(54) 发明名称
防水透气织物及其制造方法

(57) 摘要
本发明在各个实施方案中，提供一种防水透气(WPB)织物及其制造方法，其中将WPB膜层压至一种织物的第一面，所述层压织物后用处理剂处理，并且固化处理后的织物。所述处理剂包括疏油(拒油)化合物和/或疏水(拒水)化合物的至少一种。在一些实施方案中，所述疏水化合物可以为持久防水(DWR)处理。所述处理剂可以通过排拒油基和/或水基物质为所述织物提供保护。
1. 一种制造防水透气织物的方法，包括：
 将一种防水透气膜层压至一种织物的第一面以形成层压织物，得到所述防水透气膜的暴露面；
 将一种处理剂施用至所述层压织物以形成处理后的织物，所述处理剂包括疏水化合物和疏油化合物的至少一种；以及
 固化所述处理后的织物。

2. 权利要求 1 的方法，其中所述处理剂包括疏水化合物和疏油化合物。

3. 权利要求 1 的方法，其中所述处理剂包括疏水碳氟化合物、疏油碳氟化合物、交联聚合物、润滑剂和水。

4. 权利要求 3 的方法，其中所述疏水碳氟化合物的浓度为 5% 至 20%，所述疏油碳氟化合物的浓度为 5% 至 15%，所述交联聚合物的浓度为 0% 至 5%，所述润滑剂的浓度为 10% 至 30%，以及所述水的浓度为 35% 至 75%。

5. 权利要求 1 的方法，其中所述处理剂施用至所述防水透气膜的暴露面。

6. 权利要求 1 的方法，其中所述处理剂施用至所述层压织物的第二面，其为所述第一面的反面。

7. 权利要求 6 的方法，其中所述所述处理剂施用至所述防水透气膜的暴露面以及所述层压织物的第二面。

8. 权利要求 1 的方法，其中所述固化包括使所述处理后的织物在固化温度下持续一段固化时间，所述固化温度低于所述防水透气膜的熔化温度。

9. 权利要求 8 的方法，其中所述固化温度为 100 摄氏度至 120 摄氏度并且所述固化时间为 1 至 30 分钟。

10. 权利要求 8 的方法，其中所述固化温度为 40 摄氏度至 60 摄氏度并且所述固化时间为 1 至 3 天。

11. 权利要求 1 的方法，其中所述固化包括将所述处理后的织物置于第一固化装置中以使所述处理后的织物在第一固化温度下暴露第一固化时间；以及
 在置于第一固化装置后，将所述处理后的织物置于第二固化装置中以使所述处理后的织物在第二固化温度下暴露第二固化时间，所述第二固化温度低于所述第一固化温度并且所述第二固化时间长于所述第一固化时间。

12. 权利要求 1 的方法，其中所述处理剂的 pH 为 4 至 7。

13. 权利要求 1 的方法，其中所述施用包括传送所述层压织物通过一个或多个用所述处理剂浸透的衬垫。

14. 权利要求 1 的方法，还包括在固化所述处理后的织物之前，传送所述处理后的织物通过一个或多个去除装置以去除过量处理剂。

15. 权利要求 14 的方法，其中所述一个或多个去除装置包括一个或多个辊。

16. 一个用于制造防水透气织物的系统，包括：
 一个或多个施用器，其被配置为将处理剂施用至层压织物，所述层压织物具有层压至所述织物的第一面的防水透气膜，所述处理剂包括疏水化合物和疏油化合物的至少一种；以及
 一个或多个固化装置，其被配置为在固化温度下固化所述处理后的织物一段固化时
间，所述固化温度低于所述防水透气膜的熔点。

17. 权利要求 16 的系统，其中所述一个或多个施用器包括一个或多个用所述处理剂浸透的衬垫。

18. 权利要求 16 的系统，其中所述一个或多个施用器包括一个或多个含有所述处理剂的浴器。

19. 权利要求 16 的系统，还包括一个或多个去除装置，用于在将所述处理剂施用至所述层压织物之后并且在通过所述固化装置固化所述处理后的织物之前，从所述层压织物中去除过量处理剂。

