
USOO87998.90B2

(12) United States Patent (10) Patent No.: US 8,799,890 B2
Vidal et al. (45) Date of Patent: Aug. 5, 2014

(54) GENERATING A VERSION IDENTIFIER FOR 7,761,425 B1* 7/2010 Erickson et al. TO7/649
A COMPUTING SYSTEMBASED ON 7.991,832 B2 * 8/2011 Hatanaka et al. .. TO9,203

ck

SOFTWARE PACKAGES INSTALLIED ON THE 1983: 39: she tr. 79.3
COMPUTING SYSTEM 8,572,092 B2 * 10/2013 Bern 707/747

8,619,982 B2* 12/2013 Sitricket al. 380,200
(75) Inventors: Seth Kelby Vidal, Raleigh, NC (US); 2001/0029605 A1 * 10, 2001 Forbes et al. 717/11

James Antill, Bristol, CT (US) 2002/0083343 A1 6/2002 Crosbie et al. T13 201
s s 2002fO144248 A1* 10, 2002 Forbes et al. .. 717, 167

2002/0170052 A1* 11, 2002 Radatti 717, 171
(73) Assignee: Red Hat, Inc., Raleigh, NC (US) 2003/0159070 A1 8/2003 Mayer et al. T13 201

- 2004/0044996 A1* 3, 2004 Atallah T17,169
(*) Notice: Subject to any disclaimer, the term of this 2005.00051.55 A1 1/2005 Morrow et al. T13/200

patent is extended or adjusted under 35 2005, 0102672 A1* 5/2005 Brothers T18, 1
U.S.C. 154(b) by 792 days. 2005/0131961 A1* 6/2005 Margolus et al. 707/200

2005. O165852 A1* 7, 2005 Albornoz et al. TO7/200
2005, 0171961 A1* 8, 2005 Cubreth et al. ... TO7/100

(21) Appl. No.: 12/627,744 2006/0020578 A1 1/2006 Hood 707/3
22) Filed N 30, 2O09 2006/0020821 A1 1/2006 Waltermann et al. T13, 189
(22) Filed: OV. 5U, (Continued)

(65) Prior Publication Data OTHER PUBLICATIONS

US 2011 FO131564 A1 Jun. 2, 2011 Seth Kelby Vidal. “Systems and Methods for Tracking a History of
(51) Int. Cl. Changes associated with Software Packages and Configuration Man

G06F 9/44 (2006.01) agement in a Computer System”, U.S. Appl. No. 12/551,523, filed
G06F 9/445 (2006.01) Aug. 31, 2009.

(52) U.S. Cl. (Continued)
CPC .. G06F 8/61 (2013.01)
USPC 717/174; 717/168; 717/169; 717/170; Primary Examiner — Steven Snyder

717/171;717/172; 717/173; 717/175: 717/176; (74) Attorney, Agent, or Firm Lowenstein Sandler LLP
717/177,717/178; 707/698; 709/223

(58) Field of Classification Search (57) ABSTRACT
None lication file f 1 hhi An administrator system can generate a version identifier for
See application file for complete search history. a computing system based on the Software packages installed

(56) References Cited on a computing system. The version identifier can represent

U.S. PATENT DOCUMENTS

5,619,716 A * 4, 1997 Nonaka et al. 717/167
6,374,266 B1 * 4/2002 Shnelvar 1f1
6,381,742 B2 * 4/2002 Forbes et al. 717, 176
7,089,552 B2 * 8/2006 Atallah 717/175
7,222,341 B2 * 5/2007 Forbes et al. 717/170
7.5.12,939 B2 * 3/2009 Brookner 717/170
7,730,325 B2 * 6/2010 Morrow et al. T13, 191

205 SOFTWARE ' SPECIFIC
PACKAGES 108 DATA204

"PACKAGEA."

"PACKAGE B"

"PACKAGE C"

"PACKAGED"

VERSION IDENTIFIER:
200

the Software packages installed on the computing system. The
administrator system can identify the Software packages
installed on a computing system and data specific to the
Software packages. The administrator system can apply a
hash function to the specific data to generate hashed data.
Then, the administrator system can concentrate the hashed
data to generate the version identifier.

