
(12) INTERNATIONAL APPLICATION PUBLISHED UNDER THE PATENT COOPERATION TREATY (PCT)

(19) World Intellectual Property Organization

International Bureau

(10) International Publication Number WO 2023/009656 A1

- (51) International Patent Classification: A61K 38/39 (2006.01) A61P 17/00 (2006.01)
 - A61P 17/02 (2006.01)

(21) International Application Number: PCT/US2022/038568

(22) International Filing Date:

27 July 2022 (27.07.2022)

(25) Filing Language:

English

(26) Publication Language:

English

(30) Priority Data: 63/226,591

28 July 2021 (28.07.2021)

US

- (71) **Applicant: GELTOR, INC.** [US/US]; 5400 Hollis Street, Emeryville, California 94608 (US).
- (72) Inventors: OUZOUNOV, Nikolay; 5400 Hollis Street, Emeryville, California 94608 (US). MELLIN, Jeffrey R.; 5400 Hollis Street, Emeryville, California 94608 (US). CO, Julia; 5400 Hollis Street, Emeryville, California 94608 (US).

- (74) Agent: BARKER, Adrian; Wilson Sonsini Goodrich & Rosati, 650 Page Mill Road, Palo Alto, California 94304 (US)
- (81) Designated States (unless otherwise indicated, for every kind of national protection available): AE, AG, AL, AM, AO, AT, AU, AZ, BA, BB, BG, BH, BN, BR, BW, BY, BZ, CA, CH, CL, CN, CO, CR, CU, CV, CZ, DE, DJ, DK, DM, DO, DZ, EC, EE, EG, ES, FI, GB, GD, GE, GH, GM, GT, HN, HR, HU, ID, IL, IN, IQ, IR, IS, IT, JM, JO, JP, KE, KG, KH, KN, KP, KR, KW, KZ, LA, LC, LK, LR, LS, LU, LY, MA, MD, ME, MG, MK, MN, MW, MX, MY, MZ, NA, NG, NI, NO, NZ, OM, PA, PE, PG, PH, PL, PT, QA, RO, RS, RU, RW, SA, SC, SD, SE, SG, SK, SL, ST, SV, SY, TH, TJ, TM, TN, TR, TT, TZ, UA, UG, US, UZ, VC, VN, WS, ZA, ZM, ZW.
- (84) Designated States (unless otherwise indicated, for every kind of regional protection available): ARIPO (BW, GH, GM, KE, LR, LS, MW, MZ, NA, RW, SD, SL, ST, SZ, TZ, UG, ZM, ZW), Eurasian (AM, AZ, BY, KG, KZ, RU, TJ, TM), European (AL, AT, BE, BG, CH, CY, CZ, DE, DK, EE, ES, FI, FR, GB, GR, HR, HU, IE, IS, IT, LT, LU, LV, MC, MK, MT, NL, NO, PL, PT, RO, RS, SE, SI, SK, SM,

(54) Title: PHARMACEUTICAL COMPOSITIONS AND METHODS FOR TREATING CONNECTIVE TISSUE CONDITIONS WITH COLLAGEN POLYPEPTIDES

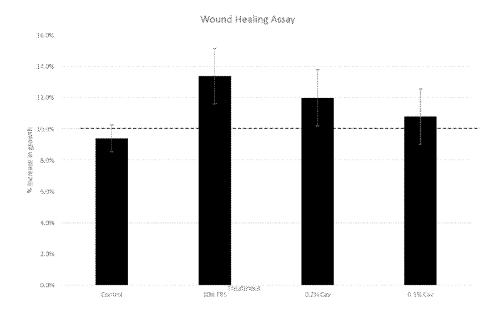


FIG. 8

(57) **Abstract:** Provided herein are therapeutic compositions comprising non-naturally occurring collagen polypeptides, preferably those derived from Amur sturgeon (*Acipenser schrenckii*), for the treatment of wounds and proliferative disorders of the skin.

TR), OAPI (BF, BJ, CF, CG, CI, CM, GA, GN, GQ, GW, KM, ML, MR, NE, SN, TD, TG).

Published:

— with international search report (Art. 21(3))

PHARMACEUTICAL COMPOSITIONS AND METHODS FOR TREATING CONNECTIVE TISSUE CONDITIONS WITH COLLAGEN POLYPEPTIDES

CROSS-REFERENCE

[0001] This application claims the benefit of U.S. Provisional Application No. 63/226,591, filed July 28, 2021, which application is incorporated herein by reference in its entirety.

BACKGROUND

[0002] Collagen is one of the most abundant proteins found in various connective tissues in the body including tendons, ligaments, skin, and hair. Collagens or collagen supplements are popular in medical, cosmetic, and/or health purposes (e.g., stimulating skin growth, promoting wound healing, strengthening nails or joints, etc.). Collagens for most collagen supplements are derived from animals as a byproduct of the animal processing industry. Yet, such animal-derived collagens may increase the risk of illness transmission as well as allergies. Moreover, certain consumers are generally interested in animal-free products for a variety of other reasons. Thus, there remains a need for improved compositions and methods of collagens derived from non-animal sources.

SUMMARY

[0003] In one aspect, a method of treating a wound in a subject is provided, the method comprising: administering to the subject a therapeutically effective amount of a polypeptide comprising or consisting of an amino acid sequence having at least 80% sequence identity to SEQ ID NO: 32, or a polypeptide comprising or consisting of an amino acid sequence having at least 80% sequence identity to a truncate of SEQ ID NO: 32, thereby treating the wound. In some embodiments, the wound exhibits impaired wound healing. In some embodiments, the administering comprises administering the polypeptide to the wound or to skin adjacent to the wound.

[0004] In another aspect, a method of treating a proliferative disorder of the skin is provided, the method comprising: administering to the subject a therapeutically effective amount of a polypeptide comprising or consisting of an amino acid sequence having at least 80% sequence identity to SEQ ID NO: 32, or a polypeptide comprising or consisting of an amino acid sequence having at least 80% sequence identity to a truncate of SEQ ID NO: 32, thereby treating the proliferative disorder of the skin, wherein the proliferative disorder of the skin is characterized by abnormal proliferation, migration, and/or adhesion of skin cells (e.g., fibroblasts, keratinocytes). In some embodiments, the abnormal proliferation, migration, and/or adhesion is decreased or reduced proliferation, migration, and/or adhesion. In some embodiments, the skin condition is

epidermal thinning, epidermal atrophy, dermal atrophy, epidermal degeneration, acantholysis, pemphigus foliaceus, pemphigus vulgaris, acantholytic dyskeratosis, Darier disease, Hailey-Hailey disease, Grover disease, lichen sclerosus, hyalinisation of collagen, or a combination thereof.

[0005] In any of the preceding embodiments, the polypeptide comprises or consists of an amino acid sequence having at least 85% sequence identity to SEQ ID NO: 32, or comprises or consists of an amino acid sequence having at least 85% sequence identity to a truncate of SEQ ID NO: 32. In any of the preceding embodiments, the polypeptide comprises or consists of an amino acid sequence having at least 90% sequence identity to SEQ ID NO: 32, or comprises or consists of an amino acid sequence having at least 90% sequence identity to a truncate of SEQ ID NO: 32. In any of the preceding embodiments, the polypeptide comprises or consists of an amino acid sequence having at least 95% sequence identity to SEQ ID NO: 32, or comprises or consists of an amino acid sequence having at least 95% sequence identity to a truncate of SEQ ID NO: 32. In any of the preceding embodiments, the polypeptide comprises or consists of an amino acid sequence having at least 98% sequence identity to SEQ ID NO: 32, or comprises or consists of an amino acid sequence having at least 98% sequence identity to a truncate of SEQ ID NO: 32. In any of the preceding embodiments, the polypeptide comprises or consists of an amino acid sequence having 100% sequence identity to SEQ ID NO: 32, or comprises or consists of an amino acid sequence having 100% sequence identity to a truncate of SEQ ID NO: 32. In any of the preceding embodiments, the truncate of SEO ID NO: 32 comprises an N-terminal truncation, a Cterminal truncation, or both, relative to SEQ ID NO: 32. In any of the preceding embodiments, the N-terminal truncation is an N-terminal truncation of 50 amino acids to 750 amino acids relative to SEQ ID NO: 32. In any of the preceding embodiments, the C-terminal truncation is a C-terminal truncation of 50 amino acids to 600 amino acids relative to SEQ ID NO: 32. In any of the preceding embodiments, the polypeptide comprises or consists of the amino acid sequence of SEQ ID NO: 8. In any of the preceding embodiments, the polypeptide has a total truncation of 50 amino acids to 1250 amino acids. In any of the preceding embodiments, the polypeptide is at least 50 amino acids in length. In any of the preceding embodiments, the polypeptide is 50 amino acids to 250 amino acids in length. In any of the preceding embodiments, the polypeptide does not comprise one or more of: a laminin G domain, a Von Willebrand factor type A (vWA) domain, and a fibrillar collagen C-terminal domain. In any of the preceding embodiments, the polypeptide comprises one or more collagen triple helix repeats. In any of the preceding embodiments, the polypeptide is monomeric. In any of the preceding embodiments, the polypeptide does not form a stable triple helix structure of a naturally occurring collagen. In any of the preceding

embodiments, the polypeptide is substantially free of other collagen chains. In any of the preceding embodiments, the polypeptide has a non-naturally occurring level of hydroxylation relative to a naturally-occurring collagen. In any of the preceding embodiments, fewer than 10% of prolines present in the polypeptide are hydroxylated. In any of the preceding embodiments, the polypeptide is non-hydroxylated. In any of the preceding embodiments, the polypeptide has a nonnaturally occurring level of glycosylation relative to a naturally-occurring collagen. In any of the preceding embodiments, the polypeptide comprises less than 5 wt. % glycosylation. In any of the preceding embodiments, the polypeptide is administered as a pharmaceutical composition. In any of the preceding embodiments, the pharmaceutical composition further comprises a pharmaceutically acceptable excipient. In any of the preceding embodiments, the pharmaceutically acceptable excipient is selected from the group consisting of: an antiadherent, a binder, a coating, a color, a disintegrant, a flavor, a glidant, a lubricant, a preservative, a sorbent, a vehicle, and any combination thereof. In any of the preceding embodiments, the pharmaceutical composition is formulated for topical administration. In any of the preceding embodiments, the pharmaceutical composition is formulated as a gel, a cream, a lotion, an oil, a foam, an ointment, a serum, and any combination thereof. In any of the preceding embodiments, after the administering, keratinocyte growth and/or regeneration in the skin is increased (e.g., relative to prior to the administering) by at least about 5%, at least about 10%, at least about 15%, at least about 20%, at least about 25%, at least about 30%, at least about 35%, at least about 40%, at least about 45%, at least about 50%, at least about 55%, at least about 60%, at least about, at least about 65%, at least about 70%, or at least about 75%. In any of the preceding embodiments, after the administering, collagen production in the skin is increased (e.g., relative to prior to the administering) by at least about 5%, at least about 10%, at least about 15%, at least about 20%, at least about 25%, at least about 30%, at least about 35%, at least about 40%, at least about 45%, at least about 50%, at least about 55%, at least about 60%, at least about, at least about 65%, at least about 70%, or at least about 75%. In any of the preceding embodiments, after the administering, fibroblast migration, proliferation, and/or adhesion in the skin is increased (e.g., relative to prior to the administering) by at least about 5%, at least about 10%, at least about 15%, at least about 20%, at least about 25%, at least about 30%, at least about 35%, at least about 40%, at least about 45%, at least about 50%, at least about 55%, at least about 60%, at least about, at least about 65%, at least about 70%, or at least about 75%. In any of the preceding embodiments, after the administering, keratinocyte viability after exposure to urban dust is increased (e.g., relative to prior to the applying) by at least about 5%, at least about 10%, at least about 15%, at least about 20%, at least about 25%, at least about 30%, at least about 35%, at least about 40%, at least about 45%,

at least about 50%, at least about 55%, at least about 60%, at least about, at least about 65%, at least about 70%, or at least about 75%. In any of the preceding embodiments, after the administering, expression (e.g., by keratinocytes, fibroblasts) of one or more genes involved in a signaling pathway selected from the group consisting of: VEGFA/VEGFR2 signaling pathway, focal adhesion signaling pathway, endothelin signaling pathway, EGF/EGFR signaling pathway, TGF-beta signaling pathway, and any combination thereof, is increased. In any of the preceding embodiments, the one or more genes involved in VEGFA/VEGFR2 signaling pathway is selected from the group consisting of: MYOC1, FLII, ROCK1, ROCK2, CLTC, LIMK 1, EGR1, and any combination thereof. In any of the preceding embodiments, the one or more genes involved in focal adhesion signaling pathway is selected from the group consisting of: ITGA3, TNC, LAMC1, FLNA, TLN1, ZYX, DIAPH1, and any combination thereof. In any of the preceding embodiments, the one or more genes involved in endothelin signaling pathway is selected from the group consisting of: TRIOBP, WNK1, MMP2, VCAN, ACTA2, GNA12, EGR1, and any combination thereof. In any of the preceding embodiments, the one or more genes involved in EGF/EGFR signaling pathway is selected from the group consisting of: ATXN2, JAK1, RPS6KA2, ROCK1, SHC1, IQGAP1, PLCG1, and any combination thereof. In any of the preceding embodiments, the one or more genes involved in TGF-beta signaling pathway is selected from the group consisting of: SMURF1, SPTBN1, PAK2, ROCK1, SHC1, TGFBR3, TGFBR1, and any combination thereof.

[0006] In another aspect, a pharmaceutical composition is provided comprising a polypeptide comprising or consisting of an amino acid sequence having at least 80% sequence identity to SEQ ID NO: 32, or a polypeptide comprising or consisting of an amino acid sequence having at least 80% sequence identity to a truncate of SEQ ID NO: 32; and a pharmaceutically acceptable excipient. In some embodiments, the polypeptide comprises or consists of an amino acid sequence having at least 85% sequence identity to SEQ ID NO: 32, or comprises or consists of an amino acid sequence having at least 85% sequence identity to a truncate of SEQ ID NO: 32. In some embodiments, the polypeptide comprises or consists of an amino acid sequence having at least 90% sequence identity to a truncate of SEQ ID NO: 32. In some embodiments, the polypeptide comprises or consists of an amino acid sequence having at least 95% sequence identity to SEQ ID NO: 32, or comprises or consists of an amino acid sequence having at least 95% sequence identity to a truncate of SEQ ID NO: 32. In some embodiments, the polypeptide comprises or consists of an amino acid sequence having at least 95% sequence identity to a truncate of SEQ ID NO: 32. In some embodiments, the polypeptide comprises or consists of an amino acid sequence having at least 98% sequence identity to SEQ ID NO: 32, or comprises or consists of an amino acid sequence having at least 98% sequence identity to SEQ ID NO: 32, or comprises or consists of an amino acid sequence having at least 98% sequence identity

to a truncate of SEQ ID NO: 32. In some embodiments, the polypeptide comprises or consists of an amino acid sequence having 100% sequence identity to SEQ ID NO: 32, or comprises or consists of an amino acid sequence having 100% sequence identity to a truncate of SEQ ID NO: 32. In some embodiments, the truncate of SEQ ID NO: 32 comprises an N-terminal truncation, a C-terminal truncation, or both, relative to SEQ ID NO: 32. In some embodiments, the N-terminal truncation is an N-terminal truncation of 50 amino acids to 750 amino acids relative to SEQ ID NO: 32. In some embodiments, the C-terminal truncation is a C-terminal truncation of 50 amino acids to 600 amino acids relative to SEQ ID NO: 32. In some embodiments, the polypeptide comprises or consists of the amino acid sequence of SEQ ID NO: 8. In some embodiments, the polypeptide has a total truncation of 50 amino acids to 1250 amino acids. In some embodiments, the polypeptide is at least 50 amino acids in length. In some embodiments, the polypeptide is 50 amino acids to 250 amino acids in length. In some embodiments, the polypeptide does not comprise one or more of: a laminin G domain, a Von Willebrand factor type A (vWA) domain, and a fibrillar collagen C-terminal domain. In some embodiments, the polypeptide comprises one or more collagen triple helix repeats. In some embodiments, the polypeptide is monomeric. In some embodiments, the polypeptide does not form a stable triple helix structure of a naturally occurring collagen. In some embodiments, the polypeptide is substantially free of other collagen In some embodiments, the polypeptide has a non-naturally occurring level of chains. hydroxylation relative to a naturally-occurring collagen. In some embodiments, fewer than 10% of prolines present in the polypeptide are hydroxylated. In some embodiments, the polypeptide is non-hydroxylated. In some embodiments, the polypeptide has a non-naturally occurring level of glycosylation relative to a naturally-occurring collagen. In some embodiments, the polypeptide comprises less than 5 wt. % glycosylation. In some embodiments, the pharmaceutically acceptable excipient is selected from the group consisting of: an antiadherent, a binder, a coating, a color, a disintegrant, a flavor, a glidant, a lubricant, a preservative, a sorbent, a vehicle, and any combination thereof. In some embodiments, the pharmaceutical composition is formulated for topical administration. In some embodiments, the pharmaceutical composition is formulated as a gel, a cream, a lotion, an oil, a foam, an ointment, a serum, and any combination thereof.

[0007] Additional aspects and advantages of the present disclosure will become readily apparent to those skilled in this art from the following detailed description, wherein only illustrative embodiments of the present disclosure are shown and described. As will be realized, the present disclosure is capable of other and different embodiments, and its several details are capable of modifications in various obvious respects, all without departing from the disclosure. Accordingly, the drawings and description are to be regarded as illustrative in nature, and not as restrictive.

BRIEF DESCRIPTION OF THE DRAWINGS

[0008] The novel features of the subject matter disclosed herein are set forth with particularity in the appended claims. A better understanding of the features and advantages of the subject matter disclosed herein will be obtained by reference to the following detailed description that sets forth illustrative embodiments, in which the principles of the subject matter disclosed herein are utilized, and the accompanying drawings of which:

- [0009] FIG. 1 depicts alignment of non-naturally occurring polypeptides of the disclosure with corresponding naturally occurring collagens. FIG. 1 discloses SEQ ID NO: 33 (a subsection of SEQ ID NO: 31).
- [0010] FIG. 2 depicts alignment of non-naturally occurring polypeptides of the disclosure with corresponding naturally occurring collagens. FIG. 2 discloses SEQ ID NO: 34 (a subsection of SEQ ID NO: 32).
- [0011] FIG. 3 depicts an image of two SDS-PAGE gels showing bands of collagen proteins in supernatant samples from microbial cell cultures. The identities of each protein are indicated above each band.
- [0012] FIGS. 4A-4C depict images of SDS-PAGE gels showing bands of non-naturally occurring polypeptides of the disclosure before and after pH 3.0 treatment.
- [0013] FIGS. 5A-5C depict viability of an immortalized human keratinocyte cell line, human primary fibroblasts, and human primary keratinocytes after exposure to an exemplary non-naturally occurring polypeptide of the disclosure.
- [0014] FIG. 6 depicts a dose-dependent increase in proliferation of human primary keratinocytes after exposure to an exemplary non-naturally occurring polypeptide of the disclosure.
- [0015] FIG. 7 depicts a dose-dependent increase in collagen I production by primary human fibroblasts after exposure to an exemplary non-naturally occurring polypeptide of the disclosure.
- [0016] FIG. 8 depicts wound healing activity of human dermal fibroblasts after exposure to an exemplary non-naturally occurring polypeptide of the disclosure.

DETAILED DESCRIPTION

[0017] The terminology used herein is for the purpose of describing particular cases only and is not intended to be limiting. As used herein, the singular forms "a", "an", and "the" are intended to include the plural forms as well, unless the context clearly indicates otherwise. Furthermore, to the extent that the terms "including", "includes", "having", "has", "with", or variants thereof are used in either the detailed description and/or the claims, such terms are intended to be inclusive in a manner similar to the term "comprising".

[0018] The terms "about" or "approximately" mean within an acceptable error range for the particular value as determined by one of ordinary skill in the art, which will depend in part on how the value is measured or determined, e.g., the limitations of the measurement system. For example, "about" can mean within 1 or more than 1 standard deviation, per the practice in the given value. Where particular values are described in the application and claims, unless otherwise stated the term "about" should be assumed to mean an acceptable error range for the particular value.

[0019] The terms "individual", "patient", or "subject" are used interchangeably herein. None of the terms require or are limited to a situation characterized by the supervision (e.g., constant or intermittent) of a health care worker (e.g., a doctor, a registered nurse, a nurse practitioner, a physician's assistant, an orderly, or a hospice worker).

[0020] As used herein, the term "comprise" or variations thereof such as "comprises" or "comprising" are to be read to indicate the inclusion of any recited feature but not the exclusion of any other features. Thus, as used herein, the term "comprising" is inclusive and does not exclude additional, unrecited features. In some embodiments of any of the compositions and methods provided herein, "comprising" may be replaced with "consisting essentially of" or "consisting of". The phrase "consisting essentially of" is used herein to require the specified feature(s) as well as those which do not materially affect the character or function of the claimed disclosure. As used herein, the term "consisting" is used to indicate the presence of the recited feature alone.

[0021] Throughout this disclosure, various embodiments are presented in a range format. It should be understood that the description in range format is merely for convenience and brevity and should not be construed as an inflexible limitation on the scope of any embodiments. Accordingly, the description of a range should be considered to have specifically disclosed all the possible subranges as well as any individual numerical values within that range to the tenth of the unit of the lower limit unless the context clearly dictates otherwise. For example, description of a range such as from 1 to 6 should be considered to have specifically disclosed subranges such as from 1 to 3, from 1 to 4, from 1 to 5, from 2 to 4, from 2 to 6, from 3 to 6, etc., as well as any individual values within that range, for example, 1.1, 2, 2.3, 5, and 5.9. This applies regardless of the breadth of the range. The upper and lower limits of these intervening ranges may independently be included in the smaller ranges, and are also encompassed within the disclosure, subject to any specifically excluded limit in the stated range. Where the stated range includes one or both of the limits, ranges excluding either or both of those included limits are also included in the disclosure, unless the context clearly dictates otherwise.

[0022] The terms "treatment" or "treating" are used herein interchangeably. These terms refer to an approach for obtaining beneficial or desired results including but not limited to therapeutic

benefit and/or a prophylactic benefit. By "therapeutic benefit" is meant eradication or amelioration of the underlying disorder being treated. Also, a therapeutic benefit is achieved with the eradication or amelioration of one or more of the physiological symptoms associated with the underlying disorder such that an improvement is observed in the subject, notwithstanding that the subject is still afflicted with the underlying disorder. For prophylactic benefit, the compositions are, in some embodiments, administered to a subject at risk of developing a particular disease or condition, or to a subject reporting one or more of the physiological symptoms of a disease, even though a diagnosis of this disease has not been made.

[0023] The term "pharmaceutically acceptable" is employed herein to refer to those compounds, materials, compositions, and/or dosage forms which are, within the scope of sound medical judgment, suitable for use in contact with the tissues of human beings and animals without excessive toxicity, irritation, allergic response, or other problem or complication, commensurate with a reasonable benefit/risk ratio.

[0024] The terms "pharmaceutically acceptable excipient" or "pharmaceutically acceptable carrier" are used interchangeably herein and refer to a pharmaceutically acceptable material, composition, or vehicle, such as a liquid or solid filler, diluent, excipient, solvent or encapsulating material. Each carrier must be "acceptable" in the sense of being compatible with the other ingredients of the formulation and not injurious to the patient. Some examples of materials which can serve as pharmaceutically acceptable carriers include: (1) sugars, such as lactose, glucose and sucrose; (2) starches, such as corn starch and potato starch; (3) cellulose, and its derivatives, such as sodium carboxymethyl cellulose, ethyl cellulose and cellulose acetate; (4) powdered tragacanth; (5) malt; (6) gelatin; (7) talc; (8) excipients, such as cocoa butter and suppository waxes; (9) oils, such as peanut oil, cottonseed oil, safflower oil, sesame oil, olive oil, corn oil and soybean oil; (10) glycols, such as propylene glycol; (11) polyols, such as glycerin, sorbitol, mannitol and polyethylene glycol; (12) esters, such as ethyl oleate and ethyl laurate; (13) agar; (14) buffering agents, such as magnesium hydroxide and aluminum hydroxide; (15) alginic acid; (16) pyrogen-free water; (17) isotonic saline; (18) Ringer's solution; (19) ethyl alcohol; (20) phosphate buffer solutions; and (21) other non-toxic compatible substances employed in pharmaceutical formulations.

[0025] The term "truncated collagen" as used herein generally refers to a polypeptide that is smaller than a full-length (e.g., natural) collagen wherein one or more portions of the full-length (e.g., natural) collagen is not present. The non-naturally occurring polypeptides provided herein may be truncated at the C-terminal end, the N-terminal end, truncated by removal of internal portion(s) of the full-length collagen sequence (e.g., an internal truncation), truncated at both the

C-terminal end and the N-terminal end, or may have one or both of a C-terminal truncation and an N-terminal truncation as well as an internal truncation. In a non-limiting embodiment, a truncated collagen may comprise an amino acid sequence according to SEQ ID NO: 2, or a homolog thereof. In another non-limiting embodiment, a truncated collagen may comprise an amino acid sequence according to SEQ ID NO: 8, or a homolog thereof.

[0026] When used in reference to an amino acid position, a "truncation" is inclusive of said amino acid position. For example, an N-terminal truncation at amino acid position 100 relative to a full-length polypeptide means a truncation of 100 amino acids from the N-terminus of the full-length polypeptide (i.e., the truncated polypeptide is missing amino acid positions 1 through 100 of the full-length polypeptide). Similarly, a C-terminal truncation at amino acid position 901 of a full-length polypeptide (assuming a 1000 amino acid full-length polypeptide) means a truncation of 100 amino acids from the C-terminus (i.e., the truncated polypeptide is missing amino acid positions 901 through 1000 of the full-length polypeptide). Similarly, an internal truncation at amino acid positions 101 and 200 means an internal truncation of 100 amino acids of the full-length polypeptide (i.e., the truncated polypeptide is missing amino acid positions 101 to 200 of the full-length polypeptide).

[0027] The section headings used herein are for organizational purposes only and are not to be construed as limiting the subject matter described.

[0028] Provided herein, in certain embodiments, are compositions (e.g., pharmaceutical compositions) and methods for treating various skin disorders, diseases, and/or conditions. The skin disorders, diseases, and/or conditions may be, in some cases, characterized by abnormal or impaired wound healing. The skin disorders, diseases, and/or conditions may be, in some cases, characterized by impaired keratinocyte and/or fibroblast proliferation, migration, and/or adhesion. The compositions (e.g., pharmaceutical compositions) and methods provided herein generally involve the use of any polypeptide provided herein. In a non-limiting example, the polypeptide comprises or consists of an amino acid sequence having at least 80% sequence identity to SEQ ID NO: 32, or comprises or consists of an amino acid sequence having at least 80% sequence identity to a truncate of SEQ ID NO: 32 (e.g., as described herein).

[0029] Further provided in certain embodiments herein are, by way of non-limiting example, compositions, methods, and systems for manufacturing non-naturally occurring polypeptides, such as, e.g., animal-free collagen polypeptides or collagen-like polypeptides, as well as collagen fragments, and/or truncated collagens, such as that are expressed in and/or by genetically engineered microorganisms. Thus, in various aspects of the disclosure, the non-naturally occurring polypeptides provided herein include collagen or collagen-like polypeptides,

recombinant collagens, collagen fragments, or truncated collagens. In certain embodiments, the non-naturally occurring polypeptides described herein (e.g., recombinant collagens, collagen fragments, or truncated collagens) are derived from any suitable source, such as from mammalian or non-mammalian sources. For example, in some embodiments, the non-naturally occurring polypeptides described herein (e.g., recombinant collagens, collagen fragments, or truncated collagens), or at least a portion thereof, are derived from (e.g., modified, truncated, fragments of, or the like) collagens of a bird or an avian animal (e.g., *Gallus gallus* collagen), a freshwater- or saltwater-fish (e.g., *Acipenser schrenckii* collagen), or any combination thereof.

[0030] The non-naturally occurring polypeptides provided herein are not normally found in nature. Generally, the non-naturally occurring polypeptides described herein exhibit one or more differences from naturally occurring collagens. In certain aspects, the non-naturally occurring polypeptides provided herein may have a different amino acid sequence from naturally occurring polypeptides (e.g., a truncated collagen). In some cases, the non-naturally occurring polypeptides may have a different structure from a naturally occurring collagen. The quaternary structure of natural collagen is a triple helix, typically composed of three polypeptides. In some aspects, the non-naturally occurring polypeptides described herein may not have or may not form a quaternary structure of natural collagen. For example, in some instances, the non-naturally occurring polypeptides described herein may not form the stable triple helical structure of naturally occurring collagen. In certain instances, of the three polypeptides that form natural collagen, two are usually identical and are designated as the alpha chain. The third polypeptide is designated as the beta chain. In certain instances, a typical natural collagen can be designated as AAB, wherein the collagen is composed of two alpha ("A") strands and one beta ("B") strand. In some aspects, the non-naturally occurring polypeptides described herein do not have the AAB structure of natural collagen. In some instances, the non-naturally occurring polypeptides described herein are free from or substantially free from different collagen chains (e.g., a nonnaturally occurring polypeptide described herein may comprise an alpha chain collagen and may be free or substantially free from a beta chain collagen). In some aspects, the non-naturally occurring polypeptides described herein are monomeric and/or do not form multimeric structures. In other aspects, the non-naturally occurring polypeptides described herein may, in some instances, form multimeric structures with identical monomers (e.g., homodimers, homotrimers, etc.).

[0031] In some aspects, the non-naturally occurring polypeptides are recombinant polypeptides (e.g., prepared recombinantly in a host cell). The non-naturally occurring polypeptide is, in one embodiment, a truncated collagen. Other non-naturally occurring collagen polypeptides include

chimeric collagens. A chimeric collagen is a polypeptide wherein one portion of a collagen polypeptide is contiguous with a portion of a second collagen polypeptide. For example, a collagen molecule comprising a portion of a collagen from one species contiguous with a portion of a collagen from another species is a chimeric collagen. In another embodiment, the non-naturally occurring polypeptide comprises a fusion polypeptide that includes additional amino acids such as a secretion tag, histidine tag, green fluorescent protein, protease cleavage site, GEK repeats, GDK repeats, and/or beta-lactamase.

[0032] In some embodiments, the non-naturally occurring polypeptides (e.g., recombinant polypeptides) provided herein have a non-naturally occurring level of glycosylation, for example, relative to a corresponding natural collagen or naturally present collagen. For example, in some embodiments, the non-naturally occurring polypeptide (e.g., recombinant polypeptide) comprises less than about 10 wt. %, less than about 9 wt. %, less than about 8 wt. %, less than about 7 wt. %, less than about 6 wt. %, less than about 5 wt. %, less than about 4 wt. %, less than about 3 wt. %, less than about 2 wt. %, less than about 1 wt. %, less than about 0.9 wt. %, less than about 0.8 wt. %, less than about 0.7 wt. %, less than about 0.6 wt. %, less than about 0.5 wt. %, less than about 0.4 wt. %, less than about 0.3 wt. %, less than about 0.2 wt. %, or less than about 0.1 wt. % glycosylation. Alternatively and/or additionally, the non-naturally occurring polypeptide (e.g., recombinant polypeptide) comprises less than about 95%, less than about 90%, less than about 85%, less than about 80%, less than about 75%, less than about 70%, less than about 65%, less than about 60%, less than about 55%, less than about 50%, less than about 45%, less than about 40%, less than about 35%, less than about 30%, less than about 25%, less than about 20%, less than about 15%, less than about 10%, or less than about 5% of total glycosylation of the corresponding natural collagen or naturally present collagen. For example, where the naturally present collagen ABC from a species XYZ has 20 glycosylations (throughout the full length of the collagen ABC or a portion thereof), it is contemplated that the non-naturally occurring polypeptide (e.g., recombinant polypeptide) comprises less than 19, less than 18, less than 17, less than 16, less than 15, less than 14, less than 13, less than 12, less than 11, less than 10, less than 9, less than 8, less than 7, less than 6, less than 5, less than 4, less than 3, less than 2, or less than 1 glycosylations. In some embodiments, those lower levels of glycosylation can be specific to one or more types of glycosylation (e.g., O-glycosylation or N-glycosylation, etc.) and/or the glycosylation residues (e.g., galactosylhydroxylysine (Gal-Hyl), glucosyl galactosylhydroxylsine (GlcGal-Hyl), etc.). Non-naturally occurring polypeptides produced recombinantly (e.g., in a recombinant host cell), in some instances, may have a glycosylation level and/or a glycosylation pattern that differs from naturally occurring collagen.

[0033] In some aspects, a non-naturally occurring polypeptide provided herein has a nonnaturally occurring amount of hydroxyprolines. In some cases, a non-naturally occurring polypeptide provided herein lacks hydroxyprolines. In some cases, a non-naturally occurring polypeptide provided herein comprises fewer hydroxyprolines than a naturally-occurring collagen. Hydroxyprolines include, without limitation, 3-hydroxyproline, 4-hydroxyproline, and 5-hydroxyproline. In some cases, less than about 50% (e.g., less than about 45%, less than about 40%, less than about 35%, less than about 30%, less than about 25%, less than about 20%, less than about 15%, less than about 10%, or less) of the prolines present in the amino acid sequence of a non-naturally occurring polypeptide provided herein are hydroxyprolines. In some aspects, a non-naturally occurring polypeptide produced recombinantly (e.g., in a recombinant host cell) may have fewer hydroxyprolines than a naturally occurring collagen. In some cases, a recombinant polypeptide as provided herein is recombinantly expressed in a recombinant host cell (e.g., bacterial cell, yeast cell, fungal cell) that lacks an enzyme that hydroxylates one or more amino acids (e.g., proline) of the recombinant polypeptide. In some cases, a recombinant polypeptide as provided herein is recombinantly expressed in a host cell (e.g., bacterial cell, yeast cell, fungal cell) that lacks prolyl 4-hydroxylase and/or prolyl 3-hydroxylase.

[0034] In some aspects, the non-naturally occurring polypeptides provided herein lack or substantially lack lysyl oxidation. Lysyl oxidation involves the conversion of lysine residues into highly reactive aldehydes that can form cross-links with other proteins. Naturally occurring collagens may have some level of lysyl oxidation. Thus, the non-naturally occurring polypeptides may be different from natural collagens in that they lack or substantially lack lysyl oxidation. In some cases, less than about 50% (e.g., less than about 45%, less than about 40%, less than about 35%, less than about 30%, less than about 25%, less than about 20%, less than about 15%, less than about 10%, or less) of the lysines present in the amino acid sequence of a non-naturally occurring polypeptide provided herein are oxidized.

[0035] Generally, the non-naturally occurring polypeptides provided herein (e.g., truncated collagens) may have a function and/or provide a benefit (e.g., as provided herein) similar or substantially similar to that of a natural or a full-length collagen. In some cases, the non-naturally occurring polypeptides provided herein (e.g., truncated collagens) may have improved or increased function and/or benefit (e.g., as provided herein) as compared to a natural or a full-length collagen. In some embodiments, the non-naturally occurring polypeptides provided herein may have one or more different functions as compared to a natural or a full-length collagen.

[0036] The non-naturally occurring polypeptides disclosed herein often have advantageous properties related to their monomeric structure and/or lack of amino acids capable of cross-linking with other collagen strands, e.g., the lack of hydroxyproline residues. In addition, collagen hydrolysates of the non-naturally occurring polypeptides disclosed herein are also produced with increased solubility as compared to full-length or natural collagens. Moreover, monomeric structures, as opposed to natural triple helix collagens, are more readily digestible and bioavailable, or broken down by digestive proteases. Other advantageous properties include improved physical properties in liquid compositions and in purification processes, since full-length or natural collagens or collagen strands interact to form stronger structures that can precipitate due to the presence of hydroxyproline residues.