20. 权利要求 16 的系统，其中所述一个或多个固化装置包括：
 一个固化炉，其被配置为将所述处理后的织物暴露于第一固化温度下一段第一固化时间，以及
 一个固化室，其被配置为将所述处理后的织物暴露于第二固化温度下一段第二固化时间，所述第二固化温度低于第一固化温度并且所述第二固化时间长于第一固化时间。

21. 权利要求 16 的系统，其中所述一个或多个施用器被配置为将所述处理剂施用至所述防水透气膜的暴露面和所述织物的第二面，所述第二面为所述第一面的反面。

22. 一种防水透气织物，包括：
 一种织物；
 一种防水透气膜，其被层压至所述织物的第一面；和
 一种处理剂，其被置于所述防水透气膜的暴露表面和所述织物的第二面的至少一个上，所述第二面为所述第一面的反面，所述处理剂包括疏水化合物和疏油化合物的至少一种。

23. 权利要求 21 的防水透气织物，其中所述处理剂置于所述防水透气膜的暴露面和所述织物的第二面上。

24. 权利要求 21 的防水透气织物，其中所述防水透气织物通过一种方法制造，所述方法包括：
 将防水透气膜层压至织物的第一面以形成层压织物；
 将处理剂施用至所述层压织物以形成处理后的织物，所述处理剂包括疏水化合物和疏油化合物的至少一种；和
 固化所述处理后的织物。
防水透气织物及其制造方法

[0001] 相关申请的交叉引用

[0002] 本申请要求享有2010年5月13日提交的第61/334,361号美国临时专利申请的优先权，该临时申请名称为“防水透气织物及其制造方法” (“Waterproof Breathable Fabric and Method of Making Same”)，其全部公开内容以引用的方式全文纳入本说明书中。

技术领域

[0003] 本说明书中的实施方案涉及防水透气织物，具体而言，涉及所述织物及制造防水透气织物的方法，所述织物通常抗污染，而污染可妨碍织物性能。

背景技术

[0004] 目前，许多防水透气(WPB)薄膜(film)、膜(membrane)和材料被层压到织物上以产生一种织物用于通常既防水又透气的外套中。这些WPB材料的实例包括聚四氟乙烯(PTFE)和聚乙烯(PE)。因为这些WPB膜通常为亲油的，它们倾向于吸引污染物如油、清洁剂等，而这些污染物则会损害膜的微孔(micro-pore)。这种污染的作用倾向于使得膜更加亲水，这显著降低了织物的防水性。在进行的一个试验中，这种污染将防水性从21米水柱降低至小于5米水柱。

[0005] WPB织物制造商已经尝试通过将一种疏油材料的薄膜施用至WPB膜的暴露面以防止前述的孔堵塞来解决这一问题。但是，在一些方法中，例如那些使用聚氨酯(PU)层的方法，这会有效堵塞微孔致使WPB织物基本上不透气并且妨碍了织物的性能。这种薄膜是在将WPB膜层压至织物上之前施用，其由于熔点的差异也会影响WPB膜有效层压至织物上的能力。

[0006] 为了避免这一问题，一些公司已经尝试通过使用喷射沉积技术(spray deposition technique)将不同的疏油化学物质施用至暴露的WPB层。虽然这样趋于避免损害透气性的问题，但这种材料也在膜制造过程中使用，因此会损害膜充分层压至织物上的能力，并且也不能提供足够的疏油性。

[0007] 为了进一步提高WPB层压织物的防水性，经常将一种持久防水(DWR)处理应用于织物的外表面以进一步提高拒水性能并且因此提高织物的防水性。这一工序是在将经疏油化学物质处理的WPB膜层压至织物后在一个单独的步骤中进行的。