23 Claims, 4 Drawing Sheets

HASH
FUNCION2O6

HASHED
DATA208

--> -->

--> all--->

-> -->

US 8,799,890 B2
Page 2

(56) References Cited

U.S. PATENT DOCUMENTS

2006/0031827 A1 2/2006 Barfield et al. 717,168
2006, OO64488 A1* 3, 2006 Ebert 709,225
2008/0134165 A1 6/2008 Anderson et al. 717/173
2008/0270493 A1* 10, 2008 Schwaab et al. 707,205
2008/0293379 A1* 11, 2008 Hinton et al. .. 455,411
2009. O150974 A1* 6/2009 Cho et al. 726/2
2009/0300180 A1 12/2009 DeHaan et al. 709,225
2010, 007O606 A1* 3, 2010 Shenfield et al. .. 709/217
2010.031898.6 A1* 12/2010 Burke et al. ... 717, 176
2011 0131564 A1* 6, 2011 Vidal et al. .. 717,174
2013,006 103.6 A1 3/2013 Oliver T13,150

OTHER PUBLICATIONS

Seth Kelby Vidal, "Systems and Methods for Improved Identification
and Analysis of Threats to a Computing System”, U.S. Appl. No.
12/610,564, filed Nov. 2, 2009.
Seth Kelby Vidal. “Systems and Methods for Utilizing a History of
Changes Associated with Software Packages and Configuration

Management to Manage Multiple Computing Systems'. U.S. Appl.
No. 12/610,610, filed Nov. 2, 2009.
Seth Kelby Vidal. “Systems and Methods for Tracking a History of
Changes Associated with Software Packages in a Computing Sys
tem”, U.S. Appl. No. 12/551,475, filed Aug. 31, 2009.
Seth Kelby Vidal, "Systems and Methods for Managing a Network of
Computer System Using a Version Identifier Generated Based on
Software Packages Installed on the Computing Systems”. U.S. Appl.
No. 12/627,989, flied Nov.30, 2009.
Seth Kelby Vidal, "Systems and Methods for Generating Machine
State Verification Using Number of Installed Package Objects”. U.S.
Appl. No. 12/787,164, filed May 25, 2010.
Seth Kelby Vidal, "Systems and Methods for Generating Encoded
Identifications of Selected Subsets of Installed Software Packages on
a Client Machine”, U.S. Appl. No. 12/768,330, filed Apr. 27, 2010.
Seth Kelby Vidal. “Systems and Methods for Determining Compat
ibility of a Software Package UpdateUsing a Version Identifier'. U.S.
Appl. No. 12/713,271, filed Feb. 26, 2010.
Seth Kelby Vidal. “Systems and Methods for Detecting Computing
Processes Requiring Reinitlalization. After a Software Package
Update”, U.S. Appl. No. 12/714,178, filed Feb. 26, 2010.

* cited by examiner

U.S. Patent Aug. 5, 2014 Sheet 1 of 4 US 8,799,890 B2

100
SOFTWARE

SOFTWARE REPOSITORY
REPOSITORY MIRRORS

104.

108 - th 108

NETWORK
106.

ADMINISTRATOR
SYSTEM
116

COMPUTING SYSTEM
VERSION 102.
TOOL

PACKAGE MANAGER
MANAGER TOOLS

110 112

U.S. Patent Aug. 5, 2014 Sheet 2 of 4 US 8,799,890 B2

205 SOFTWARE * SPECIFIC HASH HASHED
PACKAGES 108 DATA204 FUNCTION2O6 DATA208

"PACKAGE A" --> -a-)

-> PACKAGE B f)

"PACKAGE C" --> -->

"PACKAGE D" --> -->

VERSION IDENTIFIER:
200

FIG. 2

U.S. Patent Aug. 5, 2014

MEMORY

Sheet 3 of 4

FIG. 3

VERSION
TOOL
118

REPOSITORY
122

US 8,799,890 B2

U.S. Patent Aug. 5, 2014 Sheet 4 of 4 US 8,799,890 B2

402
BEGIN

DENTIFY SOFTWARE PACKAGES INSTALLED ON THE
COMPUTING SYSTEMAND DATA SPECIFIC TO THE

SOFTWARE PACKAGES

ORDER THE SOFTWARE PACKAGES AND THE
SPECIFC DATA

APPLY A HASH FUNCTION TO THE SPECIFICDATA
TO GENERATE HASHED DATA

CONCENTRATE THE HASHED DATA TO GENERATE
THE VERSION IDENTFER

STORE THE VERSION IDENTIFIER

414
END

404

406

408

410

412

FIG. 4

US 8,799,890 B2
1.

GENERATING AVERSION IDENTIFIER FOR
A COMPUTING SYSTEMBASED ON

SOFTWARE PACKAGES INSTALLIED ON THE
COMPUTING SYSTEM

FIELD

This invention relates generally to computer Software
installation for computing systems and network manage
ment.

DESCRIPTION OF THE RELATED ART

Today, a person using a computing system has a variety of
avenues for obtaining software and installing the Software on
the computing system, such as purchasing physical media and
downloading the software over a network. When download
ing the Software over a network, the person can acquire and
install the Software using a Software package management
system. The Software package management system typically
consists of a Software repository which stores and maintains
various software packages. The Software packages typically
consist of software stored in an archive format that includes
data for installing the Software.

