Title: NOVEL CHOLINE COCRystal OF EPALRESTAT

Abstract: The invention relates to a novel choline cocrystal of 5-[(4Z,2E)-2-methyl-3-phenylpropenylidene]-4-oxo-2-thioxo-3-thiazolidinonic acid. The preparation and characterization of the novel choline cocrystal according to various embodiments of the invention is described. The invention also relates to pharmaceutical compositions containing the novel choline cocrystal and the therapeutic use of the novel choline cocrystal to treat and/or prevent various conditions, including treating and/or preventing diabetic complications, treating and/or preventing homocystinuria reducing levels of homocysteine in blood serum, inhibiting aldose reductase, and affording cardioprotection in non-diabetic patients.

(Continued on next page)
Published:

— without international search report and to be republished upon receipt of that report (Rule 48.2(gJ))
NOVEL CHOLINE COCRYSTAL OF EPALRESTAT

Cross-Reference to Related Applications

[0001] This application claims priority under 35 U.S.C. § 119 to U.S. Provisional Application 61/094,904, filed September 6, 2008, which is incorporated herein by reference.

Technical Field

[0002] The invention relates to a novel choline cocrystal of 5-[(1Z,2E)-2-methyl-3-phenylpropenylidene]-4-oxo-2-thioxo-3-thiazolidineacetic acid, processes for making the novel cocrystal, pharmaceutical compositions comprising the novel choline cocrystal, and methods of treating and/or preventing various conditions by administering the novel choline cocrystal.

Background

[10003] The compound 5-[(1Z,2E)-2-methyl-3-phenylpropenylidene]-4-oxo-2-thioxo-3-thiazolidineacetic acid (shown below), referred to by its common name "epalrestat," is a known active pharmaceutical ingredient ("API") having beneficial therapeutic activity, for example as an aldose reductase inhibitor:
Although therapeutic efficacy is a primary concern for a therapeutic agent, such as epalrestat, the salt and solid state form (e.g. crystalline or amorphous forms) of a drug candidate can be important to its pharmacological properties and to its development as a viable API. For example, each salt or each solid form of a drug candidate can have different solid state (physical and chemical) properties. The differences in physical properties exhibited by a particular solid form of an API, such as a cocrystal, salt, or polymorph of the original compound, can affect pharmaceutical parameters of the API. For example, storage stability, compressibility and density, all of which can be important in formulation and product manufacturing, and solubility and dissolution rates, which may be important factors in determining bioavailability, may be affected. Because these physical properties are often influenced by the solid state form of the API, they can significantly impact a number of factors, including the selection of a compound as an API, the ultimate pharmaceutical dosage form, the optimization of manufacturing processes, and absorption in the body. Moreover, finding the most adequate form for further drug development can reduce the time and the cost of that development.

Obtaining pure crystalline forms, then, is extremely useful in drug development. It may permit better characterization of the drug candidate's chemical and physical properties. For example, crystalline forms often have better chemical and physical properties than amorphous forms. As a further example, a crystalline form may possess more favorable pharmacology than an amorphous form, or may be easier to process. It may also have better storage stability.

One such physical property which can affect processability is the flowability of the solid, before and after milling. Flowability affects the ease with which the material is handled during processing into a pharmaceutical composition. When particles of the powdered
compound do not flow past each other easily, a formulation specialist must take that fact into account in developing a tablet or capsule formulation, which may necessitate the use of additional components such as glidants, including, for example, colloidal silicon dioxide, talc, starch, or tribasic calcium phosphate.

[0008] Another solid state property of a pharmaceutical compound that may be important is its dissolution rate in aqueous fluid. The rate of dissolution of an active ingredient in a patient's stomach fluid may have therapeutic consequences since it can impact the rate at which an orally administered active ingredient may reach the patient's bloodstream.

[0009] Another solid state property of a pharmaceutical compound that may be important is its thermal behavior, including its melting point. The melting point of the solid form of a drug is optionally high enough to avoid melting or plastic deformation during standard processing operations, as well as concretion of the drug by plastic deformation on storage (See, e.g., Gould, P. L. Int. J. Pharmaceutics 1986 33 201-217). It may be desirable in some cases for a solid form to melt above about 100 °C. For example, melting point categories used by one pharmaceutical company are, in order of preference, + (mp > 120 °C), 0 (mp 80-120 °C), and - (mp < 80 °C) (Balbach, S.; Kora, C. Int. J. Pharmaceutics 2004 275 1-12).

[0010] Active drug molecules may be made into pharmaceutically acceptable salts for therapeutic administration to the patient. Crystalline salts of a drug may offer advantages over the free form of the compound, such as improved solubility, stability, processing improvements, etc., and different crystalline salt forms may offer greater or lesser advantages over one another. However, crystalline salt formation is not predictable, and in fact is not always possible. Moreover, there is no way to predict the properties of a particular crystalline salt of a compound until it is formed. As such, finding the right conditions to obtain a particular
crystalline salt form of a compound, with pharmaceutically acceptable properties, can take significant time and effort.