[0037] In certain preferred embodiments, the non-naturally occurring polypeptides provided herein (e.g., truncated collagens) comprise an amino acid sequence that has at least about 70%, at least about 75%, at least about 80%, at least about 85%, at least about 90%, at least about 91%, at least about 92%, at least about 93%, at least about 94%, at least about 95%, at least about 96%, at least about 97%, at least about 98%, or at least about 99% sequence identity to at least a portion of the naturally existing mammalian or non-mammalian collagens from which those are derived from. In some instances, a portion or portions of a natural amino acid sequence is deleted, but the remainder of the sequence is substantially similar or identical to the natural amino acid sequence. In certain exemplary embodiments, the non-naturally occurring polypeptide has an amino acid sequence that has at least about 70%, at least about 75%, at least about 80%, at least about 85%, at least about 90%, at least about 91%, at least about 92%, at least about 93%, at least about 94%, at least about 95%, at least about 96%, at least about 97%, at least about 98%, or at least about 99% sequence identity to a Gallus gallus Type 21 alpha 1 collagen or a truncate or a fragment thereof. In another example, the non-naturally occurring polypeptide has an amino acid sequence that has at least about 70%, at least about 75%, at least about 80%, at least about 85%, at least about 90%, at least about 91%, at least about 92%, at least about 93%, at least about 94%, at least about 95%, at least about 96%, at least about 97%, at least about 98%, or at least about 99% sequence identity to a Acipenser schrenckii Type 2 alpha 1 collagen or a truncate or a fragment thereof.

[0038] In some embodiments, the recombinant polypeptide is a truncated collagen. In certain instances, a truncated collagen is a polypeptide that is smaller than a full-length (e.g., natural) collagen wherein one or more portions (e.g., internal and/or terminal portion(s)) of the full-length (e.g., natural) collagen is not present. In various instances, the non-naturally occurring polypeptides provided herein (e.g., truncated collagens) are truncated at the C-terminal end, the

N-terminal end, truncated by removal of internal portion(s) of the full-length collagen polypeptide (e.g., internal truncation), truncated at both the C-terminal end and the N-terminal end, or comprise one or both of a C-terminal truncation and an N-terminal truncation as well as an internal truncation. In some instances, the non-naturally occurring polypeptide is a fragment of a naturally occurring collagen that retains at least about 50%, at least about 60%, at least about 70%, at least about 80%, or at least about 90% of a function (e.g., of interest) of natural or naturally-present corresponding collagens. In some instances, the term truncated collagen is interchangeably used with the term collagen fragment. In some instances, the truncated collagen includes any contiguous collagen fragments that are at least about 10%, at least about 20%, at least about 30%, at least about 40%, at least about 50%, at least about 60%, at least about 70%, or at least about 80% of full-length natural or naturally-present corresponding collagens. In some embodiments, the truncation is an internal truncation, a truncation at the N-terminal portion of the collagen, a truncation at the C-terminal portion of the collagen, a truncation of an internal portion, or a truncation at both the C-terminal end and the N-terminal end. A truncated collagen provided herein may be truncated by 50 amino acids to 1250 amino acids, 50 amino acids to 1200 amino acids, 50 amino acids to 1150 amino acids, 50 amino acids to 1100 amino acids, 50 amino acids to 1050 amino acids, 50 amino acids to 1000 amino acids, 50 amino acids to 950 amino acids, 50 amino acids to 900 amino acids, 50 amino acids to 850 amino acids, 50 amino acids to 800 amino acids, 50 amino acids to 750 amino acids, 50 amino acids to 700 amino acids, 50 amino acids to 650 amino acids, 50 amino acids to 600 amino acids, 50 amino acids to 550 amino acids, 50 amino acids to 500 amino acids, 50 amino acids to 450 amino acids, 50 amino acids to 400 amino acids, 50 amino acids to 350 amino acids, 50 amino acids to 300 amino acids, 50 amino acids to 250 amino acids, 50 amino acids to 200 amino acids, 50 amino acids to 150 amino acids, or 50 amino acids to 100 amino acids (e.g., relative to a full-length collagen). In another embodiment, a truncated collagen is truncated by 50, 60, 70, 80, 90, 100, 110, 120, 130, 140, 150, 160, 170, 180, 190, 200, 210, 220, 230, 240, 250, 260, 270, 280, 290, 300, 310, 320, 330, 340, 350, 360, 370, 380, 390, 400, 410, 420, 430, 440, 450, 460, 470, 480, 490, 500, 510, 520, 530, 540, 550, 560, 570, 580, 590, 600, 650, 700, 750, 800, 850, 900, 950, 1000, 1050, 1100, 1150, 1200, or 1250 amino acids (e.g., relative to a full-length collagen).

[0039] In some embodiments, a polypeptide provided herein (e.g., amino acid sequence thereof) may be truncated at the C-terminal end (relative to a full-length collagen) by any suitable number of amino acid residues, such as up to 10, 10 to 800, 10 to 700, 10 to 600, 10 to 500, 10 to 400, 10 to 300, 10 to 200, 10 to 100, 50 to 800, 50 to 700, 50 to 600, 50 to 500, 50 to 400, 50 to 300, 50 to 200, 50 to 100, or the like. In some cases, a polypeptide provided herein (e.g., amino acid sequence

thereof) may be truncated at the C-terminal end (relative to a full-length collagen) by 10, 20, 30, 40, 50, 60, 70, 80, 90, 100, 110, 120, 130, 140, 150, 160, 170, 180, 190, 200, 210, 220, 230, 240, 250, 260, 270, 280, 290, 300, 310, 320, 330, 340, 350, 360, 370, 380, 390, 400, 410, 420, 430, 440, 450, 460, 470, 480, 490, 500, 510, 520, 530, 540, 550, 560, 570, 580, 590, 600, 610, 620, 630, 640, 650, 660, 670, 680, 690, 700, 710, 720, 730, 740, 750, 760, 770, 780, 790, 800 or more amino acids.

[0040] In some embodiments, a polypeptide provided herein (e.g., amino acid sequence thereof) may be truncated at the N-terminal end (relative to a full-length collagen) by any suitable number of amino acid residues, such as up to 10, 10 to 800, 10 to 700, 10 to 600, 10 to 500, 10 to 400, 10 to 300, 10 to 200, 10 to 100, 50 to 800, 50 to 700, 50 to 600, 50 to 500, 50 to 400, 50 to 300, 50 to 200, 50 to 100, or the like. In some cases, a polypeptide provided herein may be truncated at the N-terminal end (relative to a full-length collagen) by 10, 20, 30, 40, 50, 60, 70, 80, 90, 100, 110, 120, 130, 140, 150, 160, 170, 180, 190, 200, 210, 220, 230, 240, 250, 260, 270, 280, 290, 300, 310, 320, 330, 340, 350, 360, 370, 380, 390, 400, 410, 420, 430, 440, 450, 460, 470, 480, 490, 500, 510, 520, 530, 540, 550, 560, 570, 580, 590, 600, 610, 620, 630, 640, 650, 660, 670, 680, 690, 700, 710, 720, 730, 740, 750, 760, 770, 780, 790, 800 or more amino acids.

[0041] In some embodiments, a polypeptide provided herein (e.g., amino acid sequence thereof) may be truncated at both the N-terminal end and the C-terminal end relative to a full-length collagen. In some instances, a polypeptide provided herein may be truncated at the N-terminal end (relative to a full-length collagen) by any suitable number of amino acid residues, such as up to 10, 10 to 800, 10 to 700, 10 to 600, 10 to 500, 10 to 400, 10 to 300, 10 to 200, 10 to 100, 50 to 800, 50 to 700, 50 to 600, 50 to 500, 50 to 400, 50 to 300, 50 to 200, 50 to 100, or the like; and may be truncated at the C-terminal end (relative to a full-length collagen) by any suitable number of amino acid residues, such as up to 10, 10 to 800, 10 to 700, 10 to 600, 10 to 500, 10 to 400, 10 to 300, 10 to 200, 10 to 100, 50 to 800, 50 to 700, 50 to 600, 50 to 500, 50 to 400, 50 to 300, 50 to 200, 50 to 100, or the like. In some cases, a polypeptide provided herein may be truncated at the N-terminal end (relative to a full-length collagen) by 10, 20, 30, 40, 50, 60, 70, 80, 90, 100, 110, 120, 130, 140, 150, 160, 170, 180, 190, 200, 210, 220, 230, 240, 250, 260, 270, 280, 290, 300, 310, 320, 330, 340, 350, 360, 370, 380, 390, 400, 410, 420, 430, 440, 450, 460, 470, 480, 490, 500, 510, 520, 530, 540, 550, 560, 570, 580, 590, 600, 610, 620, 630, 640, 650, 660, 670, 680, 690, 700, 710, 720, 730, 740, 750, 760, 770, 780, 790, 800 or more amino acids; and may be truncated at the C-terminal end (relative to a full-length collagen) by 10, 20, 30, 40, 50, 60, 70, 80, 90, 100, 110, 120, 130, 140, 150, 160, 170, 180, 190, 200, 210, 220, 230, 240, 250, 260, 270, 280, 290, 300, 310, 320, 330, 340, 350, 360, 370, 380, 390, 400, 410, 420, 430, 440, 450, 460, 470,

480, 490, 500, 510, 520, 530, 540, 550, 560, 570, 580, 590, 600, 610, 620, 630, 640, 650, 660, 670, 680, 690, 700, 710, 720, 730, 740, 750, 760, 770, 780, 790, 800 or more amino acids. **[0042]** In some embodiments, a polypeptide provided herein (e.g., amino acid sequence thereof) may be internally truncated (relative to a full-length collagen) by any suitable number of amino acid residues, such as up to 10, 10 to 800, 10 to 700, 10 to 600, 10 to 500, 10 to 400, 10 to 300, 10 to 200, 10 to 100, 50 to 800, 50 to 700, 50 to 600, 50 to 500, 50 to 400, 50 to 300, 50 to 200, 50 to 100, or the like. In some cases, a polypeptide provided herein may be internally truncated (relative to a full-length collagen) by 10, 20, 30, 40, 50, 60, 70, 80, 90, 100, 110, 120, 130, 140, 150, 160, 170, 180, 190, 200, 210, 220, 230, 240, 250, 260, 270, 280, 290, 300, 310, 320, 330, 340, 350, 360, 370, 380, 390, 400, 410, 420, 430, 440, 450, 460, 470, 480, 490, 500, 510, 520, 530, 540, 550, 560, 570, 580, 590, 600, 610, 620, 630, 640, 650, 660, 670, 680, 690, 700, 710, 720, 730, 740, 750, 760, 770, 780, 790, 800 or more amino acids.

[0043] A non-naturally occurring polypeptide (e.g., truncated collagen) disclosed herein may comprise a truncation relative to a full-length (e.g., natural) collagen. In some embodiments, a truncated collagen disclosed herein may comprise a truncation relative to a full-length (e.g., natural) chicken (Gallus gallus) type 21 alpha 1 collagen (e.g., SEQ ID NO: 31). In some embodiments, a truncated collagen disclosed herein may comprise the amino acid sequence of SEQ ID NO: 31, or an amino acid sequence having at least about 70% sequence identity (e.g., at least about 75%, at least about 80%, at least about 85%, at least about 90%, at least about 91%, at least about 92%, at least about 93%, at least about 94%, at least about 95%, at least about 96%, at least about 97%, at least about 98%, at least about 99%, or greater) to the amino acid sequence of SEQ ID NO: 31, with an N-terminal truncation, a C-terminal truncation, an internal truncation, or a combination thereof. In some embodiments, a truncated collagen disclosed herein may comprise a truncation relative to a full-length (e.g., natural) Japanese sturgeon (Acipenser schrenckii) type 2 alpha 1 collagen (e.g., SEQ ID NO: 32). In some embodiments, a truncated collagen disclosed herein may comprise the amino acid sequence of SEQ ID NO: 32, or an amino acid sequence having at least about 70% sequence identity (e.g., at least about 75%, at least about 80%, at least about 85%, at least about 90%, at least about 91%, at least about 92%, at least about 93%, at least about 94%, at least about 95%, at least about 96%, at least about 97%, at least about 98%, at least about 99%, or greater) to the amino acid sequence of SEQ ID NO: 32, with an N-terminal truncation, a C-terminal truncation, an internal truncation, or a combination thereof. In some embodiments, a truncated collagen disclosed herein may comprise a truncation relative to a full-length (e.g., natural) jellyfish (Hydrozoan) collagen (e.g., SEQ ID NO: 39). In some embodiments, a truncated collagen disclosed herein may comprise the

amino acid sequence of SEQ ID NO: 39, or an amino acid sequence having at least about 70% sequence identity (e.g., at least about 75%, at least about 80%, at least about 85%, at least about 90%, at least about 91%, at least about 92%, at least about 93%, at least about 94%, at least about 95%, at least about 96%, at least about 97%, at least about 98%, at least about 99%, or greater) to the amino acid sequence of SEQ ID NO: 39, with an N-terminal truncation, a Cterminal truncation, an internal truncation, or a combination thereof. In some embodiments, a truncated collagen disclosed herein may comprise a truncation relative to a full-length (e.g., natural) human type 21 alpha 1 collagen (e.g., SEQ ID NO: 40). In some embodiments, a truncated collagen disclosed herein may comprise the amino acid sequence of SEQ ID NO: 40, or an amino acid sequence having at least about 70% sequence identity (e.g., at least about 75%, at least about 80%, at least about 85%, at least about 90%, at least about 91%, at least about 92%, at least about 93%, at least about 94%, at least about 95%, at least about 96%, at least about 97%, at least about 98%, at least about 99%, or greater) to the amino acid sequence of SEQ ID NO: 40, with an N-terminal truncation, a C-terminal truncation, an internal truncation, or a combination thereof. Non-limiting examples of full-length (e.g., natural) collagens are provided in Table 1 below.

[0044] In some cases, a polypeptide provided herein may be at least 50 amino acids, at least 75 amino acids, at least 100 amino acids, at least 125 amino acids, at least 150 amino acids, at least 175 amino acids, at least 200 amino acids, at least 225 amino acids, at least 250 amino acids, at least 275 amino acids, at least 300 amino acids, at least 350 amino acids, at least 400 amino acids, at least 450 amino acids, or at least 500 amino acids in length.

[0045] In other embodiments, polypeptides as disclosed herein may be truncated collagen polypeptides comparable to fish collagens, including from other species of sturgeon, or from other species producing roe suitable for caviar, including salmon, steelhead, trout, lumpfish, whitefish, or carp, as well as other fish such as tilapia and sharks. Suitable comparable sequences from *Acipenser schrenckii* (Japanese sturgeon) include NCBI accession numbers BAO58965.1, BAO58966.1, BAO58967.1, BAT51012.1, BAR72360.1, BAR72359.1, BAR72358.1, BAR72357.1 and BAR72356.1. Suitable sequences from *Acipenser ruthenus* (Sterlet sturgeon) include NCBI accession numbers A0A444UGW0, A0A444TZM6, A0A444UC45, A0A444UC53, A0A662YTX1, A0A662ZZ70, A0A662YZ39, A0A444U1F5, A0A444UYQ7, A0A444UNU0, X5HZZ7, X5IHC1, A0A444UPK8, A0A444UBS1, A0A444UYQ7, A0A444TWQ3, A0A444ULY4, A0A444TZ23, A0A662YS48, A0A444U4C8, A0A444UD64, A0A662YX10, A0A662YXI2, A0A444TXQ4, A0A444TZ42, A0A444U8N8, A0A444UJU3, A0A444UQ51, A0A444U2T2, A0A662YJ50, A0A444VV9, A0A444V113,

A0A662YWR6, A0A662YW91, A0A444U5J5, A0A662YR93, A0A444UJB0, A0A444UFS4, A0A444UVK2, A0A444UJU1, A0A444ULY9, A0A444UKA7, A0A444U5L7, A0A444V6M4, A0A444V788, A0A444UFS9, A0A444UVP7, A0A444U4D9, A0A444UHN6, A0A662YJC1, A0A444V1E8, A0A444UPM0, A0A662YU87, A0A444TZS8, A0A444U200, A0A444V2E3, A0A662YXD3, A0A662YQA4, A0A444U1H9, A0A444V7I5, A0A444UFX8, A0A444V7B8, A0A444U2K4, A0A444V762, A0A444UQ49, A0A662YMD3, A0A662YWF2, A0A444UE44, A0A444UAR6, A0A444UX46, A0A444U5P4, A0A662YRG8, A0A444USC3, A0A444UK09, A0A444UNQ7, A0A444UN69, A0A444V5D9, E6Y298, A0A444TZY1, A0A444TYS0, and E6Y299.

[0046] In other embodiments, polypeptides may be truncated collagen polypeptides comparable to chicken collagens, or other poultry collagens, such as from domestic fowls, including chickens, turkeys, geese, and ducks. Suitable comparable sequences from *Gallus gallus* (chicken) include NCBI accession numbers V9GZR2, Q9PSS5, A0A3Q2UDI3, Q90802, A0A1D5PNH7, Q4TZW6, Q90803, Q91014, A0A1D5PPI0, A0A1D5P1A5, A0A3Q2U6K2, A0A3Q2U8F9, Q90689, A0A3Q2U3U6, P13731, A0A1D5PFE0, A0A3Q2TXZ7, Q5FY72, A0A1D5PR16, A0A1D5PKR6, F1NDF5, Q90589, P08125, F1NRH2, P32017, A0A1D5PW49, Q90800, P12108, E1C353, Q7LZR2, P02460, A0A1L1RNI7, Q90796, P12106, F1NQ20, Q919K3, P20785, A0A1D5PWN6, P15988, P12105, F1NIL4, O93419, P02467, A0A5H1ZRJ7, A0A1D5PKQ4, A0A5H1ZRK9, Q90W37, A0A1D5NY11, A0A1D5P959, P02457, A0A1D5PYU1, A0A1D5PE57, Q90ZA0, Q90584, A0A1L1RZW7, A0A1D5NVM0, A0A1D5P9B3, F1NIP0, F1P2Q3, A0A1D5PE74, Q9IAU4, A0A3Q2TTC1, F1NHH4, P32018, A0A1D5P0F4, R4GHP9, A0A3Q2UD12, A0A3Q2UMJ2, A0A3Q2U4U7, F1NX22, A0A1D5P8I8, A0A1L1RPW4, P13944, P15989, F1P2F0, A0A1D5PGD5, and A0A3Q3AR07.

Table 1. Full-length collagen amino acid sequences

Collagen	Amino Acid Sequence
Gallus gallus	MAQLLRLFQTLLILLLRDYISAEDGETRASCRTAPADLVFILDGSYSVGPENFEIIKSWL
8	VNITRNFDIGPKFIQVGVVQYSDYPVLEIPLGTHESTENLIKEMESIHYLGGNTKTGRAI
(chicken) type 21	QFAYDHLFAKSSRFLTKIAVVLTDGKSQDEVKDVAAEARKNKITLFAIGVGSEIEEDELK
	AIANKPSSTYVFYVEDYIAISRIKEVIKQKLCEESVCPTRIPVAARDEKGFDILVGLGVK
alpha 1 collagen	KRVKKRIQIPTTNAKAYEVTSRVDLSELTRNVFPEGLPPSYVFVSTQRFKVKKTWDLWRV
	LSLDKRPQIAVTINGEEKTLSFTTTSLINGTQVITFAAPRVKTLFDEGWHQIRLLVTEDF
	VTLYIDDQEIETKPLHPVLGIYISGLTQIGKYSGKEETVQFDIQKLRIYCDPEQNNRETV
	CEIPGFNGECMNGPSDVGSTPAPCICPPGKQGPPGPKGDPGQPGNHGYPGQPGPDGKPGY
	QGSAGTPGIPGTPGVQGPRGLPGIKGEPGKDGTKGDRGLPGFPGLHGMPAPKGERGPKGD
	QGVPGIYGKKGSKGEKGDTGFPGMPGRSGDPGRSGKDGLPGSPGFKGEVGQPGSPGLEGH
	RGEPGIPGIPGNQGAKGQKGEIGPPGLPGAKGSPGETGLMGPEGSFGLPGAPGPKGDKGE
	PGLQGKPGSSGAKGEPGGPGAPGEPGYPGIPGTQGIKGDKGSQGESGIQGRKGEKGRQGN
	PGLQGTEGLRGEQGEKGEKGDPGIRGINGQKGESGIQGLVGPPGVRGQPGDRGPPGPPGS
	DGKPAREFSEEFIRQVCSDVLRTQLPVILQSGRLQNCNHCQSQSASPGLPGPPGPRGPEG
	PRGFPGLPGNDGVPGLTGIPGRPGARGTRGLPGKNGAKGNQGIGVPGIQGPPGPPGPEGP
	PGMSKEGRPGERGQPGKDGDRGSPGMPGPVGPPGICDPSLCFSVIVGRDPFRKGPNY
	(SEQ ID NO: 31)