To obtain the Software package, the person can utilize a
package manager. The package manager is responsible for
retrieving the Software package and installing the Software
package on the computing system. Typically, the package
manager maintains a record of how the Software package was
installed. However, the user of the computing system or an
administrator overseeing the computing system cannot easily
determine if the correct Software package is installed on the
computing system. For example, if the administrator is over
seeing a large network of computing system, the administra
tor may desire to maintain the same software packages on all
the computing systems. Typically, the administrator must
examine each software package on each computing system to
determine if the correct packages are installed. Moreover, a
user of the computing system may desire to update the Soft
ware packages. The user, however, lacks the ability to deter
mine if the update will properly install on the system, for
example, due to changes in the Software packages since the
last update.

BRIEF DESCRIPTION OF THE DRAWINGS

Various features of the embodiments can be more fully
appreciated, as the same become better understood with ref
erence to the following detailed description of the embodi
ments when considered in connection with the accompanying
figures, in which:

FIG. 1 illustrates an exemplary software package delivery
and management system including an administrator system,
in which various embodiments of the present teachings can be
practiced;

FIG. 2 illustrates an exemplary process for generating a
version identifier, according to various embodiments;

FIG. 3 illustrates an exemplary hardware configuration for
an administrator System, according to various embodiments;
and

FIG. 4 illustrates a flowchart of an exemplary process for
generating a version identifier, according to various embodi
mentS.

DETAILED DESCRIPTION OF EMBODIMENTS

For simplicity and illustrative purposes, the principles of
the present teachings are described by referring mainly to

10

15

25

30

35

40

45

50

55

60

65

2
exemplary embodiments thereof. However, one of ordinary
skill in the art would readily recognize that the same prin
ciples are equally applicable to, and can be implemented in,
all types of information and systems, and that any such varia
tions do not depart from the true spirit and scope of the present
teachings. Moreover, in the following detailed description,
references are made to the accompanying figures, which illus
trate specific embodiments. Electrical, mechanical, logical
and structural changes may be made to the embodiments
without departing from the spirit and scope of the present
teachings. The following detailed description is, therefore,
not to be taken in a limiting sense and the scope of the present
teachings is defined by the appended claims and their equiva
lents.

Embodiments of the present teachings relate to systems
and methods for managing computing systems and Software
packages installed on the computing systems. More particu
larly, an administrator system can utilize a version identifier
for the computing systems in order to track the Software
packages installed on the computing systems.

According to embodiments, an administrator system can
be configured to generate a version identifier for a computing
system based on the Software packages installed on a com
puting system. The version identifier can be generated to
represent the Software packages installed on the computing
system. In particular, the administrator System can be config
ured to include a version tool to generate the version identi
fier. The version tool can be configured to identify the soft
ware packages installed on the computing system and data
specific to the Software packages. For example, the specific
data can include a name of the Software package, an epoch of
the software package, a version of the software package, a
release of the software package, an arch of the Software pack
age, a checksum of the Software package, and a format of the
checksum. The version tool can be configured to identify the
Software packages and specific data by communicating with
a package manager installed on the computing system.

According to embodiments, once the Software packages
and specific data are identified, the version tool can be con
figured to order the Software packages and/or the specific
data. The version tool can be configured to order the specific
databased on an any ordering algorithm, such as alphabeti
cally based on the name of the software packages, hierarchi
cally based on the type of specific data, etc. Once ordered, the
version tool can be configured to apply a hash function to the
specific data to generate hashed data. The version tool can be
configured to utilize any type of hash function to generate
hashed data for example, Secure Hash Algorithm (SHA1,
SHA2, etc.).

According to embodiments, once the hashed data is gen
erated, the version tool can be configured to concentrate the
hashed data to generate the version identifier. In particular,
the version tool can be configured to concentrate the hashed
data according to the ordering of the Software packages and/
or ordering of the specific data. Once generated, the version
tool can be configured to store the version identifier and/or
provide the version identifier to the computing system.

According to embodiments, the administrator System can
utilize the version identifier for a variety of tasks. For
example, the administrator System can compare the version
identifier of the computing system to version identifier of
other computing systems to determine if the software pack
ages installed on the computing system match the Software
packages installed on the other computing systems. Addition
ally, the administrator system can utilize the version identifier
to determine if updates to the Software packages on the com
puting system will install properly.

US 8,799,890 B2
3

By utilizing the version tool, the administrator System can
generate a versionidentifier that represents the software pack
ages installed on the computing system. As such, the admin
istrator System can quickly and efficiently identify the Soft
ware packages installed on a computing system without
having to individually examine each Software package on the
computing system. Likewise, the administrator system can
quickly and efficiently confirm that a group of computing
systems have the same software packages installed.