[0012] By cocrystallizing an API or a salt of an API with a co-former (the other component of the cocrystal), one creates a new solid state form of the API which has unique properties compared with existing solid forms of the API or its salt. For example, a cocrystal may have different dissolution and/or solubility properties than the active agent itself or its salt. Cocrystals containing APIs can be used to deliver APIs therapeutically. New drug formulations comprising cocrystals of APIs with pharmaceutically acceptable co-formers may, in some cases, have superior properties over existing drug formulations. However, cocrystal formation is not predictable, and in fact is not always possible. Moreover, there is no way to predict the properties of a particular cocrystal of a compound until it is formed. As such, finding the right
conditions to obtain a particular cocrystal of a compound, with pharmaceutically acceptable properties, can take significant time, effort, and resources.

[0013] A crystalline form of a compound, a crystalline salt of the compound, or a cocrystal containing the compound or its salt form generally possesses distinct crystallographic and spectroscopic properties when compared to other crystalline forms having the same chemical composition. Crystallographic and spectroscopic properties of a particular form may be measured by XRPD, single crystal X-ray crystallography, solid state NMR spectroscopy, e.g. 13C CP/MAS NMR, or Raman spectrometry, among other techniques. A particular crystalline form of a compound, of its salt, or of a cocrystal, often also exhibits distinct thermal behavior. Thermal behavior can be measured in the laboratory by such techniques as, for example, capillary melting point, TGA, and DSC.

(0014) In the following description, various aspects and embodiments of the invention will become evident. In its broadest sense, the invention could be practiced without having one or more features of these aspects and embodiments. Further, these aspects and embodiments are exemplary. Additional objects and advantages of the invention will be set forth in part in the description which follows, and in part will be obvious from the description, or may be learned by practicing the invention. The objects and advantages of the invention will be realized and attained by means of the elements and combinations particularly pointed out in the appended claims.
SUMMARY

[0015] In accordance with various embodiments of the invention and after extensive experimentation, the inventors have discovered a novel choline cocrystal of epalrestat, choline hydrogen diepalrestat.

[0016] The invention in various embodiments also relates to processes of preparing the novel choline cocrystal of epalrestat, pharmaceutical compositions containing the novel choline cocrystal of epalrestat, and its use in the treatment and/or prevention of various conditions such as diabetic complications, and also to afford cardioprotection in patients who may be non-diabetic.

[0017] As used herein, the term "XRPD" refers to x-ray powder diffraction. The XRPD data disclosed herein were obtained using an Inel XRG-3000 diffractometer equipped with a CPS (Curved Position Sensitive) detector with a 2θ range of 120°. Real time data were collected using Cu-Kα radiation at a resolution of 0.03° 2θ. The tube voltage and amperage were set to 40 kV and 30 mA, respectively. The monochromator slit was set at 5 mm by 160 µm. Samples were prepared for analysis by packing them into thin-walled glass capillaries. Each capillary was mounted onto a goniometer head that is motorized to permit spinning of the capillary during data acquisition. Instrument calibration was performed using a silicon reference standard.

[0018] As used herein, the term "DSC" refers to differential scanning calorimetry. DSC data disclosed herein were obtained using a TA Instruments differential scanning calorimeter Q2000. The sample was placed into an aluminum DSC pan, and the weight accurately recorded. The pan was crimped and the contents heated under nitrogen under the conditions given in the figures. Indium metal was used as the calibration standard.
As used herein, the term "\(^1\)H-NMR" refers to proton nuclear magnetic resonance spectroscopy. Solution \(^1\)H NMR data disclosed herein were acquired on a Varian INOVA-400 spectrometer (\(^1\)H Larmor Frequency = 399.8 MHz). The specific parameters of each spectrum are provided on the attached figures.

As shown below (Example 3), solubility data were collected in water at ambient temperature over approximately 24 hours using an orbital shaker. Samples were taken at approximately 1, 3, 6, and 24 hours, and analyzed by UV spectrophotometry using a SpectraMax M2 UV-VIS spectrophotometer. Wavelength calibration and photometric accuracy were performed using the SpectraMax Pro 5 software as an internal calibration of the instrument. The detector was zeroed with a reference well on a microplate filled with water on which data were obtained, and those data were subtracted from collected data. Samples were analyzed in the UV range at room temperature in the wells of a 96-well quartz plate.

As used herein with respect to the various analytical techniques described herein and data generated therefrom, the term "substantially" the same as or similar to is meant to convey that a particular set of analytical data is, within acceptable scientific limits, sufficiently similar to that disclosed herein such that one of skill in the art would appreciate that the form of the compound is the same as that of the present invention. One of skill in the art would appreciate that certain analytical techniques, such as, for example, XRPD, \(^1\)H-NMR, and DSC, will not produce exactly the same results every time due to, for example, instrumental variation, sample preparation, scientific error, etc. By way of example only, XRPD results (i.e. peak locations, intensities, and/or presence) may vary slightly from sample to sample, despite the fact that the samples are, within accepted scientific principles, the same form, and this may be due to, for example, preferred orientation or varying solvent or water content. It is well within the
ability of those skilled in the art, looking at the data as a whole, to appreciate whether such differences indicate a different form, and thus determine whether analytical data being compared to those disclosed herein are substantially similar. In this regard, and as is commonly practiced within the scientific community, it is not intended that the exemplary analytical data of the novel choline hydrogen diepalrestat disclosed herein be met literally in order to determine whether comparative data represent the same form as that disclosed and claimed herein, such as, for example, whether each and every peak of the exemplary XRPD pattern disclosed herein is present in the comparative data, in the same location, and/or of the same intensity. Rather, as discussed above, it is intended that those of skill in the art, using accepted scientific principles, will make a determination based on the data as a whole regarding whether comparative analytical data represent the same or a different form of the novel choline hydrogen diepalrestat disclosed herein.