#SFYDSRYLLLANIQLCLLAVVKCQDVEVQQPGRGGKGEPGDITDWGFRGFGGFMS schrenckii #FEGGGFREGERGERGERGERGERGERGERGEFGTENGFEGTEFGFPGNEPGLGERGERGERGERGERGERGERGERGERGERGERGERGERG		
FDEKAGGAQMAYMGERMERREP PGETTAA PEDGETGENEGEBEGAAGELGERGEPE PSEKPGEBEGAKFEKSGERGS PGEDGARGEPGTPGT PGLPGI KGHRGYPGLDGAKGEAGAAG Clapanese	Acipenser	MFSFVDSRTVLLLAAIQLCLLAVVKCQDVEVQQPGRKGQKGEPGDITDVVGPRGPGGPMG
SKEPAGSSGENGAPGENGERGERGERGERGERGERGERGERGERGERGERGERGERG	schranckii	
SKUEBAGSSGEMGABGPMGPRGLPEGRGRMGPSGAAGARGNDGLPGPAGPPGPVGPAAGAPG FFGSPGSKGEAGPTGARGPEGAQGFRGESGTFGSPGSAGSAGAPG IAGAZGFTGPRGPPGPGTGATTSLEFKGQQGDPG17GFRGEHGPKGBHGPAGPGAAGAPG EEGKRCARGEEGAAGELGFPGBRGPGFGKGGPGGAGGBAGGBAGAPG EEGKRCARGEEGAAGELGFPGBRGAPCNRGFPGDGLAGFRGAPGBRGGPGVGFRKANG DEGREGEGLEGAAGETGFBGAFGTGRGFGSGAAGEBGGGPGGSGAGGPGFKANG DEGREGEGELGAAGETGLAGFBGAAGGFGSAGAGEBGGGPGGSGAGGPGFKANG LDGPPGPGBGGKGEGAGGFGLAGFPGAAGGFBGAGGPGGAGGGPGFGAGA LDGPPGGAAGEKGLUGPPGLAGLGKGAGGPGAGAGFBGAGGGAGGGAGGGAGGAGAGAGAGAGAGAGAGA	Schrenckii	
### ### ### ### ### ### ### ### ### ##	(Japanese	
alpha 1 collagen I AGAB GFBG GFBG CBC ATC FLO PKGQQOD PCI PCEK KEBLEF K GEBLEF K GANGE BEGKRARGE PER GARGE LEPGKRATOF K GANGE BEGKRARGE BERKREBER BEGKRARGE		
alpha 1 collagen EEGKREGARGEPGAAGFLGEPGERGAPGMRGFPGGDGLAGFKGAPGGREGOPGVMGFFG PKGANGEPGLPGARGLTGRPGDAGPQGKGGPSGAAGEDGRPGPPGPGARGAGPGVMGFFG PKGANGEPGKAGEKGLVGPFGLRGLSGKDGETGAAGPFGFSGFAGERGEGPFVMGFFG TDGFKGATGEPGAGAGRAGPAGFRGRFFGERSSFGAQGLGGPRAGLFGTFG TDGFKGATGEPGGAAGPGPGGAAGRAGPRGFBGRFGFPGERSSFGAQGLGGPRAGLFGTFG AKGEGGEGGKGAGAAFGPGGPSGAAGFRGAPGRGFPGERSFGAAGRVG PPGPNGRPGPSGPAGAAGRVGPGPGAAGFRGAPGGPGAAGFRVG PPGPNGRPGPSGPAGAAGRVGPGPSGAAGFRGAPGGBAAGRAQAPFGAAGRVG PPGPNGRPGPSGPAGAAGRVGLPGGRGERGFFGLPGSGEAGAGAGAGAPGAAGRVG PPGPSGPGGLGGNRGTVGLPGGRGERGFFGLPGSGEPGKQGAPGGAAGRVG PPGPSGPGGLGGNRGTVGLPGGRGERGFFGLPGSGEPGKQGAFGGADGROPPOVPFPG LSGFSGEPGGGAGAFGPGGPTGAAGFAGAGAAGAAGAPGSGPOVGPTGKQG DRGESGAQGPAGPSGPAGAAGRAGAPQGPRGAGAGAGAAGAAGSPGCPVGPTGKQG DRGESGAQGFAGFSGPAGAAGRAGAGPQGFRGFGGFGFGFFGLPGFGFRGAGAGAGAAGAAFGAAGAAGAAFGAAGAAGAAFGAAGAAG	sturgeon) type 2	
DPGRPGEPGLPGARGLTGRPGDAGPQGKGGSSGAAGBDGREGPEGAGRGPGWGFFG PKGAMGEPGKAGEKGLVGPPGLIGLSGKDGETGAAGPPGPSGPAGERGQGPPGPSGFQG LPGPPGPEGGKPGDQGVPGEAGAAGRAGPRGERGFFGERGSPGAGCLQGPRGLEGTE TDGPKGATGPSGALGAQGPPGLIQGMPGERGASGTAGAKGDRGDVGEKGPEGASGKDGSRG LTGPIGPPGPAGPMGEKGESGPSGPPGAAGTRGAGPRGEMGPPGAGPPGAGPPGAGGPG AKGEQGEGQQKGDAGAPGPQGPSGAAGRAGPAGRAGDAGGPPGATGFPGAAGRAGP PFGPNGNPGPSGPAGSAGKDGPKGVRGDAGPPGRAGPAGPPGAAGRAGPPGEMGPGP PDGPSGPQGLGGNRGIVGLPGQRGERGFFGLFGPSGBEGRGGAGDRGPFGVVOPFG LSGPSGPRGEMPGSDGPPGBDGSAGTKGDRGTGPAGAAGPAGPBCAGPPGAFPGAGPPGAGPPGAGPPGAGPAGPAGPAGPAGPAGPAGPAG	1 1 1 11	
PKGANGEPGKAGEKGLVGPFGLRGLSGKDGSTGAAGPFGPSGPAGERGEGGPFGPSGFCG LPGPPGPPGEGGKPGDQGVPGEAGAARAGPRGERGFPGBRGSFGAGGLQGPFGTPG TDGPKGATGFSGALGAQGPFGLQGMYGERGASGTAGAKGDRGDVGEKGPEGASGKDGSRG LTGPIGFPGFAGFNGEKGESGPSGPFGAAGTRGAPGDVGEKGPEGASGKDGSRG LTGPIGFPGFAGFNGEKGESGPSGPFGAAGTRGAPGDVGEKGPEGAFAGPBGADGQPG AKGEQGEGGQKGDAGAPGPQGPSGAPGPQGPTGVSGPKGARGAQGPPGATGFPGAAGRVG PPGPNCNPGPSGPAGSAGKDGPKGVRGDAGFPGRAGDAGLQGAAGPPGEKGEBGEDGFPG PDGPSGPQGLGGNRGIVGLPFGGRERGFPGLPGSBEGBRGAAGGAGPPGEKGEBGEDGFPG DDGPSGPQGLGGNRGIVGLPFGGRERGFPGLPGSBEGBRGAAFGSPGPVGPPGKQG DRGSGAQGPAGPSGPAGPSGPPGRDSGATKGDRGGTGPAGAPGAFGAFGSPGPVGPPGKQG DRGSGAQGPAGPSGPAGAAGAPGAGPTGRAGPGAFGSPGPVGPTGKQG DRGSGAQGPAGPSGPAGAAGAPAGAPGSPGPVGPTGKQG DRGSGAQGPAGPSGPAGAAGAPAGABAGSTKGDRGGTGPAGAPGAFGAFGSPGPVGPTGKQG DRGSGAQGPAGPTGARGFPGFVGFHGKDGSNGQPGFIGPFGFRGSGEVVGPTGKQG DRGSGAQGPAGPTGARGFPGFVGFHGKDGSNGQPGFIGPFGFRGSGEVVGPTGKQG DRGSGAAGFAGFTGARGFPGFVGFHGKDGSNGQPGFIGFPGFRGSGEVGPAGPFGNAG PPGPPGPPGPGFGTDMASAFAGLAAPEKADPDMRYMRADEASSSLRGHDAEVDATLKSINNQI ENIRSPEGSKKNPARTCRDLKLCHPDWKSGDYWIDPNQGCAVDAIKVFCNMESGETCVYP NPASIFRKNWWTSKSADCKHWWFGETMMGGFHFSYGDDSLAPNTASIQMTFLELLSTEAS QNLTYHCKNSIAYMDQSAGNLKKAVLLGGSNDVEITARGENSFTYNVLEDGCTKHTDRWG KTVIEYKSQKTSRLPIVDIAPLDIGGSDQEFFGVDIGPVCY (SEQ ID NO: 32) Jellyfish GPGOVVGADACNLKAVLLGGSNDVEITARGSSRFTYNVLEDGCTKHTDRWG KTVIEYKSQKTSRLPIVDIAPLDIGGSDQEFGVDIGFVCY (SEQ ID NO: 32) GQSGPTGPRGQRGPSGEDGNFGLGGLFGSDGEFGESGPGRSQPGQGPRSSGEBGBAGABGAPGPGSF GLAGPPGDCKNOTAGACKOPSGEPGESGPGAAGAAGGPGGARGEPGDFSF GRGSGBRGDRGERGVPGQTGSAGNVCEDGEQGGKCVDGASGPSGALGARGPPGSFGF GAKGPSGDRGDRGERGVPGQTGSAGNVCEDGEQGGKCVDGASGPSGALGARGPPGSFGF GAAGPPGTGRSGLFONAGQKGPSGEFGSPGKAGSAGEGGPFGKDGSNGEBGSFGGAGAGAGAGPGFBGRGGG GAKGPFGRGFGSPGGAGAAGACPGGGGFFAGGAGAAGAGAGAGAGAGAGAGAGAGAGAGAGA	alpha I collagen	
TDEPKGATCPSGALGAQGPPGLQGMPGERGASGLAGAKGDRGBVGEKGPEGASGKDGSRG LTGFIGPPGPAGPNGEKGESGPSGPPGAATRAPGDRGENGPPGAFAGPAGPGADGQPG AKGEGGGGKGDAGAPGPQGPSGAPGPGPTGVSGPKGARGAQGPPGATGPFGAAGRVG PPGPNGNPGPSGPAGSAGKDGPKGVNGDAGPPGRAGDAGLQGAAGPPGEKGEPGBDGPPG PDGPSGPQGLGGNRGIVGLPGQRGERGFPGLPGPSGEPGKQGAPGGAGDRGPPGPVGPPG LSGPSGPCGLGGNRGIVGLPGQRGERGFPGLPGPSGEPGKQGAPGGAGDRGPPGPVGPPG LSGPSGPCGERGNPGSDGPPGRDGSAGIKGDRGQTGPAGAPGAPGSPGPVGPTGKQG DRGESGAQCPAGPSGPAGARGMAGPQGPRGKGEAGEAGAPGAPGSPGPVGPTGKQG DRGESGAQCPAGPSGPAGARGMAGPQGPRGKGEAGETGERQKGHRGFTGLQGLPGPPG TAGDQGAAGPAGPTGARGPPGPVGPHGKDGSNGQPGPIGPPGPRGRGSGEVGPAGPPGNAG PPGPPGPFGGTDMSAFAGLAAPEKAPDPMRYMRADEASSLRQHDAEVDATLKSINNQI ENIRSPEGSKKNPARTCRDLKLCHPDWKSGDVWIDPNQGCAVDAIKVFOMESGETCVYP NPASIPRNWWTSKSADCKHVWFGETMNGGFHFSYGDDSLAPNTASIQMTFLRLLSTEAS QNLTYHCKNSIAYMDQSAGNLKKAVLLQGSNDVETRAEGNSRFTYNVLEDGGTKHTDRWG KTV1EYKSQKTSRLPIVDIAPLDIGGSDQEFGVDIGPVCY (SEQ_ID_NO: 32) Jellyfish GPQGVVGADGKDGTPGEKGEQGRTGAAGKQGSPGADGARGPLGSIGQQGARGEPGDPGSP GLRGDTGLAGVKGVAGPSGRFQCPGANGLPGVNGRGGLRGKPGAKGIAGSDGEAGESGAP GQSGPTGFPGGNGPSGEDCNPGLQGLPGSDGEPGEGQPGRSGQPGOCPRGSPGEVGPR GSKGPSGDRGDRGERGVPQGTGSAGNVGEDGEQGGKGVDGASGPSGALGARGPPGSRGDT GAGPPGPTGRSGLEGNAGQKGPSGEPGSPGKAGSAGEQGPGPRGSNGEPGSPGKG GAVGPPGFTGRSGLEGNAGQKGPSGEPGSPGKAGSAGBCGPFGCTFGDGVR GIPGNDQQSGKPGIDIGTNGQPGEAGYQGGRGTRGQLGTGTDVGQNGRGAAPGPDGSK GSAGRFGLR (SEQ_ID_NO: 39) Human type 21 alpha 1 collagen AMHYTTFLCMULVLLLQNSVLAEDGEVRSSCRTAFTDLVFILDGSYSVGPENFETVKKWL VNITKNFDIGPKFIQVGVVQYSDYPVLEIPLGSYDSGEHLTAAVESILYLGGNTKTGKAI QFALDYLFAKSSRFLTKLAVVLTDGKSQDDVKDAAQAARDSKITLFAIGVGSETEDAELR AINNFRSTYVFYVEDYLAISKIREMKMÇKLEGESVCPTRIPTGVFKKKLIWDLWRI LTIDGRQIAVTLNGVDKILLFTTTSVINGSQVVTFANPQVKTLFDGGRFGKVKKIWDLWRI LTIDGRQIAVTLNGVDKILLFTTTSVINGSQVVTFANPQVKTLFDGGWFGKGKGKGACGKGG QGAGTFGVPGSSGIQARGLGFGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGG		PKGANGEPGKAGEKGLVGPPGLRGLSGKDGETGAAGPPGPSGPAGERGEQGPPGPSGFQG
LTGPTGPPGPAGPKGESGPSGPPGAAGTRGAPGDRGENGPPGAGPGQPG AKGEQGEGGQKGDAGAPGPQGPSGAAFGPQGPTGVSGPKGARGAQGPPGATGFPGAAGRVG PPGPNGNPGPSGPAGSAGKDGPKGVRGDAGPPGRAGRAQAGGPPGAKGFGAGRGVG PPGPNGNPGPSGPAGSAGKDGPKGVRGDAGPPGRAGAGAGAGPPGEKKGPGEDGPPG PDGPSGPQGLGGNRGIVGLPGQRGERGFPGLPGPSGEPGKQGAAGGPGPFGPKVGPPG LSGPSGPBGREGNPGSDGPPGRDGSAGTKGRGRQTGPGPAGAPGAPGAPSGPFGVGPPG DRESGAQGPAGPSGPAGAGRGMAGPQGPRGDKGEAGETGERGCKGHRGFTGLQGLPGPPG TAGDQGAAGPAGPTGARGPPGPVGPHGKGGSNGQPGPIGPPGPRGRSGEVGPAGPPGNAG PPGPPGPPGPFGTDMSAFAGLAAPEKAPDPMRYMRADEASSSLRQHDAEVDATLKSINNQI ENIRSPEGSKKNPARTCRPLKLCHPDWKSGDVWIDPNQGCAVDAIKVFCNMESGTTCVYP NPASIPRKNWWTSKSADCKHVWFGETMNGGFHFSYGDDSLAPNTASIQMTFLRLLSTEAS QNLTYHCKNSIAYMDQSAGNLKKAVLLQGSNDVETRAEGNSKFTYNVLEDGCTKHTDRWG KTVIETYKSQKTSRLPIVDIAPLDIGGSDQEFGVDIGPVCY (SEQ ID NO: 32) Jellyfish GPQGVVGADGKDGTFGEKGEQGRTGAAGKQGSPGADGARGPLGSIGQQGARGEPGDPGSP GLRGDTGLAGVKGVAGPSGRPGQPGANGLPGVNGRGGLBGKPGAKGIAGSDGEAGESGAP GLAGPTGLAGVKGVAGPSGRPGQPGANGLPGVNGRGGLBGKPGAKGIAGSDGFAGESGAP GSKGPSGDRGBRGVFGQTGSAGNVCEDGEQGGKGVDGASGPSGALGARCPPGSRGDT GAVGPPGPTGRSGLFSNAGVKGPSGPFSGPGAGSAGEQGPPGKDGSNGEPGSPGKGGR GAVGPFGFTGRSGLFSNAGVKGPSGPFSGPGAGSAGEQGPPGKDGSRGPGSPGGCGGGGGGGGGGGGGGGGGGGGGGGGGGGGG		LPGPPGPPGEGGKPGDQGVPGEAGAAGRAGPRGERGFPGERGSPGAQGLQGPRGLPGTPG
AKGEQGEGGQKGDAGAPGPQGPSGAPGPQGPTGVSGPKGARGAQGPPGATGFPGAAGRVG PPGFNGNPGFSGPAGSAGKDGFKGVRGDAGPFGRAGDAGLQGAAGPPGGPEGPEGPEGP PPGFSGPQGLGGNRG1VGLPGQRGBGFFGGPLGPSGEPGKGAPGGAGDFPGPPGPPGP LSGPSGEPGREGNPGSDGPPGRDSGAIKGDRGQTGPAGAPGAPGAPGAPGAPGAPGAPGAPGAPGAPGAPGAPG		TDGPKGATGPSGALGAQGPPGLQGMPGERGASGIAGAKGDRGDVGEKGPEGASGKDGSRG
PPGPNGNPGPSGPAGSAGKDGPKGVRGDAGPPGRAGDAGLQGAAGPPGEKGEPGEDGPPG PDGPSGPQGLGGNRGIVGLPGQRGERGFFGLLGPSSEPGKQGAPGGADRGPFGPVGPFG LSGPSGEPGRGNRGSDGPPGRDGSAGIKGDRGQTGPAGADGRGPPGFVGPFG LSGPSGEPGRGRDFGSDGPPGRDGSAGIKGDRGQTGPAGAAGPAGPAGPGSPGVGFTGKQG DRGESGAQGPAGPSGPAGARGMAGPQGPRGDKGEAGETGERQKGHRGFTGLQGLPGPPG TAGDQGAAGPAGPTGARGPPGPVCPHGKDGSNOQPGPIGPPGPRGSGEVOPAGFPGNAG PPGPPGPPGPGTDMSAFAGLAAPPKAPDPMYMYRADEASSLRQHDAEVDATLKSINNQI ENIRSPEGSKKNPARTCRDLKLCHPDWKSGDYWIDPNQGCAVDAIKVFCNMESGETCVYP NPASIPRKNWWTSKSADCKHWWFGETMNGGFHFSYGDDSLAPNTASIQMTFLRLLSTEAS QNLTYHCKNSIAYMPQSAGNLKKAVLLQGSNDVEIRAEGNSRFTYNVLEDGCTKHTDRWG KTVIEYKSQKTSRLPIVDIAPLDIGGSDQEFGVDIGPVCY (SEQ ID NO: 32) Jellyfish GPQGVVGADGKDGTPGEKGEQGRTGAAGKQGSPGADGARGPLGSIGQQGARGEPGDPGSP GLRGDTGLAGVKGVAGPSGRPGQPGANGLPGVWGRGGLRGKPGAKGIAGSDGEAGESGAP GSSGPTGPRGGRGPSGEDCNPGLQGLPGSDGEFGEEQOPGRSGQGGPGSPGDPGSP GSKGPSGDRGDRGRGVPGQTGSAGNVGEDGEQGGKGVDGASGPGAGARGPPGSRGDT GAVGPPGPTGRSGLPGNAGQKGPSGEPGSPGSPGKAGSAGEQGPPGKDGSNGEPGSPGKG GSAGPGDRGRGFGSPGIAGALGKPGLGEPRGYPGLRGRDGTNGKRGEQGETGPDGVR GIPGNDQQSGKPGIDGINGQPGEAGYQGGRGTRGQLGETGDVGQNGRGAPGPDGSK GSAGRPGLR (SEQ ID NO: 39) Human type 21 alpha 1 collagen MAHYITELCMVLVLLLQNSVLAEDGEVRSSCRTAPTDLVFILDGSYSVGPENFEIVKKML VNITKNFDIGPKFIQVGVVQYSDYPVLEIPLGSYDSVGPENFEIVKKML VNITKNFDIGPKFIQVGVVQYSDYPVLEIPLGSYDSVGPENFEIVKKML VNITKNFDIGPKFIQVGVVQYSDYPVLEIPLGSYDSVGPENFEIVKKML VNITKNFDIGPKFIQVGVVQYSDYPVLEIPLGSYDSVGPENFEIVKKML LTIDGRGQIATHASVSRILLETTTSVINGSQVVTFANPQVKTLFPLGVGSTEDDAELR AIANKPSSTYVFYVEDYLAISKIREVMKQKLCEESVCPTRIPVAARDERGFDILLGLDVN KKVKRRIQLSBKKIKGFSVTSKVDLSELTSNVFPEGLPPSYVFVSTGPKKVKMDLWRI LTIDGRGQIATHASVGRGGAGLGPPGGGAGLGFGGAGGGFGGGGGGGGGGGGGGGGG		LTGPIGPPGPAGPNGEKGESGPSGPPGAAGTRGAPGDRGENGPPGPAGFAGPPGADGQPG
PDGPSGPQGLGGNRGIVGLPGQRGERGFPGLPGPSGEPGKQGAPGGAPGAPGPPGPVGPPG LSGPSGEPGREGNPGSDGEPPGRDGSAGIKGDRGQTCPAGAPGAPGAPGAPGAPGAPGAPGAPGAPGAPGAPGAPGA		AKGEQGEGGQKGDAGAPGPQGPSGAPGPQGPTGVSGPKGARGAQGPPGATGFPGAAGRVG
LSGPSGEPGREGNPGSDGPPGRDGSAGIKGDRGQTGPAGAPGAPGAPGAPGYGPTGKQG DRGSGAQGPAGPSGPAGARGMAGPQGPRGDKGEAGETTGERGQKGHRGFTTGLQCLPGPPG TAGDQGAAGPAGPTGARGPEGPVGPHGKGGSNGQPGPTGPPGPRGRSGEVGPAGPPGNAG PPGPPGPPGPGPGPGBKGKGSNGQPGPTGPPGPRGRSGEVGPAGPPGNAG PPGPPGPGPGPGPGBKGKGSNGQPGPTGPPGPRGRSGEVGPAGPPGNAG PPGPPGPGPGPGBLMSAFAGLAAPEKAPDPMRYMRADEASSSLRQHDAEVDATLKSINNQI ENIRSPEGSKKNPARTCRDLKLCHPDWKSGDYWIDPNQGCAVDAIKVFCMMESGETCVYP NPASIFRKNWWTSKADCKHVWFGETMNGGFHFSYGDDSLAPNTASIQMFPLRLISTEAS QNLTYHCKNSIAYMDQSAGNLKKAVLLQGSNDVEIRAEGNSRFTYNVLEDGCTKHTDRWG KTVIEYKSQKTSRLPIVDIAPLDIGGSDQEFGVDIGPVCY (SEQ ID NO: 32) Jellyfish GPQGVVGADGKDGTPGEKGEQGRTGAAGKQGSPGADGARGPLGSIGQQGARGEPGDPGSP GLRGDTGLAGVKGVAGPSGRPGQPGANGLEGVNGRGGLRGKPGAKGIAGSDGEAGESGAP GSKGPSGDRGDRGERGVPGQTGSAGNVGEBGEGGGRGRGAKGIAGSDGEAGESGAP GSKGPSGDRGDRGERGVPGQTGSAGNVGEBGEGGGRGRGAAKGIAGSDGEAGESGAP GSKGPSGDRGDRGERGVPGQTGSAGNVGEBGEGGGRGRGAAGARGPPGSPGVPGPGSPGGCGGGGGGGGGGGGGGGGGGGGGGG		PPGPNGNPGPSGPAGSAGKDGPKGVRGDAGPPGRAGDAGLQGAAGPPGEKGEPGEDGPPG
DRGESGAQGPAGPSGPAGARGMAGPQGPRGDKGEAGETGERGQKGHRGFTGLQGLPGPPG TAGDQGAAGPAGPTGARRGPGPVEGPHGKDCSNGGPGFITGPFGGPRGSGEVGPGPGAGP PFGPPPGPGFIDMSAFAGLAAPEKAPDPWRYMRADEASSSLRQHDAEVDATLKSINNQI ENIRSPEGSKKNPARTCRDLKLCHPDWKSGDYWIDPNQGCAVDAIKVFCNMESGETCVYP NPASIPRKWWTSKSADCKHVWFGETMNGGFHFSYGDDSLAPNTASIQMTFLRLLSTEAS QNLTYHCKNSIAYMDQSAGNLKKAVLLQGSNDVEIRAEGNSRFTYNVLEDGCTKHTDRWG KTVIEYKSQKTSRLPIVDIAPLDIGGSDQEFGVDIGPVCY (SEQ ID NO: 32) Jellyfish GPQGVVGADGKDGTTPGEKGEQGRTGAAGKQGSPGADGARGPLGSIGQQGARGEPGDPGSP GLRGDTGLAGVKGVAGPSGRPGOPGANGLPGVNGRGGLRGKPGAKGIAGSDGEAGESGAP GQSGPTGPRGQRGFSGEDGNPGLQGLPGSDGEPGGEGGKGVDGASGPSGALGARGPPGSPGF GSKGPSGDRGDRGERGVPGQTGSAGNVGEDGGGGKGVDGASGPSGALGARGPPGSRGDT GAVGPPGFTGRSGLPGNAGQKGPSGEDGSPGSPGKAGSAGEQGPPGDVGR GIPGNDGQSGKPGIDGIDGTNGQPGEAGYQGGRTRGQLGETGDVGNDRGAPGPDGSK GSAGRPGLR (SEQ ID NO: 39) Human type 21 alpha 1 collagen AMAYTTFLCMVLVLLLQNSVLAEDGEVRSSCRTAPTDLVFILDGSYSVGPENFEIVKKWL VNITKNFDIGPKFIQVGVVQYSDYPVLEIPLGSYDSGEHLTAAVESILYLGGNTKTGKAI QFALDYLFAKSSRFLTKIAVVLTDGKSQDDVKDAAQAARDSKITLFAIGVGSETEDABLR ALAKPSSTYVFYVEDYIAISKIREVMKQKLCEESVCPTRIPVARDERGFDILLGLDVN KKVKKRIQLSPKKIKGYEVTSKVDLSELTSNVFPEGLEPSYVFVSTQRFKVKKUMDLWRI LTIDGRPQLAVTLNGVDKILLFTTTSVINGSQVVTFANPQVKTLFDEGWHQIRLLVTEQD VTLYIDDQQIENKPLHFVLGILINGGTQIGKYSGKEETVQFDVYKLRIYCDPEGNNRETA CEIPGFNGECLNGPSDVGSTPAPCICPPGKPGLGGPKGDPGLPGNFGYPGGPGGDKFGY QGIAGTPGVPGSPGIQGARGLPGYKGEPGRDGKGDRGLPGFFGLHGMPGSKGEMGAKGD KGSPGFYGKKGAKGEKGNAGFFGLEGPAGEPGRHGKDGLMGSNGSPGPPGFPGSKGKGE PGIQCMPGASGLKGEPGATGSPGEFGYMGLPGIQGKGENGRGGIPGQCKEGNGRGGI PGQQGIQGHHGAKGERGKGEFGPGVGALGSKGESGVDGLMGPAGPKGQPGDPGPPGPLD DGKFGREFSEGFTRQVCTDVIRAQLPVLLQSGRIRNCDHCLSLQHGSPGIFGPFGPEGP PGISKEGPPPGDIGVBVGPGROFGVGLKGLFGRNGGKSQGFGYPEGGGPGPFGEPGP PGISKEGPPGDPGLVGVPGRPGVRGLKGLFGNNGEKGSQGFGYPEGGPGPPGPFGPBCF PGISKEGPPGDFGLVGVPGRPGVRGLKGLFGNNGEKGSQGFGYPEGGPFGPFGPFGP PGISKEGPPGDFGLVGVPGRPGVRGLKGLFGNNGEKGSQGFGYPEGGPFGPFPGPFGP PGISKEGPPGDFGLVGVPGRAGGLFGRNGGLAGGRGGGGFGFPGGGPFFGPBFGP PGISKEGPPGDFGLVGVPGRAGGLAGGRGGGGGFGFGFGGGFFFGGGFFFGEGFFFGPFGFFGFF		PDGPSGPQGLGGNRGIVGLPGQRGERGFPGLPGPSGEPGKQGAPGGAGDRGPPGPVGPPG
TAGDQGAAGPAGPTGARGPPGPVGPHGKDGSNGQPGPTGPPGRGRSGEVGPAGPPGNAG PPGPPGPPGGPGIDMSAFAGLAAPEKAPDEMNYMRADEASSSLRQHDAEVDATLKSINNQI ENIRSPEGSKKNPARTCRDLKLCHPDWKSGDYWIDPNQGCAVDAIKVFCNMESGETCVYP NPASIPRKNWWTSKSADCKHVWFGETMNGGFHFSYGDDSLARNTASIQMTFLRLLSTEAS QNLTYHCKNSIAYMDQSAGNLKKAVLLQGSNDVEIRAEGNSRFTYNVLEDGCTKHTDRWG KTVIPYKSQKTSRLPIVDIAPLDIGGSDQEFGVDIGPVCY (SEQ ID NO: 32) Jellyfish GPQGVVGADGKDGTPGEKGEQGRTGAAGKQGSPGADGARGPLGSIGQQGARGEPGDPGSP GLRGDTGLAGVKGVAGPSGCDFGPQPGANGLPGVNGRGGLRGKPGAKGIAGSDGEAGESGAP GQSGPTGPRGQRGPSGEDGNPGLQGLPGSNDGEPGEGGPGQGGPRGSFGEVOPR CSKGPSGDRGDRGERGVPGQTGSAGNVGEDEGQGKGVDGASGPSGALGARGPPGSRGDT GAVGPPGPTGRSGLPGNAGQKGPSGEPGSPGKAGSAGPQGQFRGSFGEVOPR GSKGPSGDRGDRGERGVPGQTGSAGNVGEDEGQGKGVDGASGPSGALGARGPPGSRGDT GAVGPPGPTGRSGLPGNAGQKGPSGEPGSPGKAGSAGEQGPPGKDGSNGEPGSPGKEGER GLAGPPGDDGRGETGSPGIAGALGKPGLEGPKGYPGLRGRDGTNKKRGEQGETGPDGVR GIPGNDGQSGKPGIDGIDTNQCPGEAGYQGGRGTRGQLGETGDVGQNGDRGAPGPDGKR GSAGRPGLR (SEQ ID NO: 39) MAHYITFLCMVLVLLLQNSVLAEDGEVRSSCRTAPTDLVFILDGSYSVGPENFEIVKKML VNITKNFDIGPKFIQVGVVQYSDYPVLEIPLGSYDSGEHLTAAVESILYLGGNTKTGKAI AIANKPSSTYVFYYEDYIAISKIREVMKQKLCEBSVCETRIPVAARDERGFDILLGLDVN KKVKKRIQLSPKKIKGYEVTSKVDLSELTSNVFPEGLPPSYVFVSTQRFKVKKIWDLWRI LTIDGRPQIAVTLNGVDKILLFTTTSVINGSQVVTFANPQVKTLEPDEGWHQIRGLLUVTEQD VTLYIDDQQIENKPLHPVLGILINGQTQIGKYSGKEETVQFDVQKLRIYCDPEQNNRETA CEIPGFNGECLNGPSDVGSTFAPCLCPPGKPGLQGPKGDPGLPGNFGYPGQPGQDGKFGY QGIAGTPGVPGSPGIQGARGLPGYKGEPGRGKDGLMGSPGPGPGPGPGGKSKGE PGQGTQGHRGAKGEKGNAGFFGLFGPFAGEPGRRGKDGLMGSPGFRGEAGSPGAPGQDGT RGEPGIPGFFGNGELMGGKGEIGFPFQGKKGAFGGMGAKGD KGSPGFYGKKGAKGEKGNAGFFGLFGPFAGEPGRRGKDGLMGSNGSPGQPGTPPGSKSKGE PGQQGIQGHHGAKGERGEKGEFGVRGAIGSKGESGVDGLMGPAGPKGQPGPPGPGFGF PGQQGTQGHHGAKGERGEKGEFGVRGAGIGSKGESGVDGLMGPAGPKGQPGPPGPGPGPG PGGQSTQGHGAKGPGGPGGGGRGGGGGGGGGGGGGGGPGPGGGPGPGGPPG PGGSKGEPGDPGJPGKDGUNGFGGGGRGGGGGGGGGGGGGGPGPGGGGPPGGGPPG PGGSKGGPGPGGGGGGGGGG		
PPGPPGPPGIDMSAFAGLAAPEKAPDPMRYMRADEASSSLRQHDAEVDATLKSINNQI ENTRSPEGSKKNPARTCRDLKLCHPDWKSGDYWIDPNQGGAVDAIKVFCNMESGETCVYP NPASIPRKNWWTSKSADCKHVWFGETMNGGFHFSYGDDSLAPNTASIQMTFLRLLSTEAS QNLTYHCKNSIAYMDQSAGNLKKAVLLQGSNDVEIRAEGNSRFTYNVLEDGCTKHTDRWG KTVIEYKSQKTSRLPIVDIAPLDIGGSDQEFGVDIGPVCY (SEQ ID No: 32) Jellyfish GPQGVVGADGKDGTPGEKGEQGRTGAAGKQGSPGADGARGPLGSIGQQGARGEPGDPGSP GLRGDTGLAGVKGVAGPSGRPGQPGANGLPGVNGRGGLRGKPGAKGIAGSDGEAGESGAP GQSGPTGPRGQRGPSGEDGNPGLQGLPGSDGEPGEEGQPGRSGQPGQGPRGSPGEVGPR GSKGPSGDRGDRGERGVPGQTGSAGNVGEDGEQGGKGVDGASGPSGALGARGPPGSRGDT GAVGPPGPTGRSGLPGNAGQKGPSGEPGSPGKAGSAGEQGPPGKDGSNGEPGSPGKEGER GLAGPPGPDGRRGETGSPGIAGALGKPGLEGPKGYPGLGGTNGKRGEQGETGPDGVR GIPGNDQSGKPGIDGIDGTNGQPGEAGYQGGRGTRGQLGETGDVGQNGDRGAPGPDGSK GSAGRPGLR (SEQ ID NO: 39) Human type 21 alpha l collagen AHYITFLCMLVLLLQNSVLAEDGEVRSSCRTAPTDLVFILDGSYSVGPENFEIVKKWL VNITKNFDIGPKFIQVGVVQYSDYPVLEIPLGSYDSGEHLTAAVESILYLGGNTKTGKAI QFFALDYLFAKSSRFLTKIAVVLTDGRSQDDVKDAQAARDSKTILFAIGVGSETEDAELR ALANKPSSTYVFYVEDYIALSKIREVMKQKLCEESVCPTRIPVAARDERGFDILLGLDVN KKVKKRIQLSPKKIKGYEVTSKVDLSELTSNVFPEGLPPSYVFVSTQRFKVKKIWDLWRI LTIDGRPGIAVTLNGVDKILLFTTTSVINGSQVVTFANPQVKLIFDEGMHQIRLLVTEDD VTLYIDDQQIENKPLHPVLGILINGQTQIGKYSGKEETVQFDVQKLRIYCDPEQNNRETA CEIFGFNGECLNGPSDVGSTPAPCICPPGKBGLQGPKGDPGPFPGLPGNPGSKGGMGAKGD KGSPGFYGKKGAKGEKGNAGFFGLPGPAGEPGRHGKDGLMGSNGSPGPFGFPGSKGKGE PGIQGMGASGLKGEPGATGSFGEPGYMGLPGIQCKKGDNGSPGPPGFTGSKGKGE PGIQGMFGASGLKGEPGATGSFGEPGYMGLPGIQCKKGDKNQSEKGIDGQKGENGRGGI PGQQGIQGHHGAKGERGEGEGVRGEBGRGKGAGGRRAGDBFGLAGGRGFGPFGPGPFPGPBGP PGGQGIGCHHGAKGGEGGFGRGFGKGEGGRGRGRGFGCPGFPGPPGPFGP PGGPGDPGLPGKDGVBLVVCPGRPGVRGLKGLPGRNCEKGSGGFGYPGGGGPFPGPPGPBGP PGGLPGLPGCLDGVGLVGVVGYFGRPGVRGLKGLPGRNCEKGSGGFGYPGGGGPPGPPGPEGP PGGLPGLPGLPGDVGLVGVVGRPGVGGLGGGRGRGGRGGGGGFGGGFGGGFGPGFPGPFGFBG PGGLPGLPGCPGPGPGLGGVFGLKGLPGRNCEKGSGGFGYPGGGGPPGPPGPEGP PGGLPGLPGLPGDPGLPGKDGDHGKPGIQGQPGPPFGICDPSLCFSVIARRDPFRKGPNY		DRGESGAQGPAGPSGPAGARGMAGPQGPRGDKGEAGETGERGQKGHRGFTGLQGLPGPPG
ENIRSPEGSKKNPARTCRDLKLCHPDWKSGDYWIDPNQGCAVDAIKVFCNMESGETCVYP NPASIPRKNWTSKSADCKHVWFGETMNGGFHFSYGDDSLAPNTASIQMTFLRLLSTEAS QNLTYHCKNSIAYMDQSAGNLKKAVLLQGSNDVEIRAEGNSRFTYNVLEDGCTKHTDRWG KTVIEYKSQKTSRLPIVDIAPLDIGGSDQEFGVDIGPVCY (SEQ ID NO: 32) Jellyfish GPQGVVGADGKDGTPGEKGEQGRTGAAGKQGSPGADGARGPLGSIGQQGARGEPGDPGSP GLRGDTGLAGVKGVAGPSGRPGQPGANGLPGVNGRGGLRGKPGAKGIAGSDGEAGESGAP GQSGPTGPRQQRGPSGBDGPGLQGLPGSDEPGEEGQPGRSGQPGQQGPRGSPGEVGPR GSKGPSGDRGDRGERGVPGQTGSAGNVGEDGEQGGKGVDGASGPSGALGARGPPGSRGDT GAVGPPGPTGRSGLPGNAGQKGPSGEPGSPGKAGSAGEQGPPGKDGSNGEPGSPGKEGER GLAGPPGPDGRRGETGSPGIAGALGKPGLEGPKGYPGLRGRDGTNGKRGEQGETGPDGVR GIPGNDGQSGKPGIDGIDGTNGQPGEAGYQGGRGTRGQLGETGDVGQNGDRGAPGPDGSK GSAGRPGLR (SEQ ID NO: 39) Human type 21 alpha 1 collagen AHMYITFLCMLVLLLQNSVLAEDGEVRSSCRTAPTDLVFILDGSYSVGPENFEIVKKWL VNITKNFDIGPKFIQVGVVQYSDYPVLEIPLGSYDSGEHLTAAVESILYLGGNTKTGKAI QFALDYLFAKSSRFLTKIAVVLTDGKSQDDVKDAAQAARDSKITLFAIGVGSSTEDABLR AIANKPSSTYVFYVEDYIAISKIREVMKQKLCEESVCPTRIPVAARDERGFDILLGLDVN KKVKKRIQLSPKKIKGVEVTSKVDLSELTSNVFPEGLPPSYVFVSTQRFKVKKIWDLWRI LTIDGRPQIAVTLNGVDKILLFTTTSVINGSQVVTFANPQVKTLFDEGWHQIRLLVTEQD VTLYIDDQQIENKPLHPVLGILINGGTQIGKYSGKEETVQFDVQKLRIYCDPEQNNRETA CEIPGFNGECLNGPSDVGSTPAPCICPPGKPGLQGPKGDPGLPGNPGYPGQPGDGKPGY QGIAGTPGVPGSPGIGGARGLFGYKGEPGRBGKGDRGLFGFPGLHGMPGSKGEMGARGD KGSPGFYGKKGAKGKGNAGFPGLPGPAGEPGRHGKDGLMGSNGSPGGPGTPGSKGSKGE PGIQGMPGASGLKGEPGATGSPGEPGRHGKDGLMGSNGSPGGPGTPGSKGSKGE PGIQGMPGASGLKGEPGATGSPGEPGRHGKDGLMGSNGSPGGPGTPGSKGSKGE PGIQGMPGASGLKGEPGATGSPGEPGYMGLPGIQGKKGDKGNQGEKGIQQKGENGRQGI PGQQGIQGHHGAKGERGEKGEPGVRGAIGSKGESGVVDGLMGPAGFKGGPGDPGPPGPPGD PGKLPGLPGLPGVPGLVGVPGRPGVRGLKGLPGRNGEKGSQGFGYPGGGGPGPPGPPGEP PGISKEGPPGDPGLPGKDGDHGKPGIQGQPGPPGICDPSLCFSVIARRDPFRKGPNY		TAGDQGAAGPAGPTGARGPPGPVGPHGKDGSNGQPGPIGPPGPRGRSGEVGPAGPPGNAG
NPASIPRKNWMTSKSADCKHVWFGETMNGGFHFSYGDDSLAPNTASIQMTFLRLLSTEAS QNLTYHCKNSIAYMQSAGNLKKAVLLQGSNDVEIRAEGNSRFTYNVLEDGCTKHTDRWG KTVIEYKSQKTSRLPIVDIAPLDIGGSDQEFGVDIGPVCY (SEQ ID NO: 32) Jellyfish GPQGVVGADGKDGTPGEKGEQGRTGAAGKQGSPGADGARGPLGSIGQQGARGEPGDPGSP GLRGDTGLAGVKGVAGPSGRPGQPGANGLPGVNGRGGLRGKPGAKGIAGSDGEAGESGAP GQSGPTGPRQQRGPSGEDGNPGLQGLPGSDGEPGEEQGPGRSQQPGQGPRGSPGEVGPR GSKGPSGDRGDRGERGVPGQTGSAGNVGEDGEQGKGVDGASGPSGALGARGPPGSRGDT GAVGPPGPTGRSGLPGNAGQKGPSGEPGSPGKAGSAGEQGPPGKDGSNGEPGSPGKRG GLAGPPGPDGRRGETGSPGIAGALGKPGLEGPKGYPGLRGRDGTNGKRGEQGETGPDGVR GIPGNDGQSGKPGIDGIDGTNGQPGEAGYQGGRGTRGQLGETGDVGQNGDRGAPGPDGSK GSAGRPGLR (SEQ ID NO: 39) MAHYITFLCMVLVLLLQNSVLAEDGEVRSSCRTAPTDLVFILDGSYSVGPENFEIVKKWL VNITKNFDIGPKFIQVGVVQYSDYPVLEIPLGSYDSGEHLTAAVESILYLGGNTKTGKAI QFALDYLFAKSSRFLTKIAVVLTDGKSQDDVKDAAQAARDSKITLFAIGVGSETEDAELR AIANKPSSTYVFYVEDYIAISKIREVMKQKLCEESVCPTRIPVAARDERGFDILLGLDVN KKVKKRIQLSPKKIKGYEVTSKVDLSELTSNVFPEGLPPSYVFVSTQRFKVKKIWDLWRI LTIDGRPQIAVTLNGVDKILLFTTTSVINGSQVVTFANPQVKTLFDEGWHQIRLLVTEQD VTLYIDDQQIENKPLHPVLGILINGQTQIGKYSGKEETVQFDVQKLRIYCDPEQNNRETA CEIPGFNGECLNGPSDVGSTPAPCICPPGKPGLQGPKGDPGFPGLHGMPGSKGEMGAKGD KGSPGFYGKKGAKGEKGNAGFFGLPGPAGEPGRHGKDGLMGSPGFYGQPGPGFTG RGEPGIPGFPGNRGLMGQKGEIGPPGQQGKKGAPGMFGLMGSNGSPGQPGTPGSKGSKGE PGIQGMPGASGLKGEPGATGSPGEPGYMGLPGIQGKKGDKGNQGEKGIQGQKGENGRQGI PGQQCTQGHHGAKGERGEKGEPGVRGAIGSKGESGVDGLMGPAGPKGQPGDPGPQGPPGL DGKPGREFSEQFIRQVCTDVIRAQLPVLLQSGRIRNCDHCLSQHGSPGIPGPPGPGPGD PGGPGPGGPGGPGDFGPGFGFGGPGGPGGPGFGFGFGFGF		· ·