FIG. 1 illustrates a Software package delivery and manage
ment system 100, according to various embodiments of the
present teachings. While FIG. 1 illustrates various compo
nents that can be included in the Software package delivery
and management system 100, one skilled in the art will realize
that additional components can be added or existing compo
nents can be removed.

In embodiments, as illustrated in FIG.1, the software pack
age delivery and management system 100 can be designed to
allow a computing system 102 to communicate with a soft
ware repository 104, via one or more networks 106, in order
to obtain and install one or more software packages 108. The
software repository 104 can be implemented as any type of
open-source or proprietary Software repository, which can
store the software packages 108 and provide the software
packages to computing Systems, such as the computing Sys
tem 102, requesting the Software packages via the one or
more networks 106. For example, the software repository 104
can be implemented as a Yum repository, DebianTM reposi
tory, or any other type of conventional Software repository.

In embodiments, as described herein, the Software pack
ages 108, can include one or more software programs that are
packaged together in a format that allows a package manger
or package installer to install the Software programs, con
tained in the Software packages 108, on the computing system
102. The software programs included in the software pack
ages 108 can be any type of software programs such as oper
ating systems (OS), application programs, and the like. The
Software packages 108 can also include metadata that
describes the Software package. Such as the name of the
Software package, the Software programs included in the
package, epoch, version, release and arch of the Software
package, description of the purpose of the Software package,
etc. The software packages 108 can also include metadata that
aids in the installation of the Software programs contained in
the Software packages 108, Such as checksums, format of the
checksums, and a list of dependencies of the Software pack
age. The checksums verify the integrity of the files of the
software packages 108 e.g. that the files of the software pack
ages 108 are complete and correct. The list of dependencies
can describe the relationship of the Software programs con
tained in the software packages 108 and any other software
programs, file, Software libraries, etc. required by the Soft
ware packages 108.

In embodiments, the software repository 104 can store the
Software packages 108 in any type of open-source or propri
etary format depending on the type of Software repository
104. For example, the software packages 108 can be in con
ventional formats such as RPM format for a Yum repository,
.deb format for a DebianTM repository, or other conventional
formats.

In embodiments, the Software package delivery and man
agement system 100 can also include one or more software
repository mirrors 109, coupled to the network 106. The
software repository mirrors 109 can be configured to main
tain copies of the software packages 108. The software
repository mirrors 109 can be configured to backup the soft
ware repository 104. For example, the software repository

10

15

25

30

35

40

45

50

55

60

65

4
mirrors 109 can provide the software packages 108 to com
puting systems, such as computing system 102, in the event
that the software repository 104 is unavailable or the software
repository 104 is experiencing high traffic.

In embodiments, the software repository 104 and the soft
ware repository mirrors 109 can be supported by any type of
computing system capable of storing the software packages
108, capable of communicating with the one or more net
works 106, and capable of running a repository application
for cooperating with a package manager or package installer
in order to deliver the software packages 108. For example,
the software repository 104 and the software repository mir
rors 109 can be supported by conventional computing sys
tems or other devices such as Such as servers, personal com
puters, laptop computers, network-enabled media devices,
networked stations, etc. AS Such, the computing system Sup
porting the software repository 104 and the software reposi
tory mirrors 109 can include conventional hardware such as
processors, memory, computer readable storage media and
devices (CD, DVD, hard drive, portable storage memory,
etc.), network devices, and the like.

In embodiments, the one or more networks 106 can be or
include the Internet, or other public or private networks. The
one or more networks 106 can be or include wired, wireless,
optical, and other network connections. One skilled in the art
will realize that the one or more networks 106 can be any type
of network, utilizing any type of communication protocol, to
connect computing systems.

In embodiments, the computing system 102 can be any
type of conventional computing system or other device Such
as Such as servers, personal computers, laptop computers,
network-enabled media devices, networked stations, etc. As
Such, the computing system 102 can include conventional
hardware such as processors, memory, computer readable
storage media and devices (CD, DVD, hard drive, portable
storage memory, etc.), network devices, and the like.

In embodiments, the computing system 102 can be config
ured to include a package manager 110. The package man
ager 110 can be configured to cooperate with the software
repository 104 to perform various actions associated with the
Software packages 108. For example, the package manager
110 can be configured to retrieve one or more of the software
packages 108 and configured to install the Software packages
on the computing system 102. Likewise, the package man
ager 110 can be configured to retrieve updates to software
packages 108, already installed on the computing system 102.
and install the updates on the computing system 102.

In embodiments, the package manager 110 can be config
ured to cooperate with manager tools 112 to perform actions
related to the software packages 108. For example, the man
ager tools 112 can be configured to installand update particu
lar application programs, files, or software libraries main
tained by the software repository 104. As such, the manager
tool 112 can be configured to provide a request to the package
manager 110 to perform the installation or update.