[0022] As used herein, the terms "choline hydrogen diepalrestat" and "choline hydrogen diacid cocrystal of epalrestat," including variations which use the chemical name "5-[(lZ,2E)-2-methyl-3-phenylpropenylidene]-4-oxo-2-thioxo-3-thiazolidineacetic acid" in place of the common name "epalrestat," are used interchangeably to refer to the novel choline cocrystal of epalrestat described herein.

[0023] It is to be understood that both the foregoing general description and the following detailed description are exemplary and explanatory only and are not restrictive of the invention, as claimed.
BRIEF DESCRIPTION OF THE FIGURES

[0024] FIG. 1 is an exemplary XRPD pattern of a choline hydrogen diacid cocrystal of epalrestat, according to one embodiment of the invention;

[0025] FIG. 2 is an exemplary DSC thermogram of a choline hydrogen diacid cocrystal of epalrestat, according to one embodiment of the invention;

[0026] FIG. 3A is an exemplary full 1H-NMR spectrum of a choline hydrogen diacid cocrystal of epalrestat, according to one embodiment of the invention;

[0027] FIG. 3B is an exemplary 1H-NMR spectrum from 7.9 to 7.0 ppm of a choline hydrogen diacid cocrystal of epalrestat, according to one embodiment of the invention;

[0028] FIG. 3C is an exemplary 1H-NMR spectrum from 4.8 to 2.2 ppm of a choline hydrogen diacid cocrystal of epalrestat, according to one embodiment of the invention;

[0029] FIG. 3D is an exemplary 1H-NMR spectrum from 2.11 to 2.00 ppm of a choline hydrogen diacid cocrystal of epalrestat, according to one embodiment of the invention;

[0030] FIG. 4 is an XRPD pattern of an intermediate product useful in an exemplary method of making a choline hydrogen diacid cocrystal of epalrestat according to one embodiment of the invention;

[0031] FIG. 5A is a full 1H-NMR spectrum of an intermediate product useful in an exemplary method of making a choline hydrogen diacid cocrystal of epalrestat according to one embodiment of the invention;

[0032] FIG. 5B is a 1H-NMR spectrum from 8.0 to 5.4 ppm of an intermediate product useful in an exemplary method of making a choline hydrogen diacid cocrystal of epalrestat according to one embodiment of the invention;
[0033] FIG. SC is an 1H-NMR spectrum from 4.6 to 2.2 ppm of an intermediate product useful in an exemplary method of making a choline hydrogen diacid cocrystal of epalrestat according to one embodiment of the invention; and

[0034] FIGS. 6A-6B show solubility data for a choline cocrystal of epalrestat, according to one exemplary embodiment of the invention.

DESCRIPTION OF EXEMPLARY EMBODIMENTS

(0035) The invention relates to a novel choline cocrystal of epalrestat. Specifically, the novel cocrystal which has been discovered is a choline hydrogen diacid cocrystal of epalrestat having two moles of epalrestat and one mole of choline. In one embodiment, the novel cocrystal is anhydrous. At least one exemplary method of preparation of the novel choline cocrystal of epalrestat according to the invention is described below in the examples.

(0036) The novel cocrystal described herein is obtained in a crystalline solid form, as seen by the high degree of crystallinity depicted in the XRPD pattern provided in FIG. 1. The cocrystal is shown to have distinct physicochemical properties. The cocrystal of epalrestat described herein is particularly suitable for the preparation of stable pharmaceutical preparations.

(0037) The novel choline cocrystal of epalrestat is characterized by an XRPD pattern substantially as shown in FIG. 1, a DSC thermogram substantially as shown in FIG. 2, an 1H-NMR spectrum substantially as shown in FIGS. 3A-3D, and a solubility profile substantially as shown in FIG. 6A. An exemplary listing of representative XRPD peaks of the novel choline cocrystal of epalrestat according to an embodiment of the invention can be found in Table 1. An exemplary listing of representative NMR data can be found in Table 2.
Table 1

