发明名称 具有弹性体材料的吸收制品

摘要
提供了一种特别适用于吸收制品的材料。该材料具有大致非弹性材料的基层，以及连接在基层材料上并在两者之间存在有间隔的弹性体材料的至少两个条带或区域，使得基层材料的中心区域在至少两侧上与弹性体材料和基层材料的复合区域接触。基层材料的中心区域保持为大致不可伸长的，由于基层材料在与弹性体材料连接之前出现张紧和边缘内缩，因此复合区域可在至少一方向上伸长。本发明包括制造该材料的方法，以及结合有该材料的吸收制品。
1. 一种生产具有与弹性体区域至少部分地接界的至少一个不可伸长区域的材料的方法，所述方法包括：

提供大致不可伸长的材料的层；

沿第一方向对所述不可伸长材料施加张紧力，使所述材料产生偏转；

沿着所述偏转的不可伸长材料的第一侧来叠置和连接第一弹性体材料，所述第一弹性体材料具有比所述不可伸长材料的宽度更小的宽度；

释放所述张紧力，并使所述不可伸长材料松驰到比其偏转宽度更大的宽度；和

其中，所得材料成形为具有在其至少一侧与弹性体区域接界的不可伸长材料的区域，所述弹性体区域包括所述弹性体材料和不可伸长材料的复合材料。

2. 根据权利要求1所述的方法，其特征在于，所述方法还包括沿着所述偏转的不可伸长材料的与所述第一侧相反的第二侧来叠置和连接第二弹性体材料，所述第二弹性体材料具有比所述不可伸长材料的宽度更小的宽度，所得材料的不可伸长区域在相对的两侧上均与复合弹性体区域接界。

3. 根据权利要求1所述的方法，其特征在于，所述不可伸长材料包括非织造材料。

4. 根据权利要求3所述的方法，其特征在于，所述非织造材料包括纺粘材料。

5. 根据权利要求2所述的方法，其特征在于，所述第一和第二弹性体材料包括弹性薄膜，所述薄膜层压在所述不可伸长材料的相对侧上，使得所得材料的弹性体区域是偏转粘合的层压区域。

6. 根据权利要求5所述的方法，其特征在于，所述第一和第二弹性
性薄膜是相同的薄膜。

7. 根据权利要求2所述的方法，其特征在于，所述第一和第二弹性主体材料是相同的材料。

8. 根据权利要求2所述的方法，其特征在于，所述第一和第二弹性主体材料是不同的材料。

9. 根据权利要求2所述的方法，其特征在于，所述第一和第二弹性主体材料包括弹性体纤维的纤维网。

10. 根据权利要求1所述的方法，其特征在于，所述不可伸长材料包括单层的材料。

11. 根据权利要求1所述的方法，其特征在于，所述不可伸长材料包括多层的材料。

12. 根据权利要求2所述的方法，其特征在于，所述不可伸长材料在机器方向上张紧，所述第一和第二弹性主体材料连接在所述不可伸长材料的相隔的横向侧上，使得所得材料具有纵向延伸的弹性体复合区域，其可在横向下伸长，并与所述不可伸长材料的中心纵向延伸区域接界。

13. 根据权利要求12所述的方法，其特征在于，所述弹性主体材料在未张紧状态下连接到所述不可伸长材料上，所述材料的所得复合材料区域可在横向下伸长。

14. 根据权利要求12所述的方法，其特征在于，所述弹性主体材料在张紧状态下连接到所述不可伸长材料上，所述材料的所得复合区域可在横向和机器方向上伸长。

15. 根据权利要求2所述的吸收制品，其特征在于，所述不可伸长材料在横向下张紧，所述第一和第二弹性主体材料在横向下连接到所述不可伸长材料的相隔的纵向侧上。

16. 根据权利要求2所述的方法，其特征在于，所述不可伸长材料在机器方向上张紧，所述第一和第二弹性主体材料在横向下连接到所述不可伸长材料的相隔的纵向侧上，以及连接到所述不可伸长材料的
相对的横向侧上。

17. 根据权利要求2所述的方法，其特征在于，所述不可伸长材料在机器方向上张紧，所述第一和第二弹性体材料在横向上连接到所述不可伸长材料的相对的纵向端上，所述不可伸长材料是起始材料，使得所述材料可在横向上和机器方向上伸长。

18. 根据权利要求1所述的方法，其特征在于，所述弹性体材料由不同的材料组成。

19. 一种生产用于吸收制品的体侧材料的方法，所述材料具有至少流体可渗透的和不可伸长的中心区域，以及可横向伸长的相对的横向侧区域，所述方法包括：

提供至少流体可渗透的不可伸长材料的层；

沿机器方向对所述不可伸长材料施加张紧力，使所述材料产生收缩；

沿着所述收缩的不可伸长材料的横向侧来叠置和连接弹性体材料的条带；和

其中，所述不可伸长材料和弹性体材料条带具有各自的宽度，使得所述弹性体材料条带在所述不可伸长材料上间隔开，所述不可伸长材料的未被所述弹性体材料条带覆盖的部分形成了所述中心区域。