[0008] 因此，在任何上述情况中，需要许多步骤制造WPB织物，其既费时又耗成本，最终使得制造WPB织物昂贵且富有挑战性。

附图说明

[0009] 通过以下具体描述并结合附图和所附权利要求将容易理解本发明的实施方案。所述实施方案通过举例的方式而不是以附图中各图的限制方式进行示例说明。

[0010] 图1示出了根据各实施方案层压到织物上的WPB膜的横截面视图；

[0011] 图2示出了根据各实施方案将处理剂施用至层压织物的系统。
具体实施方式
[0012] 在下面的详细描述中，参考附图，这些附图构成本说明书的一部分，并且其中通过
举例说明的方式显示了可以实施的实施方案。应该理解的是，可以使用其他实施方案并且
可以在不脱离所述范围的情况下做出结构性的或合乎逻辑的改变。因此，下面的详细描述
不是在限制性意义上给出，所述实施方案的范围由所附权利要求及其等同物限定。
[0013] 各种操作可以作为多个分离的操作以有助于理解实施方案的方式依次进行描述；
但是，描述顺序不应该被解释为暗示这些操作是顺序相关的。
[0014] 本说明书可以使用基于视角的描述如上 / 下、后 / 前和顶部 / 底部。这些描述仅
用于帮助论述而并不旨在限制所述实施方案的应用。
[0015] 可以使用术语“耦合（coupled）”和“连接（connected）”及其派生词。应该理解的
是这些术语并不旨在作为彼此的同义词。更确切地说，在具体的实施方案中，“连接”可以
用于表示两个或更多个元件在物理学或电学上彼此直接接触。“耦合”可表示两个或更多
个元件直接的物理或电学接触。但是，“耦合”还可以意为两个或更多个元件彼此没有直接接
触，但是仍然互相配合或互相作用。
[0016] 在本说明书中，“A/B”或“A和B”形式的短语意思为(A)、(B)或(A和B)。在
本说明书中，“至少A和B之一”形式的短语意思为(A)、(B)、(C)、(A和B)、(A和C)、(B
和C)或(A、B和C)。在本说明书中，“(A和B)”形式的短语意思为(B)或(AB)，即A为任选要
素。
[0017] 本说明书可以使用术语“实施方案”（embodiment或embodiments”），其均可指一
个或多个相同或不同的实施方案。此外，实施方案中使用的术语“包含（comprising）”、“包
括（including）、“具有（having）”等为同义词。
[0018] 在各个实施方案中，提供一种防水透气（WPB）织物及其制造方法。在一个示例性的
实施方案中，一种 WPB 膜层压至一种织物的第一面，所述层压织物随后用一种处理剂处理，
并且固化处理后的织物。
[0019] 所述处理剂可以为一种化合物、溶液、混合物、乳液等。所述处理剂可以包括疏油
（拒油）化合物、或疏水（拒水）化合物中的至少一种。在一些实施方案中，所述疏水化合物
可以为一种持久防水（DWR）处理。在一些实施方案中，所述处理剂可以包括疏油化合物
又包括疏水化合物。所述处理剂可以通过施加油和/或水基物质为所述织物提供保
护。此外，与将处理化合物施用于未经加工的薄膜状态的 WPB 膜相比，在用处理剂对织物进
行处理之前将 WPB 膜层压到织物上可以提高 WPB 膜与织物之间的粘结强度。
[0020] 在各个实施方案中，所述 WPB 膜可以通过任何合适的方法层压至所述织物的第一
面，所述方法包括但不限于，热胶点熔融方法（hot glue dot melt process），其通过施加热
和压力诱导层压。在这些实施方案中，所述层压织物可以在足够高的温度（如 100-120 摄氏度）
下固化一段足够的时间（如 1-30 分钟）以确保所述 WPB 膜和所述织物之间存在强烈粘
结。在一个实施方案中，所述 WPB 膜可以为聚乙烯（PE）膜。在一些实施方案中，所述织物
的第一面可以为所述织物的内侧面，即所述织物的将面对由所述织物制造的成衣的内部的一
面。或者，所述织物的第二面可以为织物的反面 / 背面。
[0021] 在各个实施方案中，一旦所述 WPB 膜层压至所述织物上，所述处理剂可以施用至
所述处理剂可以被配制成具有拒水性（疏水性）、拒油性（疏油性）或二者皆有的性质。因此，所述处理剂可以包括疏水化合物和疏油化合物的至少一种。在一些实施方案中，所述疏水化合物和疏油化合物可以为同一化合物，即一种兼具疏水和疏油性质的化合物。在相同的处理过程中包括疏水化合物和疏油化合物可以使得二者在同一工序中施用。但是，在一些实施方案中，疏水化合物和单独的疏油化合物可以在分开的步骤中施用。