<table>
<thead>
<tr>
<th>2θ</th>
<th>d space (Å)</th>
<th>Intensity (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>6.1 ± 0.2</td>
<td>14.51 ± 0.48</td>
<td>100</td>
</tr>
<tr>
<td>12.4 ± 0.2</td>
<td>7.11 ± 0.11</td>
<td>4</td>
</tr>
<tr>
<td>12.7 ± 0.2</td>
<td>6.99 ± 0.11</td>
<td>41</td>
</tr>
<tr>
<td>13.5 ± 0.2</td>
<td>6.66 ± 0.10</td>
<td>33</td>
</tr>
<tr>
<td>14.1 ± 0.2</td>
<td>6.28 ± 0.09</td>
<td>31</td>
</tr>
<tr>
<td>15.3 ± 0.2</td>
<td>5.80 ± 0.08</td>
<td>44</td>
</tr>
<tr>
<td>15.8 ± 0.2</td>
<td>5.60 ± 0.07</td>
<td>16</td>
</tr>
<tr>
<td>16.6 ± 0.2</td>
<td>5.33 ± 0.06</td>
<td>17</td>
</tr>
<tr>
<td>17.2 ± 0.2</td>
<td>5.14 ± 0.06</td>
<td>50</td>
</tr>
<tr>
<td>18.2 ± 0.2</td>
<td>4.86 ± 0.05</td>
<td>13</td>
</tr>
<tr>
<td>18.8 ± 0.2</td>
<td>4.72 ± 0.05</td>
<td>19</td>
</tr>
<tr>
<td>20.0 ± 0.2</td>
<td>4.43 ± 0.04</td>
<td>13</td>
</tr>
<tr>
<td>20.2 ± 0.2</td>
<td>4.39 ± 0.04</td>
<td>9</td>
</tr>
<tr>
<td>21.3 ± 0.2</td>
<td>4.19 ± 0.04</td>
<td>72</td>
</tr>
<tr>
<td>21.6 ± 0.2</td>
<td>4.11 ± 0.04</td>
<td>78</td>
</tr>
<tr>
<td>22.9 ± 0.2</td>
<td>3.89 ± 0.03</td>
<td>23</td>
</tr>
<tr>
<td>24.6 ± 0.2</td>
<td>3.62 ± 0.03</td>
<td>31</td>
</tr>
<tr>
<td>25.0 ± 0.2</td>
<td>3.56 ± 0.03</td>
<td>50</td>
</tr>
<tr>
<td>25.8 ± 0.2</td>
<td>3.45 ± 0.03</td>
<td>67</td>
</tr>
<tr>
<td>27.0 ± 0.2</td>
<td>3.31 ± 0.02</td>
<td>37</td>
</tr>
<tr>
<td>28.4 ± 0.2</td>
<td>3.15 ± 0.02</td>
<td>9</td>
</tr>
</tbody>
</table>
The novel choline cocystal of epalrestat described herein possesses the same general pharmacological activity as epalrestat free acid, and is useful for treating and/or preventing diabetic complications such as those discussed above, including, for example, diabetic neuropathy, diabetic retinopathy, and diabetic nephropathy. By use of the term "treating" or "alleviating" it is meant decreasing the symptoms, markers, or any negative effects of a condition in any appreciable degree in a patient who currently has the condition, and by
"preventing" it is meant preventing entirely or preventing to some extent, such as, for example, by delaying the onset or lessening the degree to which a patient develops the condition.

[0039] Accordingly, various embodiments of the invention include methods for preventing and/or treating cardiac tissue ischemia in a mammal comprising administering to said mammal an effective amount of a novel choline cocrystal of epalrestat as described herein. Various embodiments of the invention also include methods for treating and/or preventing cardiac tissue ischemia in a mammal comprising administering to said mammal a pharmaceutical composition comprising a novel choline cocrystal of epalrestat and a pharmaceutically acceptable vehicle, carrier, and/or diluent. In exemplary methods, said mammal may be suffering from cardiac tissue ischemia or may be at risk of suffering from cardiac tissue ischemia. For example, a mammal at risk may be awaiting or undergoing cardiac, cardiovascular, or other major surgery. Thus, various embodiments of the invention include methods for providing myocardial protection during surgery or myocardial protection in patients presenting with ongoing cardiac or cerebral ischemic events or chronic cardioprotection in patients diagnosed with, or at risk for, coronary heart disease, cardiac dysfunction or myocardial stunning. As used herein, "mammal" is intended to include humans.

[0040] Various embodiments of the invention include methods of inhibiting aldose reductase in a mammal in need of inhibition of aldose reductase comprising administering an aldose reductase inhibiting amount of a novel choline cocrystal of epalrestat as described herein. Various embodiments of the invention also include methods of inhibiting aldose reductase in a mammal in need of inhibition of aldose reductase comprising administering a pharmaceutical composition comprising a novel choline cocrystal of epalrestat as described herein, and a pharmaceutically acceptable vehicle, carrier, and/or diluent.
Additional embodiments of the invention include methods of treating and/or preventing one or more diabetic complications in a mammal suffering from one or more diabetic complications comprising administering to said mammal an effective amount of a novel choline cocystal of epalrestat as described herein. Diabetic complications which may be treated and/or prevented by exemplary methods of the invention include, but are not limited to, diabetic neuropathy, diabetic nephropathy, diabetic cardiomyopathy, diabetic retinopathy, diabetic gastroparesis, cataracts, foot ulcers, diabetic macroangiopathy, and diabetic microangiopathy.

Various embodiments of the invention are also directed to methods of treating and/or preventing one or more diabetic complications in a mammal suffering from one or more diabetic complications comprising administering to said mammal an effective amount of a pharmaceutical composition as set forth herein.