20. 根据权利要求19所述的方法，其特征在于，所述方法包括在将所述体侧材料结合到吸收制品底片中之前释放所述张紧力，并使所述不可伸长材料松弛至其收缩前的宽度。

21. 根据权利要求19所述的方法，其特征在于，所述不可伸长材料包括非织造的纺粘材料。

22. 根据权利要求19所述的方法，其特征在于，所述弹性体材料条带包括弹性薄膜，所述薄膜条带层压在所述不可伸长材料上。

23. 根据权利要求19所述的方法，其特征在于，所述弹性体材料条带包括弹性体纤维的纤维网。

24. 根据权利要求19所述的方法，其特征在于，所述弹性体材料
条带在张紧状态下连接在所述不可伸长材料上，所述体侧衬里材料的
所得横向侧区域可在横向和机器方向上伸长。
25. 根据权利要求 19 所述的方法，其特征在于，所得不可伸长材
料是起始材料，使得所得体侧衬里材料可在横向和机器方向上伸长。
26. 一种特别适用于吸收制品的复合材料，所述材料包括:
大致不可伸长材料的基层;
连接在所述不可伸长材料上并在两者之间存在有间隔的至少第
一和第二弹性体材料的条带，使得所述不可伸长材料的中心区域在至
少两侧上与所述弹性体材料和所述不可伸长材料的复合区域接界；和
其中，不可伸长材料的所述中心区域大致保持为不可伸长的，由于
所述不可伸长材料在与所述弹性体材料连接之前产生边缘内缩，因此
所述复合区域可在至少第一方向上伸长。
27. 根据权利要求 26 所述的材料，其特征在于，所述第一和第二
弹性体材料叠置在所述下侧的不可伸长材料的横向侧上并与之对准。
28. 根据权利要求 26 所述的材料，其特征在于，所述不可伸长材
料包括非织造材料。
29. 根据权利要求 28 所述的材料，其特征在于，所述非织造材料
包括纺织材料。
30. 根据权利要求 26 所述的材料，其特征在于，所述第一和第二
弹性体材料包括弹性薄膜，所述薄膜层压在所述不可伸长材料上，使
得所述复合区域是顺缩粘合的层压区域。
31. 根据权利要求 30 所述的材料，其特征在于，所述第一和第二
弹性薄膜是相同的薄膜。
32. 根据权利要求 26 所述的材料，其特征在于，所述第一和第二
弹性体材料是相同的材料。
33. 根据权利要求 26 所述的材料，其特征在于，所述第一和第二
弹性体材料是不同的材料。
34. 根据权利要求 26 所述的材料，其特征在于，所述第一和第二
弹性体材料包括弹性体纤维的纤维网。

35. 根据权利要求 26 所述的材料，其特征在于，所述第一和第二弹性体材料包括不同弹性体材料的相邻条带。

36. 根据权利要求 26 所述的材料，其特征在于，所述不可伸长材料包括单层的材料。

37. 根据权利要求 26 所述的材料，其特征在于，所述不可伸长材料包括多层的材料。

38. 根据权利要求 26 所述的材料，其特征在于，所述不可伸长材料在机器方向上张紧，然后将所述第一和第二弹性体材料连接在所述不可伸长材料的相对的横向侧上，使得所得材料具有所述复合弹性体区域的横向侧条带，其可在横向伸长，并与所述不可伸长材料的所述中心机器方向区域接界。

39. 根据权利要求 38 所述的材料，其特征在于，所述弹性体材料在未张紧状态下连接到所述不可伸长材料上。

40. 根据权利要求 38 所述的材料，其特征在于，所述弹性体材料在张紧状态下连接到所述不可伸长材料上。

41. 根据权利要求 26 所述的材料，其特征在于，所述不可伸长材料在横向张紧，所述第一和第二弹性体材料在横向连接到所述不可伸长材料的相对的纵向端上。

42. 根据权利要求 26 所述的材料，其特征在于，所述不可伸长材料在机器方向上张紧，所述第一和第二弹性体材料连接到所述不可伸长材料的相对的机器方向侧上，并且在横向连接到所述不可伸长材料的相对的纵向端上。

43. 一种特别适用于吸收制品的复合材料，所述材料包括：

大致不可伸长的材料的基层；

以沿着所述不可伸长材料的一侧进行叠置的方式连接在所述不可伸长材料上的弹性体材料的条带，使得所述不可伸长材料的区域在至少一侧上与所述弹性体材料和所述不可伸长材料的复合区域接界；
和

其中，不可伸长材料的所述区域大致保持为不可伸长的，由于所述不可伸长材料在与所述弹性体材料连接之前出现边缘内缩，因此所述复合区域可在至少第一方向上伸长。

44. 根据权利要求 43 所述的材料，其特征在于，所述弹性体材料叠置在所述下侧的不可伸长材料的横向侧上并与之对准。

45. 根据权利要求 43 所述的材料，其特征在于，所述不可伸长材料在连接到所述弹性体材料上之前在机器方向上张紧。

46. 根据权利要求 43 所述的材料，其特征在于，所述弹性体材料在未张紧状态下连接到所述不可伸长材料上。

47. 根据权利要求 43 所述的材料，其特征在于，所述弹性体材料在张紧状态下连接到所述不可伸长材料上。

48. 一种包括有根据权利要求 26 所述的材料的吸收制品，所述吸收制品是一次性尿布、一次性训练内裤、女性护理用品和失禁用品中的一种。

49. 一种包括有根据权利要求 43 所述的材料的吸收制品，所述吸收制品是一次性尿布、一次性训练内裤、女性护理用品和失禁用品中的一种。
具有弹性体材料的吸收制品

本发明的技术领域

本发明大体上涉及吸收制品和衣物的领域，例如儿童的训练内裤、一次性尿布、失禁用品等等，具体地涉及采用了用于这种制品的改进材料的改进的产品设计。

背景

许多类型的一次性吸收制品如一次性尿布、训练内裤、女性护理用品、失禁用品等采用了这样的设计，其结合有吸收衬垫、喷涌层（surge layer）、体侧衬里材料、锁藏翼片（containment flap）、液体不可渗透的阻挡层以及可被拉到一起以便将吸收制品封闭在穿戴者身体周部的侧部。通常来说，这些产品设计的各个部分以某种方式制作成具有弹性，以便提供舒适的配合和用于帮助减少渗漏的填补功能。吸收系统的液体转移和吸收能力很大程度上取决于对组成部分的结构完整性和特性的保持。对底侧吸收材料的结构（例如单位体积重量、密度、毛细结构）进行设计，以便根据吸收制品的类型来实现特定的流率和总吸收能力。

