

In step 3704, each operand, i.e., each of the lhs
and the rhs of the expression, is processed as an
expression according to logic flow diagram 3600
(Figure 36) with an assumed value of "true". Such an
inference that both the lhs and the rhs are "true" is
proper since, if the expression "a && b" is "true",
both operands, i.e., expression "a" and expression "b",
must be "true". As described above, the operator "&&"
of the C computer language signifies a logical or
truth-wise AND operation. After step 3704 (Figure 37),
processing according to logic flow diagram 3608, and
therefore step 3608 (Figure 36), terminates.

As described above, if the operator is not the
"And" operator or the assumed value is not "true",
processing transfers from test step 3702 (Figure 37) to
test step 3706. In test step 3706, execution

=109~

WO 96/05556 PCT/US95/09691

10

15

20

25

30

35

engine 802 (Figure 8) compares the operator of the
expression to the "Or" operator and the assumed value
to the boolean value of "false". If the operator of
the expression is not the "Or" operator or the assumed
value is not "false", processing according to logic
flow diagram 3608, and therefore step 3608 (Figure 36),
terminates. Conversely, if the operator is the "Or"
operator and the assumed value is "false", processing
transfers from test step 3706 (Figure 37) to step 3708.
In step 3708, each operand, i.e., each of the lhs

and the rhs of the expression, is processed as an
expression according to logic flow diagram 3600
(Figure 36) with an assumed value of "false". Such an
inference that the lhs and the rhs are "false" is
proper since, if the expression "a || b" is "false",
both operands, i.e., expression "a" and expression "b",
must be "false". As described above, the operator "||"
of the C computer language signifies a logical or
truth-wise OR operation. After step 3708 (Figure 37);
processing according to logic flow diagram 3608, and
therefore step 3608 (Figure 36) terminates.

_After step 3608, processing according to logic
flow diagram 3600 terminates.

Relational Operator

As described above, if the operator of the
expression is neither the "And" operator nor the "Or"
operator, processing transfers from test step 3606 to
test step 3610. In test step 3610, -execution
engine 802 (Figure 8) compares the operator of the
expression to the following relational operators: less
than ("<"), less than or equal to ("<="), greater than
(">"), greater than or equal to (">="), equal to
("=="), and not equal to ("!="). Specifically,
execution engine 802 compares field "kind" 2202

(Figure 22) of the expression structure representing

=110~

WO 96/05556 PCT/US95/09691

10

15

20

25

30

35

the expression to data specifying each of those
relational operators. As described above, a relational
operator operates on two operands, i.e., the lhs and
rhs of the expression, and produces as a result a
boolean item whose value corresponds to the relation
between the lhs and the rhs. If the operator of the
expression is not a relational operator, processing
transfers from test step 3610 (Figure 36) to test
step 3614, which is described below. Conversely, if
the operator of the expression is a relational
operator, processing transfers from test step 3610 to
step 3612.

In step 3612, execution engine 802 (Figure 8)
evaluates the relational operator. Step 3612
(Figure 36) is shown in greater detail as logic flow
diagram 3612 (Figure 38) in which processing begins in
step 3802. In step 3802, execution engine 802
(Figure 8) determines whether both the lhs and rhs are
known, i.e., evaluate to an item with a known value,
and whether both the lhs and rhs are unknown, i.e.,
evaluate to an item whose value is unknown. If an item
represented by item structure 2700 (Figure 27) has an
unknown value, field "type code" 2712 specifies that
the type of the item is unknown. If both the lhs and
rhs of the expression are known or both are unknown,
processing according to logic flow diagram 3612
(Figure 38), and therefore step 3612 (Figure 36),
terminates since nothing is left to be inferred if both
operands are known and since nothing more can be
inferred if both operands are unknown. Conversely, if
one operand is known and one operand is unknown,
processing transfers from test step 3802 (Figure 38) to
test step 3804.

In test step 3804, execution engine 802 (Figure 8)
determines whether either operand is undefined. An
operand is undefined if the operand does not evaluate

-111-

WO 96/05556 PCT/US95/09691

10

15

20

25

30

35

to an item which is represented by an item structure,
i.e., if the operand evaluates to NULL. In such a
case, there is no item to which to assign an inferred
value. Therefore, if either operand is undefined,
processing according to logic flow diagram 3612
(Figure 38), and therefore step 3612 (Figure 36),
terminates. Conversely, if neither operand is
undefined, processing transfers from test step 3804
(Figure 38) to test step 3806.

In test step 3806, execution engine 802 (Figure 8)
compares the operator of the expression to the "equal"
operator and to the "not-equal" operator and compares
the assumed value to the boolean values "true" and
"false". If neither (i) the operator of the expression
is the "equal" operator and the assumed value is "true"
nor (ii) the operator of the expression is the "not-
equal" operator and the assumed value is "false",
processing transfers from test step 3806 (Figure 38) to
test step 3814 which is described below. Conversely,
if either (i) the operator of the expression is the
"equal" operator and the assumed value is "true" or
(ii) the operator of the expression is the "not-equal"
operator and the assumed value is "false", processing
transfers from test step 3806 to test step 3808.

At test step 3808, one operand has a known value,
and the other operand has an unknown value. The
operand whose value is known evaluates to a "known
item". The operand whose value is unknown evaluates to
an "unknown item". Furthermore, at test step 3808, the
two operands are assumed to have equivalent values. 1In
test step 3808, execution engine 802 (Figure 8)
determines whether the known item has a NULL value. An
item has a NULL value if (i) the type of the item, as
specified in field "type code", e.g., field
"type code" 2712 (Figure 27) of item structure 2700,
indicates that the type of the item is either "long" or

=112~

WO 96/05556 PCT/US95/09691

10

15

20

25

30

35

"pointer" and (ii) the value of the item, as specified
in field "value", e.g., field "value" 2706 of item
structure 2700, indicates that the value of the item is
zero.

If the known item has a NULL value, processing
transfers from test step 3808 (Figure 38) to step 3810
in which any resource associated with the unknown item
is marked invalid by application of operation x. The
resource is invalid since the value of the unknown item
to which the resource is associated is assumed to be
equal to the known item whose value is NULL, i.e.,
since a pointer to the resource is assumed to be NULL.

Processing transfers from step 3810 to step 3812.
In addition, if the known item does not have a NULL
value, processing transfers from test step 3808
directly to step 3812. 1In step 3812, the value of the
known item is assigned to the unknown value in a manner
described more completely below. Thus, the value of
the unknown item is inferred from the value of the
known item if the known item and the unknown item are
assumed to be equal. After step 3812, processing
according to logic flow diagram 3612, and therefore
step 3612 (Figure 36), terminates.

As described above, if neither (i) the operator of
the expression is the "equal" operator and the assumed
value is "true" nor (ii) the operator of the expression
is the "not-equal" operator and the assumed value is
"false", processing transfers from test step 3806
(Figure 38) to test step 3814. 1In test step 3814,
execution engine 802 (Figure 8) determines whether (i)
the operator of the expression is the “not-equal"
operator and the assumed value is "true" or whether
(ii) the operator of the expression is the "equal"
operator and the assumed value is "false". If neither
condition (i) nor condition (ii) exists, processing

-113-

WO 96/05556 PCT/US95/09691

10

15

20

25

30

35

according to logic flow diagram 3612, and therefore
step 3612 (Figure 36), terminates. Otherwise, if
either condition (i) or condition (ii) exists,
processing transfers from test step 3814 (Figure 38) to
test step 3816.

At test step 3816, execution engine 802 (Figure 8)
infers that the two operands, i.e, lhs and rhs, are not
equal to one another. If the known item has a NULL
value, the unknown item is inferred to have a non-NULL
value. In the context of many implementations of the C
computer language, NULL is zero. Therefore, the
unknown item is inferred to have a non-zero value. 1In
test step 3816 (Figure 38), execution engine 802
(Figure 8) compares the value of the known item to
NULL. If the value of the known item is not NULL,
processing according to logic flow diagram 3612
(Figure 38) terminates. Conversely, if the value of
the known item is NULL, processing transfers to test
step 3818. -

In test step 3818, execution engine 802 (Figure 8)
determines whether a resource in state Q is associated
with the unknown item. As _described above, a resource
is in state Q when it is unknown whether the resource
is in an allocated state or in an unallocated or
invalid state. If the unknown item is associated with
a resource in state Q, processing transfers to
step 3820 (Figure 38) in which operation a is applied
to the resource associated with the unknown item.
Operation a is applied to place the -resource in a
definitely allocated state since the item with which
the resource is associated is assumed to be not equal
to NULL. From step 3820, processing transfers to
step 3822. In addition, if the unknown item is not
associated with a resource in state Q, processing
transfers from test step 3818 directly to step 3822.

=-114-

WO 96/05556 PCT/US95/09691

10

15

20

25

30

35

In step 3822, field "type code" 2712 (Figure 27)
of the item structure representing the unknown item is
set to indicate that the item is non-zero, and field
*invalid _pointer" 2720 of the item structure
representing the unknown item is set to indicate that
the unknown item is not an invalid pointer, i.e., does
not have a NULL value. After step 3822, processing
according to logic flow diagram 3612 terminates.

Thus, according to logic flow diagram 3612, and
therefore step 3612 (Figure 36), inferences are drawn
when one operand of the expressioh is known and the
other operand is unknown and the two operands are
assumed to be equal or are assumed to be not equal.
Inferences are drawn both with respect to the value of
operands of the expression and with respect to the
state of resources associated with operands of the
expression. After step 3612, processing according to
logic flow diagram 3600 terminates.

Compound Operator
As described above, if the operator of the

expression is not a relational operator, processing
transfers from test step 3610 to test step 3614. 1In
test step 3614, execution engine 802 (Figure 8)
compares the operator of the expression to a compound
operator (","). In other words, execution engine 802
compares field "kind"™ 2202 (Figure 22) of the
expression structure representing the expression to
data specifying a compound operator. A compound
operator operates on two operands, i.e., the lhs and
rhs. Both the lhs and rhs are evaluated, and the
expression evaluates to the rhs. For example,
evaluation of the expression "a,b" evaluates both
operand "a" and operand "b", and the expression "a,b"

evaluates to "b".

=115~

WO 96/05556 PCT/US95/09691

10

15

20

25

30

35

If the operator is a compound operator, processing
transfers to step 3616 (Figure 36) in which execution
engine 802 (Figure 8) processes the rhs according to
logic flow diagram 3600 (Figure 36) supplying as the
assumed value the boolean value to which the expression
is assumed to evaluate. The value of the rhs is
inferred from the assumed value of the expression since
the expression evaluates to the rhs. For example, if
the expression "a==b, c==d" is assumed to be true, it
is inferred that the rhs, namely, the expression
"c==d", is true. Thus, processing according to logic
flow diagram 3600 is recursively applied to the rhs of
the expression in step 3616. After step 3616,
processing according to logic flow diagram 3600
terminates. If the operator is not a compound
operator, processing according to logic flow diagram
3600 terminates and step 3616 is skipped.

Thus, by recursively processing expressions and
subexpressions according to logic flow diagram 3600 as
described above, execution engine 802 (Figure 8) infers
as much about the items of an expression, and resources
associated with items of an expression, from the
assumed value of the expression as is practicable in
step 3514 (Figure 35). Processing transfers from
step 3514 to test step 3506 which is described in
greater detail above.

Thus, according to logic flow diagram 2812,
execution engine 802 (Figure 8) processes a decision in
an "if" statement in step 2812 (Figure 28).

Return Processing

As described above, a "return" statement is
processed in step 2816. A "return" statement
terminates execution of a function and assigns a value
to the returned item of the function if a returned item
is defined. Step 2816 is shown in greater detail as

=116~

WO 96/05556 PCT/US95/09691

10

15

20

25

30

35

logic flow diagram 2816 (Figure 39) in which processing
begins in step 3902.

In step 3902, execution engine 802 (Figure 8)
determines whether the "return" statement specifies a
returned item. The "return" statement specifies a
returned item if the "return" includes an expression.
For example, if statement structure 1416 (Figure 21)
represents a "return" statement, field "pointers" 2110
is a single pointer which points to an expression
structure or is NULL. If the "return" statement
specifies a returned item, i.e., if field
"pointers" 2110 points to an expression structure,
processing transfers from test step 3902 (Figure 39) to
step 3904 in which the expression of the "return"
statement is evaluated according to logic flow
diagram 2900 (Figure 29) applying no operation. While
no operation is applied in evaluating the expression of
the "return" statement in step 3904 (Figure 39), an
operation can be applied to an operand of the ‘
expression as described above with respect to
steps 3306, 3307, and 3314 (Figure 33A). Fronm
step 3904 (Figure 39) processing transfers to step 3906
in which execution engine 802 (Figure 8) assigns the
item produced by evaluation of the expression in
step 3904 (Figure 39) to the item structure
representing the returned item of the subject function.
The assignment of the value of one item to another item
is described in greater detail below.

Processing transfers from step 3906 to step 3908.
In addition, if the "return" statement does not specify
a returned item, processing transfers directly from
test step 3902 to step 3908. 1In step 3908, execution
engine 802 (Figure 8) stores in the control record data
indicating a "return" condition which is used as
described more completely below to control flow through
the subject function during emulated execution of the

-117-

WO 96/05556 PCT/US95/09691

10

15

20

25

30

35

subject function. After step 3908 (Figure 39),
processing according to logic flow diagram 2816, and
therefore step 2816 (Figure 28), terminates.

Block Processing
In most functions, a block of statements define

the behavior of the function. 1In the context of the C
computer language, a block of statements is enclosed
between an open bracket, i.e., "{", which is itself a
block statement, and a closing bracket, i.e., "}". It
is common in functions defined in the C computer
language for a first block of statements to include a
second block of statements. For example, source code
excerpt (1) includes a first block of statements from
line 9 to line 32 which includes a second block of
statements from line 16 to 21. Herein, the first block
of statements is a superblock of the second block of
statements, and the second block of statements is a
subblock of the first block of statements.

As described above, a block statement structure
includes a pointer to the statement structure, e.g.,
statement structure 1416 (Figure 21), representing the
first statement of the block. Statement structure 1416
includes a field "next" 2106 which is used as described
above to maintain a singly-linked list of statement
structures representing the statements of the block.

As described above, a block statement is processed in
step 2820 (Figure 28), which is shown in greater detail
as logic flow diagram 2820 (Figure 40) which in turn
illustrates the processing of the statement structures
of a block of statements to emulate execution of the
statements of the block.

In step 4002, execution engine 802 (Figure 8)
retrieves the statement structure representing the
first statement of the block. As described above, the

statement structure representing the first statement of

-118-

WO 96/05556 PCT/US95/09691

10

15

20

25

30

35

the block is pointed to by the block statement
structure. The retrieved statement structure is the
current statement structure. Processing transfers from
step 4002 (Figure 40) to test step 4004.

In test step 4004, execution engine 802 (Figure 8)
determines whether the current statement structure
represents an "else" statement and the control record
indicates an "else" condition. An "else" statement
according to the C computer language is well-known and
is described in the C Standard at Section 6.6.4.1. A
statement structure, such as statement structure 1416
(Figure 21), represents an "else" statement if field
"kind" 2102 so indicates. A control record in
maintained within execution engine 802 (Figure 8) to
manage flow of control during emulated execution of the
subject function. As described above with respect to
step 3510 (Figure 35), the control record is set to
indicate an "else" condition when processing an "if"
statement and the predicate of the "if" statement
evaluates to a boolean value of "false". If the
current statement structure does not represent an
"else" statement or the control record indicates an
"else" condition, processing transfers from test
step 4004 (Figure 40) to step 4006 in which execution
of the statement represented by the current statement
structure is emulated according to logic flow
diagram 2800 (Figure 28) as described above.
Conversely, if the current statement structure
represents an "else" statement and the control record
does not indicate an "else" condition, processing
transfers from test step 4004 (Figure 40) to step 4014,
which is described below, thereby bypassing step 4006.

As described above, a block of statements can
include a subblock. As described above, in step 4006
the current statement structure is processed according
to logic flow diagram 2800 (Figure 28). Therefore,

=119-

WO 96/05556 PCT/US95/09691

10

15

20

25

30

35

execution of a block statement in step 4006 (Figure 40)
causes a recursive performance of step 2820 (Figure
28), and therefore the steps of logic flow diagram 2820
(Figure 40), to emulate execution of the subblock.

Once the statements of the subblock are processed
according to logic flow diagram 2820, processing of the
block statement in step 4006 completes and processing
of the statements of the superblock according to logic
flow diagram 2820 continues. Processing transfers from
step 4006 to test step 4008.

In test step 4008, execution engine 802 (Figure 8)
compares the control record, which is set by emulated
execution of a statement as described above with
respect to logic flow diagram 2800 (Figure 28), to data
indicating a "return" condition, an "exit" condition,
or a "long jump" condition. The control record is set
to indicate a "return" condition upon emulated
execution of a return statement in step 4006
(Figure 40) as described above with respect to
step 3908 (Figure 39). An "exit" condition arises when
execution engine 802 (Figure 8) processes a call to a
library function exit(), which is described in the C
Standard at Section 7.10.4.3. A "long jump" condition
arises when execution engine 802 processes a call to a
library function longjmp(), which is described in the C
Standard at Section 7.6.2.1. If the control record
indicates a "return" condition, an "exit" condition, or
a "long jump" condition, processing according to logic
flow diagram 2820 (Figure 40) terminates. Conversely,
if the control record indicates neither a "return"
condition, an "exit" condition, nor a "long jump"
condition, processing transfers from test step 4008 to
test step 4010.

In test step 4010, execution engine 802 (Figure 8)
compares the control record to data indicating a
"break" condition or a "continue" condition. The

=120~

WO 96/05556 PCT/US95/09691

10

15

20

25

30

35

control record is set to indicate a "break" condition
or a "continue" condition upon emulated execution of a
"break" statement or a "continue" statement,
respectively, in step 4006. If the control record is
set to indicate either a "break" condition or a
"continue" condition, processing transfers to step 4012
in which the control record is set to indicate a "next"
condition and processing according to logic flow
diagram 2820 terminates.

A "next" condition is the normal processing
condition in which execution of the next statement of a
block is emulated. Thus, if a current block of
statements executes a "break" statement, processing of
the current block terminates and processing transfers
to the statement which immediately follows the current
block within a superblock of the current block. By
contrast, a "return" condition does not reset the
control record. Thus, emulated execution of a "retugn"
statement in step 4006 terminates processing of a
current block through test step 4008 as described above
and similarly terminates processing of any superblocks
of the current block. -

If, on the other hand, the control record
indicates neither a "break" condition nor a "continue"
condition, processing transfers from test step 4010 to
step 4014. In addition, processing transfers from test
step 4004 to step 4014 if the current statement
structure represents an "else" statement and the
control record does not indicate an-"else" condition as
described above. In step 4014, execution engine 802
(Figure 8) retrieves field "next" 2106 (Figure 21{ of
the current statement structure and makes the retrieved
statement structure the current statement structure,
thereby replacing the previous current statement
structure.

=121~

WO 96/05556 PCT/US95/09691

10

15

20

25

30

35

Processing transfers from step 4014 (Figure 40) to
test step 4016 in which execution engine 802 (Figure 8)
compares a pointer to the current statement structure
to a NULL. If the pointer to the current statement
structure is NULL, the last statement of the block of
statements has been processed according to logic flow
diagram 2820 (Figure 40) and processing according to
logic flow diagram 2820 terminates. Conversely, if the
pointer to the current statement structure is not NULL,
processing transfers from test step 4016 to test
step 4004 which is described above.

Thus, execution of a block of statements is
emulated and flow of control through the block of
statements is tracked according to logic flow
diagram 2820 (Figure 40).

Leak Processing
As described above, leaks are detected in

step 2606 (Figure 26) once execution of the statements
of the subject function has been emulated. Step 2606
is shown in greater detail as logic flow diagram 2606
(Figure 41). Processing according to logic flow
diagram 2606 begins in loop step 4102. Loop step 4102
and next step 4106 form a loop in which each external
of the subject function is processed according to
step 4104. 1In step 4104, execution engine 802
(Figure 8) marks all resources reachable by an
external. A resource is reachable by an external if
the resource is associated with the external or any
item in the bunch which includes the external. Bunches
are described in greater detail below. As an
illustrative example, a resource associated with an
element of an array, which is a type of bunch, is
reachable by any element of that array.

A resource, e.g., a resource represented by
resource state structure 3100 (Figure 31), is marked by

-122-

WO 96/05556 PCT/US95/09691

10

15

20

25

30

35

setting field "mark" 3114 of resource state

structure 3100 to so indicate. Once each resource
reachable by each external is marked in the loop formed
by loop step 4102 (Figure 41) and next step 4106,
processing transfers from loop step 4102 to loop

step 4108.

Loop step 4108 and next step 4114 form a loop in
which each resource is processed. Resource state
structures are kept in a singly-linked list to
facilitate processing of all resource state structures.
For example, resource state structure 3100 (Figure 31)
includes a field "next" 3112 which points to the next
resource state structure in the singly-linked list.

For each resource represented by a resource state
structure in memory 104 (Figure 1), processing
transfers from loop step 4108 (Figure 41) to test
step 4110.

In test step 4110, execution engine 802 (Figure 8)
determines whether a resource is allocated, i.e., in
state A or state Q, and is not marked. A resource
which is allocated and is not marked, i.e., is not
reachable by any external, is leaked. 1If the resource
is allocated and not marked, processing transfers from
test step 4110 (Figure 41) to step 4112 in which the
leak is reported to the user. If the resource is not
allocated, i.e., not in state A or state Q, or is
marked, processing transfers from test step 4110
directly to next step 4114. 1In addition, processing
transfers from step 4112 to next step 4114. Processing
transfers from next step 4114 to loop step 4108 in
which the next resource is processed as described above
until all resources have been processed. Once every
resource is processed according to the loop defined by
loop step 4108 and next step 4114, processing according
to logic flow diagram 2606, and therefore step 2606
(Figure 26), terminates.

=123~

WO 96/05556 PCT/US95/09691

10

15

20

25

30

35

Thus, leaks are detected and reported according to
logic flow diagram 2606, and therefore step 2606
(Figure 26).

ose ternals

As described above, in step 2608, each external is
composed according to logic flow diagram 4200
(Figure 42). Processing according to logic flow
diagram 4200 begins in test step 4202 in which
execution engine 802 (Figure 8) determines whether a
resource is associated with the external. As an
illustrative example, determining whether a resource is
associated with the external represented by external
list structure 1414 (Figure 15) is described. Field
"first_decl" 1502 points to declaration structure 1506,
which includes a field "item" 1608. Field "item" 1608
points to an item structure, e.g., item structure 2700.
If field "resource" 2702 (Figure 27) of item structure
2700 points to a resource state structure, a resource
is associated with the external represented by external
list structure 1414 (Figure 15). If the external is
associated with a resource which is represented, for
example, by resource state structure 3100 (Figure 31),
processing transfers from test step 4202 (Figure 42) to
step 4204 in which the field "state" 3102 (Figure 31)
is retrieved. Processing transfers from step 4204 to
step 4210 which is described below.

If no resource is associated with the external,
processing transfers from test step 4202 to test
step 4206. 1In test step 4206, execution engine 802
(Figure 8) determines whether the external is an
invalid pointer. An external is not an invalid pointer
if the type of the external, as specified by field
"type_code" (e.g., field "type_code" 2712 (Figure 27))
of the item structure representing the item associated
with the external, is VALUE_TYPE NON ZERO. Type

-124-

WO 96/05556 PCT/US95/09691

10

15

20

25

30

35

VALUE_TYPE_NON_ZERO indicates that the item has a value
other than zero. An external is an invalid pointer if
field "invalid pointer", e.g., field

"invalid pointer" 2720, of the item structure
representing the item associated with the external so
indicates or if the value of the external is zero or
-1.

If the external is an invalid pointer, processing
transfers from test step 4206 (Figure 42) to step 4208
in which the state of the resource of the external is
set to state X. For example, if a resource represented
by resource state structure 3100 (Figure 31) is
associated with an external represented by external
state structure 3000 (Figure 30), data indicating state
X is stored in field "state" 3102 (Figure 31). From
step 4208 (Figure 42) processing transfers to
step 4210. In addition, processing transfers to
step 4210 from step 4204, as described above, and frqm
test step 4206, if the external is not an invalid
pointer.

In step 4210, the composite RS, DK, and CP states
of the external are updated. The composition of states
is described in greater detail above with respect to
Figures 3B, 4B, and 5B. After step 4210, processing
according to logic flow diagram 4200 terminates.

utpu el of Functio

As described above, model machine 808 (Figure 8)
creates and stores a model of the subject function in
step 2412 (Figure 24). Step 2412 is shown in greater
detail as logic flow diagram 2412 (Figure 43).
Processing begins in step 4302 in which model
machine 808 (Figure 8) allocates and initializes a
function model structure such as function model
structure 1100 (Figure 11). Function model
structure 1100 is initialized, in one embodiment, by

-125-

WO 96/05556 PCT/US95/09691

10

15

20

25

30

35

storing in field "name" 1102, field "description" 1108,
field "file" 1110, field "line" 1112, and field
sautomated" 1116 (i) the identifier of the function
whose behavior is modelled in function model
structure 1100, (ii) a textual description of the
function, (iii) the name of the source code file and
(iv) line within the source code file at which the
function is defined, and (v) a boolean value indicating
that the function is automatically modelled,
respectively. A function is automatically modelled if
the model of the function is generated by model
machine 808 (Figure 8). Conversely, if the model of
the function is generated by a user of a text editor
(not shown) in computer 100 (Figqure 1), the function is
manually modelled. For example, library functions
fopen(), malloc(), and free() are manually modelled.
Field "automated" 1116 (Figure 11) of a function model
structure which is read from model description file 604
(Figure 6) in step 904 (Figure 9) as described above is
set to indicate that the function is manually modelled.
From step 4302 (Figure 43), processing transfers
to step 4304 in which an external model structure, such
as external model structure 1200 (Figure 12), is
created for each external of the subject function and
is inserted into the singly-linked list of external
model structures in the corresponding function model
structure. For example, field "first external" 1104
(Figure 11) and field "last external" 1106 are used as
described above to associate with function model
structure 1100 a singly-linked list of external model

_ structures. The processing of a single external

according to step 4304 (Figure 43) is shown in logic
flow diagram 4400 (Figure 44).

Processing according to logic flow diagram 4400
begins in step 4402 in which model machine 808
(Figure 8) determines the type of the external, i.e.,

-126-

WO 96/05556 PCT/US95/09691

10

15

20

25

30

35

whether the external is a parameter, returned item, or
an item (i.e., either a globally-defined or a static
item). If the external is a parameter, model

machine 808 (Figure 8) determines the position of the
parameter in the definition of the subject function.
The first parameter is parameter number zero, and the
number of the last parameter is one less than the
number of parameters defined for the subject function.
If the external is an item, model machine 808

(Figure 8) determines the identifier of the item. The
type of the external is stored in field "type" 1204 of
external model structure 1200 (Figure 12) as described
above. Similarly, the parameter number, if one is
determined, is stored in field "parameter number" 1206,
and the identifier of the item, if one is determined,
is stored in field "name" 1208.

Processing transfers from step 4402 to step 4404
in which model machine 808 (Figure 8) determines the
number of operations, and the particular operations,
applied to the external during an emulated execution of
the subject function. In step 4404, the operations and
number of operations applied is determined according to
the composite DK state of the external. Table N below
summarizes the operations and number of operations
derived from the composite DK state of an external.

Table N
Composite DK State 0. O S. Operations

-

© N N KB B B O
X & X B
5 o

o] E; § ®" O » O

-127-

WO 96/05556 PCT/US95/09691

10

15

20

25

30

35

Thus, for example, if the composite DK state of an
external is state A, emulated execution of the subject
function applies operation a to the external. 1If, for
example, the composite DK state of an external is state
KQ, emulated execution of the subject function applies
operation k, then operation m, to the external. As
described above, the composite states of an external
specific the comprehensive effect of multiple emulated
executions of the subject function. Thus, the
operations derived from the composite states of the
external represent a distillation of the cumulative
effect of execution of the subject function on the
external.

Processing transfers from step 4404 to test
step 4406, in which model machine 808 (Figure 8)
compares the number of operations to be applied to the
external to zero. If the number of operations to be
applied to the external equals zero, processing
transfers to step 4408 (Figure 44) in which model
machine 808 (Figure 8) determines the number of
operations, and the particular operations, applied to
the external during an emulated execution of the
subject function according to the composite CP state of
the external. Table O below summarizes the operations
and number of operations derived from the composite CP
state of an external.

Table O
Composite CP State No. of Ops. Operations
0] 0
N 0
C 1 c
I 1 i
P 1 p

-128-

WO 96/05556 PCT/US95/09691

10

15

20

25

30

35

Thus, if the composite DK state of an external
provides insufficient information regarding the
cumulative effect of execution of the subject routine
on the external, the composite CP state of the external
is used to determine the cumulative effect of execution
of the subject function. As an illustrative example,
if the composite CP state of an external is state I,
emulated execution of the subject function applies
operation i to the external. 1In either step 4404
(Figure 44) or step 4408, the operations and number of
operations to be applied to the external are stored in
fields "operations" 1214 (Figure 12) and
"number_of operations" 1212, respectively, of external
model structure 1200. Processing transfers from
step 4408 (Figure 44) to step 4410. In addition, if
model machine 808 (Figure 8) determines in test
step 4406 (Figure 44) that the number of operations to
be applied to the external as determined in step 4404
is not zero, processing transfers directly from test
step 4406 to step 4410.

In step 4410, model machine 808 (Figure 8)
determines the initial state of a resource associated
with the external from the composite RS state of the
external. In other words, the composite RS state of
the external is stored in field "initial_state" 1220
(Figure 12) of external model structure 1200. The
composite RS state of an external reflects the
cumulative effect of execution of the subject function
on a resource associated with the external. Processing
transfers from step 4410 (Figure 44) to test step 4412
in which model machine 808 (Figure 8) compares the
composite RS state of the external to state NONE which
indicates that no resource is associated with the
external. If no resource is associated with the
external, processing transfers from test step 4412
(Figure 44) to step 4414 in which a boolean value of

-129-

WO 96/05556 PCT/US95/09691

10

15

20

25

30

35

"false" is stored in field "new_resource" 1218

(Figure 12) of external model structure 1200.
Conversely, if a resource is associated with the
external, i.e., if the composite RS state of the
external is other than NONE, processing transfers from
test step 4412 (Figure 44) to step 4416. In step 4416,
model machine 808 (Figure 8) stores a boolean value of
"true" in field "new_resource" 1218 (Figure 12) of
external model structure 1200 to indicate that emulated
execution of the subject function creates a new
resource associated with the external.

Processing transfers from either step 4414
(Figure 44) or step 4416 to step 4418 in which model
machine 808 (Figure 8) inserts external model
structure 1200 (Figure 12) into the singly-linked list
of external model structures of function model
structure 1100 (Figure 11). After step 4418
(Figure 44), processing according to logic flow
diagram 4400 terminates.

After each external of the subject function is
processed according to logic flow diagram 4400 in
step 4304 (Figure 43), processing transfers to
step 4306 in which function model structure 1100
(Figure 11), representing the subject function, is
stored in a data structure which includes all function
model structures. After step 4306, processing
according to logic flow diagram 2412, and therefore
step 2412 (Figure 24), terminates. The function model
represented by the stored function model structure can
then be used as described more completely below to
emulate execution of the subject function when
analyzing other functions which call the subject
function.

Assignment of the Value of One Item to Another Item

=130~

WO 96/05556

10

15

20

25

30

35

PCT/US95/09691

As described above, in step 3356 (Figure 33C), the
value of one item, e.g., the rhs, is assigned to
another item, e.g., the lhs. Step 3356 is shown in
greater detail as logic flow diagram 3356 (Figure 45)
in which processing begins in test step 4502. 1In test
step 4502, execution engine 802 (Figure 8) determines
whether the lhs and the rhs are represented by items.
As described above, an expression, such as the lhs or
the rhs, evaluates to an item if execution engine 802
has sufficient information to evaluate the expression
and evaluates to a NULL otherwise. If an expression
evaluates to an item, the expression is represented by
that item. If either the lhs or the rhs is not
represented by an item, processing transfers from test
step 4502 (Figure 45) to test step 4510 which is
described below. Conversely, if both the lhs and the
rhs are represented by items, processing transfers from
test step 4502 to step 4504.

In step 4504, fields of the item representing the
lhs, i.e., the lhs item, are made equivalent to
corresponding fields of the item representing the rhs,
i.e., the rhs item. Specifically, data stored in
fields of the rhs item corresponding to fields
"resource" 2702 (Figure 27), "external" 2704,

"value" 2706, "type code" 2712, "initialized" 2714, and
"invalid pointer" 2720 of item structure 2700 are
copied and stored in respective corresponding fields of
the lhs item. Processing transfers from step 4504
(Figure 45) to test step 4506 in which execution

engine 802 (Figure 8) determines whether the rhs is
initialized. Execution engine 802 makes such a
determination by comparing a field of the rhs item
corresponding to field "initialized" 2714 (Figure 27)
of item structure 2700 to a boolean value of "false".

If the rhs is initialized, i.e., if the field of
the rhs item corresponding to field "initialized" 2714

-131-

WO 96/05556

10

15

20

25

30

35

PCT/US95/09691

(Figure 27) of item structure 2700 has a boolean value
of "true", processing according to logic flow

diagram 3356, and therefore step 3356 (Figure 33C),
terminates. Conversely, if the rhs is uninitialized,
i.e., if the field of the rhs item corresponding to
field "initialized" 2714 (Figure 27) of item

structure 2700 has a boolean value of "false",
processing transfers from test step 4506 (Figure 45) to
step 4508. 1In step 4508, an error message is issued,
to an error log file and/or to a display on video
monitor 118 as described above, warning of the use of
uninitialized data. Since the field of the rhs item
corresponding to field "initialized" 2714 (Figure 27)
is copied to the corresponding field in the lhs item in
step 4504 as described above, the lhs item is also
marked as uninitialized. After step 4508 (Figure 45),
processing according to logic flow diagram 3356, and
therefore step 3356 (Figure 33C), terminates.

As described above, if either the lhs or the rhs
is not represented by an item, processing transfers
from test step 4502 (Figure 45) to test step 4510. 1In
test step 4510, execution engine 802 (Figure 8)
determines whether the rhs and lhs are represented by
respective items. If the lhs is represented by an item
and the rhs is not represented by an item, processing
transfers from test step 4510 (Figure 45) to step 4512.
Otherwise, processing according to logic flow
diagram 3356, and therefore step 3356 (Figure 33C),
terminates.

In step 4512 (Figure 45), execution engine 802
(Figure 8) marks the lhs item as unknown. For example,
if item structure 2700 (Figure 27) represents the lhs
item, execution engine 802 (Figure 8) marks the 1lhs
item as unknown by (i) storing in field
"type_code" 2712 (Figure 27) data which indicates an
unknown data type, (ii) storing in field

-132-

WO 96/05556 PCT/US95/09691

10

15

20

25

30

35

v"jnitialized" 2714 data indicating that the lhs item is
uninitialized, and (iii) storing in fields

“"resource" 2702 and "external" 2704 NULLs to indicate
that the lhs has no associated external or resource.
After step 4512 (Figure 45), processing according to
logic flow diagram 3356, and therefore step 3356
(Figure 33C), terminates.

Thus, in step 3356, the value of the item
representing the rhs is assigned to the item
representing the lhs. As described above, execution
engine 802 (Figure 8) assigns the value of an item to
which an expression evaluates to a declared item in
step 3408 (Figure 34). The assignment in step 3408 is
directly analogous to the assignment of the rhs item to
the lhs item described above with respect to logic flow
diagram 3356 (Figure 45). As described above in
step 3812 (Figure 38), execution engine 802 (Figure 8)
assigns the value of a known item to an unknown item.
The assignment of a Xnown item to an unknown item in
step 3812 (Figure 38) is directly analogous to the
assignment of the rhs item to the lhs item described
above with respect to logic flow diagram 3356
(Figure 45). As described above, execution engine 802
(Figure 8) assigns the value of an item to which an
expression evaluates to a returned item in step 3906
(Figure 39). The assignment in step 3906 is_directly
analogous to the assignment of the rhs item to the lhs
item described above with respect to-logic flow
diagram 3356 (Figure 45).

Emulating a Function

As described above, execution engine 802
(Figure 8) evaluates a call to a function by emulating
execution of the function in step 3352 (Figure 33C).
Step 3352 is shown in greater detail as logic flow

=133-

WO 96/05556 PCT/US95/09691

10

15

20

25

30

35

diagram 3352 (Figure 46) in which processing begins in
step 4602. Execution of a called function is emulated
according to a function model structure which
represents the behavior of the called function. 1In
test step 4602, execution engine 802 (Figure 8)
determines whether a function model structure
representing the behavior of the called function is
stored in memory 104 (Figure 1). As described above,
function model structure 1100 (Figure 11) includes a
field "name" 1102 which contains data representing the
identifier of the function whose behavior is
represented by function model structure 1100.
Corresponding fields of various function model
structures representing the behavior of respective
functions are compared to the identifier by which the
called function is called in the subject function until
either all function model structures have been checked
or a function model structure whose field "name"
matches the identifier is found.

If no function model structure with a field “name"
matching the identifier is found, processing transfers
from test step 4602 (Figure 46) to step 4604 in which a
NULL is produced as the item to which emulated
execution of the called function evaluates. As
described above, an expression evaluates to a NULL when
execution engine 802 (Figure 8) has insufficient
information to properly evaluate the expression. After
performance of step 4604 (Figure 46), processing
according to logic flow diagram 3352, and therefore
step 3352 (Figure 33C), terminates.

If, on the other hand, a function model structure
whose field "name" matches the identifier by which the
subject function calls the called function, that
function model structure is the called function model
structure, i.e., the function model structure
representing the behavior of the called function, and

=134~

WO 96/05556 PCT/US95/09691

10

15

20

25

30

35

processing transfers from test step 4602 (Figure 46) to
loop step 4606. Loop step 4606 and next step 4630 form
a loop in which each external represented by an
external model structure within the called function
model structure is processed. As described above with
respect to Figure 13, a function model structure such
as function model structure 1100A includes a field
"first_external" 1104A which points to the first
external model structure in a singly-linked list of
external model structures. For each external in the
singly-linked list of external model structures of the
called function model structure, processing transfers
from loop step 4606 (Figure 46) to test step 4608.
After each external of the singly-linked list of
external model structures of the called function model
structure has been processed, processing transfers from
loop step 4606 to step 4632 which is described below in
greater detail.