Further embodiments of the invention contemplate methods of treating and/or preventing homocystinuria, and/or reducing levels of homocysteine in the blood serum, for example in a patient with diabetes, by administering an effective amount of a novel choline cocystal of epalrestat, or composition and/or formulation comprising an effective amount of a novel choline cocystal of epalrestat, as described herein. In vivo, choline is converted to betaine, also known as trimethylglycine or glycine betaine. Both choline and betaine are naturally occurring molecules found in dietary sources (Olthof MR, Curr Drug Metab 2005;6: 15-22). In biological systems, betaine is important in the metabolism of homocysteine, and functions as a methyl donor. Betaine is therefore used therapeutically to reduce elevated homocysteine concentrations (van Guldener C et al, Expert Opinion on Pharmacotherapy 2001; 2: 1449-1460), and is approved for use in the U.S. and Europe as a therapeutic agent to treat homocystinuria from genetic causes (Cystadane prescribing
information, FDA; Cystadane product information, EMEA). In animal studies, dietary choline deprivation has also been shown to lead to elevated homocysteine (Setoue M et al, J Nutr Sci Vitaminol 2008; 54:483-90), and choline supplementation has been shown to reduce elevated homocysteine levels (Setoue M et al, Biosci Biotechnol Biochem 2008;72: 1696-703). In humans, epidemiologic studies have shown the general population to have dietary choline intake levels below the recommended adequate intake level (Bidulescu A et al, Nutr J 2009;8: 14), and in pilot studies, choline supplementation has lowered elevated homocysteine levels (Olthof MR et al, Am J Clin Nutr 2005;82:1 11-7). Elevated homocysteine is associated with cardiovascular disease in both Type 2 diabetes (Hoogeveen EK et al, Arterioscler Thromb Vase Biol 1998;18:133-138) and in non-diabetic populations (Bostom AG et al, Arch Intern Med 1999;159: 1077-1 080).

Homocysteine is also elevated in patients with various non-cardiovascular diabetic complications, including diabetic nephropathy (Bostom AG et al, Arterioscler Thromb Vase Biol 1997;17:2554-2558), diabetic retinopathy (Brazionis L et al, Diabetes Care 2008;31:50-56), and diabetic neuropathy (Ambrosch A et al, Diabetic Medicine 2001;18:185-192). Administration of a novel choline cocystal of epalrestat may therefore have an additional beneficial therapeutic effect for treating these conditions.

[0043] Various additional embodiments of the invention include methods of palliating neurological disorders and delaying development of neurological disorders using aldose reductase inhibitors, in order to modulate neurotrophic factor-associated activity, especially CNTF-associated levels and activity, for example as disclosed in U.S. Pat. No. 6,696,407. These methods are useful, for example, for a condition or circumstance in which neurotrophic factor-associated activity is indicated, such as neurological disorders, including neurodegenerative disorders. A "neurological disorder" as used herein means an aberration from
clinically normal neural cell activity (i.e., compromised neural cell activity) and includes, by way of example only, neurodegenerative disease (of the CNS and/or PNS), neuropathies associated with toxicity (neurotoxicity) such as chemotherapy (i.e., vincristine or cisplatin-induced motor neuropathy) and alcohol consumption, immune-mediated neurodiseases such as multiple sclerosis (MS) and Guillain-Barre syndrome, hereditary neuropathies such as Charcot-Marie-Tooth neuropathies [see Lebo et al. (1992) Am. J. Hum. Genet. 50:42-55], injury due to trauma, and compromised function due to senescence. Examples of neurodegenerative disorders include but are not limited to, Huntington's disease, amyotrophic lateral sclerosis (ALS), Alzheimer's disease, Parkinson's disease, and Shy-Drager syndrome. The methods may also be useful in delaying development of a neurological disorder, and thus may be used in individuals who show no overt signs of disease but are, for example, at risk of developing disease.

[0044] As discussed, additional embodiments of the invention relate to pharmaceutical compositions comprising any amount, such as a therapeutically effective amount, of a novel choline cocrystal of epalrestat as described herein and a pharmaceutically acceptable carrier or excipient. The novel choline cocrystal of epalrestat according to the invention has the same or similar pharmaceutical activity as previously reported for epalrestat free acid. Pharmaceutical compositions for the treatment and/or prevention of those conditions or disorders may contain some amount, for example a therapeutically effective amount, of a novel choline cocrystal of epalrestat described herein, as appropriate, e.g. for treatment of a patient with the particular condition or disorder. As a further example, the amount of the cocrystal in the pharmaceutical compositions may likewise be lower than a therapeutically effective amount, and may, for example, be in the composition in conjunction with another compound or form of epalrestat which, when combined, are present in a therapeutically effective amount. A
"therapeutically effective amount" as described herein refers to an amount of a therapeutic agent sufficient to treat, alleviate, and/or prevent a condition treatable and/or preventable by administration of a composition of the invention, in any degree. That amount can be an amount sufficient to exhibit a detectable therapeutic or preventative or ameliorative effect, and can be determined by routine experimentation by those of skill in the art. The effect may include, for example, treatment, alleviation, and/or prevention of the conditions listed herein. The actual amount required, e.g. for treatment of any particular patient, will depend upon a variety of factors including the disorder being treated and/or prevented; its severity; the specific pharmaceutical composition employed; the age, body weight, general health, gender, and diet of the patient; the mode of administration; the time of administration; the route of administration; the rate of excretion of epalrestat; the duration of the treatment; any drugs used in combination or coincidental with the specific compound employed; and other such factors well known in the medical arts. These factors are discussed in Goodman and Gilman’s "The Pharmacological Basis of Therapeutics", Tenth Edition, A. Gilman, J.Hardman and L. Limbird, eds., McGraw-Hill Press, 155-173, 2001.