这些产品的吸收能力、配合性和防渗漏性能很大程度上取决于构成吸收系统的部件的毛细结构，以及用于该总体结构的各种材料的弹性。各吸收部件的毛细结构是专门设计的。需要在产品的整个使用期间保持该结构。目前，许多类型的产品采用分块方式，通过将弹性的或可伸长的材料连接在没有或几乎没有弹性的其它部件上来提供弹性。总体效果是可提供伸展，以便在产品的某些部分中实现填补性、配合性和舒适性，同时使吸收制品保持在相对不太伸展的状态下，以便保持毛细结构而实现良好的吸收能力。在整个底片
可以伸展的产品中，吸收系统的衬里和其余部分的伸展会使得毛细结构和流体处理性能也发生变化。如果吸收部件伸展，则毛细结构也将发生变化。例如，如果采用带有给定纤维和毛细结构的颈缩（necked）材料作体侧衬里材料并且其在一个方向上伸展，则纤维被迫移动和/或转动以适应该伸展，纤维的这种移动和/或转动改变了该颈缩的非织造材料的毛细结构。如果该颈缩的未伸展的非织造材料在伸展前具有理想的毛细结构，那么伸展后的材料将不再具有该理想结构。总之，材料在宽度、长度或厚度上的任何尺寸变化都会改变毛细结构。

包括有连接在非弹性的不可伸长材料上的弹性材料的产品设计通常要求这样的工艺，其以相当复杂的方式将各种材料结合在一起，并通过会“阻碍”或消除这些连接区域中的弹性材料功能性的方式来将这些部件连接在一起。其它连接手段会减弱弹性部件的功能性，或者要求有更昂贵的部件以克服与吸收制品相连所带来的效果。

已经发现，总体上可伸长的或弹性体的吸收产品在配合性、舒适性和锁藏性方面是相当理想的。可以看到，问题是为了实现最佳的吸收能力，产品不应当伸展，但是为了实现配合性、舒适性和锁藏性，它应当伸展，同时不存在因将多个弹性的和不可伸长的部件连接在一起所引起的复杂性。本发明解决了该两难问题。

发明概要

本发明的目的和优点将部分地在以下介绍中阐述，或者从以下介绍中是显而易见的，或者可通过本发明的实施来体会。

通常来说，本发明提供了一种特别适用作吸收制品如一次性尿布、儿童的训练内裤、失禁用品、女性护理用品、尿布包裤、一次性游泳裤等等的产品设计。该产品设计采用了单一的材料，其可包括这种吸收制品的多个部分如体侧衬里材料、锁藏翼片、侧部和外阻挡层即外覆盖层。本发明还包括用于制造该材料的方法。本发明
大大减少了构造该制品所需的材料的数量，这简化了其生产工艺，还大大减少了会妨碍产品弹性部分的总体性能的连接点的数量。

根据本发明，提供了一种用于生产材料的方法，该材料具有与弹性体的或可伸长的复合区域至少部分地接界的至少一个液体可渗透区域。尽管不限于这种用途，然而所得材料尤其非常适用于在一次性吸收制品如体侧衬里材料、锁藏翼片材料、可伸长的侧部以及织物状的液体不可渗透的阻挡或覆盖材料中提供多种功能。该方法包括提供材料层如纺粘型非织造纤维网，并沿第一方向对该材料施加张紧力，以便使它在第二方向上延直。张紧力例如可沿机器方向施加。将弹性体材料如弹性薄膜、弹性体的非织造纤维网、不同或相同弹性体材料的组合或复合材料等的至少一个带沿着延直材料的一侧，例如沿着横向侧来叠置。在一个特定实施例中，弹性体条带沿着各横向侧来叠置。弹性体条带具有比延直材料的宽度更小的宽度，使得延直材料的区域或条带被限定在弹性体材料条带之间。例如，弹性体材料条带均可具有大体为延直材料宽度的三分之一的宽度。弹性体材料条带通过任何适当的方法，例如通过在层压工艺中粘合或粘附到材料上而与延直材料相连。

在释放张紧力时，延直材料的未连接有弹性材料的那一部分可松弛到通常为其延直前的宽度，并在至少一侧、可选择性地为两侧上与例如在横向向上可伸长的层压复合结构接界。

未与弹性材料层压在一起的材料的中心区域或条带可以是液体可渗透的，并具有传统体侧衬里材料的其它所需性能。因此，该材料的一个实施例可用作体侧衬里，其中未与弹性材料层压在一起的该材料的中心区域或条带叠置在吸收制品中的吸收体结构上。该中心区域可粘附在下侧吸收体结构上，以保证其毛细结构不会在张紧（伸展）该弹性部分时产生变化。复合材料的侧条带可延伸出来以用作弹性体的侧部，并为吸收制品的底片提供所需程度的伸展，同
时不会损害液体可渗透的中心区域或下侧吸收体结构的结构完整性或特性。侧片和弹性外罩可从整个结构中单独地延伸出来，在这种情况下，当底片伸展时，吸收体结构不必延伸，并且不会改变其液体处理性能。

该材料的弹性复合材料的侧部还可折叠到吸收体结构之下，从而使用作制品的外罩。单独的侧部可以连接在材料向下折叠之处，以便完成制品的底片。第三实施例包括采用这样的材料，其中弹性复合材料部分向外延伸以用作弹性侧部，并且向下折叠以用作阻挡性外罩。

弹性体的“条带”可以是由单层材料如弹性薄膜，或者是多种材料的复合材料，例如相同或不同材料的并列层。条带可具有可变化的弹性。例如，可以使用单一的弹性体材料，其在层压片的不同区域中具有不同的结合密度或性能。相同或不同弹性体材料的层可在层压区域中相互重叠。各条带可以与其它条带相同，或者这些条带可以由不同的弹性体材料制成。弹性体材料的多种组合均属于本发明的范围和精神内。