根据各个实施方案，图1示出了WB膜10的横截面图，其以胶点层14层压至织物12的第一面11，形成层压织物20。所述第一面11可以为织物12的内侧面。

在各个实施方案中，一旦WB膜20层压至所述织物后，所述层压织物20可以与处理剂接触，所述处理剂配制为具有拒水性（疏水性）、拒油性（疏油性）或二者皆有。所述处理剂可以置于所述WB膜10的暴露面16（即，织物12的第一面11上）、织物12的第二面18（例如，外表面）或二者上。

图2描述了一个系统50，其用于用处理剂30处理所述层压织物20形成处理后的织物24，并且随后固化该处理后的织物24。所述层压织物20可被传送通过一个或多个用处理剂30浸透的衬垫22，由此所述处理剂30被施用至所述层压织物20的一面或双面，形成处理后的织物24。在一些实施方案中，处理剂30可以通过另一个施用器（如一个浴器）代替衬垫22或与衬垫22一起而施用。在各个实施方案中，可在所述层压织物20上放置足够的处理剂30以确保所述织物12和/或所述WB膜10充分浸透。

所述处理后的织物24可以随后传送通过一对辊26（如轧辊）以从所述织物24中去除过量的处理剂30。可以使用其他过量化合物去除装置和方法，包括但不限于，送风机、重力以及振动。在一些实施方案中，可以不需要去除过量物质。此外，在各个实施方案中，可以将所述织物多次传送通过相同的处理剂或多种不同处理剂以确保达到所需处理水平。

所述处理后的织物24可以随后传送通过第一固化装置32，如固化炉32，其设定在一个指定的第一固化温度以将所述处理剂30固化至所述层压织物20上。在各个实施方案中，所述炉32的第一固化温度可以设定为一个低于PE的熔点和/或低于具体的可用的WB膜（如聚四氟乙烯（PTFE））的熔点的温度。在一些实施方案中，所述第一固化温度可以设定在约100℃至约120℃范围内；在其他实施方案中，所述第一固化温度可以设定为约115℃。将所述第一固化温度设定为低于所述WB膜的熔点可以有助于确保WB膜的性能特征在固化过程中不会改变或者受到影响。在各个实施方案中，所述处理后的织物可以在炉32中固化第一固化时间，如约1至30分钟，在具体的实施方案中，固化约3至10分钟，如约3至5
分钟。

[0029] 在一些实施方案中，所述处理后的织物 24 在固化炉 32 中固化之后，可以转移至第二固化装置 34，如加热室/腔 34，以完成固化过程。所述加热室 34 可以设定在第二固化温度，其高于正常环境温度并且低于第一固化温度，如约 25 摄氏度至 100 摄氏度，在具体实施方案中为约 40 摄氏度至 60 摄氏度。所述处理后的织物 24 可以在加热室 34 中保留一段长于第一固化时间的第二固化时间。所述第二固化时间可以根据所述层压材料和所述处理剂 30 而变化。在各个实施方案中，所述第二固化时间可以为约 1 至 3 天，或者在一些实施方案中为约 48 小时。