In the context of the following description of
steps 4608-4628, the external model structure being
processed according to the loop formed by loop
step 4606 and next step 4630 is external model
structure 1200 (Figure 12) as an illustrative example
of the processing of an external model structure. 1In
test step 4608 (Figure 46), execution engine 802
(Figure 8) determines whether external model
structure 1200 (Figure 12) represents a parameter by
comparing field "type" 1204 to data indicating a
parameter. If external model structure 1200 does not
represent a parameter, processing transfers from test
step 4608 (Figure 46) to test step 4612 which is
described below in greater detail. Conversely, if
external model structure 1200 (Figure 12) represents a
parameter, processing transfers from test step 4608
(Figure 46) to step 4610.

=135~

WO 96/05556 PCT/US95/09691

10

15

20

25

30

35

In step 4610, execution engine 802 (Figure 8)
retrieves an item representing the parameter. As
described above with respect to loop step 3348 (Figure
33C), step 3349, and next step 3350, execution engine
802 (Figure 8) includes an array of items representing
the parameters of the called function. The particular
parameter represented by external model structure 1200
(Figure 12) is specified in field
“"parameter_ number" 1206. Processing transfers from
step 4610 (Figure 46) to test step 4616 which is
described more completely below.

As described above, processing transfers from test
step 4608 to test step 4612 if external model
structure 1200 (Figure 12) does not represent a
parameter. 1In test step 4612 (Figure 46), execution
engine 802 (Figure 8) determines whether external model
structure 1200 (Figure 12) represents a variable by
comparing data stored within field "type" 1204 to data
indicating that a variable is represented. If external
model structure 1200 (Figure 12) does not represent a
variable, processing transfers from test step 4612
(Figure 46) to test step 4616 which is described below
in greater detail. Conversely, if external model
structure 1200 (Figure 12) represents a variable,
processing transfers from test step 4612 to step 4614.

In step 4614, execution engine 802 (Figure 8)
evaluates the variable represented by external model
structure 1200 (Figure 12). Execution engine 802
(Figure 8) evaluates the variable by retrieving the
item of the variable. Within a function structure
representing the subject function, a declaration
structure, e.g., declaration structure 1506
(Figure 16), represents the variable represented by
external model structure 1200 (Figure 12). External
model structure 1200 identifies the particular variable
represented by storing in field "name" 1208 the

-136-

WO 96/05556 PCT/US95/09691

10

15

20

25

30

35

identifier of the variable. If external model
structure 1200 and declaration structure 1506

(Figure 16) represent the same variable, the identifier
stored in field “"name" 1604 is the same as the
identifier stored in field "name" 1208 (Figure 12).

The variable is evaluated by retrieving item

structure 2700 to which field "item" 1608 of
declaration structure 1506 points. Processing
transfers from step 4614 (Figure 46) to test step 4616.

As described above, processing transfers to test
step 4616 from test step 4612 if external model
structure 1200 (Figure 12) represents neither a
parameter nor a variable, i.e., if external model
structure 1200 represents the returned item of the
called function. Furthermore, processing transfers
from either step 4610 (Figure 46) or step 4614 to test
step 4616. In test step 4616, execution engine 802
(Figure 8) determines whether an item representing the
external represented by external model structure 1200
(Figure 12) is defined. Such an item is defined (i) in
step 4610 if the value of the parameter represented by
external model structure 1200 is defined and evaluates
to a known value and if processing flows through
step 4610 (Figure 46) or (ii) in step 4614 if the
variable represented by external model structure 1200
(Figure 12) is initialized and processing flows through
step 4614 (Figure 46).

If an item representing the external represented
by external model structure 1200 (Figure 12) is not
defined, processing transfers from test step 4616
(Figure 46) to test step 4624 which is described below
in greater detail. Conversely, is such an item is
defined, processing transfers from test step 4616 to
loop step 4618.

Loop step 4618 and next step 4622 form a loop in
which each operation stored in field “operations" 1214

-137-

WO 96/05556 PCT/US95/09691

10

15

20

25

30

35

(Figure 12) of external model structure 1200 is
processed. As described above, the number of
operations stored in field "operations" 1214 is
recorded in field "num operations" 1212. For each
operation stored in field "operations" 1214, processing
transfers from loop step 4618 (Figure 46) to step 4620
in which the operation is applied to the external
represented by external model structure 1200

(Figure 12) in the manner described above with respect
to step 2906 (Figure 29). Any errors detected by
application of the operation to the external is
reported to the user as a programming error in the
manner described above. From step 4620 (Figure 46),
processing transfers through next step 4622 to loop
step 4618 in which the next operation, if any, stored
in field "operations" 1214 (Figure 12) is processed.
Once all operations stored in field "operations" 1214
are processed according to the loop defined by loop
step 4618 (Figure 46) and next step 4622, processing
transfers to test step 4624.

In test step 4624, execution engine 802 (Figure 8)
determines whether external model structure 1200
(Figure 12) specifies that a new resource is created on
behalf of the external represented by external model
structure 1200. Execution engine 802 (Figure 8) makes
such a determination by comparing field
"new_resource" 1218 (Figure 12) to a boolean value of
"true®. If field "new_resource" 1218 is "false",
processing transfers from test step 4624 (Figure 46)
through next step 4630 to loop step 4606 in which the
next external is processed according to the loop
defined by loop step 4606 and next step 4630 as
described above. Conversely, if field
"new_resource" 1218 (Figure 12) is "true", processing
transfers from test step 4624 (Figure 46) to step 4626.

-138-

WO 96/05556 PCT/US95/09691

10

15

20

25

30

35

In step 4626, execution engine 802 (Figure 8)
creates a new resource by (i) creating and storing in
memory 104 (Figure 1) an item structure, e.g., item
structure 2700 (Figure 27), and a resource state
structure, e.g., resource state structure 3100 (Figure
31), and (ii) storing in field "resource" 2702 a
pointer to resource state structure 3100 (Figure 31),
thereby associating resource state structure 3100 with
item structure 2700 (Figure 27). Processing transfers
from step 4626 (Figure 46) to step 4628 in which
execution engine 802 (Figure 8) associates the new item
with the external represented by external model
structure 1200 (Figure 12). If external list structure
1414 (Figure 15) represents the external, the item is
associated with the external by storing in field "item"
1608 (Figure 16) of declaration structure 1506, to
which field "first decl" 1502 (Figure 15) points, a
pointer to item structure 2700 (Figure 27).

If the external is the returned item of the called
function, a result record, which is set to NULL at the
beginning of logic flow diagram 3352 (Figure 46), is
set to the new item. The external is the returned item
of the called function if field "type" 1204 (Figure 12)
of external model structure 1200 so indicates. If the
external is not the returned item of the called
function, the new item is made field "item" 1608
(Figure 16) of declaration structure 1506 which
represents the external.

From step 4628 (Figure 46), processing transfers
through next step 4630 to loop step 4606 in which the
next external is processed as described above. Once
all externals represented by external structures of the
singly-linked list of external structures pointed to by
fields "first_external" 1104 (Figure 11) and
"last_external" 1106 of function model structure 1100
which represents the called function have been

=139-

WO 96/05556 PCT/US95/09691

10

15

20

25

30

35

processed, processing transfers from loop step 4606
(Figure 46) to step 4632. In step 4632, execution
engine 802 (Figure 8) produces, as the item to which
emulated execution of the called function evaluates,
the result record. As described above with respect to
step 4628 (Figure 46), the result record is initialized
to a NULL and is set to the value of the returned item
if a new resource is created on behalf of the returned
item.

After step 4632, processing according to logic
flow diagram 3352, and therefore step 3352
(Figure 33C), terminates. Thus, by use of a model
representing the behavior of a called function, a call
to the called function within the subject function is
evaluated to analyze the effect on resources and
externals of execution of the called function.

Bunches of Memory

One of the peculiarities of the C computer
language is that certain memory can be treated as a
contiguously-allocated array. The following types of
memory can be accessed according to the C computer
language as if the memory is allocated as a contiguous
block: (i) any data, whether a variable or parameter,
defined using the instructions "struct" or "array",
i.e., any complex data structures or arrays,
respectively; (ii) any pointer passed into a function
as a parameter; and (iii) any memory allocated by
performance of function calloc() or function malloc()
as defined within the C computer language. The
disclosed embodiment of the present invention uses a
bunch of memory to model contiguously allocated memory.

Item structures are allocated in bunches, i.e., in
contiguous arrays of item structures. For the simple
case of an item structure representing a single integer
or floating point variable declaration, the bunch

-140-

WO 96/05556 PCT/US95/09691

10

15

20

25

30

35

includes a single item structure. Bunches of item
structures representing variables of complex types,
i.e., variables of the type "struct", and arrays are
represented by multiple item structures, one for each
four (4) bytes of the array or the variable of a
complex type.

Representing contiguously allocated memory with
contiguously allocated item structures allows detection
of some illegal array references. For example, a
reference to an item structure outside the bounds of
the bunch of contiguously allocated item structures
corresponds to an illegal index of an array represented
by the bunch. 1In addition, forming item structures in
bunches simplifies detection of memory leaks as
described above. For example, if any item structure in
a bunch is reachable by an external of a function,
every item structure in the bunch is reachable by an
external of the function.

As described above, item structure 2700
(Figure 27) includes field "first_in_bunch" 2708, field
"size of_bunch" 2710, field "head_in_bunch" 2716, and
field "known_bunch_size" 2718. Field
"first_in_bunch" 2708 is a pointer to the first item
structure in the bunch of item structures which
includes item structure 2700. If item structure 2700
is the first item structure in a bunch, field
"first in_bunch" 2708 points to item structure 2700.
Field "size_of_bunch" 2710 indicates the number of item
structures in the bunch which includes item
structure 2700. In one embodiment, field
"size of_ bunch" 2710 is so defined only in the item
structure which is first in a given bunch.

Field "head_in_bunch" 2716 is a flag which
indicates whether item structure 2700 is the first item
structure in the bunch which includes item
structure 2700. Field "known_bunch_size" 2718 is a

-141-

WO 96/05556 PCT/US95/09691

10

15

20

25

30

35

flag which indicates whether the bunch which includes
item structure 2700 has a known size. A bunch has an
unknown size, for example, (i) when the bunch is
allocated dynamically, e.g., by calling function
malloc(), and execution engine 802 (Figure 8) has
insufficient information to calculate the amount of
memory requested; (ii) when the bunch is passed into
the subject function; or (iii) when the bunch is of
such a size that tracking each item of the bunch is
impractical. If a bunch has an unknown size, as
indicated by field "known_bunch_size" 2718, execution
engine 802 (Figure 8) does not check for boundary
violations with respect to the bunch.

The computer program in Appendix A was compiled
and linked, in one embodiment, using the UNIX operating
system SunOS 4.1.3, the compiler, and the linker that
are provided with a workstation such as the Sun
Sparcstation® II computer system available from Sun
Microsystems of Mountain View, California. In a second
embodiment, the computer program in Appendix A was
compiled using the Microsoft Visual C++ 1.5 compiler,
and was linked using the Microsoft Visual C++ 1.5
linker, both of which are available from Microsoft
Corporation of Redmond, Washington and which can be
used on a personal computer using the MSDOS 6.2
operating system and Microsoft® Windows™ 3.1, which are
also available from Microsoft Corporation. Such a
personal computer is the Art 4000S available from Atman
Computer of San Francisco, California. The particular
computer language to which the computer program in
Appendix A conforms and the computer system in which a
computer process defined by the computer program of
Appendix A is executed are not an essential aspect of
this invention. 1In view of this disclosure, those
skilled in the art can implement the invention using a

~-142-

WO 96/05556 PCT/US95/09691

10

15

20

25

different computer language and/or a different computer
systemn.

Appendix A includes a number of source code files
including two separate embodiments of a source code
file "readin.c", each of which defines a number of
functions and data structures in accordance with a
respective embodiment of the present invention. The
first embodiment of the source code file “readin.c"
appears on frames 64-74 of Appendix A, and the second
embodiment of the source code file "readin.c" appears
on frames 77-87 of Appendix A. It should be understood
that only one embodiment of the source code file
"readin.c" should be compiled and linked with the
remainder of Appendix A to form a resource checker in
accordance with the principles of the present
invention.

The above description is illustrative only and is
not limiting. For example, while the disclosed
embodiment analyzes functions according to the C
computer language, the principles of the present
invention are applicable to other computer instruction
protocols including without limitation those described
above. The present invention is limited only by the
claims which follow.

-143-

WO 96/05556

10

15

20

25

30

35

40

PCT/US95/09691

APPENDIX A

/* cchback.c: main routine for back end of ccheck
Copyright (C) 1994 Jonathan D. Pincus and William R. Bush

*/

#include
#include
#include
#include
#include
#include
#include
#include

<stdio.h>
<stdlib.h>
"ccheck.h"”
"opcodes.h"
"readin.h"
"print.h"
"state.h"”
"model.h"”

extern function get_next_function PROTO((FILE *));
extern void execute_function PROTO((function));

static int dump_each_function = 0;

void

main(argc, argv)

int argc;

char

{

**argv;

function f£;

FILE

*fptr;

if (argc != 2)

{

fprintf (stderr, "usage:
exit (1);

}
fptr

{

fprintf (stderr,

%8 intermediate-file\n", argv([0]);

= fopen (argv([1l), "rb");
if (! fptr)

exit (1);

}

read_built in models ();
while ((f = get_next_function (fptr)) != (function)EOF)

if

(dump_each function)

{
if (f)

"unable to open file %$s\n", argv(1l));

-144-

WO 96/05556 PCT/US95/09691

10

15

20

25

print_function (f);
else
printf ("<null function>\n");
}
if (f)
execute_function (f);
}
fclose (fptr);
/* write out the models */
write models ("ccheck.mod", "", FALSE);
exit (0);
}

/* print out a warning message */
void
print_warning (filename, lineno, fmt, argl, arg2, arg3)
char* filename;
int lineno;
char* fmt;
long argl;
long arg2;
long arg3;

{
fprintf (stderr, "%$s:%d: ", filename, lineno);
fprintf (stderr, fmt, argl, arg2, arg3);
_fprintf(stderr, "\n");
}

~145-

WO 96/05556 PCT/US95/09691

10

15

20

25

30

35

40

/* ccheck.h: general header file for C checker
Copyright (C) 1994 Jonathan D. Pincus

*/

#ifndef FALSE

/* #defines that need visibility everywhere. */
#define FALSE 0

#define TRUE 1

#endif

/* Add prototype support. */
#ifndef PROTO

#ifdef NO_PROTO_SUPPORT
#define PROTO(args) ()

#else

#define PROTO(args) args

#endif

#endif

/* error codes -- centralized here */

typedef enum {

CODE_OK, /* no error */

CODE_FREE_UNINIT, /* free uninitialized »/
CODE_USE_UNINIT, /* use uninitialized */
CODE_FREE_QUEST, /* freeing guestionably unallocated */
CODE_USE_QUEST, /* using questionably unallocated */
CODE_FREE_INVALID, /* freeing NULL (invalid) */
CODE_USE_INVALID, /* derefernecing NULL (invalid) */
CODE_FREE_STACK, /* freeing stack data */
CODE_FREE_GLOBAL, /* freeing global data */
CODE_FREE_STATIC, /* freeing static data */
CODE_RETURN_STACK, /* returning pointer to stack data

*/
CODE_LEAK, /* failing to free data (leaking) */
CODE_INCONSIST_ CHECK, /* routine sometimes checks (DK
comp) */

CODE_INCONSIST_CHECK_ALLOC, /* routine sometimes checks
allocation before returning (CP comp) *x/

/* various more CP comp errors could go here */

/* don't forget to update MAX ERROR_CODE and error_msgs in

value.c */
/* if there are more than 32, don't forget to update
NUM_STMT WARNING_WORDS in tree.h */

~146-

WO 96/05556
CODE_DIV_BY_ZERO,
CODE_LERK_WARNING,
CODE_RETURN_ERROR,
CODE_BOUNDS_ERROR
5 } error_code;

10

15

20

25

30

35

40

#define MAX ERROR_CODE CODE_BOUNDS_ERROR
extern char *error_msgs([(int)MAX_ERROR CODE + 1}; /* currently in

state.c */

/* operations */

typedef enum {
OP_a,
OP_m,
OP_k,
OP_c,
OP_p,

/*
/*
/*
/*
/*

definitely allocate */
maybe allocate */

kill (free) */

use in a calculation */
use in a predicate */

OP_i, /* use in indirection */
OP_x /* mark invalid */

} operation;
#define NUM _OPS

/* noop */

((int)OP_x + 1)

#define OP_none ((operation)-1)

extern char *op names(NUM_OPS);

/* states for the resources */

typedef enum {
RS_U,

/* unallocated, uninitialized */

RS_A, /* definitely allocated */
RS_Q, /* questionably allocated */
RS_X, /* invalid (e.g., NULL) */
RS_E /* definitely allocated */

} rs_state;

extern char *rs_names((int)RS_E+1);

#define RS_NONE ((rs_state)-1)

-147-

PCT/US95/09691

WO 96/05556

10

15

20

25

30

35

40

PCT/US95/09691

/* states for externals */

/* CP: is it checked in a predicate before being used? */

typedef enum {
CP_O,

CP_N,
CP_c,
CP_I,
CP_P

} cp_state;

/t
/t
/*
/*

/* used neither in predicate or computation
(initial) «/
neither; assigned to before checking or using */
used in computation before checking */
usaed for indirection before checking */

checked (used in predicate) before using */

/* DK: is it allocated or killed? */

typedef enum {
DK_O,
DK_A,
DK_Q,
DK_K,
DK_KA,
DK_KQ,

/*
/*

/* neither kills nor allocates */
allocates*/
questionably allocates */

/* kills (frees) */

/* frees then allocates (reallocates) */
/* frees then questionably allocates */

DK E /* error (unknown) */

} dk_state;

/* scopes */

typedef enum {

SCOPE_UNKNOWN,
SCOPE_PARAN,

SCOPE_LOCAL,

SCOPE_STATIC,

SCOPE_GLOBAL,

SCOPE_ZALLOC,

SCOPE_ALLOC,

SCOPE_CONSTANT } value_scope;

/* opaque pointers for resources, and externals */

typedef struct state_resource *resource;

typedef struct state_external *external;

-148-

WO 96/05556 PCT/US95/09691

10

1s

/* opaque pointer for the definition of a routine in a model */

typedef struct model_routine_def *model_ routine;
/* opaque pointer for the definition of an external within a
routine */

typedef struct model_ external def *model_external;

/* opaque pointer to a value */
typedef struct value def *valptr;

/* informational routines */

extern rs_state rs_state_from name PROTO((char *));
extern operation operation_from name PROTO((char *));

extern void print_warning PROTO
((char*, int,char*, long,long,long));

-149-

WO 96/05556 PCT/US95/09691

10

15

20

25

30

35

40

/* execute.c: execution engine to accompany state engine
Copyright (C) 1994 Jonathan D. Pincus and William R. Bush

*/

#include <stdio.h>
#include <string.h>
#include <assert.h>

#include "ccheck.h"
#include "state.h"
#include "model.h"

/* constants for the parse tree; shared by this file and the front
end */

#include "opcodes.h"

/* structures for the parse tree */

#include "readin.h"

#include "value.h"

/* generate a random number in the specified range */
#ifndef MSDOS

#define RANDOM_INT(range) (random() % range)

#else

#ifdef _ TURBOC _

/* turbo C defines random in this way to begin with */
#include <stdlib.h>

#define RANDOM_INT(range) random(range)

#else

/* MSVC does not support the random function; use rand instead */
#include <stdlib.h>

#define RANDOM INT(range) (rand() % range)

#endif

#endif

extern extern_list extern_list_add PROTO((declaration, external,

extern_list));

/* the current statement being executed; used for error messages
*/

static function current_function;

static statement current_stmt = NULL; /* current stmt (for
line number) */

#define CURRENT_LINE (current_stmt->line)

-150-

WO 96/05556 PCT/US95/09691

10

15

20

25

30

35

40

#define CURRENT_FILE (current_function->file)

/* the list of all externals (variables, globals) in the current
function. This is a static becuase it can be added to expectedly

when emulating calls to other functions

*/
static extern_list external decl_list = NULL;

/* the biggest struct/array to layout as valptrs; beyond this,
only this number of bits is layed out */
long max_size to_alloc = 1024;

/* all private routines; declared to enable prototype checking */

static enum control_ flow execute_stmt PROTO((statement));

static enum control flow execute_block PROTO((statement)});
static valptr eval_expr PROTO((expression, operation));

static valptr eval_op PROTO((expression, int, valptr, valptr));
static void execute_warning PROTO((error code, char *));

static valptr layout_variable

PROTO((value_scope, type, long,external, int));

static void external_valptrs PROTO((extern_list));

static valptr emulate_routine PROTO ((model_ routine, expression,
int, valptr*));

static char * error_name PROTO ((expression, int));

static int layout_pointed_to PROTO((type, value_scope, int));
static valptr offset by field PROTO((expreesion, valptr,
field_definition));

static valptr offset_by_ index PROTO((expression, valptr, valptr,
int));

static void check_for_leaks PROTO((extern_list));

static long simulate_if choice PROTO((statement));

static void infer PROTO((expression,long));

static int iterations_required PROTO((int,extern_list));

static void externals_to_model PROTO((function,extern_list));
static void compose_externals PROTO((extern_list));

static declaration get_extern decl

PROTO((function,model_external,int));

static declaration create_decl

PROTO((declaration_kind,char*, type));

static model routine routine_model_ for_call PROTO((expression));

-151-

WO 96/05556

10

15

20

25

30

35

40

/* descriptions of the control flow */

/* note: not all of these are implemented yet; goto, break,

cont

*

*/

enum

/***

/t

inue,
and exit are currently noops

control_flow { CONTROL_NEXT = O,
CONTROL_ELSE,
CONTROL_RETURN,
CONTROL_GOTO,
CONTROL_BRERK,
CONTROL_CONTINUE,
CONTROL_LONGJMP,
CONTROL_EXIT

}i

**t/

main entry point: execute a function £

*/

void
exec

ute_function(f)
function f£;

int num choices;
int num_iterations;
int i;

/* don't even bother if there are no statements */
if (! f->first_stmt)
return;

/* initialize for output information */
current_stmt = f->first stmt;
num_choices = f->number of_ ifs;
current_function = f;

/* initialize the state engine */
begin_routine(f->name);

/* find all the globals/params this routine uses */
external_decl_list = f->externals;

-152-

PCT/US95/09691

WO 96/05556 PCT/US95/09691

/* how many times do we need to execute this? */
num_iterations = iterations_required (num_choices,

external_decl_list);

5 for (i = 0; i < num_iterations; i++)
{
begin_iteration();
/* initialize parameters, globals used */
external_valptrs(external decl list);
10 /* execute the code */
(void) execute block(f->first_stmt);
check_for_leaks(external decl list);
/* now update all the externals */
compose_externals(external decl list);
15 end_iteration();

}

/* now do the auto-modelling */
externals_to_model(f, external_decl_list);
20 end_routine();

/**t*******/’

/* execute a block of statements */

25 static enum control_ flow
execute block(b)
statement b; /* statement for the block to be executed */
{

statement stmt;
30 enum control flow result;

result = CONTROL_NEXT;
assert (b->what == BLOCK_STMT || b->what == LOOP_STNMT);
for (stmt = (statement) b->ptrs[0]; stmt; stmt = stmt->next)
3s { i
current_stmt = stmt;
if (stmt->what == ELSE_STMT && result != CONTROL_ELSE) -
continue;
result = execute_stmt (stmt);
40
/* note - these next few aren't a switch because of

nastiness involving nested break statements */

if (result == CONTROL RETURN || result == CONTROL_EXIT ||

-183-

10

15

20

25

30

35

40

WO 96/05556

result == CONTROL_LONGJMP)

PCT/US95/09691

/* done with this block and all enclosing blocks */

break;

if (result == CONTROL BREAK ||

{

result == CONTROL CONTINUE)

/* done with this block but not enclosing blocks */
/* really should check to see whether this is a relevant

block for break/continue */
result = CONTROL_NEXT;
break;
}
}

return result;

/**'***tQ*t******t****t**t*****'***ﬁt*************t*t*.*i**ttﬁi*/

/* execute a single statement.

static enum control_ flow
execute_stmt (stmt)
statement stmt;

declaration decl;
expression e;

valptr v = NULL;

enum control_flow result;
long cond_val;
error_code code;

*/

/* value */

/* value of condition */

/* unless we discover otherwise, just keep going linearly */ .

result = CONTROL_NEXT;

switch (stmt->what)

{
case IF_STMT:

v = eval_expr ((expression)stmt->ptrs(l]}, OP_p);

if (v |} ! value_non_zero (v, &cond_val))

{

/* don't know it; must guess */

cond_val = simulate_ if choice (stmt);

/* and make values consistent with this choice */

infer ((expression)stmt->ptrs(l}, cond_val);

}

-154-

WO 96/05556 PCT/US95/09691

10

1s

20

25

30

35

40

if (cond_val)

/* do the if-clause */

result = execute_stmt ((statement)stmt->ptrs(0]);
else

result = CONTROL_ELSE;
break;

case EXPR_STMT:

v = eval_expr ((expression)stmt->ptrs(0],
OP_none) ;

break;

case DECL_STMT:

e = (expression) stmt->ptrs(0}; /* VARIABLE node */
assert (e->what == VARIABLE);
decl = (declaration) e->operands([0]; /*

declaration node */

/* only care about local variables at this point
*/
if (decl->what = LOCAL_VARIABLE_DECLARATION)
break;
decl->value = layout_variable (SCOPE_LOCAL,
decl->declaration_type,
0, NULL, 0);
/* now, perhaps, deal with the initializer */
if ((expression)stmt->ptrs[l])
{
v = eval_expr ((expression)stmt->ptrs[l},
OP_none) ;
code = assign_value (decl->value, v, FALSE);
if (code)
/* could be uninitialized */
execute_warning (code, decl->name);
}
break;

case GOTO_STMT:
/* don't currently handle these ... at alll */
result = CONTROL_RETURN; ’

break;

case RETURN_STMT:

~155-

WO 96/05556

10

15

20

25

30

35

40

if (stmt->ptrs[0])
{

/* evaluate -- it's an assignment to the RESULT_DECL */
OP_none);

v = eval_expr ((expression)stmt->ptrs[0],
decl = current_function->result;
if (decl)

(void)assign_value (decl->value, v, FALSE);

if (! ok_to_return (v))
execute_warning (CODE_RETURN_ERROR, "");

}
result = CONTROL_RETURN;
break;

case BREAK_STMT:
result = CONTROL_BREAK;
break;

case CONTINUE_ STMT:
result = CONTROL_CONTINUE;
break;

case ELSE_STMT:
if (stmt->ptrs[0])

result = execute_stmt ((statement)stmt->ptrs(0]);

break;

case LOOP_STMT:

case BLOCK_STMT:

result = execute block (stmt);
break;

default:
/* nop or here statement */

.
’

}

return result;

/**t*********t**************t****t****t*****'h'k*******************/

/* interpret an expression and return the value */
#define MAX PARAMS 32

static valptr

~-156-

PCT/US95/09691

WO 96/05556

eval_ expr(expr, op)

expression expr;

PCT/US95/09691

/* expression to evaluate */

10

15

20

25

30

35

40

operation op; /* what to perform on the result */

register expression e = expr;
valptr v = NULL;

valptr lhs = NULL;

valptr rhs = NULL;

expression params = NULL;
error_code code;

model routine r = NULL;

int num_params = 0;

valptr param values[MAX PARAMS];
operation next_op;

long points_to_size = 8; /* it's converted from bits to bytes

later */

/* if we're trying to evaluate a parse error */
/* unlikely to occur, but don't crash in this case */
if (e->what == ERROR_EXPRESSION)

return NULL;

/* need to compute the value */

/* non-special cases */

switch (e->what)

A
case CONSTANT INTEGER:
v = value_ from long(LONG_VALUE (e), CURRENT_LINE);
break;

case CONSTANT_REAL:
v = value_from _double(DOUBLE_VALUE (e), CURRENT_LINE);

break;

case CONSTANT_ STRING:
v = value_from string ((char *)POINTER_VALUE

(e), CURRENT_LINE);

break;
case VARIABLE:

v = ((declaration)e->operands[0])->value;

break;

-157-

WO 96/05556

10

15

20

25

30

35

40

/* binary arithmetic operators */
case OP_PLUS:

case OP_MINUS:

case OP_TIMES:

case OP_DIV:

case OP_MOD:

case OP_POW:

case OP_MIN:

case OP_MAX:

case OP_ABS:

case OP_SHIFT LEFT:

case OP_SHIFT RIGHT:

case OP_OR BITS:

case OP_AND BITS:

case OP_NOT_BITS:

case OP_XOR_BITS:

lhs
rhs

eval_expr (e->operands[0], OP_c);

eval_expr (e->operands[l]), OP_c);
v = eval _op (e, TRUE, lhs, rhs);
break;

PCT/US95/09691

/* binary logical and relational operators (predicates) */

case OP_AND:

case OP_OR:

case OP_LT:

case OP_LE:

case OP_GT:

case OP_GE:

case OP_EQUAL:
case OP_NOT_EQUAL:
lhs

rhs

eval_expr (e->operands(0], OP_p);

eval_expr (e->operands(l], OP_p);
v = eval_op (e, TRUE, lhs, rhs);

break;

case OP_UNARY MINUS:

lhs = eval_expr (e->operands([0], OP _c);
v = eval op (e, FALSE, lhs, NULL);
break;

case OP_NOT:
lhs = eval_expr (e->operands(0], OP_p);

-158-

WO 96/05556

10

15

20

25

30

35

40

PCT/US95/09691
v = eval_op (e, FALSE, 1lhs, NULL);
break;
case OP_PREDECREMENT:
case OP_PREINCREMENT:
case OP_POSTDECREMENT:
case OP_POSTINCREMENT:
lhs = eval_expr (e->operands{0], OP_c);
/* if this is a pointer of some variety, then it must
increase by the appropriate size; 8 signals int/float */
if ((e->expression_type->what == POINTER TYPEDEF)
{1 (e->expression_type->what == ARRAY TYPEDEF))
points_to_size = e->expression_type->points_to->size;
v = eval _op (e, FALSE, lhs,(valptr)points_to_size);
break;
case OP_ADDRESS OF:
lhs = eval expr (e->operands({0], OP_none);
v = value_of pointer_to (lhs, CURRENT LINE, SCOPE_LOCAL);
break;
case FUNCTION_ CALL:
/* evaluate each parameter, and save the results */
/* remember that e's first operand is the function being

called */

for (num_params = 0; num_params < e->num_operands-1;

num_params++)

param_values[num_params] =
eval expr (OPERAND (e, num_params+l),

OP_none);

/* now see if we have a model for this routine */
r = routine_model_for_call (e->operands(0]);

v = emulate routine (r, e, num_params, param values);
break;

case ASSIGNMENT:
rhs = eval_expr (e->operands[l], OP_none);
/* get the lvalue */

lhs = eval_expr (e->operands[0], OP_none);

/* assign value */
code = assign_value (lhs, rhs, TRUE);

-159-

WO 96/05556

10

15

20

25

30

35

40 TRUE);

PCT/US95/09691

if (code)
/* could be uninitialized or clobbered */

execute_warning (code, error_name(e->operands[l], -1));

v = lhs;

break;

case COMPOUND_EXPRESSION:

eval_expr (e->operands(0], OP_none);
v = eval_expr (e->operands{l}), op);
break;

case OP_INDIRECTION:
/* because of a quirk if this is an array, it's
simply a lvalue computation */
next_op = e->expression_type->what == ARRAY TYPEDEF
? OP_none : OP i;

v = eval_ expr (e->operands{0), next_op);
v = eval_dereference (v, CURRENT_LINE);
break;

case FIELD_REFERENCE:

/* a field in a struct */

v = eval expr (e->operands[0), OP_none);

v = offset_by field (e->operands(0], v,
(field_definition) (e->operands[1}));

break;

case ARRAY OFFSET:

/* rhs is the index into the array */
rhs = eval_expr (e->operands{l], OP_c);

/* if this is a pointer, it's an indirection;
otherwise, if an array, simply a lvalue
computation */

next_op = (e->operands[0)->expression_type->what
== ARRAY_TYPEDEF ? OP_none : OP_i);

lhs = eval_expr (e->operands[0], next_op);

/* check for bounds */ '

v = offset_by index(e->operands{0], lhs, rhs,
break;

case CONDITIONAL:
default:

-160-

WO 96/05556 PCT/US95/09691

10

15

20

25

30

35

40

break;

if (v && (op != OP_none))
{
/* perform the requested operation */
code = apply op_to_value (v, op, CURRENT_ LINE);
if (code)
execute_warning (code, error_name(e, -1));
}
/* save this for later use (in function calls or simulation)
*/
e->value = v;

return v;

/*******************t***'k********************t***'ﬁ****ﬁ**i*******/

/* produce a useful name for an expression when printing out an
error message. handles array references, '&', '*'; if it can't
come up with a good name and the expression was used in an

argument for a function call, uses that as the name; otherwise,
punts and uses ((expression)) '

returns a pointer to static data.
*/
static char *
error_name(e, arg_number)
expression e;
int arg_number;

char prefix[20]);

char suffix[80]);

static char print_name[180);
char *field name;

int done = FALSE;

field definition field;

strcpy (prefix, "");
strcpy (suffix, "");

while (e && ! done)

{

switch (e->what)

-161~-

WO 96/05556

10

15

20

25

30

35

40

{
case OP_ADDRESS_OF H

strcat (prefix, "&
break;

case ARRAY OFFSET :
strcat (suffix, "[

break;

cagse FIELD REFERENCE

N);

1")i

PCT/US95/09691

field = (field definition) e->operands(1];
if (field && field->name)

field name = field->name;

else
field name = "272"
strcat (suffix, ".")

strcat (suffix, field name);

break;

case OP_INDIRECTION :

if (e->operands[0]}->what == OP_PLUS)

{

-
’

-
’

e = e~->operands(0];

strcat (suffix,

}
else

strcat (prefix,
break;

default:
done = TRUE;
break;

}

if (! done)
e = e->operands[0];

/* format the output */

(1)

n*n);

if (e && e->what == VARIABLE)

sprintf (print_name, "‘ss%s%s'",
prefix, ((declaration)POINTER_VALUE

suffix);
else if (arg number = -1)

-162-

(e))=->name,

WO 96/05556 PCT/US95/09691

10

15

20

25

30

35

40

sprintf(print_name, "(argument %d)", arg_number);
else
strcpy (print_name, “((expression))");

return print name;

/*********'k**ﬁ****************************Q***ﬁ******t*********ﬁﬂ/

/* print out a warning */

#define IS_MESSAGE_PRINTED (code) \
((current_stmt->flags)(code/32) & (1 << (code %
32)))

#define SET_ MESSAGE_PRINTED (code) \
(current_stmt->flags)[code/32] |= (1 << (code %
32))

static void
execute_warning(code, name)
error_code code;
char *name;

{
if (! IS_MESSAGE_PRINTED (code))
{
print_warning (CURRENT_FILE,
CURRENT_LINE, "(%1ld): %s data %s",
(long)code, (long)error_msgs[code], (long)name);
SET_MESSAGE_PRINTED (code);
}
}

static void
bounds_warning(index, name)
long index;

char *name;

{
if (! IS_MESSAGE_PRINTED (CODE_BOUNDS_ERROR))
{
print_warning (CURRENT_FILE,
CURRENT LINE, "(%ld): index %1d exceeds bounds for %s",
{long)CODE_BOUNDS_ERROR, index, (long)name);
SET_MESSAGE_PRINTED (CODE_BOUNDS_ERROR) ;
}
}

-163-

WO 96/05556

10

15

20

25

30

35

40

PCT/US95/09691

static void
leak_warning(name, line)
char *name;

int line;

{
if (! IS_MESSAGE_PRINTED (CODE_LEAK_ WARNING))
{
print_warning (CURRENT_FILE,
CURRE&T_LINE, "(%1d): leaking %s allocated on line s%ld",
(long)CODE_LEAK WARNING, (long)name, (long)line);
SET_MESSAGE_PRINTED (CODE_LEAK WARNING);
}
}

/*t***********t*****t************************t*****t******ﬁ****/
/* do we want to lay out "indirect" things? for example, if
the parameter is a poitner to a struct, is it worth laying
out the struct? how about a pointer to a pointer?