类似地，非弹性的基底材料可以是单层材料如非织造纤维网，或者是多层相同或不同材料的复合材料。

在一个特定实施例中，处于未张紧状态下的弹性体材料连接在颈缩材料的横向侧上，使得材料的低层压侧部在横向是可伸长的。在一个备选实施例中，弹性体材料条带在张紧状态下连接到颈缩材料的横向侧上，使得在释放张紧力时该材料的弓与弹性体材料相连的非弹性部分会在机器方向上褶起或起结，从而可在纵向伸长，并且侧压侧部可在横向和纵向伸长。作为备选，非弹性的基底材料可固有地在机器方向上是可伸长的。例如，材料可在与弹性材料条带相连之前起结或褶起。颈缩材料的褶起不会显著地改变其毛细结构。理论上，毛细结构完全不会改变。

在另一实施例中，弹性体材料条带连接在颈缩的基底材料的相
对的纵向端上。所得材料具有沿纵向分开的可横向伸长的弹性体区域，这些区域通过基底材料的中心横向区域来分隔开并接界。

可能希望使基底材料与弹性材料在所有侧上均接界，例如形成“画框式”构造。例如，基底材料可在机器方向上张紧（颈缩），而弹性体材料条带连接在基底材料的相对的横向侧和纵向端上。所得材料具有框住了颈缩材料区域的横向和纵向的弹性体区域。

本发明包含了任何样式的结合有本文所述新结构材料的吸收制品。例如，一次性尿布、训练内裤、失禁用品、女性护理用品等的任何构造可结合有该材料。在一次性尿布或训练内裤的一个实施例中，该材料可设置成体侧衬里，其中薄可渗透的中心条带或区域叠置在吸收体结构上。复合材料的弹性体侧条带可具有一定的宽度，以便延伸到制品底片的横向侧上。单独的外罩件可通过任何传统的技术连接在复合侧条带上，使得吸收体结构被夹在衬里与外罩件之间。如果外罩伸展，则下侧吸收体结构不会伸展。在该实施例中，单独的锁藏翼片可连接在复合材料的体侧衬里部分上。作为备选，复合弹性体侧条带可以一定的方式折叠成例如 Z 形折叠结构，以便同样形成锁藏翼片。对于特定的吸收制品结构如儿童训练内裤而言，弹性体侧片可连接在底片的横向侧上。在折叠底片时，侧片连接在侧缝处（永久性的或可重新紧固的）以形成裤状结构。这种类型的结构例如可从美国威斯康星州 Neenah 的 Kimberly-Clark Corporation 的 HUGGIES®PULL-UPS®一次性训练内裤中已知。

在吸收制品的一个备选实施例中，弹性体复合侧条带具有相当大的宽度，并被折叠在吸收体结构之下以便还形成外罩件。在该实施例中，基底材料和弹性体材料选择成使得复合侧条带将具有外罩件的所需特性。如同上述实施例一样，单独的锁藏翼片可连接在复合材料的体侧衬里部分上。作为备选，复合侧条带可以一定的方式折叠成例如 Z 形折叠结构，以便还形成锁藏翼片。如上所述，弹性体侧片可连接在底片上并在侧缝处连接。
根据本发明的另一实施例，弹性体复合侧条带可具有甚至更大的宽度，并且还形成了底片的前侧和后侧部分，这些部分在侧缝处连接或相连以形成制品。单独的锁藏翼片可连接在复合材料的体侧衬里部分上，或者，复合侧条带可以一定的方式折叠成例如 Z 形折叠结构，以便还形成锁藏翼片。

应当理解，本发明还包含这样的材料（以及使用了这种材料的制品），其中只有单一的横向或纵向面包含有弹性体复合结构。该单一侧面可具有足够的宽度，以便例如完全地折叠在吸收体结构之下并连接在不可伸长材料的相对的横向侧上，从而形成阻挡外罩。该单一侧面的复合结构可具有一定的宽度，以便还形成锁藏翼片、弹性体侧片等，如上所述。

本发明的各个方面将参考如附图所示的实施例在下文中更详细地介绍。

附图简介

图 1 是用于形成根据本发明的复合材料的示例性工艺的示意图示。

图 1A 是材料沿着图 1 所示的线的示意图示图视图。

图 2A、2B、2C 和 2D 是根据本发明的示例性复合材料的简化平面图。

图 3 是包含了根据本发明复合材料的吸收制品的透视图。

图 4 是包含了根据本发明复合材料的吸收制品的体侧平面图。

图 4A 是图 4 所示制品沿着所示线的示意图示图视图。

图 4B 是包含了根据本发明复合材料的备选吸收制品的示意图示图视图。

图 5 是根据本发明吸收制品的一个备选实施例的示意图示图视图。

图 6 是根据本发明吸收制品的另外一个实施例的示意图示图视图。

图 7 是根据本发明吸收制品的一个备选实施例的示意图示图视图。
图 8 是根据本发明吸收制品的一个备选实施例的示意图。图 9 是根据本发明吸收制品的另外一个实施例的示意图。

详细介绍

现在将参考具体实施例来详细地介绍本发明。这些实施例通过对本发明的说明来提供，并不意味着限制本发明。例如，作为一个实施例的一部分的所述或示例特征可用于另一实施例中，以形成另外一个实施例。本发明期望包含属于本发明的范围和精神内的这些和其它的修改和变化。

在本说明书的上下文中，以下用语可具有以下的意义：

用语“机器方向”指织物或材料的在生产或转移方向上的长度，它与“横向”或“横向机器方向”相反，“横向”或“横向机器方向”指织物的在大致正交于机器方向的方向上的宽度。

“连接”或“结合”指粘合、粘结、相连，以及连接或结合两个部件的任何方法。两个部件在直接地相互粘合，或者间接地相互粘合均直接连接在一个中间部件上时，可视为连接或结合在一起。

“可延伸的”或“可伸长的”指材料或复合材料在所施加偏置力的方向上伸展或延伸了其松弛长度的至少约 25%的性能。可延伸材料不必具有回复特性。例如，弹性体材料为具有回复特性的可延伸材料。熔喷纤维网是可延伸的但不具有回复特性，因此是可延伸的非弹性材料。