QNLTYHCKNSIAYMDQSAGNLKKAVLLQGSNDVEIRAEGNSRFTYNVLEDGCTKHTDRWG KTVIEYKSQRTSRLPIVDIAPLDIGGSDQEFGVDIGPVCY (SEQ ID NO: 32) Jellyfish GPQGVVGADGKDGTFGEKGEQGRTGAAGKQGSPGADGARGPLGSIGQQGARGEPGDPGSP GLRGDTGLAGVKGVAGPSGRPGQPGANGLPGVNGRGGLRGKPGAKGIAGSDGEAGESGAP (Hydrozoan) GQSGPTGPRGQRGPSGEDGNPGLQGLPGSDGEPGEGQPGRSGQPGQQGPRGSPGEVGPR GSKGPSGDRGDRGERGVPGQTGSAGNVGEDGEGGGKGVVGASGFSGALGARGPPGSRGDT GAVGPPGPTGRSGLPGNAGQKGPSGEPGSPGKAGSAGEQGPPGKDGSNGEPGSPGKEGER GLAGPPGPDGRGETGSPGIAGALGKPGLEGPKGYPGLRGRDGTTMGKRGEGGETGPDGVR GIPGNDGQSGKPGIDGIDGTNGQPGEAGYQGGRGTRGQLGETGDVGQNGDRGAPGPDGSK GSAGRPGLR (SEQ ID NO: 39) Human type 21 MAHYITFLCMVLVLLLQNSVLAEDGEVRSSCRTAPTDLVFILDGSYSVGPENFEIVKKWL VNTKNFDIGPKFIQVGVVQYSDYPVLEIPLGSYDSGEHLTAAVESILYLGGNTKTGKAI QFALDYLFAKSSRFLTKIAVVLTDGKSQDDVKDAAQAARDSKITLFAIGVGSETEDAELR ALANKPSSTVYFYVEDYIAISKIREVMKQKLCEESVCPTRIPVAARDERGFDILLGLDVN KKVKKRIQLSPKKIKGYEVTSKVDLSELTSNVFPEGLPPSYVFVSTQRFKVKKIWDLWRI LTIDGRPQIAVTLNGVDKILLFTTTSVINGSQVVTFANPQVKTLFDEGWHQIRLLVTEQD VTLYIDDQQIENKPLHPVLGILINGQTQIGKYSGKEETVQFDVQKLRIYCDPEQNNRETA CEIPGFNGECLNGPSDVGSTPAPCICPPGKPGLQGPKGDPGLPGFPGLHGMPGSKGEMGAKGD KGSPGFYGKKGAKGEKGNAGFFGLPGPAGEPGRHGKDGLMGSPGFKGEAGSPGAPGQDGT RGEPGIPGFPGNRGLMGQKGEIGPPGQGGKKGAPGMPGLMGSNGSPGQPCTPGSKGSKGE PGIQGMPGASGLKGEPGATGSPGEPGYMGLPGIQGKKGDKGNQGEKGIQGQKGENGRQGI PGQQGIQGHHGAKGERGEKGEPGVRGAIGSKGESGVDGLMGPAGPRGPGPGPGPGPGE PRGLPGLPGRDGVPGLVGVPGRPGVRCLKGLFGRNGEKGSQGFGYPGEQGFPGPPGFEGP PRGLPGLPGRDGVPGLVGVPGRPGVRCLKGLFGRNGEKGSQGFGYPGEQGFPGPPGFEGP PRGLPGLPGRDGVPGLVGVPGRPGVRCLKGLFGRNGEKGSQFGYPGEQGFPGPPGFEGP PRGLPGLPGRDGVPGLVGVPGRPGVRCLKGLFGRNGEKGSQFGYPGEQGFPGPPGFEGP PGGLFGLPGRDGVPGLVGVPGRPGVRCLKGLFGRNGEKGSGFGYPGEQGFPGPPGFEGP PGGLFGLPGRDGVPGLPGVFGLFGVRGERGRGKGSGSGFGYPGEQGFPGPPGFEGP PGGLFGLPGRDGVPGLPGVFGLFGRAGRGRGKGSGFGYPGEQGFPGPPGFEGP PGGLFGLPGRDGVPGLPGVFGLFGVRGERGERGERGKGSGFGYPGEGGFPGPPGFEGP PGGLFGLPGLPGRDGVFGLFGVFGLFGRAGEKGSGFGYPGGGGFFGPGPFGFEGP PGGLFGLFGRDGVFGLFGVFGLFGRAGEKGSGFGYPGGGGFFGPFGFFGPFGFGFF		The state of the s
KTVIEYKSQKTSRLPIVDIAPLDIGGSDQEFGVDIGPVCY (SEQ ID No: 32) Jellyfish		
Jellyfish GPQGVVGADGKDGTPGEKGEQGRTGAAGKQGSPGADGARGPLGSIGQQGARGEPGDPGSP GLRGDTGLAGVKGVAGPSGREQGRTGAAGKQGSPGADGARGPLGSIGQQGARGEPGDPGSP GLRGDTGLAGVKGVAGPSGREQDGNPGLQGLPGSDGEPGEEQQPGRSQGPGQQGPRGSPGEVGPR GQSGPTGPRGQRGPSGEDGNPGLQGLPGSDGEPGEEQQPGRSQGPGQQGPRGSPGSPGEVGPR GSKGPSGDRGDRGERGVPGQTGSAGNVGEDGEQGGKGVDGASGPSGALGARGPPGSRGDT GAVGPPGPTGRSGLPGNAGQKGPSGEPGSPGKAGSAGEQGPFGKDGSNGEPGSPGKEGER GLAGPPGPDGRRGETGSPGIAGALGKPGLEGPKGYPGLRGRDGTNGKRGEQGETGPDGVR GIPGNDGQSGKPGIDGIDGTNGQPGEAGYQGGRGTRGQLGETGDVGQNGDRGAPGPDGSK GSAGRPGLR (SEQ ID NO: 39) Human type 21 alpha 1 collagen ### MAHYITFLCMVLVLLLQNSVLAEDGEVRSSCRTAPTDLVFILDGSYSVGPENFEIVKKWL VNITKNFDIGPKFIQVGVVQYSDYPVLEIPLGSYDSGEHLTAAVESILYLGGNTKTGKAI QFALDYLFAKSSRFLTKIAVVLTDGKSQDDVKDAAQAARDSKITLFAIGVGSETEDAELR AIANKPSSTYVFYVEDYIAISKIREVMKQKLCEESVCPTRIPVAARDERGFDILLGLDVN KKVKKRIQLSPKKIKGYEVTSKVDLSELTSNVFPEGLPPSYVFVSTQRFKVKKIWDLWRI LTIDGRPQIAVTLNGVDKILLFTTTSVINGSQVVTFANPQVKTLFDEGWHQIRLLVTEQD VTLYIDDQQIENKPLHPVLGILINGQTQIGKYSGKETVQFDVVKLRIYCDPEQNNETA CEIPGFNGECLNGPSDVGSTPAPCICPPGKPGLQGFKGDPGLPGNPGYPGQPGQDGKPGY QGIAGTFGVPGSSPGIQGARGLPGYKGEFGRDGDKGDRGLPGFPGLHGMPGSKGEMGAKGD KGSPGFYGKKGAKGEKGNAGFPGLPGFYGGLGGFKGDPGLPGFPGLHGMPGSKGEMGAKGD KGSPGFYGKKGAKGEKGNAGFPGLPGPAGEPGRHGKDGLMGSPGFKGEAGSPGAPGQDGT RGEPGIPGFPGNRGLMGQKGEIGPPGQQGKKGAPCMPGLMGSNGSPGPTPGSKGSKGE PGIQGMPGASGLKGEPGATGSPGEPGYMGLPGIQGKKGDKGNQGEKGIQGQKGENGRQGI PGQQGIQGHHGAKGERGEKGEPGVRGAIGSKGESGVDGLMGPAGPKQPGDPGPPGPLGPEGP PGQQGIQGHHGAKGERGEKGEPGVRGAIGSKGESGVDGLMGPAGPKQPGDPGPPGPPGPEGP PGQCGIQGHHGAKGERGEKGEPGVRGAIGSKGESGVDGLMGPAGPKQPGDPGPPGPPGPEGP PGGLPGLPGRGGVPGLVCVTDVIRAQLPVLLQSGRIRNCDHCLSQHGSPGIPGPPGPPGPEGP PGISKEGPPGDPGLPGKDGDHGKPGIQGQPGPPGICDPSLCFSVIARRDPFRKGPNY		
Jellyfish		
(Hydrozoan) GLRGDTGLAGVKGVAGPSGREGQPGANGLPGVNGRGGLRGKPGAKGLAGSDGEAGESGAP GQSGPTGPRGQRGPSGEDGNPGLQGLPGSDGEPGEEGQPGRSGQPGQQGPGRSPGEVGPR GSKGPTSGDRGDRGERGVPGQTGSAGNVGEDGEQGGKGVDGASGPSGALGARGPPGSRGDT GAVGPPGPTGRSGLPGNAGQKGPSGEPGSPGKAGSAGEQGPPGKDGSNGEPGSPGKEGER GLAGPPGPDGRRGETGSPGIAGALGKPGLEGPKGYPGLRGRDGTNGKRGEQGETGPDGVR GIPGNDGQSGKPGIDGIDGTNGQPGEAGYQGGRGTRGQLGETGDVGQNGDRGAPGPDGSK GSAGRPGLR (SEQ ID NO: 39) Human type 21 alpha 1 collagen MAHYITFLCMVLVLLLQNSVLAEDGEVRSSCRTAPTDLVFILDGSYSVGPENFEIVKKWL VNITKNFDIGPKFIQVGVVQYSDYPVLEIPLGSYDSGEHLITAAVESILYLGGNTKTGKAI QFALDYLFAKSSRFLTKIAVVLTDGKSQDDVKDAAQAARDSKITLFAIGVGSETDAELR AIANKPSTYVFYVEDYIAISKIREVMKQKLCEESVCPTRIPVAARDERGFDILLGLDVN KKVKKRIQLSPKKIKGYEVTSKVDLSELTSNVFPEGLPPSYVFVSTQRFKVKKIWDLWRI LTIDGRPQIAVTLNGVDKILLFTTTSVINGSQVVTFANPQVKTLFDEGWHQIRLLVTEQD VTLYIDDQQIENKPLHPVLGILINGQTQIGKYSGKEETVQFDVQKLRIYCDPEQNNRETA CEIPGFNGECLNGPSDVGSTPAPCICPPGKPGLQGPKGDPGLPGNPGYPGQPGQDGKPGY QGIAGTPGVPGSPGIQGARGLPGYKGEPGRDGDKGDRGLPGFPGLHGMPGSKGEMGAKGD KGSFGFYGKKGAKGEKGNAGFFGLPGPAGEPGRHGKDGLMGSPGFFGEAGSPGAFGQDGT RGEPGIPGFPGNRGLMGQKGEIGPPGQQKKGAPGMPGLMGSNGSPGPGFPGSKSKGE PGQQGTQGHHGAKGEPGATGSPGEPGYMGLPGIQGKKGDKGNQGEKGIQGQKGENGRQGI PGQQGTQGHHGAKGERGEKGEPGATGSPGEPGYMGLPGIQGKKGDKGNQGEKGIQGQKGENGRQGI PGQQGTQGHHGAKGERGEKGEFGVRGAIGSKGESGVDGLMGPAGPKGQPGDPGPQGPPGL DGKFGRFFSEQFIRQVCTDVIRAQLPVLLQSGRIRNCDHCLSQHGSPGIPGPGPGPGPGP PGLPGLPGRDGVPGLVGVPGRPGVRGLKGLPGRNGEKGSQGFGYPGEQGPPGPPGPEGP PGLPGLPGRDGVPGLVGVPGRPGVRGLKGLPGRNGEKGSQGFGYPGEQGPPGPPGPEGP PGLSKEGPPGDPGLPGKDGDHGKPGIQGQPGPPGICDPSLCFSVIARRDPFFKGPNY		1 11
(Hydrozoan) GQSGPTGPRGQRGPSGEDGNPGLQGLPGSDGEPGEGQPGRSGQPGQQGPRGSPGEVGPR GSKGPSGDRGDRGERGVPGQTGSAGNVGEDGEQGKGVDGASGPSGALGARGPPGSRGDT GAVGPPGPTGRSGLPGNAGQKGPSGEPGSPGKAGSAGEQGPPGKDGSNGEPGSPGKEGER GLAGPPGPDGRRGETGSPGIAGALGKPGLEGPKGYPGLRGRDGTNGKRGEQGETGPDGVR GIPGNDQSGKPGIDGIDGTNGQPGEAGYQGGRGTRGQLGETGDVGQNGDRGAPGPDGSK GSAGRPGLR (SEQ ID NO: 39) Human type 21 alpha 1 collagen AHYITFLCMVLVLLLQNSVLAEDGEVRSSCRTAPTDLVFILDGSYSVGPENFEIVKKWL VNITKNFDIGPKFIQVGVVQYSDYPVLEIPLGSYDSGEHLTAAVESILYLGGNTKTGKAI QFALDYLFAKSSRFLTKIAVVLTDGKSQDDVKDAAQAARDSKITLFAIGVGSETEDAELR AIANKPSSTYVFYVEDYIAISKIREVMKQKLCEESVCPTRIEVAARDERGFDILLGLDVN KKVKKRIQLSPKKIKGYEVTSKVDLSELTSNVFPEGLPPSYVFVSTQRFKVKKIDLWRI LTIDGRPQIAVTLNGVDKILLFTTTSVINGSQVVTFANPQVKTLFDEGWHQIRLLVTEQD VTLYIDDQQIENKPLHPVLGILINGQTQIGKYSGKEETVQFDVQKLRIYCDPEQNNRETA CEIPGFNGECLNGPSDVGSTPAPCICPPGKPGLQGPKGDPGLPGNPGYPGQPGQDGKPGY QGIAGTPGVPGSPGIQGARGLPGYKGEPGRDGDKGDRGLPGFPGLHGMPGSKGEMGAKGD KGSPGFYGKKGAKGEKGNAGFFGLPGPAGEPGRHGKDGLMGSPGFFGLAGSPGAFGQDGT RGEPGIPGFFONRGLMGQKGEIGPPGQQGKKGAPGMPGLMGSNGSPGQPGTPGSKGSKGE PGIQGMPGASGLKGEPGATGSPGEPGFYMGLPGIQGKKGDKGNQGEKGIQGKGENGRQGI PGQQGIQGHHGAKGERGEKGEPGVRGAIGSKGESGVDGLMGPAGPKGQPGDPGPGPGL DGKPGREFSEQFIRQVCTDVIRAQLPVLLQSGRIRNCDHCLSQHGSPGIPGFPGPFGPF PGQBIPGLPGRDGVPGLVGVPGRPGVRGLKGLPGRNGEKGSQGFGYPGEQGPPGPGPGP PGISKEGPPGDPGLPGKDGDHGKPGIQGQPGPPGICDPSLCFSVIARRDPFRKGPNY	Jellyfish	
Collagen GSKGPSGDRGDRGERGVPGQTGSAGNVGEDGEQGGKGVDGASGPSGALGARGPPGSRGDT GAVGPPGPTGRSGLPGNAGQKGPSGEPGSPGKAGSAGEQGPPGKDGSNGEPGSPGKEGER GLAGPPGPDGRRGETGSPGTAGALGKPGLEGPKGYPGLRGRDGTNGKRGEQGETGPDGVR GIPGNDGQSGKPGIDGIDGTNGQPGEAGYQGGRGTRGQLGETGDVGQNGDRGAPGPDGSK GSAGRPGLR (SEQ ID NO: 39) MAHYITFLCMVLVLLLQNSVLAEDGEVRSSCRTAPTDLVFILDGSYSVGPENFEIVKKWL VNITKNFDIGPKFIQVGVVQYSDYPVLEIPLGSYDSGEHLTAAVESILYLGGNTKTGKAI Alpha 1 collagen MAHYITFLCMVLVLLLQNSVLAEDGEVRSSCRTAPTDLVFILDGSYSVGPENFEIVKKWL VNITKNFDIGPKFIQVGVVQYSDYPVLEIPLGSYDSGEHLTAAVESILYLGGNTKTGKAI ALANKPSSTYVFYVEDYIAISKIREVMKQKLCEESVCPTRIPVAARDERGFDILLGLDVN KKVKKRIQLSPKKIKGYEVTSKVDLSELTSNVFPEGLPPSYVFVSTQRFKVKKIWDLWRI LTIDGRPQIAVTLNGVDKILLFTTTSVINGSQVVTFANPQVKTLFDEGWHQIRLLVTEQD VTLYIDDQQIENKPLHPVLGILINGQTQIGKYSGKEETVQFDVQKLRIYCDPEQNNRETA CEIPGFNGECLNGPSDVGSTPAPCICPPGKPGLQGPKGDPGLPGNPGYPGQPGDGKGDY QGIAGTPGVPGSPGIQGARGLPGYKGEPGRDGDKGDRGLPGFPGLHGMPGSKGEMGAKGD KGSPGFYGKKGAKGEKGNAGFPGLPGPAGEPGRHGKDGLMGSPGFFGLPGSKGSKGE PGIQGMPGASGLKGEPGATGSPGEPGYMGLPGIQGKKGDKGNQGEKGIQGQKGENGRQGI PGQQGIQGHHGAKGERGEKGEPGVRGAIGSKGESGVDGLMGPAGPKGPCDPGPQGPPGL DGKPGREFSEQFIRQVCTDVIRAQLPVLLQSGRIRNCDHCLSQHGSPGIPGPPGPGPGP PGLPGLPGDDPGLPGKDGDHGKPGIQGQPGPPGICDPSLCFSVIARRDPFRKGPNY	(77 1	
GAVGPPGPTGRSGLPGNAGQKGPSGEPGSPGKAGSAGEQGPPGKDGSNGEPGSPGKEGER GLAGPPGPDGRRGETGSPGLAGALGKPGLEGPKGYPGLRGRDGTNGKRGEQGETGPDGVR GIPGNDGQSGKPGIDGIDGTNGQPGEAGYQGGRGTRGQLGETGDVGQNGDRGAPGPDGSK GSAGRPGLR (SEQ ID No: 39) MAHYITFLCMVLVLLLQNSVLAEDGEVRSSCRTAPTDLVFILDGSYSVGPENFEIVKKWL VNITKNFDIGPKFLQVGVVQYSDYPVLEIPLGSYDSGEHLTAAVESILYLGGNTKTGKAI QFALDYLFAKSSRFLTKLAVVLTDGKSQDDVKDAAQAARDSKITLFAIGVGSETEDAELR ALANKPSSTYVFYVEDYLAISKLREVMKQKLCEESVCPTRIPVAARDERGFDILLGLDVN KKVKKRIQLSPKKIKGYEVTSKVDLSELTSNVFPEGLPPSYVFVSTQRFKVKKIWDLWRI LTIDGRPQIAVTLNGVDKILLFTTTSVINGSQVVTFANPQVKTLFDEGWHQIRLLVTEQD VTLYIDDQQIENKPLHPVLGILINGQTQIGKYSGKEETVQFDVQKLRIYCDPEQNNRETA CEIPGFNGECLNGPSDVGSTPAPCICPPGKPGLQGPKGDPGLPGNPGYPGQPGQDGKPGY QGIAGTPGVPGSPGIQGARGLPGYKGEPGRDGKGDRGLPGFFGLHGMPGSKGEMGAKGD KGSPGFYGKKGAKGEKGNAGFPGLPGPAGEPGRHGKDGLMGSPGFKGEAGSPGAPGQDGT RGEPGIPGFPGNRGLMGQKGEIGPPQQGKKKGAPGMPGLMGSNGSPGQPFTPGSKGSKGE PGIQGMPGASGLKGEPGATGSPGEPGYMGLPGIQGKKGDKGNQGEKGIQGQKGENGRQGI PGQQGIQGHHGAKGERGEKGEPGVRGAIGSKGESGVDGLMGPAGPKQPGDPPGPDGPDGP DGKPGREFSEQFIRQVCTDVIRAQLPVLLQSGRIRNCDHCLSQHGSPGIPGPPGPPGPEGP PGLPGLPGRDGVPGLVGVPGRPGVRGLKGLPGRNGEKGSQGFGYPGEQGPPGPPGPEGP PGISKEGPPGDPGLPGKDGDHGKPGIQGQPGPPGICDPSLCFSVIARRDPFRKGPNY	(Hydrozoan)	
GLAGPPGPDGRRGETGSPGIAGALGKPGLEGPKGYPGLRGRDGTNGKRGEQGETGPDGVR GIPGNDGQSGKPGIDGIDGTNGQPGEAGYQGGRGTRGQLGETGDVGQNGDRGAPGPDGSK GSAGRPGLR (SEQ ID NO: 39) Human type 21 alpha 1 collagen GFALDYLFAKSSRFLTKIAVVLTDGKSQDDVKDAAQAARDSKITLFAIGVGSETEDAELR AIANKPSSTYVFYVEDYIAISKIREVMKQKLCEESVCPTRIPVAARDERGFDILLGLDVN KKVKKRIQLSPKKIKGYEVTSKVDLSELTSNVFPEGLPPSYVFVSTQRFKVKKIWDLWRI LTIDGRPQIAVTLNGVDKILLFTTTSVINGSQVVTFANPQVKTLFDEGWHQIRLLVTEQD VTLYIDDQQIENKPLHPVLGILINGQTQIGKYSGKEETVQFDVQKLRIYCDPEQNNRETA CEIPGFNGECLNGPSDVGSTPAPCICPPGKPGLQGPKGDPGPPGPPGPQPGQDGKPGY QGIAGTPGVPGSPGIQGARGLPGYKGEPGRDGKGDRGLPGFPGLHGMPGSKGEMGAKGD KGSPGFYGKKGAKGEKGNAGFPGLPGPAGEPGRHGKDGLMGSPGFKGEAGSPGAPGQDGT RGEPGIPGFPGNRGLMGQKGEIGPPGQQGKKGAPGMPGLMGSNGSPGQPGTPGSKGSKGE PGIQGMPGASGLKGEPGATGSPGEPGYMGLPGIQGKKGDKGNQGEKGIQGQKGENGRQGI PGQQGIQGHHGAKGERGEKGEPGVRGAIGSKGESGVDGLMGPAGPKGQPGDPGPPGL DGKPGREFSEQFIRQVCTDVIRAQLPVLLQSGRIRNCDHCLSQHGSPGIPGPPGPGPGP PGISKEGPPGDPGLPGKDGDHGKPGIQGQFGPPGICDPSLCFSVIARRDPFRKGPNY	collagen	
GIPGNDGQSGKPGIDGIDGTNGQPGEAGYQGGRGTRGQLGETGDVGQNGDRGAPGPDGSK GSAGRPGLR (SEQ ID NO: 39) MAHYITFLCMVLVLLLQNSVLAEDGEVRSSCRTAPTDLVFILDGSYSVGPENFEIVKKWL VNITKNFDIGPKFIQVGVVQYSDYPVLEIPLGSYDSGEHLTAAVESILYLGGNTKTGKAI QFALDYLFAKSSRFLTKIAVVLTDGKSQDDVKDAAQAARDSKITLFAIGVGSETEDAELR AIANKPSSTYVFYVEDYIAISKIREVMKQKLCEESVCPTRIPVAARDERGFDILLGLDVN KKVKKRIQLSPKKIKGYEVTSKVDLSELTSNVFPEGLPPSYVFVSTQRFKVKKIWDLWRI LTIDGRPQIAVTLNGVDKILLFTTTSVINGSQVVTFANPQVKTLFDEGWHQIRLLVTEQD VTLYIDDQQIENKPLHPVLGILINGQTQIGKYSGKEETVQFDVQKLRIYCDPEQNNRETA CEIPGFNGECLNGPSDVGSTPAPCICPPGKPGLQGPKGDPGLPGNPGYPGQPGQDGKPGY QGIAGTPGVPGSPGIQGARGLPGYKGEPGRDGDKGDRGLPGFPGLHGMPGSKGEMGAKGD KGSPGFYGKKGAKGEKGNAGFPGLPGPAGEPGRHGKDGLMGSPGFKGEAGSPGAPGQDGT RGEPGIPGFPGNRGLMGQKGEIGPPGQQGKKGAPGMPGLMGSNGSPGQPGTPGSKGSKGE PGIQGMPGASGLKGEPGATGSPGEPGYMGLPGIQGKKGDKGNQGEKGIQGQKGENGRQGI PGQQGIQGHHGAKGERGEKGEPGVRGAIGSKGESGVDGLMGPAGPKGQPGDPGPPGPEGP PGQCGIQGHHGAKGERGEKGEPGVRGAIGSKGESGVDGLMGPAGPKGQPGDPGPPGPEGP PGGLPGLPGRDGVPGLVGVVPGRPGVRGLKGLPGRNGEKGSQGFGYPGEQGPPPGPPGPEGP PGISKEGPPGDPGLPGKDGDHGKPGIQGQPGPPGICDPSLCFSVIARRDPFRKGPNY	Conagen	
Human type 21 Alpha 1 collagen MAHYITFLCMVLVLLLQNSVLAEDGEVRSSCRTAPTDLVFILDGSYSVGPENFEIVKKWL VNITKNFDIGPKFIQVGVVQYSDYPVLEIPLGSYDSGEHLTAAVESILYLGGNTKTGKAI QFALDYLFAKSSRFLTKIAVVLTDGKSQDDVKDAAQAARDSKITLFAIGVGSETEDAELR AIANKPSSTYVFYVEDYIAISKIREVMKQKLCEESVCPTRIPVAARDERGFDILLGLDVN KKVKKRIQLSPKKIKGYEVTSKVDLSELTSNVFPEGLPPSYVFVSTQRFKVKKIWDLWRI LTIDGRPQIAVTLNGVDKILLFTTTSVINGSQVVTFANPQVKTLFDEGWHQIRLLVTEQD VTLYIDDQQIENKPLHPVLGILINGQTQIGKYSGKEETVQFDVQKLRIYCDPEQNNRETA CEIPGFNGECLNGPSDVGSTPAPCICPPGKPGLQGPKGDPGLPGNPGYPGQPGQDGKPGY QGIAGTPGVPGSPGIQGARGLPGYKGEPGRDGDKGDRGLPGFPGLHGMPGSKGEMGAKGD KGSPGFYGKKGAKGEKGNAGFPGLPGPAGEPGRHGKDGLMGSPGFKGEAGSPGAPGQDGT RGEPGIPGFPGNRGLMGQKGEIGPPGQQGKKGAPGMPGLMGSNGSPGQPGTPGSKGSKGE PGIQGMPGASGLKGEPGATGSPGEPGYMGLPGIQGKKGDKGNQGEKGIQGQKGENGRQGI PGQQGIQGHHGAKGERGEKGEPGVRGAIGSKGESGVDGLMGPAGPKGQPGDPGPQGPPGL DGKPGREFSEQFIRQVCTDVIRAQLPVLLQSGRIRNCDHCLSQHGSPGIPGPPGPEGP PRGLPGLPGRDGVPGLVGVPGRPGVRGLKGLPGRNGEKGSQGFGYPGEQGPPGPPGPEGP PGISKEGPPGDPGLPGKDGDHGKPGIQGQPGPPGICDPSLCFSVIARRDPFRKGPNY		_
Human type 21 alpha 1 collagen AIANKPSSTYVFYVEDYIAISKIREVMKQKLCEESVCPTRIPVAARDERGFDILLGLDVN KKVKKRIQLSPKKIKGYEVTSKVDLSELTSNVFPEGLPPSYVFVSTQRFKVKKIWDLWRI LTIDGRPQIAVTLNGVDKILLFTTTSVINGSQVVTFANPQVKTLFDEGWHQIRLLVTEQD VTLYIDDQQIENKPLHPVLGILINGQTQIGKYSGKEETVQFDVQKLRIYCDPEQNNRETA CEIPGFNGECLNGPSDVGSTPAPCICPPGKPGLQGPKGDPGLPGNPGYPGQPGQDGKPGY QGIAGTPGVPGSPGIQGARGLPGYKGEPGRDGDKGDRGLPGFPGLHGMPGSKGEMGAKGD KGSPGFYGKKGAKGEKGNAGFPGLPGPAGEPGRHGKDGLMGSPGFKGEAGSPGAPGQDGT RGEPGIPGFPGNRGLMGQKGEIGPPGQQGKKGAPGMPGLMGSNGSPGQPGTPGSKGSKGE PGIQGMPGASGLKGEPGATGSPGEPGYMGLPGIQGKKGDKGNQGEKGIQGQKGENGRQGI PGQQGIQGHHGAKGERGEKGEPGVRGAIGSKGESGVDGLMGPAGPKGQPGDPGPPGP PGLPGLPGRDGVPGLVGVPGRPGVRGLKGLPGRNGEKGSQGFGYPGEQGPPGPPGPEGP PGISKEGPPGDPGLPGKDGDHGKPGIQGQPGPPGICDPSLCFSVIARRDPFRKGPNY		
VNITKNFDIGPKFIQVGVVQYSDYPVLEIPLGSYDSGEHLTAAVESILYLGGNTKTGKAI alpha 1 collagen QFALDYLFAKSSRFLTKIAVVLTDGKSQDDVKDAAQAARDSKITLFAIGVGSETEDAELR AIANKPSSTYVFYVEDYIAISKIREVMKQKLCEESVCPTRIPVAARDERGFDILLGLDVN KKVKKRIQLSPKKIKGYEVTSKVDLSELTSNVFPEGLPPSYVFVSTQRFKVKKIWDLWRI LTIDGRPQIAVTLNGVDKILLFTTTSVINGSQVVTFANPQVKTLFDEGWHQIRLLVTEQD VTLYIDDQQIENKPLHPVLGILINGQTQIGKYSGKEETVQFDVQKLRIYCDPEQNNRETA CEIPGFNGECLNGPSDVGSTPAPCICPPGKPGLQGPKGDPGLPGNPGYPGQPGQDGKPGY QGIAGTPGVPGSPGIQGARGLPGYKGEPGRDGKGDRGLPGFPGLHGMPGSKGEMGAKGD KGSPGFYGKKGAKGEKGNAGFPGLPGPAGEPGRHGKDGLMGSPGFKGEAGSPGAPGQDGT RGEPGIPGFPGNRGLMGQKGEIGPPGQQGKKGAPGMPGLMGSNGSPGQPGTPGSKGSKGE PGIQGMPGASGLKGEPGATGSPGEPGYMGLPGIQGKKGDKGNQGEKGIQGQKGENGRQGI PGQQGIQGHHGAKGERGEKGEPGVRGAIGSKGESGVDGLMGPAGPKGQPGDPGPQGPPGL DGKPGREFSEQFIRQVCTDVIRAQLPVLLQSGRIRNCDHCLSQHGSPGIPGPPGPEGP PRGLPGLPGRDGVPGLVGVPGRPGVRGLKGLPGRNGEKGSQGFGYPGEQGPPGPPGPEGP PGISKEGPPGDPGLPGKDGDHGKPGIQGQPGPPGICDPSLCFSVIARRDPFRKGPNY	Human trung 21	
QFALDYLFAKSSRFLTKIAVVLTDGKSQDDVKDAAQAARDSKITLFAIGVGSETEDAELR AIANKPSSTYVFYVEDYIAISKIREVMKQKLCEESVCPTRIPVAARDERGFDILLGLDVN KKVKKRIQLSPKKIKGYEVTSKVDLSELTSNVFPEGLPPSYVFVSTQRFKVKKIWDLWRI LTIDGRPQIAVTLNGVDKILLFTTTSVINGSQVVTFANPQVKTLFDEGWHQIRLLVTEQD VTLYIDDQQIENKPLHPVLGILINGQTQIGKYSGKEETVQFDVQKLRIYCDPEQNNRETA CEIPGFNGECLNGPSDVGSTPAPCICPPGKPGLQGPKGDPGLPGNPGYPGQPGQDGKPGY QGIAGTPGVPGSPGIQGARGLPGYKGEPGRDGDKGDRGLPGFPGLHGMPGSKGEMGAKGD KGSPGFYGKKGAKGEKGNAGFPGLPGPAGEPGRHGKDGLMGSPGFKGEAGSPGAPGQDGT RGEPGIPGFPGNRGLMGQKGEIGPPGQQGKKGAPGMPGLMGSNGSPGQPGTPGSKGSKGE PGIQGMPGASGLKGEPGATGSPGEPGYMGLPGIQGKKGDKGNQGEKGIQGQKGENGRQGI PGQQGIQGHHGAKGERGEKGEPGVRGAIGSKGESGVDGLMGPAGPKGQPGDPGPQFPGL DGKPGREFSEQFIRQVCTDVIRAQLPVLLQSGRIRNCDHCLSQHGSPGIPGPPGPIGPEG PRGLPGLPGRDGVPGLVGVPGRPGVRGLKGLPGRNGEKGSQGFGYPGEQGPPGPEGP PGISKEGPPGDPGLPGKDGDHGKPGIQGQPGPPGICDPSLCFSVIARRDPFRKGPNY	Human type 21	
AIANKPSSTYVFYVEDYIAISKIREVMKQKLCEESVCPTRIPVAARDERGFDILLGLDVN KKVKKRIQLSPKKIKGYEVTSKVDLSELTSNVFPEGLPPSYVFVSTQRFKVKKIWDLWRI LTIDGRPQIAVTLNGVDKILLFTTTSVINGSQVVTFANPQVKTLFDEGWHQIRLLVTEQD VTLYIDDQQIENKPLHPVLGILINGQTQIGKYSGKEETVQFDVQKLRIYCDPEQNNRETA CEIPGFNGECLNGPSDVGSTPAPCICPPGKPGLQGPKGDPGLPGNPGYPGQPGQDGKPGY QGIAGTPGVPGSPGIQGARGLPGYKGEPGRDGDKGDRGLPGFPGLHGMPGSKGEMGAKGD KGSPGFYGKKGAKGEKGNAGFPGLPGPAGEPGRHGKDGLMGSPGFKGEAGSPGAPGQDGT RGEPGIPGFPGNRGLMGQKGEIGPPGQQGKKGAPGMPGLMGSNGSPGQPGTPGSKGSKGE PGIQGMPGASGLKGEPGATGSPGEPGYMGLPGIQGKKGDKGNQGEKGIQGQKGENGRQGI PGQQGIQGHHGAKGERGEKGEPGVRGAIGSKGESGVDGLMGPAGPKGQPGDPGPQGPPGL DGKPGREFSEQFIRQVCTDVIRAQLPVLLQSGRIRNCDHCLSQHGSPGIPGPPGPEGP PRGLPGLPGRDGVPGLVGVPGRPGVRGLKGLPGRNGEKGSQGFGYPGEQGPPGPPGPEGP	alnha 1 collagen	
KKVKKRIQLSPKKIKGYEVTSKVDLSELTSNVFPEGLPPSYVFVSTQRFKVKKIWDLWRI LTIDGRPQIAVTLNGVDKILLFTTTSVINGSQVVTFANPQVKTLFDEGWHQIRLLVTEQD VTLYIDDQQIENKPLHPVLGILINGQTQIGKYSGKEETVQFDVQKLRIYCDPEQNNRETA CEIPGFNGECLNGPSDVGSTPAPCICPPGKPGLQGPKGDPGLPGNPGYPGQPGQDGKPGY QGIAGTPGVPGSPGIQGARGLPGYKGEPGRDGDKGDRGLPGFPGLHGMPGSKGEMGAKGD KGSPGFYGKKGAKGEKGNAGFPGLPGPAGEPGRHGKDGLMGSPGFKGEAGSPGAPGQDGT RGEPGIPGFPGNRGLMGQKGEIGPPGQQGKKGAPGMPGLMGSNGSPGQPGTPGSKGSKGE PGIQGMPGASGLKGEPGATGSPGEPGYMGLPGIQGKKGDKGNQGEKGIQGQKGENGRQGI PGQQGIQGHHGAKGERGEKGEPGVRGAIGSKGESGVDGLMGPAGPKGQPGDPGPQGPPGL DGKPGREFSEQFIRQVCTDVIRAQLPVLLQSGRIRNCDHCLSQHGSPGIPGPPGPEGP PRGLPGLPGRDGVPGLVGVPGRPGVRGLKGLPGRNGEKGSQGFGYPGEQGPPGPPGPEGP	aipha i conagon	
LTIDGRPQIAVTLNGVDKILLFTTTSVINGSQVVTFANPQVKTLFDEGWHQIRLLVTEQD VTLYIDDQQIENKPLHPVLGILINGQTQIGKYSGKEETVQFDVQKLRIYCDPEQNNRETA CEIPGFNGECLNGPSDVGSTPAPCICPPGKPGLQGPKGDPGLPGNPGYPGQPGQDGKPGY QGIAGTPGVPGSPGIQGARGLPGYKGEPGRDGDKGDRGLPGFPGLHGMPGSKGEMGAKGD KGSPGFYGKKGAKGEKGNAGFPGLPGPAGEPGRHGKDGLMGSPGFKGEAGSPGAPGQDGT RGEPGIPGFPGNRGLMGQKGEIGPPGQQGKKGAPGMPGLMGSNGSPGQPGTPGSKGSKGE PGIQGMPGASGLKGEPGATGSPGEPGYMGLPGIQGKKGDKGNQGEKGIQGQKGENGRQGI PGQQGIQGHHGAKGERGEKGEPGVRGAIGSKGESGVDGLMGPAGPKGQPGDPGPQGPPGL DGKPGREFSEQFIRQVCTDVIRAQLPVLLQSGRIRNCDHCLSQHGSPGIPGPPGPIGPEG PRGLPGLPGRDGVPGLVGVPGRPGVRGLKGLPGRNGEKGSQGFGYPGEQGPPGPPGPEGP		
CEIPGFNGECLNGPSDVGSTPAPCICPPGKPGLQGPKGDPGLPGNPGYPGQPGQDGKPGY QGIAGTPGVPGSPGIQGARGLPGYKGEPGRDGDKGDRGLPGFPGLHGMPGSKGEMGAKGD KGSPGFYGKKGAKGEKGNAGFPGLPGPAGEPGRHGKDGLMGSPGFKGEAGSPGAPGQDGT RGEPGIPGFPGNRGLMGQKGEIGPPGQQGKKGAPGMPGLMGSNGSPGQPGTPGSKGSKGE PGIQGMPGASGLKGEPGATGSPGEPGYMGLPGIQGKKGDKGNQGEKGIQGQKGENGRQGI PGQQGIQGHHGAKGERGEKGEPGVRGAIGSKGESGVDGLMGPAGPKGQPGDPGPQGPPGL DGKPGREFSEQFIRQVCTDVIRAQLPVLLQSGRIRNCDHCLSQHGSPGIPGPPGPEGP PRGLPGLPGRDGVPGLVGVPGRPGVRGLKGLPGRNGEKGSQGFGYPGEQGPPGPEGP		
QGIAGTPGVPGSPGIQGARGLPGYKGEPGRDGDKGDRGLPGFPGLHGMPGSKGEMGAKGD KGSPGFYGKKGAKGEKGNAGFPGLPGPAGEPGRHGKDGLMGSPGFKGEAGSPGAPGQDGT RGEPGIPGFPGNRGLMGQKGEIGPPGQQGKKGAPGMPGLMGSNGSPGQPGTPGSKGSKGE PGIQGMPGASGLKGEPGATGSPGEPGYMGLPGIQGKKGDKGNQGEKGIQGQKGENGRQGI PGQQGIQGHHGAKGERGEKGEPGVRGAIGSKGESGVDGLMGPAGPKGQPGDPGPQGPPGL DGKPGREFSEQFIRQVCTDVIRAQLPVLLQSGRIRNCDHCLSQHGSPGIPGPPGPEG PRGLPGLPGRDGVPGLVGVPGRPGVRGLKGLPGRNGEKGSQGFGYPGEQGPPGPEGP PGISKEGPPGDPGLPGKDGDHGKPGIQGQPGPPGICDPSLCFSVIARRDPFRKGPNY		VTLYIDDQQIENKPLHPVLGILINGQTQIGKYSGKEETVQFDVQKLRIYCDPEQNNRETA
KGSPGFYGKKGAKGEKGNAGFPGLPGPAGEPGRHGKDGLMGSPGFKGEAGSPGAPGQDGT RGEPGIPGFPGNRGLMGQKGEIGPPGQQGKKGAPGMPGLMGSNGSPGQPGTPGSKGSKGE PGIQGMPGASGLKGEPGATGSPGEPGYMGLPGIQGKKGDKGNQGEKGIQGQKGENGRQGI PGQQGIQGHHGAKGERGEKGEPGVRGAIGSKGESGVDGLMGPAGPKGQPGDPGPQGPPGL DGKPGREFSEQFIRQVCTDVIRAQLPVLLQSGRIRNCDHCLSQHGSPGIPGPPGPIGPEG PRGLPGLPGRDGVPGLVGVPGRPGVRGLKGLPGRNGEKGSQGFGYPGEQGPPGPEGP PGISKEGPPGDPGLPGKDGDHGKPGIQGQPGPPGICDPSLCFSVIARRDPFRKGPNY		CEIPGFNGECLNGPSDVGSTPAPCICPPGKPGLQGPKGDPGLPGNPGYPGQPGQDGKPGY
RGEPGIPGFPGNRGLMGQKGEIGPPGQQGKKGAPGMPGLMGSNGSPGQPGTPGSKGSKGE PGIQGMPGASGLKGEPGATGSPGEPGYMGLPGIQGKKGDKGNQGEKGIQGQKGENGRQGI PGQQGIQGHHGAKGERGEKGEPGVRGAIGSKGESGVDGLMGPAGPKGQPGDPGPQGPPGL DGKPGREFSEQFIRQVCTDVIRAQLPVLLQSGRIRNCDHCLSQHGSPGIPGPPGPIGPEG PRGLPGLPGRDGVPGLVGVPGRPGVRGLKGLPGRNGEKGSQGFGYPGEQGPPGPPGPEGP PGISKEGPPGDPGLPGKDGDHGKPGIQGQPGPPGICDPSLCFSVIARRDPFRKGPNY		QGIAGTPGVPGSPGIQGARGLPGYKGEPGRDGDKGDRGLPGFPGLHGMPGSKGEMGAKGD
PGIQGMPGASGLKGEPGATGSPGEPGYMGLPGIQGKKGDKGNQGEKGIQGQKGENGRQGI PGQQGIQGHHGAKGERGEKGEPGVRGAIGSKGESGVDGLMGPAGPKGQPGDPGPQGPPGL DGKPGREFSEQFIRQVCTDVIRAQLPVLLQSGRIRNCDHCLSQHGSPGIPGPPGPIGPEG PRGLPGLPGRDGVPGLVGVPGRPGVRGLKGLPGRNGEKGSQGFGYPGEQGPPGPPGPEGP PGISKEGPPGDPGLPGKDGDHGKPGIQGQPGPPGICDPSLCFSVIARRDPFRKGPNY		
PGQQGIQGHHGAKGERGEKGEPGVRGAIGSKGESGVDGLMGPAGPKGQPGDPGPQGPPGL DGKPGREFSEQFIRQVCTDVIRAQLPVLLQSGRIRNCDHCLSQHGSPGIPGPPGPIGPEG PRGLPGLPGRDGVPGLVGVPGRPGVRGLKGLPGRNGEKGSQGFGYPGEQGPPGPEGP PGISKEGPPGDPGLPGKDGDHGKPGIQGQPGPPGICDPSLCFSVIARRDPFRKGPNY		RGEPGIPGFPGNRGLMGQKGEIGPPGQQGKKGAPGMPGLMGSNGSPGQPGTPGSKGSKGE
DGKPGREFSEQFIRQVCTDVIRAQLPVLLQSGRIRNCDHCLSQHGSPGIPGPPGPIGPEG PRGLPGLPGRDGVPGLVGVPGRPGVRGLKGLPGRNGEKGSQGFGYPGEQGPPGPPGPEGP PGISKEGPPGDPGLPGKDGDHGKPGIQGQPGPPGICDPSLCFSVIARRDPFRKGPNY		PGIQGMPGASGLKGEPGATGSPGEPGYMGLPGIQGKKGDKGNQGEKGIQGQKGENGRQGI
PRGLPGLPGRDGVPGLVGVPGRPGVRGLKGLPGRNGEKGSQGFGYPGEQGPPGPPGPEGPPGISKEGPPGDPGLPGKDGDHGKPGIQGQPGPPGICDPSLCFSVIARRDPFRKGPNY		PGQQGIQGHHGAKGERGEKGEPGVRGAIGSKGESGVDGLMGPAGPKGQPGDPGPQGPPGL
PGISKEGPPGDPGLPGKDGDHGKPGIQGQPGPPGICDPSLCFSVIARRDPFRKGPNY		DGKPGREFSEQFIRQVCTDVIRAQLPVLLQSGRIRNCDHCLSQHGSPGIPGPPGPIGPEG
(SEQ ID NO: 40)		
		(SEQ ID NO: 40)