[0030] 在一些实施方案中，所述固化可以在单个步骤中进行并且保持在一个恒定的温度一段时间。

[0031] 在各个实施方案中，较长时间暴露在高于正常环境温度下但低于第一固化温度的第二固化温度下，可以确保所有水和润湿剂完全蒸发并且可以使层压织物具有彻底用疏油和/或疏水层处理过的一面或双面。此外，这样的暴露可以确保在润湿剂和 WPB 层压织物之间实现持久的化学粘结。

[0032] 在实施方案中，为了化学分子和树脂的快速向以实现持久粘合而在高温下固化对 WPB 薄膜是有害的。不饱和由于，这是因为薄膜的低熔化温度，对于 PE 来说其可以约为 130 摄氏度。在各个实施方案中，在降低的温度下（例如，以避免 WPB 薄膜熔化）使所述织物和薄膜穿过固化炉可能需要更长的加热时间。因此，根据各个实施方案，可在 150 摄氏度下固化 2 分钟的化学物质可以在更低的温度下固化更长时间（例如 80 摄氏度下固化 24 小时）。

[0033] 所述处理剂可以包括一些旨在帮助增强所述层压织物的拒油性和拒水性的成分。在一个实施方案中，所述处理剂可以包括一种拒水或疏水的碳氟化合物、一种拒油或疏油的碳氟化合物、一种交联聚合物、一种润湿剂和/或水。在各个实施方案中，由于 WPB 膜的疏水性质，所述润湿剂浓度可以为约 5% 至约 35% 以帮助确保 WPB 膜中载有碳氟化合物的水充分渗透。在各个实施方案中，所述润湿剂浓度可以为约 20%。

[0034] 在一个实施方案中，所述处理剂配方如下：

<table>
<thead>
<tr>
<th>组分</th>
<th>浓度范围</th>
<th>浓度实例</th>
</tr>
</thead>
<tbody>
<tr>
<td>疏水碳氟化合物</td>
<td>5%-20%</td>
<td>~12%</td>
</tr>
<tr>
<td>疏油碳氟化合物</td>
<td>5%-15%</td>
<td>~10%</td>
</tr>
<tr>
<td>交联聚合物</td>
<td>0%-5%</td>
<td>~1%</td>
</tr>
<tr>
<td>润湿剂</td>
<td>10%-30%</td>
<td>~20%</td>
</tr>
<tr>
<td>水</td>
<td>35%-75%</td>
<td>~57%</td>
</tr>
</tbody>
</table>

[0035] 在一个实施方案中，所述拒油碳氟化合物可以为，例如，AG-360，其为 AsahiGuard 制造的氟化的抗油脂剂。主要的拒水碳氟化合物可以为疏水基碳氟化合物，如来自 Daikin Industries 的 Unidyne TG-580 或其他具有浓度高于 5-10% 的氟烷基丙烯酸酯共聚物的产品。在一些实施方案中，如 TG-580，所述疏水性碳氟化合物还可以包括拒油性质。在各个实施方案中，所述交联聚合物可以包括 TP-10。所述润湿剂可以为，例如，来自 Baytex
international 的 NR-T。

[0037] 还发现，为了确保处理剂的充分渗透，所述处理剂的 pH 可以保持在通常为 7 或低于 7。因此，在各个实施方案中，所述处理剂的 pH 可以为约 4 至约 7。

[0038] 在各个实施方案中，所述织物可以为多层或单层的。在一些实施方案中，所述织物包括单层亲水层，如特里科内衬（tricot backer）。在这些实施方案中，可以在将亲水层施加至所述织物后施用所述处理剂以保护所述织物免受油污染。

[0039] 虽然本说明书已经对一些实施方案进行了举例说明和描述，本领域的普通技术人员将会理解的是，在不脱离所述范围的情况下，许多预计可达到相同目的的备选的和 / 或等同的实施方案或实施方式可以代替所展示和描述的实施方案。本领域的技术人员将会容易理解实施方案可以以非常广泛的方式实施。本申请旨在涵盖本说明书中所讨论的实施方案的任何修改或变化。因此，本申请清楚地表明实施方案仅受所述权利要求及其等同物的限制。