*/

static int
layout_pointed_to(type_of_ var, scope, depth)

type type_of_ var; /* the type of this variable */
value_scope scope; /* is it a param, a global, what? */
int depth; /* how many levels of pointers? */
{
/* should be controlled by command-line parameters.
currently, quite simplistic: layout one level of
parameters and globals if they're pointers
*/
return (type of_ var && (type_of_ var->what == POINTER_TYPEDEF)
&& ((scope == SCOPE_PARAM) || (scope == SCOPE_GLOBAL))
&& (depth == 0));
}

/* this can be called in three different situations:
l) for a parameter or global variable
2) when a DECL_STMT (declaration of local variable) is seen
3) by an allocation

*/

static valptr
layout_variable(scope, type of var, size, ext, depth)

-164-

WO 96/05556 PCT/US95/09691

10

15

20

25

30

35

40

value_scope scope; /* what's being layed out (param, var,

global) */
type type_of var; /* the type */
long size; /* size in bits (if from malloc) */
external ext; /* external (param declaration) if any */
int depth; /* how many levels we've laid out */

valptr v;
int known_size = TRUE;

if (size == 0)

{
if (type_of_var && type_of var->size != -1)
size = type of var->size;
else
{

/* assume one word */
gsize = 32;
known_size = FALSE;
}
/* special case: doubles actually fit into one structure */
if (type_of_var && (type_of_ var->what == REAL_TYPEDEF H
gize < 32)) size = 32;

/* don't go crazy here: if it's too big, no point in looping
~ for all eternity */ -
if (size > max_size_to_alloc)

{

/* not an error, but can't bounds check */

size = max_size_ to_alloc;

known_size = FALSE;

}

/* depending on options, may want to layout what's pointed to
*/
if (layout_pointed_to (type_of_var, scope, depth))
{
valptr vl;
/* ideally should compute externals here ... */
vl = layout variable (scope, type of var->points_to, O,
NULL, depth + 1);
v = value_of pointer to (vl, CURRENT LINE, scope);

}

-165-

WO 96/05556 PCT/US95/09691

10

1s

20

25

30

35

40

else
{
int initialized;
/* these could be controlled by command-line options */
/* for now, don't generate any errors on these */
initialized = (scope == SCOPE_GLOBAL
|} scope == SCOPE_PARAM || scope == SCOPE_ZALLOC);
v = bunch_of_ values (size / 32, known_size, initialized,
CURRENT_LINE, scope);
}
equate_with_external (v, ext);

return v;

/****tﬁ**'ﬁt*****t**********ﬁ**t************************t*********/

tatic valptr
eval op(e, binary, vl, v2)
expression e;
int binary;
valptr vl;
valptr v2;

{
expression_kind op = e->what;
valptr result = NULL;
/* do we have enough information? */
if (! vl || (binary && ! v2))
return NULL;
if (e->expression_type->what == POINTER TYPEDEF)
result = eval integer_op (op, binary, vl, v2, CURRENT_LINE);
if (e->expression_type->what == REAL_ TYPEDEF)
result = eval real op (op, binary, v1, v2, CURRENT_LINE);
if (e->expression_type->what == INTEGER_TYPEDEF)
result = eval_integer_op (op, binary, vl, v2, CURRENT_LINE);
return result;
}

static void
external_valptrs(external list)

extern_list external_ list;

declaration decl;

-166-

WO 96/05556 PCT/US95/09691

external ext;
value_scope scope;
while (external_ list)
{
S decl = external_list->first decl;
ext = external_list->first_extern;
if (decl->declaration_type)
{
scope = (decl->what == PARAMETER DECLARATION
10 ? SCOPE_PARAM : SCOPE_GLOBAL);
decl->value = layout_variable(scope,
decl->declaration_type,
0, ext, 0);
}
15 else
decl->value = NULL;
/* reinitialize the CP/DK state of the external */
reinitialize_ external (ext);
external_list = external_ list->next;
20 }

/*****************************ﬁ*********t********************t***/

25 /*
given a call expression and a model, emulate the call to
that function the model may be NULL, in which case there is
no known emulation
*/
30

static valptr
emulate routine(r, f, num_params, param_values)

model_routine r; /* model definition for routine */
expression f£f; /* expression tree for invocation */

35 int num_params; /* the number of parameters */
valptr *param values; /* precomputed values for

parameters */

{
model_external e;
40 model_external_ type ext_type;
valptr value; /* value for external */
declaration decl; /* where to put the result */
valptr result = NULL; /* the resulting value */
int n_ops; /* operations to apply */

~167-

WO 96/05556

10

15

20

25

30

35

40

PCT/US95/09691

operation *op_ list;
int i;

int scope;

if (! r || r == (model_routine)(-1))
return NULL; /* currently don't do anything in this case

*/

/* loop through all the externals of this routine */
for (e = first_model_ external (r); e; e = next_model_external
(e))
{
decl = NULL;
value = NULL;
ext_type = get_model_ external_type(e);
switch (ext_type)
{
case MODEL_PARAM:
value = param_values(get_model_ external_number(e)];
break;

case MODEL_RETVAL:
break;

case MODEL_VAR:
decl = get_extern_decl (current_function, e, TRUE);
value = decl->value;
break;

default:
break;
}

/* now we have the target; what do we want to do with it? w/
if (value)
{
get_model_external_opa(e, &n_ops, &op_list, &scope);
for (i = 0; i < n_ops; i++)
{
error_code code;
/* perform the requested operation */
code = apply op_to_value (value, op_list[i],
CURRENT_LINE);
if (code)

-168-

WO 96/05556 PCT/US95/09691

10

15

20

25

30

35

40

/* an error */
execute_warning (code,
error_name (NULL,get_model_external_pumber(e)));

}

/* now do we want to create something? not if we don't know
where to put it ... */
if ((decl || ext_type == MODEL_RETVAL)
&& model external creates_new(e))
{
valptr new_value = value_from model_info(e,
CURRENT_LINE);
if (ext_type == MODEL_RETVAL)
result = new_value;
else
(void)assign_value(decl->value, new_value, FALSE) ;

}

return result;

/*************'k**i************************************t**t*****-**/

/* check an array (or pointer) bounds */

static valptr

offset by index(e, v, index, is_array)
expression e; /* the expression (needed for the type) */
valptr v; /* the value for the array or pointer */
valptr index; /* the value for the index */
int is_array; /* TRUE for array, FALSE for pointer */

long index_value;
valptr result;

long element_size;

long offset;

error_code illegal_ref;

if (¢ v |} ! index || ! value_as_long (index, &index_value))
return NULL;

if (is_array)
{
/* the size can be taken from the expression. E's type is
either a POINTER TYPEDEF or an ARRAY TYPEDEF; in either

-169-

WO 96/05556 PCT/US95/09691

10

15

20

25

30

35

40

case, the pointed-to type is gotten from the points_to field
of the type. */

element_size = e->expression_type->points_to->size;
}
else
{
/* for pointers, the parsing stage has already helpfully
computed the offset in terms of bytes */
element_size = 8;

}

offset
result = value_at_offset (v, offset, &illegal ref);
if (illegal_ref)

bounds_warning(index_value, is_array ? “array" : "pointer”);

element_size * index_value;

return result;

/*****************t*****t**********t*****t****t******************/

/* find a field in a struct or union */

static valptr

offset_by field (e, v, field)
expression e; /* the expression (needed for messages) */
valptr v; /* the value for the struct/union */
field definition fieldq; /* the field definition */

valptr result;
long offset;
error code illegal ref;

if (! v)
return NULL;
offset = field->offset;
result = value_at offset (v, offset, &illegal ref);
if (illegal ref)
bounds_warning(offset, "struct");

return result;

-170-

WO 96/05556 PCT/US95/09691

10

15

20

25

30

35

40

/********************************t****t**************t*t*********/
static void
check_for_ leaks(external list)

extern_list external list;

declaration decl;

resource r;

/* mark everything accessible */
while (extefnal_list)
{
decl = external_list->first_decl;
if (decl->value)
mark_all (decl->value);
external_list = external_list->next;
}
/* now find the leaks */
for (r = first_leak(); r; r = next_leak(r))
{
int line_allocated;
char *name;
int line modified;
get_resource_info(r, &line_allocated, &line_modified,
&name) ;
if (! name || ! *name)
name = "resources”;
leak_warning(name, line_allocated);

}

/***************************tt********************ﬁ****k*********/

static long
simulate_if choice(stmt)
statement stmt;

return (RANDOM_INT (2) != 0);

/***t*****ﬁ**t*tt************ﬁ**********t***t**t*******tt*t******/
static void
infer(expr, truth value)

expression expr; /* expression to evaluate */

long truth_value; /* whether it's true or false */

-171-

WO 96/05556 PCT/US95/09691

10

15

20

25

30

35

40

register expression e = éxpr;
valptr opl = NULL;
valptr op2 = NULL;

switch (e->what)
{
case OP_NOT:
infer (e->operands(0], ltruth value);
break;

case OP_AND:
/* if the entire expression is TRUE, then we can infer
that both clauses are TRUE; but not conversely */
if (truth_value)
{
infer (e->operands[0], truth_value);
infer (e->operands(l], truth_value);

}

break;

case OP_OR:
/* if the entire expression is FALSE, then we can infer that
both clauses are FALSE; but not conversely */
if (! truth_value)
{
infer (e->operands[0], truth_value);
infer (e->operands(1l], truth_value);

}

break;

case OP_LT:

case OP_LE:

case OP_GT:

case OP_GE:

case OP_EQUAL:

case OP_NOT_EQUAL:
opl = (e->operands([0])->value;
op2 = (e->operands[l])->value;
assert_relop (e->what, opl, op2, truth_value,
CURRENT_LINE);
break;

case COMPOUND_ EXPRESSION:

-172-

WO 96/05556 PCT/US95/09691

10

15

20

25

30

35

40

/* can't do anything with the first clause; second
clause must have specified truth value */
infer (e->operands(1l], truth_value);

break;

default:
break;

static int

iterations_required(num_choices, external decl_list)
int num_choices; /* how many ifs/switches */
extern_list external decl list; /* how many externals */

/* currently, just base it on the number of if's */
/* for complete coverage, 2 ~ num_choices would be required;
that's potentially too much. */
/* should be controlled by command-line parameter */
switch (num_choices)
{
case O:
return 1;
case 1:
return 3;
case 2:
return 5;
case 3:
return 10;
case 4:
return 15;
case 5:
case 6:
return 20;
case 7:
case 8:

return 30;

default:
return 50;

-173-

WO 96/05556 PCT/US95/09691

10

15

20

25

30

35

40

/*
* update the composition state of all the externals, potentially
flagging
* some inconsistency errors in the process

*/

static void
compose_externals(external_ list)
extern_list external list;

declaration decl;
error_code code;

while (external list)
{
rs_state state = RS_NONE;
value_scope scope = SCOPE_GLOBAL;

decl = external_list->first_decl;
if (decl->value)
{
resource r;
r = get_value_resource (decl->value);
if (r)
{
state = get_resource_state (r);

scope
}
else if (decl->declaration_type &&
(dec1->declaration_type->what == POINTER_TYPEDEF)
&& valptr_is_invalid pointer (decl->value))

get_resource_scope (r);

{

state = RS_X;

scope = SCOPE_CONSTANT;
}

/* could check for valid pointer but not a resource;
not yet handled */
}

code = compose_external (external_list->first_extern,

state);
if (code)

execute_warning (code, decl->name);
external_list = external_ list->next;

}

-174-

WO 96/05556 PCT/US95/09691

}
/*
* go from the externals to a model definition.
5 * relies on parameters being in the correct order on the list.
*/

static void

externals_to_model (function_decl, external_list)
10 " function function_decl;

extern list external list;

{
model routine r;
model_external_type t;
15 int param num = -1;

int index = 0;

re_state initial_ state;
int n_ops;

operation *op list;

20

r = define_model_routine (function_decl->name,
*", ", 0, TRUE);
while (external list)
25 {
declaration decl = external_ list->first_decl;
external ext = external_list->first_extern;
char *name = NULL;
int creates_new = FALSE;
30

/* now identify it as a param, var, return value */
if (decl->what == PARAMETER DECLARATION)
{
t = MODEL_PARANM;
35 /* this relies on the parameters being in order */
param_num++;
}
else if (decl->what == RESULT_ DECLARATION)
{
40 t = MODEL_RETVAL;
name = "retval";
}
else
{

-175-

WO 96/05556 PCT/US95/09691

10

15

20

25

30

35

40

t = MODEL_VAR;
name = decl->name;

}

/* get what operations are applied to it */
ops_from_external (ext, &n_ops, &op_list);

creates_new = new_state_from external(ext, &initial_ state);

/* create the external within the model */
(void) add _model_external(r, t, index++,
param_num, name, n_ops, op_list, creates_new,
initial_state, SCOPE_ALLOC, NULL);
external_list = external list->next;
}

static declaration
get_extern_decl (f, e, create)

function £; /* current function */

model external e; /* external from model */

int create; /* create it if it's not
there? */

extern list e_list;
declaration decl = NULL;

char *name;

name = get_model_external name(e);
for (e_list = f->externals; e list; e_list = e_list->next)
if (strcmp (e_list->first_decl->name, name) == 0)
{
decl = e_list->first_decl;
break;
}

/* not found; create a new declaration */
if (! decl && create)
{
external ext;
/* declared, but not used in this routine */
/* it becomes another external for this routine */

-176-

WO 96/05556 PCT/US95/09691

10

15

20

25

30

35

40

/* may want to control whether this happens via a CL
option to keep infinitely long lists from forming
*/
ext = add_external (name, NULL);
decl = create_decl (GLOBAL_VARIABLE_DECLARATION, name,
NULL) ;
external_decl list = extern_list_add (decl, ext,
external decl_list);
f->externals = external_decl_ list;
decl->value = layout_variable(SCOPE_GLOBAL,
decl->declaration_type,
0, ext, 0);
}

return decl;

static declaration

create_decl (what, name, declaration_type)
declaration kind what;
char *name;
type declaration_type;

{
extern declaration declaration_alloc PROTO((int));
declaration d4;
/* allocate it transiently */
d = declaration_alloc (FALSE);
d->what = what;
d->name = name;
d->declaration_type = declaration_type;
return d4;
}

static model_routine
routine_model_for_call (e)
expression e; /* operand 0 of the call */

declaration function decl;

if (e->what 1= OP_ADDRESS_OF)
return NULL;

e = e->operands(0};

if (e->what != VARIABLE)
return NULL;

-177-

WO 96/05556 PCT/US95/09691

function_decl = (declaration)e->operands(0};
if (! function_decl || function decl->what !=
FUNCTION_ DECLARATION) return NULL;
/* look this up if it's the first time through the function
5 and we haven't already found the model */
if (! function_decl->model)
function decl->model = find_model_routine
(function_decl->name);
return function_decl->model;
10 }

enum var_type {
VAR_PARAM,
VAR_LOCAL,

15 VAR_STATIC,
VAR_GLOBAL,
VAR_ZALLOC,
VAR_ALLOC,
VAR_CONSTANT };

20

-178-

WO 96/05556 PCT/US95/09691

10

15

20

25

30

35

40

/* hash.c: hash disk addresses to pointers for intermediate file
Copyright (C) 1994 Jonathan D. Pincus and William R. Bush

*/

#include <stdio.h>
#include <stdlib.h>

#include "ccheck.h"
#include "hash.h"

/* private definitions */
#define HASH_TAB_SIZE 2048
#define HASH(a) (((a > 3) + (a> 5) *7) %

HASH TAB_SIZE)

#define ALLOC_HASH REC() ((hash_rec)malloc (sizeof (struct
hash_rec_def)))

struct hash_rec_def {

void *p; /* the pointer */

long a; /* the disk address */
hash_rec next;

}i

static hash_rec global_hash_table[HASH_TAB_SIZE);
/* public routines */

void init_hash_table()
{
int i;
for (i = 0; i < HASH TAB_SIZE; i++)
global hash table[i) = NULL;

/* look up an address; return the pointer if it's there, -1
otherwise */

void * lookup(a)
long a;
{
hash_rec rec;
long index = HASH (a);

=-179-

WO 96/05556

10

15

20

25

30

/* special case for NULL */
if (a == NULL_OFFSET)
return NULL;

for (rec = global_hash_table[index]}; rec; rec = rec->next)
if (rec->a == a)
return rec->p;
return (void *)-1;

}

void add(a, p, force)
long a;
void *p;
int force; /* always add, even if it's there */

{
hash_rec rec;

/* add if it's not already there */
if (force || (lookup (a) == (void *)-1))
{
long index = HASH (a);
rec = ALLOC_HASH REC ();
rec->next = global_hash_table[index];
rec->a = a;
rec->p = p;
global_hash_table[index] = rec;
}

return;

}

-180-

PCT/US95/09691

WO 96/05556 PCT/US95/09691

10

15

/* hash.h: interface to hashing of disk addresses to pointers
Copyright (C) 1994 Jonathan D. Pincus and William R. Bush

*/
typedef struct hash_rec_def *hash rec;
extern void init_hash_table PROTO ((void));

/* look up an address; return the pointer if it's there, -1

otherwise */
extern void * lookup PROTO((long));

/* add an address-pointer pair */
void add PROTO ((long, void *, int));

/* offset in disk file that represents a NULL pointer */
#define NULL OFFSET -1

-181-

WO 96/05556 PCT/US95/09691

10

1s

20

25

30

35

40

/* lexer.c: lexical analyzer
Copyright (C) 1994 Jonathan D. Pincus and William R. Bush

*/

/* lexemes recognized:

Identifier --
<letter-or-digit-or-underbar>{letter-or-digit-or-underbar}

Number -- <digit>{digit}

String -- "{character}"

LeftParen -~ (

RightParen --)

Operator -- <other-character> (parens could be operators)
characters ignored:

white space -- isspace

comment —-—- C comment delimiters (/ *, * /) */

#include <ctype.h>
#include <stdio.h>
#ifndef MSDOS
#include <strings.h>
#else

#include <string.h>
#endif

#include "ccheck.h"
#include "lexer.h"

/* states */

typedef enum {
START_STATE,
WHITE_SPACE_READ STATE, /* pass over white space */
IDENTIFIER_READ STATE, /* process identifier */

NUMBER_READ_STATE, /* process number */
STRING_READ_STATE, /* process string body */
COMMENT_TEST1_STATE, /* first / seen */
COMMENT_READ_ BODY_ STATE, /* first * seen */
COMMENT TEST2_STATE, /* second * seen */
OPERATOR_READ STATE /* process operator */

} states;

extern void read_lexeme PROTO((void));
extern void write_lexeme PROTO((void));
extern void lex_init PROTO((FILE *));

-182-

WO 96/05556 PCT/US95/09691

10

15

20

25

30

35

40

extern void readchar PROTO((void));
extern void begin_string PROTO((void));
extern void read_string PROTO((void));
extern void end string PROTO((void));
extern void begin_identifier PROTO((void));
extern void read_ identifier PROTO((void));
extern void end_identifier PROTO((void));
extern void begin_number PROTO((void));
extern void read_number PROTO((void));
extern void end number PROTO((void));
extern void read operator PROTO((void));

/* input «/

static states state = START_STATE;
static char inchar = 040;

static FILE *instream = stdin;

/* output */

lexemes lexeme = LEX BEGIN;

char stringdata[STRINGSIZE+1}; /* null-terminated */
static int stringindex = 0;

long numberdata = 0;
static int linenumber = 1;

int lineno = 1; /* line number of start of lexeme */

/* This can be extended to buffer input if lookahead is needed
(see Dragon page 90). */

void

readchar ()

{
inchar = fgetc(instream);
if (inchar == 012) linenumber++;

/* * initialize string literal * */
void
begin_string()
{
stringindex = 0;

lineno = linenumber;

-183-

WO 96/05556 PCT/US95/09691

/* * read string literal character * */
void

read_string()

{
5 if (stringindex >= STRINGSIZE)
{
stringdata(STRINGSIZE] = O; /* terminate string */
fprintf(stderr, "-- string or identifier '$s'\n... is too
long =--\n", stringdata);
10 stringindex = -1;
}
else if (stringindex >= 0) stringdata(stringindex++) =
inchar;
}
15
/* * complete string literal * */
void
end_string()
20 {

if (stringindex >= 0) stringdata[stringindex] = O;

25 /* * initialize identifier string *» */
void
begin_identifier()

{
stringdata{0] = inchar;
30 stringindex = 1;
lineno = linenumber;

35 /* * read character in identifier * »/
void
read_identifier()
{
read_string();
40 }

/* * complete identifier string * */
void

-184-

WO 96/05556

10

15

20

25

30

35

40

end_identifier()

{

end_string();

/* * initialize numeric value * */

void

begin_number ()

{
numberdata = (long) inchar - (long) '0’;
lineno = linenumber;

/* * read numeric character * */
void
read_number ()

{
numberdata = numberdata * 10 + (long) inchar - (long) '0';

/* * complete numeric value * */
void
end_number()

{

/* nothing */

/* * read operator * */
void

read operator()

{

numberdata = (long) inchar;

lineno = linenumber;

/* * recognize lexemes -- finite state machine * */
void
read_lexeme()

{

-185-

PCT/US95/09691

WO 96/05556 PCT/US95/09691

state = START_STATE;
lexeme = LEX_ BEGIN;
while (lexeme == LEX BEGIN)
{
5 switch (state)
{
/* The current lexemes recognized permit a
deterministic FSM (no lookahead/fail -- see Aho,
Sethi, Ullman page 105). */
10 /* Entering this switch, the inchar variable contains
the character to be examined (no readchar
necessary). */
case START_STATE:
if (inchar == EOF)
15 lexeme = LEX END;
else if (isspace(inchar))
{
readchar();
state = WHITE_SPACE_READ_STATE;
20 }
else if (isalpha(inchar) || inchar == '_')
{
begin_identifier();
readchar();
25 state = IDENTIFIER READ_STATE;
}
else if (isdigit(inchar))
{
begin number();
30 readchar();
state = NUMBER_READ_STATE;
}
else if (inchar == '"')
{
35 begin_string();
readchar();
state = STRING_READ_STATE;
}
else if (inchar == '/*')
40 {
readchar();
state = COMMENT_TESTI_STATE;

}
else if (inchar == '(')

-186-

WO 96/05556

10

15

20

25

30

35

40

read_operator();
lexeme = LEFTPAREN;
readchar();
}
else if (inchar == ')')
{
read_operator();
lexeme = RIGHTPAREN;
readchar();
}
else
state = OPERATOR _READ STATE;
break;
case WHITE_SPACE_READ_ STATE:
if (isspace(inchar))
{
readchar();
state = WHITE_SPACE_READ_ STATE;
}
/* same state -- optimizable */
else

{
state = START_STATE;

}
break;
case IDENTIFIER_READ_ STATE:
if (isalnum(inchar) || inchar == '_°'
{
read_identifier();
readchar();
state = IDENTIFIER READ_STATE;
}
/* same state -- optimizable */
else
{
end_identifier();
lexeme = IDENTIFIER;
}
break;
case NUMBER_READ_ STATE:
if (isdigit(inchar))
{
read_number();

-187-

)

PCT/US95/09691

WO 96/05556

10

15

20

25

30

35

40

PCT/US95/09691

readchar();
state = NUMBER_READ_STATE;
}
/* same state -— optimizable */
else
{
end_number();
lexeme = NUMBER;
}
break;
case STRING_READ STATE:
if (inchar == '"')
{
end_string();
lexeme = STRING;
readchar();
}
else if (inchar == EOF)
lexeme = LEX_END;
else
{
read_string();
readchar();
state = STRING_READ_STATE;
}
/* same state -- optimizable */
break;
case COMMENT TEST1_ STATE:
if (inchar == ‘'*')
{
readchar();
state = COMMENT READ_ BODY_STATE;
}
else
state = OPERATOR_READ_STATE;
break;
case COMMENT READ BODY_STATE:
if (inchar == *'=»')
{
readchar();
state = COMMENT_ TEST2_STATE;
}
else if (inchar == EOF)
lexeme = LEX END;

-~188~-

WO 96/05556

10

15

20

25 .

30

35

40

}

else
{
readchar();
state = COMMENT_READ_BODY_ STATE;
}
/* same state -- optimizable */
break;

case COMMENT_ TEST2_STATE:

if (inchar == '/°
{

readchar();

)

state = START_STATE;

}

else if (inchar == EOF)
lexeme = LEX_END;

else

{

readchar();

state = COMMENT_ READ_BODY_STATE;

}
break;

case OPERATOR_READ_STATE:

read_operator();
lexeme = OPERATOR;
readchar();
break;

default:
fprintf (stderr,

"—-- unknown lexical state %d with character

--\n", state, inchar);

lexeme = LEX END;
break;

} /* end switch */

/* end while */

/* * print lexemes * */

void

write lexeme()

{

switch(lexeme)

{

case IDENTIFIER:

~-189-

PCT/US95/09691

%0

WO 96/05556

10

15

20

25

30

35
void

fprintf (stderr,
stringdata);
break;
case NUMBER:
fprintf (stderr,
numberdata) ;
break;
case STRING:
fprintf (stderr,
stringdata);
break;
case LEFTPAREN:
fprintf (stderr,
break;
case RIGHTPAREN:
fprintf (stderr,
break;
case OPERATOR:
fprintf (stderr,
numberdata) ;
break;
case LEX_BEGIN:
fprintf (stderr,
break;
case LEX_END:
fprintf (stderr,
break;
default:
fprintf (stderr,
lexeme) ;
break;

lex_init (input)
FILE *input;

{

40 instream = input;
inchar = ' ';
linenumber = 1;
lineno = 1;

}

PCT/US95/09691

(identifier '%s' encountered)\n",

(number 'sd' encountered)\n",

(string '%s' encountered)\n",

(left parenthesis encountered)\n");

{(right parenthesis encountered)\n");

(operator 'sc' encountered)\n",

(beginning of lexeme encountered)\n");

(end of file encountered)\n");

(unknown (%d) encountered)\n",

=190~

WO 96/05556 PCT/US95/09691

10

15

20

25

30

35

40

/* lexer.h: lexical analyzer header file
Copyright (C) 1994 Jonathan D. Pincus and William R. Bush

*/

/* lexeme types */

typedef enum {
IDENTIFIER,
NUMBER,
STRING,
LEFTPAREN,
RIGHTPAREN,
OPERATOR,
LEX_BEGIN,
LEX_END

} lexemes;
extern void read lexeme PROTO((void));
extern void write_lexeme PROTO((void));

extern void lex_init PROTO((FILE *));

extern lexemes lexeme;

#define STRINGSIZE 256
extern char stringdata{STRINGSIZE+1]; /* null-terminated
*/

extern long numberdata;
extern int lineno;

/* For the best error messages, the input file name should be
known and used, and all error messages should use write_lexeme.

*/

/* The use of the following macros (as opposed to function calls)

is partly for speed, and partly historical. */

#define GET_TOKEN read_lexeme()

#define CHECK_TOKEN (where, what, msg) \
if (lexeme != what) \
{ \

fprintf(stderr, "%s error on line %d: expected 'ss'\n",

where, lineno, msg); \

-

write lexeme();
return TRUE; A\

-191-

WO 96/05556 PCT/US95/09691

#define CHECK_EOF \
if (lexeme == LEX_END) \
{ \
fprintf(stderr, "Error on line %d: unexpected eof\n",
5 lineno); \
return TRUE; \
}
#define TOKEN_IS_STR (lexeme == IDENTIFIER || lexeme ==
10 STRING)
#define TOKEN_IS_ID (lexeme == IDENTIFIER)
#define TOKEN_IS_INT (lexeme == NUMBER)
15
#define TOKEN_IS_LEFTP (lexeme == LEFTPAREN)
#define TOKEN_IS RIGHTP (lexeme == RIGHTPAREN)
20 #define TOKEN_IS_EOF (lexeme == LEX_ END)
#define TOKEN_EQ(str) (strcmp (stringdata, str) == 0)

#define TOKEN_AS_INT (numberdata)

25
/* for simple reading of lexeme string */
#define TOKEN_AS_STR (stringdata)

#ifdef MSDOS
30 #define strdup _strdup
#endif

/* for using this lexeme string after reading next lexeme */

#define TOKEN_AS_NEW_STR (char *) (strdup(stringdata))
35

-192-

WO 96/05556 PCT/US95/09691

10

15

20

25

30

Makefile -- make file for state based error detector
Copyright (C) 1994 Jonathan D. Pincus and William R. Bush

Sun C compiler does not support ANSI prototypes

Note: for debug info about model file parsing, add
-DMODEL_PARSER_DEBUG

for debug info about the intermediate file, add
-DINTERM_FILE_DEBUG

CFLAGS = -g —-DNO_PROTO_SUPPORT
EXE = ccheck

OBJS = ccheck.o execute.o hash.o lexer.o model.o parser.o \

print.o readin.o state.o value.o

S(EXE) : $(OBJS)
cc -o $(EXE) $(OBJS)

ccheck.o: ccheck.c ccheck.h opcodes.h readin.h print.h state.h

model.h

execute.o: execute.c ccheck.h state.h model.h value.h opcodes.h
readin.h

hash.o: hash.c ccheck.h hash.h

lexer.o: lexer.c ccheck.h lexer.h

model.o: model.c ccheck.h state.h model.h

parser.o: parser.c ccheck.h state.h model.h lexer.h

print.o: print.c ccheck.h opcodes.h readin.h print.h

readin.o: readin.c ccheck.h state.h model.h value.h opcodes.h

readin.h hash.h

state.o: state.c ccheck.h state.h

value.o: value.c ccheck.h opcodes.h state.h model.h value.h

=193~

WO 96/05556 PCT/US95/09691

10

15

20

25

30

35

40

Makefile -- make file for state based error detector
Copyright (C) 1994 Jonathan D. Pincus and William R. Bush

MSVC C compiler does support ANSI prototypes

Note: for debug info about model file parsing, add
-DMODEL_PARSER_DEBUG

for debug info about the intermediate file, add

-DINTERM_FILE_DEBUG

CFLAGS = /0d /Zi /FR /AL /nologo /G3 /Gd /Gy /W3 /Gt2000

.LDFLAGS = /NOLOGO /PACKC:51344 /STACK:6000 /ONERROR:NOEXE /CO

LIBS = oldnames.lib

CC = ¢l

EXE = cchdos
BROWSE = ccheck.bsc

OBJS = ccheck.obj execute.obj hash.obj lexer.obj model.obj
parser.obj \
print.obj readin.obj state.obj value.obj

SBRS = ccheck.sbr execute.sbr hash.sbr lexer.sbr model.sbr
parser.sbr \
print.sbr readin.sbr state.sbr value.sbr

S(EXE) : $(OBJS)
link $(LDFLAGS) $(OBJS),S$(EXE),,$(LIBS);

all : $(EXE) $(BROWSE)

browse : $(BROWSE)

$(BROWSE) : $(SBRS)
bscmake -nologo -o $(BROWSE) §$(SBRS)

ccheck.obj: ccheck.c ccheck.h opcodes.h readin.h print.h state.h
model.h

execute.obj: execute.c ccheck.h state.h model.h value.h opcodes.h
readin.h

hash.obj: hash.c ccheck.h hash.h

lexer.obj: lexer.c ccheck.h lexer.h

-194-

WO 96/05556 PCT/US95/09691

model.obj: model.c ccheck.h state.h model.h

parser.obj: parser.c ccheck.h state.h model.h lexer.h

print.obj: print.c ccheck.h opcodes.h readin.h print.h

readin.obj: readin.c ccheck.h state.h model.h value.h opcodes.h
5 readin.h hash.h

state.obj: state.c ccheck.h state.h

value.obj: value.c ccheck.h opcodes.h state.h model.h value.h

-195-

WO 96/05556 PCT/US95/09691

/* model.c: model definition
Copyright (C) 1994 Jonathan D. Pincus and William R. Bush

*/
S /* in-memory definitions of models */

#include <stdlib.h>
#include <stdio.h>
#include <string.h>
10 #include "ccheck.h"
#include "state.h"
#include "model.h"

/* the actual routine definition */

15
struct model_routine_def {
char *routine_ name; /* name of the routine */
model_external first_external; /* head of list of
externals */

20 model_external last_external; /* tail of list of

externals */

char *comment ; /* optional comment */

char *file; /* file defined in */
long line; /* line defined at */

25 model routine next; /* next routine */
int auto_modeled:1; /* whether it was read

in or
created by automodeling */
}i
30
/* maximum number of ops stored in a structure */
/* for current states, don't have anything with more than 2
(realloc) =*/
#define MAX OPS 2
35
struct model_external def {
int index;
model_external type type; /* what kind of external it is «/
int param_number; /* for parameter */

40 char *external name; /* for variable, pseudo */
model external next; /* chain to next external */
int n_ops; /* how many operations

to apply */
operation Ops[MAX OPS]; /* operations to apply */

=196~

WO 96/05556 PCT/US95/09691

10

15

20

25

30

35

40

int scope; /* required or new
scope */
int creates_new; /* whether it creates

a new resource */

rs_state initial_state; /* initial state of
new resource */

char *description; /* description of new

resource */

}i

/**************t**********t*********************t****************/

/* allocating and freeing chunks of memory for model routines and

model_externals.

could use some routine other than malloc, which may be

inefficient
*/

/* lists of all allocated routines/externals */
static model routine firat_allocated_routine = NULL;
static model_ routine last_allocated routine = NULL;

static model_routine
alloc_model routine()

{ -
model_routine r = (model_routine) calloc(l, sizeof(struct
model routine_def));
if (last_allocated_routine)
last_allocated_routine->next = r;
else
first_allocated routine = r;
last_allocated_routine = r;
r->next = NULL;
return r;

/* iterate through all the routines */
model routine

first_model routine()

{
return first_allocated_routine;

-197-

WO 96/05556 PCT/US95/09691

model_routine

next_model routine(r)

5 model_routine r;
{
return r->next;
}
10
/* return a routine_model by name; returns -1 if not found */
model routine
find_model_routine (routine_name)
15 char *routine_ name;
{
model routine r;
for (r = first_allocated_routine; r; r = r->next)
if (strcmp (r->routine_name, routine_name) == 0)
20 return r;
return (model_routine)(-1);
}
static model_external
25 alloc_model_ external(r)

model_routine r;

model_external e = (model_external) calloc(l, sizeof(struct
model_external def));
30 if (r->last_external)
r->last_external->next = e;
else
r->first_external = e;
r->last_external = e;
35 e->next = NULL;

return e;

model external

40 first_model external(r)
model_routine r;
{
return r->first_external;
}

-198-

WO 96/05556 PCT/US95/09691

10

1s

20

25

30

35

40

model external
next_model_external(e)

model external e;

return e->next;

/************************************t*************t*******t*i***/‘

/* initialize the model module. currently a no-op */
void

init_model ()

{

return;

/**t****t****/
/*
create a model for a new routine. returns the
model_routine;
followed by calls to define model_ external

this can be called either in auto-modelling or when parsing
a model definition file. the comment, file, and line may be
useful for messages, or for generating model definitions

*/

model_ routine
define_model_routine(routine_name, comment, file, line,
auto_modeled)

char *routine_ name;

char *comment;

char *file;

long line;

int auto_modeled;

model_routine r;

r = alloc_model routine();

r->routine_name = routine_name;

r->comment = comment;

r->file = file;

r->line = line;

if (auto_modeled)
r->auto_modeled = TRUE;

else

-199-

WO 96/05556

10

15

20

25

30

35

40

r->auto_modeled = FALSE;

return r;

/* create an external within a given model */

model_external

PCT/US95/09691

/**t*************t*******/

add_model_external (r, type, index, param_number, external name,

n_ops, op_list, creates_new, initial state, scope,

description)
model routine r;
model external type type;
int index;
int param_ number;
char *external name;
int n_ops;
operation *op_list;
int creates_new;
rs_state initial state;
int scope;
char *description;

int i;

model_external e = alloc_model external (r);

e->index = index;
e->type = type;
e->param_ number = param number;
e->external_name = external_ name;
e->n_ops = n_ops;
for (i = 0; i < MAX_OPS; i++)
{
if (i < n_ops)
e->ops([i] = op_list[i);
else
e->ops[i) = OP_none;
}
e->scope = scope;
e->creates_new = creates_new;
e->initial_ state = initial state;
e->description = description;
return e;

=200~

WO 96/05556 PCT/US95/09691

10

15

20

25

30

35

40

/*
return the list of operations (p, k, a, etc.) performed by
this routine on an external. may need to be
a list because of realloc-type operations.
no ops are performed, case, n_ops is O.
*/
void

get_model_external_ops(e, n_ops, op_list, required_scope)

model external e;

int *n_ops; /* how many ops in list =/
operation **op list; /* the list of ops to perform */
int *required_scope; /* the required scope */
{
*n_ops = e->n_ops;
*op list = e->ops;
*required_scope = e->scope;
}
/*
return whether or not this external calls for something to
be created)
*/
int

model external creates_new(e)
model_external e;

{
return e->creates_new;

}

/*
if this external specifies creation of a new resource then
the initial state and scope are returned. the return value
specifies whether a new resource should be created

*/

int

get _model_external new(e, initial state, scope, description)
model_external e;
rg_state *initial state;
int *scope;

char *wdescription;

-201-

WO 96/05556 PCT/US95/09691

10

15

20

25

30

35

40

{
*initial state = e->initial_state;
*scope = e~->Bcope;
*description = e->description;
return e->creates_new;

}

/*

returns whether its a parameter, retval, variable, field, ...

*/

model_external_type
get_model_ external type(e)
model_external e;

{
return e->type;
}
/*
returns the name; makes sense for variable, pseudo, field,
*/
char *

get_model_ external name(e)
model external e;

return e->external_name;

/* returns the number; makes sense for parameter */

int
get_model_external number(e)
model_external e;

return e->param number;

/*
returns the name and other information about the routine.
used by current implementation to hang routine pointers off
the identifiers in the symbol table; also used when writing
out the models ‘

-202-

WO 96/05556 PCT/US95/09691

10

is

20

25

30

35

40

*/

void
get_model_routine_info(r, routine_ name, comment, file, line)
model routine r;
char **routine_name;
char **comment;
char =**file;
long *line;

{
*routine_name = r->routine_name;
*comment = r->comment;
*file = r->file;
*line = r->line;
}

/* output a single model to a file */

void

write_model routine(fptr, r)
FILE *fptr;
model routine r;

model_external e;
int i;

/* write out the prefix */
fprintf (fptr, "\n(%s", r->routine_name);
if (r->file && *r->file)
{
fprintf (fptr, " %8s %d", r->file, r->line);
if (r->comment && *r->comment)
fprintf(fptr, " %8", r->comment);
}
fputs("\n", fptr);
/* now each external */
for (e = r->first_external; e; e = e->next)
{
fprintf(fptr, "\t(");
switch (e->type)
{
case MODEL_RETVAL:
fputs("retval ", fptr);

-203-

WO 96/05556 PCT/US95/09691

break;

case MODEL PARAM:
fprintf(fptr, "(param %d) ", e->param number);
5 break;

case MODEL_VAR:
fprintf(fptr, "(var %s) ", e->external name);

break;
10
default:
fprintf(fptr, "UNKNOWN_TYPE _%d ", (int)e->type);
break;
}
15 /* now write out the ops */

for (i = 0; i < e->n_ops; i++)
fprintf(fptr, "(op %s8)", op_names(e->o0ps(i]]);

/* and, if it creates a new resource ... */
20 if (e->creates_new)

fprintf(fptr, "(new %8)", rs_names[e->initial_state]);

fputes(")\n", fptr);

}

25 /* and the final parenthesis */

fputs("\t)\n", fptr);
}
/*

30 writes all the models, or only the new ones created by
auto-modelling, to a model file. header_info is what gets
printed at the top of the file. alternatively, see
write _model routine, which allows finer control

*/
3s
void
write models(model file name, header_info, dump_ all)
char *model_file name;
char *header_ info;

40 int dump_all;

FILE *fptr;
model routine r;

-204-

WO 96/05556 PCT/US95/09691

10

15

20

25

fptr = fopen(model_file name, "w");
if (! fptr)
{
fprintf (stderr, "Unable to open output model file %s\n",
model file name);
return;
}
fputs(header_info, fptr);
fputs(”"\n\n", fptr);
for (r = first model routine(); r; r = next_model_routine(r))
if (dump_all |} r->auto_modeled)
write model routine (fptr, r);
fclose (fptr);

/* read_built in models reads models for the default functions
in. this is called in the initialization within cchback.c */

void
read built in_models()

{
extern void parse_models();

init_model();
parse_models("stdlib.sm");

-205-

WO 96/05556 PCT/US95/09691

(M)

10

15

20

25

30

35

40

/* model.h: header file for exports from model engine
Copyright (C) 1994 Jonathan D. Pincus

*/

/* the different kinds of external */
typedef enum {

MODEL_PARAM, /* represents a parameter */
MODEL_VAR, /* represents a global or static variable */
MODEL_RETVAL, /* represents the return value */
MODEL_PSEUDO, /* a pseudo-variable */

MODEL_FIELD, /* a field of some other external */
MODEL_INDIRECT, /* pointed to by some other external */
MODEL_OFFSET /* a memory offset from some other

external */
} model_external type;

/* initialization procedure */
extern void init_model PROTO ((void));

/* access for model routines */

extern model_routine first_model_routine PROTO ((void));

extern model_routine next_model_routine PROTO ((model_routine));
extern model_routine define_model_routine PROTO ((char *, char *,
char *, long, int));

extern model_routine find _model_routine PROTO((char *));

extern void get_model routine_info PROTO ((model_routine, char =**,
char **, char **, long *));

/* access for externals */
extern model_ external first_model_ external PROTO
{ (model routine));
extern model_ external next_model_ external PROTO
((model_external));
extern model_external add_model_external PROTO ((model_routine,
model_external_type,
int, int,char+*,int, operation*, int , rs_state , int , char
*));
extern void get_model_external_ops PROTO ((model external, int ¥,
operation **, int *));
extern int get_model_external new PROTO ((model_ external,rs_state
*,int *,char **));
extern int model_ external_ creates_new PROTO ((model_external));

/* specific fields of externals */

-206-

WO 96/05556 PCT/US95/09691

10

extern model_external type get_model external_ type PROTO
((model_external));

extern char * get_model_external name PROTO ((model_external));
extern int get_model_ external_ number PROTO ((model_external));

/* dump to a file */
extern void write_models PROTO((char *,char *,int));

/* read in the built-in models */
extern void read_built in_models PROTO((void));

-207-

WO 96/05556

10

15

20

25

30

35

40

PCT/US95/09691

/* opcodes.h: constants for the parse structures
Copyright (C) 1994 Jonathan D. Pincus and William R. Bush

*/

/* note: this is in a separate file from the parsing data

etructures because this is needed by the front end as well in

order to produce the intermediate file.