In embodiments, the package manager 110 can be config
ured to allow a user of the computing system 102 to request
the various actions associated with the software repository
104 to be performed. To achieve this, the package manager
110 can be configured to provide command line or graphical
user interfaces (GUIs) that allow the user to direct the pack
age manager 110 to perform the actions. For example, the
package manager 110 can provide GUIs that display the
Software packages 108, Such as new software packages and
Software package updates, available in the Software reposi
tory 104 and that allow the user to select the action to be
performed related to the software packages 108.

US 8,799,890 B2
5

In embodiments, in order to perform the various actions,
the package manager 110 can be configured to communicate
with the software repository 104 and retrieve data from the
software repository 104. For example, when providing the
GUIs to a user of the computing system 102, the package
manager 110 can retrieve a list of the software packages 108
from the software repository 104. Likewise, for example,
when installing or updating a particular software package
108, the package manager 110 can retrieve the particular
software package 108 and any other data associated with the
particular software package 108.

In embodiments, when performing the various actions, the
package manager 110 can be configured to utilize the meta
data associated with the software packages 108 in order to
perform the actions. For example, when installing a particular
Software package 108 or updating a particular Software pack
age 108, the package manager 110 can access the metadata
associated with the particular software packages 108 in order
to properly install or update the Software packages on the
computing system 102. For instance, the package manager
110 can utilize the checksums and the list of dependencies in
the metadata in order to identify and verify the software
programs, files, and software libraries that are affected. Addi
tionally, when performing the various actions, the package
manager 110 can be configured to store the metadata in a
database 114.

In embodiments, the package manager 110 can be any
application program that is capable of executing on the com
puting system 102 to perform the actions related to the soft
ware repository 104. For example, the package manager 110
can be any type of conventional open-source or proprietary
package manager Such as Yum package manager, DebianTM
package manager, and the like. The package manager 110 can
be stored on computer readable storage devices or media
(CD, DVD, hard drive, portable storage memory, etc.) of the
computing system 102 and executed by the computing system
102.

In embodiments, the Software package delivery and man
agement system 100 can also include an administrator system
116. The administrator system 116 can be configured to man
age the software repository 104, software repository mirrors
109, and/or the computing system 102 via the network 106.
For example, the administrator system 116 can be configured
to manage the software repository 104 and/or software
repository mirrors 109 and provide support to the computing
system 102 when installing the software packages 108. Like
wise, for example, the administrator System 116 can be con
figured to manage the computing system 102 to ensure that
the computing system 102 is properly configured and that the
correct Software packages 108 are installed on the computing
system 102.

In embodiments, the administrator System 116 can be any
type of computing system or other device Such as such as a
server, personal computer, laptop computer, network-enabled
media device, networked station, etc. The administrator sys
tem 116 can be coupled to the one or more networks 106 in
order to communicate with the computing systems 102, the
software repository 104, and the software repository mirrors
109.

In embodiments, the administrator system 116 can be con
figured to generate a version identifier for a computing system
based on the Software packages 108 installed on a computing
system 102. The version identifier can be data of fixed size
Such as a number, character string, etc., derived from the
Software packages installed on the computing system 102.
that provides a “snap shot' of the particular software pack

10

15

25

30

35

40

45

50

55

60

65

6
ages installed on the computing system 102. To achieve this,
the administrator System 116 can be configured to include a
version tool 118.

In embodiments, the version tool 118 can be implemented
as an application program that is capable of executing on the
administrator System 116 to perform the processes as
described herein. As such, the version tool 118 can be con
figured to include the necessary logic, commands, instruc
tions, and protocols in order to perform the methods and
processes described herein. Likewise, the version tool 118
can be implemented as a portion of another application pro
gram of the administrator system 116, such as the OS or
management Software. In either case, the version tool 118 can
be stored on computer readable storage devices or media
(CD, DVD, hard drive, portable storage memory, etc.) of the
administrator system 116 and executed by the administrator
system 116.

In embodiments, the version tool 118 can be configured to
identify particular software packages 108 installed on the
computing system 102. In particular, the version tool 118 can
be configured to identify the names of the particular software
packages 108 and data specific to the particular Software
packages 108 installed on the computing system 102. For
example, the specific data can include names of the Software
packages, epochs of the Software packages, versions of the
Software packages, releases of the Software packages, archs
of the Software packages, checksums of the Software package,
and formats of the checksums.

In embodiments, to identify the particular software pack
ages 108, the version tool 118 can be configured to commu
nicate with the package manager 110 installed on the com
puting system 102. To achieve this, the version tool 118 can be
configured to include the necessary logic, commands,
instructions, and protocols to communicate with the package
manager 110 via the network 106.