“弹性体”、“弹性”和“弹性化”指可延长大到其松弛长度的至少约 25%，并且在释放所施加的力之后将回复达到其延长量的至少 10%的材料或复合材料。弹性体材料或复合材料通常优选能够延长其松弛长度的至少 100%、更优选为至少 300%，以及回复其延长量的至少 50%。弹性体材料是具有回复特性的可延伸材料。

“不可伸长”指材料在施加偏置力而不断裂的前提下，不会伸展或延伸达其松弛长度的至少约 25%。可延伸的材料或弹性体材料
不被视为“不可伸长”。

“颈缩材料”指任何可通过例如拉伸等工艺而在至少一个尺寸上收窄的材料。

“颈缩粘合”层压片指具有粘合在某一部分上的弹性件的复合材料，该部分在机器方向上延伸，从而形成了在横向上具有弹性的颈缩材料。颈缩粘合层压片的例子公开于美国专利 No.4965122、No.4981747、No.5226992 和 No.5336545 中，这些专利通过引用而通用地整体结合于本文中。

“反向颈缩材料”指这样的颈缩材料，它在颈缩时已被处理以使材料具有记忆，使得在施加力以使材料延伸至其颈缩前的尺寸时，经处理的颈缩部分在止终该作用力时通常会回复至其颈缩尺寸。反向颈缩材料可包括一层以上的层。例如，多层纺粘纤维网、多层熔喷纤维网、多层粘合梳理纤维网或者其混合物的任何其它适当的组合。反向颈缩材料的生产在美国专利 No.4965122 和 No.4981747 中有介绍，这些专利通过引用而通用地整体结合于本文中。

“伸展粘合”层压片指具有至少两层的复合材料，其中一层是可褶层，另一层是弹性层。当弹性层处于延伸状态下时将这些层连接在一起，使得在释放这些层时可褶层会褶起来。例如，一个弹性件可在该弹性件延伸其松弛长度的至少约 25%时粘合在另一部件上。这种多层的复合弹性材料可一直伸展到不可伸长层处于完全延伸的状态为止。伸展粘合层压片的例子例如公开于美国专利 No.4720415、No.4789699、No.4781966、No.4657802 和 No.4655760 中，这些专利通过引用而通用地整体结合于本文中。

“颈缩伸展粘合”层压片指由颈缩粘合层压片和伸展粘合层压片的组合制成的层压片。颈缩伸展粘合层压片的例子例如公开于美国专利 No.5114781 和 No.5116662 中，这些专利通过引用而通用地整体结合于本文中。颈缩伸展粘合层压片在机器方向和横向机器方向上均可伸长。
“非织造纤维网”指具有单根纤维或线的结构的纤维网，它们相互插入但不是以可识别的重复方式来进行。非织造纤维网例如可由多种工艺形成，包括熔喷工艺、纺粘工艺、以及粘合梳理成网工艺。

“片材”指可以是薄膜、有孔材料或非织造纤维网的层。

“部件”在以单数形式使用时可以指单个部件或多个部件。

在本文中用来描述材料纤维网的“未张紧的”并不意味着完全无张紧。为了处理和加工运动的纤维网，需要适中量的张紧力将纤维网或材料保持住。本文所使用的“未张紧的”纤维网或材料处于足以加工材料的张紧力下，但该张紧力小导会导致材料产生明显变形所需的张紧力。

下面将在用于一次性吸制品如一次性尿布、儿童训练内裤、失禁用品、女性护理用品、尿布包裤、一次性游泳裤等的材料的上下文中来介绍本发明的各个方面和实施例。应当理解，这仅仅是出于说明性目的，本发明并不限于任何特定的吸制品，或者一般意义上的吸制品。根据本发明的材料可在许多应用中具有有益的用途，例如保护性的医用衣物、被单、长袍，等等。

参见图1、1A、2A、2B和2C，图中显示了根据本发明的复合材料10及其实制方法。所述方法在某些方面与美国专利No.5226992中所述的用于制造弹性颈缩粘合层压片的方法有关，该专利通过引用通用地整体结合于本文中。

在用于制造材料10的一种特定工艺（图1）中，可颈缩的单不可伸长的材料16从供给辊16a上展开，并沿箭头所示的方向行进。不可伸长材料16经过由辊B和C所形成的驱动棍装置的钳口A。可颈缩的不可伸长材料16的特定类型的实施例将在下文中详细地介绍。

弹性体材料18的至少第一片材如弹性薄膜或熔喷材料在箭头所示的方向上从供给辊18a上展开。在一个特定实施例中，弹性体材料
20 的第二片材如弹性薄膜沿箭头所示的方向从供给辊 20a 上展开。片材 18 和 20 均具有比不可伸长材料 16 具有之更小的宽度。例如，片材 18 和 20 可具有为材料 16 宽度的三分之一的宽度。如下所至，片材的各自宽度可根据复合材料 10 的最终用途而变化。另外，片材 18 和 20 可具有不同的宽度。

弹性体片材 18 和 20 可以是相同类型的弹性体材料如弹性的薄膜，或者是不同材料的复合材料，合适弹性体材料的特定实施例将在下文中详细介绍。

弹性体片材 18 和 20 由导辊 G 和 H 引导通过由辊 E 和 F 所形成的粘合辊装置的斜口 D。片材 18 和 20 可以但并非必须与材料 16 对准，以便设置在材料 16 的相应横向侧上并与之对齐，大致如图所示。