[0047] In some cases, a non-naturally occurring polypeptide (e.g., truncated collagen) as described herein may comprise the amino acid sequence of SEQ ID NO: 31, or an amino acid sequence having at least about 80% (e.g., at least about 85%, at least about 90%, at least about 95%, at least about 98%, or greater) sequence identity thereto, with an N-terminal truncation at any amino acid position (e.g., relative to SEQ ID NO: 31) from amino acid positions 1 to 537; from amino acid positions 1 to 542; from amino acid positions 1 to 547; from amino acid positions 1 to 562; from

amino acid positions 1 to 567; from amino acid positions 1 to 572; or from amino acid positions 1 to 577. In some cases, a non-naturally occurring polypeptide (e.g., truncated collagen) as described herein may comprise the amino acid sequence of SEQ ID NO: 31, or an amino acid sequence having at least about 80% (e.g., at least about 85%, at least about 90%, at least about 95%, at least about 98%, or greater) sequence identity thereto, with a C-terminal truncation at any amino acid position (relative to SEQ ID NO: 31) from amino acid positions 726 to 957; from amino acid positions 731 to 957; from amino acid positions 736 to 957; from amino acid positions 741 to 957; from amino acid positions 746 to 957; from amino acid positions 751 to 957; from amino acid positions 756 to 957; from amino acid positions 761 to 957; from amino acid positions 766 to 957; from amino acid positions 769 to 957; from amino acid positions 774 to 957; from amino acid positions 779 to 957; or from amino acid positions 784 to 957. In some cases, a non-naturally occurring polypeptide as described herein (e.g., a truncated collagen) may comprise both an N-terminal truncation and a C-terminal truncation. For example, a nonnaturally occurring polypeptide (e.g., truncated collagen) as described herein may comprise the amino acid sequence of SEQ ID NO: 31, or an amino acid sequence having at least about 80% (e.g., at least about 85%, at least about 90%, at least about 95%, at least about 98%, or greater) sequence identity thereto, with an N-terminal truncation at any amino acid position (e.g., relative to SEQ ID NO: 31) from amino acid positions 1 to 537; from amino acid positions 1 to 542; from amino acid positions 1 to 547; from amino acid positions 1 to 552; from amino acid positions 1 to 557; from amino acid positions 1 to 562; from amino acid positions 1 to 567; from amino acid positions 1 to 572; or from amino acid positions 1 to 577; and with a C-terminal truncation at any amino acid position (relative to SEQ ID NO: 31) from amino acid positions 726 to 957; from amino acid positions 731 to 957; from amino acid positions 736 to 957; from amino acid positions 741 to 957; from amino acid positions 746 to 957; from amino acid positions 751 to 957; from amino acid positions 756 to 957; from amino acid positions 761 to 957; from amino acid positions 766 to 957; from amino acid positions 769 to 957; from amino acid positions 774 to 957; from amino acid positions 779 to 957; or from amino acid positions 784 to 957. In a specific embodiment, a non-naturally occurring polypeptide (e.g., truncated collagen) disclosed herein may comprise the amino acid sequence of SEQ ID NO: 31, or an amino acid sequence having at least about 80% (e.g., at least about 85%, at least about 90%, at least about 95%, at least about 98%, or greater) sequence identity thereto, with an N-terminal truncation at amino acid position 557 (relative to SEQ ID NO: 31); and with a C-terminal truncation at amino acid position 746 (relative to SEQ ID NO: 31). In another specific embodiment, a non-naturally occurring polypeptide (e.g., truncated collagen) disclosed herein may comprise the amino acid

sequence of SEQ ID NO: 31, or an amino acid sequence having at least about 80% (e.g., at least about 85%, at least about 90%, at least about 95%, at least about 98%, or greater) sequence identity thereto, with an N-terminal truncation at amino acid position 557 (relative to SEQ ID NO: 31); and with a C-terminal truncation at amino acid position 769 (relative to SEQ ID NO: 31).

[0048] In some cases, a non-naturally occurring polypeptide (e.g., truncated collagen) as described herein may comprise the amino acid sequence of SEQ ID NO: 32, or an amino acid sequence having at least about 80% (e.g., at least about 85%, at least about 90%, at least about 95%, at least about 98%, or greater) sequence identity thereto, with an N-terminal truncation at any amino acid position (e.g., relative to SEQ ID NO: 32) from amino acid positions 1 to 660; from amino acid positions 1 to 665; from amino acid positions 1 to 670; from amino acid positions 1 to 675; from amino acid positions 1 to 680; from amino acid positions 1 to 685; from amino acid positions 1 to 690; from amino acid positions 1 to 695; or from amino acid positions 1 to 700. In some cases, a non-naturally occurring polypeptide (e.g., truncated collagen) as described herein may comprise the amino acid sequence of SEQ ID NO: 32, or an amino acid sequence having at least about 80% (e.g., at least about 85%, at least about 90%, at least about 95%, at least about 98%, or greater) sequence identity thereto, with a C-terminal truncation at any amino acid position (relative to SEQ ID NO: 32) from amino acid positions 855 to 1420; from amino acid positions 860 to 1420; from amino acid positions 865 to 1420; from amino acid positions 870 to 1420; from amino acid positions 875 to 1420; from amino acid positions 880 to 1420; from amino acid positions 885 to 1420; from amino acid positions 890 to 1420; from amino acid positions 895 to 1420; or from amino acid positions 900 to 1420. In some cases, a non-naturally occurring polypeptide as described herein (e.g., a truncated collagen) may comprise both an N-terminal truncation and a Cterminal truncation. For example, a non-naturally occurring polypeptide (e.g., truncated collagen) as described herein may comprise the amino acid sequence of SEQ ID NO: 32, or an amino acid sequence having at least about 80% (e.g., at least about 85%, at least about 90%, at least about 95%, at least about 98%, or greater) sequence identity thereto, with an N-terminal truncation at any amino acid position (e.g., relative to SEQ ID NO: 32) from amino acid positions 1 to 660; from amino acid positions 1 to 665; from amino acid positions 1 to 670; from amino acid positions 1 to 675; from amino acid positions 1 to 680; from amino acid positions 1 to 685; from amino acid positions 1 to 690; from amino acid positions 1 to 695; or from amino acid positions 1 to 700; and with a C-terminal truncation at any amino acid position (relative to SEQ ID NO: 32) from amino acid positions 855 to 1420; from amino acid positions 860 to 1420; from amino acid positions 865 to 1420; from amino acid positions 870 to 1420; from amino acid positions 875 to 1420; from

amino acid positions 880 to 1420; from amino acid positions 885 to 1420; from amino acid positions 890 to 1420; from amino acid positions 895 to 1420; or from amino acid positions 900 to 1420. In a specific embodiment, a non-naturally occurring polypeptide (e.g., truncated collagen) disclosed herein may comprise the amino acid sequence of SEQ ID NO: 32, or an amino acid sequence having at least about 80% (e.g., at least about 85%, at least about 90%, at least about 95%, at least about 98%, or greater) sequence identity thereto, with an N-terminal truncation at amino acid position 680 (relative to SEQ ID NO: 32); and with a C-terminal truncation at amino acid position 880 (relative to SEQ ID NO: 32).

[0049] In some cases, a truncated collagen as described herein may comprise an internal truncation at any amino acid position between amino acid positions 16 and 240; between amino acid positions 16 and 245; between amino acid positions 16 and 250; between amino acid positions 16 and 255; between amino acid positions 16 and 260; between amino acid positions 16 and 265; between amino acid positions 6 and 255; between amino acid positions 11 and 255; between amino acid positions 21 and 255; between amino acid positions 26 and 255; between amino acid positions 31 and 255; between amino acid positions 21 and 250; between amino acid positions 21 and 245; between amino acid positions 26 and 250; between amino acid positions 26 and 245; between amino acid positions 31 and 250; or between amino acid positions 31 and 245 of SEQ ID NO: 39. In a specific embodiment, a truncated collagen as described herein may comprise an internal truncation at amino acid positions 16 and 255 of SEQ ID NO: 39. [0050] In some cases, a truncated collagen as described herein may comprise an N-terminal truncation at any amino acid position between amino acid positions 1 and 548; between amino acid positions 1 and 553; between amino acid positions 1 and 558; between amino acid positions 1 and 563; between amino acid positions 1 and 568; or between amino acid positions 1 and 573 of SEQ ID NO: 40. In some cases, a truncated collagen as described herein may comprise a Cterminal truncation at any amino acid position between amino acid positions 726 and 957; between amino acid positions 731 and 957; between amino acid positions 736 and 957; between amino acid positions 741 and 957; between amino acid positions 746 and 957; between amino acid positions 751 and 957; or between amino acid positions 756 and 957 of SEQ ID NO: 40. In some cases, a truncated collagen as described herein may comprise both an N-terminal truncation and a C-terminal truncation. For example, a truncated collagen as described herein may comprise an N-terminal truncation at any amino acid position between amino acid positions 1 and 548; between amino acid positions 1 and 553; between amino acid positions 1 and 558; between amino acid positions 1 and 563; between amino acid positions 1 and 568; or between amino acid positions 1 and 573 of SEQ ID NO: 40; and a C-terminal truncation at any amino

acid position between amino acid positions 726 and 957; between amino acid positions 731 and 957; between amino acid positions 736 and 957; between amino acid positions 741 and 957; between amino acid positions 746 and 957; between amino acid positions 751 and 957; or between amino acid positions 756 and 957. In a specific embodiment, a truncated collagen disclosed herein may comprise an N-terminal truncation at amino acid position 558 of SEQ ID NO: 40; and a C-terminal truncation at amino acid position 746 of SEQ ID NO: 40. [0051] In some cases, a non-naturally occurring polypeptide (e.g., truncated collagen) may comprise any amino acid sequence provided herein. In some cases, a non-naturally occurring polypeptide (e.g., truncated collagen) may consist of any amino acid sequence provided herein. In some cases, a non-naturally occurring polypeptide (e.g., truncated collagen) may consist essentially of any amino acid sequence provided herein. In specific embodiments, the nonnaturally occurring polypeptide has or comprises an amino acid sequence of any one of SEQ ID NO: 2, SEQ ID NO: 4, SEQ ID NO: 6, SEQ ID NO: 8, SEQ ID NO: 35, and SEQ ID NO: 37. In some embodiments, a non-naturally occurring polypeptide (e.g., truncated collagen) comprises an amino acid sequence having at least about 80%, at least about 85%, at least about 90%, at least about 95%, or at least about 98% sequence identity to any one of SEQ ID NO: 2, SEQ ID NO: 4, SEQ ID NO: 6, SEQ ID NO: 8, SEQ ID NO: 35, and SEQ ID NO: 37. In some embodiments, the non-naturally occurring polypeptide consists of or consists essentially of an amino acid sequence of any one of SEQ ID NO: 2, SEQ ID NO: 4, SEQ ID NO: 6, SEQ ID NO: 8, SEQ ID NO: 35, and SEQ ID NO: 37.

[0052] In some aspects, the non-naturally occurring polypeptide may include any chimeric collagen that includes at least one non-continuous collagen fragment. For example, the non-naturally occurring polypeptide can be a chimeric collagen in which a portion of N-terminus collagen is contiguous with a portion of C-terminus collagen where the portion of N-terminus collagen and the portion of C-terminus collagen are not contiguous in the natural or naturally-present corresponding collagens. In another example, the non-naturally occurring polypeptide can be a chimeric collagen in which a portion of C-terminus collagen is contiguous with a portion of N-terminus collagen (e.g., in a flipped or reverse order – C terminus collagen is located in the N-terminus of the portion of N-terminus collagen) where the portion of C-terminus collagen and the portion of N-terminus collagen are contiguous or non-contiguous in the natural or naturally-present corresponding collagens. In another example, the non-naturally occurring polypeptide can be a chimeric collagen in which one portion of a collagen polypeptide is contiguous with a portion of a second collagen polypeptide (e.g., a collagen molecule comprising a portion of a collagen from

a first species contiguous with a portion of a collagen from a second species is a chimeric collagen, etc.).

[0053] Exemplary amino acid sequences of or nucleic acid sequences encoding the recombinant polypeptides are provided below:

[0054] SEQ ID NO: 1 - A nucleotide sequence encoding a truncated collagen type 21 alpha 1 polypeptide from *Gallus gallus* (chicken)

[0055] SEQ ID NO: 2 – Amino acid sequence of a truncated collagen type 21 alpha 1 polypeptide from *Gallus gallus* (chicken)

DTGFPGMPGRSGDPGRSGKDGLPGSPGFKGEVGQPGSPGLEGHRGEPGIPGIPGNQGAK GQKGEIGPPGLPGAKGSPGETGLMGPEGSFGLPGAPGPKGDKGEPGLQGKPGSSGAKGE PGGPGAPGEPGYPGIPGTQGIKGDKGSQGESGIQGRKGEKGRQGNPGLQGTEGLRGEQG EKGEKGDPGIR

[0056] SEQ ID NO: 3 - A nucleotide sequence encoding a truncated collagen type 21 alpha 1 polypeptide from *Gallus gallus* (chicken)

GATACTGGTTTCCCGGGGATGCCTGGGCGCTCAGGTGATCCGGGGCGTAGTGGAAA
AGACGGTCTGCCGGGGTCCCCGGGCTTTAAGGGTGAGGTGGGTCAGCCCGGTAGTC
CAGGTTTAGAAGGTCACCGCGGAGAGCCCGGGATTCCAGGCATTCCTGGCAACCAG
GGTGCCAAGGGACAGAAAGGCGAAATTGGTCCGCCCGGCCTACCGGGCGCAAAG
GTTCTCCTGGTGAAACCGGTCTCATGGGTCCGGAAGGTAGCTTCGGCCTGCCCGGCG
CACCTGGTCCGAAGGGCGATAAGGGGGAGCCTGGGCTGCAAGGTAAACCGGGTAGT
TCTGGCGCCAAAGGTGAACCCGGCGGTCCCGGTGCGCCAGGGGAACCAGGTTATCC
TGGTATTCCTGGAACCCAAGGAATTAAAGGTGACAAAGGCTCACAGGGCGAAAGTG
GTATACAGGGTCGCAAGGGCGAAAAAAGGACGTCAGGGCAATCCAGGGCTGCAGGG

TACTGAAGGCCTGCGTGGAGAACAGGGTGAGAAAAGGTGAAAAAGGAGATCCTGGT ATTCGC

[0057] SEQ ID NO: 4 - Amino acid sequence of a truncated collagen type 21 alpha 1 polypeptide from *Gallus gallus* (chicken)

DTGFPGMPGRSGDPGRSGKDGLPGSPGFKGEVGQPGSPGLEGHRGEPGIPGIPGNQGAK GQKGEIGPPGLPGAKGSPGETGLMGPEGSFGLPGAPGPKGDKGEPGLQGKPGSSGAKGE PGGPGAPGEPGYPGIPGTQGIKGDKGSQGESGIQGRKGEKGRQGNPGLQGTEGLRGEQG EKGEKGDPGIR

[0058] SEQ ID NO: 5 - The nucleotide sequence encoding a truncated collagen type 21 alpha 1 polypeptide from *Gallus gallus* (chicken)

[0059] GATACTGGTTTCCCGGGGATGCCTGGGCGCTCAGGTGATCCGGGGCGTAGTG
GAAAAGACGGTCTGCCGGGGTCCCCGGGCTTTAAGGGTGAGGTGAGCCCGGT
AGTCCAGGTTTAGAAGGTCACCGCGGAGAGCCCGGGATTCCAGGCATTCCTGGCAA
CCAGGGTGCCAAGGGACAGAAAGGCGAAATTGGTCCGCCCGGCCTACCGGGCGCGA
AAGGTTCTCCTGGTGAAACCGGTCTCATGGGTCCGGAAGGTAGCTTCGGCCTGCCCG
GCGCACCTGGTCCGAAGGGCGATAAGGGGGAGCCTGGGCTGCAAGGTAAACCGGGT
AGTTCTGGCGCCAAAGGTGAACCCGGCGGTCCCGGTGCGCCAGGGGAACCAGGTTA
TCCTGGTATTCCTGGAACCCAAGGAATTAAAGGTGACAAAGGCTCACAGGGCGAAA
GTGGTATACAGGGTCGCAAGGGCGAAAAAGGACGTCAGGGCAATCCAGGCCTGCA
GGGTACTGAAGGCCTGCGTGGAGAACAGGGTGAGAAAAGGTGAAAAAGGAGATCCT
GGTATTCGCGGCATTAACGGTCAAAAAGGGTGAAAAGGTGAAAAAGGAGATCTTGTCGG
TCCGCCCGGAGTTAGAGGCCAG

[0060] SEQ ID NO: 6 - Amino acid sequence of a truncated collagen type 21 alpha 1 polypeptide from *Gallus gallus* (chicken)

DTGFPGMPGRSGDPGRSGKDGLPGSPGFKGEVGQPGSPGLEGHRGEPGIPGIPGNQGAK GQKGEIGPPGLPGAKGSPGETGLMGPEGSFGLPGAPGPKGDKGEPGLQGKPGSSGAKGE PGGPGAPGEPGYPGIPGTQGIKGDKGSQGESGIQGRKGEKGRQGNPGLQGTEGLRGEQG EKGEKGDPGIRGINGQKGESGIQGLVGPPGVRGQ

[0061] SEQ ID NO: 7 - The nucleotide sequence encoding a truncated collagen type 2 alpha 1 polypeptide from *Acipenser schrenckii* (Japanese sturgeon)

GTCTGCAGGGTATGCCTGGTGAACGTGGTGCAAGCGGTATTGCCGGTGCAAAAGGT GATCGTGGTGATGTTGGTGAAAAAAGGTCCGGAAGGTGCCAGCGGTAAAGATGGTAG CCGTGGTCTGACCGGTCCGATTGGTCCGCCTGGTCCGGCAGGTCCGAATGGCGAAA AAGGTGAAAGCGGTCCGAGCGGTCCTCCGGGTGCAGCAGGTACTCGTGGTGCACCG

GGTGATCGCGGTGAAAATGGTCCACCGGGTCCTGCCGGTTTTGCAGGTCCGCCAGGT
GCAGATGGTCAGCCTGGTGCCAAAGGCGAACAAGGCGAAGGTGGTCAGAAAGGTG
ATGCAGGCGCTCCGGGTCCGCAGGGTCCTTCTGGTGCACCTGGTCCTCAGGGTCCGA
CCGGTGTTTCTGGTCCGAAAGGCGCACGTGGTGCCCAGGGTCCACCTGGTGCGACCG
GTTTTCCTGGCGCAGCAGGTCGTGTTGGTCCTCCAGGTCCTAATGGTAATCCGGGTC
CAAGCGGTCCTGCAGGTAGCGCAGGCAAAGATGGTCCTAAAGGTGTACGCGGTGAT
GCTGGTCCTCCTGGCCGTGCCGGTGATGCCGGT

[0062] SEQ ID NO: 8 - Amino acid sequence of a truncated collagen type 2 alpha 1 polypeptide from *Acipenser schrenckii* (Japanese sturgeon)

GLQGMPGERGASGIAGAKGDRGDVGEKGPEGASGKDGSRGLTGPIGPPGPAGPNGEKG ESGPSGPPGAAGTRGAPGDRGENGPPGPAGFAGPPGADGQPGAKGEQGEGGQKGDAG APGPQGPSGAPGPQGPTGVSGPKGARGAQGPPGATGFPGAAGRVGPPGPNGNPGPSGPA GSAGKDGPKGVRGDAGPPGRAGDAG

[0063] SEQ ID NO: 9 - The nucleotide sequence encoding a secretion signal sequence named Secretion Signal Sequence 1

ATGAAAAAGATTTGGCTGGCGCTGGCTGGTTTAGTTTTAGCGTTTAGCGCATCGGCG
[0064] SEQ ID NO: 10 - Amino acid sequence of a Secretion Signal Sequence 1
MKKIWLALAGLVLAFSASA

[0065] SEQ ID NO: 11 - The nucleotide sequence encoding a secretion signal sequence named Secretion Signal Sequence 2

ATGAAAAAAGGTTTCATGCTGTTCACCCTCCTCGCTGCGTTCTCTGGTTTCGCGCAGGCT

[0066] SEQ ID NO: 12 - Amino acid sequence of a Secretion Signal Sequence 2 MKKGFMLFTLLAAFSGFAQA

[0067] SEQ ID NO: 13 - The nucleotide sequence encoding a secretion signal sequence named Secretion Signal Sequence 3

[0068] SEQ ID NO: 14 - Amino acid sequence of a Secretion Signal Sequence 3

MMITLRKLPLAVAVAAGVMSAQAMA

[0069] SEQ ID NO: 15 - The nucleotide sequence encoding a secretion signal sequence named Secretion Signal Sequence 4

[0070] SEQ ID NO: 16 - Amino acid sequence of a Secretion Signal Sequence 4

MKKTAIAIAVALAGFATVAQA

[0071] SEQ ID NO: 17 - The nucleotide sequence encoding a secretion signal sequence named Secretion Signal Sequence 5

ATGAAAGTTAAAGTTCTGTCTGCTGGTTCCGGCTCTGCTGGTTGCTGCTA ACGCT

[0072] SEQ ID NO: 18 - Amino acid sequence of a Secretion Signal Sequence 5

MKVKVLSLLVPALLVAGAANA

[0073] SEQ ID NO: 19 - The nucleotide sequence encoding a secretion signal sequence named Secretion Signal Sequence 6

[0074] SEQ ID NO: 20 - Amino acid sequence of a Secretion Signal Sequence 6

MKKNILSLSMVALSLSLALGSVSVTA

[0075] SEQ ID NO: 21 - The nucleotide sequence encoding a secretion signal sequence named Secretion Signal Sequence 7

[0076] SEQ ID NO: 22 - Amino acid sequence of a Secretion Signal Sequence 7

MLNPKVAYMVWMTCLGLTLPSQA

[0077] SEQ ID NO: 23 - The nucleotide sequence encoding a secretion signal sequence named Secretion Signal Sequence 8

ATGAAACAGGCTCTGCGTGTAGCGTTCCGGTTTCCTGATACTGTGGGCTTCTGTTCTGC ACGCT

[0078] SEQ ID NO: 24 - Amino acid sequence of a Secretion Signal Sequence 8 MKQALRVAFGFLILWASVLHA

[0079] SEQ ID NO: 25 – A codon-optimized nucleotide sequence encoding a truncated collagen type 2 alpha 1 polypeptide from *Acipenser schrenckii* (Japanese sturgeon)

TGATGCCGGTGCACCGGGTCCGCAGGGTCCGAGCGGTGCCCCGGGTCCGCAGGGTCCGCAGGGTCCGCAGGGTCCGCAGGGTCCGCAGGGTCCGCAGGTGCCAAAGGTGCCCAGGGTCCGCAGGTGCCAAACGGTTTTCCGGGTGCCGCAGGTCGTGTTGGTCCGCCGGGTCCGAAAGGTGTTCGTGGGTCCGAGCGGTCCGCAGGTCCGCAGGTAAAGATGGTCCGAAAGGTGTTCGTGGTGATGCAGGTCCGCCGGGTCCGCCGGTCCGCCGGTGATGCAGGTTAA

[0080] SEQ ID NO: 26 – A codon-optimized nucleotide sequence encoding a truncated collagen type 2 alpha 1 polypeptide from *Acipenser schrenckii* (Japanese sturgeon)

[0081] SEQ ID NO: 27 – A codon-optimized nucleotide sequence encoding a truncated collagen type 2 alpha 1 polypeptide from *Acipenser schrenckii* (Japanese sturgeon)

GGTTTGCAAGGTATGCCAGGGGAACGGGGTGCGTCCGGGATAGCCGGGGCAAAAG
GTGATCGAGGCGATGTAGGAGAAAAAAGGCCCAGAAGGGCGTCAGGTAAGGACGG
ATCTCGCGGCTTGACGGGACCTATCGGGCCTCCAGGTCCCGCCGGCCCTAATGGGGA
AAAAGGCGAGAGTGGGCCGTCTGGTCCGCCCGGCGCCGTGGCACACGTGGAGCGC
CGGGCGATCGTGGTGAGAACGGACCACCGGGTCCTGCTGTTTTGCGGGACCTCCG
GGAGCAGACGGCCAGCCGGGCGCTAAAGGTGAACAGGGTGAAGGTGGCCAAAAAG
GCGATGCAGGCGCACCGGGTCCGCAGGGCCCTTCAGGTGCACCGGGTCCACAGGGC
CCAACTGGCGTTTCAGGGCCGAAAGGCGCAAGAGGTGCTCAGGGTCCGCCGGGGC
AACTGGGTTTCCTGGAGCCGGCCGTGTTGGACCTCCGGGGCCGAACGGAAACC
CTGGACCGTCTGGACCAGCCGGTTCAGCGGGTAAGGATGGTCCTAAGGGTGTAAGG
GGTGACGCAGGTCCCCCTGGACGTGCAGGGGATGCGGGGTAA

[0082] SEQ ID NO: 28 – A codon-optimized nucleotide sequence encoding a truncated collagen type 2 alpha 1 polypeptide from *Acipenser schrenckii* (Japanese sturgeon)

GGGTTACAAGGTATGCCGGGAGAACGTGGAGCGTCAGGAATTGCTGGGGCCAAAGG
TGATCGTGGTGATGTTGGCGAGAAAAGGGCCCGAAGGCCCATCTGGTAAAGATGGCT
CACGCGGGTTAACTGGACCAATCGGACCACCAGGCCCCGCTGGGCCTAATGGTGAA
AAGGGTGAAAGTGGCCCTTCTGGACCCCCAGGAGCCGCCGGTACACGTGGAGCGCC
AGGCGATCGTGGCGAAAACGGACCGCCCGGACCTGCAGGTTTTGCGGGACCCCCTG
GAGCAGACGGCCAACCAGGAGCAAAAAGGTGAGCAAGGTGAAGGTGGACAAAAAGGG
AGATGCCGGAGCCCAAGGCCCCAAGGCCCATCAGGAGCTCCAGGACCTCAAGGTC
CAACTGGTGTATCAGGGCCTAAGGGTGCGCGCGCGCTCAAGGACCGCCTGGCGCA
ACTGGCTTTCCGGGAGCTGCTGGTCGTGTGGGCCCCAAACGGAAATCCA
GGCCCTTCAGGCCCGGCGGCGCTCAAGGACCCCTTGGCAAAATCCA

[0083] SEQ ID NO: 29 – A codon-optimized nucleotide sequence encoding a truncated collagen type 2 alpha 1 polypeptide from *Acipenser schrenckii* (Japanese sturgeon)

[0084] SEQ ID NO: 30 – A codon-optimized nucleotide sequence encoding a truncated collagen type 21 polypeptide from *Gallus gallus*

GATACTGGTTTCCCGGGGATGCCTGGGCGCTCAGGTGATCCGGGGCGTAGTGGAAA
AGACGGTCTGCCGGGGTCCCCGGGCTTTAAGGGTGAGGTGGGTCAGCCCGGTAGTC
CAGGTTTAGAAGGTCACCGCGGAGAGCCCGGGATTCCAGGCATTCCTGGCAACCAG
GGTGCCAAGGGACAGAAAGGCGAAATTGGTCCGCCCGGCCTACCGGGCGCAAAG
GTTCTCCTGGTGAAACCGGTCTCATGGGTCCGGAAGGTAGCTTCGGCCTGCCCGGCG
CACCTGGTCCGAAGGGCGATAAGGGGGAGCCTGGGCTGCAAGGTAAACCGGGTAGT
TCTGGCGCCAAAGGTGAACCCGGCGGTCCCGGTGCGCCAGGGGAACCAGGTTATCC
TGGTATTCCTGGAACCCAAGGAATTAAAGGTGACAAAGGCTCACAGGGCGAAAGTG

GTATACAGGGTCGCAAGGGCGAAAAAGGACGTCAGGGCAATCCAGGCCTGCAGGG TACTGAAGGCCTGCGTGGAGAACAGGGTGAGAAAAAGGAGATCCTGGT ATTCGC

[0085] SEQ ID NO: 35 - Amino acid sequence of a truncated collagen polypeptide from jellyfish GPQGVVGADGKDGTPGNAGQKGPSGEPGSPGKAGSAGEQGPPGKDGSNGEPGSPGKE GERGLAGPPGPDGRRGETGSPGIAGALGKPGLEGPKGYPGLRGRDGTNGKRGEQGETG PDGVRGIPGNDGQSGKPGIDGIDGTNGQPGEAGYQGGRGTRGQLGETGDVGQNGDRG APGPDGSKGSAGRPGLR

[0086] SEQ ID NO: 36 – A codon-optimized nucleotide sequence encoding a truncated collagen polypeptide from jellyfish

[0087] GGTCCGCAGGGTGTTGTTGGTGCAGATGGTAAAGACGGTACCCCGGGTAATG
CAGGTCAGAAAGGTCCGTCAGGTGAACCTGGCAGCCCTGGTAAAGCAGGTAGTGCC
GGTGAGCAGGGTCCGCCGGGCAAAGATGGTAGTAATGGTGAGCCGGGTAGCCCTGG
CAAAGAAGGTGAACGTGGTCTGGCAGGACCGCCGGGTCCTGATGGTCGCCGCGGTG
AAACGGGTTCACCGGGTATTGCCGGTGCCCTGGGTAAACCAGGTCTGGAAGGTCCG
AAAGGTTATCCTGGTCTGCGCGGTCGTGATGGTACCAATGGCAAACGTGGCGAACA
GGGCGAAACCGGTCCAGATGGTTCGTGGTATTCCGGGTAACGATGGTCAGAGCG
GTAAACCGGGCATTGATGGTATTGATGGCACCAATGGTCAGCCTGGCGAAGCAGGT
TATCAGGGTGGTCGCGGTACCCGTGGTCAGCTGGGTGAAACAGGTGATGTTGGTCA
GAATGGTGATCGCGGCGCACCGGGTCCGGATGGTAGCAAAAGGTAGCGCCGGTCGTC
CGGGTTTACGTTAA

[0088] SEQ ID NO: 37 – Amino acid sequence of a truncated type 21 alpha 1 collagen polypeptide from human

AGFPGLPGPAGEPGRHGKDGLMGSPGFKGEAGSPGAPGQDGTRGEPGIPGFPGNRGLM GQKGEIGPPGQQGKKGAPGMPGLMGSNGSPGQPGTPGSKGSKGEPGIQGMPGASGLKG EPGATGSPGEPGYMGLPGIQGKKGDKGNQGEKGIQGQKGENGRQGIPGQQGIQGHHGA KGERGEKGEPGVR

[0089] SEQ ID NO: 38 – A codon-optimized nucleotide sequence encoding a truncated type 21 alpha 1 collagen polypeptide from human

TGCAGGTTTTCCGGGTCTGCCTGGTCCGGCAGGCGAACCGGGTCGTCATGGTAAAGA
TGGTCTGATGGGTAGTCCGGGTTTTAAAGGTGAAGCAGGTTCACCGGGTGCACCTGG
TCAGGATGGCACCCGTGGTGAACCGGGTATTCCGGGATTTCCGGGTAATCGTGGCCT
GATGGGTCAGAAAGGTGAAATTGGTCCGCCTGGTCAGCAGGGTAAAAAAAGGCGCAC
CGGGTATGCCAGGACTGATGGGTTCAAATGGCAGTCCGGGTCAGCCAGGCACACCG

GGTTCAAAAGGTAGCAAAGGCGAACCTGGTATTCAGGGTATGCCTGGTGCAAGCGG
TCTGAAAGGCGAGCCAGGTGCCACCGGTTCTCCGGGTGAACCAGGTTATATGGGTCT
GCCAGGTATCCAAGGCAAAAAAAGGTGATAAAGGTAATCAGGGCGAAAAAAGGCATT
CAGGGCCAGAAAGGCGAAAATGGCCGTCAGGGTATTCCAGGCCAGCAGGGCATCCA
GGGTCATCATGGTGCAAAAAGGTGAACGTGGTGAAAAGGGCGAACCAGGTGTTCGTT
AA

[0090] In some embodiments, the non-naturally occurring polypeptide comprises an amino acid sequence of any one of SEQ ID NOs: 2, 4, 6, 8, 35, and 37. In some embodiments, the non-naturally occurring polypeptide comprises an amino acid sequence having a sequence identity of at least about 80%, at least about 85%, at least about 90%, at least about 95%, or at least about 98% thereof, or the like, to the amino acid sequence of any one of SEQ ID NOs: 2, 4, 6, 8, 35, and 37. Alternatively and/or additionally, the non-naturally occurring polypeptide is encoded by a nucleic acid sequence of any one of SEQ ID NOs: 1, 3, 5, 7, 25-30, 36, and 38. In some embodiments, the non-naturally occurring polypeptide is encoded by a nucleic acid having sequence identity of at least about 65%, at least about 70%, at least about 75%, at least about 80%, at least about 85%, at least about 90%, at least about 95%, or at least about 98% thereof, or the like, to the nucleic acid sequence of any one of SEQ ID NOs: 1, 3, 5, 7, 25-30, 36, and 38.