*/
typedef enum statement_kind_def statement_kind;
typedef enum expression_kind_def expression_kind;

typedef enum type_kind def

type_kind;

typedef enum declaration_kind_def declaration_kind;

/* statements */

/* note: not all the kinds of statements are actually needed; a

few are placeholders for implementation options that were not

chosen. They are indiciated by comments here. */

enum statement_kind_def {

ERROR_STMT,
DECL_STMT,
EXPR_STMT,
BLOCK_STMT,
END_BLOCK_STMT,
IF_STMT,
ELSE_STMT,
ELSIF_STMT,
RETURN_STNMT,
LOOP_STMT,
END_LOOP_STMT,
SWITCH_STMT,
END_SWITCH_STMT,
BRERK_STMT,
GOTO_STNMT,
CONTINUE_STMT
}i

/* types */

enum type kind_def (
ERROR_TYPEDEF,

/*
/*
/*
/*
/*
/*
/*
/*

/*

denotes some error */

a declaration */

an expression, used as a statement */
a block statement: '{' =*/

(not actually needed] */

an if statement */

an else statement */

(not actually needed] */

(not actually needed) */

[not actually needed) */

/* must be first in all enums */

-208-

WO 96/05556

10

15

20

25

30

35

40

VOID_TYPEDEF,
INTEGER_TYPEDEF,
REAL_TYPEDEF,
POINTER_TYPEDEF,
ARRAY TYPEDEF,
ENUM_TYPEDEF,
STRUCT_TYPEDEF,
UNION_TYPEDEF,
FUNCTION_TYPEDEF /*

}i:

/* expressions */

enum expression kind_def {
ERROR_EXPRESSION,
CONSTANT_INTEGER,
CONSTANT_REAL,
CONSTANT_STRING,
VARIABLE,
ARRAY_OFFSET, /*
FIELD_ REFERENCE,
COMPOUND_EXPRESSION,

ASSIGNMENT,
CONDITIONAL, /*
FUNCTION CALL,

PCT/US95/09691

/* C union type */

for pointer-to-function */

/*
/*
/*
/*
/*
array
/*
/*

denotes some error */

32 bits */

64 bits */

points off to STRING_NODE */
points to a DECL_NODE */
reference */

field reference */
comma-geparated list of

expressions */

/*
(2 :

/*

et */
) construct */
function call; methods will have

a different code */

OP_ADDRESS_OF,
OP_INDIRECTION,

/*
/*

/* arithmetic operations */

OP_PLUS,
OP_MINUS,
OP_TIMES,
OP_DIV,

OP_MOD,

OP_POW,
OP_UNARY_ MINUS,
OP_MIN,

OP_MAX,

OP_AaBS,
OP_SHIFT_LEFT,
OP_SHIFT_RIGHT,

the
the '*' operator */

'&' operator */

-209-

WO 96/05556

10

15

20

25

30

35

40

OP_OR_BITS,
OP_AND_BITS,
OP_NOT_BITS,
OP_XOR_BITS,
OP_RAND,
OP_OR,
OP_NOT,

OP_LT,

OP_LE,

OP_GT,

OP_GE,
OP_EQUAL,
OP_NOT_EQUAL,

OP_PREDECREMENT,
OP_PREINCREMENT,
OP_POSTDECREMENT,
OP_POSTINCREMENT,

CONVERT_TO_INT,
CONVERT_TO_REAL

}:

/* declarations */

RESULT_DECLARATION

}i:

{

/w
/*
/*
/*
/*
/*

/*
/*
/t
/*

/t

enum declaration_kind def ({
ERROR_DECLARATION,

/* 0/
& */
- .
A*/
&& */
o/

Y.

< */
<= %/
> *f
>= */
[* == */
= »/

PCT/US95/09691

/* must be first in all enums */
FUNCTION_DECLARATION,
LOCAL_VARIABLE_DECLARATION,
STATIC_VARIABLE_DECLARATION,
GLOBAL_VARIABLE_DECLARATION,
PARAMETER_DECLARATION,

typedef enum parse_record_kind def
typedef enum parse_patch_kind def

enum parse_record_kind def

/* records written to the intermediate file */

-210-

parse_record_kind;
parse_patch_kind;

WO 96/05556

10

ERROR_RECORD,

STRING_RECORD,
STATEMENT_RECORD,
TYPE_RECORD,
FIELD_RECORD,
DECLARATION_RECORD,
FUNCTION_RECORD,
END_FUNCTION_RECORD,
EXPRESSION_RECORD,
PATCH_RECORD

}:

15 enum parse_patch_kind_def

20

25

{
PATCH_ERROR,

/*

PCT/US95/09691

represents some error in the

parse */

/*
/*
/*
/*
/*
/*
/'ﬁ
/*
/*

/*

PATCH_NEXT, /* patch

*/

a string or identifier «/

a statement */

a type */

a field of a struct or union */
a declaration */

a function declaration */
termination of function */

an expressinon */

instruction to patch */

must be first in all enums */
the 'next' field of a statement

PATCH_EXPRESSION, /* patch the expression field of a
statement */
PATCH_LABEL /* patch the label of a goto */

}i

/* an offset representing the NULL pointer */

#define NULL_OFFSET -1

-211-

WO 96/05556 PCT/US95/09691

10

15

20

25

30

35

40

/* Parse behavioral descriptions of functions
Copyright (C) 1993, 1994 Jonathan D. Pincus and William R. Bush

This is the parser for the text description of models. */

/*

Modeling in the state-based approach:

The model needs to spell out information about all the externals
affected by each routine. Externals include parameters, global
variables, static variables (including the routine's own), the
routine's return value, and possibly ‘pseudos’', such as 'the
clipboard', not a variable per-se but something which does in fact
have state.

Note that the externals may be the parameter itself, or something
pointed to directly or indirectly by the parameter. Although not
necessarily initially implemented, the syntax should support this
as well.

For each external, there is either one or more operations on
existing data, or some new data which must be created. If a new
resource is created, we must know its initial state, as well as
perhaps some name to refer to it on debugging outputs.

Interfaces to the model engine must permit both the accessing of
model information, and the creation of new model information (for
auto-modeling). The parsing of a textual form of models, and the
producing of the new model definition files, are both hidden below
this interface.

Language specification:

<function-spec> ::= (<function-prefix> <extern-list>)
<function-prefix> ::=
<routine-name>
[<defining-file> [<defining-line> [<description>]]]
<extern-list> ::= <extern> | <extern> <extern-list>
<extern> ::= (<extern-type> <result-list>)
<extern-type> ::=
retval // return value
| (param <param-index>) // parameter

-212-

WO 96/05556 PCT/US95/09691

10

15

20

25

30

35

40

| (var <var-name>) // global/static variable
<result-list> ::= <result> | <result> <result-list>
<result> ::=
(op <state-op>)
| (new <initial-state> [<description>])
<initial-state> ::= A | Q | U} X | E
<gtate-op> ::=a | m | k | x| i} c}|p
Notes:
Bracketed items are opticnal.
All names are identifiers; all descriptions are strings or
identifiers;
all indexes and lines are non-negative integers.

*/

#include <stdio.h>
#include <string.h>

#include "ccheck.h"
#include "state.h"
#include "model.h"
#include "lexer.h"

extern void parse_models PROTO((char *));

extern int get routine prefix PROTO((model_routine *));

extern int get_optional_index PROTO((int *));

extern int get_type PROTO((model_external type *, int *, char
*t));

extern int get_results PROTO((int *, operation *, int *, rs_state

*, char **));

extern int get_external PROTO((model_routine));

extern int get_routine PROTO({ (void));

/* Read in a description file with the specified name */
void
parse_models (name)
char *name;
FILE *input;

int eof;
/* Open the input file. */

=213~

WO 96/05556

if (name == 0 || !strcmp(name, "-"))
{
input = stdin;
name = "stdin";
5 }
else

10

15

20

25

30

35

40

input = fopen(name, "r");
if (input == 0)
return;

/* Initialize the lexical analyzer. */

lex_init(input);
do

eof = get_routine();
while (! eof);
/* Close the input file. */
fclose(input);

PCT/US95/09691

/* Get the routine name, and optionally the defining file,

*/

int

defining line, and description.

Lexeme is left at the next token, typically the opening paren

for the list of externals.

get_routine prefix(r)

_.model routine *r;

char *name;
char *comment = "";
char *file = "";
long line = 0;
/* get the routine name */

CHECK_TOKEN("Model routine name”, IDENTIFIER, "routine

name");
name = TOKEN_AS_NEW_STR;
/* get defining file (if any) */
GET_TOKEN;
if (TOKEN_IS_STR)
{
file = TOKEN_AS_NEW_STR;
GET_TOKEN;
/* now the line, if any */
if (TOKEN_IS_INT)

-214-

WO 96/05556 PCT/US95/09691

{
line = TOKEN_AS_INT;
GET_TOKEN;
/* and an optional comment */
5 if (TOKEN_IS_STR)
{
comment = TOKEN_AS_NEW_STR;
GET_TOKEN;
}
10 }

}

/* define the in-~memory structure */
*r = define model routine(name, comment, file, line, FALSE);
return FALSE;

15 }

/* Get the type of an external, which may be either retval (not
in parens) or a parenthesized expression such as (var
varname), (param number), and possibly others eventually.

20 Lexeme is advanced to the first token after the type.

*/

int
get_type(type, index, name)
25 model external type *type;
int *index;
char **name;

{
*index = -1;
30 *name = "";
CHECK_EOF;
if (TOKEN_IS_ID)
{
35 if (! TOKEN_EQ("retval"))
{

fprintf(stderr, "Model extern type error on line %d:
‘%8’ is not a type.\n",
lineno, TOKEN_AS_STR);
40 return TRUE;
}
*type = MODEL_RETVAL;

}
else

-215-

WO 96/05556

10

15

20

25

30

35

40

PCT/US95/09691

CHECK_TOKEN("Model extern type", LEFTPAREN, "TYPE");

GET_TOKEN;

CHECK_TOKEN ("Model extern type", IDENTIFIER, "'param',
‘var', ...");

if (TOKEN_EQ("param”))

{
/* get a number -- the param's index */
*type = MODEL_PARAM;
GET_TOKEN;
CHECK_TOKEN("Model extern type", NUMBER, "parameter
number"”);
*index = (int) TOKEN_AS_INT;
}
else if (TOKEN_EQ("var™))
{
/* get the variable name */
*type = MODEL_VAR;
GET_TOKEN;
CHECK_TOKEN("Model extern type", IDENTIFIER, "variable
name") ;
*name = TOKEN_AS_NEW_STR;
}
else
{

fprintf(stderr, "Model extern type error on line %d:
unsupported type %s\n",
lineno, TOKEN_AS_STR);
return TRUE;
}
GET_TOKEN;
CHECK_TOKEN("Model extern type", RIGHTPAREN, ")");
}
GET_TOKEN;
return FALSE;

/* Get the "results" clause of an external, specifying one of the
things that happen to it. Possible results are (op op-name) or
(new state description).

Lexeme is advanced to the token beyond this results clause.

*/

int

-216~

WO 96/05556 PCT/US95/09691

10

15

20

25

30

35

40

get_results(n_ops, op_list, is_new, state, desc)
int *n_ops;
operation *op_ list;
int *is_new;
rs_state *state;

char **desc;

CHECK_EOF;
if (TOKEN_IS RIGHTP)
return FALSE;
CHECK_TOKEN ("Model extern result", LEFTPAREN, "RESULTS");
GET_TOKEN;
CHECK_TOKEN ("Model extern result"”, IDENTIFIER, "'op’', 'new’',
eee™)s
if (TOKEN_EQ("op"))
{
/* get the op name */
GET_TOKEN;
CHECK_TOKEN("Model extern result", IDENTIFIER,
"operation (a, k, m, x, i, ¢, p)");
op_list(*n _ops) = operation_from name(TOKEN_AS_STR);
if (op_list[*n_ops) == OP_none)
{
/* illegal */
fprintf (stderr, "Model extern result error on line %d:
unknown operation %s\n",
lineno, TOKEN_AS_STR);
return TRUE;
}
(*n_ops)++;
GET_TOKEN;
}
else if (TOKEN_EQ("new"))
{
*is new = TRUE;
/* get the state */
GET_TOKEN;
CHECK_TOKEN("Model extern result", IDENTIFIER,
"gtate (U, Q, A, X, E)");
*state = rs_state_from_name(TOKEN_AS_STR);
if (*state == RS_NONE)
{
/* illegal */
fprintf(stderr, "Model extern result error on line %d:

=217~

WO 96/05556 PCT/US95/09691

unknown state %s\n",
lineno, TOKEN_AS_STR);
return TRUE;

}
5 /* the scope would go here... */
GET_TOKEN;
if (TOKEN_IS_STR)
{
/* description */
10 *desc = TOKEN_AS_NEW_STR;
GET_TOKEN;
}
else

*desc = "";
15 }
/* scope would go here... */
else
{
fprintf(stderr, "Model extern result error on line %d:
20 unknown keyword $s\n",
lineno, TOKEN_AS_STR);
return TRUE;
}
CHECK_TOKEN("Model extern result", RIGHTPAREN, ")");
25 GET_TOKEN;
return FALSE;

/* Get an entire external description, including optionally an
30 index, the type,
and zero or more results clauses. */

int
get_external(r)
35 model_routine r;

model_ external type type;
model_external e;
int number;
40 char *name;
int n_ops = 0;
operation op_list(10);
int is_new = 0;
re_state state = RS_E;

-218-

WO 96/05556 PCT/US95/09691

10

15

20

25

30

35

40

char =*desc;

CHECK_TOKEN ("Model extern", LEFTPAREN, "(");
GET_TOKEN;
/* get the type */
if (get_type(&type, &number, &name))

return TRUE;
/* get the results */
while (! TOKEN_IS_RIGHTP && ! TOKEN_IS_EOF)
{

if (get_results(&n_ops, op_list, &is_new, &state, &desc))

return TRUE;
}
CHECK_TOKEN("Model extern", RIGHTPAREN, ")");
/* add this to the routine being defined */
e = add model_external(r, type, 0, number, name, n_ops,
op_list,
is_new, state, SCOPE_ALLOC, desc);

GET_TOKEN;
return FALSE;

/* Get an entire routine description, including the prefix and
zero or more externals.
The closing paren of the routine description is the last token
read in. */

int
get_routine()
{
model_routine r;
GET_TOKEN;
/* EOF =/
if (TOKEN_IS_EOF)
return TRUE;
CHECK_TOKEN("Model routine", LEFTPAREN, "(");
GET_TOKEN;
if (get_routine_prefix(&r))
/* failed to get this routine -- syntax error or something
*/

return TRUE;
while (! TOKEN_IS_RIGHTP && ! TOKEN_IS_EOF)

{
if (get_external(r))

-219-

WO 96/05556 PCT/US95/09691

/* error */
return TRUE;
}
CHECK_EOF;
5 return FALSE;

-220-

WO 96/05556 PCT/US95/09691

/* print.c: data structure printing routine
Copyright (C) 1994 Jonathan D. Pincus and William R. Bush

*/

5 #include <stdio.h>
#include <stdlib.h>
#include <assert.h>
#include "ccheck.h"
#include "opcodes.h"

10 #include "readin.h"
#include "print.h"

char * expression_name [) = {
"error",
15 "integer",
"real",
"string",
"variable",
"array offset",
20 *field reference",
"compound”,

” ”
="

"(? :)N'
"call",
25 "&",

" L]
* ’

30 w/n’

35 “"max",

40 "&",

-221-

WO 96/05556

10

15

20

25

30

35

40

Phen,
"(int)",
"(float)"
}i

static int
is_infix op (what)
expression_kind what;

{
return ((what >= OP_PLUS && what <= OP_NOT_EQUAL)
ASSIGNMENT) ;

}

static int

is_prefix _op (what)
expression_kind what;

! what == OP_NOT

{
return (what == OP_NOT_BITS
OP_PREINCREMENT
|| what == OP_PREDECREMENT ||
what == CONVERT_TO_ REAL);
}
static int

is_postfix_op (what)
expression_kind what;

{

PCT/US95/09691

!l what ==

what ==

CONVERT_TO_INT ||

return (what == OP_POSTINCREMENT || what == OP_POSTDECREMENT) ;

void
print_extern_list (e_list)
extern_list e_list;

~222-~

WO 96/05556 PCT/US95/09691

10

15

20

25

30

35

40

if (le_list)
printf ("\t<NONE>\n");
while (e_list)
{
printf ("\tss\n", e_list->first_decl->name);
e list = e_list->next;
}

void
print_function (f)
function f£;

{
statement s;
printf ("FUNCTION %s (defined at %s:%d)\n", f->name, f->file,
f->line);
printf(" EXTERNALS:\n");
print_extern_list (f->externals);
for (s = f->first_stmt; s; s = s->next)
print_statement (s, 4);
}
void

print_statement (s, indent)
statement s;
int indent;

declaration d;
expression e;

switch (s->what)
{
case ERROR_STMT:
printf("%*.*s<error>\n", indent, indent, "");

break;

case DECL_STMT:
e = 8->ptrs(0];
asgert (e~>what == VARIABLE);
d = (declaration)OPERAND(e,0);
printf("%*.*g%s %8s ", indent, indent, "",

-223-

WO 96/05556

10

15

20

25

30

35

40

PCT/US95/09691

(d->declaration_type->name ?

d->declaration_type->name : "<var>"),
d->name) ;

if (s->ptrs[l])
A
printf(" = *);
print_expression (s->ptrs{l], indent+4);
}

printf ("\n");

break;

case EXPR_STMT:
printf("s*.*s”, indent, indent, "");
print_expression (s->ptrs(0], indent+4);
printf(”\n");
break;

case BLOCK_STMT:
printf("s*.*s{\n", indent+4, indent+4, "");
for (s = (statement)s->ptrs(0]; s8; s = s->next)
print_statement (s, indent+4);
printf("s$*.*g}\n", indent+4, indent+4, "");

break;

case IF_STMT:
printf("s*.*gif (", indent, indent, "");
print_expression (s->ptrs(l], indent+4);
printf(")\n");
print_statement ((statement)s->ptrs{0], indent+4);
break;

case ELSIF_STMT:
case ELSE_STMT:
if (s->ptrs([1l])
{
printf("%*.*gelse if (", indent, indent, "");
print_expression (s->ptrs[l), indent+4);
printf(")\n");
}
else
printf("s*.*gselse (", indent, indent, "");
print_statement ((statement)s->ptrs({0], indent+4);

break;

-224-

WO 96/05556 PCT/US95/09691

case RETURN_STMT:
printf("s*.*greturn ", indent+4, indent+4, "");
if (s->ptrs(0])
{
5 /* always an assignemnt to the return value */
e = (expression) s->ptrs(0};
assert (e->what == ASSIGNMENT);
assert (e->operands(0)->what = VARIABLE);
assert
10 (((declaration)e->operands{0]->operands[0])->what
== RESULT_DECLARATION) ;
/* return value */
print_expression (e->operands(l], indent+4);
}
15 printf (";\n");
break;

case LOOP_STMT:
printf("%*.*<loop>\n", indent+4, indent+4, "");
20 break;

case SWITCH_STMT:
printf("%*.*<switch>\n", indent+4, indent+4, "");
break;
25
case END_SWITCH_STMT:
printf("}\n");
break;

30 case BREAK_ STMT:
printf("%*.*sbreak;\n", indent+4, indent+4, "");
break;

case GOTO_STMT:
35 printf("%*.*ggoto;\n", indent+4, indent+4, "");
break;

case CONTINUE_STMT:

printf("%*.*gcontinue;\n", indent+4, indent+4, "");
40 break;

-225-

WO 96/05556 PCT/US95/09691

10

15

20

25

30

35

40

void
print_expression (e, indent)
expression e;

int indent;

declaration d;
int i;
if (is_prefix op (e->what))
{
printf (" %8 ", expression_name (e->what]);
print_expression (e->operands(0), indent);
}
else if (is_infix op (e->what))
{
print_expression (e->operands{0], indent);
printf (" %s ", expression_name (e->what]);
print_expression (e->operands[l], indent);
}
else if (is_postfix op (e->what))
{
print_expression (e->operands{0], indent);
printf (" %8 ", expression_name (e->what]);
}
else switch (e->what)
{
case OP_INDIRECTION:
printf ("*(");
print_expression (e->operands{0], indent + 4);
printf (")");
break;

case OP_ADDRESS_OF:
/* need to check for function call, which does not
need & */
d = (declaration)e->operands[0]->operands(0];
if (e->operands{0]->what == VARIABLE && d->what ==
FUNCTION_DECLARATION)
printf("ss", d->name);
else if (e->operands(0]->what == CONSTANT_STRING)
print_expression (e->operands(0], indent);
else
{
printf ("&(");
print_expression (e->operands{0], indent + 4);

=226~

WO 96/05556 PCT/US95/09691

printf (")");

}
break;
5 case VARIABLE:
d = (declaration)e->operands[0];

printf ("%$s", d->name);
break;

10 case ARRAY OFFSET:
print_expression (e->operands({0], indent);
printf ("[");
print_expression (e->operands[l], indenf);
printf ("]", expression_name [e->what]);
15 break;

case FUNCTION_CALL:
print_expression (e->operands[0]}, indent);
printf ("(", expression_name [e->what]);

20 for (i = 1; i < e->num_operands; i++)
{
if (i 1= 1)

printf(", ");
print_expression (e->operands(i], indent);
25 }
printf (")", expression_name [e->what]);
break;

case FIELD REFERENCE:
30 /* need to check for dereference of pointer, which is
printed
specially as =-> */
if (e->operands(0)->what == OP_INDIRECTION)
{
35 print_expression (e->operands(0)->operands(0],
indent);
printf("->");
}
else
40 {
print_expression (e->operands([0], indent);
printf(".");
}
printf ("%s", ((field definition)e->operands(l])->name);

-227-

WO 96/05556

10

1s

break;

case CONSTANT_STRING:
if (OPERAND (e, 0))

printf("\"$s\"", (char *)OPERAND (e,

else
printf("<null>");
break;

case CONSTANT INTEGER:

printf("%$1d”, (long)OPERAND (e,
break;

-228-

0)):

PCT/US95/09691

0));

WO 96/05556

10

PCT/US95/09691

/* print.h: header file for print routines
Copyright (C) 1994 Jonathan D. Pincus

*/

extern
extern
extern

extern

extern

void print_extern_list PROTO ((extern_list));
void print_function PROTO ((function));
void print_statement PROTO ((statement, int));

void print_expression PROTO ((expression, int));

char *expression_name[];

-229-

WO 96/05556

10

15

20

25

30

35

40

PCT/US95/09691

/* readin.c: read in an intermediate file and create the parse

structures Copyright (C) 1994 Jonathan D. Pincus and William
R. Bush

*/

#include
#include
#include
#include

#include

<stdio.h>

<string.h>
<stdlib.h>
<assert.h>

"ccheck.h"”

#include "state.h"
#include "model.h"
/* constants for the parse tree; shared by this file and the front

end */

#include "opcodes.h”

/* structures for the parse tree */

#include "readin.h"

/* hashing disk addresses to pointers */

#include

"hash.h"

/* #include "value.h" */

/* static routine definitions */

static
static
static
static
static
static
static
static
static
static
static
static

void
void
void
void
void
void
void
void
void
void
void
void

*

*

*

read_pointer PROTO((void));
read_in_expression PROTO((void));
read_in_error PROTO((void));
read_in _string PROTO((void));
read_in_ stmt PROTO((void));

read _in_declaration PROTO((void));
read in type PROTO((void));
read_in field PROTO((void));
read_in_ function PROTO((void));
read_in _end_ function PROTO((void));
read_in patch PROTO((void));

readin_error PROTO((char*,long,long,long));

extern list extern_list add PROTO((declaration, external,

extern_list));

/* memory allocators for particular data structures */

~-230-

WO 96/05556 PCT/US95/09691

10

15

20

25

30

35

40

static expression expression_alloc PROTO((int,int));
static statement statement_alloc PROTO((int));
declaration declaration_alloc PROTO((int));

static type type_alloc PROTO((void));

static function function_alloc PROTO((void));

static field definition field alloc PROTO((type));

/* the file being input from -- available throughout module for
simplicity */

static FILE *infile = NULL;

/* the function currently being read in; NULL if at file scope */
static function active_function = NULL;

/* the type currently being read in; used for associated fields
with that type */

static type current_type = NULL;

/* whether there are any errors in this function */

static errors_in function = FALSE;

/* memory handling routines */

/* we can do some optimization based on the fact that we never
free up individual pieces of memory. Memory is divided into
permanent (lasts beyond the lifetime of the function) and
transient (only lasts during the lifetime of the function).
Permanent memory never gets reclaimed; all the transient

memory gets reclaimed when processing of the function

is done.

*/

typedef struct memory_area_def *memory_area;
typedef struct memory pool_ def *memory pool;

/* memory handling routines */

static void *memory alloc PROTO((int,int));

-231-

WO 96/05556 PCT/US95/09691

10

15

20

25

30

35

40

static memory pool init_memory_pool PROTO((void));
static void free_memory_ pool PROTO((memory pool));
static void *allocate_from pool PROTO((memory_pool,int));

#define MEMORY_AREA SIZE 20000

struct memory area_def {

void *first free; /* first free pointer */
memory_ area next; /* next pool */
}i

struct memory pool def {

memory_area first; /* start of list of areas of
this size */

memory_area last; /* last member of list of areas of
this size */

}i:

static memory pocl transient_memory = NULL;
static memory_ pool permanent_memory = NULL;

static memory_ poocl
init_memory_ pool ()
{
memory pool result;
memory_area area;

result = (memory_pool)malloc (sizeof (struct
memory pool_def));

area = (memory_area)malloc (MEMORY AREA SIZE);

area->next = NULL;

area->first free = (void *)(area + 1);

result->first = result->last = area;

return result;

static void
free_memory_ pool (pool)
memory_pool pool;

memory_area area, next_area;

for (area = pool->first; area; area = next_area)

-232-

WO 96/05556 PCT/US95/09691

10

15

20

25

30

35

40

{

next_area = area->next;
free ((void *)area);

}

free ((void *)pool);

static void *

allocate_from pool (pool, n_bytes)
memory_pool pool;
int n_bytes;

void *result;
memory_area area = pool->last;

/* will this fit in the last one? */
if ((long)area~>first_free + n_bytes > (long)area +
MEMORY AREA_SIZE)
{
/* won't fit; add a new one */
memory_ area new_area = (memory_area) malloc
(MEMORY_AREA SIZE);
area->next = pool->last = new_area;
new_area->first_free = (void *)(new_area + 1);
new_area->next = NULL;
area = new_area;
}
result = area->first free;
area->first_free = (void *)((long)area->first free +
n_bytes);
/* zero it out */
memset (result, 0, n_bytes);
return result;

static void *
memory_alloc (num_bytes, permanent)
int num_bytes;
int permanent; /* should it stick around */

void *result;

assert (num bytes > 0);
/* round up to a multiple of 4 */

-233-

WO 96/05556

10

15

20

25

30

35

40

if (num_bytes & 0x3)
num_bytes += 4 - (num_bytes & Ox3);

if (permanent)
result = allocate_from pool (permanent_memory,
num_bytes);

else
result = allocate_from_pool (transient_memory,
num_bytes);

assert (result != NULL);

return result;

static expression

expression_alloc (n_exprs, permanent)
int n_exprs;
int permanent;

expression result;

assert (n_exprs >= 0);

result = (expression)memory_alloc
(sizeof (struct expression_def) + (n_exprs-1)*sizeof
(voidv),
permanent) ;

return result;

static statement
statement_alloc (n_exprs)
int n_exprs;

{
statement result;
agsert (n_exprs >= 0);
result = (statement)memory_alloc
(sizeof (struct statement_def) + (n_exprs-1)*sizeof
(void*), FALSE);
return result;
}
declaration

declaration_alloc (permanent)
int permanent;

return (declaration)memory alloc(sizeof (struct
declaration_def), permanent);

~-234-

PCT/US95/09691

WO 96/05556 PCT/US95/09691

10

15

20

25

30

35

40

static type
type_alloc ()

{
return (type)memory alloc(sizeof (struct type def), TRUE);

static function
function_alloc ()

{

return (function)memory_ alloc(sizeof (struct function_def),
FALSE);
}

static error_node
error_node_alloc ()
{
return (error node)memory alloc(sizeof (struct
error_node_def), FALSE);
}

/* allocate memory for a field and chain it together with other
fields for the currently active type

could conceivably use memory carved out already to group more

closely and avoid allocs; not doing that yet
*/

static field definition
field alloc (current_type)
type current_type;

{
field definition result;

result = (field definition)
memory alloc (sizeof (struct field definition_def),
TRUE) ;

result->next = current_type->fields;

current_type->fields = result;

return result;

}

-235-

WO 96/05556

10

15

20

25

30

35

40

/* add to a list */

extern list
extern_list_add (d, e, rest)

PCT/US95/09691

* declaration structure */

* corresponding external */
* the rest of the linked list */

(extern_list) memory_alloc (sizeof (struct extern_list_def),

declaration da; /
external e; /
extern_ list rest; /
{
extern_list result =
FALSE);
result->first_decl = d;
result->first_extern = e;
result->next = rest;
return result;
}

/* routines to read in a particular record kind. all these

routines assume that the "parse record kind” has been read in

*/

/* auxiliary macros/routines for reading in */

/* for convenience of setting breakpoints in debugger */

int cchread (ptr, size, num, fptr)

void *ptr;

Bize_t size;
size_t num;
FILE *fptr;

return fread (ptr, size, num,

fptr);

#define READ_ IN(ptr,read_as_type,type) \

{\

read_as_type _dummy;\

(void)cchread((void

*)& dummy,sizeof(read_as_type),l,infile);\

*ptr = (type)_dummy;\

}

#define READ ARRAY(ptr,length,t

ype)

-236-

{void)cchread((void

WO 96/05556 PCT/US95/09691

10

15

20

25

30

35

40

*)(ptr),sizeof (type),length,infile)
#define CURRENT_ OFFSET() ftell(infile)

/* read a pointer embedded in some other record. reads in the
disk address and converts to the appropriate pointer */

gtatic void +
read_pointer ()

{
long addr = NULL_OFFSET;
READ_IN(&addr, long, long);
return lookup(addr);

}

static void *
read_in_error ()
{
/* nothing to read in */
error_node result = error_node_alloc();
result->what = ERROR_STMT;
/* record that we don't want to handle this function */
errors_in_function = TRUE;
return (void *) result;

static void *

read_in expression ()
{
expression_kind what;
short num operands = 0;
expression e;
int read_as_pointer;
int i;
int permanent = FALSE;

READ_IN(&what, short, expression_kind);

if (what == CONSTANT_INTEGER || what == CONSTANT_REAL
!! what == VARIABLE)
permanent = TRUE;

READ IN(&num operands, short, short);

e = expression_alloc (num_operands, permanent);

e->what = what;

e->expression_type = (type) read_pointer();

-237-

WO 96/05556 PCT/US95/09691

10

15

20

25

30

35

40

e->num_operands = num_operands;

/* if it's a constant, do not convert to a pointer */
read_as_pointer = (what != CONSTANT_ INTEGER && what !=
CONSTANT_ REAL) ;
for (i = 0; i < num_operands; i++)
{
if (read_as_pointer)
OPERAND (e, i) = (expression) read_pointer ();
else
READ_IN(&(OPERAND (e, i)), void*, void*);
}
return (void *) e;

}

static void =
read_in_string()

{

char *str;

short length;

READ_IN(&length, short, short);
str = memory_alloc (length, TRUE);
READ ARRAY(str, length, char);
return (void *) str;

}

static void
read_in stmt ()

{

statement_kind what;
short num_exprs = O;
statement s;

int i;

long where;

READ IN(&what, short, statement_kind);
where = CURRENT OFFSET();
READ_IN(&num_exprs, short, short);
where = CURRENT_OFFSET();

8 = statement_alloc (num_exprs);
where = CURRENT_OFFSET();

s->what = what;

READ_IN(&(s->line), short, short);

-238-

WO 96/05556 PCT/US95/09691

10

15

20

25

30

35

40

where = CURRENT_OFFSET();

for (i = 0; i < num_exprs; i++)

{

8->ptrs(i] = (expression) read_pointer();
where = CURRENT_ OFFSET();
}

/* store this as the first statement of a function */

if (active_function && ! active_function->first_stmt)
active_function->first_stmt = s;

if (what == IF_STMT)
active_function->number of ifs++;

where = CURRENT_OFFSET();

return (void *) s8;

}

/* declarations in the intermediate file:

what [sizeof (declaration_kind)]
name [pointer])
type [pointer)

static void *
read_in_declaration ()

{

declaration_kind what;
declaration d4;
int permanent = TRUE;

READ_IN(&what, short, declaration kind);
d = declaration_alloc (permanent);
d->what = what;
d->name = (char *)read pointer();
if (d->what == RESULT_DECLARATION)
/* ignore the NULL written out */
d->name = "<return value>";
d->declaration_type = (type) read_pointer();
return (void *) d;

}

/* types in the intermediate file:

what [sizeof (type_kind)]
name [pointer)

-239-

WO 96/05556 PCT/US95/09691

10

15

20

25

30

35

40

gize [16 bit integer)
points-to-type (pointer)

note that any fields written out after a type are implicitly
associated with that type

IDEA: avoid writing out points-to-type for scalar types
('what'implies whether or not it's there)

IDEA: write out number of fields for struct types here and
allocate the memory all at once

*/

static void *
read_in_type ()
{
type t;

t = type_alloc ();

READ_IN(&t->what, short, type_kind);

t->name = (char *) read pointer();
READ_IN(&t->size, short, short);

t->points_to = (type) read_pointer();

/* record that fields are attached to this type */
current_type = t;

return (void *) t;

}

/* fields are written to the intermediate file very simply:

name [pointer]
offset [16 bit integer]
size [16 bit integer]

fields only occur within the context of a type; a field is

added to the 'currently-active-type' by field alloc when it

is seen

*/

static void *

read_in field ()

-240-

WO 96/05556 PCT/US95/09691

10

15

20

25

30

35

40

{
field definition f;

f = field_alloc (current_type);

f->name = (char *)read pointer();
READ_IN(&f->offset, short, short);
READ_IN(&f->size, short, short);

/* f->field_type = (type)read pointer(); */
return (void ») f£;

}

/* function headers are written to the intermediate file

name [pointer)
filename
line [16 bit integer)

the first statement will be attached to this function when it
is encountered.