In embodiments, once the Software packages and specific
data are identified, the version tool 118 can be configured to
order the Software packages and/or the specific data. The
version tool 118 can be configured to order the software
packages and/or specific data based on any ordering algo
rithm, such as alphabetically based on the name of the soft
ware packages 108, hierarchically by Software package type
based on dependencies, hierarchically by the type of specific
data, and the like.

In embodiments, once ordered, the version tool 118 can be
configured to apply a hash function to the specific data to
generate hashed data. The version tool 118 can be configured
to utilize any type of hash function to generate hashed data on
a fixed size, for example, Secure Hash Algorithm (SHA1,
SHA2, etc.). Once the hashed data is generated, the version
tool 118 can be configured to concentrate the hashed data to
generate the version identifier. In particular, the version tool
118 can be configured to concentrate the hashed data accord
ing to the ordering of the Software packages and/or specific
data.

FIG. 2 illustrates an exemplary method for generating a
version identifier 200 utilizing the processes described above,
according to various embodiments. As illustrated in FIG. 2,
for example, the version tool 118 can identify four (4) par
ticular software packages 202 from the Software packages
108 that are installed on the computing system 102. Likewise,
the version tool 118 can identify the specific data 204 asso
ciated with the software packages 202. As illustrated, the
specific data 204 can be any type of data (numbers, character
strings, etc.) in any format that is specific to a Software pack
age and can be different data sizes (different number of bits).

US 8,799,890 B2
7

For example, “Package A' can be a version of Yum with the
specific data 204: package name—'yum, package epoch
“0”, package version "3.2.25”, package release “1.fc 12.
package arch—“noarch, package checksum type—
“sha256', package checksum—
“cc8623522dc4bble2c0856e58.f57 119a00a34abee79 128
bcfa3f7126936.

In embodiments, the version tool 118 can be configured to
order the software packages 202 and specific data 204 accord
ing to an order procedure 205, such as alphabetically by
Software package name, hierarchically by Software package
type based on dependencies, hierarchically by specific data
type based on dependencies, hierarchically based on Software
package version, and combinations thereof. The version tool
118 can be configured to order the software packages 202 so
that the software package 202 and/or specific data 204 order
is consistent each time a version identifier is generated. In
other words, the version tool 118 can order the software
packages 202 and/or specific data 204 such that, if a version
identifier was generated for a different computing which has
the same software packages, the version tool 118 would cre
ate the same version identifier.

In embodiments, the version tool 118 can be configured to
apply a hash function 206 to the specific data 204 to generate
the hashed data 208. As illustrated, the hash function 206 can
be any type of defined procedure or mathematical function
which converts large, possibly variable-sized data into fixed
output data size (number of bits).

In embodiments, the version tool 118 can be configured to
concentrate the hashed data 208 to generate the version iden
tifier 200. As illustrated, the version tool 118 can be config
ured to concentrate the hashed data 208 according to the order
procedure 205. As such, the version tool 118 can repeatably
generate the same version identifier 200 for the same set of
Software packages 202.

In embodiments, once generated, the version tool 118 can
be configured to store the version identifier. As illustrated in
FIG. 1, the version tool 118 can be configured to store the
version identifier in a version record 120. The version record
120 can be configured to include an identification of the
computing system 102 (e.g. name of the user of computing
system 102, network address of the computing system 102.
etc.), names of the software packages 108 installed on the
computing system 102, and the version identifier. The version
tool 118 can be configured to maintain the version record 120
in a repository 122. Such as a database. The repository 122 can
be stored on computer readable storage devices or media
(CD, DVD, hard drive, portable storage memory, etc.) of the
administrator system 116.

In embodiments, the version tool 118 can be configured to
provide the version identifier to the computing system 102.
For example, the version tool 118 can be configured to pro
vide the version identifier to the computing system 102 via the
network 106.

In embodiments, the administrator system 116 can utilize
the version identifier for a variety of tasks. For example, the
administrator system 116 can compare the version identifier
of the computing system 102 to version identifiers of other
computing systems (not shown) to determine if the Software
packages installed on the computing system 102 match the
Software packages installed on the other computing systems.
Additionally, the administrator system 116 can utilize the
version identifier to determine if updates to the software
packages on the computing system will install properly.

In embodiments, as described above, when communicat
ing with the computing systems 102, the Software repository
104, and/or the software repository mirrors 109, the admin

5

10

15

25

30

35

40

45

50

55

60

65

8
istrator System 116 can be configured to utilize any type of
network management application or tool, located separate
from or incorporated in the administrator system 116, to
securely communicate with the computing systems 102, to
monitor the state of the computing systems 102, to retrieve
and request data from the computing systems 102, and to
manage and direct the computing systems 102. For example,
the administrator system 116 can utilize a “FUNC server as
described in U.S. patent application Ser. No. 12/130,424,
filed May 30, 2008, entitled “SYSTEMS AND METHODS
FOR REMOTE MANAGEMENT OF NETWORKED SYS
TEMS USING SECURE MODULAR PLATFORM (U.S.
patent application Publication No. 8713177) assigned to Red
HatTM Corporation, the disclosure of which is incorporated
herein, in its entirety, by reference.