[0091] In some aspects, the non-naturally occurring polypeptides provided herein may or may not contain one or more domains from natural collagen. FIG. 1 and FIG. 2 depict an alignment of exemplary non-naturally occurring polypeptides (e.g., truncated collagens) of the disclosure with the corresponding naturally occurring collagen. FIG. 1 depicts an alignment of a non-naturally occurring polypeptide of SEQ ID NO: 2 and SEQ ID NO: 6 with *Gallus gallus* type 21 alpha 1 collagen. FIG. 2 depicts an alignment of a non-naturally occurring polypeptide of SEQ ID NO: 8 with *Acipenser schrenckii* type 2 alpha 1 collagen. FIG. 1 and FIG. 2 demonstrate that non-naturally occurring polypeptides may have one or more domains found in natural collagen (e.g., collagen triple helix repeat domains). FIG. 1 and FIG. 2 further demonstrate that non-naturally occurring polypeptides may lack one or more domains found in natural collagen (e.g., Von Willebrand factor type A (vWA) domain, laminin G domain, fibrillar collagen C-terminal domain). In some aspects, a non-naturally occurring polypeptide provided herein may contain one or more collagen triple helix repeat domains. In some aspects, a non-naturally occurring polypeptide provided herein may lack one or more of a Von Willebrand factor type A (vWA) domain, a laminin G domain, and a fibrillar collagen C-terminal domain).

[0092] In some embodiments, the non-naturally occurring polypeptide (e.g., recombinant polypeptide) includes a secretion signal sequence. Any suitable secretion signal sequence (e.g.,

hydrophobic signaling peptides, Sec signal peptides, Tat signal peptides, etc.) that can induce the non-naturally occurring polypeptide (e.g., recombinant polypeptide) to be secreted to the periplasmic and/or extracellular space (e.g., when produced in a recombinant host cell). Exemplary secretion signal sequences include a peptide having an amino acid sequence of any one of SEQ ID NOs: 10, 12, 14, 16, 18, 20, 22, and 24. Alternatively and/or additionally, the secretion signal sequence includes a peptide encoded by a nucleic acid sequence of any one of SEQ ID NOs: 9, 11, 13, 15, 17, 19, 21, and 23. The secretion signal sequence is preferably located at the N-terminus of the non-naturally occurring polypeptide (e.g., recombinant polypeptide). Yet, it is contemplated that the secretion signal sequence can be located at other than N-terminus where the secretion signal sequence remains functional.

[0093] The non-naturally occurring polypeptide (e.g., recombinant polypeptide) as described herein can be expressed or generated via a nucleic acid sequence encoding the non-naturally occurring polypeptide (e.g., recombinant polypeptide). Thus, another aspect of the disclosure includes an expression vector comprising a nucleic acid sequence encoding the non-naturally occurring polypeptide (e.g., recombinant polypeptide). In some embodiments, the expression vector is a bacterial expression vector. In some embodiments, the expression vector is a yeast expression vector. In some embodiments, the expression vector is an insect expression vector. Any suitable expression vector that can induce the protein expression from the inserted nucleic acid encoding the non-naturally occurring polypeptide (e.g., recombinant polypeptide). Exemplary bacterial expression vectors may include pGEX vectors where glutathione S-transferase is used as a fusion partner and gene expression is under the control of the tac promoter, or pET vectors (e.g., pET28 vector, etc.) which uses a T7 promoter. Exemplary yeast expression vectors may include pPIC vectors, which uses the AOX1 promoter inducible with methanol. In some embodiments, the expression vector is in a plasmid form (e.g., including bacterial artificial chromosome form, etc.) that are independently present in the host cell (e.g., cells expressing the recombinant polypeptide). In some embodiments, the expression vector is stably integrated into the chromosome of the host cell via random or targeted integration.

[0094] In some embodiments, the nucleic acid sequence encoding the non-naturally occurring polypeptide (e.g., recombinant polypeptide) is codon-optimized to be expressed in non-animal cells, preferably in bacterial cells. As used herein, "codon-optimized" means that the codon composition is improved for expression in the heterologous cells (e.g., microbial cells, bacterial cells, etc.) without altering the encoded amino acid sequences. Non-limiting examples of codon-optimized nucleic acid sequences (e.g., encoding a non-naturally occurring polypeptide as described herein) include SEQ ID NOs: 25-30, 36, and 38.

[0095] In some embodiments, the expression vector may include one or more selection agent. The selection agents include certain sugars including galactose containing sugars or antibiotics including ampicillin, hygromycin, G418 and others. Enzymes that are used to confer resistance to the selection agent include β -galactosidase or a β -lactamase. Alternatively and/or additionally, the expression vector includes an inducible promoter or a constitutive promoter (e.g., CMV promoter, etc.) such that the nucleic acid encoding the recombinant protein is operatively linked to the inducible promoter or the constitutive promoter. For example, the expression vector may include tetracycline-inducible promoter pTET, araC-ParaBAD inducible promoter, or IPTG inducible lac promoter. As used herein, "operatively linked" promoter and nucleic acid means that the expression of the nucleic acid (e.g., transcription, translation, etc.) is at least under partial control of the promoter.

[0096] In some embodiments, the nucleic acid encoding the non-naturally occurring polypeptide (e.g., recombinant polypeptide) (e.g., a nucleic acid of any one of SEQ ID NOs: 1, 3, 5, 7, 25-30, 36, and 38), and the expression vector may have an overlap of from 20 to 50 bp long, from 20 to 40 bp long, from 20 to 30 bp long, or from 30 to 40 bp long. Such overlap can be added using PRIMESTAR® **PCR** with **DNA GXL** a polymerase (e.g., polymerase (takarabio.com/products/pcr/gc-rich-pcr/primestar-gxl-dna-polymerase)). Opened expression vector and the insert nucleic acid encoding the non-naturally occurring polypeptide (e.g., recombinant polypeptide) can be assembled together into the final plasmid using any suitable cloning system (e.g., IN-FUSION® Cloning (takarabio.com/products/cloning/in-fusion-cloning) or SGI Gibson assembly (us.vwr.com/store/product/17613857/gibson-assembly-hifi-1-step-kitsynthetic-genomics-inc)).

[0097] Such prepared expression vector (or plasmid) can be used to generate genetically engineered or modified organisms, or a recombinant cell to produce the non-naturally occurring polypeptides described herein (e.g., collagens, truncated collagens, or collagen fragments). Preferably, the recombinant cells contain at least one copy of a plasmid or a stably integrated heterologous nucleic acid sequence encoding the non-naturally occurring polypeptide (e.g., collagens, truncated collagens, or collagen fragments, preferably collagens, truncated collagens, or collagen fragments of, or derived from, *Gallus gallus* collagen and/or *Acipenser schrenckii* collagen). In some embodiments, the recombinant cell is a microbial cell. For example, where the expression vector is bacterial expression vector, the expression vector can be inserted into (e.g., via any suitable transformation method) the bacterial cells for protein expression (e.g., *Escherichia coli* including BL-21 cells, etc.) to be independently present in the cytoplasm of the bacteria (e.g.,

as a plasmid form) or to be at least temporarily and/or stably integrated into the bacterial chromosome.

[0098] Consequently, the transformed cells can be cultivated in a suitable media. Preferably, the suitable media includes a minimal media and the cells are frozen in 1.5 aliquots with vegetable glycerin at a ratio of 50:50 of cells of cells to glycerin. For protein expression, one vial of the frozen cultured cells can be cultured in a suitable amount of bacteria culture media (e.g., minimal media, 50 mL, 100 mL, etc.) for at least 6 hours, at least 8 hours, at least 10 hours, at least 12 hours, at least overnight at least 36 °C, preferably at about 37 °C by continuously shaking the culture (e.g., at least 100 rpm, at least 200 rpm, at least 250 rpm, etc.). **Table 2** and **Table 3** show the exemplary formulation of the minimal media that can be used for cell cultivation and culture.

[0099] Table 2. Minimal Media Formulation

1) Autoclave 5 L of 550 g/kg Glucose syrup at concentration in DI water. (VWR, product			
#97061-170).			
2) Autoclave in 3946 mL of DI water	20 g (NH ₄) ₂ HPO ₄ . (VWR, product # 97061-932).		
and add	66.5 g KH ₂ PO ₄ . (VWR, product # 97062-348).		
	22.5 g H ₃ C ₆ H ₅ O ₇ . (VWR, product #BDH9228-2.5		
	KG).		
	8.85 g MgSO ₄ .7H ₂ O. (VWR, product # 97062-		
	134).		
	10 mL of 1000x Trace metals formulation		

After autoclaving, add:

118 g of (1) to (2)

5 mL of 25 mg/mL Kanamycin Sulfate (VWR-V0408)

Use 28% NH₄OH (VWR, product #BDH3022) to adjust pH to 6.1.

[0100] Table 3. Trace metals formulation

Ferrous Sulfate Heptahydrate	27.8 g/L (Spectrum, 7782-63-0)
Zinc Sulfate heptahydrate	2.88 g/L (Spectrum, 7446-20-0)
Calcium chloride dihydrate	2.94 g/L (Spectrum, 2971347)
Sodium molybdate dihydrate	0.48 g/L (Spectrum, 10102-40-6)
Manganese chloride tetrahydrate	1.26 g/L (Spectrum, 13446-34-9)
Sodium selenite	0.35 g/L (Spectrum, 10102-18-8)
Boric acid	0.12 g/L (Spectrum, 10043-35-3)

[0101] In some embodiments, transformed cells can then be transferred to a larger volume of growth media (e.g., minimal media) and grown for at least 4 hours, at least 5 hours, at least 6 hours, at least 7 hours, at least 8 hours, from 5 to 10 hours, from 5 to 9 hours, from 6 to 9 hours, and/or alternatively until the cell density in the media reaches optical density (OD) of 600.

[0102] Additionally, fermentation process can be performed at various temperature ranging from 22 °C to 33 °C, from 29 °C to 33 °C, from 30 °C to 32 °C, from 23 °C to 29 °C, or from 25 °C to 28 °C. In some embodiments, the temperature of the fermentation can be maintained at a constant temperature and immediately upon completion of fermentation the non-naturally occurring polypeptide can be purified. Alternatively, the temperature of the fermentations can be maintained for a desired period of time and when cell densities of OD600 of 10-20 are reached, then the temperature can be reduced to induce protein production. In such embodiments, typically, the temperature is reduced from 28° C to 25° C. During the fermentation, protein expression in the bacteria can be induced by adding induction reagent. For example, where the expression vector contains lac promoter and the nucleic acid encoding the non-naturally occurring polypeptide (e.g., truncated collagen, collagen fragments, or collagen) is under the control of the lac promoter, the expression of the nucleic acid can be induced by adding isopropyl β -d-1-thiogalactopyranoside (IPTG) at a concentration ranging from 0.1 - 1.5 mM, from 0.1 - 1.0 mM, or from 0.1 - 0.5 mM. Fermentation can be continued for 20-24 hours, or in some embodiments, for 40-60 hours.

[0103] It is contemplated that such generated recombinant cells (e.g., recombinant bacteria transformed with the expression vector) intracellularly express the non-naturally occurring polypeptides (e.g., truncated collagen, collagen fragments, or collagen) encoded by the nucleic acids in the expression vector. Such intracellularly expressed polypeptides (e.g., truncated collagen, collagen fragments, or collagen) can then be secreted (via a secretion signal sequence) to the extracellular space (e.g., into a culture media). Thus, in some embodiments, the culture media can contain secreted recombinant protein (e.g., truncated collagen, collagen fragments, or collagen) encoded by the nucleic acids.

[0104] Thus, another aspect of the disclosure includes a composition including the non-naturally occurring polypeptide (e.g., recombinant collagen, truncated collagen, collagen fragments, or collagen) encoded by the nucleic acids. In some embodiments, the composition may include the recombinant cell comprising an integrated heterologous nucleic acid sequence encoding a non-naturally occurring polypeptide (e.g., collagen, a truncated collagen, or fragment thereof), and/or the culture medium (e.g., growth media, cultivation media, etc.) for the recombinant cell.

[0105] Alternatively and/or additionally, the composition may include purified recombinant polypeptides from the recombinant cells and/or the culture medium. In some embodiments, the

recombinant polypeptides are purified from the culture medium where the recombinant cells grow and secrete the recombinant polypeptides thereto. In some embodiments, the recombinant polypeptide is coupled with a tag (e.g., histidine tag, etc) such that the recombinant polypeptide can be purified using affinity purification is known as immobilized metal affinity chromatography (IMAC). Alternatively, the recombinant polypeptide can be purified via column chromatography. For example, the recombinant polypeptide can be purified by acid treatment of homogenized growth media. In such example, the pH of the growth media (e.g., fermentation broth) can be decreased to from 3 to 3.5 using 5-50% sulfuric acid. The recombinant cells are then separated using centrifugation. Supernatant of the acidified broth can be tested on a polyacrylamide gel and determined whether it contains the recombinant polypeptide in relatively high abundance compared to starting pellet. The recombinant polypeptide slurry obtained is generally high in salts. To obtain volume and salt reduction, concentration and diafiltration steps can be performed using filtration steps. For example, the filtration step can be performed using EMD Millipore Tangential Flow Filtration system with ultrafiltration cassettes of 0.1 m² each. Total area of filtration in this example can be 0.2 m² using two cassettes in parallel. A volume reduction of 5x and a salt reduction of 19x can be achieved in the TFF stage. Final slurry can be run on an SDS-PAGE gel to confirm presence of the recombinant polypeptide. The purified recombinant polypeptide can then be analyzed on an SDS-PAGE gel to identify a corresponding thick and clear band observed at the expected sizes for each respective polypeptide. Quantification of titers and purity can be further conducted using reverse phase and size exclusion HPLC chromatography. It is preferred that the purity of the purified recombinant polypeptides is at least about 80%, at least about 85%, at least about 90%, at least about 95%, or at least about 99%.

[0106] Provided herein are pharmaceutical compositions. The pharmaceutical compositions may, in some instances, comprise a polypeptide of the disclosure. In some cases, the polypeptide comprises or consists of an amino acid sequence having at least about 80% (e.g., at least about 85%, at least about 90%, at least about 95%, at least about 98%, or about 100%) sequence identity to SEQ ID NO: 32. In some cases, the polypeptide comprises or consists of an amino acid sequence having at least about 80% (at least about 85%, at least about 90%, at least about 95%, at least about 98%, or about 100%) sequence identity to a truncate of SEQ ID NO: 32 (e.g., comprising an N-terminal truncation, a C-terminal truncation, an internal truncation, or any combination thereof, as described herein).

[0107] In certain embodiments, the pharmaceutical composition may comprise one or more pharmaceutically acceptable excipients or carriers. In some cases, the pharmaceutically acceptable excipient or carrier is selected from the group consisting of: an antiadherent, a binder, a coating, a

color, a disintegrant, a flavor, a glidant, a lubricant, a preservative, a sorbent, a vehicle, and any combination thereof.

[0108] Wound care in patients and animals is a common clinical challenge faced by the healthcare and veterinary industries. Wounds may include, for example, trauma wounds, burns, ulcers, lesions, abscesses, diabetic wounds, pressure sores or ulcers, and grafts or wounds resulting from surgical procedures and operations. Wounds may result from physical injury, surgical procedures and operations, heat or chemical burns, pressure on the skin, radiation, infections, immune system deficiencies, malnourishment, as well as various medical conditions such as vascular disorders and diabetes. Wounds also include more superficial wounds, for example, cuts, lacerations, punctures, grazes, scratches, abrasions, friction wounds (e.g., rash, friction blisters, and the like), boils, skin eruptions, blemishes, acne, psoriasis, eczema, oral wounds, and skin or corneal lesions.

[0109] Collagen is known to improve wound healing and stimulate tissue growth and is well-tolerated at the wound site. In particular, collagen is thought to aid in the migration of fibroblasts and keratinocytes to the wound site thereby improving tissue growth in the wound bed.

[0110] In some embodiments, the pharmaceutical composition including the non-naturally occurring polypeptides (e.g., recombinant polypeptides and/or purified recombinant polypeptides) can be formulated for topical application. The topical application can be for therapeutic purpose (e.g., for the treatment of a skin condition, as described herein). The topical formulation can be any type of topical formulation, including, but not limited to, a powder, a cream, a gel, a gel cream, a liquid, a lotion, an oil, a serum, a paste, an ointment, a medicated stick, a balm, a solution, a suspension, a foam, and the like. In further embodiments, the topical formulation may comprise the non-naturally occurring polypeptides in the form of a personal care product, such as a mask, a skin cleaner, a cleansing cream, a cleansing lotion, a facial lotion, a body lotion, a shower gel, an antiperspirant, a deodorant, a shave cream, a depilatory, a face oil, a lip oil, a body oil, a facial cleanser, a cleansing milk, a cleansing pad, a facial wash, a facial cream, a body cream, a facial moisturizer, a body moisturizer, a facial serum, a facial mask, a body mask, a facial toner, a facial mist, a foundation, a concealer, or a tinted multifunctional cream. In such embodiments, the composition may further include at least one of a carrier molecule (e.g., vehicle), a preservative, and/or additional ingredients. Any suitable carrier molecules are contemplated, and the exemplary carrier molecule may include water, oil, alcohol, propylene glycol, or emulsifiers. In addition, any suitable preservatives are contemplated, and the exemplary preservatives include zinc oxide, parabens, formaldehyde releasers, isothiazolinones, phenoxyethanol, or organic acids such as benzoic acid, sodium benzoate, or butylene glycol, hexanediol, or potassium sorbate.

37

[0111] In some embodiments, the pharmaceutical composition including the non-naturally occurring polypeptides (e.g., recombinant polypeptides and/or purified recombinant polypeptides) can be formulated as an injectable formulation (e.g., for administration by injection). The injectable formulation can be for the apeutic purpose (e.g., for the treatment of a skin condition, as described herein). The pharmaceutical compositions provided herein can be formulated for parental injection, including formulations suitable for bolus injection or continuous infusion. Preservatives are, optionally, added to the injection formulations. In still other embodiments, the pharmaceutical compositions are formulated in a form suitable for parenteral injection as sterile suspensions, solutions or emulsions in oily or aqueous vehicles. Parenteral injection formulations optionally contain formulatory agents such as suspending, stabilizing and/or dispersing agents. In specific embodiments, pharmaceutical formulations for parenteral administration include aqueous solutions of the polypeptides disclosed herein in water soluble form. In additional embodiments, suspensions of the polypeptides are prepared as appropriate oily injection suspensions. Suitable lipophilic solvents or vehicles for use in the pharmaceutical compositions described herein include, by way of example only, fatty oils such as sesame oil, or synthetic fatty acid esters, such as ethyl oleate or triglycerides, or liposomes. In certain embodiments, aqueous injection suspensions contain substances which increase the viscosity of the suspension, such as sodium carboxymethyl cellulose, sorbitol, or dextran. Optionally, the suspension contains suitable stabilizers or agents which increase the solubility of the polypeptides to allow for the preparation of highly concentrated solutions. Alternatively, in other embodiments, the polypeptide is in powder form for constitution with a suitable vehicle, e.g., sterile pyrogen-free water, before use.

[0112] In certain embodiments, provided herein are methods of treating a wound in a subject. The methods may comprise administering a therapeutically effective amount of a polypeptide of the disclosure (e.g., in a pharmaceutical composition) to the subject to treat the wound. In some cases, the wound exhibits impaired wound healing. In some cases, the methods comprise administering the polypeptide (e.g., in a pharmaceutical composition, in a topical formulation) to the wound or to skin adjacent to the wound.

[0113] In some embodiments, the composition can be administered in and about connective tissue to add volume, add support, or otherwise treat a connective tissue condition, in addition to boosting collagen expression. The compositions described herein can be administered at multiple levels beneath the dermis. Generally, connective tissue fibers and matrix are synthesized by specialized cells called fibroblasts. There are three main groups of connective tissues: loose connective tissue, dense connective tissue, and specialized connective tissue. As used herein, the term "connective

tissue" may refer to those tissues that connect, support, or surround other structures and organs of the body. For example, connective tissues described herein may include, without limitation, skin, dermal tissues, subdermal tissues, cutaneous tissues, subcutaneous tissues, intradural tissue, muscles, tendons, ligaments, cartilage, bone, fibrous tissues, adipose tissues, blood vessels and arteries, nerves, and synovial (intradermal) tissues.

[0114] A connective tissue condition refers to any condition that involves abnormalities in connective tissue in one or more parts of the body. Certain disorders are characterized by overactivity of the immune system with resulting inflammation and systemic damage to the tissues, usually with replacement of normal tissue (e.g., normal tissue of a certain organ) with connective tissue. Other disorders involve biochemical abnormalities or structural defects of the connective tissue itself. Some of these disorders are inherited, and some are of unknown etiology. When connective tissue diseases are of autoimmune origin they are classified as "rheumatic disorders", "autoimmune rheumatic disorders" or "autoimmune collagen-vascular disorders".

[0115] In some embodiments the compositions provided herein may be used to treat connective tissue conditions such as fibrosis or sclerosis. The term "fibrosis" as used herein refers to the accumulation of connective tissue or fibrous tissue (scar tissue, collagen) in a certain organ or part of the body. If fibrosis arises from a single cell line it is called a "fibroma". Fibrosis occurs as the body attempts to repair and replace damaged cells, and thus can be a reactive, benign or a pathological state. Physiological fibrosis is similar to the process of scarring. A pathological state develops when the tissue in question is repeatedly and continuously damaged. A single episode of injury, even if severe, does not usually cause fibrosis. If injury is repeated or continuous (for instance as it occurs in chronic hepatitis) the body attempts to repair the damage, but the attempts result instead in excessive accumulation of scar tissue. Scar tissue starts to replace regular tissue of the organ which performs certain functions that the scar tissue is not able to perform; it can also interfere with blood flow and limit blood supply to other cells. As a result, these other functional cells start to die and more scar tissue is formed. The term "sclerosis" refers to the hardening or stiffening of tissue or a structure or organ that would normally be flexible, usually by replacement of normal organ specific tissue with connective tissue.

[0116] In certain embodiments, provided herein are methods of treating a proliferative disorder of the skin of a subject. The methods may comprise administering a therapeutically effective amount of a polypeptide of the disclosure (e.g., in a pharmaceutical composition) to the subject to treat the proliferative skin disorder. In some cases, the proliferative skin disorder is characterized by abnormal (e.g., reduced, decreased) proliferation, migration, and/or adhesion of skin cells (e.g., keratinocytes, fibroblasts). In some cases, the proliferative skin disorder is selected from the group

39

consisting of: epidermal thinning, epidermal atrophy, dermal atrophy, epidermal degeneration, acantholysis, pemphigus foliaceus, pemphigus vulgaris, acantholytic dyskeratosis, Darier disease, Hailey-Hailey disease, Grover disease, lichen sclerosus, hyalinisation of collagen, or a combination thereof.

[0117] In some embodiments, the compositions provided herein may be used to treat conditions including, but not limited to, arthritis, skin lesion, acne vulgaris, cystic acne, psoriasis, ichthyoses (e.g., ichthyosis hystrix, epidermolytic hyperkeratosis, and lamellar ichthyosis), follicular disorders (e.g., pseudofolliculites, senile comedones, nevus comidonicas, and trichostatis spinulosa), benign epithelial tumors (e.g., flat warts, trichoepithelioma, and molluscum contagiosum), perforated dematoses (e.g., elastosis perforans seripiginosa and Kyrles disease), and disorders of keratinization (e.g., Dariers disease, keratoderma, hyperkeratosis plantaris, pityriasis rubra pilaris, lichen planus acanthosis nigricans, and psoriasis). [0118] In various aspects, after administration of the compositions (e.g., pharmaceutical compositions) or formulations (e.g., to the skin of a subject), keratinocyte growth (e.g., proliferation) is increased. In some cases, keratinocyte growth (e.g., proliferation) is increased by at least about 10%, at least about 20%, at least about 30%, at least about 40%, at least about 50%, at least about 60%, at least about 70%, at least about 80%, at least about 90%, at least about 100%, or greater, after the compositions (e.g., pharmaceutical compositions) or formulations are administered to a subject (e.g., as compared to prior to administration of the compositions or formulations).

[0119] In various aspects, after administration of the compositions (e.g., pharmaceutical compositions) or formulations (e.g., to the skin of a subject), keratinocyte regeneration is increased. In some cases, keratinocyte regeneration is increased by at least about 10%, at least about 20%, at least about 30%, at least about 40%, at least about 50%, at least about 60%, at least about 70%, at least about 80%, at least about 90%, at least about 100%, or greater, after the compositions (e.g., pharmaceutical compositions) or formulations are administered to a subject (e.g., as compared to prior to administration of the compositions or formulations).

[0120] In various aspects, after administration of the compositions (e.g., pharmaceutical compositions) or formulations (e.g., to the skin of a subject), collagen production by fibroblasts is increased. In some cases, collagen production by fibroblasts is increased by at least about 10%, at least about 20%, at least about 30%, at least about 40%, at least about 50%, at least about 50%, at least about 50%, at least about 90%, at least about 100%, or greater, after the compositions (e.g., pharmaceutical compositions) or formulations are

administered to a subject (e.g., as compared to prior to administration of the compositions or formulations).

[0121] In various aspects, after administration of the compositions (e.g., pharmaceutical compositions) or formulations (e.g., to the skin of a subject), fibroblast migration is increased. In some cases, fibroblast migration is increased by at least about 10%, at least about 20%, at least about 30%, at least about 40%, at least about 50%, at least about 60%, at least about 70%, at least about 80%, at least about 90%, at least about 100%, or greater, after the compositions (e.g., pharmaceutical compositions) or formulations are administered to a subject (e.g., as compared to prior to administration of the compositions or formulations).

[0122] In various aspects, after administration of the compositions (e.g., pharmaceutical compositions) or formulations (e.g., to the skin of a subject), fibroblast proliferation is increased. In some cases, fibroblast proliferation is increased by at least about 10%, at least about 20%, at least about 30%, at least about 40%, at least about 50%, at least about 60%, at least about 70%, at least about 80%, at least about 90%, at least about 100%, or greater, after the compositions (e.g., pharmaceutical compositions) or formulations are administered to a subject (e.g., as compared to prior to administration of the compositions or formulations).

[0123] In various aspects, after administration of the compositions (e.g., pharmaceutical compositions) or formulations (e.g., to the skin of a subject), fibroblast adhesion is increased. In some cases, fibroblast adhesion is increased by at least about 10%, at least about 20%, at least about 30%, at least about 40%, at least about 50%, at least about 60%, at least about 70%, at least about 80%, at least about 90%, at least about 100%, or greater, after the compositions (e.g., pharmaceutical compositions) or formulations are administered to a subject (e.g., as compared to prior to administration of the compositions or formulations).

[0124] In various aspects, after administration of the compositions (e.g., pharmaceutical compositions) or formulations (e.g., to the skin of a subject), keratinocyte viability is increased. In some cases, keratinocyte viability is increased by at least about 10%, at least about 20%, at least about 30%, at least about 40%, at least about 50%, at least about 60%, at least about 70%, at least about 80%, at least about 90%, at least about 100%, or greater, after the compositions (e.g., pharmaceutical compositions) or formulations are administered to a subject (e.g., as compared to prior to administration of the compositions or formulations).

[0125] In various aspects, after administration of the compositions (e.g., pharmaceutical compositions) or formulations (e.g., to the skin of a subject), expression of one or more genes (e.g., one or more genes involved in cell proliferation, cell migration, cell adhesion, etc.) (by a cell present in the skin, e.g., keratinocytes, fibroblasts) is increased. In some cases, expression of

one or more genes (e.g., one or more genes involved in cell proliferation, cell migration, cell adhesion, etc.) (by a cell present in the skin, e.g., keratinocytes, fibroblasts) is increased by at least about 10%, at least about 20%, at least about 30%, at least about 40%, at least about 50%, at least about 60%, at least about 70%, at least about 80%, at least about 90%, at least about 100%, or greater, after the compositions (e.g., pharmaceutical compositions) or formulations are administered to a subject (e.g., as compared to prior to administration of the compositions or formulations).

- [0126] In some embodiments, the one or more genes are involved in a signaling pathway (e.g., involved in cell proliferation, cell migration, cell adhesion). In some cases, the one or more genes are involved in a VEGFA/VEGFR2 signaling pathway. In some cases, the one or more genes involved in a VEGFA/VEGFR2 signaling pathway is selected from the group consisting of: MYOC1, FLII, ROCK1, ROCK2, CLTC, LIMK 1, EGR1, and any combination thereof.

 [0127] In some cases, the one or more genes are involved in a focal adhesion signaling pathway. In some cases, the one or more genes involved in a focal adhesion signaling pathway is selected from the group consisting of: ITGA3, TNC, LAMC1, FLNA, TLN1, ZYX, DIAPH1, and any combination thereof.
- **[0128]** In some cases, the one or more genes are involved in an endothelin signaling pathway. In some cases, the one or more genes involved in an endothelin signaling pathway is selected from the group consisting of: TRIOBP, WNK1, MMP2, VCAN, ACTA2, GNA12, EGR1, and any combination thereof.
- **[0129]** In some cases, the one or more genes are involved in an EGF/EGFR signaling pathway. In some cases, the one or more genes involved in an EGF/EGFR signaling pathway is selected from the group consisting of: ATXN2, JAK1, RPS6KA2, ROCK1, SHC1, IQGAP1, PLCG1, and any combination thereof.
- **[0130]** In some cases, the one or more genes are involved in a transforming growth factor-beta (TGF-beta) signaling pathway. In some cases, the one or more genes involved in a TGF-beta signaling pathway is selected from the group consisting of: SMURF1, SPTBN1, PAK2, ROCK1, SHC1, TGFBR3, TGFBR1, and any combination thereof.
- **[0131]** Provided in certain embodiments herein are compositions (e.g., pharmaceutical compositions) and formulations (e.g., topical formulations) comprising one or more non-naturally occurring polypeptide provided herein (e.g., for therapeutic use). In some embodiments, the compositions and formulations provide a therapeutically effective amount of polypeptide provided herein (e.g., an amount suitable to provide a therapeutic benefit when administered to an individual or a cell). In some specific embodiments, the compositions (e.g.,

pharmaceutical compositions) and formulations (e.g., topical formulations) comprise an amount suitable to provide a therapeutic beneficial effect to the skin of an individual when administered to the skin of the individual. In specific embodiments, the compositions (e.g., pharmaceutical compositions) and/or formulations (e.g., topical formulations) comprise about 0.001% to about 30% w/w of a polypeptide (or non-naturally occurring collagen polypeptide) such as provided herein. In more specific embodiments, the compositions (e.g., pharmaceutical compositions) and/or formulations (e.g., topical formulations) comprise about 0.001% to about 20% w/w of a polypeptide (or non-naturally occurring collagen polypeptide) such as provided herein, about 0.001% to about 10% w/w of a polypeptide (or non-naturally occurring collagen polypeptide) such as provided herein, about 0.001% to about 5% w/w of a polypeptide (or non-naturally occurring collagen polypeptide) such as provided herein, about 0.001% to about 4% w/w of a polypeptide (or non-naturally occurring collagen polypeptide) such as provided herein, about 0.001% to about 3% w/w of a polypeptide (or non-naturally occurring collagen polypeptide) such as provided herein, about 0.001% to about 2% w/w of a polypeptide (or non-naturally occurring collagen polypeptide) such as provided herein, about 0.001% to about 1% w/w of a polypeptide (or non-naturally occurring collagen polypeptide) such as provided herein, about 0.001% to about 0.5% w/w of a polypeptide (or non-naturally occurring collagen polypeptide) such as provided herein, and about 0.001% to about 0.2% w/w of a polypeptide (or non-naturally occurring collagen polypeptide) such as provided herein.

[0132] In various embodiments, the concentration or amount of a non-naturally occurring polypeptide (e.g., recombinant protein) provided herein is in a composition (e.g., pharmaceutical composition) and/or formulation (e.g., topical formulation) provided herein in any suitable amount and may, e.g., vary depending on the use or formulation (e.g., gel, capsule, liquid, powder, etc.). Exemplary concentrations of the non-naturally occurring polypeptides (e.g., recombinant proteins) in the compositions (e.g., pharmaceutical compositions) and/or formulations (e.g., topical formulations) can be at least about 0.01%, at least about 0.05%, at least about 0.1%, at least about 2%, at least about 3%, at least about 4%, at least about 5%, at least about 10%, at least about 15%, at least about 20%, at least about 55%, at least about 35%, at least about 45%, at least about 55%, at least about 55%, at least about 55%, at least about 65%, at least about 70%, at least about 70%, at least about 95%, at least a

about 0.05%, about 0.1%, about 0.2 %, about 0.5%, about 1%, about 2%, about 3%, about 4%, about 5%, about 10%, about 15%, about 20%, about 25%, about 30%, about 35%, about 40%, about 45%, about 50%, about 55%, about 60%, about 65%, about 70%, about 75%, about 80%, about 85%, about 90%, about 95%, about 98% (w/v or w/w). Alternatively and/or additionally, the exemplary concentration of the non-naturally occurring polypeptides (e.g., recombinant proteins) in the compositions (e.g., pharmaceutical composition) and/or formulations (e.g., topical formulations) can range from about 0.01% to about 99%, from about 0.05% to about 99%, from about 0.1% to about 99%, from about 0.1% to about 99%, from about 0.5% to about 99%, from about 0.1% to about 10%, from about 1% to about 99%, from about 5% to about 99%, from about 10% to about 99%, from about 15% to about 99%, from about 20% to about 99%, from about 25% to about 99%, from about 30% to about 99%, from about 35% to about 99%, from about 40% to about 99%, from about 45% to about 99%, from about 50% to about 99%, from about 55% to about 99%, from about 60% to about 99%, from about 65% to about 99%, from about 70% to about 99%, from about 75% to about 99%, from about 80% to about 99%, from about 85% to about 99%, from about 90% to about 99%, from about 95% to about 99%, from about 0.1% to about 90%, from about 1% to about 90%, from about 5% to about 90%, from about 10% to about 90%, from about 15% to about 90%, from about 20% to about 90%, from about 25% to about 90%, from about 30% to about 90%, from about 35% to about 90%, from about 40% to about 90%, from about 45% to about 90%, from about 50% to about 90%, from about 55% to about 90%, from about 60% to about 90%, from about 65% to about 90%, from about 70% to about 90%, from about 75% to about 90%, from about 80% to about 90%, from about 85% to about 90%, from about 20% to about 80%, from about 25% to about 80%, from about 30% to about 80%, from about 35% to about 80%, from about 40% to about 80%, from about 45% to about 80%, from about 50% to about 80%, from about 55% to about 80%, from about 60% to about 80%, from about 65% to about 80%, from about 70% to about 80%, from about 75% to about 80%, from about 70% to about 99%, from about 75% to about 99%, from about 80% to about 99%, etc (w/w or w/v). Alternatively and/or additionally, the exemplary concentration of the nonnaturally occurring polypeptides (e.g., recombinant proteins) in the in the compositions (e.g., pharmaceutical composition) and/or formulations (e.g., topical formulations) can be less than about 95%, about 90%, about 85%, about 80%, about 75%, about 70%, about 65%, about 60%, about 55%, about 50%, about 45%, about 40%, etc (w/w or w/v).

[0133] In some embodiments, the schedule of application varies depending on the purpose, gender, age, or health condition of the subject. For example, in some embodiments, the in the compositions (e.g., pharmaceutical composition) and/or formulations (e.g., topical formulations)

are administered (e.g., topically) once a day, twice a day, three times a day, up to 6 times a day, every 2 days, every 3 days, every 4 days, every 5 days, every 6 days, etc. Alternatively and/or additionally, in some embodiments, the in the compositions (e.g., pharmaceutical composition) and/or formulations (e.g., topical formulations) are administered (e.g., topically) a plurality of times in an irregular interval, or increased interval, or decreased interval. In certain embodiments, in the compositions (e.g., pharmaceutical composition) and/or formulations (e.g., topical formulations) are (e.g., topically) administered in a dose and/or schedule sufficient or effective to provide a therapeutic benefit (e.g., as described herein).

EXAMPLES

[0134] Example 1. Generation of non-naturally occurring polypeptides of the disclosure.