不可伸长材料 16 沿反 S 形路径经过辊 B 和 C 的 S 型棍装置的斜口 A，然后通过粘合棍 E 和 F 的压力斜口 D。材料 16 在连接到弹性体片材 18 和 20 上之前产生收缩。例如如图 1 所示，通过控制供给棍 16a 的周向线速度以使之小于棍 B 和 C 的周向线速度，就可使材料 16 在供给棍 16a 与 S 型棍装置的棍 B 和 C 之间收缩。因此，材料 16 在机器方向上张紧，并在供给棍与 S 型棍装置之间在横向产生边缘内缩。或者，S 型棍装置的棍 B 和 C 的周向线速度可被控制成小于粘合棍装置的棍 E 和 F 的周向线速度，使得材料 16 在机器方向上张紧，并且在 S 型棍装置的棍 B 和 C 与粘合棍装置的棍 E 和 F 之间在横向产生边缘内缩。通过调整棍速度的差异，材料 16 就被张紧，因此，在弹性体片材 18 和 20 通过粘合棍 F 和 E 的期间连接到材料 16 上，以形成具有与不可伸长的中心条带 12 接界的复合弹性体预缩粘合层压条带 14 的复合材料 10 时，材料 16 出现所需量的内缩，并保持在这种张紧的内缩状态下。

粘合棍装置可包括光面研光棍 F 和光面研棍 E，或者可包括设有光面研棍的压花研光棍如销压花棍。研光棍和光面研棍之一或两者可被加热，并且可通过众所周知的手段来调节这两个棍之间的压
力，以提供所需的温度和粘合压力来将材料 16 连接在弹性体片材 18 和 20 上。作为备选，弹性体材料 18,20 可通过使用粘合剂，例如本领域已知的弹性体粘合剂而连接在颈缩材料 16 上。

在一个备选实施例中，材料 16 在连接到片材 18 和 20 上之前产生颈缩。例如，材料 16 可作为颈缩材料而直接从供应源如棍上提供。

本发明并不限于在机器方向上张紧材料 16。还可以构思出张紧材料 16 的其它方法。例如，可以使用将可颈缩材料 16 在其它方向如横向机器方向上伸展的拉幅机或其它的横向机器方向的拉伸装置，使得在粘合到弹性体片材 18 和 20 上之后，所得的弹性体复合条带 14 在与伸展方向大致垂直的方向上是有弹性的。

颈缩材料 16 以及弹性体片材 18 和 20 可完全地粘合在一起，并且仍可提供具有良好伸展性能的复合弹性体颈缩粘合条带 14。作为备选，可以使用粘合图案，例如正弦曲线的粘合图案。

颈缩材料 16 可通过任何适当的手段例如热粘合或超声波焊接而在至少两个位置处连接在弹性体片材 18 和 20 上。通过施加热量和/或压力于重叠的弹性体片材 18 和 20 以及颈缩材料 16 上，并通过将重叠部分至少加热到具有最低软化温度的材料的软化温度下，以便在片材 18 和 20 以及材料 16 的重新固化的软化部分之间形成很高强度的永久性粘合，就可以形成连接。对于给定的材料组合而言，本领域的技术人员可以容易地确定实现良好粘合所必需的加工条件。

颈缩材料 16 的原始尺寸与其张紧后的尺寸之间的关系决定了复合条带 14 的近似伸长极限。例如，参见图 2A，其中复合条带 14 可在横向机器方向 22 上伸长，如果条带具有例如 10 厘米的宽度，并且希望各条带 14 可伸长达其宽度的 150%（即伸长到 15 厘米），则下侧材料 16 沿着条带 14 的原始宽度为至少 15 厘米。应容易理解，片材 18 和 20 的弹性极限只需与复合条带 14 的所需最大弹性极限一样大。换句话说，弹性片材应当能使颈缩材料回到其未颈缩的状态。

应当理解，参见图 1 所述的工艺仅仅是出于说明目的。可以很
容易地采用其他传统的方法和装置来生产根据本发明的复合材料 10。例如，可采用张紧的卷起工艺来将颈部材料 16 与熔喷纤维的压缩弹性体粘合纤维网 18 和 20 连接起来。在一个备选实施例中，弹性纤维网片可被直接熔喷在材料 16 上的与复合条带 14 相对应的区域中，可在熔喷片材上叠置另外的弹性体材料。

还应当理解，复合条带 14 和中间条带 12 并不限于任何特定数量的材料层。例如，下侧材料 16 可以包括织造或非织造层的各种组合，以便根据材料的特定最终用途来实现最终复合材料 10 的所需特性。类似的，弹性体片材 18 和 20 可包括材料的各种组合，以便为条带 14 提供所需的特性。

参见图 2A 可以看到，材料 10 包括由大致不可伸长的材料制成的条带 12，其在横向侧上与复合条带 14 接界。条带 14 可在横向方向 22 上伸长。该实施例例如可通过将非张紧状态下的弹性体材料的片材 18 和 20 结合到颈部材料 16 上来形成（图 1 和 1A）。在释放用于颈部的张紧力之后，中心部分可回复至其未颈部的尺寸（宽度）。在如图 2B 所示的一个备选实施例中，条带 14 可在横向 22 和机器方向 24 上伸长。该实施例例如可通过将张紧状态下的弹性体条带 18 和 20 连接到颈部材料 16 上来形成。这样，在释放颈部材料 16 以及弹性体条带 18 和 20 上的张紧力时，复合条带 14 基本上变成可在机器方向 24 和横向 22 上伸长的伸展粘合层压片，并且使中心条带 12 褶起且可在机器方向 24 上伸长。另一方面，如果中心条带 12 在弹性体条带 14 仍处于伸展状态下时连接在吸收结构上，则中心条带 12 不会褶起，并且可保持条带 12 的所需毛细结构。

在一个备选实施例中，下侧材料 16 可在连接弹性体条带之前例如通过起皱来进行处理加工。通过该实施例，复合材料 10 可在机器方向和横向伸长。

在如图 2C 所示的一个备选实施例中，下侧材料 16 可通过例如拉辐机或其他方法而在横向被张紧。然后沿着材料 16 的纵向端部
来横向地连接弹性体片材 18 和 20，使得复合条带 14 被定向在横向
上，并且与中心横向条带 12 接界。在该实施例中，复合条带 14 可
在机器方向 24 上伸长，如图 2C 所示。