FIG. 3 illustrates an exemplary diagram of hardware and
other resources that can be incorporated in the administrator
system 116 and configured to communicate with the com
puter systems 102 via one or more networks 106, according to
embodiments. In embodiments as shown, the administrator
system 116 can comprise a processor 302 communicating
with memory 304. Such as electronic random access memory,
operating under control of or in conjunction with operating
system 306. Operating system 306 can be, for example, a
distribution of the Linux operating system, such as Red HatTM
Enterprise Linux, Fedora, etc., the UnixTM operating system,
or other open-source or proprietary operating system or plat
form. Processor 302 also communicates with one or more
computer readable storage devices or media 308, such as hard
drives, optical storage, and the like, for maintaining the oper
ating system 306, the version tool 118, and the repository 122.
Processor 302 further communicates with network interface
310, such as an Ethernet or wireless data connection, which in
turn communicates with one or more networks 106. Such as
the Internet or other public or private networks.

Processor 302 also communicates with the version tool 118
and the repository 122 to execute control logic and allow
performance of the processes as described herein. Other con
figurations of the administrator System 116, associated net
work connections, and otherhardware and Software resources
are possible.

While FIG. 3 illustrates the administrator system 116 as a
standalone system including a combination of hardware and
software, the administrator system 116 can include multiple
systems operating in cooperation. The version tool 118 can be
implemented as a software application or program capable of
being executed by the administrator system 116, as illus
trated, or other conventional computer platforms. Likewise,
the version tool 118 can also be implemented as a software
module or program module capable of being incorporated in
other software applications and programs, such as the oper
ating system of the administrator system 116 and/or com
bined in a single application or program. In any example, the
version tool 118 can be implemented in any type of conven
tional proprietary or open-source computer language. When
implemented as a Software application or program code, the
version tool 118 can be stored in a computer readable storage
medium, such as storage 308, accessible by the administrator
system 116. Likewise, during execution, a copy of the version
tool 118 can be stored in the memory 304.

FIG. 4 illustrates a flow diagram for generating a version
identifier, according to embodiments of the present teachings.
In 402, the process can begin. In 404, the administrator sys
tem 116 can identify the software packages installed on the
computing system 102 and the specific data associated with
the Software packages. The administrator tool 116 can com
municate with the package manager 110 in order to determine
the Software packages and the specific data.

US 8,799,890 B2

In 406, the administrator system 116 can order the software
packages and the specific data. The administrator system 116
can order the software packages and/or the specific data
according to an order procedure, such as alphabetically by
Software package name, hierarchically by Software package
type based on dependencies, hierarchically by type of specific
data, hierarchically by version of Software packages, and
combination thereof The administrator system 116 can order
the Software packages and/or the specific data so that the
Software package order is consistent each time a version
identifier is generated.

In 408, the administrator system 116 can apply a hash
function to the specific data to generate hashed data. The hash
function can be any type of defined procedure or mathemati
cal function which converts large, possibly variable-sized
data into fixed output data size (number of bits), such as SHA.

In 410, the administrator system 116 can concentrate the
hashed data to generate the version identifier. The adminis
trator System 116 can concentrate the hashed data according
to the order procedure. As such, the administrator System can
repeatably generate the same version identifier for the same
set of Software packages.

In 412, the administrator system 116 can store the version
identifier. The administrator system 116 can store the version
identifier in a version record 120 in the repository 122. The
version record 120 can be configured to include an identifi
cation of the computing system 102 (e.g. name of the user of
computing system 102, network address of the computing
system 102, etc.), names of the software packages 108
installed on the computing system 102, and the version iden
tifier.

In 414, the process can end, but the process can return to
any point and repeat.

Certain embodiments may be performed as a computer
application or program. The computer program may existina
variety of forms both active and inactive. For example, the
computer program can exist as Software program(s) com
prised of program instructions in source code, object code,
executable code or other formats; firmware program(s); or
hardware description language (HDL) files. Any of the above
can be embodied on a computer readable medium, which
include computer readable storage devices and media, and
signals, in compressed or uncompressed form. Exemplary
computer readable storage devices and media include con
ventional computer system RAM (random access memory),
ROM (read-only memory), EPROM (erasable, program
mable ROM), EEPROM (electrically erasable, program
mable ROM), and magnetic or optical disks or tapes. Exem
plary computer readable signals, whether modulated using a
carrier or not, are signals that a computer system hosting or
running the present teachings can be configured to access,
including signals downloaded through the Internet or other
networks. Concrete examples of the foregoing include distri
bution of executable software program(s) of the computer
program on a CD-ROM or via Internet download. In a sense,
the Internet itself, as an abstract entity, is a computer readable
medium. The same is true of computer networks in general.