[0135] This example shows the generation of a recombinant polypeptide of the disclosure by genetically engineered microorganisms and the purification process of such generated polypeptides.

[0136] The polynucleotides of SEQ ID NOs: 1, 3, 5, and 7 were synthesized and at least one of the polynucleotides were inserted into a pET vector. Overlaps between a pET vector and SEQ ID NOs: 1, 3, 5, and 7 were designed to be between 20 and 30 bp long and added using PCR with the enzyme PRIMESTAR® GXL polymerase (takarabio.com/products/pcr/gc-rich-pcr/primestar-gxldna-polymerase). The opened pET vector and insert DNA (e.g., polynucleotide of SEQ ID NO: 1) IN-FUSION® were assembled together into the final plasmid using Cloning (takarabio.com/products/cloning/in-fusion-cloning). In all cases, the nucleic acid sequences were preceded by a secretion signal sequence disclosed as SEQ ID NOs: 9, 11, 13, 15, 17, 19, 21, or 23. Plasmid sequences were verified through Sanger sequencing.

[0137] Cells were transformed with final plasmids and subsequently cultivated in minimal media and frozen in 1.5 aliquots with vegetable glycerin at a ratio of 50:50 of cells to glycerin. One vial of this frozen culture was revived in 50 ml of minimal media overnight at 37 °C, 200 rpm. Formulations of the minimal media in this example are shown in **Table 2** and **Table 3**. Cells were then transferred into 300 ml of minimal media and grown for 6-9 hours to reach an optical density (OD) 600 of 5-10.

[0138] The fermentations were performed at various temperature ranging from 25° to 28° C. For some fermentations, the temperature of the fermentation was maintained at a constant temperature and immediately upon completion of fermentation the polypeptide was purified. For other fermentations, the temperature of the fermentations was maintained for a desired period of time and when cell densities of OD600 of 10-20 were reached, the temperature was reduced to induce

45

protein production. Typically, the temperature was reduced from 28° C to 25° C. Induction was carried out by adding IPTG to the media at concentrations ranging from 0.1-0.5 mM. Fermentations were continued for 40-60 hours.

[0139] The recombinant polypeptide was purified as follows: The pH of the fermentation broth was decreased to between 3-3.5 using 5-50% sulfuric acid. The cells were then separated using centrifugation or centrifugation followed by microfiltration. Supernatant of the acidified broth was tested on a polyacrylamide gel and found to contain recombinant polypeptide in relatively high abundance compared to starting pellet. To obtain volume and salt reduction, concentration and diafiltration steps were performed ultrafiltration. Final polypeptide slurry was run on an SDS-PAGE gel to confirm presence of the recombinant polypeptide.

[0140] To verify that the desired proteins were produced, supernatants from cultures of microbes carrying SEQ ID NOs: 1, 3, 5, or 7 were collected and purified by decreasing their pH as described above. The acidified broth was analyzed by SDS-PAGE, and bands corresponding to the expected size protein were detected in relative purity. As shown in **FIG. 3**, a thick and clear band was observed at the expected sizes for each respective protein. Samples were subsequently analyzed for quantifying recombinant polypeptide titers and purity by reverse phase and size exclusion HPLC chromatography and mass spectrometry, which confirmed the correct identity of the respective proteins of interest.

[0141] FIGS. 4A-4C depict SDS-PAGE gels of non-naturally occurring polypeptides of the disclosure before and after treatment at pH 3.0. FIG. 4A depicts an SDS-PAGE gel of fermentation supernatant containing a non-naturally occurring polypeptide having an amino acid sequence of SEQ ID NO: 2 before (Lane 1) and after (Lane 2) treatment at pH 3.0. The expected molecular weight of such polypeptide was about 17.9 kDa. The identity of the polypeptide was confirmed by mass spectrometry (data not shown). FIG. 4B depicts an SDS-PAGE gel of fermentation supernatant containing a non-naturally occurring polypeptide having an amino acid sequence of SEQ ID NO: 8 before (Lane 3) and after (Lane 4) treatment at pH 3.0. The expected molecular weight of such polypeptide was about 17.6 kDa. The identity of the polypeptide was confirmed by mass spectrometry (data not shown). FIG. 4C depicts an SDS-PAGE gel of fermentation supernatant containing a non-naturally occurring polypeptide produced in various bacterial host strains having an amino acid sequence of SEQ ID NO: 8 before (Lanes 3-5) and after (Lanes 6-8) treatment at pH 3.0.

Example 2. Polypeptide sequence confirmation of products and lack of hydroxyproline residues

[0142] Mass spectrometry was used to confirm the sequence of a polypeptide of SEQ ID NO: 2 produced by methods according to this disclosure. **Table 4** and **Table 5** provide the results of peptide mapping of this polypeptide.

Table 4. Peptide mapping of the polypeptide of SEQ ID NO: 2.

Label	Sequence	Ra	inge	Calculated Mass (Da)	Observed Mass (Da)	Mass Error (Da)	Retention Time (min)	Intensity (counts)
T1-Mox	DTGFPGMPGR	1	10	1049.4601	1049.4598	-0.000216	7.49	84,835.78
T1-2-clipD	DTGFPGMPGRSGD	1	13	1292.5455	1292.5471	0.001373	9.13	126,314.00
T1-2	DTGFPGMPGRSGDPGR	1	16	1602.7209	1602.7206	-0.00029	8.12	577,210.30
T1-3	DTGFPGMPGRSGDPGRSGK	1	19	1874.8694	1874.8634	-0.005825	7.19	1,090,023.00
T1-4	DTGFPGMPGRSGDPGRSGKDGLPGSPGFK	1	29	2830.3457	2830.3513	0.005645	8.6	6,936.58
T1-clipT	TGFPGMPGR	2	10	918.43817	918.43848	0.000225	8.38	4,768.16
T1-3-clipG	GFPGMPGRSGDPGRSGK	3	19	1658.7947	1658.7977	0.003076	7.19	228,217.00
T1-3-clipP2	PGMPGRSGDPGRSGK	5	19	1454.7048	1454.7067	0.001883	7.19	436,082.90
T1-3-clipP1	PGRSGDPGRSGK	8	19	1169.5901	1169.5885	-0.001693	7.19	25,095.66
T2	SGDPGR	11	16	588.2736		Not	t detected	
T2-4	SGDPGRSGKDGLPGSPGFK	11	29	1814.8911	1814.8878	-0.003236	6.62	1,121.89
T3	SGK	17	19	291.1663		Not	t detected	
T4	DGLPGSPGFK	20	29	974.4941		Not	t detected	
T4-5-clipE	DGLPGSPGFKGE	20	31	1159.5509	1159.551	3.39E-05	8.58	3,738.19
T4-5	DGLPGSPGFKGEVGQPGSPGLEGHR	20	44	2431.188	2431.197	0.008649	8.48	112,201.00
T4-6	DGLPGSPGFKGEVGQPGSPGLEGHRGEPGIPGIPG NQGAK	20	59	3803.8979	3803.9045	0.00648	9.39	441,091.10
T4-7	DGLPGSPGFKGEVGQPGSPGLEGHRGEPGIPGIPG NQGAKGQK	20	62	4117.0728	4117.0747	0.002786	8.83	114,096.20
T4-6-clipG	GLPGSPGFKGEVGQPGSPGLEGHRGEPGIPGIPGN QGAK	21	59	3688.8711	3688.8735	0.002824	9.01	60,853.30
T4-5-clipP	PGSPGFKGEVGQPGSPGLEGHR	23	44	2146.0557	2146.0562	0.000427	8.47	14,717.96
T5	GEVGQPGSPGLEGHR	30	44	1476.7189			t detected	,
T5-6	GEVGQPGSPGLEGHRGEPGIPGIPGNQGAK	30	59	2848.4216	2848.4216	-5.61E-05	8.28	71,435.91
T5-7	GEVGQPGSPGLEGHRGEPGIPGIPGNQGAKGQK	30	62	3161.5967	3161.5986	0.00197	7.68	14,067.67
T5-6-clipR	RGEPGIPGNQGAK	44	59	1546.8215	1546.822	0.00052	7.68	3,424.51
T6	GEPGIPGIPGNQGAK	45	59	1391.7277		Not	t detected	•
T6-7	GEPGIPGIPGNQGAKGQK	45	62	1703.8955	1703.8969	0.001454	7.58	13,208.12
T6-8	GEPGIPGIPGNQGAKGQKGEIGPPGLPGAK	45	74	2777.4824	2777.48	-0.002657	9.09	24,234.60
T6-9	GEPGIPGIPGNQGAKGQKGEIGPPGLPGAKGSPGE TGLMGPEGSFGLPGAPGPK	45	98	4955.5239	4955.5317	0.008078	10.72	9,805.94
T6-7-clipP	PGNQGAKGQK	53	62	983.51483	983.51324	-0.001589	8.83	4,871.83
T6-8-clipP	PGNQGAKGQKGEIGPPGLPGAK	53	74	2057.1018	2057.1055	0.003865	9.41	1,757.15
T7	GQK	60	62	332.1928		Not	t detected	
T7-8-Metl	GQKGEIGPPGLPGAK	60	74	1418.7882	1418.79	0.002054	8.04	3,103.51
T7-8-clipK	KGEIGPPGLPGAK	62	74	1219.6925	1219.691	-0.001366	7.46	11,881.92
T8	GEIGPPGLPGAK	63	74	1092.6047		No	t detected	
T8-11	GEIGPPGLPGAKGSPGETGLMGPEGSFGLPGAPGP KGDKGEPGLQGKPGSSGAK	63	116	4920.4717	4920.4771	0.005323	9.79	81,370.18
T8-clipl	IGPPGLPGAK	65	74	905.53345	905.53308	-0.00042	8.71	28,037.06
T9-cation	GSPGETGLMGPEGSFGLPGAPGPK	75	98	2234.0081			11.12	48,341.35
Т9	GSPGETGLMGPEGSFGLPGA PGPK	75	98	2197.0593			t detected	,
T9-10-clipD	GSPGETGLMGPEGSFGLPGAPGPKGD	75	100	2368.1006	2368.1003	-0.000254	11.24	10,231.43
T9-10	GSPGETGLMGPEGSFGLPGAPGPKGDK	75	101	2496.1956		-0.006757	10.11	99,126.63
T9-clipT	TGLMGPEGSFGLPGAPGPK	80	98	1768.8818		-0.001801	11.1	5,679.79
T9-clipG	GLMGPEGSFGLPGAPGPK	81	98	1667.8341		-0.00031	11.1	1,873.69
T9-clipS	SFGLPGAPGPK	88	98	1026.5498		-0.00134	8.97	904.06
T10-11	GDKGEPGLQGKPGSSGAK	99	116	1668.8431	1668.8383	-0.004932	5.46	475,309.00
T11-11-clipK	KGEPGLQGKPGSSGAK	101	116	1496.7947	1496.7939	-0.000828	5.39	5,921.06
T11	GEPGLQGKPGSSGAK	102	116	1369.707		Not	t detected	

Table 5. Peptide mapping of the polypeptide of SEQ ID NO: 2.

				Calculated	Observed	Mass	Retention	Intensity
Label	Sequence	Ra	inge	Mass (Da)	Mass (Da)	Error (Da)	Time (min)	(counts)
T11-13	GEPGLQGKPGSSGAKGEPGGPGAPGEPGYPGI PGTQGIKGDK	102	143	3839.908	3839.9158	0.007516	7.99	15,528.34
T12	GEPGGPGAPGEPGYPGIPGTQGIK	117	140	2189.0752	2189.0723	-0.003083	9.65	145,576.30
T12-13	GEPGGPGAPGEPGYPGIPGTQGIKGDK	117	143	2489.2188	2489.219	0.000101	8.74	45,482.75
T12-14-clipP4	PGEPGYPGIPGTQGIKGDKGSQGESGIQGR	125	154	2923.4424	2923.4473	0.005102	7.56	18,260.02
T12-14-clipP3	PGYPGIPGTQGIKGDKGSQGESGIQGR	128	154	2640.3257	2640.3262	0.000495	7.58	16,118.65
T12-14-clipP2	PGIPGTQGIKGDKGSQGESGIQGR	131	154	2323.188	2323.1851	-0.0029	8.33	16,247.45
T12-14-clipP1	PGTQGIKGDKGSQGESGIQGR	134	154	2056.0298	2056.0305	0.000825	7.56	24,994.64
T12-15-clipP	PGTQGIKGDKGSQGESGIQGRK	134	155	2056.0298	2056.0308	0.00072	8.33	13,644.56
T13	GDK	141	143	319.1612		Not	detected	
T13-14	GDKGSQGESGIQGR	141	154	1374.6488	1374.6508	0.001875	5.23	66,051.58
T13-15	GDKGSQGESGIQGRK	141	155	1374.6488	1374.6508	0.001875	5.23	66,051.58
T13-16	GDKGSQGESGIQGRKGEK	141	158	1816.9027	1816.899	-0.00382	2.88	2,494.46
T13-17	GDKGSQGESGIQGRKGEKGR	141	160	2030.0253	2030.022	-0.003288	2.72	2,147.75
T13-14-clipK	KGSQGESGIQGR	143	154	1202.6003	1202.5985	-0.00199	3.44	2,745.49
T14	GSQGESGIQGR	144	154	1075.5126		Not	detected	
T14-15	GSQGESGIQGRK	144	155	1202.6003	1202.5985	-0.00199	3.44	2,745.49
T14-16	GSQGESGIQGRKGEK	144	158	1516.7594	1516.7587	-0.000831	3.02	1,968.24
T14-17	GSQGESGIQGRKGEKGR	144	160	1729.882	1729.8776	-0.00443	2.79	2,134.92
T15	К	155	155	147.1128		Not	detected	
T15-18	KGEKGRQGNPGLQGTEGLR	155	173	1981.0453	1981.0386	-0.006898	5.56	19,503.56
T15-19	KGEKGRQGNPGLQGTEGLRGEQGEK	155	179	2609.3269	2609.3267	-0.000342	5.51	112,503.40
T16-18	GEKGRQGNPGLQGTEGLR	156	173	1852.9503	1852.9458	-0.004281	5.76	1,739.51
T16-20	GEKGRQGNPGLQGTEGLRGEQGEKGEK	156	182	2795.3911	2795.3877	-0.0033	5.51	8,967.10
T17	GR	159	160	232.1404		Not	detected	
T17-18-clipL	GRQGNPGLQGTEGL	159	172	1382.6902	1382.6887	-0.001582	7.58	12,756.85
T17-18	GRQGNPGLQGTEGLR	159	173	1538.7914	1538.7919	0.000687	6.31	25,249.43
T17-19	GRQGNPGLQGTEGLRGEQGEK	159	179	2167.073	2167.0701	-0.002904	5.83	106,768.80
T17-20	GRQGNPGLQGTEGLRGEQGEKGEK	159	182	2481.2319	2481.2329	0.000921	5.59	36,064.79
T17-21-clipD	GRQGNPGLQGTEGLRGEQGEKGEKGD	159	184	2653.2805	2653.2791	-0.001494	5.66	10,397.58
T18	QGNPGLQGTEGLR	161	173	1326.676	Not detected			
T18-19	QGNPGLQGTEGLRGEQGEK	161	179	1936.9238	1936.9227	-0.001056	7.68	14,110.98
T18-20	QGNPGLQGTEGLRGEQGEKGEK	161	182	2268.1094	2268.1101	0.000698	5.98	60,817.64
T18-21-clipD	QGNPGLQGTEGLRGEQGEKGEKGD	161	184	2440.158	2440.1602	0.002185	6.14	17,499.44
T18-21-clipR	RGEQGEKGEKGDPGIR	173	188	1711.8601	1711.8606	9.05E-05	5.06	7,889.07
T19	GEQGEK	174	179	647.2995	Not detected			
T19-21	GEQGEKGEKGDPGIR	174	188	1555.759	1555.7548	-0.00416	5.3	24,352.07
T20	GEK	180	182	333.1768		Not	detected	
T20-21	GEKGDPGIR	180	188	927.47742	927.47589	-0.001604	5.25	156,253.20
T21	GDPGIR	183	188	614.3256		Not	detected	

[0143] Analysis was also performed to evaluate any amino acid or peptide modifications present in the produced polypeptide of SEQ ID NO: 2 (Table 6). In a few instances, additional confirmatory analyses were performed to differential methionine oxidation from the presence of hydroxyproline residues. For example, based upon the fragmentation results from MS/MS scans, the tryptic peptide T1 (sequence DTGFPGMPGR) was shown to contain a methionine oxidation rather than a proline hydroxylation. Based on such results, it was conclusively determined that tryptic peptide 1 (T1) has oxidation at methionine position 7 and no evidence of hydroxyproline at position 5 or 8. Similarly, where there is another methionine in position 83 in tryptic peptide 9 (T9), there were no detectable levels of methionine oxidation, hydroxyproline in positions 77, 85, 92, 95, and 97, or hydroxylysine at position 98 of the polypeptide. Accordingly, the truncated collagen polypeptides of the present disclosure also differ from naturally occurring collagen polypeptides in their lack of hydroxyproline residues.

Table 6. Analysis of amino acid and peptide modifications of the polypeptide of SEQ ID NO: 2.

Modifications	Label	Sequence	Intensity (counts)	Relative Instensity (%)
	T1	Oxidation (M)	84,835.78	3.29
		Clippped (T)	4 ,768.16	0.18
	T1-2	Missed Cleavage, Clippped (D)	126,314.00	4.90
Oxidation Met, Missed Cleavages, N and	11-2	Missed Cleavage	577,210.30	22.38
C terminal Clips		2 Missed Cleavages	1,090,023.00	42.26
C terminal Clips	T1-3	2 Missed Cleavages, Clipped (G)	228,217.00	8.85
		2 Missed Cleavages, Clipped (P1)	436,082.90	16.91
		2 Missed Cleavages, Clipped (P2)	25,095.66	0.97
	T1-4	3 Missed Cleavages	6,936.58	0.27
	T4	Unmodified	233,635.20	23.83
	T4-5	Missed Cleavgae, Clipped (E)	3,738.19	0.38
Missed Cleavages, N and C Terminal		Missed Cleavage	112,201.00	11.45
Clips	T4-6	2 Missed Cleavages	441,091.10	44.99
		2 Missed Cleavages, Clipped (P)	14,717.96	1.50
	T4-7	3 Missed Cleavages	114,096.20	11.64
		3 Missed Cleavages, Clipped (G)	60,853.30	6.21
	T5	Unmodified	4,628.28	1.63
	T5-6	Missed Cleavage	71,435.91	25.11
Missed Cleavages, N Terminal Clip		Missed Cleavage, Clipped (R)	3,424.51	1.20
,	T6	Unmodified	177,768.80	62.48
	T5-7	2 Missed Cleavages	14,067.67	4.94
	T6-7	Missed Cleavage	13,208.12	4.64
	T6-8	2 Missed Cleavages	24,234.60	26.78
	T6-9	3 Missed Cleavages	9,805.94	10.83
	T7-8	Missed Cleavage, Clipped (P)	4,871.83	5.38
Missed Clevages, N Terminal Clips,		Missed Cleavage, Methyl (I)	3,103.51	3.43
Methyl lle, Dehydrated Gln	T7.0	Missed Cleavage, Clipped (K)	11,881.92	13.13
	T7-9	2 Missed Cleavages, Clipped (P) Dehydrated (E)	1,757.15 6,818.71	1.94 7.53
	T8	Clipped (I)	28,037.06	30.98
		Cation K	48,341.35	19.07
		Clipped (T)	5,679.79	2.24
	Т9	Clipped (G)	1,873.69	0.74
Cation K, Missed Cleavgaes, N Terminal		Clipped (S)	904.06	0.74
Clips		Missed Cleavage	99,126.63	39.11
Clips	T9-10	Missed Cleavage, Clipped (D)	10,231.43	4.04
	T10-11	Missed Cleavage, Clipped (K)	5,921.06	2.34
	T8-11	3 Missed Cleavages	81,370.18	32.11
	T11	Unmodified	40,875.16	72.47
Missed Cleavages		2 Missed Cleavages	15,528.34	27.53
	T12	Unmodified	145,576.30	51.93
		Missed Cleavage	45,482.75	16.23
	1 12 10	2 Missed Cleavages, Clipped (P4)	18,260.02	6.51
Missed Cleavages, N Terminal Clips		2 Missed Cleavages, Clipped (P3)	16,118.65	5.75
200 2.00.000	T12-14	2 Missed Cleavages, Clipped (P2)	16,247.45	5.80
		2 Missed Cleavages,	24,994.64	8.92
	T12-15	3 Missed Cleavages, Clipped (P)	13,644.56	4.87
		Missed Cleavage	66,051.58	36.91
		3 Missed Cleavages	2,494.46	1.39
		4 Missed Cleavages	2,147.75	1.20
Missed Cleavages	T14	Unmodified	101,400.00	56.67
Ŭ		Missed Cleavages	2,745.49	1.53
		3 Missed Cleavages	2,134.92	1.19
		2 Missed Cleavages	1,968.24	1.10

Example 3. A non-naturally occurring polypeptide having an amino acid sequence of SEQ ID NO: 8 is non-toxic to human fibroblasts and keratinocytes

[0144] Human primary fibroblasts, HaCaT cells, and human primary keratinocytes treated with a non-naturally occurring polypeptide having an amino acid sequence of SEQ ID NO: 8 (indicated

as "Cav" in **FIGS. 5A-5C**) *in vitro* showed no sign of toxicity, as shown in **FIGS. 5A-5C**, indicating the product is safe as a topical ingredient at the dosages tested.

[0145] Protocol:

[0146] The cells were seeded at confluency in a 96-well plate. 24 hours later, the media was changed to low serum media (to avoid any effects due to serum). The cells were treated with a non-naturally occurring polypeptide having the amino acid sequence of SEQ ID NO: 8 in the same low serum media for 24 hours. Post treatment with the polypeptide, the supernatants were saved, and cells were incubated with MTT dye for 60 minutes at 37°C. MTT is metabolized to formazan salts by viable cells. These salts were dissolved using isopropanol and the color produced was quantified using a cell plate reader.

[0147] <u>Toxicology analyses of a formulation comprising a non-naturally occurring polypeptide</u> of the disclosure.

[0148] A variety of toxicology assays were performed *in vitro* to screen for any potential negative impact of formulations containing a non-naturally polypeptide having an amino acid sequence of SEQ ID NO: 8.

[0149] 1) Bacterial Reverse Mutation Assay

[0150] The polypeptide was evaluated for the ability to induce a mutagenic response in four different strains of *Salmonella typhimurium* and an *E. coli* strain. Samples were screened at different dose levels by plating them with the tester strains both with and without ArocolorTM 1254 induced rat liver microsomes (S9). Samples are considered mutagenic if they cause an increase in revertant colonies above the spontaneous background level. The assay is known in the art and is performed compliant with OECD 4714 Guideline for Testing of Chemicals: Bacterial Reverse Mutation Assay.

[0151] A powder of a polypeptide having an amino acid sequence of SEQ ID NO: 8 was prepared in sterile deionized water at 5 concentrations: 5 mg/plate, 1 mg/plate, 0.5 mg/plate, 0.1 mg/plate, and 0.05 mg/plate. Testing was done with the appropriate solvent control and positive controls were plated with overnight cultures on selective minimal agar in the presence and absence of Aroclor-induced rate liver S9. All were plated in triplicate.

[0152] Results showed that test strains were sensitive to the positive control mutagens and showed the appropriate mutagenic response. The spontaneous reversion rate indicated that the strains were sensitive to the detection of potentially genotoxic agents. The formulations were not found to be cytotoxic to the test systems. The metabolic activation using the S9 activation mixture showed an active microsomal preparation. The formulations showed no detectable

genotoxic activity at any concentration either in the presence or absence of S9 enzyme activation.

[0153] 2) EpiDermTM Skin Model in vitro Toxicity Testing System

[0154] Sturgeon collagen was evaluated for irritancy potential utilizing the MatTek Corporation EpiDermTM *in vitro* toxicity testing system as is known in the art. Briefly, normal, humanderived epidermal keratinocytes (NHEK) which have been cultured to form a multilayered, highly differentiated model of the human epidermis were tested with substances and evaluated for damage to mitochondrial enzyme succinate dehydrogenase, as monitored by a color reaction. The enzyme converts a water-soluble, yellow MTT to a purple, insoluble product, and the amount of MTT converted is proportional to the number of viable cells. Triton X-100 (1%) was used as a positive control. Results are depicted in **Table 7** (GEL-CAV-A indicating the treatment with polypeptide having an amino acid sequence of SEQ ID NO: 8).

Table 7. Results of in vitro toxicity testing

Article (% & Exposure)	System	Percent <u>Viability</u>	Percent <u>Inhibition</u>
GEL-CAV-A EpiDerm; L	ot		
Number: PP6-CAV-20-34	12		
(100% - 20 hrs.)	EpiDerm	80	20
(100% - 4.5 hr.)	EpiDerm	98	2
(100% - 1 hr.)	EpiDerm	101	-1
Triton X-100			
(1% - 20 hrs.)	EpiDerm	5	95
(1% - 4.5 hr.)	EpiDerm	94	6
(1% - 1 hr.)	EpiDerm	99	1

[0155] The time at which viability would be 50%, ET-50, for the polypeptide was determined to be greater than 24 hours, and the positive control at 9.4 hours. Standard ranges are shown in **Table 8**, according to the manufacturer.

Table 8. Standard ranges for EpiDermTM Skin Model in vitro Toxicity Testing System

ET-50 (hrs)	Expected In vivo Irritancy	Example
<0.5	Severe, probably corrosive	Conc. Nitric Acid
0.5-4	Moderate	1% Sodium Dodecyl Sulfate
4-12	Moderate to Mild	1% Triton X-100
12-24	Very Mild	Baby Shampoo
24	Non-irritating	10% Tween 20

[0156] Accordingly, the polypeptide has an expected *in vivo* dermal irritancy potential in the non-irritating range.

[0157] 3) EpiOcularTM Tissue Model *in vitro* toxicity testing system

[0158] The polypeptide was evaluated for irritancy potential utilizing the MatTek Corporation EpiOcularTM *in vitro* toxicity testing system as is known in the art. Briefly, normal, humanderived epidermal keratinocytes which have been cultured to form a stratified, squamous epithelium similar to that found in the cornea were tested with substances and evaluated for damage to mitochondrial enzyme succinate dehydrogenase, as monitored by a color reaction. The enzyme converts a water-soluble, yellow MTT to a purple, insoluble product, and the amount of MTT converted is proportional to the number of viable cells. Triton X-100 (0.3%) is used as a positive control. Results are depicted in **Table 9** (GEL-CAV-A indicating the treatment with polypeptide having an amino acid sequence of SEQ ID NO: 8).

Table 9. Results from in vitro toxicity testing

Article		Percent	Percent
(% & Exposure)	System	<u>Viability</u>	<u>Inhibition</u>
GEL-CAV-A EpiOcular;			
Lot Number: PP6-CAV-20)-342		
(20% - 4 hrs.)	EpiOcular	101	~1
(20% - 1 hr.)	EpiOcular	98	2
(20% - 20 mins.)	EpiOcular	111	-11
Triton X-100			
(0.3% - 1 hr.)	EpiOcular	11	89
(0.3% - 20 mins.)	EpiOcular	49	51
(0.3% - 5 mins.)	EpiOcular	82	18

[0159] The time at which viability would be 50%, ET-50, was determined and then used to estimate the rabbit Draize eye score: Draize=-4.74 + 101.7/(ET-50)^0.5 as is known in the art. The polypeptide was found to have an ET-50 greater than 256 minutes, and an estimated Draize ocular irritation score of 0 (the positive control at 19.6 minutes/Draize 18.2). Standard ranges are shown in **Table 10** according to the manufacturer.

Table 10. Standard ranges for EpiOcularTM Tissue Model in vitro toxicity testing system

Draize Score	Irritancy Classification	Example Ep	iOcular ET-50 (min)
0-15	Non-irritating, Minimal	PEG-75 Lanolin, Tween 20	>256 - 26.5
15.1 - 25	Mild	3% Sodium Dodecyi Sulfate	<26.5 11.7
25.1 - 50	Moderate	5% Triton X-100	<11.7 – 3.45
50.1 - 110	Severe, Extreme	5% Benzalkonium Chloride	<3.45

[0160] Accordingly, the polypeptide has a non-irritating irritancy classification.

[0161] 4) Repeated Insult Patch Study

[0162] The polypeptide was evaluated to determine its ability to sensitize the skin of volunteer subjects with normal skin using an occlusive repeated insult patch study as is known in the art. Briefly, repeated insult patch evaluation is a modified predictive patch study that can detect weak sensitizers that require multiple applications to induce a cell-mediated (Type IV) immune response sufficient to cause an allergic reaction. Irritant reactions may also be detected using this evaluation method, although this is not the primary purpose of this procedure. Sodium laurylsulfate, 0.2% aqueous solution served as a positive control.

[0163] Ninety-five (95) subjects completed the study. Under the conditions employed in this study, there was no evidence of sensitization to the polypeptide formulation.

Example 4. A non-naturally occurring polypeptide having an amino acid sequence of SEQ ID NO: 8 promotes keratinocyte growth and regeneration

[0164] Healthy skin is primarily composed of collagen types I and III, hyaluronans, fibronectin and elastin, and a basal lamina that includes other proteins such as laminins and collagen IV. Fibroblasts are the major cell type that produces these structural proteins, including collagen. Collectively the proteins are known as extra cellular matrix (ECM) and they support the skin's structure. Fibroblast output of collagen decreases with age, so fibroblasts are a primary target for the activity of cosmetics to try to rescue skin aging.

[0165] Keratinocytes are the major cell type forming the epidermis, or outer layers of the skin. HaCaT cells are an immortal keratinocyte cell line derived from adult skin. Both cell types were used to demonstrate the benefits of a non-naturally occurring polypeptide having an amino acid sequence of SEQ ID NO: 8 on skin (indicated as "Cav" in figures). These cells have a high turnover and receive the brunt of everyday pollution and radiation. They are negatively affected by the environments they are subjected to, which leads to increased inflammation and damage to our natural skin barrier. Hallmarks used to assess keratinocyte health include inflammatory markers, cell turnover, and DNA integrity.

[0166] Keratinocytes treated with a non-naturally occurring polypeptide having an amino acid sequence of SEQ ID NO: 8 showed a dose-dependent increase in keratinocyte growth and regeneration. Similar results were seen immortal HaCaT keratinocytes. As shown in FIG. 6 (human primary keratinocytes), the polypeptide (indicated as "Cav" in FIG. 6) demonstrated a dose-dependent stimulation of cellular growth and regeneration in keratinocytes, with a 40% increase in cell numbers at 0.2% (w/w) and 0.1% (w/w) treatment, when compared with control cells.

Example 5. A non-naturally occurring polypeptide having an amino acid sequence of SEQ ID NO: 8 stimulates collagen production and upregulation of genes involved in cell proliferation, migration, and adhesion

[0167] A non-naturally occurring polypeptide having an amino acid sequence of SEQ ID NO: 8 (indicated as "Cav" in **FIG.** 7) stimulated production of collagen I production by *in vitro* fibroblasts as shown in **FIG.** 7.

[0168] ELISA Protocol: Primary human fibroblasts were cultured in standard media DMEM/F12+10% FBS. Supernatants were used to determine the level of collagen type I present. The kit used was Takara Procollagen type I C-peptide detection ELISA kit. Manufacturer's protocol was followed to measure the quantity of collagen type I in the supernatants.

[0169] In a second method of analysis, microarray data reporting the levels of RNA for a variety of human collagens showed a 2.5-3-fold increase in expression of these collagens in fibroblasts treated with the polypeptide. **Table 11** depicts the microarray data.

[0170] Microarray RNA analysis Protocol: The cells were seeded at confluency in 6-well plates. 24 hours later the media was changed to low serum media. The cells were treated with 0.05% (w/w) of the polypeptide and control. The QIAGEN RNeasy kit was used to extract the RNA and the extracted RNA for analysis.

Table 11. Microarray data

TC1700011088.h	9.00	7.42	3.16	4.15£-06	0.0011	COLIAI	collagen, type i, alpha 1	Multiple
TC0700008358.h	15.3	13.86	2.71	7.01E-08	0.0011	COL1A2	collagen, type I, alpha 2	Multiple
TC0200016193.h	14.16	12.28	3.73	7.69E-06	0.0011	COL6A3	collagen, type VI, alpha 3	Multiple
TC06000012314.h	11.16	9.46	3.26	8.77E-06	0.0011	COLIZAT	collagen, type XII, alpha 1	Multiple
TC2100007446.h	13.82	12.32	2.82	1.01E-05	0.0012	COL6A1	collagen, type VI, alpha 1	Multiple
TC0200010239.h	10.42	8.93	2.81	2.998-05	0.0015	COL3A1;	collagen, type ill, alpha 1;	Multiple
TC2100007451.h	9,11	7,91	2,3	9.13E-05	0.0022	COL6A2	collagen, type VI, alpha 2	Multiple
TC0500011163.h	10.42	9.22	2.29	0.0001	0.0023	COL4A38P	collagen, type IV, alpha 3	Multiple
TC09000009127.h,	8.32	6.39	3.8	0.0004	0.0052	COLSAI	collagen, type V, alpha 1	Multiple
TC1300008010.h	5.98	4.98	2	0.0022	0.0155	COLAAZ	collagen, type IV, alpha 2	Multiple

[0171] In addition to the upregulation of collagens, the polypeptide was found to increase the levels of RNA for a variety of genes involved in several pathways responsible for proliferation, migration, and adhesion.

[0172] Upregulated Pathways:

[0173] VEGFA-VEGFR2 Signaling pathway

[0174] Number of upregulated genes: 74

[0175] Number of down regulated genes: 12

[0176] Significance: 7.74

Table 12. Exemplary upregulated genes in the VEGFA-VEGFR2 signaling pathway

Symbol	Fold change	P-value	Description
MYOC1	3.25	9.25E-05	Myosin IC
FLII	4.08	1.06E-05	Flightless I actin binding protein
ROCK1	3.72	8.22E-07	Rho-associated, coiled-coil containing protein kinase 1
ROCK2	5.03	6.31E-05	Rho-associated, coiled- coil containing protein kinase 2
CLTC	2.7	7.06E-06	Clathrin, heavy chain (Hc)
LIMK 1	4.24	2.04E-06	Serine/threonine Kinase
EGR1	3.28	2.27E-05	Early growth response 1

[0177] Focal Adhesion Pathway

[0178] No of upregulated genes: 53

[0179] No of down regulated genes: 0

[0180] Significance: 9.93

Table 13. Exemplary upregulated genes in the Focal Adhesion Pathway

Symbol	Fold change	P-value	Description
ITGA3	3.45	5.71E-07	Integrin alpha 3
TNC	3.13	5.53E-05	Tenascin
LAMC1	3.15	1.15E-05	Laminin, gamma 1
FLNA	6.5	1.47E-07	Actin-binding protein that regulates reorganization of actin cytoskeleton
TLN1	3.8	0.0001	Cytoskeletal protein
ZYX	3.8	6.81E-06	Zinc-binding phosphoprotein and is found in mature adhesions
DIAPH1	3.78	8.79E-05	Regulates cell morphology and cytoskeletal reorganization

[0181] Endothelin Pathway

[0182] No of upregulated genes: 48

[0183] No of down regulated genes: 4

[0184] Significance: 3.57

Table 14. Exemplary upregulated genes in the Endothelin Pathway

Symbol	Fold change	P-value	Description
TRIOBP	3.91	4.55E-06	TRIO and F-actin binding protein; nucleolar protein 12
WNK1	3.11	9.10E-05	Serine/threonine protein kinase
MMP2	3.08	1.13E-06	Matrix metallopeptidase 2
VCAN	3.31	3.10E-06	Versican
ACTA2	2.52	0.0002	Actin, alpha 2
GNA12	3.88	5.99E-06	Guanine nucleotide binding protein (G- protein) alpha 12
EGR1	3.28	2.27E-05	Early growth response 1

[0185] EGF/EGFR Signaling Pathway

[0186] No of upregulated genes: 32

[0187] No of down regulated genes: 4

[0188] Significance: 4.83

Table 15. Exemplary upregulated genes in the EGF/EGFR Signaling Pathway

Symbol	Fold change	P-value	Description
ATXN2	3.6	2.48E-05	Interact with endoplasmic reticulum
JAK1	3.15	1.88E-05	Involved in cell growth, survival, development, and differentiation
RPS6KA2	3.12	1.96E-06	Ribosomal protein
ROCK1	3.72	8.22E-07	Rho-associated, coiled-coil containing protein kinase 1
SHC1	2.83	2.57E-06	Regulation of apoptosis
IQGAP1	2.65	1.94E-05	Scaffold protein, help in modulating several cellular activities.