在图 2D 所示的实施例中，单个复合条带 14 与不可伸长区域 12
的横向侧接界。如下文更详细地介绍，该实施例的材料 10 可用于各
种制品结构中，例如图 7、8 和 9 所示的制品结构中。

在另一实施例（未示出）中，希望用复合条带 14 完全地接界或
“框住”不可伸长区域 12。这种结构会倾向于将颈缩状态下的材料
16 “固定”或保持在区域 12 中，使得它具有更大的单位体积重量。
这被证明是优选的，因为区域 12 可在重叠在吸收体结构上时用作喷
涌层，例如设计成主要沿着与吸收结构相面对的表面来接受、临时
储存和/或输送液体的喷涌层，从而提高吸收结构的吸收能力。在“框
式”结构的一个实施例中，复合条带 14 可在机器方向和横向上伸长。
可采用其它方法来保持区域 12 的颈缩状态。

不可伸长材料 16 可以是能够发生边缘收缩并与弹性体材料相连
的合适材料的任何一种或其组合。该不可伸长材料 16 例如可以是用
作一次性尿布、训练内裤、失禁用品等的“内罩”或体侧衬里的任
何传统的液体可渗透材料。材料可以是已被穿孔以便可透气的非疏
松性材料。在这一方面，该材料具有面向身体的表面，其是柔顺的、
感觉柔软的，并且对穿戴者的皮肤无刺激性。另外，材料 16 在亲水
性方面比相应吸收制品的下侧吸收体差一些，但具有足够的多孔性
以便使液体可渗透，从而允许液体容易地渗透其厚度而达到吸收
体。合适的不可伸长材料可由较宽选择范围内的纤维网材料制成，
例如多孔泡沫、网状泡沫、有孔塑料薄膜、天然纤维（例如木纤维
或棉纤维）、合成纤维（例如聚酯纤维或聚丙烯纤维），或者天然
纤维和合成纤维的组合物。

可采用各种织造的和非织造的织物用作不可伸长材料 16。例如，
该材料可包括熔喷纤维网，纺粘纤维网，或者由合成的连续或不连
续的聚合物纤维和/或天然纤维组成的粘合梳理纤维网，花纹粘合纺粘纤维网，气流成网纤维网或粘合梳理纤维网，以及它们的组合。各种织物可包括天然纤维、合成纤维或其组合。在特定的方面，该材料可包括聚合物纤维、网状物、层压片、液体可渗透薄膜、纤维素纤维、人造丝、水膨胀性凝胶以及它们的组合。合适的聚合物可包括聚丙烯、聚乙烯、聚酯以及由这些聚烯烃构成的双组分材料。

不可伸长材料 16 可由基本上疏水性材料构成。该疏水性材料可被选择性地用表面活性剂处理，或者被处理成具有所需程度的润湿度和亲水性。在本发明的一个特定实施例中，该材料可以是非织造的纺粘聚丙烯织物。该织物可用有效量的表面活性剂进行表面处理。例如可从在美国特拉华州 New Castle 设有办公地点的 ICI Americas 公司中买到的约 0.6%的 AHCOCOVEL Base N62 型表面活性剂。表面活性剂可通过任何传统手段来施加，例如喷射、浸渍、印刷、刷涂等等。形成非织造材料的纤维可以是单组分的、双组分的或者多组分的纤维，以及它们的组合。

不可伸长材料 16 可包括纤维的混合物或层压片、稀松布、纤维网，以及经过了穿孔、成孔、起皱、热激活、压花、施加微应变、化学处理等的薄膜，以及它们的组合。

弹性体材料 18 和 20 可以是能够连接到颈缩的不可伸长材料上以便为所得织物提供所需伸展程度的材料的任何一种或其组合。根据材料的最终用途，弹性体材料 18 和 20 可以是可透气的以及液体不可渗透的或防液体的。一般而言，可利用任何合适的弹性体纤维成形树脂或树脂混合物用作适用于作为弹性体材料条带的弹性体纤维的非织造纤维网。同样，可利用任何合适的弹性体薄膜成形树脂或树脂混合物用作适用于作为弹性体材料条带的弹性体薄膜。合适的弹性体材料可包括弹性短股，LYCRA®弹性件，弹性薄膜，非织造弹性纤维网，熔喷或纺粘弹性纤维网，以及它们的组合。弹性体材料的例子包括 ESTANE®弹性体聚氨酯（可从位于俄亥俄州
Cleveland 市的 B.F.Goodrich and Company 公司得到），PEBAX®弹性体（可从位于宾夕法尼亚州 Philadelphia 市的 Atochem 公司得到），HYTREL®弹性体聚酯（可从位于特拉华州 Wilmington 市的 E.I.DuPont de Nemours 公司得到），KRATON®弹性体（可从位于德克萨斯州 Houston 市的 Shell Chemical Company 公司得到），LYCRA®弹性体的绞股（可从位于特拉华州 Wilmington 市的 E.I.DuPont de Nemours 公司得到），等等，以及它们的组合。

弹性体材料 18 和 20 可以是压敏弹性粘合片材。例如，弹性体材料本身可以是粘性的，或者作为备选，可将相容的增粘树脂添加到上述可挤出的弹性体组分中，以便提供可用作压敏粘合剂的弹性体片材，从而例如将弹性体片材粘合在张紧的颈缩的不可伸长材料上。就增粘树脂和增粘的可挤出弹性体组分而言，可以参考美国专利 No.4789699 所述的树脂和成分，该专利通过引用而通用地整体结合于本文中。

与弹性体聚合物相容并且可耐受高的加工（例如挤出）温度的任何增粘树脂都可使用。如果使用了混合材料例如聚烯烃或增量油的话，那么增粘树脂还应与这些混合材料相容。通常来说，氢化的烃类树脂因其较好的稳定性而成为优选的增粘树脂。