*/

static void »
read_in function ()

{
function f£;

if (active_function)
readin_error ("nested function", 0, 0, 0);

f = function_alloc ();

f->name = (char *)read_pointer();
f->file = (char *)read_pointer();
READ_IN(&f->line, short, short);
active_function = f;

return (void *) £;

}

/* end of function records are written to the intermediate file
when the final closing brace of a function is hit. At this
point, all the externals associated with the function should
have been declared already, and so a list is written out here

-241-

WO 96/05556 PCT/US95/09691

as well.

num_externals [16 bit])
external O decl [if needed)
5 external 1 [if needed])

*/

10 static void *
read_in_end_ function ()
{
short num_externals, i;
declaration d;
15 expression exp;
external e;
extern_list e_list = NULL;

if (! active_function)
20 readin_error ("end function not in function®", 0, 0, 0);

READ_IN(&num_externals, short, short);
for (i = 0; i < num_externals; i++)
{
2S5 exp = (expression) read_pointer();
assert (exp->what == VARIABLE);
d = (declaration) exp->operands[0];
e = add_external (NULL, NULL);
e _list = extern_ list_add(d, e, e_list);
30 }
active_function->externals = e_list;
return NULL;
}

35 void
clean_up for_ function (f)
function £;
{
/* reclaim memory */
40 free_memory pool (transient_memory);
transient _memory = NULL;
active_function = NULL;

}

-242-

WO 96/05556 PCT/US95/09691

10

15

20

25

30

35

40

/* a patch record is written to the intermediate file as a pair of

addresses. This is interpreted as instructions to set the
next_stmt or first expression statement at the first address

to point to the second address

static void *

read_in_patch ()

{

statement s;
statement next;
parse_patch_kind kind;

READ_IN(&kind, short, parse_patch_kind);

8 = (statement)read pointer();

agsert (s != NULL);

assert ((long)s != NULL_OFFSET);

(statement)read_pointer();

assert (next != NULL);

assert ((long)s != NULL OFFSET);

if (kind == PATCH _EXPRESSION)
s->ptrs[0]) = (expression)next;

else if (kind == PATCH_NEXT)
8->next = next;

return NULL;

}

next

typedef void *(*parse record proc) ();

struct jump_tab rec {

parse_record kind what;
parse_record proc proc;
Yi

static struct jump_tab_rec jump_table[] = {

ERROR_RECORD, read in error },
STRING_RECORD, read_in_string },

STATEMENT RECORD, read_in_stmt },
TYPE_RECORD, read in type },

FIELD_RECORD, read_in field },
DECLARATION_RECORD, read_in_declaration },
FUNCTION_RECORD, read in_function },
END_FUNCTION_RECORD, read_in_end_function },

L T T T Y I e)

-243-

WO 96/05556

10

15

20

25

30

35

40

PCT/US95/09691

{ EXPRESSION_RECORD, read_in_expression },
{ PATCH_RECORD, read_in_patch }

}i

/* read in the next entire function from the intermediate file.
reads up to an END_FUNCTION_RECORD.
returns the function record if readin is successful, EOF on
end-of-file or read error, and NULL if there are any
recoverable errors which cause only this function to

be skipped (e.g., a parse error)

*/

function

get_next function (input_file)

FILE *input_file;
{

parse_record_kind what;
long where;
void *result;

if (active_function)

clean_up_for_function (active_function);
infile = input_file;
if (! permanent_memory)

permanent_memory = init_memory pool();
transient_memory = init_memory pool();

/* no errors so far */

errors_in function = FALSE;

do
{

where = CURRENT_OFFSET();
READ_ IN (&what, short, parse_record kind);

if (feof(infile)

break;

|1 ferror(infile))

assert (jump_table([what).what == what);

result = (*jump_table[what].proc)();

/* result can legitimately be NULL; but it better not be
NULL_OFFSET, which is an invalid pointer */

assert ((long)result != NULL_OFFSET);

if (result)

add (where, result, TRUE);
} while (what i= END_FUNCTION_RECORD);

if (feof (infile))

-244-

WO 96/05556

10

15

20

25

30

return (function)EOF;
if (ferror (infile))
{
readin_error ("file read error", 0, O, 0);
return (function)EOF;
}
if (errors_in_function)
return NULL;
return active_function;

}

/* print out a warning message */
static void
readin_error (fmt, argl, arg2, arg3)
char *fmt; /* printf format string */
long argl;
long arg2;
long arg3;

{
long offset;
char *name = "22??";
if (active function && active_function->name)

name = active function->name;

offset = CURRENT_OFFSET();
fprintf (stderr, "intermediate file error: ");
fprintf(stderr, fmt, argl, arg2, arg3);
fprintf(stderr, " (function %8, offset %d) ", name, offset);
fprintf(stderr, "\n");
/* record that there's an error */
errors_in_function = TRUE;

}

~245-

PCT/US95/09691

WO 96/05556

10

15

20

25

30

35

40

/* readin.h: interface to parse tree structures and readin
functions
Copyright (C) 1994 Jonathan D. Pincus and William R. Bush

*/

/* a list of externs */
typedef struct extern_list_def *extern_ list;

/* the basic nodes of a parse tree: forward declarations allowing

the pointers to be embedded in other structures */

typedef struct statement_def *statement;

typedef struct expression_def *expression;

typedef struct function def *function;

typedef struct type_def *type;

typedef struct declaration_def *declaration;

typedef struct field_definition_def *field definition;
typedef struct error_node_def *error_ node;

/* a function definition =/

struct function_def {

char *name; /* name of the function */

short line; /* line it was defined at */

char *file; /* file it was defined at */
declaration result; /* result place holder */
.extern_list externals; /* args and other externals used */
statement first_stmt; /* linked list of statements */

int number_of ifs; /* how many if statements in

this function */
}:

/* a statement */

struct statement def {

statement_kind what; /* EXPRESSION, IF, BREAK,
*/

short line; /* line it was defined at */

statement next; /* linked list of statements
*/

/* these are filled in during simulation, do not need to be

written out */

unsigned long flags(1); /* which error codes have been

seen */

=246~

PCT/US95/09691

WO 96/05556

10

1S5

20

25

30

35

40

PCT/US95/09691

void * ptrs[l}; /* variable-length array */
}i

/* an expression */

struct expression def {

expression kind what; /* what kind of expression
this is */

type expression_type; /* type of this expression */

valptr value; /* initialized as NULL */

long num_operands;

expression operands[l]; /* the actual

operands; VL array */
}i

/* macros accessing fields of the expression */

#define OPERAND (expr,i) (expr->operands(i])

#define LONG_VALUE (expr) ((long) (expr—>operands[0]))
#define POINTER_VALUE (expr) ((void *)(expr->operands(0]))
#define DOUBLE_VALUE (expr) (* (double *) (expr->operands))

/* a declaration (for a variable, parameter, or function) */

struct declaration def {
declaration_kind what; /* local, global, static, ... */

char *name;
type declaration_type;
valptr value;

/* this exists only for function definitions */
model_ routine model;

}i

/* a type definition */

struct type_def {

type_kind what; /* scalar, array, pointer */
char *name; /* for debugging */

short size; /* in bite */

type points_to; /* if it points to a type */

field definition fields; /* list of fields if any */
}i

-247-

WO 96/05556 PCT/US95/09691

10

15

20

25-

/* a field within a struct/union definition */

struct field_definition_def {

char *name; /* for debugging */
short size; /* in bits */

short offset; /* in bits */

type field type; /* the type of this field */
field definition next; /* next field of this

struct/union */
}i

/* a placeholder representing a parse error */

struct error_node_def {
statement_kind what; /* always error_stmt */

}i

/* a list of externs */
struct extern_list_def {
declaration first_decl; /* first declaration in the list */

external first_extern; /* a special extra pointer */
extern_list next; /* the rest of the linked list */
}i

-248-

WO 96/05556 PCT/US95/09691

10

15

20

25

30

35

40

/* readin.c: read in an intermediate file and create the parse
structures
Copyright (C) 1994 Jonathan D. Pincus and William R. Bush

*/

#include <stdio.h>
#include <string.h>
#include <stdlib.h>
#include <assert.h>

#include "ccheck.h"

#include "state.h"

#include "model.h"

/* constants for the parse tree; shared by this file and the front
end */

#include "opcodes.h”

/* structures for the parse tree */

#include "readin.h"

/* hashing disk addresses to pointers */

#include "hash.h"

/* #include "value.h" */

/* static routine definitions */

static void * read_pointer PROTO((void));

static void * read_in expression PROTO((void));
static void * read in_error PROTO((void));

static void * read_in_string PROTO((void));
static void * read_in_stmt PROTO((void));

static void ~» read in declaration PROTO((void));
static void * read_in_type PROTO((void));

static void * read_in_field PROTO((void));

static void * read_in_function PROTO((void));
static void * read in_end_function PROTO((void));
static void * read_in patch PROTO((void));

static void readin_error PROTO((char*,long, long,long));

extern_ list extern_list_add PROTO((declaration, external,

extern_list));

/* memory allocators for particular data structures */

-249-

WO 96/05556 PCT/US95/09691

10

15

20

25

30

35

40

static expression expression_alloc PROTO((int,int));
static statement statement_alloc PROTO((int));
declaration declaration alloc PROTO((int));

static type type alloc PROTO((void));

static function function_alloc PROTO((void));

static field definition field alloc PROTO((type));

/* the file being input from -- available throughout module for
simplicity */

static FILE *infile = NULL;

/* the function currently being read in; NULL if at file scope */
static function active_ function = NULL;

/* the type currently being read in; used for associated fields
with that type */

static type current_type = NULL;

/* whether there are any errors in this function */

static errors_in_ function = FALSE;

/* memory handling routines */ _

/* we can do some optimization based on the fact that we never
free up individual pieces of memory. Memory is divided into
permanent (lasts beyond the lifetime of the function) and
transient (only lasts during the lifetime of the function).
Permanent memory never gets reclaimed; all the transient

memory gets reclaimed when processing of the function

is done.
*/

typedef struct memory area def *memory area;
typedef struct memory pool def *memory pool;

/* memory handling routines */

static void *memory_alloc PROTO((int,int));

-250-

WO 96/05556 PCT/US95/09691

10

15

20

25

30

35

40

static memory_pool init_memory pool PROTO((void));
static void free_memory pool PROTO((memory_pool));
static void *allocate_from_ pool PROTO((memory pool,int));

#define MEMORY_AREA SIZE 20000
struct memory area def {

void *first free; /* first free pointer */
memory_area next; /* next pool */

}i:

struct memory pool def ({

memory_area first; /* start of list of areas of
this size */
memory_ area last; /* last member of list of areas of

this size */

static memory_pool transient_memory = NULL;
static memory_ pool permanent memory = NULL;

static memory pool
init_memory pool ()
{
memory_pool result;
memory_area area;

result = (memory pool)malloc (sizeof (struct
memory_pool_def));

area = (memory area)malloc (MEMORY AREA SIZE);

area->next = NULL;

area->first_free = (void *)(area + 1);

result->first = result->last = area;

return result;

static voiad
free memory poocl (pool)
memory_ pool pool;

memory area area, next_area H

for (area = pool->first; area; area = next_area)

=251~

WO 96/05556 PCT/US95/09691

10

15

20

25

30

35

40

{

next_area = area->next;
free ((void *)area);

}
free ((void *)pool);

static void »

allocate_from pool (pool, n_bytes)
memory pool pool;
int n_bytes;

void *result;
memory area area = pool->last;

/* will this fit in the last one? */
if ((long)area->first_free + n_bytes > (long)area +
MEMORY_AREA_ SIZE)
{
/* won't fit; add a new one */
memory_area new_area = (memory_area) malloc
(MEMORY_AREA_SIZE);
area->next = pool->last = new_area;
new_area->first free = (void *)(new_area + 1);
new_area->next = NULL;
area = new_area;
}
result = area->first_free;
area->first_free = (void *)((long)area->first_free +
n_bytes);
/* zero it out */
memset (result, 0, n_bytes);
return result;

static void *
memory_alloc (num_bytes, permanent)
int num bytes;
int permanent; /* should it stick around */

void *result;

assert (num_bytes > 0);
/* round up to a multiple of 4 */

-252-

WO 96/05556 PCT/US95/09691

10

1s

20

25

30

35

40

if (num_bytes & 0x3)
num_bytes += 4 - (num_bytes & Ox3);

if (permanent)
result = allocate_from pool (permanent_memory,
num_bytes);

else
result = allocate_from pool (transient_memory,
num_bytes);

asgsert (result != NULL);

return result;

static expression

expression_alloc (n_exprs, permanent)
int n_exprs;
int permanent;

expression result;

assert (n_exprs >= 0);

result = (expression)memory_alloc
(sizeof (struct expression_def) + (n_exprs-1)*sizeof
(void*), permanent);

return result;

static statement
statement_alloc (n_exprs)
int n_exprs;

statement result;

assert (n_exprs >= 0);

result = (statement)memory_ alloc
(sizeof (struct statement_def) + (n_exprs-1l)*sizeof
(voidr),
FALSE);

return result;

declaration
declaration_alloc (permanent)
int permanent;

return (declaration)memory_alloc(sizeof (struct
declaration_def), permanent);

-253-

WO 96/05556 PCT/US95/09691

10

15

20

25

30

35

40

static type
type_alloc ()

{
return (type)memory_alloc(sizeof (struct type def), TRUE);

static function
function_alloc ()

{

return (function)memory alloc(sizeof (struct function_def),
FALSE) ;
}

static error_node
error node alloc ()
{
return (error node)memory alloc(sizeof (struct
error_node_def), FALSE);
}

/* allocate memory for a field and chain it together with other
fields for the currently active type

could conceivably use memory carved out already to group more
closely and avoid allocs; not_doing that yet

*/

static field definition
field_alloc (current_type)
type current_type;

{

field definition result;

result = (field definition)
memory_ alloc (sizeof (struct field definition_def),
TRUE) ;

result->next = current_type->fields;

current_type->fields = result;

return result;

}

-254-

WO 96/05556

10

15

20

25

30

35

40

/* add to a list */

extern_list
extern_list_add (4, e, rest)
declaration d; /* declaration structure */
external e; /* corresponding external ¥/
extern list rest; /* the rest of the linked list */
{
extern list result =
(extern_list) memory alloc (sizeof (struct extern_list_def),
FALSE) ;
result->first_decl = d;
result->first_extern = e;
result->next = rest;
return result;
}

PCT/US95/09691

/* routines to read in a particular record kind. all these

routines assume that the "parse record kind" has been read in

*/

/* auxiliary macros/routines for reading inb*/

/* for convenience of setting breakpoints in debugger */

int cchread (ptr, size, num, fptr)
void *ptr;
size t size;
size_t num;
FILE *fptr;

return fread (ptr, size, num, fptr);

#define READ IN(ptr,type) (void)cchread((void *) (ptr),

sizeof (type),1l,infile)

#define READ IN and CHECK(ptr,tpe)
*) (ptr),sizeocf(type),infile)

#define READ_ ARRAY(ptr,length,type)
*)(ptr),sizeof (type),length,infile)

-255-

cchread ((void

(void)cchread((void

WO 96/05556 PCT/US95/09691

10

15

20

25

30

35

40

#define CURRENT OFFSET() ftell(infile)

/* read a pointer embedded in some other record. reads in the
disk addrese and converts to the appropriate pointer */

static void *
read_pointer ()

{
long addr = NULL_OFFSET;
READ IN(&addr, long, long);
return lookup(addr);

}

static void *
read_in_error ()
{
/* nothing to read in */
error_node result = error node_alloc();
result->what = ERROR_STMT;
/* record that we don't want to handle this function */
TRUE;
return (void *) result;

errors_in_function

static void *
read_in_expression ()
{
expression_kind what;
short num_operands = 0;
expression e;
int read_as_pointer;
int i;
int permanent = FALSE;

READ_IN(&what, short, expression kind);
if (what == CONSTANT_INTEGER {| what == CONSTANT_REAL
!] what == VARIABLE)
permanent = TRUE;
READ_IN(&num_operands, short, short);
e = expression alloc (num_operands, permanent);
e->what = what;
e->expression type = (type) read pointer():
e->num_operands = num_operands;

~-256-

WO 96/05556 PCT/US95/09691

10

15

20

25

30

35

40

/* if it's a constant, do not convert to a pointer */
read_as_pointer = (what {= CONSTANT_ INTEGER && what !=
CONSTANT_REAL) ;
for (i = 0; i < num_operands; i++)
{
if (read_as_pointer)
OPERAND (e, i) = (expression) read pointer ();
else
READ_IN(&(OPERAND (e, i)), void*, void*);
}

return (void *) e;

}

static void =

read_in string()
{
char *str;
short length;
READ_IN(&length, short, short);
str = memory alloc (length, TRUE);
READ_ ARRAY (str, length, char);
return (void *) str;

}

static void *
read_in_stmt ()
{
statement_kind what;
short num_exprs = 0;
statement s;
int i;
long where;

READ_IN(&what, short, statement_kind);
where = CURRENT_ OFFSET();
READ_IN(&num_exprs, short, short);
where = CURRENT OFFSET();

8 = statement_alloc (num_exprs);
where = CURRENT OFFSET();

s->what = what;

READ_IN(&(s->line), short, short);
where = CURRENT_OFFSET();

for (i = 0; i < num_exprs; i++)

-257-

WO 96/05556 PCT/US95/09691

{
s->ptrs[i] = (expression) read_pointer();
where = CURRENT_OFFSET();
}
5 /* store this as the first statement of a function */
if (active_function && ! active function->first_stmt)
active_function->first_stmt = s;
if (what == IF_STMT)
active_function->number of ifs++;
10 where = CURRENT_ OFFSET();
return (void *) s;

}

/* declarations in the intermediate file:
15
what [sizeof (declaration_kind))
name [pointer)
type (pointer]
*/
20
static void «
read_in_declaration ()
{
declaration_kind what;
25 declaration d;
int permanent = TRUE;

READ_IN(&what, short, declaration_kind);
d = declaration alloc (permanent);
30 d->what = what;
d->name = (char *)read_pointer();
if (d->what == RESULT_ DECLARATION)
/* ignore the NULL written out */
d->name = "<return value>";
35 d->declaration_type = (type) read_pointer();
return (void *) d;

}

/* types in the intermediate file:
40

what ([sizeof (type_kind)]
name [pointer)

size [16 bit integer)
points-to-type [pointer)

-258-

WO 96/05556 PCT/US95/09691

10

15

20

25

30

35

40

note that any fields written out after a type are implicitly
associated with that type

IDEA: avoid writing out pointe-to-type for scalar types
('what' implies whether or not it's there)
IDEA: write out number of fields for struct types here and

allocate the memory all at once

*/

static void *
read_in_type ()
{
type t;

t = type_alloc ();

READ IN(&t->what, short, type_kind);

t->name = (char *) read pointer();
READ_IN(&t->size, short, short);

t->points_to = (type) read_pointer();

/* record that fields are attached to this type */
current type = t;

return (void *) t;

}

/* fields are written to the intermediate file very simply:

name [pointer)
offset [16 bit integer]
size [16 bit integer)

fields only occur within the context of a type; a field is
added to the 'currently-active-type' by field alloc when it
is seen

*/

static void =
read_in_field ()

{
field definition f£;

-259-

WO 96/05556

10

15

20

25

30

35

40

PCT/US95/09691

f = field_alloc (current_type);

f->name = (char *)read_pointer();
READ_IN(&f->offset, short, short);
READ_IN(&f->size, short, short);

/* f->field_type = (type)read pointer(); */
return (void *) £;

}

/* function headers are written to the intermediate file

name [pointer)
filename
line ([16 bit integer)

the first statement will be attached to this function when it
is encountered.

*/

static void »
read_in function ()

{
function f£;

if (active_function)
readin_error ("nested function", 0, 0, 0);

f = function_alloc ();

f->name = (char *)read pointer();
f->file = (char *)read pointer();
READ_IN(&f->line, short, short);
active_function = f£;

raeturn (void *) f£;

}

/* end of function records are written to the intermediate file
when the final closing brace of a function is hit. At this
point, all the externals associated with the function should
have been declared already, and so a list is written out here
as well.

num_externals [16 bit)

-260-

WO 96/05556 PCT/US95/09691

external O decl [if needed])
external 1 [if needed]

*/

static void =»
read_in_end_function ()
{
10 short num_externals, i;
declaration 4;
expression exp;
external e;
extern_list e list = NULL;
15
if (! active_function)
readin_error ("end function not in function", 0, 0, 0);

READ_IN(&num_externals, short, short);
20 for (i = 0; i < num_externals; i++)
{
exp = (expression) read_pointer();
assert (exp->what == VARIABLE);
d = (declaration) exp->operands([0);
25 e = add_external (NULL, NULL);
e_list = extern list_add(d, e, e_list);
}
active_function->externals = e_list;
return NULL;
30 }

void
clean_up_ for_function (f)
function f£;
35 {
/* reclaim memory */
free_memory pool (transient_memory);
transient_memory = NULL;
active_ function = NULL;
40 }

/* a patch record is written to the intermediate file as a pair

of addresses. This is interpreted as instructions to set
the next_stmt or first expression statement at the first

-261-

WO 96/05556

address to point to the second address

*/

static void =
5 read_in_patch ()
{
statement s;
statement next;
parse_patch_kind kind;
10
READ_IN(&kind, short, parse_patch kind);
8 = (statement)read_pointer();
assert (s != NULL);
assert ((long)s != NULL_OFFSET);
15 next = (statement)read pointer()
asgert (next != NULL);
assert ((long)s {= NULL_OFFSET);
if (kind == PATCH_EXPRESSION)
s->ptre[0] = (expression)next;
20 else if (kind == PATCH_NEXT)
s->next = next;
return NULL;

~e

}
25
typedef void *(*parse_record_proc) ():
struct jump_ tab_rec {(
parse_record_kind what;
30 parse_record proc proc;
}i;
static struct jump tab_rec jump_table[]) = {
{ ERROR_RECORD, read_in_error },
35 { STRING_RECORD, read_in_string },
{ STATEMENT_RECORD, read in stmt },
{ TYPE_RECORD, read _in_type },
{ FIELD_RECORD, read_in_field },
{ DECLARATION_RECORD, read_in_declaration },
40 { FUNCTION_RECORD, read_in_function },
{ END_FUNCTION RECORD, read_in_end_function },
{ EXPRESSION_RECORD, read_in_expression },
{ PATCH_RECORD, read_in patch }
}i

-262-

PCT/US95/09691

WO 96/05556

10

15

20

25

30

35

40

read in e
/* d in th
reads up to an END_FUNCTION_RECORD.

returns the function record if readin is successful, EOF on

end-of-file or read error, and NULL if there are any
recoverable errors which cause only this function to

be skipped (e.g., a parse error)

function

get_next_function (input_file)

FILE *input_file;

{

parse_record kind what;
long where;

void *result;

if (active function) .
clean_up_for_ function (active_function);
infile = input_file;
if (! permanent_memory)
permanent_memory = init_memory pool();
transient memory = init_memory pool();

/* no errors so far */
errors_in function = FALSE;
do
{
where = CURRENT_OFFSET();
if (READ_IN_AND CHECK(&what, parse_record kind); i= 1)
break;
assert (jump_table[what].what == what);
result = (*jump_ table[what].proc)();

/* result can legitimately be NULL; but it better not be

NULL_OFFSET, which is an invalid pointer */
assert ((long)result |= NULL_OFFSET);
if (result)
add (where, result, TRUE);
} while (what != END_FUNCTION_RECORD);
if (feof (infile))
return (function)EOF;
if (ferror (infile))
{
readin error ("file read error", 0, 0, 0);
return (function)EOF;

-263-

PCT/US95/09691

next entire function from the intermediate file.

WO 96/05556

10

15

20

25

30

}

if (errors_in_function)
return NULL;
return active_function;

}

/* print out a warning message */

static void

readin_error (fmt, argl, arg2, arg3)
char *fmt; /* printf format string */
long argl;
long arg2;

long arg3;

{
long offset;
char *name = "2?22?22?";
if (active_function && active_ function->name)

name = active_function->name;

offset = CURRENT_ OFFSET();
fprintf(stderr, "intermediate file error: ");
fprintf(stderr, fmt, argl, arg2, arg3);
fprintf(stderr, " (function %8s, offset %d) ", name, offset);
fprintf(stderr, "\n");
/* record that there's an error */
errors_in_function = TRUE; _

}

-264-

PCT/US95/09691

WO 96/05556 PCT/US95/09691

10

15

20

25

30

35

40

/* state.c: state engine
Copyright (C) 1994 Jonathan D. Pincus and William R. Bush

*/

/* the state engine tracks the state for each resource and
external, and returns error codes when violations occur. It
does not actually print error messages, relying instead on
some higher level to do that. Resources need to have enough
information associated with them that useful messages can be
produced; in particular, this implies that line numbers and
descriptions are attached to each resource. To allow higher
levels to check for leaks, scope is attached to each resource,
but it is not interpreted by this module.

Resources represent chunks of memory, or windows, or anything
dynamically allocated and freed by a program. The state of a
resource, called the ‘rs_state’', is one of U (unallocated), Q
(questionably allocated), A (allocated), X (invalid), E
(error).

Externals represent the exports of a routine; the 'net effect'’
of the routine on each of its externals provides an external
view of the routine. The state of an external is made up of
its 'CP state' -- whether it is checked before being used =--
and its 'DK state' -- whether this routine allocates and/or
frees the external.

As the routine is ’'simulated’' under different assumptions,
different net effects will be calculated, and these in turn
must be ‘'composed’; at this stage, different behaviors of the

routine under different assumptions can be detected.

The specific state transition and composition matrices are
stored as static

2-D arrays of structs inside this module.
*/
#ifndef USE_PROTOTYPES
#define USE_PROTOTYPES

#endif

#include <stdlib.h>

-265-

WO 96/05556

10

15

20

25

30

35

40

#include <stdio.h>
#include "ccheck.h”
#include "state.h"

/* a single state transition for use in a matrix */

typedef struct ({

int

error_code code;

new_state;

} transition;

PCT/US95/09691

static transition state_ transitions((int)RS_E + 1)(NUM _OPS) = {

/*

/* RS_U */
{RS_E, 2},
/* RS_A */
{RS_A, 0},
/* RS_Q */
{RS_A, 4),
/* RS_X */
{RS_E, 6},
/* RS_E */
{RS_E, 0},
}:

a
{{RS_A, 0},
{RS_X, 0}},
{{RS_A, 0},
{RS_X, 0}},
{{RS_A, 0},
{RS_X, 0}},
{{RS_A, 0},
{RS_X, 0}},
{{RS_A, 0},
{RS_E, 0}}

{Rs_0Q,

{RS_Q,

{RS_Q,

{RS_Q,

{RS_Q,

k
0},

0},

0},

0},

0},

[=]
{RS_U, 1},

{RS_U, O},
{RS_U, 3},
{RS_U, 5},

{RS_U, 0},

P
{RS_E,

{RS_A,

{RS_Q,

{RS_X,

{RS_E,

i x */
2}, {Rs_E, 2},

0}, {RS_A, 0},
0}, {RS_A, 0},
0}, {RS_X, 0},
0},

0}, {RS_E,

static transition re_compositions{(int)RS_E + 1][(int)RS_E + 1] =
{

/* RS_U
*/ {{Rs_U,

RS_A
0}, {Rs_Q,

RS_Q
{RS_Q,

RS_X RS_E */
/* RS U 0}, {RS_Q, 0}, {RS_E,
0}},
/* RS_A
0}},
/* RS_Q
0}},
/* RS_X
0}}.,
/* RS_E */ {{RS_E,
}i

0},

*/ {{Rs_Q, 0}, {RS_A, 0}, {Rs_Q, 0}, {RS_Q, O}, {RS_E,

*/ {{Rs_Q, 0}, (Rs_Q, 0}, {Rs_Q, O}, {RS_Q, 0}, {RS_E,

*/ {{RS_Q, 0}, {Rs_Q, 0}, {Rs_Q, 0}, {(Rs_X, O}, {RS_E,

0}, {RS_E, 0}, {Rs_E, 0}, {RsS_E, O}, {RS_E, 0}}

/* CP and DK transitions and compositions are used for externals.

Note that no
errors can occur here, although the same structure is used

transitions are used for a single iteration.

-266-

WO 96/05556

for consistency.

PCT/US95/09691

compositions are used to combine the results from multiple

iterations. Unlike the transitions, these are not index by
5 operation, but rather by the two states being combined
*/
10 static transition cp_transitions((int)CP_P+1][NUM_OPS) = {
/* a m k c P i x */
/* CP_O */ {{CP_N, 0}, {CP_N, O}, {cP_c, O}, {CP_Cc, O}, {CP_P, O},
{CP_I, 0}, {CP_N, 0})},
/* CP_N */ {{CP_N, 0}, {CP_N, 0}, {CP_N, O}, {CP_N, O}, {CP_N, O},
15 {CP_N, 0}, {CP_N, 0}},
/* cp_c ~/ {{cP_c, 0}, {cP_C, O}, {CP_C, 0}, {CP_C, 0}, {CP_C, 0},
{cp_c, 0}, {cp_c, 0}},
/* cP_I */ {{cP_I, 0}, {CP_I, 0}, {CP_I, 0}, {CP_I, 0}, {CP_I, 0},
{cp_I, 0}, {CP_I, 0})},
20 /* CP_P */ {{CcP_P, 0}, {CP_P, O}, {cp_pP, 0}, {cp_P, 0}, {CP_P, 0O},
{cp_p, 0}, {CP_P, 0})
}:
/* note: errors not yet filled into this table */
25 static transition cp_compositions((int)CP_P+1][(int)CP_P+1l] = {
/* CPO CPN CP_C CP_I CP_P */
/* cp_o */ {{cpP_O, 0}, {CP_N, 0}, {CP_C, 0}, {CP_I, 0}, {CP_P,
0}},
/* CP_N */ {{CP_N, 0}, {CP_N, 0}, {CP_C, O}, {CP_I, O}, {CP_P,
30 0}),
/* cp_Cc */ {{cp_c, 0}, {cP_c, 0}, {cP_c, 0}, {cP_I, 0}, {CP_C,
03}},
/* cP_I */ {{cpP_I, 0}, {cP_I, 0}, {cpP_I, O}, {CP_I, O}, {CP_I,
031},
35 /* cp_P */ {{cP_P, 0}, {CP_P, O}, {CP_P, 0}, {CP_I, O}, {CP_P, 0}}
}i
static transition dk_transitions[(int)DK_E+1)[NUM_OPS] = {
/* a m k c P i
40 x */
/* DK_O */ ({(DK_A, 0}, {DK_Q, O}, {DK_K, 0}, {DK_O, O}, {DK_O,
0}, {DK_O, 0}, {DK_ O, 0)}},
/* DK_A */ ({{(DK_A, 0}, {DK_a, 0}, (DK_O, 0}, {DK_A, 0}, {DK.A,
0}, {DK_a, 0}, {DK_ A, 0}),

-267-

WO 96/05556 PCT/US95/09691

10

15

20

25

30

35

40

/* DK_Q */ ({{DK_Q, 0}, {(DK_Q, 0O}, {DK_O, 0}, {DK_Q, 0}, {DK Q,
0}, {DK_Q, 0}, {DK_Q, 0}},
/* DK_K */ {{DK_KA, O}, {DK_KQ, O}, {DK K, O}, {DK K, O}, {DK_K,
0}, {DK_K, 0}, ({DK K, 0}},
/* DK_KA */ {{DK_KA, O}, {DK_KA, O}, {DK K, O}, (DK_KA, O},
{DK_KA, 0}, {DK_KA, 0}, {DK_KA, 0}},
/* DK_KQ */ {{DK_KA, O}, (DK_KQ, O}, {DK_Q, O}, {DK_KQ, 0},
{DK_KQ, 0}, {DK_KQ, 0}, {DK_KQ, 0}},
/* DK_E */ ({{DK_E, O}, {DK_E, 0}, ({DK_E, O}, {DK_E, O}, {DK_E,
0), {DK_E, O}, {DK_E, 0})

}:

/* note -- error conditions not yet put into this table */

static transition dk_compositions{(int)DK_E+1)[(int)DK_E+1) = {
/* DK.OO DK_A DK_Q DK_K DK_KA
DK_KQ DK E */
/* DK_O */ ({{DK_O, 0}, {DK_A, 0}, {DK_Q, 0}, {DK_ K, 0}, {DK KA,
0}, (DK _KQ, 0}, {DK_E, 0}},
/* DK_RA */ {{DK_A, 0}, {DK_A, 0}, {DK_Q, 0}, (DK_E, 0}, {(DK_E,
0}, {DK_E, 0}, {DK_E, 0})},
/* DK_Q */ ({{DK_Q, O}, {DK_Q, 0}, ({(DK_Q, O}, {DK_E, O}, {DK_E,
0}, {DK_E, 0}, ({DK_E, 0}),
/* DK_K */ {{DK_K, 0}, {DK_E, 0}, {DK_E, 0}, {DK_K, 0}, {DK_E,
0}, {DK_KQ, 0}, {DK_E, 0})},
/* DK _KA */ {{DK_KA, 0}, {DK_E,_O}, (DK E, 0}, {DK_E, 0},
{DK_KA, 0}, ({DK_Ka, 0}, {DK_E, 0}},
/* DK_KQ */ {{DK_KQ, 0}, (DK _E, 0}, (DK _E, 0}, {DK KQ, 0},
{DK_KQ, 0}, {DK_KQ, 0}, {DK_E, 0}},
/* DK_E */ {{(DK_E, 0}, {DK_E, 0}, {DK_E, O}, {DK_E, O}, {DK_E,
0}, {DK_E, 0}, (DK_E, 0})
}:

/***************t*********tt************'k***************'***t******
****/

/* names of structures for logs, debugging, etc */

char *op names(NUM OPS] = { "a", "m", "k", "c", "p", "i", "x" };
char *rs_names((int)RS_E+l1) = { "U", "A", "Q", "X", "E" };

char *state_error_msgs((int)MAX ERROR CODE+1l) = {
"<no error>", /* valid */

-268-

WO 96/05556

10

15

20

25

30

35

40

PCT/US95/09691

"freeing uninitialized”,

"using uninitialized",

"freeing potentially-invalid"®,

"using potentially-invalid"®,

"freeing invalid",

"dereferencing invalid",

"freeing stack",

"freeing global",

*freeing static",

"returning stack",

"leaking”,

"inconsistently checks",

"inconsistently checks result"

}:

/***************’kt*'k**********t*************************t*******/

/* basic resource structure; known only within this module */

struct state_resource (

re_state
void

char

int

int

int
resource
int

}:

etate; /* current state of resource */

type; / placeholder; eventually,
determines table */

name; / name, retrievable for messages */

line_created; /* where it was created */

line modified; /* where last modified */

scope; /* scope; used to check for leaks */

next; /* list of resources */
mark : 1; /* mark bit */

/* external structure */

struct state_external (

char

dk_state
dk_state
cp_state
cp_state
re_state
external

Yi

name; / for messages */

dk; /* state for this iteration */

dk_comp; /* composed state across iterations */
cp; /* stae for this iteration =*/

cp_comp; /* composed state across iterations */
rs_comp; /* composed across iterations */
next;

~269-

WO 96/05556

10

15

20

25

30

35

40

PCT/US95/09691

/******t*********************t*************************t*****t***/

/* informational variables */

/* where (if anywhere) to log
static FILE *log_file = stdou

/* pring debugging output? */
int state_debug = 0;

/*******.**'***************t***i***************************ﬁ***/

/* macros for printing out */
#define STATE_NAME(state)

#define PRINT RESOURCE(op,res

operations to */
t;

rs_names{ (int)state]

ource) \

fprintf(log_file, "%s: resource %1d (%8s, %d), state %s\n", \

op, (long)resourc
STATE_NARME (resou

/******i********************tt*i*Q*********ti**ﬁ*t**ttt******t*/

/* the fundamental behavior:

externals, and compose the

/* perform an RS transition:
error_code
apply_op(r, op, line)
resource r;
operation op;
int line;

error_code result;

result = state_transition

e, resource->name, resource->scope,

rce->gtate));

apply operations to resources and
externals */

apply an operation to a resource */

s(r->state](op].code;

r->gtate = state_transitions(r->state][op].new_state;

r->line modified = line;

if (state_debug)
PRINT_RESOURCE (op_name
return result;

s(op], r);

~-270-

\

WO 96/05556 PCT/US95/09691

10

15

20

25

30

35

40

/* perform CP and DK transitiosn: apply an operation to an
external */
void
apply_op_to_external(e, op)
external e;
operation op;

e->dk = dk_transitions[e->dk][op].new_state;
e->cp = cp_transitions{e->cp](op].new_state;

/* compose an external */
error_code
compose_external (e, state)
external e;
r8_state state;

error_code result;
/* CP comp can't lead to an error */
e->cp_comp = cp compositions(e->cp_comp][e->Ccp].new_state;
/* neither can RS composition */
if (state != RS_NONE)

{

if (e->rs_comp == RS_NONE)

e->rs_comp = gtate;
else
e->rs_comp =
rs_compositions(e->rs_comp][state).new_state;
} .

/* DK comp can lead to an error */
result = dk_compositions{e->dk_comp)[e->dk].code;
e->dk_comp = dk_compositions[e->dk_comp)[e->dk].new_state;
return result;

/******t****i********ﬁ******************t****ﬁ***t*****'ﬁt***tt**/
/*
allocating and freeing chunks of memory for resources and
externals. could use some routine other than malloc, which

may be inefficient

*/

/* lists of all allocated resources/externals */

-271-

WO 96/05556

10

15

20

25

30

35

40

static
static
static

static

static

alloc_resource()

{

resource first_allocated_resource = NULL;

resource last_allocated_resource = NULL;
first_allocated_external = NULL;
last_allocated_external = NULL;

external

external

resource

resource r

(resource) calloc(1l,

state_resource));

if (last_allocated_resource)

last_allocated_resource->next

else

first_allocated_resource = r;

last_allocated resource = r;
r=->next = NULL;
return r;

static void

free_resource(r)

resource r;

{

free(r);
}
resource

first_resource()

{

return first_allocated resource;

resource

next_resource(r)

resource r;

return r->next;

void

free_all resources()

{

resource r;

resource next;

-272-

sizeof (struct

r;

PCT/US95/09691

WO 96/05556 PCT/US95/09691

10

15

20

25

30

35

40

for (r

{

next = r->next;

first_allocated_resource; r; r = next)

free_resource(r);

}

first_allocated_resource = last_allocated_resource = NULL;

static external
alloc_external()

{
external e = (external) malloc(sizeof(Btruct
state_external));
if (last_allocated_external)
last_allocated_external->next = e;
else
first_allocated_external = e;
last_allocated_external = e;
e->next = NULL;
return e;
}

static void
free_external(e)
external e;

{

free(e);
}
external

first_external()

{

return first_allocated_exteznal;
}
external

next_external (e)

external e;

return e->next;

void
free_all externals()

-273-

WO 96/05556 PCT/US95/09691

10

1s

20

25

30

35

40

{
external e;
external next;
for (e = first_allocated external; e; e = next)
{
next = e->next;
free_external (e);
}
first_allocated_external = last_allocated_external = NULL;
}

/******ﬁ*****i*********ﬁi*********ﬁ**ﬁi*****t******************ﬁ/

/*
Initialize the state engine. Currently a no-op.