(0045) A pharmaceutical composition according to various embodiments of the invention may be any pharmaceutical form which contains a novel choline cocrystal of epalrestat as described herein. Depending on the type of pharmaceutical composition, the pharmaceutically acceptable carrier may be chosen from any one or a combination of carriers known in the art. The choice of the pharmaceutically acceptable carrier depends upon the pharmaceutical form and the desired method of administration to be used. For a pharmaceutical composition according to various embodiments of the invention, that is one having a novel choline cocrystal of epalrestat as described herein, a carrier may be chosen that maintains the cocrystal form. In other words,
the carrier, in some embodiments, will not substantially alter the cocrystal form of epalrestat as described herein. In some embodiments, the carrier will similarly not be otherwise incompatible with epalrestat itself, such as by producing any undesirable biological effect or otherwise interacting in a deleterious manner with any other component(s) of the pharmaceutical composition.

[0046] The pharmaceutical compositions according to various embodiments of the invention are optionally formulated in unit dosage form for ease of administration and uniformity of dosage. A "unit dosage form" refers to a physically discrete unit of therapeutic agent appropriate for the patient to be treated. It will be understood, however, that the total daily dosage of a novel choline cocrystal of epalrestat described herein and pharmaceutical compositions thereof will be decided by the attending physician within the scope of sound medical judgment using known methods.

[0047] Because the novel choline cocrystal of epalrestat as described herein is more easily maintained during preparation, solid dosage forms are a preferred form for the pharmaceutical composition of the invention. Solid dosage forms for oral administration may include, for example, capsules, tablets, pills, powders, and granules. In one exemplary embodiment, the solid dosage form is a tablet. The active ingredient may be contained in a solid dosage form formulation that provides quick release, sustained release, or delayed release after administration to the patient. In such solid dosage forms, the active compound may be mixed with at least one inert, pharmaceutically acceptable carrier, such as, for example, sodium citrate or dicalcium phosphate. The solid dosage form may also include one or more of various additional ingredients, including, for example: a) fillers or extenders such as, for example, starches, lactose, sucrose, glucose, mannitol, and silicic acid; b) binders such as, for example,
carboxymethylβ-D-lulose, alginates, gelatin, polyvinylpyrrolidinone, sucrose, and acacia; c) humectants such as, for example, glycerol; d) disintegrating agents such as, for example, agar, calcium carbonate, potato or tapioca starch, alginic acid, certain silicates, and sodium carbonate; e) dissolution retarding agents such as, for example, paraffin; f) absorption accelerators such as, for example, quaternary ammonium compounds; g) wetting agents such as, for example, cetyl alcohol and glycerol monostearate; h) absorbents such as, for example, kaolin and bentonite clay; and i) lubricants such as, for example, talc, calcium stearate, magnesium stearate, solid polyethylene glycols, and sodium lauryl sulfate. The solid dosage forms may also comprise buffering agents. They may optionally contain opacifying agents and can also be of a composition that they release the active ingredient(s) only, or preferentially, in a certain part of the intestinal tract, optionally, in a delayed manner. Remington's Pharmaceutical Sciences, Sixteenth Edition, E. W. Martin (Mack Publishing Co., Easton, Pa., 1980) discloses various carriers used in formulating pharmaceutical compositions and known techniques for the preparation thereof. Solid dosage forms of pharmaceutical compositions according to various embodiments of the invention can also be prepared with coatings and shells such as enteric coatings and other coatings well known in the pharmaceutical formulating art.

[0048] The novel choline cocystal of epalrestat described herein can be, in one exemplary embodiment, administered in a solid micro-encapsulated form with one or more carriers as discussed above. Microencapsulated forms may also be used in soft and hard-filled gelatin capsules with carriers such as lactose or milk sugar as well as high molecular weight polyethylene glycols and the like.

[0049] The novel choline cocystal of epalrestat as described herein may also be used in the preparation of non-solid formulations, e.g., injectables and patches, of epalrestat. Such
non-solid formulations are known in the art. In a non-solid formulation, the cocrystal form may, in certain exemplary embodiments, not be maintained. For example, the cocrystal may be dissolved in a liquid carrier. In this case, the novel cocrystal of epalrestat described herein may represent intermediate forms of epalrestat used in the preparation of the non-solid formulation. The novel choline cocrystal of epalrestat described herein may provide advantages of handling stability and purity to the process of making such formulations.