While the teachings have been described with reference to
the exemplary embodiments thereof, those skilled in the art
will be able to make various modifications to the described
embodiments without departing from the true spirit and
scope. The terms and descriptions used herein are set forth by
way of illustration only and are not meant as limitations. In
particular, although the method has been described by
examples, the steps of the method may be performed in a
different order than illustrated or simultaneously. Further
more, to the extent that the terms “including”, “includes”,

10

15

25

30

35

40

45

50

55

60

65

10
“having”, “has”, “with, or variants thereofare used in either
the detailed description and the claims, such terms are
intended to be inclusive in a manner similar to the term
“comprising.” As used herein, the term “one or more of with
respect to a listing of items such as, for example, A and B,
means A alone, B alone, or A and B. Those skilled in the art
will recognize that these and other variations are possible
within the spirit and scope as defined in the following claims
and their equivalents.

What is claimed is:
1. A method comprising:
identifying first data specific to a first software package and

second data specific to a second software package;
applying, by a processor, a hash function to the first data to

generate first hashed data;
applying, by the processor, the hash function to the second

data to generate second hashed data;
combining at least the first hashed data and the second

hashed data to generate a set of hashed data;
generating, by the processor, a version identifier based on

the set of hashed data; and
storing the version identifier.
2. The method of claim 1, wherein generating the version

identifier comprises compressing the set of hashed data.
3. The method of claim 1, the method further comprising

ordering the set of hashed data.
4. The method of claim 3, wherein generating the version

identifier comprises concatenating the set of hashed data
according to the ordering.

5. The method of claim 1, wherein the first data comprises
at least one of a name of the software package, an epoch of the
Software package, a version of the software package, a release
of the Software package, an arch of the Software package, a
checksum of the Software package, or a format of the check
Sl.

6. The method of claim 1, wherein the hash function is a
Secure Hash Algorithm.

7. The method of claim 1, further comprising providing the
version identifier.

8. A computer readable storage medium comprising
instructions for causing a processor to perform operations
comprising:

identifying first data specific to a first software package and
second data specific to a second software package;

applying, by the processor, a hash function to the first data
to generate first hashed data;

applying, by the processor, the hash function to the second
data to generate second hashed data;

combining at least the first hashed data and second hashed
data to generate a set of hashed data;

generating, by the processor, a version identifier based on
the set of hashed data comprising at least the first hashed
data and the second hashed data; and

storing the version identifier.
9. The computer readable storage medium of claim 8.

wherein generating the version identifier comprises com
pressing the set of hashed data.

10. The computer readable storage medium of claim 8, the
operations further comprising ordering the set of hashed data.

11. The computer readable storage medium of claim 10,
wherein generating the version identifier comprises concat
enating the set of hashed data according to the ordering.

12. The computer readable storage medium of claim 8.
wherein the first data comprises at least one of a name of the
Software package, an epoch of the Software package, a ver
sion of the Software package, a release of the Software pack

US 8,799,890 B2
11

age, an arch of the Software package, a checksum of the
Software package, or a format of the checksum.

13. The computer readable storage medium of claim 8,
wherein the hash function is a Secure Hash Algorithm.

14. The computer readable storage medium of claim 8, the
operations further comprising providing the version identi
fier.

15. A system comprising:
a memory; and
a processor coupled to the memory and to:

identify first data specific to a first software package and
second data specific to a second Software package;

apply a hash function to the first data to generate first
hashed data;

apply the hash function to the second data to generate
second hashed data;

combine at least the first hashed data and second hashed
data to generate a set of hashed data;

generate a versionidentifier based on a set of hashed data
comprising at least the first hashed data and the sec
ond hashed data; and

store the version identifier.

10

15

12
16. The system of claim 15, wherein the processor is to

generate the version identifier by compressing the set of
hashed data.

17. The system of claim 15, the processor is further to order
the set of hashed data.

18. The system of claim 17, wherein the processor is to
generate the version identifier by concatenating the set of
hashed data according to the ordering.

19. The system of claim 15, wherein the first data com
prises at least one of a name of the Software package, an epoch
of the software package, a version of the Software package, a
release of the software package, an arch of the Software pack
age, a checksum of the Software package, or a format of the
checksum.

20. The system of claim 15, wherein the processor is fur
ther to provide the version identifier.

21. The method of claim 1, wherein the version identifier
represents the first and second software packages.

22. The computer readable storage medium of claim 8.
wherein the version identifier represents the first and second
Software packages.

23. The system of claim 15, wherein the version identifier
represents the first and second software packages.

k k k k k