*/

void
init_state_engine()
{

return;

/***********************************tﬂ*Q********t****t******ﬁ*ﬁ*l

/* access routines for resources */

resource
create_resource(name, line, type, initial state, scope)

char* name; /* name, for messages */
int line; /* line, for messages */
void* type; /* type, for future use */
re_state initial state; /* initial state */

int scope; ' /* scope (for leaks) */

resource result = alloc_resource();
result->state = initial state;
result->name = name;
result->line_created = result->line _modified = line;
result->type = type;
result->scope = scope;
if (state_debug)
PRINT RESOURCE ("created", result);
return result;

-274-

WO 96/05556

10

15

20

25

30

35

40

rs_state

get_resource_state(r)

int

resource r;

return r->atate;

get_resource_scope(r)

void
get_resource_info(r, created, modified, name)

resource r;

return r->scope;

resource r;
int *created;
int *modified;
char **name;

*created = r->line_created;
*modified = r->line_modified;
*name = r->name;

PCT/US95/09691

/******************************t**t**ttt*t****'********t*********/

/* access routines for externals */

external

add_external (name, type)

char *name;
void* type;

external result = alloc_external();
result->name = name;
result~>dk = result->dk _comp = DK_O;

result->cp result->cp_comp = CP_O;
result->rs_comp = RS_NONE;

return result;

-275-

WO 96/05556 PCT/US95/09691

10

15

20

25

30

35

40

void

get_external_info(e, cp_comp, dk_comp)
external e;
cp_state* cp_comp;

dk_state *dk_comp;

*cp_comp = e->Cp_comp;
*dk_comp = e->dk_comp;

/* reinitialize state (not composition) for an external */
void
reinitialize_external(e)

external e;

e->dk = DK_O;
e->cp = CP_O;

/**t****t*****/

/* map strings to the operation */
operation
operation_from_ name(op_name)

char * op name;

{ .
switch (op_name[0])
{
case 'a': return OP_a;
case 'm': return OP_m;
case 'k': return OP_k;
case 'c': return OP_c;
case 'p': return OP_p;
case 'i': return OP_i; _
case 'x': return OP_x;
default: break;
}
return OP_none;
}

/* map strings to the operation */
rs_state
re_state_ from name(state_name)

-276-

WO 96/05556 PCT/US95/09691

char * state_name;

{
switch (state_name[O0))
{

5 case 'A’': return RS_A;
case 'Q': return RS_Q;
case 'U': return RS_U;
case 'X': return RS_X;
case ‘'E’': return RS_E;

10 default: break;
}
return RS_NONE;
}
15 /tﬁ**********i*******t****************************tﬁ***t*tt*****t/

/* mark routines -- used for finding leake in mark/sweep algorithm
*/
void
mark(r)
20 resource r;

r->mark = 1;

25 void
unmark(r)
resource r;

r->mark = Q;

int
is_marked(r)
resource r;

return r->mark;

/**ttl

40
#ifndef MAX OPS
#define MAX OPS 2
#endif

-277-

WO 96/05556

10

15

20

25

30

35

40

/* a single automodeling map for use in a matrix */
typedef struct {

int n_ops;

operation op_list[MAX OPS]);

} automodel map;
/* mapping the CP and DK states to operations */

static automodel _map ops_from_cp((int)CP_P+1l] = {
/* CP_O */ {0, {OP_none, OP_none}},
/* CP_N */ {0, {OP_none, OP_none}},
/* CP_C */ ({1, {OP_c, OP_none}},
/* cP_I */ ({1, {OP_i, OP_none}},
/* cp_P */ {1, {OP_p, OP_none}}
}:

static automodel map ops_from_dk[(int)DK_E+1] = {
/* DK_O */ {0, {OP_none, OP_none}},
/* DK A */ ({1, {OP_a, OP_none}},
/* DK Q@ */ (1, {OP_m, OP_none}},
/* DE_K */ ({1, {OP_k, OP_none}},
/* DK_KA */ {2, {OP_k, OP_a}},
/* DK_KQ */ {2, {OP_k, OP_m}},
/* DK E */ (0, {OP_none, OP_ncone}}
}:

/* the 'automodelling' routines */
/* for the current state tables, DK ops take precedence over the
CP ops; only use the CP ops if there are no DK ops.

*/

extern void

ops_from external(e, n_ops, op_list)
external e;
int *n_ops;

operation** op list;

*n_ops = ops_from dk[e->dk_comp].n_ops;
*op_list = ops_from dk{e->dk_comp).op_list;
if (*n_ops == 0)
{
/* nothing from the DK, try the CP */
*n_ops = ops_from cp[e->cp_comp].n_ops;
*op_list = ops_from _cp(e->cp_comp].op_list;

-278-

PCT/US95/09691

WO 96/05556

PCT/US95/09691
}
}
/*
5 return whether or not a new resource is created for an

*/

external; initial state of new resource is in output param.

Taken from the rs_comp information on the external

10 extern int
new_state_from_external (e, initial state)

external e;

rs_state *initial state;

15 *initial_state = e->rs_comp;
return (e->rs_comp != RS_NONE);

-279-

WO 96/05556 PCT/US95/09691

10

15

20

25

30

35

40

/* state.h: header file for exports from state engine.
Copyright (C) 1994 Jonathan D. Pincus

*/

/* externally visible routines */

/* initialization calls */
extern void init_state_engine PROTO((void));

/* resource access routines */
extern resource create_resource
PROTO((char*,int,void*,rs_state,int));
extern resource first resource PROTO((void));
extern resource next_resource PROTO((resource));
extern void free_all_resources PROTO((void));
extern rs_state get_resource_state PROTO((resource));
extern int get_resource_scope PROTO((resource));
extern void get_resource_info PROTO((resource,int*,int*, char*+*));

/* external access routines */
extern external add_external PROTO((char*,void*));
extern external first_external PROTO((void));
extern external next_external PROTO((external));
extern void free_all_externals PROTO((void));
extern void get_external_ info _

PROTO((external,cp_state*,dk state*));
extern void reinitialize external PROTO((external));

/* whether or not to print debugging output */
extern int state_debug;

/* mark routines -- used for finding leaks_in mark/sweep algorithm
*/

void mark PROTO((resource));

void unmark PROTO((resource));

int is_marked PROTO((resource));

/* the fundamental state machine routines */

extern error_code apply op PROTO((resource,operation,int));
extern void apply op_to_external PROTO((external, operation));
extern error_code compose_external PROTO((external,rs_state));

-280-

WO 96/05556 PCT/US95/09691

/* the 'automodelling' routines */

extern void ops_from_external PROTO((external, intx,
operation**));

extern int new_state from_external PROTO((external,rs_state*));

5
(malloc
(retval (new Q "memory")) /* creates a new, possibly
allocated resource */
((param 0) (op c)) /* use param 0 in a
10 computation */
)
(free
((param 0) (op k)) /* free (kill) parameter 0 */
15)
(strcpy
((param 0) (op i))
((param 1) (op i))
20)
{(fopen
(retval (new Q "file")) /* call this a 'FILE' if printing
error messages */
25 ((param 0) (op i))
((param 1) (op i))
)
(fclose
30 ((param 0) (op k))
)
(fprintf
((param 0) (op 1)) /* the file */
35 ((param 1) (op i)) /* formatting string */
)
(fgets
{(param 0) (op i)) /* the buffer */
40 ((param 1) (op c¢)) /* buffer length =*/
((param 2) (op i)) /* the file */
)
(printf

~281-

WO 96/05556 PCT/US95/09691

((param 0) (op i)) /* formatting string */
)

5 {malloc
(retval (new Q "memory"))

((param 0) (op c))
)

10
(free
((param 0) (op k))
)
1s (strcpy
((param 0) (op i))
((param 1) (op i))
)
20 (fopen
(retval (new Q "file"))
((param 0) (op 1))
((param 1) (op i))
25)
(fclose
((param 0) (op k))
)
30
(fprintf
((param 0) (op i))
((param 1) (op i))
)
35
(fgets
({param 0) (op i))
((param 1) (op c))
((param 2) (op 1))
40)

(printf
({(param 0) (op i))
)

~282-

WO 96/05556 PCT/US95/09691

10

15

20

25

30

35

40

/* value.c: interpreting values
Copyright (C) 1994 Jonathan D. Pincus and William R. Bush

*/

#include <stdio.h>

#include <stdlib.h>

/* opcodes.h is needed for the opcodes. */
#include "opcodes.h"

/* want prototypes for the rest */
#ifdef MSDOS

#undef PROTO

#define PROTO(ARGS) ARGS

#endif

#include "ccheck.h"
#include "state.h"
#include "model.h"

#include "value.h"

/****************ﬁ*********************t****t********************/

/* private definitions of the value structure */

typedef enum {
VALUE_TYPE_UNKNOWN,
VALUE_TYPE_LONG,
VALUE_TYPE_NON_ZERO,
VALUE_TYPE_DOUBLE,
VALUE_TYPE_POINTER,
VALUE_TYPE_STRING
} value_type_code;

/* the actual value itself =/
typedef union {

long long_val;

void *ptr_val;

double double_val;

} value_union;

/* the entire value structure */

struct value_def {
resource res; /* associated resource, if any */
external ext; /* associated external, if any

-283-

WO 96/05556 PCT/US95/09691

*/
value_union value; /* current value */
valptr first_in bunch; /* head of the set */
long size_of bunch; /* size of the set */
5 valptr next; /* linked list of all valptrs */
short type code; /* long, pointer, or double */
/* a collection of bit fields used as flags */
int initialized:1;
int head_of bunch:1;
10 int known_bunch_size:1;
int invalid pointer:1;
int marked:1;

/* room for 12 more */
}i
15

/* private routines; declared here to enable prototype checking */
static valptr alloc_n_valptrs PROTO((long));
static void free_ valptr PROTO((valptr));
20 static void free_all_valptrs PROTO((void));
static int leaked PROTO((resource));
static void assert_not_equal PROTO((valptr,valptr,int));
static void assert_equal PROTO((valptr,valptr,int));

25 /* macro to check if a value is NULL */
#define IS_NULL(v) ((v->type_code == VALUE_TYPE_LONG \
|1 v->type code == VALUE_TYPE_POINTER) \
&& (v->value.long val == 0))

30 /* the text for all the error messages */

char *error_msgs[(int)MAX ERROR CODE+l) = {
"<no error>", /* valid */
"freeing uninitialized",
35 "using uninitialized",
"freeing potentially-invalid-,
"using potentially-invalid"®, -
"freeing invalid",
"dereferencing invalid-,
40 "freeing stack",
"freeing global",
"freeing static",
"returning stack",
"leaking",

-284-

WO 96/05556 PCT/US95/09691

10

15

20

25

30

35

40

"inconsistently checks",
"inconsistently checks result",
"divide by 0",

"leaks",

"returns pointer to local data",
"bounds violation"

}:

/*******'k***i******'k**********'k**************************t*t****/

/* allocating and freeing chunks of memory for valptrs.

.could use some routine other than malloc, which may be

inefficient
*/

/* lists of all allocated valptrs/externals */
static valptr first allocated_valptr = NULL;
static valptr last_allocated_valptr = NULL;

/* allocate one or more valptrs (more than one for structs,
arrays) */

static valptr

alloc_n_valptrs(n)

long n;
{
long i;
valptr v = (valptr) calloc((int)n, sizeof(struct value def));
if (last_allocated_valptr)
last_allocated_valptr->next = v;
else
first_allocated valptr = v;
last_allocated valptr = v;
v->next = NULL;
v->head_of_bunch = TRUE;
v->size of bunch = n;
for (i = 0; i < n; i++)
v[i).first_in bunch = v;
return v;
}

/* free a valptr. note that if multiple valptrs were allocated
in a call to alloc_n_valptrs, free_valptr will only get called
on the first */

-285-

WO 96/05556 PCT/US95/09691

10

15

20

25

30

35

40

static void
free_valptr(v)
valptr v;

free(v);
/* free up all allocated valptrs -- called at the end of each
iteration */

static void
free_all valptrs()

{
valptr v;
valptr next;
for (v = first_allocated_valptr; v; Vv = next)
{
next = v->next;
free_valptr(v);
}
first allocated_valptr = last_allocated valptr = NULL;
}

/*****iﬁ*******'****t**********************t**************t****/

/* flow of control and housekeeping */

void
begin_routine(routine_name)
char* routine_ name;

void
begin_iteration()
{

}

void
end_iteration()

{
free_all resources();
free_all valptrs();

}

void

-286~

WO 96/05556

10

15

20

25

30

35

40

end_routine()

{

free_all externals();
}
resource

get_value_resource(v)

valptr v;

return v->res;

PCT/US95/09691

/*************************************t*i********'k*************/

/* called in various circumstances when we need a value but don't
know very much about it at all */

valptr

value of unknown(initialized, line, scope)

int initialized;
int line;
value_scope scope;

valptr v;

v = (valptr) alloc_n_valptrs(l);

v=>type_code = VALUE_TYPE_UNKNOWN;

if (initialized)
v->initialized = TRUE;
return v;

/* creates a new valptr pointing to another one

operator */

valptr

value of pointer_to(vl, line, scope)

valptr vl;
int line;

value_scope scope;

valptr v;
if (vl == NULL)
{

/* pointer to something unknown */

-287-

the C '&'

WO 96/05556 PCT/US95/09691

vl = value_of_ unknown (TRUE, line, scope) ;

v = alloc_n _valptrs(l);

v->type_code = VALUE_TYPE_POINTER;
5 v—>value.ptr_va1 = vl;

/* initialized, a valid pointer */

v->initialized = TRUE;

return v;

10
/* create a valptr given information about its current value =--
either a constant, or some computed value */

valptr
15 value_from long(i, line)
long i;
int line;

valptr v;

20 v = alloc_n_valptrs(l);
v->type_code = VALUE_TYPE_LONG;
v->value.long_val = i;
/* initialized, but not a valid pointer */
v->initialized = TRUE;

25 v->invalid_pointer = TRUE;
return v;

30 valptr
value_from_double(d, line)
double d;
int 1line;

35 valptr v;

v = alloc_n_valptrs(l);

v->type_code = VALUE_TYPE_DOUBLE;

v->va1ue.double_val = d;

/* initialized, but not a valid pointer */
40 v->initialized = TRUE;

v=>invalid pointer = TRUE;

return v;

-288-

WO 96/05556

10

15

20

25

30

35

40

PCT/US95/09691

valptr
value_from string(str, line)
char *str;

int line;

{
valptr v;
v = alloc_n_valptrs(l);
v->type_code = VALUE_TYPE_STRING;
v=>value.ptr_val = str;
/* initialized, a valid pointer */
v->initialized = TRUE;
return v;

}

/**************t*********************t****t***tﬁt**t************l

/* create a valptr based on the description of an external in a
model file.
called when emulating routine calls if a ‘'new' is seen

*/

valptr

value_from model_ info(e, line)
model_external e;

int line;
{
valptr v;
int scope;
rs_state state;
char =*desc;
get_model_external_new(e, &state, &scope, &desc);
/* no values currently encoded in the model file */
v = value_of unknown (TRUE, line, scope);
/* create the associated resource */
v->res = create_resource(desc, line, NULL, state, scope);
return v;
}

/*t**t*t**t***'t******#*****i*t********t********t****'*t***'t***/
/* return the value in specified format *
pe
/* must be public because it's used by execute.c when computing
array
indices
*/
int

-289-

WO 96/05556 PCT/US95/09691

10

15

20

25

30

35

40

value as_long(v, result)
valptr v;

long *result;
int known = TRUE;

switch (v->type_code)
{
case VALUE_TYPE_LONG:
*result = v->value.long_val;
break;

case VALUE_TYPE_POINTER:

case VALUE_TYPE_STRING:
*result = (long) (v->value.ptr_val);
break;

case VALUE_TYPE_DOUBLE:
/* cast will cause a conversion here */
*result = (long) (v->value.double_val);
break;

default:
known = FALSE;
break;
}

return known;

/* sets the output parameter to TRUE or FALSE, for use in a
conditional test. Must handle special case of value being
marked non-zero.

*/
int
value_non_zero(v, result)

valptr v;
long *result;

int known = TRUE;

switch (v->type_code)
{

=290~

WO 96/05556

case VALUE_TYPE_LONG:
*result = v->value.long_val;
break;
5 case VALUE_TYPE_POINTER:
case VALUE_TYPE STRING:
*result = (long) (v->value.ptr val);
break;
10 case VALUE_TYPE_NON_ZERO:
*result = TRUE;
break;
case VALUE TYPE DOUBLE:
15 default:
known = FALSE;
break;
}
20 return known;
}

static int
value_as_double(v, result)

25 valptr v;
double *result;
{
int known = TRUE;
30 switch (v->type_ code)

35

40

{
case VALUE_TYPE_LONG:

*result = (double) (v->value.long_val);

break;

case VALUE_TYPE_DOUBLE:
*result = v->value.double_va1;
break;

case VALUE_TYPE POINTER: /* no conversion

case VALUE_TYPE_STRING:
default:
known = FALSE;
break;

=291~

PCT/US95/09691

here */

WO 96/05556 PCT/US95/09691

10

15

20

25

30

35

40

return known;

static int
value_as_pointer(v, result)
valptr v;
void **result;

int known = TRUE;

switch (v->type_code)
{
case VALUE_TYPE LONG:
*result = (void *) (v->value.long_val);
break;

case VALUE_TYPE_POINTER:

case VALUE_TYPE_STRING:
*result = (v=>value.ptr_val);
break;

case VALUE_TYPE_DOUBLE: /* no automatic conversion */
default:

known = FALSE;

break;

}

return known;
}

/t*'k****t*******t*t*****t*****ﬁt**t*******t********'********t*/

/* return TRUE if a pointer is invalid #/

int
valptr_is_invalid_ pointer(v)
valptr v;

long val = (long)v->value.ptr_ val;
if (v—>type_code == VALUE_TYPE_NON_ZERO)
return FALSE;
if (v->invalid pointer)
return TRUE;
/* could check entire list of valid pointers; for now, just

-292-

WO 96/05556 PCT/US95/09691

check against some obvious possibilities for errors

*/
return ((val == 0) || (val == =1));
}
5

/*****'R**********Q*******t*****************************t*******/

/* C expression evaluator

* includes routines to evaluate integer, real, pointer
operations,

10 * dereferences, offsets into bunches of memory (structs,

arrays,

* or pointers), and assigning values

*
* The big switch statements could perhaps be more gracefully
15 handled,

* but nothing is obvious to me ...

*/

20 /* make a value by applying a unary or binary operator to known
integers */

valptr
eval integer_ op(op, binary, vl, v2, line)
25 expression_kind op;
int binary; /* is this a binary op? */

valptr vl;
valptr v2;
int line;

30 {
long result;
long vall;
long val2;

35 if (! value_as long (vl, &vall))
return NULL;

if (binary)
if (! value_as_long (v2, &val2))
40 return NULL;

switch (op)

{
/* binary operators */

-293-

WO 96/05556

10

15

20

25

30

35

40

case OP_MINUS:
result = vall - val2;

break;

case OP_PLUS:
result = vall + val2;
break;

case OP_TIMES:
result = vall * val2;
break;

case OP_OR:
result = vall | val2;
break;

case OP_AND_BITS:
result = vall & val2;
break;

case OP_XOR_BITS:
result = vall ~ val2;
break;

case OP_DIV:
if (val2 == 0)
{

PCT/US95/09691

/* divide by 0; not currently printing error message */

return NULL;

}
result = vall / val2;
break;

case OP_MOD:
if (val2 == 0)
{

/* divide by 0; not currently printing error message */

return NULL;
}

result = vall % val2;

break;

/* comparison operators */

-294-

WO 96/05556

10

15

20

25

30

35

40

case OP_LT:
result = (vall < val2)
break;

case OP_LE:

result = (vall <= val2)
break;
case OP_GT:

?

1

1l :

.
o

~

0;

result = (vall > val2) 2 1 : 0;

break;

case OP_GE:
result = (vall >= val2)
break;

case OP_EQUAL:
result = (vall
break;

val2)

case OP_NOT_EQUAL:

result = (vall != val2) ? 1 :

break;

/* unary operators */

case OP_UNARY_ MINUS:
result = - vall;
break;

case OP_NOT:
result = { vall;
break;

case OP_NOT_BITS:

result = vall;

break;

case OP_PREDECREMENT:
result = vall - 1;

/* need to update value */
vl->value.long val = result;
vl->type code = VALUE_TYPE LONG;

break;

-295-

PCT/US95/09691

WO 96/05556

10

1s

20

25

30

35

40

return value from long (result, line);

case OP_PREINCREMENT:

result = vall + 1;

/* need to update value */
vl->value.long_val = result;
vl->type code = VALUE_TYPE_LONG;
break;

case OP_POSTDECREMENT:

result = vall;

/* need to update value */
vl->value.long_val = result - 1;
v1->type_code = VALUE_TYPE_LONG;
break;

case OP_POSTINCREMENT:

result = vall;

/* need to update value */
vli->value.long_val = result + 1;
vl->type_code = VALUE_TYPE_LONG;
break;

default:

/* not losing any sleep over these */

return NULL;
}

PCT/US95/09691

/* make a value by applying a unary or binary operator to known

reals */

valptr

eval real op(op, binary, vl, v2, line)

expression_kind op;

int binary;

valptr vi1;

valptr v2;
int line;

double result;
double vall;

do

uble val2;

-296-

/* is this a binary op?

*/

WO 96/05556 : PCT/US95/09691

if (! value_as_double (vl, &vall))
return NULL;

if (binary)
5 if (! value_as_double (v2, &val2))
return NULL;

switch (op)
{
10 /* binary operators */
case OP_MINUS:
result = vall - val2;
break;

15 case OP_PLUS:
result = vall + val2;
break;

case OP_TIMES:
20 result = vall * val2;
break;

case OP_DIV:
if (val2 == 0)
25 {
/* divide by 0; not currently printing error message */
return NULL;
}
result = vall / val2;
30 break;

/* comparison operators */

case OP_LT:
35 result = (vall < val2) ? 1 : 0;
break;

case OP_LE:
result = (vall <= val2) ? 1 : 0;
40 break;

case OP_GT:

result = (vall > val2) 2 1 : O;
break;

-297-

WO 96/05556

10

1s

20

25

30

35

40

case OP_GE:
result = (vall >= val2)

"
[N
.
(=]
-

break;

case OP_EQUAL:
result = (vall

= val2) ? 1 : 0;

break;

case OP_NOT_EQUAL:
result = (vall (= val2) 2 1 : 0;
break;

/* unary operators */

case OP_UNARY MINUS:
result = - vall;
break;

case OP_PREDECREMENT:
result = vall - 1;

/* need to update value */
vl->value.double val = result;
vl->type_code = VALUE_TYPE_DOUBLE;
break;

case OP_PREINCREMENT:

result = vall + 1.0;

/* need to update value */
vl->value.double val = result;
vl->type code = VALUE_TYPE DOUBLE;
break;

case OP_POSTDECREMENT:

result = vall;

/* need to update value */
vl->value.double val = result - 1.0;
vl->type code = VALUE_TYPE_DOUBLE;
break;

case OP_POSTINCREMENT:

result = vall;

/* need to update value */
vl->value.double val = result + 1.0;
vl->type_code = VALUE_TYPE DOUBLE;

-298-

PCT/US95/09691

WO 96/05556 PCT/US95/09691

break;

default:

/* not losing any sleep over these */
1] return NULL;

}

return value_from double (result, line);

10
/* make a value by applying a unary or binary operator
to a pointer */

valptr
15 eval pointer op(op, binary, vl, v2, line)
expression_kind op;
int binary; /* is this a binary op? */
valptr vl;
valptr v2;
20 int line;

void *result;
void *vall;
void *val2;
25
if (! value_as_pointer (vl1, &vall))
return NULL;

if (binary)
30 if (! value_as_pointer (v2, &val2))
return NULL;

switch (op)
{
35 /* binary operators */
case OP_MINUS:
/* subtracting two pointers; not yet handled */
return NULL;
break;
40
case OP_PLUS:
/* adding a pointer to an integer; not yet handled */
return NULL;
break;

-299-

WO 96/05556

10

15

20

25

30

35

40

/* unary operators */

case OP_PREDECREMENT:
case OP_PREINCREMENT:
case OP_POSTDECREMENT:
case OP_POSTINCREMENT:

PCT/US95/09691

/* adding a pointer to an integer; not yet handled */

return NULL;
break;

default:

/* not losing any sleep over these */
return NULL;

}

return value from string (result, line);

/* make a value by applying a unary or binary operator

to a pointer */

valptr

eval dereference(v, line)
valptr v;
int line;

void *val;
rs_state state;

if (¢ v || | value_as_pointer (v, &val) ||
valptr_is_invalid pointer (v)) return NULL;

/* check the state to see if dereferencing is ok */

if (v->res)
{
state = get_resource_state (v->res);
if (state == RS_X || state == RS_E |
/* nope; probably an integer of some variety.
already been printed out
*/
return NULL;
}

return (valptr)val;

-300-

| state == RS_U)

any error has

WO 96/05556 PCT/US95/09691

10

15

20

25

30

35

40

/*
Assign a value
Return the value assigned

*/

error_code
assign_value(lhs, rhs, check clobber)
valptr 1lhs; /* where to assign to */
valptr rhs; /* new value */
int check clobber; /* FALSE in situations where not
checking */

error_code code = CODE_OK;
if (lhs && rhs)
{
lhs->type_code = rhs->type_code;
lhs->value = rhs->value;
lhs->initialized = rhs->initialized;
lhs->invalid_pointer = rhs->invalid_pointer;
lhs->res = rhs->res;
lhes->ext = rhs->ext;
if (! rhs->initialized)
/* an error to assign uninitialized data */
code = CODE_USE_UNINIT;
}
else if (lhs && ! rhs)
{
/* unknown value */
lhe->type code = VALUE_TYPE_UNKNOWN;
lhe->initialized = TRUE; /* assume initialized, I guess
*/
lhs->res = NULL; ' /* no corresponding resource */
lhs->ext = NULL;
}
return code;

/t************************'k*******************************ﬁ******/

/* allocate several values and chain them together */
valptr
bunch_of values(number, known_size, initialized, line, scope)

-301-

WO 96/05556 PCT/US95/09691

10

15

20

25

30

35

40

long number; /* how many to allocate */
int known_size; /* whether this is all of the values
*/
int initialized; /* whether or not they're
initialized */
int line; /* what line they're allocated at */
value_scope scope; /* scope to give them */
{

valptr first_in bunch = NULL;
valptr current = NULL;
long i;
current = first_in bunch = alloc_n_valptrs(number);
for (i = 0; i < number; i++, current++)

{

current->type_code = VALUE_TYPE_UNKNOWN;
if (initialized)
current->initialized = TRUE;

}
if (known_size)

first_in_bunch->known_bunch_size = TRUE;
return first_ in_bunch;

}

/* find the value at a specified offset in a bunch of values * /
valptr
value_at_offset (v, offset_in_bits, code)

valptr v; /* where we're offsetting from */

long offset_in bits; /* how far to offset *»/

error_code *code; /* error detected, if any */

valptr result;
int offset_in_vals;
int backwards = FALSE;

*code = CODE_OK;
offset_in vals = (int)(offset_in bits / 32);
result = v + offset_in_vals;
/* check to be sure this is legit */
if ((result < v->first_in bunch)
i1 (result >= (v->first_in bunch +
v->first_in_bunch—>size_of_bunch)))

{
/* did not find it; is it an error? */

-302-

WO 96/05556 PCT/US95/09691

10

15

20

25

30

35

40

if (v->first_in_ bunch->known_bunch_size)
/* yes */
*code = CODE_BOUNDS_ERROR;
result = NULL;
}
if (offset_in bits % 32)
/* currently only handling multiples of 32; but wanted to
do the error checking in any case */
result = NULL;
return result;

/******************ﬁ********t*******************************i*/

/* state machine interface: applying operation to a value, and
equating an external with a value */

error_code

apply op_to_value(v, op, line)
valptr v;
operation op;
int line;

error_code code = CODE_OK;

/* if there's a resource associated with this value, let the
state machine do its job */

if (v->res)
code = apply op(v->res, op, line);

if (v->ext)
apply op to_external (v->ext, op);

/* no resource; check to see that it's initialized */
else if (!v->initialized)
code = CODE_USE_UNINIT;

/* check to see that it's a valid pointer */

else if (op == OP_i && valptr_is_invalid pointer (v))
code = CODE_USE_INVALID;

else if (op == OP_k && valptr is invalid pointer (v))
code = CODE_FREE_INVALID;

return code;

void
equate with_external(v, e)
valptr v;

-303-

WO 96/05556 PCT/US95/09691

10

15

20

25

30

35

40

external e;

v->ext = e;

/*ﬁ*****t**********ﬁ****t***ﬁ****t*t**i*********i****ﬁ*t******&/

/* looking for memory leaks */

/* mark everything accessible directly or indirectly from a
pointer;
called for each parameter and global */
void
mark_all(v)
valptr v;

long i;
/* mark everything in this bunch */
if (v->first_in bunch)
v = v->first_in bunch;
if (v->marked)
/* already marked; no need to bother */
return;
v->marked = TRUE;
for (i = 0; i < v->size_of_bunch; i++)
{
if (v[i]).res)
mark(v{i).res); -
if (v[i).type_code == VALUE_TYPE_ POINTER
&& ! v[i]).invalid_pointer && v[i).value.ptr_val)
mark all(v(i].value.ptr_val);

/*
is a particular resource leaked?)
only if it's allocated, scope is ALLOC, and has not been

marked
*/
static int
leaked(r)

resource r;

int result = FALSE;

-304-

WO 96/05556 PCT/US95/09691

if (! is_marked (r)
&& (get_resource_scope (r) == SCOPE_ALLOC))

{
rs_state state = get_resource_state (r);
5 /* leak if it's allocated, even only potentially */
result = (state == RS_A || state == RS_Q);
}
return result;
}
10
/* iterate through all the resources leaked by a routine */
resource
firset_leak()
{
15 resource r;
for (r = first_resource (); r; r = next_resource {r))
if (leaked (r))
break;
return r;
20 }
resource
next leak(r)
resource r;
25 {
if (r)
r = next_resource(r);
while (r)
{
30 if (leaked (r))
break;
r = next_resource(r);
return r;
35 }
/* is it okay to return a value? Not if it points to stack data.
Currently a no-op, it always is okay */
40 int

ok_to_return(v)
valptr v;

return TRUE;

-305-

WO 96/05556 PCT/US95/09691

10

15

20

25

30

35

40

/t*t**************ﬁ*********t**t******t**t************tt*****i**/

/* assertions (for simulation) */

void
assert_relop(op, vl, v2, truth_value, line)
expression_kind op;
valptr v1;
valptr v2;
long truth_value;
int line;

int vl_known = (vl && vl->type_code != VALUE_TYPE_UNKNOWN) ;
int v2_known = (v2 && v2->type_code != VALUE_TYPE_UNKNOWN);
valptr unknown_value;

valptr known_value;

if (vl_known == v2_known)

{

/* either both known, in which case there's nothing to
infer, or neither known, in which case we can't do
anything

*/
return;
}
if (! vl |} ! v2)
/* could create new values at this point; not yet handled */
return;
if (vl_known)
{
known_value = vl;
unknown_value = v2;
}
else

{

known_value = v2;

unknown_value = vl;

}

if ((op == OP_EQUAL && truth _value) || (op =
! truth_value))
assert_equal (unknown_value, known_value, line);
else if ((op == OP_NOT EQUAL && truth_value) || (op ==
OP_EQUAL && ! truth value))

OP_NOT_EQUAL &&

-306-

WO 96/05556 : PCT/US95/09691

S

10

15

20

25

30

35

40

assert_not_equal (unknown_value, known_value, line);

static void

assert_not_equal (unknown_value, known_value, line)
valptr unknown_value;
valptr known_value;

int line;

resource r = unknown_value->res;

/* if there's a resource in questionably allocated state,
then treat it as allocated. This is potentially
conservative (they could be checking against anything, not
ecessarily an invalid value).

The current state transition matrix has marked it as
allocated when the 'p' op was seen, so this case is not
likely to occur.

*/

if (r && (get_resource_state(r) == RS Q))

apply op(r, OP_a, line);

/* the only other thing we can do here is if the known value
is non-zero */
if (IS_NULL(known_value))

unknown_value->type code = VALUE_TYPE_NON_ZERO;
unknown_value->invalid_ pointer = FALSE;

}

static void

assert_equal (unknown_value, known_value, line)
valptr unknown_value;
valptr known_value;

int line;

/* special case for checking a resource against NULL --
resource must be marked as invalid to avoid
reporting it as a leak later on or accessing
it if there is another pointer to it. Handles
(e.g.) checking return value of malloc */

if (IS_NULL(known_value))

-307-

WO 96/05556 : PCT/US95/09691

{

if (unknown_value->res)
apply_op(unknown_value->res, OP_x, line);
}

5 (void) assign_value (unknown_value, known_value, FALSE);

-308-

WO 96/05556 PCT/US95/09691

10

15

20

25

30

35

40

/* value.h: header file for 'value' segment of checker/simulator
Copyright (C) 1994 Jonathan D. Pincus

*/

/* the fundamental allocation routine for variables, params, etc.
*/
extern valptr bunch_of values PROTO((long,int,int,int,int));

/* various ways to create values */

extern valptr value of_unknown PROTO((int,int,value_scope));
extern valptr value_of_ pointer to PROTO((valptr, int,
value_scope));

extern valptr value_from_ long PROTO((long, int));

extern valptr value from_double PROTO((double, int));

extern valptr value from string PROTO((char *, int));

extern valptr value_from model info PROTO((model_external, int));

/* evaluating particular C expressions */

extern valptr eval_integer op PROTO((expression_kind, int, valptr,
valptr, int));

extern valptr eval_real op PROTO((expression_kind, int, valptr,
valptr, int));

extern valptr eval_pointer_op PROTO((expression_kind, int, valptr,
valptr, int));

extern valptr eval_dereference PROTO((valptr, int));

extern valptr value_at offset PROTO((valptr,long,error_code*));
extern error_code assign_value PROTO((valptr, valptr, int));
extern int value_as_long PROTO((valptr,long*));

extern int value_non_zero PROTO((valptr,long*));

extern int valptr_is_invalid pointer PROTO((valptr));

/* interfaces with the state machine */
extern error_code apply op to_value PROTO((valptr,operation,int));
extern void equate with_external PROTO((valptr,external));

extern resource get_value_resource PROTO((valptr));

/* general flow of control routines */
extern void begin_routine PROTO((char*));
extern void begin_iteration PROTO((void));
extern void end_iteration PROTO((void));
extern void end_routine PROTO((void));

-309-

WO 96/05556

10

/* functionse relating to scope */

extern
extern
extern
extern

void mark_all PROTO((valptr));
resource first_leak PROTO((void));
resource next_leak PROTO((resource));
int ok_to_return PROTO((valptr v));

PCT/US95/09691

/* functions relating to assertions (for simulation) */
void assert_relop PROTO ((expression_kind, valptr, valptr, long,

int));

-310-

WO 96/05556 PCT/US95/09691

10

15

20

25

30

35

APPENDIX B

/* This file contains the definitions and documentation
for mapping the parse trees used by the GNU C compiler
to the parse tree written out.

Copyright (C) 1994 Jonathan D. Pincus and William R.
Bush Copyright (C) Free Software Foundation, Inc.

This file uses GNU CC functions.

GNU CC is free software; you can redistribute it and/or
modify it under the terms of the GNU General Public
License as published by the Free Software Foundation;
either version 2, or (at your option) any later

version.

GNU CcC is distributed in the hope that it will be
useful, but WITHOUT ANY WARRANTY; without even the
implied warranty of MERCHANTABILITY or FITNESS FOR A
PARTICULAR PURPOSE. See the GNU General Public License
for more details.

You should have received a copy of the GNU General
Public License along with GNU CC; see the file COPYING.
If not, write to the Free Software Foundation, 675 Mass
Ave, Cambridge, MA 02139, USA. */

/* The second argument is what parse code record to

write out:

ERROR_RECORD represents some error in the
parse

STRING_RECORD a string or identifier

STATEMENT RECORD a statement

TYPE_RECORD a type

DECLARATION RECORD a declaration (?)

=-311-

WO 96/05556

10

15

20

25

30

35

FUNCTION_ RECORD
EXPRESSION_RECORD

UNKNOWN_RECORD
IGNORE_RECORD

PCT/US95/09691

a function declaration
an expressinon

not yet supported
does not need to be written
out

The third argument is what 'kind' to write out, if any

For expressions, the fourth argument is how many

operands to write out; a -1 is special code (for

CALL_EXPRS) .

This argument is ignored for other nodes.

See comments in tree.def for discussion of what the

tree nodes represent.