PLCG1	2.59	0.0011	Ribosomal protein
I .			

[0189] TGF-beta signaling pathway

[0190] No of upregulated genes: 33

[0191] No of down regulated genes: 3

[0192] Significance: 6.92

Table 16. Exemplary upregulated genes in the TGF-beta signaling pathway

Symbol	Fold change	P-value	Description
SMURF1	2.68	4.20E-06	SMAD specific E3 ubiquitin protein kinase 1
SPTBN1	3.41	4.83E-06	Responsible for cellular shape, protection of membranes against stress
PAK2	2.71	1.68E-05	Stimulates cell survival and cell growth
ROCK1	3.72	8.22E-07	Rho-associated, coiled-coil containing protein kinase 1
SHC1	2.83	2.57E-06	Regulation of apoptosis
TGFBR3	2.6	2.05E-05	Transforming growth factor beta receptor III
TGFBR1	2.6	0.0062	Transforming growth factor beta receptor I

Example 6. A non-naturally occurring polypeptide having an amino acid sequence of SEQ ID NO: 8 promotes wound healing activity

[0193] Wound healing is a dynamic process that includes a sequence of events, including cell proliferation and migration. Fibroblast migration and proliferation play a crucial role in wound closure by secreting various chemicals, including collagen and other matrix proteins.

Treatment of *in vitro* human dermal fibroblasts with a non-naturally occurring polypeptide

having an amino acid sequence of SEQ ID NO: 8 showed wound healing activity in an *in vitro* wound-healing model as shown in **FIG. 8**, as cells proliferated and closed a gap induced by scratching a confluent layer of fibroblasts. Additionally, microarray data was consistent with the polypeptide having a wound healing benefit. The data also showed upregulation of genes involved in several pathways responsible for cell proliferation, migration, and adhesion.

[0194] Protocol: The cells were seeded at confluency in 24 well plate. 24 hours later the media was changed to low serum media and the cells were starved for 6-8 hours. Post starvation, the wells containing cells were scratched and treated. Images were taken at this time (time 0 hours) and after 24 hours. Images were analyzed using Image J software.

[0195] While preferred embodiments of the present disclosure have been shown and described herein, it will be obvious to those skilled in the art that such embodiments are provided by way of example only. Numerous variations, changes, and substitutions will now occur to those skilled in the art without departing from the disclosure. It should be understood that various alternatives to the embodiments of the disclosure described herein may be employed in practicing the embodiments of the disclosure. It is intended that the following claims define the scope of the disclosure and that methods and structures within the scope of these claims and their equivalents be covered thereby.

58

CLAIMS

WHAT IS CLAIMED IS:

A method of treating a wound in a subject, the method comprising:
 administering to the subject a therapeutically effective amount of a polypeptide
 comprising or consisting of an amino acid sequence having at least 80% sequence identity to
 SEQ ID NO: 32, or a polypeptide comprising or consisting of an amino acid sequence having at
 least 80% sequence identity to a truncate of SEQ ID NO: 32,

thereby treating the wound.

2. A method of treating a proliferative disorder of the skin, the method comprising: administering to the subject a therapeutically effective amount of a polypeptide comprising or consisting of an amino acid sequence having at least 80% sequence identity to SEQ ID NO: 32, or a polypeptide comprising or consisting of an amino acid sequence having at least 80% sequence identity to a truncate of SEQ ID NO: 32,

thereby treating the proliferative disorder of the skin,

wherein the proliferative disorder of the skin is characterized by abnormal proliferation, migration, and/or adhesion of skin cells (e.g., fibroblasts, keratinocytes).

- 3. The method of claim 1, wherein the wound exhibits impaired wound healing.
- 4. The method of claim 1, wherein the administering comprises administering the polypeptide to the wound or to skin adjacent to the wound.
- 5. The method of claim 2, wherein the abnormal proliferation, migration, and/or adhesion is decreased or reduced proliferation, migration, and/or adhesion.
- 6. The method of claim 2, wherein the skin condition is epidermal thinning, epidermal atrophy, dermal atrophy, epidermal degeneration, acantholysis, pemphigus foliaceus, pemphigus vulgaris, acantholytic dyskeratosis, Darier disease, Hailey-Hailey disease, Grover disease, lichen sclerosus, hyalinisation of collagen, or a combination thereof.
- 7. The method of any one of the preceding claims, wherein the polypeptide comprises or consists of an amino acid sequence having at least 85% sequence identity to SEQ ID NO: 32, or

comprises or consists of an amino acid sequence having at least 85% sequence identity to a truncate of SEQ ID NO: 32.

- 8. The method of any one of the preceding claims, wherein the polypeptide comprises or consists of an amino acid sequence having at least 90% sequence identity to SEQ ID NO: 32, or comprises or consists of an amino acid sequence having at least 90% sequence identity to a truncate of SEQ ID NO: 32.
- 9. The method of any one of the preceding claims, wherein the polypeptide comprises or consists of an amino acid sequence having at least 95% sequence identity to SEQ ID NO: 32, or comprises or consists of an amino acid sequence having at least 95% sequence identity to a truncate of SEQ ID NO: 32.
- 10. The method of any one of the preceding claims, wherein the polypeptide comprises or consists of an amino acid sequence having at least 98% sequence identity to SEQ ID NO: 32, or comprises or consists of an amino acid sequence having at least 98% sequence identity to a truncate of SEQ ID NO: 32.
- 11. The method of any one of the preceding claims, wherein the polypeptide comprises or consists of an amino acid sequence having 100% sequence identity to SEQ ID NO: 32, or comprises or consists of an amino acid sequence having 100% sequence identity to a truncate of SEQ ID NO: 32.
- 12. The method of any one of the preceding claims, wherein the truncate of SEQ ID NO: 32 comprises an N-terminal truncation, a C-terminal truncation, or both, relative to SEQ ID NO: 32.
- 13. The method of claim 12, wherein the N-terminal truncation is an N-terminal truncation of 50 amino acids to 750 amino acids relative to SEQ ID NO: 32.
- 14. The method of claim 12 or 13, wherein the C-terminal truncation is a C-terminal truncation of 50 amino acids to 600 amino acids relative to SEQ ID NO: 32.
- 15. The method of any one of the preceding claims, wherein the polypeptide comprises or consists of the amino acid sequence of SEQ ID NO: 8.
- 16. The method of any one of the preceding claims, wherein the polypeptide has a total truncation of 50 amino acids to 1250 amino acids.

17. The method of any one of the preceding claims, wherein the polypeptide is at least 50 amino acids in length.

- 18. The method of any one of the preceding claims, wherein the polypeptide is 50 amino acids to 250 amino acids in length.
- 19. The method of any one of the preceding claims, wherein the polypeptide does not comprise one or more of: a laminin G domain, a Von Willebrand factor type A (vWA) domain, and a fibrillar collagen C-terminal domain.
- 20. The method of any one of the preceding claims, wherein the polypeptide comprises one or more collagen triple helix repeats.
- 21. The method of any one of the preceding claims, wherein the polypeptide is monomeric.
- 22. The method of any one of the preceding claims, wherein the polypeptide does not form a stable triple helix structure of a naturally occurring collagen.
- 23. The method of any one of the preceding claims, wherein the polypeptide is substantially free of other collagen chains.
- 24. The method of any one of the preceding claims, wherein the polypeptide has a non-naturally occurring level of hydroxylation relative to a naturally-occurring collagen.
- 25. The method of any one of the preceding claims, wherein fewer than 10% of prolines present in the polypeptide are hydroxylated.
- 26. The method of any one of the preceding claims, wherein the polypeptide is non-hydroxylated.
- 27. The method of any one of the preceding claims, wherein the polypeptide has a non-naturally occurring level of glycosylation relative to a naturally-occurring collagen.
- 28. The method of any one of the preceding claims, wherein the polypeptide comprises less than 5 wt. % glycosylation.
- 29. The method of any one of the preceding claims, wherein the polypeptide is administered as a pharmaceutical composition.

30. The method of claim 29, wherein the pharmaceutical composition further comprises a pharmaceutically acceptable excipient.

- 31. The method of claim 30, wherein the pharmaceutically acceptable excipient is selected from the group consisting of: an antiadherent, a binder, a coating, a color, a disintegrant, a flavor, a glidant, a lubricant, a preservative, a sorbent, a vehicle, and any combination thereof.
- 32. The method of any one of claims 29-31, wherein the pharmaceutical composition is formulated for topical administration.
- 33. The method of claim 32, wherein the pharmaceutical composition is formulated as a gel, a cream, a lotion, an oil, a foam, an ointment, a serum, and any combination thereof.
- 34. The method of any one of the preceding claims, wherein after the administering, keratinocyte growth and/or regeneration in the skin is increased (e.g., relative to prior to the administering) by at least about 5%, at least about 10%, at least about 15%, at least about 20%, at least about 25%, at least about 30%, at least about 35%, at least about 40%, at least about 40%, at least about 65%, at least about 70%, or at least about 75%.
- 35. The method of any one of the preceding claims, wherein after the administering, collagen production in the skin is increased (e.g., relative to prior to the administering) by at least about 5%, at least about 10%, at least about 15%, at least about 20%, at least about 25%, at least about 30%, at least about 35%, at least about 40%, at least about 45%, at least about 50%, at least about 55%, at least about 60%, at least about 65%, at least about 70%, or at least about 75%.
- 36. The method of any one of the preceding claims, wherein after the administering, fibroblast migration, proliferation, and/or adhesion in the skin is increased (e.g., relative to prior to the administering) by at least about 5%, at least about 10%, at least about 15%, at least about 20%, at least about 25%, at least about 30%, at least about 35%, at least about 40%, at least about 45%, at least about 50%, at least about 55%, at least about 60%, at least about, at least about 65%, at least about 70%, or at least about 75%.
- 37. The method of any one of the preceding claims, wherein after the administering, keratinocyte viability after exposure to urban dust is increased (e.g., relative to prior to the applying) by at least about 5%, at least about 10%, at least about 15%, at least about 20%, at

least about 25%, at least about 30%, at least about 35%, at least about 40%, at least about 45%, at least about 50%, at least about 55%, at least about 60%, at least about, at least about 65%, at least about 70%, or at least about 75%.

- 38. The method of any one of the preceding claims, wherein after the administering, expression (e.g., by keratinocytes, fibroblasts) of one or more genes involved in a signaling pathway selected from the group consisting of: VEGFA/VEGFR2 signaling pathway, focal adhesion signaling pathway, endothelin signaling pathway, EGF/EGFR signaling pathway, TGF-beta signaling pathway, and any combination thereof, is increased.
- 39. The method of claim 38, wherein the one or more genes involved in VEGFA/VEGFR2 signaling pathway is selected from the group consisting of: MYOC1, FLII, ROCK1, ROCK2, CLTC, LIMK 1, EGR1, and any combination thereof.
- 40. The method of claim 38 or 39, wherein the one or more genes involved in focal adhesion signaling pathway is selected from the group consisting of: ITGA3, TNC, LAMC1, FLNA, TLN1, ZYX, DIAPH1, and any combination thereof.
- 41. The method of any one of claims 38-40, wherein the one or more genes involved in endothelin signaling pathway is selected from the group consisting of: TRIOBP, WNK1, MMP2, VCAN, ACTA2, GNA12, EGR1, and any combination thereof.
- The method of any one of claims 38-41, wherein the one or more genes involved in EGF/EGFR signaling pathway is selected from the group consisting of: ATXN2, JAK1, RPS6KA2, ROCK1, SHC1, IQGAP1, PLCG1, and any combination thereof.
- The method of any one of claims 38-42, wherein the one or more genes involved in TGF-beta signaling pathway is selected from the group consisting of: SMURF1, SPTBN1, PAK2, ROCK1, SHC1, TGFBR3, TGFBR1, and any combination thereof.
- A pharmaceutical composition comprising a polypeptide comprising or consisting of an amino acid sequence having at least 80% sequence identity to SEQ ID NO: 32, or a polypeptide comprising or consisting of an amino acid sequence having at least 80% sequence identity to a truncate of SEQ ID NO: 32; and a pharmaceutically acceptable excipient.
- 45. The pharmaceutical composition of claim 44, wherein the polypeptide comprises or consists of an amino acid sequence having at least 85% sequence identity to SEQ ID NO: 32, or

comprises or consists of an amino acid sequence having at least 85% sequence identity to a truncate of SEQ ID NO: 32.

- 46. The pharmaceutical composition of claim 44 or 45, wherein the polypeptide comprises or consists of an amino acid sequence having at least 90% sequence identity to SEQ ID NO: 32, or comprises or consists of an amino acid sequence having at least 90% sequence identity to a truncate of SEQ ID NO: 32.
- 47. The pharmaceutical composition of any one of claims 44-46, wherein the polypeptide comprises or consists of an amino acid sequence having at least 95% sequence identity to SEQ ID NO: 32, or comprises or consists of an amino acid sequence having at least 95% sequence identity to a truncate of SEQ ID NO: 32.
- 48. The pharmaceutical composition of any one of claims 44-47, wherein the polypeptide comprises or consists of an amino acid sequence having at least 98% sequence identity to SEQ ID NO: 32, or comprises or consists of an amino acid sequence having at least 98% sequence identity to a truncate of SEQ ID NO: 32.
- The pharmaceutical composition of any one of claims 44-48, wherein the polypeptide comprises or consists of an amino acid sequence having 100% sequence identity to SEQ ID NO: 32, or comprises or consists of an amino acid sequence having 100% sequence identity to a truncate of SEQ ID NO: 32.
- The pharmaceutical composition of any one of claims 44-49, wherein the truncate of SEQ ID NO: 32 comprises an N-terminal truncation, a C-terminal truncation, or both, relative to SEQ ID NO: 32.
- 51. The pharmaceutical composition of claim 50, wherein the N-terminal truncation is an N-terminal truncation of 50 amino acids to 750 amino acids relative to SEQ ID NO: 32.
- 52. The pharmaceutical composition of claim 50 or 51, wherein the C-terminal truncation is a C-terminal truncation of 50 amino acids to 600 amino acids relative to SEQ ID NO: 32.
- 53. The pharmaceutical composition of any one of claims 44-52, wherein the polypeptide comprises or consists of the amino acid sequence of SEQ ID NO: 8.
- 54. The pharmaceutical composition of any one of claims 44-53, wherein the polypeptide has a total truncation of 50 amino acids to 1250 amino acids.

55. The pharmaceutical composition of any one of claims 44-54, wherein the polypeptide is at least 50 amino acids in length.

- 56. The pharmaceutical composition of any one of claims 44-55, wherein the polypeptide is 50 amino acids to 250 amino acids in length.
- 57. The pharmaceutical composition of any one of claims 44-56, wherein the polypeptide does not comprise one or more of: a laminin G domain, a Von Willebrand factor type A (vWA) domain, and a fibrillar collagen C-terminal domain.
- 58. The pharmaceutical composition of any one of claims 44-57, wherein the polypeptide comprises one or more collagen triple helix repeats.
- 59. The pharmaceutical composition of any one of claims 44-58, wherein the polypeptide is monomeric.
- 60. The pharmaceutical composition of any one of claims 54-59, wherein the polypeptide does not form a stable triple helix structure of a naturally occurring collagen.
- 61. The pharmaceutical composition of any one of claims 44-60, wherein the polypeptide is substantially free of other collagen chains.
- 62. The pharmaceutical composition of any one of claims 44-61, wherein the polypeptide has a non-naturally occurring level of hydroxylation relative to a naturally-occurring collagen.
- 63. The pharmaceutical composition of any one of claims 44-62, wherein fewer than 10% of prolines present in the polypeptide are hydroxylated.
- 64. The pharmaceutical composition of any one of claims 44-63, wherein the polypeptide is non-hydroxylated.
- 65. The pharmaceutical composition of any one of claims 44-64, wherein the polypeptide has a non-naturally occurring level of glycosylation relative to a naturally-occurring collagen.
- 66. The pharmaceutical composition of any one of claims 44-65, wherein the polypeptide comprises less than 5 wt. % glycosylation.
- 67. The pharmaceutical composition of claim 66, wherein the pharmaceutically acceptable excipient is selected from the group consisting of: an antiadherent, a binder, a coating, a color, a

disintegrant, a flavor, a glidant, a lubricant, a preservative, a sorbent, a vehicle, and any combination thereof.

68. The pharmaceutical composition of any one of claims 44-67, wherein the pharmaceutical composition is formulated for topical administration.

69. The pharmaceutical composition of claim 68, wherein the pharmaceutical composition is formulated as a gel, a cream, a lotion, an oil, a foam, an ointment, a serum, and any combination thereof.

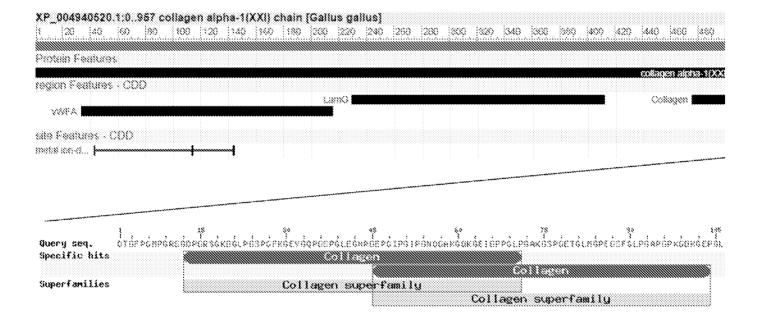


FIG. 1

SEQ ID NO: 2

SEQ ID NO: 6

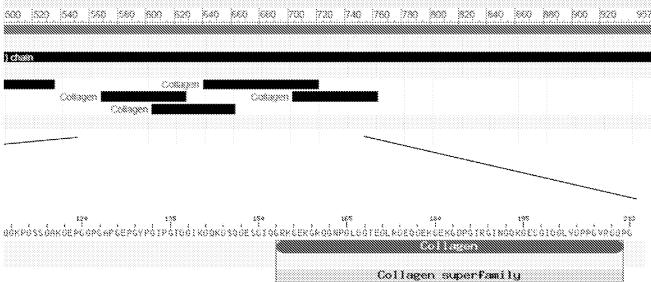


FIG. 1 (continued)

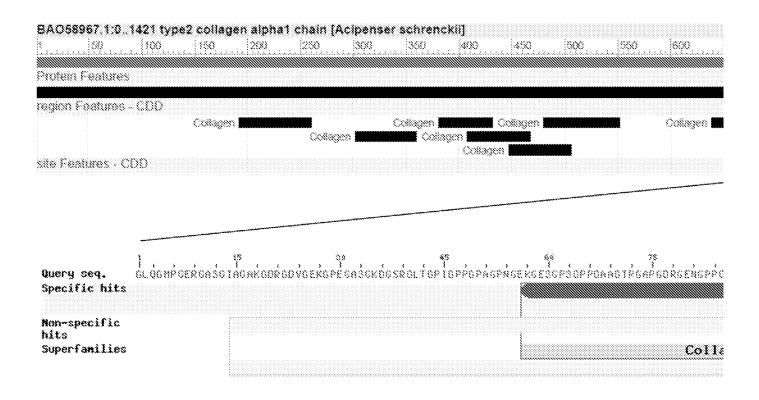


FIG. 2

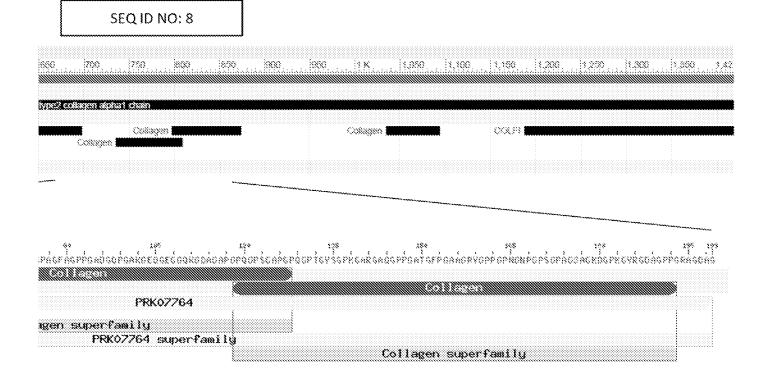


FIG. 2 (continued)

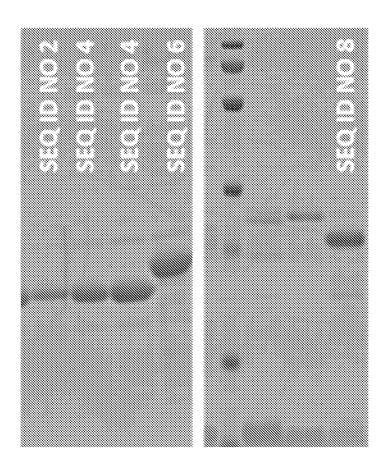
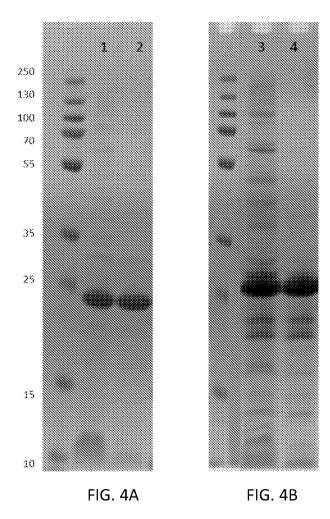



FIG. 3

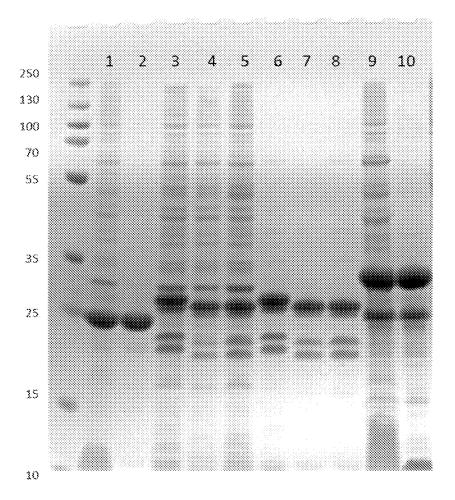


FIG. 4C

HaCaT Viability- Sturgeon Collagen

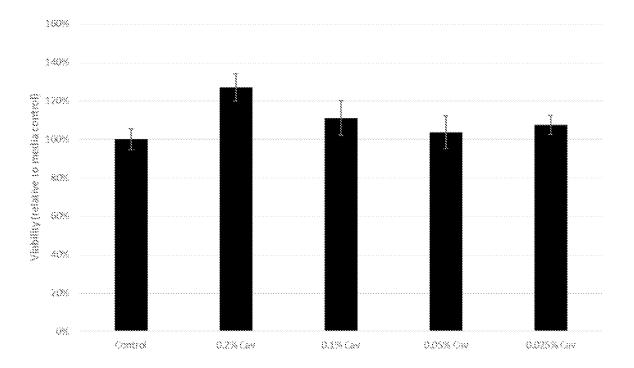


FIG. 5A

Fibroblasts Viability- Sturgeon Collagen

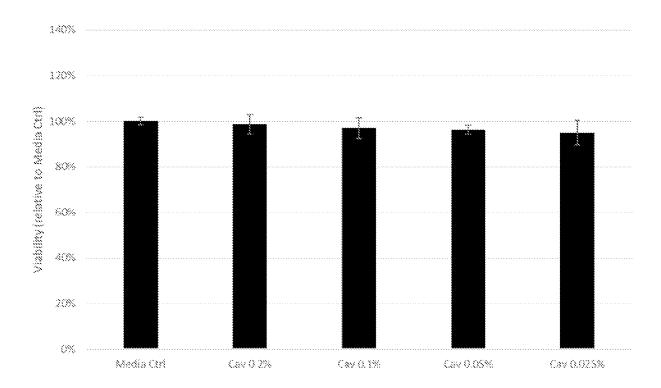


FIG. 5B

Keratinocytes Viability- Sturgeon Collagen

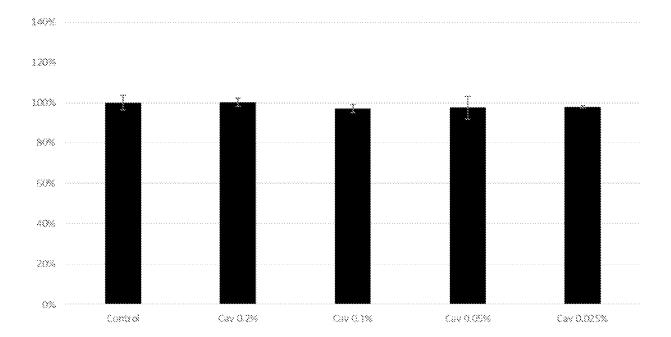


FIG. 5C

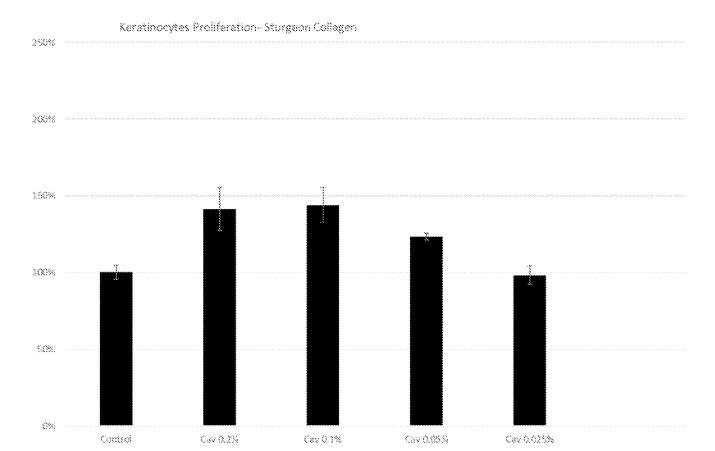


FIG. 6

ProCol EUSA, Sturgeon Collagen

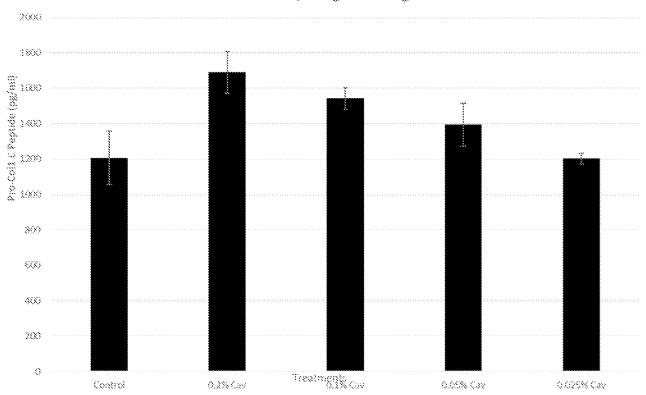


FIG. 7

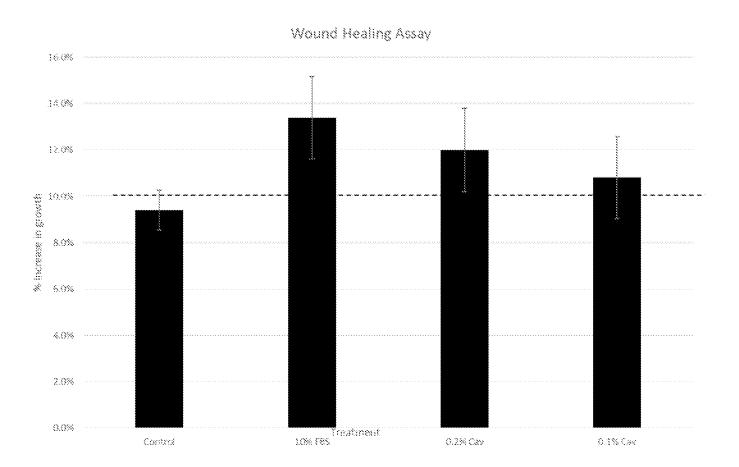


FIG. 8

INTERNATIONAL SEARCH REPORT

International application No.

PCT/US2022/038568

Bo	x No. I	Nucleotide and/or amino acid sequence(s) (Continuation of item 1.c of the first sheet)
1.		ard to any nucleotide and/or amino acid sequence disclosed in the international application, the international search ied out on the basis of a sequence listing:
	a	forming part of the international application as filed.
	b. X	furnished subsequent to the international filing date for the purposes of international search (Rule 13ter.1(a)).
		X accompanied by a statement to the effect that the sequence listing does not go beyond the disclosure in the international application as filed.
2.	es	ith regard to any nucleotide and/or amino acid sequence disclosed in the international application, this report has been tablished to the extent that a meaningful search could be carried out without a WIPO Standard ST.26 compliant quence listing.
3.	Addition	al comments:

INTERNATIONAL SEARCH REPORT

International application No.

PCT/US2022/038568

		'SUBIECT MATTER	

A61K 38/39 (2006.01) A61P 17/02 (2006.01) A61P 17/00 (2006.01)

According to International Patent Classification (IPC) or to both national classification and IPC

B. FIELDS SEARCHED

Minimum documentation searched (classification system followed by classification symbols)

Documentation searched other than minimum documentation to the extent that such documents are included in the fields searched

Electronic data base consulted during the international search (name of data base and, where practicable, search terms used)

EPOQUE 6.30.05 (EPODOC, WPIAP, full text English language databases): Keywords (sturgeon, collagen, wound, proliferative skin disorder, truncate and related terms). IPC/CPC marks (A61P17/02]). STNEXT (MEDLINE, CAPLUS, EMBASE, BIOSIS): Keywords (as above) IPC/CPC marks (as above). GENOME QUEST 9.9.20715 (GQ-Pat GoldPlus Protein, GQ-Pat Platinum Protein, Protein Data Bank, Genpept databases): Sequence search on amino acid sequences SEQ ID NO: 8 and SEQ ID NO: 32. Online databases (ESPACENET, PUBMED, GOOGLE): Applicant/Inventor names (Geltor, Nikolay Ouzounov, Jeffrey R Mellin, Julia Co); Keywords (collagen, truncation, wound, proliferative, skin, sturgeon, Acipenser schrenckii, and related terms). IP Australia Preliminary Search Tool (DOCDB, DWPI): Applicant/Inventor names (as above).

C. DOCUMENTS CONSIDERED TO BE RELEVANT

Category*	Citation of document, with indication, where appropriate, of the relevant passages	Relevant to claim No.
	Documents are listed in the continuation of Box C	
X Fu	rther documents are listed in the continuation of Box C X See patent family annual X	ex

- * Special categories of cited documents:
- "A" document defining the general state of the art which is not considered to be of particular relevance
- "D" document cited by the applicant in the international application
- "E" earlier application or patent but published on or after the international filing date
- "L" document which may throw doubts on priority claim(s) or which is cited to establish the publication date of another citation or other special reason (as specified)
- "O" document referring to an oral disclosure, use, exhibition or other means
- "P" document published prior to the international filing date but later than the priority date claimed_
- "T" later document published after the international filing date or priority date and not in conflict with the application but cited to understand the principle or theory underlying the invention
- "X" document of particular relevance; the claimed invention cannot be considered novel or cannot be considered to involve an inventive step when the document is taken alone
 - document of particular relevance; the claimed invention cannot be considered to involve an inventive step when the document is combined with one or more other such documents, such combination being obvious to a person skilled in the art
- "&" document member of the same patent family

Date of the actual completion of the international search

18 October 2022

Name and mailing address of the ISA/AU

Date of mailing of the international search report

18 October 2022

Authorised officer

Name and maning address of the ISA/AC

AUSTRALIAN PATENT OFFICE PO BOX 200, WODEN ACT 2606, AUSTRALIA Email address: pct@ipaustralia.gov.au Alexandria Wilks AUSTRALIAN PATENT OFFICE (ISO 9001 Quality Certified Service) Telephone No. +61 2 6283 2815

	INTERNATIONAL SEARCH REPORT	International application No.
C (Continuat	ion). DOCUMENTS CONSIDERED TO BE RELEVANT	PCT/US2022/038568
Category*	Citation of document, with indication, where appropriate, of the relevant passages	Relevant to claim No.
X	US 20060276383 A1 (AFFIL. HOSPITAL OF ACAD. OF MIL. MED. SCI., PLA) 0 December 2006 Paragraph [0001], paragraph [0015], Figure 2	44-45, 58, 67
X	LAI, C. et al., "Type II Collagen from Cartilage of Acipenser baerii Promotes Wound Healing in Human Dermal Fibroblasts and in Mouse Skin", Marine Drugs, 2020, Vol. 18, pages 1-16 Abstract, Introduction, pages 2-9, Figures 1A and 1C-1D, Figure 2A, Figure 7B, Figures 8A and 8C	
X	CN 106432541 A (FUJIAN UNIVERSITY OF TRADITIONAL CHINESE MEDICINE) 22 February 2017 & English translation obtained from Google Patents Content of the invention, Embodiment 4	1-69
X	CN 102935224 A (JIANGSU UNIVERSITY) 20 February 2013 & English translation obtained from Google Patents Abstract, Summary of the invention, 3.1 Ointment is on the scab impact of rate of mic page 3	ee, 1-69
A	GUO., S. et al, 'Factors Affecting Wound Healing', J Dent Res, 2010, Vol. 89, pages 219-229 Table 1	
P,X	US 11332505 B2 (GELTOR,INC.) 17 May 2022 Column 2, lines 6-67 and column 3, lines 1-7; column 32, lines 40-48; column 36, lines 3-4 and lines 13-22; Claim 27; Example 2, paragraph 1	es 1-69

INTERNATIONAL SEARCH REPORT

Information on patent family members

PCT/US2022/038568

International application No.

This Annex lists known patent family members relating to the patent documents cited in the above-mentioned international search report. The Australian Patent Office is in no way liable for these particulars which are merely given for the purpose of information.

Patent Document/s	S Cited in Search Report	Patent Family Member/s	
Publication Number	Publication Date	Publication Number	Publication Date
US 20060276383 A1	07 December 2006	US 2006276383 A1	07 Dec 2006
		US 7973010 B2	05 Jul 2011
		AU 2003284807 A1	30 Jun 2004
		CN 1500876 A	02 Jun 2004
		CN 1692121 A	02 Nov 2005
		CN 101899444 A	01 Dec 2010
		EP 1584624 A1	12 Oct 2005
		EP 1584624 B1	17 Oct 2012
		JP 2006512063 A	13 Apr 2006
		WO 2004052910 A1	24 Jun 2004
CN 106432541 A	22 February 2017	CN 106432541 A	22 Feb 2017
CN 102935224 A	20 February 2013	CN 102935224 A	20 Feb 2013
		CN 102935224 B	09 Apr 2014
US 11332505 B2	17 May 2022	US 2022017581 A1	20 Jan 2022
		US 11332505 B2	17 May 2022
		AU 2021211721 A1	18 Aug 2022
		BR 112022014586 A2	13 Sep 2022
		CA 3168802 A1	29 Jul 2021
		TW 202134267 A	16 Sep 2021
		US 2021277075 A1	09 Sep 2021
		US 11174300 B2	16 Nov 2021
		WO 2021150959 A1	29 Jul 2021