[0050] The invention also relates to the treatment and/or prevention of diabetes-associated disorders such as those discussed above. The invention provides a method for treating and/or preventing diabetes-associated disorders by administering to mammals a novel choline cocrystal of epalrestat as described herein, or a pharmaceutical composition containing the same, in an amount sufficient to treat and/or prevent a condition treatable and/or preventable by administration of a composition of the invention. That amount is the amount sufficient to exhibit any detectable therapeutic and/or preventative or ameliorative effect. The effect may include, for example, treatment and/or prevention of the conditions listed herein. The novel choline cocrystal of epalrestat and pharmaceutical compositions containing the same may, according to various embodiments of the invention, be administered using any amount, any form of pharmaceutical composition, and any route of administration effective, e.g. for treatment, all of which are easily determined by those of skill in the art through routine experimentation. After formulation with an appropriate pharmaceutically acceptable carrier in a desired dosage, as known by those of skill in the art, the pharmaceutical compositions can be administered to humans and other mammals by any known method, such as, for example, orally, rectally, or topically (such as by powders or other solid form-based topical formulations). In certain embodiments, the novel choline cocrystal of epalrestat according to the invention may be administered at dosage levels
ranging from about 0.001 mg/kg to about 50 mg/kg, from about 0.01 mg/kg to about 25 mg/kg, or from about 0.1 mg/kg to about 10 mg/kg of subject body weight per day, one or more times a day, to obtain the desired therapeutic effect. It will also be appreciated that dosages smaller than about 0.001 mg/kg or greater than about 50 mg/kg (for example, ranging from about 50 mg/kg to about 100 mg/kg) can also be administered to a subject in certain embodiments of the invention. As discussed above, the amount required for a particular patient will depend upon a variety of factors including the disorder being treated and/or prevented; its severity; the specific pharmaceutical composition employed; the age, body weight, general health, gender, and diet of the patient; the mode of administration; the time of administration; the route of administration; the rate of excretion of epalrestat; the duration of the treatment; any drugs used in combination or coincidental with the specific compound employed; and other such factors well known in the medical arts. And, as also discussed, the pharmaceutical compositions comprising a novel choline cocrystal of epalrestat as described herein may be administered as a unit dosage form.

[0051] Although the present invention herein has been described with reference to various exemplary embodiments, it is to be understood that these embodiments are merely illustrative of the principles and applications of the present invention. Those having skill in the art would recognize that a variety of modifications to the exemplary embodiments may be made, without departing from the scope of the invention.

[0052] Moreover, it should be understood that various features and/or characteristics of differing embodiments herein may be combined with one another. It is therefore to be understood that numerous modifications may be made to the illustrative embodiments and that other arrangements may be devised without departing from the scope of the invention.
Furthermore, other embodiments of the invention will be apparent to those skilled in the art from consideration of the specification and practice of the invention disclosed herein. It is intended that the specification and examples be considered as exemplary only, with a scope and spirit being indicated by the claims.
EXAMPLES

[0054] Example 1 – Preparation of the intermediate product

A slurry of 265 mg (0.83 mmol) of epalrestat free acid and 20 mL of absolute ethanol was treated with 0.187 mL of 50% aqueous choline hydroxide (0.187 mL with a density of 1.073 g/mL = 201 mg 50% choline hydroxide by weight = 101 mg, 0.83 mmol of choline hydroxide). During the addition, all of the solid dissolved. The resulting solution was poured into 400 mL of diethyl ether and the precipitated solids were collected by filtration to give 282 mg of product. The solids were dried in a vacuum oven at 1-5 torr pressure and ambient temperature overnight. The solids were collected and analytical data were obtained on the intermediate product: the XRPD pattern was as shown in FIG. 4, and the H-NMR spectrum was as shown in FIGS. 5A-5C.

[0056] Example 2 - Preparation of a choline hydrogen diacid cocrystal of epalrestat

A mixture of 209 mg of epalrestat free acid and 11 mL acetone was sonicated briefly and filtered through a 0.2 micron nylon filter. The filtrate was treated with 39 mg of the intermediate product of Example 1 to give a slurry. The slurry was agitated by placing it in a capped vial on a rotating wheel for about 4 days. Filtration afforded 56 mg of solid choline hydrogen diepalrestat. Analytical data were obtained on the product: the XRPD pattern is shown in FIG. 1, the DSC thermogram is shown in FIG. 2, and the H-NMR spectrum is shown in FIGS. 3A-3D. Elemental analysis was as follows:

<table>
<thead>
<tr>
<th></th>
<th>%C</th>
<th>%H</th>
<th>%N</th>
<th>%S</th>
</tr>
</thead>
<tbody>
<tr>
<td>Experimental (IB)</td>
<td>54.13</td>
<td>4.48</td>
<td>5.40</td>
<td>17.11</td>
</tr>
<tr>
<td>Theoretical</td>
<td>56.66</td>
<td>5.30</td>
<td>5.66</td>
<td>17.29</td>
</tr>
</tbody>
</table>
Example 3 - Preparation of a choline hydrogen diacid cocrystal of epalrestat

A mixture of 85 mg of epalrestat free acid and 20 mL of absolute ethanol was briefly sonicated and filtered through a 0.2 micron nylon filter. The filtrate was treated with 26 mg of the intermediate product of Example 1 with sonication to give a slurry. The slurry was agitated by placing it in a capped vial on a rotating wheel for about 4 days. Filtration afforded 36 mg of solid choline hydrogen diepalrestat. Analytical data were obtained on the product: the XRPD pattern was substantially as shown in FIG. 1. Solubility data were obtained in water on the final product, and the solubility profile is shown in FIG. 6A. As can be seen in FIG. 6A, the dissolved concentration of epalrestat increased over time to 249 µg/mL after approximately 24 hours. As can be seen in FIG. 6B, the choline hydrogen diacid cocrystal of epalrestat appears to have a greater solubility in water than the free acid.
WHAT IS CLAIMED IS:

1. A choline hydrogen diacid cocrystal of 5-[(1Z,2E)-2-methyl-3-phenylpropenylidene]-^oxo^-^thiozoO^-^thiazolidineacetic acid.