*/

MAPTREECODE
MAPTREECODE
MAPTREECODE
MAPTREECODE
MAPTREECODE
MAPTREECODE

/* Types */

MAPTREECODE
MAPTREECODE

MAPTREECODE
MAPTREECODE

MAPTREECODE

MAPTREECODE

(ERROR_MARK, ERROR RECORD, 0, 0)
(IDENTIFIER_NODE, STRING_RECORD, 0, -1)
(OP_IDENTIFIER, UNKNOWN_RECORD, 0, 2)
(TREE_LIST, UNKNOWN_RECORD, 0, 2)
(TREE_VEC, UNKNOWN RECORD, 0, 2)
(BLOCK, UNKNOWN_RECORD, 0, 0)

(VOID_TYPE, TYPE_RECORD,. VOID_ TYPEDEF, 0)

(INTEGER_TYPE, TYPE RECORD,
INTEGER_TYPEDEF, 0)

(REAL_TYPE, TYPE RECORD, REAL TYPEDEF, 0)

(COMPLEX_TYPE, UNKNOWN_RECORD, 0, 0)

(ENUMERAL_TYPE, TYPE RECORD, ENUM_TYPEDEF,
0)

(BOOLEAN_TYPE, TYPE_ RECORD,
INTEGER_TYPEDEF, 0)

=312~

WO 96/05556

10

15

20

25

30

35

MAPTREECODE
MAPTREECODE

MAPTREECODE
MAPTREECODE
MAPTREECODE
MAPTREECODE
MAPTREECODE
MAPTREECODE
MAPTREECODE
MAPTREECODE

MAPTREECODE
MAPTREECODE

MAPTREECODE

PCT/US95/09691

(CHAR_TYPE, UNKNOWN_ RECORD, 0, 0)
(POINTER TYPE, TYPE RECORD,
POINTER TYPEDEF, 0)
(OFFSET_TYPE, UNKNOWN_RECORD, 0, 0)
(REFERENCE_TYPE, UNKNOWN_RECORD, 0, 0)
(METHOD TYPE, UNKNOWN RECORD, 0, 0)
(FILE_TYPE, UNKNOWN_RECORD, 0, 0)
(ARRAY TYPE, TYPE_RECORD, ARRAY_ TYPEDEF, 0)
(SET_TYPE, UNKNOWN_RECORD, 0, 0)
(STRING_TYPE, UNKNOWN_RECORD, O, 0)
(RECORD_TYPE, TYPE RECORD, STRUCT TYPEDEF,
0)
(UNION TYPE, TYPE RECORD, UNION_TYPEDEF, 0)
(FUNCTION TYPE, TYPE RECORD,
FUNCTION TYPEDEF, 0)
(LANG_TYPE, UNKNOWN_RECORD, 0, O)

/* Constants */

MAPTREECODE

MAPTREECODE

MAPTREECODE
MAPTREECODE

(INTEGER CST, EXPRESSION_ RECORD,
CONSTANT INTEGER, 1)

(REAL_CST, EXPRESSION_RECORD,
CONSTANT REAL, 2)

(COMPLEX_CST, UNKNOWN_RECORD, 0, 0)

(STRING_CST, EXPRESSION_ RECORD,
CONSTANT STRING, 1)

/* Declarations. */

MAPTREECODE

MAPTREECODE
MAPTREECODE
MAPTREECODE
MAPTREECODE

(FUNCTION_DECL, DECLARATION_RECORD,
FUNCTION_DECLARATION, O0)
(LABEL_DECL, IGNORE_RECORD, 0, 0)
(CONST_DECL, UNKNOWN_RECORD, 0, 0)
(TYPE_DECL, IGNORE_RECORD, 0, 0)
(VAR_DECL, DECLARATION_RECORD,
LOCAL_ VARIABLE DECLARATION, O0)

=313~

WO 96/05556 PCT/US95/09691

10

15

20

25

30

35

MAPTREECODE (PARM_DECL, DECLARATION RECORD,
PARAMETER DECLARATION, 0)
MAPTREECODE (RESULT_DECL, DECLARATION_RECORD,
RESULT_ DECLARATION, 0)
MAPTREECODE (FIELD_DECL, DECLARATION_ RECORD,
LOCAL_VARIABLE DECLARATION, O0)

/* references to storage */
MAPTREECODE (COMPONENT_REF, EXPRESSION_RECORD,
FIELD REFERENCE, 2)

MAPTREECODE (BIT_FIELD_REF, UNKNOWN_RECORD, 0, 3)

MAPTREECODE (INDIRECT_REF, EXPRESSION_RECORD,
OP_INDIRECTION, 1)

MAPTREECODE (OFFSET_REF, UNKNOWN_RECORD, 0, 2)

MAPTREECODE (BUFFER_REF, UNKNOWN_RECORD, 0, 1)

MAPTREECODE (ARRAY REF, EXPRESSION_RECORD,
ARRAY OFFSET, 2)

MAPTREECODE (CONSTRUCTOR, UNKNOWN_RECORD, 0, 2)

/* operators #*/
MAPTREECODE (COMPOUND_EXPR, EXPRESSION_RECORD,
COMPOUND_EXPRESSION, 2)
MAPTREECODE (MODIFY_ EXPR, EXPRESSION_ RECORD,
ASSIGNMENT, 2)

MAPTREECODE (INIT_EXPR, UNKNOWN_RECORD, 0, 2)

MAPTREECODE (TARGET EXPR, UNKNOWN_RECORD, 0, 3)

MAPTREECODE (COND_EXPR, EXPRESSION_RECORD, CONDITIONAL,
3)

MAPTREECODE (BIND_EXPR, UNKNOWN RECORD, 0, 3)

MAPTREECODE (CALL_EXPR, EXPRESSION_RECORD,
FUNCTION_CALL, -1)

MAPTREECODE (METHOD_ CALL_EXPR, UNKNOWN_RECORD, 0, 4)

MAPTREECODE (WITH_CLEANUP_EXPR, UNKNOWN_RECORD, 0, 3)

/* arithmetic */

-314-

WO 96/05556 PCT/US95/09691

10

15

20

25

30

35

MAPTREECODE (PLUS_EXPR, EXPRESSION_RECORD, OP_PLUS, 2)

MAPTREECODE (MINUS_EXPR, EXPRESSION_RECORD, OP_MINUS,
2)

MAPTREECODE (MULT_EXPR, EXPRESSION_RECORD, OP_TIMES, 2)

MAPTREECODE (TRUNC_DIV_EXPR, EXPRESSION_RECORD, OP_DIV,

2)
MAPTREECODE (CEIL DIV_EXPR, EXPRESSION_RECORD, OP_DIV,
2)
MAPTREECODE (FLOOR_DIV_EXPR, EXPRESSION_RECORD, OP_DIV,
2)
MAPTREECODE (ROUND_DIV_EXPR, EXPRESSION RECORD, OP_DIV,
2)
MAPTREECODE (TRUNC_MOD_ EXPR, EXPRESSION_RECORD, OP_MOD,
2)
MAPTREECODE (CEIL_MOD_EXPR, EXPRESSION_RECORD, OP_MOD,
2)
MAPTREECODE (FLOOR_MOD_EXPR, EXPRESSION_RECORD, OP_MOD,
2)
MAPTREECODE (ROUND_MOD_EXPR, EXPRESSION_ RECORD, OP_MOD,
2)

MAPTREECODE (RDIV_EXPR, EXPRESSION RECORD, OP_DIV, 2)
MAPTREECODE (EXACT DIV_EXPR, EXPRESSION_RECORD, OP_DIV,
2)
MAPTREECODE (FIX_TRUNC_EXPR, EXPRESSION_RECORD,
CONVERT_TO_INT, 1)
MAPTREECODE (FIX_CEIL_EXPR, EXPRESSION_RECORD,
CONVERT _TO_INT, 1)
MAPTREECODE (FIX FLOOR_EXPR, EXPRESSION_RECORD,
CONVERT _TO_INT, 1)
MAPTREECODE (FIX_ROUND_EXPR, EXPRESSION_RECORD,
CONVERT_TO_INT, 1)
MAPTREECODE (FLOAT EXPR, EXPRESSION_RECORD,
CONVERT TO_REAL, 1)
MAPTREECODE (EXPON_EXPR, EXPRESSION_RECORD, OP_POW, 2)

MAPTREECODE (NEGATE_EXPR, EXPRESSION_RECORD,

=315~

WO 96/05556 PCT/US95/09691

10

15

20

25

30

35

OP_UNARY_MINUS, 1)

MAPTREECODE (MIN_EXPR, UNKNOWN RECORD, 0, 2)
MAPTREECODE (MAX_EXPR, UNKNOWN RECORD, 0, 2)
MAPTREECODE (ABS_EXPR, UNKNOWN_RECORD, 0, 1)
MAPTREECODE (FFS_EXPR, UNKNOWN RECORD, 0, 1)
MAPTREECODE (LSHIFT EXPR, EXPRESSION_RECORD,
OP_SHIFT_LEFT, 2)
MAPTREECODE (RSHIFT EXPR, EXPRESSION_RECORD,
OP_SHIFT_RIGHT, 2)
MAPTREECODE (LROTATE_EXPR, EXPRESSION_RECORD,
OP_SHIFT_LEFT, 2)
MAPTREECODE (RROTATE_EXPR, EXPRESSION RECORD,
OP_SHIFT RIGHT, 2)

/* Bit operations. */

MAPTREECODE (BIT_IOR_EXPR, EXPRESSION_RECORD, OP_OR, 2)

MAPTREECODE (BIT XOR_EXPR, EXPRESSION_RECORD,
OP_XOR_BITS, 2)

MAPTREECODE (BIT_AND EXPR, EXPRESSION_RECORD,
OP_AND_ BITS, 2)

MAPTREECODE (BIT_ANDTC_EXPR, EXPRESSION_RECORD,
OP_AND_BITS, 2)

MAPTREECODE (BIT_NOT_EXPR, EXPRESSION_RECORD,

OP_NOT_BITS, 1)

/* boolean operations */

MAPTREECODE (TRUTH_ANDIF_EXPR, EXPRESSION_RECORD,

OP_AND, 2)
MAPTREECODE (TRUTH_ORIF_EXPR, EXPRESSION RECORD, OP OR,
2)
MAPTREECODE (TRUTH_AND EXPR, EXPRESSION RECORD, OP_AND,
2)
MAPTREECODE (TRUTH_OR_EXPR, EXPRESSION_RECORD, OP_OR,
2) ’

=316~

WO 96/05556 PCT/US95/09691

MAPTREECODE (TRUTH_NOT_EXPR, EXPRESSION_RECORD, OP_NOT,
1)
/* relational operators */
5

MAPTREECODE (LT_EXPR, EXPRESSION_RECORD, OP_LT, 2)
MAPTREECODE (LE_EXPR, EXPRESSION_RECORD, OP_LE, 2)
MAPTREECODE (GT_EXPR, EXPRESSION RECORD, OP_GT, 2)
MAPTREECODE (GE_EXPR, EXPRESSION RECORD, OP_GE, 2)

10 MAPTREECODE (EQ_EXPR, EXPRESSION RECORD, OP_EQUAL, 2)
MAPTREECODE (NE_EXPR, EXPRESSION RECORD, OP_NOT_ EQUAL,

2)
/* Operations for Pascal sets. Not used now. */

15 MAPTREECODE (IN_EXPR, UNKNOWN_RECORD, 0, 2)
MAPTREECODE (SET_LE_EXPR, UNKNOWN_RECORD, 0, 2)
MAPTREECODE (CARD_EXPR, UNKNOWN_RECORD, 0, 1)
MAPTREECODE (RANGE EXPR, UNKNOWN_RECORD, 0, 2)

20 /* placeholders; don't bother to write out */
MAPTREECODE (CONVERT_ EXPR, EXPRESSION_RECORD, -1, 1)
MAPTREECODE (NOP_EXPR, EXPRESSION_RECORD, -1, 1)
MAPTREECODE (NON_LVALUE_ EXPR, EXPRESSION_RECORD, -1, 1)
MAPTREECODE (SAVE_EXPR, EXPRESSION_RECORD, -1, 1)

25 MAPTREECODE (RTL_EXPR, UNKNOWN_RECORD, 0, 2)
MAPTREECODE (ADDR_EXPR, EXPRESSION_RECORD,

OP_ADDRESS_OF, 1)

30 MAPTREECODE (REFERENCE EXPR, UNKNOWN_RECORD, 0, 1)
MAPTREECODE (ENTRY_VALUE_EXPR, UNKNOWN_RECORD, 0, 1)
MAPTREECODE (COMPLEX_ EXPR, UNKNOWN_RECORD, 0, 2)
MAPTREECODE (CONJ_EXPR, UNKNOWN_RECORD, 0, 1)
MAPTREECODE (REALPART_ EXPR, UNKNOWN_RECORD, 0, 1)

35 MAPTREECODE (IMAGPART_ EXPR, UNKNOWN_RECORD, 0, 1)

=317-

WO 96/05556 PCT/US95/09691

10

15

20

25

30

35

/* Nodes for ++ and -- in C. */

MAPTREECODE (PREDECREMENT EXPR, EXPRESSION_RECORD,
OP_PREDECREMENT, 2)

MAPTREECODE (PREINCREMENT EXPR, EXPRESSION_RECORD,
OP_PREINCREMENT, 2)

MAPTREECODE (POSTDECREMENT_ EXPR, EXPRESSION_RECORD,
OP_POSTDECREMENT, 2)

MAPTREECODE (POSTINCREMENT_ EXPR, EXPRESSION_ RECORD,
OP_POSTINCREMENT, 2)

/* these are actually represented as statements; they

should never crop up as exprs ¥*/

MAPTREECODE (LABEL_EXPR, UNKNOWN_RECORD, 0, 1)
MAPTREECODE (GOTO_EXPR, UNKNOWN_RECORD, 0, 1)
MAPTREECODE (RETURN_EXPR, UNKNOWN_ RECORD, 0, 1)
MAPTREECODE (EXIT_EXPR, UNKNOWN_RECORD, 0, 1)
MAPTREECODE (LOOP_EXPR, UNKNOWN_RECORD, 0, 1)

/* interm.c: map the parse trees used by the GNU C
compiler to the intermediate form (parse tree written
out).

Copyright (C) 1994 Jonathan D. Pincus and William R.
Bush
Copyright (C) Free Software Foundation, Inc.

This file is included in a modification of GNU CC, and
uses data structures and routines defined by GNU CC.

GNU CC is free software; you can redistribute it and/or
modify it under the terms of the GNU General Public
License as published by the Free Software Foundation;
either version 2, or (at your option) any later
version.

-318-

WO 96/05556 PCT/US95/09691

10

15

20

25

30

35

GNU CC is distributed in the hope that it will be
useful, but WITHOUT ANY WARRANTY; without even the
implied warranty of MERCHANTABILITY or FITNESS FOR A
PARTICULAR PURPOSE. See the GNU General Public License
for more details.

You should have received a copy of the GNU General
Public License along with GNU CC; see the file COPYING.
If not, write to the Free Software Foundation, 675 Mass
Ave, Cambridge, MA 02139, USA. */

#include "config.h"
#include <stdio.h>

#include <ctype.h>

#include <assert.h>
#include <stddef.h>
#include "tree.h"

/* £ix turn on prototypes for this file only; turning
them on globally leads to many many errors */

#ifdef MSDOS

#undef PROTO

#define PROTO(args) args
#endif

/* opcodes for intermediate file -- shared with ccheck
*/ ’

#include "../ccheck/opcodes.h"

struct mapping_def {
enum tree_code code;
parse_record_kind kind;

=319~

WO 96/05556 PCT/US95/09691

10

15

20

25

30

35

int what;
int num_ops;
}i

#define UNKNOWN_RECORD -1
#define IGNORE_RECORD -2

#define MAPTREECODE (sym,record,kind,num_ops) { sym,
record, kind, num_ops },

static struct mapping_def mapping[] = {
#include "interm.def"

)

#undef MAPTREECODE

/* access macros for the mapping structure */

#define PARSE_KIND (code) (mapping{code].kind)
#define SUB_KIND (code) (mapping[code] .what)
#define NUM_OPERANDS (code)

(mapping[code] .num_ops)

/* maximum number of operands that can be written for a
routine */
f#define MAX OPS 10

/* the file which is the destination #*/
static FILE *outfile;

#ifdef DEBUG

static FILE *logfile;

#endif

/* whether we've seen a function declaration yet */
static int in_function = FALSE;

/* private routine definitions */

=320~

WO 96/05556 PCT/US95/09691

10

15

20

25

30

35

static void patch_ function_start PROTO ((void)) ;
static void patch PROTO((statement_kind,long));
static void patch_end block PROTO((int));

static void write_current_line PROTO((void));

static long write_parse_record_kind

PROTO((parse_record_kind)) ;

static long write_tree PROTO((tree));

static void write_string PROTO((size_t, char¥));
static void write_field PROTO((tree));

static long write_string_cst PROTO((size_t, char*));
static long write_decl PROTO((tree, declaration_kind));
static short num_exprs_for_ statement

PROTO((statement_kind));

static void write_statement

PROTO((statement_kind, tree, tree));

static void write_patch

PROTO ((parse_patch_kind, long,long));

/* data structures and routines dealing with patches */

/* a stack of all the block statements that have been

encountered */

/* TREE_LIST nodes, where the TREE VALUE is the
offset of that block statement. This is needed to
restore the last_statement_address appropriately
when the end-of-block is seen.

*/
static tree block_stmts = NULL_TREE;
/* the last statement that has been written out; needed

to generate patch information */
static long last_statement_address = NULL_OFFSET;

=321~

WO 96/05556 PCT/US95/09691

10

15

20

25

30

35

/* whether the last statement needs its EXP field patch
(as opposed to its NEXT field). This will be true if
the last statement was an IF, ELSE, LOOP, or BLOCK

*/
static int patch_last_exp field = FALSE;

/* whether the next statement should be inserted in the
NEXT chain. This is TRUE unless the last statement
seen was an IF or an ELSE in these situations, the
chain must come from the IF or ELSE statement, not the
‘completion' statement. This is necessary because of a
guirk the C grammar.

*/
static int chain_statement;

static void
patch function_start ()

{
block_stmts = NULL_TREE;
last_statement_ address = NULL_OFFSET;
patch _last _exp field = FALSE;
chain_statement = TRUE;

}

static void

patch (kind, new_statement)
statement kind kind;
long new_statement;

/* if this is not the first statement, generate a
patch statement */
if (last_statement_address != NULL_OFFSET)

{
/* what kind of patch is needed? =*/

=322~

WO 96/05556

10

15

20

25

30

35

PCT/US95/09691

parse_patch kind p kind = (patch_last_exp_field ?
PATCH_EXPRESSION : PATCH_NEXT);
write patch (p_kind, last_statement_address,

}

new_statement) ;

/* now update internal records structures */
/* XXX is switch_stmt appropriate? */

if (kin

{

== BLOCK_STMT || kind == LOOP_STMT /* ||

kind == SWITCH_STMT */)

/* push this on the stack */
if (chain_statement)

/*

a block occurring without a preceeding
if or else. The statement following the
block is patched to follow the block
statement. */

block_stmts = tree_cons ((tree)new_statement,

else

/*

(tree)chain_statement,
block_stmts) ;

a block as the first statement of an if
or else. The statement following the
block is patched to follow the if or
else */

block_stmts = tree_cons

((tree)last_statement_address,

(tree)chain_statement,
block_stmts) ;

last_statement_address = new_statement;

}

else if (chain_statement)

last_statement_address

new_statement;

/* what needs to get updated in this statement? */
patch_last _exp field = (kind == IF_STMT || kind ==

ELSE_STMT

-323-

WO 96/05556

10

15

20

25

30

35

! kind ==
| kind ==

chain statement

SWITCH_ STMT) ;
}

static void

PCT/US95/09691

LOOP_STMT |! kind == BLOCK_STMT
SWITCH_STMT) ;

= (kind != IF_STMT && kind !=
ELSE_STMT && kind !=

patch_end block (is_loop)

int is_loop;

/* is it a loop (as opposed to
simple block) */

ast statement */
address = (long) TREE_PURPOSE

(block_stmts);

stack */

block_stmts = TREE_CHAIN (block_stmts);
/* patch the NEXT field, not the EXP field */

{
/* update the 1
last_statement_
/* and pop the
patch_last_exp_
~chain_statement
}

/* utility routines
information within

/* temporary routin

int cchwrite (ptr,
void #*ptr;
size_t size;
size_t number;
FILE *fptr;

field = FALSE;
= TRUE;

to write out specific bits of

a record */

e to enable setting breakpoints */

size, number, fptr)

=324-

WO 96/05556

10

15

20

25

30

35

{
#ifdef _DEBUG

long value_written;

if (size == 1)
value_written

= (long) *(char *)ptr;

else if (size == 2)

value_written
else
value_written

(long) *(short *)ptr;

*(long *)ptr;

fprintf (logfile, "\t%d * %d bytes, value

size, number,
#endif

value written);

return fwrite (ptr, size, number, fptr);

#define OUTPUT_AS(s,type) \

{

\

type __ _dummy var = (type) (s);

PCT/US95/09691

$1ld\n",

(void)cchwrite (& __dummy var,sizeof (type),1,outfile);

\

#define OUTPUT_ARRAY (s, length,type)
(void) cchwrite(s,sizeof (type), length,outfile)

static void
write_current_line

{
short number =

()

lineno;

OUTPUT_AS (number, short);

static void

write string (length, ptr)

size_t length;

=325~

WO 96/05556 ‘ PCT/US95/09691

10

15

20

25

30

35

char *ptr;

short length_with null = length + 1;
OUTPUT_AS (length_with_null, short);
OUTPUT_ARRAY (ptr, length + 1, char);

/* write out a field declaration */
static void
write field (field)

tree field;

long name_addr;

short i;

long result;

assert (TREE_CODE (field) == FIELD_DECL);

if (TREE_INTERMED OFFSET (field))
return;

name_addr = write_tree (DECL_NAME (field));
/* the type should already be written out; Jjust
return the address */

/* type_addr = write_tree (TREE_TYPE (field)); #*/

result = write_parse_record kind (FIELD_RECORD);

OUTPUT_AS (name_addr, long);

i = (short) TREE_INT CST LOW (DECL_FIELD BITPOS
(field));

OUTPUT_AS (i, short);

i = (short) TREE_INT_CST_LOW (TYPE SIZE (TREE_TYPE
(field)));

OUTPUT_AS (i, short);

TREE_INTERMED_OFFSET (field) = result;

=326~

WO 96/05556

10

15

20

25

30

35

PCT/US95/09691

/* write out the parse record kind and return where it

was written */
static long

write parse_record_kind (kind)

parse_record_kind

long result;

kind;

result = ftell (outfile);

#ifdef DEBUG
fprintf (logfile,
kind, result);
#endif

"Record kind $d, offset %1d\n",

OUTPUT_AS (kind, short);

return result;

static long

write_string_cst (length, ptr)

size_t length;
char *ptr;

(STRING_RECORD) ;

{
long result = write_parse_record_kind
write_string (length, ptr);
return result;

}

static long
write_decl (t, kind)
tree t;

declaration_kind kind;

long name_addr, type_addr;

long result;

=327~

WO 96/05556 PCT/US95/09691

10

15

20

25

30

35

if (TREE_INTERMED OFFSET (t))
return TREE_INTERMED OFFSET (t);

/* variables may be extern or static */
if (kind == LOCAL_VARIABLE DECLARATION)
{
if (TREE_STATIC (t))
kind = STATIC_VARIABLE DECLARATION;
else if (TREE_PUBLIC (t))
kind = GLOBAL_VARIABLE DECLARATION;
}
name_addr = write_tree (DECL _NAME (t));
write tree (TREE_TYPE (t));
result = write_parse_record kind
(DECLARATION RECORD) ;

type_addr

OUTPUT_AS (kind, short);
OUTPUT_AS (name_addr, 1long);
OUTPUT_AS (type_addr, 1long);
return result;

/* write out a tree node; may be an expression,
constant, or identifier #*/

static long
write tree (t)
tree t;

long result;
parse_record_kind kind;
expression kind what;
short length;

long ops[MAX OPS];

-328-

WO 96/05556

10

15

20

25

30

35

short num_ops = 0;
tree params, field;
long type_addr;
long name_addr;

int i;

if (! t)
return NULL_OFFSET;

if (TREE_INTERMED OFFSET (t))
/* already written out */
return TREE_INTERMED OFFSET (t);

kind = PARSE_KIND (TREE_CODE (t));

/* first, write out any things this tree is
pointing to that need to be written first */
switch (kind)
{
case TYPE RECORD:
/* name of tree may be NULL, DECL_NODE or an
IDENTIFIER_NODE */
if (TYPE_NAME (t) && TREE_CODE (TYPE NAME (t)) !
IDENTIFIER_ NODE)
name_addr = write_tree (DECL_NAME (TYPE_NAME
(€))):

else

name_addr = write_tree (TYPE_NAME (t));
/* write out what it points to */
type_addr = write_tree (TREE_TYPE (t));
break;

case DECLARATION_ RECORD:
/* this really means to write out the variable
that this declaration points to */
ops[0] = write decl (t, SUB_KIND (TREE_CODE

=329~

PCT/US95/09691

WO 96/05556 PCT/US95/09691

10

15

20

25

30

35

(£)))s

kind EXPRESSION RECORD;

what = VARIABLE;

type_addr = write_tree (TREE _TYPE (t));
num _ops = 1;

break;

case EXPRESSION_RECORD:
/* a few special cases here */
what = (expression_kind) SUB_KIND (TREE_CODE
(t))i
if (what == -1)
{
/* nop, convert, lexpr -- write out what it's
poiint to */
return write_tree (TREE_OPERAND (t, 0));
}
num_ops = NUM_OPERANDS (TREE_CODE (t));
if (TREE_CODE (t) == STRING_CST)
ops[0] = write_string_cst (TREE_STRING_LENGTH
(t),
TREE_STRING_POINTER (t));
else if (TREE_CODE (t) == INTEGER_CST)
ops(0] = TREE_INT_CST_LOW (t);
else if (TREE_CODE (t) == REAL CST)
* (double *)ops = TREE_REAL CST (t);
/* for anything but a call, just iterate through
*/
else if (num_ops != -1)
{
for (i = 0; i < num_ops; i++)
ops(i] = write_tree (TREE_OPERAND (t, i));
}
else

{

/* for a call, the parameters are chained

=330~

WO 96/05556

10

15

20

25

30

35

(%s)

PCT/US95/09691

together */
ops[0] = write_tree (TREE_OPERAND (t, 0));
num_ops = 1;
for (params = TREE_OPERAND (t, 1); params;
params = TREE_CHAIN (params))
ops[num_ops++] = write_tree (TREE_VALUE
(params)) ;
}
/* write out the type */
type_addr = write_tree (TREE_TYPE (t));

break;

case UNKNOWN_RECORD:
fprintf (stderr, "Unable to write out tree code %d
to intermediate file\n",
TREE_CODE (t), tree_code_name [TREE_CODE
() 1);
return NULL_OFFSET;

case IGNORE_RECORD:
return NULL OFFSET;

default:

/* do nothing */
break;

}

/* write out the record header */
result = write_parse_record_kind (kind);
/* save this on the tree */
TREE_INTERMED OFFSET (t) = result;

switch (kind)

{
case ERROR RECORD:

/* nothing needs to be written out here */

-331~-

WO 96/05556

10

15

20

25

30

35

PCT/US95/09691

break;

case STRING_RECORD:
/* identifier */
write string ((short)IDENTIFIER_LENGTH (t),
IDENTIFIER_POINTER (t));
break;

case TYPE RECORD:
what = SUB_KIND (TREE_CODE (t));
OUTPUT_AS (what, short);
OUTPUT_AS (name_addr, long);
if (TYPE_SIZE (t))
length = (short) TREE INT CST LOW (TYPE SIZE
(€));
else
length = 0; /* unknown */
OUTPUT_AS (length, short);
OUTPUT_AS (type_addr, 1long);
if (TREE_CODE (t) == RECORD_TYPE || TREE_CODE (t)
== UNION_TYPE)
{ -
for (field = TYPE_FIELDS (t); field; field =
TREE_CHAIN (field))
write_field (field);
}
break;

case EXPRESSION_RECORD:
OUTPUT_AS (what, short);
OUTPUT_AS (num_ops, short);
OUTPUT_AS (type_addr, long);
OUTPUT_ARRAY (ops, num_ops, long);
break;

default:

-332-

WO 96/05556

10

15

20

25

30

35

break;

}

return result;

/* initialize. */

#define INTER_FILE_NAME "ccheck.int"
#define LOG_FILE_NAME "ccheck.log"

void
begin_inter file ()
{

outfile = fopen (INTER_FILE NAME, "wb");

if (! outfile)
{

PCT/US95/09691

fprintf (stderr, "Error: unable to open %s for

output\n",

INTER_FILE_ NAME) ;

outfile = stdout;
}

/* could put in some header information here; not

doing that yet =*/
#ifdef _DEBUG

logfile = fopen (LOG_FILE NAME,

#endif
}

void
end_inter_file ()
{
fclose (outfile);
#ifdef _DEBUG

=333~

Ilw") ;

WO 96/05556 PCT/US95/09691

10

15

20

30

35

fclose (logfile);
#endif

}

/* externally visible entry points for various
statement types and function begin/end

*/

/* beginning of function: write out the FUNCTION_RECORD
*/

void
write_begin_function(decl)
tree decl; /* function decl for this function

*/

long result;
long name_addr;
long filename_addr;

in_function = TRUE;

#ifdef _DEBUG _
printf ("Writing function %s\n",
IDENTIFIER POINTER (DECL_NAME (decl)));
#endif

/* write out the name #*/

name_addr = write_tree (DECL_NAME (decl));

/* write out the current filename */

filename_addr = write_string _cst (strlen
(input_filename), input filename);

result = write_parse_record_kind (FUNCTION_RECORD) ;

OUTPUT_AS (name_addr, long);

=334~

10

15

20

25

30

35

WO 96/05556 : PCT/US95/09691

OUTPUT_AS (filename_ addr, long);
write_current_line ();

patch_function_start ();
/* end of function: write out the END_FUNCTION record,

which includes the list of all static and external
variable declarations used by this function #*/

#define NEED TO WRITE_OUT (decl) \
(DECL_USED_IN FUNCTION (decl) && TREE_CODE (decl)
== VAR_DECL \
&& (DECL_EXTERNAL (decl) || TREE_STATIC
(decl)))
void

write_end_function()
{
long result;
short num_externals = 0;
long *externals;
tree decl;
tree param;
tree last_external seen = NULL_TREE;
int need_to_search_again;

/* search all globals to see which are used this

function */

for (decl = first global(); decl; decl = TREE_CHAIN
(decl))

/* if it's a global or static variable used in

this function, put it on the list of globals

used */

=335~

WO 96/05556 : PCT/US95/09691

if (NEED_TO_WRITE_OUT (decl))
{
num_externals++;
last_external_seen = decl;

}

/* are we going to have to loop through again?
not if we've seen exactly 0 or 1 external */
need_to_search_again = num_externals > 1;

/* now loop through each parameter */

for (param = DECL_ARGUMENTS
(current_function_decl);
param;
param = TREE_CHAIN (param))
if (TREE_INTERMED OFFSET (param))
num_externals ++;

/* and, perhaps, the return value (if any) ¥*/
if (DECL_RESULT (current_function_decl)
&& TREE_INTERMED OFFSET (DECL_RESULT
(current_function_decl)))
num_externals++;

result = write_parse_record_kind
(END_FUNCTION_RECORD) ;
OUTPUT_AS (num_externals, short);

if (num_externals)
{
int 1 = 0;
/* now, allocate the storage and collect them ¥*/
externals = (long *) malloc (num_externals *
sizeof (long));

=336~

10

15

20

25

30

35

WO 96/05556

if (need_to_search again)
{
/* general case: 2 or more extern/static
variables */
for (decl = first global(); decl; decl =
TREE_CHAIN (decl))
{
if (NEED_TO_WRITE OUT (decl))
externals([i++] = TREE_INTERMED_ OFFSET
(decl) ;

}

}
else if (last_external_seen)

/* special case: only one */
externals[i++] = TREE_INTERMED_ OFFSET
(last_external_seen);

for (param = DECL_ARGUMENTS
(current_function_decl);
param;
param = TREE_CHAIN (param))
if (TREE_INTERMED OFFSET (param))
externals[i++] = TREE_INTERMED_ OFFSET
(param) ;

if (DECL_RESULT (current_function_decl)
&& TREE_INTERMED OFFSET (DECL_RESULT
(current_function_decl)))
externals[i++] = TREE_INTERMED_ OFFSET
(DECL_RESULT
(current_function_decl));

OUTPUT_ARRAY (externals, num_externals, long);
}

/* no longer in a function */

-337-

PCT/US95/09691

WO 96/05556

10

15

20

25

30

35

in_

/* writing out statements.

function = FALSE;

PCT/US95/09691

most statements can be

handled similaraly; all we need to know is how many

expressions they take.

*/

#define MAX ADDRESSES 2

struct

statement_exprs ({

statement_kind kind;

short

}i

static

{

'
Lo B e T o T T T S R N e

#define STMT MAP_ SIZE

sizeof

num_exprs;

Some require special handling

struct statement_exprs statement map([] =

EXPR_STMT, 1 },
IF_STMT, 2 },
SWITCH STMT, 2 },
ELSE_STMT, 2 },
BLOCK_STMT, 1 },
LOOP_STMT, 1 },
CONTINUE_STMT, O },
BREAK_STMT, 0 },
DECL_STMT, 2},
RETURN_STMT, 1 }

static short

num_exprs_for_statement (kind)

statement_kind kind;

-338-

(sizeof (statemeht_map) !

(statement_map{0]))

WO 96/05556 PCT/US95/09691

int i;
for (i = 0; i < STMT_MAP_SIZE; i++)
{
if (statement_map(i].kind == kind)
5 return statement_map[i].num_exprs;

}

return -1;

10 static void
write statement (kind, el, e2)
statement_kind kind;

tree el; /* first expression (if any) */
tree e2; /* second expression (if any) */
15 {
short num_exprs = num_exprs_for_statement (kind);
long exprs[MAX ADDRESSES];
long result;
20 if (num_exprs == -1)
{
/* ooops, didn't find it */
fprintf (stderr,
"Internal error: write statement can not
25 write kind %d\n",
kind);
return;
}
30 exprs(0]) = write_tree (el);

exprs[1l] = write_tree (e2);
result = write_ parse_record_kind
(STATEMENT RECORD) ;
OUTPUT_AS (kind, short);
35 OUTPUT_AS (num_exprs, short);
write current line ();

-339-

10

15

20

25

30

35

WO 96/05556 PCT/US95/09691

OUTPUT_ARRAY (exprs, num_exprs, long);
patch (kind, result);

void
write_expr_statement (e)

tree e; /* the expression */
{

write_statement (EXPR_STMT, e, NULL_TREE);
}
void

write if statement (condition)
tree condition; /* the condition #*/

write_statement (IF_STMT, NULL_TREE, condition);

void
write_else_statement (condition)
tree condition; /* the condition, for an ELSIF */

write_statement (ELSE_STMT, NULL TREE, condition);

void
write_block_statement ()

{
write_statement (BLOCK_STMT, NULL_TREE, NULL_TREE);

void

-340-

10

15

20

25

30

35

WO 96/05556

write_loop statement ()

{

PCT/US95/09691

write_statement (LOOP_STMT, NULL_TREE, NULL_TREE);

void

write_end_block_statement ()

{

patch_end_block (FALSE);

void

write_end_loop_.

{

statement ()

patch_end block (TRUE);

void

write goto_statement (label)

tree label;

/* the label */

write_statement (GOTO_STMT, label, NULL_TREE);

void

write_switch_statement (e)

tree e;

/* the expression */

write statement (SWITCH STMT, NULL_TREE, e);

void
write case (e)
tree e;

/* the expression */

-341-

10

15

20

25

30

35

WO 96/05556

void

PCT/US95/09691

write_end_ switch_statement ()

{

void

/* patch_end_block (FALSE); */

write_ break_statement ()

{

void

write statement (BREAK_STMT, NULL_TREE, NULL_TREE);

write_continue_statement ()

{

NULL_TREE) ;

}

void

write_statement (CONTINUE_STMT, NULL_TREE,

write_loop_continue_here ()

{
}

void

write return_statement (e)

*/
{

tree e;

/* the expression to be returned or NULL

write_statement (RETURN_STMT, e, NULL_TREE);

void

-342-

10

15

20

25

30

WO 96/05556 PCT/US95/09691

write _decl_statement (decl, e)
tree decl; /* the declartion node */
tree e; /* the initial value */

/* GCC declares some dummy variables that we want
to ignore */
if (DECL_IGNORED P (decl))
return;
/* avoid writing out parameters [these are handled
by the external_list at in the
END_FUNCTION_RECORD] */

if (TREE_CODE (decl) == PARM DECL)
return;

write_statement (DECL_STMT, decl, e);

static void

write_patch (p_kind, last_address, this_address)
parse_patch_kind p_kind;
long last_address;
long this_address;

(void) write parse record kind (PATCH_RECORD) ;
OUTPUT_AS (p_kind, short);

OUTPUT_AS (last_address, long);

OUTPUT_AS (this_address, long);

=343~

10

15

20

25

30

35

WO 96/05556 PCT/US95/09691

CLATMS

What is claimed is:

1. A method for detecting programming errors in
a component of a computer program, the component
comprising one or more statements, the method
comprising:

(a) defining one or more valid states for a
resource which has a resource state;

(b) traversing a control flow path through
the one or more statements;

(c) for each of the one or more statements
along the control flow path, performing the
following steps:

(i) evaluating an effect of the
statement on the resource state of the
resource; and

(ii) modelling a transition from the
resource state to a new resource state of the
resource in accordance with the effect; and
(d) detecting that the new state is not one

of the valid states.

2. The method of Claim 1 wherein the component
is a function.

3. The method of Claim 1 wherein the step of
traversing comprises:

determining that a selected statement of the
one or more statements determines a portion of the
control flow path according to a value of a
predicate; and

evaluating the predicate to determine the
control flow path.

-344-

WO 96/05556 PCT/US95/09691

10

15

20

25

30

35

4. The method of Claim 3 wherein the step of
evaluating the predicate comprises:
determining that the value of the predicate
is unknown; and
assigning to the predicate an assumed value.

5. The method of Claim 4 wherein the step of
evaluating the predicate further comprises:
inferring from the assumed value information
regarding the state of the resource.

6. The method of Claim 4 wherein the step of
evaluating the predicate further comprises:
inferring from the assumed value respective

values of one or more operands of the predicate.

7. The method of Claim 6 wherein the step of
traversing further comprises:

determining that a second selected statement
of the one or more statements determines a second
portion of the control flow path according to a
second value of a second predicate, which
comprises one or more of the operands of the
first-mentioned predicate; and

evaluating the second predicate to determine
the second portion of the control flow path using
the inferred respective values of the one or more

operands of the first predicate.

8. The method of Claim 1 wherein step (c) (i)
comprises:
determining whether the statement is a call
to a called component;
if the statement is a call to a called
component, emulating execution of the called

=345~

WO 96/05556 PCT/US95/09691

component to evaluate the effect of the called

component on the resource state of the resource.

9. The method of Claim 8 wherein the step of
5 emulating execution of the called component comprises:
determining that the resource is associated
with an external of the called component; and
determining from a model of the called
component the effect of executipn of the called
10 component on the resource, which is associated
with the external.

10. The method of Claim 1 further comprising:
reporting to a user that the resource state
15 is not one of the valid states.

11. The method of Claim 1 further comprising:

identifying to a user the statement whose
effect on the resource state causes a transition
20 to a new resource state which is not one of the
valid states.

12. A method for detecting programming errors in
a component of a computer program, the component
25 comprising one or more statements, the method
comprising:
(a) defining one or more valid states for a
resource which has a resource state;
(b) defining one or more valid state
30 transitions, each state transition being from a
first of the valid states to a second of the valid
states; and
(c) traversing a control flow path through
the one or more statements;

=346~

10

15

20

25

30

35

WO 96/05556

PCT/US95/09691

(d) for each of the one or more statements
along the control flow path, performing the
following steps:

(1) evaluating an effect of the
statement on the resource state of the
resource; and

(ii) modelling a change in the resource
state of the resource in accordance with the
effect; and
(e) detecting that the change is not one of

the valid state transitions.

13. The method of Claim 12 wherein the step of
traversing comprises:
determining that a selected statement of the
one or more statements determines a portion of the
control flow path according to a value of a
predicate; and
evaluating the predicate to determine the

control flow path.

14. The method of Claim 13 wherein the step of
evaluating the predicate comprises:
determining that the value of the predicate
is unknown; and
assigning to the predicate an assumed value.

15. The method of Claim 14 wherein the step of
evaluating the predicate further comprises:
inferring from the assumed value information
regarding the state of the resource.

16. The method of Claim 14 wherein the step of
evaluating the predicate further comprises:

inferring from the assumed value respective

values of one or more elements of the predicate.

-347-

10

15

20

25

30

35

WO 96/05556 PCT/US95/09691

17. The method of Claim 16 wherein the step of

traversing further comprises:

determining that a second selected statement
of the one or more statements determines a second
portion of the control flow path according to a
second value of a second predicate, which
comprises one or more of the elements of the
first-mentioned predicate; and

evaluating the second predicate to determine
the second portion of the control flow path using
the inferred respective values of the one or more
elements of the first predicate.

18. The method of Claim 12 wherein step (4d) (i)

comprises:

determining whether the statement is a call
to a called component;

if the statement is a call to a called
component, emulating execution of the called
component to evaluate the effect of the called
component on the resource state of the resource.

19. The method of Claim 18 wherein the step of

emulating execution of the called component comprises:

determining that the resource is associated
with an external of the called component; and

determining from a model of the called
component the effect of execution of the component
on the resource, which is associated with the
external.

20. The method of Claim 12 further comprising:
reporting to a user that the resource state

is not one of the valid states.

21. The method of Claim 12 further comprising:

=348~

10

15

20

25

30

35

WO 96/05556

identifying to a user the statement whose
effect on the resource state causes a transition
to a new resource state which is not one of the
valid states.

22. A method for modelling the behavior of a
component of a computer program, the component
-including an external, the method comprising:

(a) defining one or more valid states for
the external, which has an external state;

(b) traversing a control flow path, which
comprises one or more statements of the component;

(c) for each of the one or more statements,
performing the following steps:

(i) determining that execution of the
statement has an effect on the external state
of the external; and

(ii) modelling a transition from the
external state to a new external state of the
external in accordance with the effect; and
(d) building a model which represents a

collective effect of the statements of the
component on the external.