2. A choline hydrogen diacid cocrystal of 5-[(1Z,2E)-2-methyl-3-phenylpropenylidene]-4-oxo-2-thiozo-3-thiazolidineacetic acid having substantially the same XRPD pattern as in FIG. 1.

3. A pharmaceutical composition comprising the choline hydrogen diacid cocrystal of 5-[(1Z,2E)-2-methyl-3-phenylpropenylidene]-4-oxo-2-thiozo-3-thiazolidineacetic acid according to claim 1.

4. A pharmaceutical composition comprising the choline hydrogen diacid cocrystal of 5-[(1Z,2E)-2-methyl-3-phenylpropenylidene]-4-oxo-2-thiozo-3-thiazolidineacetic acid according to claim 2.

5. A method of treating and/or preventing any of the following conditions comprising administering a pharmaceutical composition comprising the choline hydrogen diacid cocrystal of 5-[(1Z,2E)-2-methyl-3-phenylpropenylidene]-4-oxo-2-thiozo-3-thiazolidineacetic acid according to claim 1: cardiac tissue ischemia, diabetic neuropathy, diabetic nephropathy, diabetic cardiologyopathy, diabetic retinopathy, diabetic gastroparesis, cataracts, foot ulcers, diabetic macroangiopathy, and diabetic microangiopathy.

6. A method of treating and/or preventing any of the following conditions comprising administering a pharmaceutical composition comprising the choline hydrogen diacid
cocrystal of 5-[(lZ,2E)-2-methyl-3-phenylpropenylidene]-4-oxo-2-thioxo-3-thiazolidineacetic acid according to claim 2: cardiac tissue ischemia, diabetic neuropathy, diabetic nephropathy, diabetic cardiomyopathy, diabetic retinopathy, diabetic gastroparesis, cataracts, foot ulcers, diabetic macroangiopathy, and diabetic microangiopathy.

7. A method of treating, preventing, and/or delaying development of neurological or neurodegenerative disorders comprising administering a pharmaceutical composition comprising the choline hydrogen diacid cocrystal of 5-[(lZ,2E)-2-methyl-3-phenylpropenylidene]-4-oxo-2-thioxo-3-thiazolidineacetic acid according to claim 1.

8. A method of treating, preventing, and/or delaying development of neurological or neurodegenerative disorders comprising administering a pharmaceutical composition comprising the choline hydrogen diacid cocrystal of 5-[(lZ,2E)-2-methyl-3-phenylpropenylidene]-4-oxo-2-thioxo-3-thiazolidineacetic acid according to claim 2.

9. A method of inhibiting aldose reductase in a mammal in need thereof comprising administering a pharmaceutical composition comprising the choline hydrogen diacid cocrystal of 5-[(lZ,2E)-2-methyl-3-phenylpropenylidene]-4-oxo-2-thioxo-3-thiazolidineacetic acid according to claim 1.

10. A method of inhibiting aldose reductase in a mammal in need thereof comprising administering a pharmaceutical composition comprising the choline hydrogen diacid cocrystal of 5-[(lZ,2E)-2-methyl-3-phenylpropenylidene]-4-oxo-2-thioxo-3-thiazolidineacetic acid according to claim 2.
11. A method of treating and/or preventing homocystinuria, and/or reducing levels of homocysteine in blood serum, in a mammal in need thereof comprising administering a pharmaceutical composition comprising the choline hydrogen diacid cocystal of 5-[(LZ,2E)-2-methyl-3-phenylpropenylidene]-4-oxo-2-thioxo-3-thiazolidineacetic acid according to claim 1.

12. A method of treating and/or preventing homocystinuria, and/or reducing levels of homocysteine in blood serum, in a mammal in need thereof comprising administering a pharmaceutical composition comprising the choline hydrogen diacid cocystal of 5-[(LZ,2E)-2-methyl-3-phenylpropenylidene]-4-oxo-2-thioxo-3-thiazolidineacetic acid according to claim 2.
Solvent: DMSO
Ambient temperature
Spin rate: 20 Hz
Pulse Sequence: s2pul
Relax. delay: 5.000 sec
Pulse width: 8.1 usec (90.0 deg.)
Acq. time: 2.500 sec
Spectral width: 6400.0 Hz (16.008 ppm)
40 scans
Acquired points: 32000
Observe Nucleus: H1 (399.7957232 MHz)
DATA PROCESSING
Line broadening: 0.2 Hz
FT size: 131072
SOLUBILITY OF CHOLINE HYDROGEN DIACID COCRYSTAL OF EPALRESTAT

CONCENTRATION (µg/mL)

0 50 100 150 200 250 300

0 5 10 15 20 25

TIME (hours)

FIGURE 6A

SOLUBILITY OF EPALRESTAT AND EPALRESTAT CHOLINE COCRYSTAL

SOLUBILITY (micrograms/mL)

0 50 100 150 200 250 300

1 3 6 24

TIME (hours)

FIGURE 6B