23. The method of Claim 22 wherein the step of
traversing comprises:
determining that a selected statement of the
one or more statements determines a portion of the
control flow path according to a value of a
predicate; and
evaluating the predicate to determine the

control flow path.

24. The method of Claim 23 wherein the step of
evaluating the predicate comprises:

=349~

PCT/US95/09691

10

15

20

25

30

35

WO 96/05556

determining that the value of the predicate
is unknown; and

assigning to the predicate an assumed value.

25. The method of Claim 24 wherein the step of
evaluating the predicate further comprises:
inferring from the assumed value information
regarding the state of the resource.

26. The method of Claim 24 wherein the step of
evaluating the predicate further comprises:
inferring from the assumed value respective
values of one or more components of the predicate.

27. The method of Claim 26 wherein the step of
traversing further comprises:

determining that a second selected statement
of the one or more statements determines a second
portion of the control flow path according to a -
second value of a second predicate, which
comprises one or more of the elements of the
first-mentioned ‘predicate; and

evaluating the second predicate to determine
the second portion of the control flow path using
the inferred respective values of the one or more
elements of the first predicate.

28. The method of Claim 24 wherein the step of
evaluating the predicate further comprises:
inferring from the assumed value information
regarding the state of the external.

29. The method of Claim 22 wherein step (c) (i)
comprises:
determining whether the statement is a call
to a called component;

~-350-

PCT/US95/09691

10

15

20

25

30

35

WO 96/05556

PCT/US95/09691

if the statement is a call to a called
component, emulating execution of the called
component to evaluate the effect of the called
component on the resource state of the resource.

30. The method of Claim 29 wherein the step of

emulating execution of the called component comprises:

determining that the resource is associated
with an external of the called component; and

determining from a model of the called
component the effect of execution of the component
on the resource, which is associated with the

external.

31. The method of Claim 22 further comprising:

(e) traversing a second control flow path,
which comprises a second collection of one or more
statements;

(£) for each statement of the second
collection of one or more statements, performing
the following steps:

(i) determining that execution of the
statement has an effect on the external state
of the external; and

(ii) modelling a transition from the
external state to a second new external state
of the external in accordance with the
effect;

(g) forming from the first-mentioned new
external state and the second new external state a
composite external state of the external.

32. The method of Claim 31 wherein the step of

traversing comprises:

determining that a selected statement of the
one or more statements determines a portion of the

=351~

10

15

20

25

30

35

WO 96/05556

PCT/US95/09691

second control flow path according to a value of a
predicate; and

evaluating the predicate to determine the
second control flow path.

33. The method of Claim 32 wherein the step of
evaluating the predicate comprises:
determining that the value of the predicate
is unknown; and
assigning to the predicate an assumed value.

34. The method of Claim 33 wherein the step of
evaluating the predicate further comprises:
inferring from the assumed value information
regarding the state of the resource.

35. The method of Claim 33 wherein the step of
evaluating the predicate further comprises:
inferring from the assumed value respective

values of one or more elements of the predicate.

36. The method of Claim 33 wherein the step of
evaluating the predicate further comprises:
inferring from the assumed value information
regarding the state of the external.

37. The method of Claim 35 wherein the step of
traversing further comprises:

determining that a second selected statement
of the one or more statements determines a second
portion of the control flow path according to a
second value of a second predicate, which
comprises one or more of the elements of the
first-mentioned predicate; and

evaluating the second predicate to determine
the second portion of the control flow path using

-352-

10

15

20

25

30

35

WO 96/05556

the inferred respective values of the one or more
elements of the first predicate.

38. The method of Claim 31 wherein step (f) (i)
comprises:

determining whether the statement is a call
to a called component;

if the statement is a call to a called
component, emulating execution of the called
component to evaluate the effect of the called
component on the resource state of the resource.

39. The method of Claim 38 wherein the step of
emulating execution of the called component comprises:
determining that the resource is associated
with an external of the called component; and
determining from a model of the called
component the effect of execution of the component
on the resource, which is associated with the

external.

40. The method of Claim 31 further comprising:
deriving from the composite state of the
external a model of the behavior of the component.

41. The method of Claim 40 further comprising:
including in the model of the behavior of the

component information prescribing one or more

transitions in the state of the external.

42. The method of Claim 22 further comprising:

using the model during analysis of a calling
component of the computer program, the calling
component including a call to the first-mentioned
component, to determine the effect of execution of
the first component on the external.

=353~

PCT/US95/09691

WO 96/05556 PCT/US95/09691

43. A method for modelling the behavior of a
component of a computer program, the component
prescribing use of a resource, the method comprising:

(a) defining one or more valid states for
the resource, which has a resource state;

(b) traversing a control flow path, which
comprises one or more statements of the component;

(c) for each of the one or more statements,

10 performing the following steps:
(i) determining that execution of the

statement has an effect on the resource state

of the resource; and
(ii) modelling a transition from the
15 resource state to a new resource state of the
resource in accordance with the effect; and
() Abuilding a model which represents a
collective effect of the statements of the

component on the resource.

20
44. The method of Claim 43 wherein the step of

traversing comprises:
determining that a selected statement of the
one or more statements determines a portion of the

25 control flow path according to a value of a

predicate; and
evaluating the predicate to determine the

control flow path.

30 45. The method of Claim 44 wherein the step of

evaluating the predicate comprises:
determining that the value of the predicate

is unknown; and
assigning to the predicate an assumed value.

35

-354-

10

15

20

25

30

35

WO 96/05556

46. The method of Claim 45 wherein the step of

evaluating the predicate further comprises:

inferring from the assumed value information
regarding the state of the resource.

47. The method of Claim 45 wherein the step of

evaluating the predicate further comprises:

inferring from the assumed value respective
values of one or more elements of the predicate.

48. The method of Claim 47 wherein the step of

traversing further comprises:

determining that a second selected statement
of the one or more statements determines a second
portion of the control flow path according to a
second value of a second predicate, which
comprises one or more of the elements of the
first-mentioned predicate; and

evaluating the second predicate to determine
the second portion of the control flow path using
the inferred respective values of the one or more
elements of the first predicate.

49. The method of Claim 43 wherein step (c) (i)

comprises:

determining whether the statement is a call
to a called component;

if the statement is a call to a called
component, emulating execution of the called
component to evaluate the effect of the called
component on the resource state of the resource.

50. The method of Claim 49 wherein the step of

emulating execution of the called component comprises:

determining that the resource is associated
with an external of the called component; and

=355~

PCT/US95/09691

WO 96/05556

10

15

20

PCT/US95/09691

determining from a model of the called
component the effect of execution of the component
on the resource, which is associated with the
external.

51. The method of Claim 43 further comprising:

(e) traversing a second control flow path,
which comprises a second collection of one or more
statements;

(f) for each statement of the second
collection of one or more statements, performing
the following steps:

(i) evaluating an effect of the
statement on the resource state of the
resource; and

(ii) modelling a transition from the
resource state to a second new resource state
of the resource in accordance with the
effect;

(g) forming from the first-mentioned new
resource state and the second new resource state a
composite resource state of the resource.

52. The method of Claim 51 wherein the step of

25 traversing comprises:

30

determining that a selected statement of the
one or more statements determines a portion of the
control flow path according to a value of a
predicate; and

evaluating the predicate to determine the
control flow path.

53. The method of Claim 52 wherein the step of

evaluating the predicate comprises:

35

determining that the value of the predicate
is unknown; and

=356~

10

15

20

25

30

35

WO 96/05556 PCT/US95/09691

assigning to the predicate an assumed value.

54. The method of Claim 53 wherein the step of
evaluating the predicate further comprises:
inferring from the assumed value information
regarding the state of the resource.

55. The method of Claim 53 wherein the step of
evaluating the predicate further comprises:
inferring from the assumed value respective
values of one or more elements of the predicate.

56. The method of Claim 55 wherein the step of
traversing further comprises:

determining that a second selected statement
of the one or more statements determines a second
portion of the control flow path according to a
second value of a second predicate, which
comprises one or more of the elements of the
first-mentioned predicate; and

evaluating the second predicate to determine
the second portion of the control flow path using
the inferred respective values of the one or more
elements of the first predicate.

57. The method of Claim 51 wherein step (g) (i)
comprises:

determining whether the statement is a call
to a called component;

if the statement is a call to a called
component, emulating execution of the called
component to evaluate the effect of the called
component on the resource state of the resource.

58. The method of Claim 57 wherein the step of
emulating execution of the called component comprises:

-357-

WO 96/05556

10

15

20

25

30

35

PCT/US95/09691

determining that the resource is associated
with an external of the called component; and

determining from a model of the called
component the effect of execution of the component
on the resource, which is associated with the
external.

59. The method of Claim 51 further comprising:
deriving from the composite state of the
resource a model of the behavior of the component.

60. The method of Claim 59 further comprising:
including in the model of the behavior of the

component information prescribing one or more

transitions in the state of the resource.

61. The method of Claim 43 further comprising:
using the model during analysis of a calling
component of the computer program, the calling -
component including a call to the first-mentioned
component, to determine the effect of execution of

_the first component on the resource.

62. A method for analyzing the effect of

execution of a calling component of a computer program
on an item of the calling component, the method
comprising:

determining that the calling component
includes a call to a called component, of which
the item is an external; and

determining, from a component model which
describes effects of execution of the called
component on one or more externals of the called
component, the effect of execution of the called
component on the item.

=358~

WO 96/05556 PCT/US95/09691

63. The method of Claim 62 wherein the item has a
state; and
further wherein the step of determining the
effect of execution of the called component on the
5 item comprises determining a change in the state
of the item prescribed by the called component.

64. The method of Claim 63 wherein the called
component prescribes a change in the state of the item
10 by specifying one or more operations to be applied to
the state of the item.

65. The method of Claim 63 further comprising:
determining that the called component
15 prescribes a transition in the state of the item
from a valid state to an invalid state.

66. The method of Claim 63 further comprising:
determining that the called component
20 prescribes a transition in the state of the item
other than a transition from a first valid state
to a second valid state.

67. A method for detecting programming errors in

25 a component of a computer program, the method

comprising:
detecting that a resource, whose use is

prescribed by one or more statements of the
component, is in any of one or more states; and

30 detecting that the component includes a first
statement which requires that the resource be in a
specific one of the one or more states and that
the first statement is not preceded in a control
flow path through the component by a second

35 statement, execution of which ensures that the
resource is in the specific state.

=359~

WO 96/05556 PCT/US95/09691

10

15

20

25

30

35

68. The method of Claim 67 wherein the one or
more states comprise a definitely allocated state and a

definitely unallocated state.

69. The method of Claim 68 wherein the specific
state is the definitely allocated state.

70. A method for detecting resource leaks in a
component of a computer program, the component
including a statement which prescribes use of one or
more resources and including one or more externals, the
method comprising:

determining which of the one or more
resources are reachable by any of the one or more
externals; and

determining whether any resource which is not
reachable by an external can be in an allocated
state upon termination of execution of the

component.

71. The method of Claim 70 wherein the step of
determining which of the one or more resources are
reachable comprises:

determining that an external of the component
is in a bunch which includes an item through which
the resource is reachable.

72. A method for performing a data flow analysis
of a component of a computer program, the method
comprising:

determining that a statement of the component
is a conditional branch statement which transfers
control according to a value of a predicate, which
has one or more elements;

assuming that the predicate has a first

value; and

=360~

WO 96/05556 PCT/US95/09691

inferring, from the first value, respective
values of the one or more elements of the

predicate.

73. The method of Claim 72 further comprising
traversing a control flow path through the component
according to the first value of the predicate, the
control flow path comprising the conditional branch
statement.

74. The method of Claim 72 further comprising:

determining that a second statement of the
component is a second conditional branch statement
which transfers control according to a second
value of a second predicate, which includes the
one or more elements of the first-mentioned
predicate; and

determining, from the inferred respective
values of the one or more elements of the first
predicate, the second value.

75. A resource checker for detecting programming
errors in a component of a computer program, the
component comprising one or more statements, the
resource checker comprising:

a resource behavior model which defines one
or more valid states for a resource which in turn
has a resource state;

an execution engine which traverses a control
flow path through the one or more statements and
which determines that each of the one or more
statements has a respective effect on the resource
state of the resource; and

a state machine which models a transition
from the resource state to a new resource state of
the resource in accordance with the effect of each

=361~

WO 96/05556

10

15

20

25

30

35

PCT/US95/09691

of the one or more statements and which detects
that the new state is not one of the valid states.

76. The resource checker of Claim 75 wherein the
component is a function.

77. The resource checker of Claim 75 wherein the
execution engine determines that a selected statement
of the one or more statements determines a portion of
the control flow path according to a value of a
predicate and evaluates the predicate to determine the
control flow path.

78. The resource checker of Claim 77 wherein the
execution engine evaluates the predicate by determining
that the value of the predicate is unknown and by
assigning to the predicate an assumed value.

79. The resource checker of Claim 78 wherein the
execution engine infers, from the assumed value,
information regarding the state of the resource.

80. The resource checker of Claim 78 wherein the
execution engine infers, from the assumed value,
respective values of one or more elements of the
predicate.

8l. The resource checker of Claim 80 wherein the
execution engine traverses the control flow path bx
determining that a second selected statement of the one
or more statements determines a second portion of the
control flow path according to a second value of a
second predicate, which comprises one or more of the
elements of the first-mentioned predicate; and

-362-

10

15

20

WO 96/05556 : PCT/US95/09691

further wherein the execution engine
evaluates the second predicate to determine the
second portion of the control flow path using the
inferred respective values of the one or more
elements of the first predicate.

82. The resource checker of Claim 75 wherein the
execution engine determines whether a selected
statement of the one or more statements is a call to a
called component;

further wherein the execution engine emulates
execution of the called component to evaluate the
effect of the called component on the resource
state of the resource if the selected statement is

a call to a called component.

83. The resource checker of Claim 82 wherein the
execution engine emulates execution of the called
component by determining that the resource is
associated with an external of the called component and
by determining from a model of the called component the
effect of execution of the component on the resource,
which is associated with the external.

=363~

PCT/US95/09691

WO 96/05556

1/39

SUBSTITUTE SHEET (RULE 26)

W *_N_
AWI = - e
801
\
0l
_ \
90! 1901 ndd
P4l olt
- I
9zl 2901
NYOMLIN - ANLINDYD 0/
8901 Y90l
T _
AYON3N
(iTAl 8l —
f —
39VY401S
HOLINOW
AYVANOD3S 030

WO 96/05556

104

PARAMETERS

NS
[
[o7]
>

8B

N
(]

— |

| |

PCT/US95/09691

RETURNED
ITEM

210

|

FUNCTION

LOCAL
MEMORY

06

DYNAMICALLY
ALLOCATED
MEMORY

1

COMPUTER
PROCESS

116

GLOBALLY
DEFINED
MEMORY

|

LIBRARY

FUNCTIONS

12

FIG. 2

2/39

FUNCTIO

202A

SUBSTITUTE SHEET (RULE 26)

FUNCTION

2028

WO 96/05556 PCT/US95/09691

k/
300
\ U
4] CZ p2,X2,i6
. m
a,C.p,i
k
k a
A) E
X m C,p.X,i
m
kd
c4a,c4p k3 cb
a
m
N
Q X
\
m X
P X
FIG. 34
3/39

SUBSTITUTE SHEET (RULE 26)

WO 96/05556 PCT/US95/09691

350\ U .

A l 1

(0)
()

FIG. 3B

UAQXE

U,AQX

4/39

SUBSTITUTE SHEET (RULE 26)

WO 96/05556 PCT/US95/09691

400

a,m,k,c,i,p,X

a,m,k,c,i,p,X

a,mK,C,i,p,X a,m.k,ci,p,X

FIG. 44

5/39

SUBSTITUTE SHEET (RULE 26)

WO 96/05556 PCT/US95/09691

. ‘ /450

ON.CP ON

R
@

I ON,C,P
ON,C,IP

FIG. 4B

6/39

SUBSTITUTE SHEET (RULE 26)

WO 96/05556 PCT/US95/09691

.C.P.i,X

a,mk,c,p,i,x

FIG. 54

a,m,c,p,i,

7/39

SUBSTITUTE SHEET (RULE 26)

PCT/US95/09691

WO 96/05556

OX

VINO

FJONYNNDYO

C Y} 8S Ol

8/39

SUBSTITUTE SHEET (RULE 26)

WO 96/05556 PCT/US95/09691

FIG. 6

o~
o
>
o
(&}
@©
.=
q—
o
>
S
= s
at e
= Ll
o g =
s S5 >
= 5% @O
&g o
)
]
B Ew
b= S S =
@D et 0—88 |
gﬂ’-’-m
O o

9/39

SUBSTITUTE SHEET (RULE 26)

PCT/US95/09691

WO 96/05556

4 Ol

809 909

0L

|

0L
)

8 IId
%01
908 808
HIOVNYI INHOVA
el TIQON
108 08
INHOVA INON3
VIS NOLNO33

NOLLI3dSNI

90L

INIONI

JINYNAQ

c0L

¥0L

43suvd
T300N

4354vd
NVH90Yd

|

$09 —

34
TI00N oY

019

304N0S WVY90Yd
ALNdNOD NOY3

10/39
SUBSTITUTE SHEET (RULE 26)

WO 96/05556 : PCT/US95/09691

{ BEGIN)

]

PROCESS
INPUT
902 SWITCHES 900

i

INITIALIZE
g4 MODELS

PARSE

006 FUNCTION

1

EVALUATE
qo8—| FUNCTION

MORE
FUNCTIONS

FIG. 9

11/39
SUBSTITUTE SHEET (RULE 26)

WO 96/05556

(BEGIN)

OPEN FILE
INITIAUIZE STATE

— 1002

FOR EACH |
ROUTINE MODEL

GET ROUTINE
PREFIX

— 1008

\
1004

|

CLOSE FILE

INITIALIZE MODEL
DESCRIPTION

— 1010

\

L

i
(NEXT MODEL)

)
1012

1022 ~

1006
’ FOR EACH
END EXTERNAL

1020

PCT/US95/09691

904

CREATE EXTERNAL
MODEL STRUCTURE

— 1016

|

GET
EXTERNAL TYPE

— 1018

|

FOR EACH |
RESULT

i

1026 —

ADD EXTERNAL
10
SUBJECT ROUTINE

1014
READ THE
RESULT
|
’ginsxr RESULT?)
FIG. 10
12/39

SUBSTITUTE SHEET (RULE 26)

PCT/US95/09691

WO 96/05556

o A

00¢!t
~

|
Nowdrosaa | %
wvis-wum | 0cet
- 81zl
30UN0SIY-MIN
- $121
SNOLLYY3dO
SNOLLY¥3do [Clel
—40-38NNN
- 012)
XN
- 80zl
INVN
MIGRON | 9021
¥3LINVIVd
- 402
© 3dAlL 0
WTvanoa | %
YNLINALS

TI00W TYNY3LX3

[T | \8:
auvhorny | O
s
- 711
NN
- o1l
T4
NoLLdos3a [~ 8OH
a sy |
1X3 sy [~ YO
o 0
JUNLONYLS
300N
NOLLONNS

13/39
SUBSTITUTE SHEET (RULE 26)

PCT/US95/09691

WO 96/05556

8l A
3 Z I
||||||m1||n(e§
| ~ az1zl
TN | 1xan | 80kl
YOOzl » - 890cl
ﬂ\ NYavd - 801
Adowaw, [veed |
0 ~ Y07zl
InyL - V8IlL «.<oo__
o ~ VZIZl
1IN ~ YO0ICl
vo0zl TN ’ I | veou
- . ~ VH0ll
TAR ALY 158
TwN [T Vol

14/39
SUBSTITUTE SHEET (RULE 26)

WO 96/05556 PCT/US95/09691

1400
\ DECLARATION
FUNCTION :
STRUCTURE AW
gy A VM
1404 A LNE EXTERNAL
| R ~
e . 1414
1408 | RESULT
O Ml STATEMENT
141y | FRSTSTMT | « :
1416
FIG. 14
1414
EXTERNAL LIST
STRUCTURE DECLARATION
1s0p | PRST-DECL | 1 5\06
1504 — NEXT .
1510 — PRST-EXTERNAL TR
S
1508
FIG. 15
15/39

SUBSTITUTE SHEET (RULE 26)

WO 96/05556

PCT/US95/09691

1506 -
\ S
1612
DECLARATION
STRUCTURE -
1602 —__ KIND X
1604 —|_ NAME
1606 —__ TE MODEL
1608 —{___TEM T
0
1610 —__ MOPEL FIG. 16
1016
TYPE
STRUCTURE TYPE
N
1700 —___ KIND 9
1704 —___ NAME .
SIZE FELD
1706 :
POINTS-T0
1708 -7 1714
1710 A FELDS FIG. 17
1714
FIELD
STRUCTURE /
oy | NAVE —
1804 & \
1806 —__ OTTOET 1810
1808 —___NEXT FIG. 18

16,/39

SUBSTITUTE SHEET (RULE 26)

PCT/US95/09691

WO 96/05556

ML~ T o e 02 Ol
2 uzsao [A8
N L
Aoy [AR
JNLONALS
(T3 T
Xo081 ~ 1X3N x| o-sinod [B
8 g 13540 o [
Xv08l ~ 28 37 JANod, [9O
Xzo8l ~ X, YN Jonls, Ny [9e0L
TANLONALS UNLONALS
XPIL) ~ s dz19l -~ il
6/ Old
£9 s
A
INOd
X

If

17/39

SUBSTITUTE SHEET (RULE 26)

WO 96/05556

1416

PCT/US95/09691

STATEMENT

)
212

STATEMENT
STRUCTURE
. KIND
2104 — LINE
105 — NEXT .
2108 — FLAGS
POINTERS
M0 — .
FIG. 21
2200
EXPRESSION
STRUCTURE
— KIND
2204 — TYPE .
2206 — ITEU
2205 | NUM_OPERANDS
OPERANDS
2210 — .
FIG. 22
18/39

SUBSTITUTE SHEET (RULE 26)

TYPE

2212

ITEM

2214

PCT/US95/09691

WO 96/05556

! TAYA
\

JNLINYLS
NaLl

§¢ A

100N A
R Wil O 7AYA
- 02£T
INVN
BIET ~ NN -
J4NLONYLS
NOLLY¥V103Q
91£7

sanvaido | OKC
saNvaadomaN [805¢
-— - 906z
0L L $0cT
N — C0R
TNLINALS
NOISST¥dX3

"00€£¢

19/39
SUBSTITUTE SHEET (RULE 26)

WO 96/05556 PCT/US95/09691

(BEGN)

i
DETERMINE NUMBER

of
2404 ITERATIONS

908

]

FOR EACH ITERATION:
EVALUATE FUNCTION

2408 -

|

OUTPUT MODEL
OF FUNCTION

2412

END FIG. 24

(o)

DETERMINE NO.
OF

2502 -1 s - u

LOOK UP
HEURISTIC

2504

END FIG. 25

20/39
SUBSTITUTE SHEET (RULE 26)

WO 96/05556

(BEGN)

INALIZE
o0y | EXTERNALS
EVALUATE EACH
s60s | STATEMENT
CHECK FOR
2605 —| RESOURCE LEAKS
i
UPDATE EACH
siog —| EXTERNAL
(=®o)
FIG. 26

FIG. 27

PCT/US95/09691

2600
ITEM
STRUCTURE
2707 RESOURCE
2704 — EXTERNAL
2706 — VALUE
2708 | FRSTN_BUNCH
o0 —] SZEOF _BUNCH
— TYPE_CODE
2714 — INITIALIZED
s715 — HEADIN_BUNCH
o1g —| KNOWN_BUNCH_SIZE
2790 — NVALD_PONTER
21/39

SUBSTITUTE SHEET (RULE 26)

2700

WO 96/05556 PCT/US95/09691

BEGIN 2800

Y | EVALUATE
EXPRESSION
N 2804
Y PROCESS
DECL DECLARATION
2
2806 ‘ \ !
N 2808
F Y PROCESS
’ DECISION
2810 g I
N 2812
Y PROCESS
‘ RET;JRN RETURN
N 2816
L
. Y | EXECUTE]
BLOCK BLOCK
9
%18 7 s '
2820
Y SET RETURN
s010 CONDITION
2822 N \ V
2824
)
FIG. 28 END
22/39

SUBSTITUTE SHEET (RULE 26)

WO 96/05556

(BEGN)

|

PCT/US95/09691

OPERATOR 0
SPECIIC /
PROCESSNG | ygp9
2904
EXPRESSION Y APPLY STATE
EVALUATES T0 OPERATION
T0 ITEM |- 2906

ANITEM/

N
|
STORE ITEM
TO WHICH
EXPRESSION
EVALUATES — 2908 EXTERNAL STATE
STRUCTURE
|
END 3002 — NAME
3004 — DK
FIG. 29 3005 —| DK_COWP
3008 — ul
300 —___ CP-COMP
worg | RS-COWP
3014 — NEXT

/

FIG. 30 3000

23/39
SUBSTITUTE SHEET (RULE 26)

‘WO 96/05556

PCT/US95/09691

RESOURCE

STRUCTURE
3102 — STATE
3104 — NAME
3106 — CREATED
3108 — MODIFIED
3112 — NEXT
3114 — MARK
FIG. 31
BEGIN
3100
Y REPORT
ERROR
) !
3204
OPERATION
i AND INVALID RE%;%';T
POINTERS
?
°)
3206 3208
!
OPERATION
k AND INVALID RE%?RT
POINTER "
? T
3210 3919
L]

FIC 32 3200

24/39
SUBSTITUTE SHEET (RULE 26)

PCT/US95/09691

WO 96/05556

VEE IId

NOLLYY3d0
AHVNIB

I
NOLLYY3dO0 d-d0 ONWIddV d-d0 ONIddV
LVNTVAI sy 31VNTVAI sy AYNIVA3
\ \ \
ziee 11€¢ oIS
NOLLY¥3d0 J-d0 ONK1ddV 9-d0 INW1ddV
VNVA3 sy 3IVNIVAI sy AAYNIVAI
\ \ \
80cs £08¢ 90¢¢
JI8YIIVA Q3uV1030
404 JUNLONUS |
WLl aung
\
&¢ IId ¢ 914 $OSE
0L AIA o INVISNOD NOISSV
ONY FUNLONMLS
96¢ 914 Wil N8
\
ace "9l e z0¢g
VEE "9l 2062

25/39
SUBSTITUTE SHEET (RULE 26)

PCT/US95/09691

WO 96/05556

NOLLYY3d0
ALVNIVAS

g8 Ild

)
TANY

€06

d-d0
d-d0 INIddV
ONITddY Sy
ILVNVAI S4I AVMIVAS
S N
A% yaee
NOLLY¥3d0 9-d0 NI IddV
AVAIVAI ANVY3d0 LYNTVAI
S S
TARYY 1zZe¢
NOLLY43d0 9-d0 NI IddV
AVNATVAI NV¥3d0 LVNIVAI
\ \
6lce 8IcE
NOLLY¥3d0 9-d0 INIKIddV
AVAIVAI ONVY3d0 ALVNTVA3
S S
SIgE yiee

NOLLVY3d0
AYVNIE

0zee

£Iee

26/39
SUBSTITUTE SHEET (RULE 26)

PCT/US95/09691

WO 96/05556

JEE I
ININOI0D 0 mﬁ%&
M OWIMN [
JHL ALVNIVAI
S \
LESE 9cee
|-
qdanod [| w__ww._ﬂ_ﬁ%
JONRII43¥3a SV ALVNTIVAI
S
¥eee

458

(d0 ON) X3aNI
NV SV LVNTVA3

(d0 INVS) ‘¥dX3
SY ONVY3dO
Uz IVNTVAI

)

6255
e

¢06¢

(d0 ON) ONVY3dO
11 3LVNVAI

3
1A%

6
JON3Y343Y
1034IONI

é
(NNOJNOD

Lees

0£ee

27/39
SUBSTITUTE SHEET (RULE 26)

PCT/US95/09691

WO 96/05556

ass -old
o¥ee Ghes
\ \
NOLYA3d0 | do m__u_ %w%%
ALVVA3 IHL 3AVATIVAI
ohee
\
|-
ININTT3 . ﬂw_mmmwam< - z3ce
3HL A3 3 SETE
6Ce
7 \
o muru7ﬂ01m< ><mw< NV 9-d0 INIIddV
SELTE m;__ X3ONI JHL AUVNTVAI
S
IEe 4%

¢06¢

é
SSaay

é
EAENEEEL]
AVHY

1223

28/39
SUBSTITUTE SHEET (RULE 26)

PCT/US95/09691

WO 96/05556

466 A

d0 ON d0 ON
_ﬁﬁw_um% INI1ddV NI 1ddY
syl AVNIVA3 syl AVNIVAI
S S
aGee GGEe
|- z6e¢
NOLLONNS 3HL
AVINK3
05ee AN
NOLLINIA3Q L~ 166¢
NOLLONN4
6¥cc —| (INON-dO) ININLTY
YALINVAVd
FHL AVNIVAI
\ H3ALINVAVd
K HOV3 404
S
ghee

€06¢

el

é
1NINNOISSY
£6Ee

)
V)
NOLLONNA

L¥ee

29/39
SUBSTITUTE SHEET (RULE 26)

PCT/US95/09691

WO 96/05556

68 IId

aN3

806¢

80¥¢

AR
NINL3Y 135

JMVA
NIISSV

re Il

e

|

906€¢
A
INTVA
NIISSY
¥06¢
\
NOISS34dX3
AVNIVAI

918¢

6
il
IEININLIY

NOISS3ddX3
ALVNTVAT

8082

NOLLINL430
TIavIHVA
dn 135

30/39

SUBSTITUTE SHEET (RULE 26)

WO 96/05556

(BEGN)

|

EVALUATE
PREDICATE

2812

PCT/US95/09691

SIMULATE
VALUE
\
| 3512
MAKE
INFERENCES
FROM VALUE
S
3514
3506
VALUEISTRUE EXECUTE
) STMT
Y
3508
SET "ELSE”
FLAG
S
3510 ’
END
FIG. 35

31/39

SUBSTITUTE SHEET (RULE 26)

WO 96/05556

3614

BEGIN

COMPOUND

PCT/US95/09691

3600

Y INFER FROM
NOT
(ASSUMED VALUE)
\
3604 '
Y EVALUATE
BOOLEAN
OPERATION
\
3608 '
Y EVALUATE
RELATIONAL
OPERATION
)
3612]
Y INFER
‘ SECOND | E—
9 OPERAND
3
3616 '
FIG. 36

32/39

SUBSTITUTE SHEET (RULE 26)

WO 96/05556

BEGIN

3702

ASSUMED

» RECURSE ON
“TRUE" AND E

PCT/US95/09691

BOTH OPERANDS

\
3704

RECURSE ON

BOTH OPERANDS

\
3708

/

FIG. 37 3508

(BEGN)

INITIALIZE
FUNCTION
MODEL — 4302

INTIALIZE
EXTERNAL
MODELS — 4304

:

STORE
FUNCTION

oo

33/39
SUBSTITUTE SHEET (RULE 26)

MODEL [~ 4306

END

2312

FIG. 43

WO 96/05556

3802

BOTH OP'S

KNOWN OR

UNKNOWN
9

3804

PCT/US95/09691

3612

®

EITHER 3810
oP Y 3808 s
UNDE.?NED S KNOWN MARK RES.
' > NUL OF UNKNOWN
N =0 INVALID (OP-X)
3806 ‘ ‘
N |
=MD T _Y ASSIGN KNOWN
OR # AND F ITEM T0
? UNKNOWN ITEM
)
N 3812
3814 3816 3818
FAND T N_Y Y IS RES.
OR = AND F OF UNKNOWN
9 IN Q
' ?
N N g
!
MARK RES
AS ALLOCATED
(0P-A)
, MARK UNKNOWN)
38A AS NON-ZERO 3820
AND VALID ptr
)
1 3822 FIG 38
34/39

SUBSTITUTE SHEET (RULE 26)

WO 96/05556 PCT/US95/09691

(BEGN)

’ 2820
RETRIEVE

FIRST
STATEMENT —~ 4002

ELSE
AND NOT
CONTROL ELS

EXECUTE
STATEMENT

4008
RETURN, RETRIEVE
EXIT OR LONG NEXT
JUMP STATEMENT
?)
4014

4016
CONTROL
RECORD= N o
4012 NEXT
Y
FIG. 40

35/39
SUBSTITUTE SHEET (RULE 26)

WO 96/05556 PCT/US95/09691

2606
(BEoN) /

i

< AN
oL L

4102

|

MARK ALL
REACHABLE
RESOURCES — 4104

4108
- (Next 2
FOR \

EACH 4106
REsoReE /
4110
RES REPORT
ALLOCATED AND LEAK TO
NOT MARKED USER
—
12

END 4114

FIG. 41

36/39

SUBSTITUTE SHEET (RULE 26)

WO 96/05556

PCT/US95/09691

4200

4202 4284
EXTERNAL Y RETRIEVE
HAS RESOURCE’S
RESOURCE STATE
| |
4206 "’2{’8
EXTERNAL_ y ASSUME
HAS INVALID RESOURCE e
POINTER STATE IS X
? !
COMPOSE
4210 — STATES
END FIG. 42
3356
4504 505
ASSIGN
rhs to
lhs
4512 4508
lhs \ \
HAS
e UNKNOWN UNINTIALIZED DATA
FIG. 45
37/39

SUBSTITUTE SHEET (RULE 26)

WO 96/05556 PCT/US95/09691

(BEGN)

4400
DETERMINE
TYPE OF
EXTERNAL [~ 44072
|
GET OP'S AND
N. OP'S FROM
COMP. DKST. L~ 4404
GET OP'S AND
N. OP'S FROM

COMP. CP ST. 4408

GET INITIAL
STATE FROM
COMP. RS ST. | 4410

4412
INITIAL Y NEW
STATE=NONE RESOURCE
? = FALSE — 4414
NEW INSERT EXTERNAL
RESOURCE - MODEL INTO
= TRUE LIST — 4418
)
4416
(END)
FIG. 44

38/39
SUBSTITUTE SHEET (RULE 26)

WO 96/05556

PCT/US95/09691

3352
4602 /
W @
-

N
Y
FOR \
oty 4610
EXTERNAL 4608 \
l 4;06 GET VALUE
PARAMETER FROM PARAM. |—=
RETURN ? ARRAY
RESULT N oy J’
: 4612 \
4632 EVALUATE
@ VARIABLE EXTERNAL
9 VARIABLE
& » ¢
4518
4616 {
FOR
EACH
OPERATION 1620
\
APPLY
4626 OPERATION
4624 A T0 ITEM
NEW CREATE
RESOURCE
ASSOCIATE 4622
RESOURCE
WITH EXTERNAL
s FIG. 46
4530 1898
39/39

SUBSTITUTE SHEET (RULE 26)

Int. onal Applicaton No

PCT/US 95/09691

INTERNATIONAL SEARCH REPORT

. CLASSIFICATION OF SUBJECT MATTER

Tre 6 GO6F11700

According to International Patent Classification (IPC) or to both national classification and IPC

B. FIELDS SEARCHED

Minmumn documentation searched (classification system followed by classificaion symbols)

IPC 6 GO6F

Documentaton searched other than minimum documentaton to the extent that such documents are included in the fields searched

Electronic data base consulted dunng the international search (name of data base and, where practical, search terms used)

C. DOCUMENTS CONSIDERED TO BE RELEVANT

vol.21, no.2, 1990, NEW YORK US

pages 11 - 22

MIZUHITO OGAWA ET AL. 'Anomaly Detection
of Functional Programs Based on Global
Dataflow Analysis'

see page 15, left column, line 1 - right
column, line 10

/-

Category ° | Citation of document, with indication, where appropriate, of the relevant passages Relevant to claim No.
A US,A,5 253 158 (SUZUKI ET AL.) 12 October 1-83

1993

see column 4, line 55 - column 5, line 8
A SYSTEMS & COMPUTERS IN JAPAN, 1-83

m Further documents are listed in the continuation of box C. m Patent family members are listed in annex.

* Speaal categones of cited documnents :

"T" later dmmm p:bl:lishzd aﬁex;m the international filing dn;z
eae L or prionty not in conflict with the ication but
A" document defining the general state of the art which is not : ;
dered to be of cular relevance ;m tt.‘om..unn‘.lemmd the principle or theory underiying the
“E" earlier document but published on or after the international *X* document of particular relevance; the claimed invention
filing date cannot be considered novel or cannot be considered to
°L" document which may throw doubts on priority claim(s) or involve an inventive step when the documnent is taken alone
which is cited to establish the publication date of another Y’ document of particular relevance; the claimed invention
. atation or other special reason (as specified) cannot be considered to involve an inventive step when the
‘0" document referring to an oral disclosure, use, exhibition or document is combined with one or more other such docu-
other means ments, such comhination being obvious to a person skilled
“P* document published prior to the international filing date but in the art)
later than the prionity date claimed “&" docurnent member of the same patent family

Date of the actual completion of the international search

29 November 1995

Date of mailing of the international search report

18 1295

Name and mailing address of the [SA
European Patent Office, P.B. 5818 Patendaan 2
NL - 2280 HV Rijswijk
Tel. (+ 31-70) 340-2040, Tx. 31 65! epo nl,
Fax (+ 31-70) 340-3016

Authonized officer

Corremans, G

Form PCT/ISA/210 (sacond sheat) (July 1992)

page 1 of 2

INTERNATIONAL SEARCH REPORT

Inu .onal Application No

PCT/US 95/09691

C{Continuation) DOCUMENTS CONSIDERED TO BE RELEVANT

Category *

Citation of document, with indication, where appropnate, of the relevant passages

Relevant to claim No.

A

SOFTWARE PRACTICE & EXPERIENCE,

vol.17, no.3, March 1987, CHICHESTER GB
pages 227 - 239

FUN TING CHAN ET AL. 'AIDA - A Dynamic

Data Flow Anomaly Detection System for

Pascal Programs'

see page 228, line 1 - line 21

1-83

Foren PCT/ISA/210 (continuation of sscond sheey) (July 1992)

page 2 of 2

INTERNATIONAL SEARCH REPORT

wnformation on patent (amily members

Ink onal Applicaton No

PCT/US 95/09691

Patent document Publication Patent family Publication
cited in search report date member(s) date
US-A-5253158 12-10-93 JP-A- 4218808 10-08-92

KR-B- 9501058 08-02-95

Form PCT/ISA/210 (patent family annex) (July 1992)

	Abstract
	Bibliographic
	Description
	Claims
	Drawings
	Search_Report