弹性体材料 18 和 20 还可以是例如两种或多种单独的粘附纤维网或薄膜的多层材料。另外，这些片材可以是多层材料，其中一层或多层含有弹性的和不可伸长的纤维或颗粒的混合物。这种材料的一个示例在美国专利 No.4209563 中有介绍，该专利通过引用而通用地整体结合于本文中，其中弹性体的和非弹性体的纤维混在一起，形成了随机分散纤维的单一粘附纤维网。这种复合纤维网的另一例于美国专利 No.4100324 中，该专利通过引用而通用地整体结合于本文中。

如上所述，复合材料 10 可被结合用于许多种吸收制品如一次性尿布、儿童训练内裤、失禁用品、女性护理用品等中。这种材料特
别适用作休侧衬里材料。吸收制品的示意性实施例将在本文中概
性地介绍。然而应当理解，本发明并不限于所介绍的实施例。用于
传统吸收制品中的构造和材料可在很广的范围内变化，并且对于本
领域的技术人员而言是众所周知的。不必为了介绍本发明而对这种
材料和构造中的每一种都进行详细说明。

d体上参考图 3，图中显示了制品，例如代表性地显示的儿童训
练内裤 100。该内裤 100 在结构和材料上类似于 Kimberly-Clark Corp.
公司制造的 HUGGIES® PULL-UPS® 一次性训练内裤。制品 100 包括
主体或底片 120，其具有沿着长度的纵向 24、侧面的横向 22、前腰
部区域 114、后腰部区域 112，以及将前、后腰部区域互连起来的中
间裆部区域 116。腰部区域 112 和 114 包括制品 100 中的在穿时全
部或部分地覆盖或包围了穿戴者的腰部或中下部躯干的那些部分。
在特定的构造中，前腰部区域 114 和后腰部区域 112 可包括结合有
弹性件 133 的弹性前腰带部分 117 和后腰带部分 111。在图 3 所示的
实施例中，弹性腰带部分 117,111 仅部分地延伸穿过其各自的腰部区
域。在一个备选实施例中，腰带部分 117,111 围绕着制品的腰部开口
大致上是连续的。中间裆部区域 116 设于腰部区域 114 和 112 之间
并将它们连接起来，并包括有制品 100 中的在穿戴时位于穿戴者的
两腿之间并覆盖了穿戴者的下躯干的那部分。因此，中间裆部区
域 116 是训练内裤或其它一次性吸收制品中的通常会发反复流体
喷涌的区域。

制品 100 包括基本上液体不可渗透的外罩件 130、液体可渗透的
休侧衬里 128，以及夹在外罩件 130 与休侧衬里 128 之间的吸收体结
构 132。吸收体结构可通过粘合剂固定在外罩件 130 上。粘合剂在侧
向/横向伸展外罩的情况下可沿着吸收体结构的中心线来施加，或者
在纵向伸展外罩的情况下可沿着横向线施加，或者在侧向和纵向伸
展外罩的情况下可点状图案的形式来施加。

出于各种原因如产品舒适性、性能、尺寸范围等等，通常已知
底片 120 的特定部分和部件可由弹性体材料形成，从而尤其在侧向或横向 22 上是可伸长的。在制品 100 的所示实施例中，底片 120 包括可伸长的前侧片部分 150 和后侧片部分 152，它们从底片 120 的中心结构处侧向地延伸出来。这种构造对于训练内裤是通用的，并为制品提供了在横向 22 上穿过腰部 112,114 的所需程度的伸展性。通过如图 3 所示的已知传统设置，侧片部分 150,152 由大致弹性体的侧片 156 形成，其在腰部区域 112,114 处例如沿着粘合接缝线 127 而连接在底片 120 的横向侧上。

在一个备选实施例中，可能不需要单独的侧片部分 150,152，它们可由底片 120 的延伸部分、例如外罩件 130 或体侧衬里 128 或这两者的延伸部分来形成。本发明的复合材料 10 特别适用于这种构造，这将参见图 4A、5 和 6 在下文中更详细地介绍。例如，底片可包括弹性体的外罩件 130、弹性体的体侧衬里 128，以及其它弹性体部件的任何组合，它们组合起来形成了可伸长的整体式底片，不会损害吸收制品 132 的结构完整性和吸收能力。

训练内裤的实施例 100 可具有这样的式样和构造，其中前、后耳状部分 150,152 具有横向侧，其在折叠底片时收拢在一起，形成了具有腰部开口 124 和腿部开口 122 的裤状结构。横向侧以已知的方式粘合在一起，从而形成了裤结构的侧缝 126（图 3）。通过这种类型的构造，使用者可以与内衣裤类似的方式而穿上裤子 100。优选的是，这些接缝 126 可被分开或撕开，使得可通过撕开接缝 126 而从穿戴者身上取下裤子 100，并以与尿布类似的方式取下制品。在一个备选实施例中，前侧片部分 150 和后侧片部分 152 可在侧缝 126 处分开和重新连接上。可采用紧固系统如钩-环系统来将第一腰部区域 112 和第二腰部区域 114 相连，以形成裤结构并将制品保持在穿戴者身上。其它合适的可释放的紧固系统在美国专利 No.6231557B1 和国际申请 WO 00/35395 中有介绍，这些专利通过引用而通用地整体结合于本文中。
如在本领域中容易理解的那样且如图 3、4 和 4A 所示，根据本发明的制品 100 还可包括纵向延伸的锁藏翼片 158，其设置在体侧衬里 128 之上。翼片 158 具有纵向端部，其一般在腰带部分 117,111 处连接在底片 120 上。在本发明的一些实施例中，翼片 158 可包括单独的材料片或片材，其具有优选在下侧吸收体结构 132 之外连接在底片 120 上的外侧横向侧。参见图 3，翼片 158 例如可沿着接缝线 127 来连接。在一个备选实施例中，翼片 158 可由体侧衬里 128 的折叠构造来形成，如下文更详细地介绍。翼片 158 具有横向内侧的“自由”侧边 162，使得该阻挡翼片沿着吸收体结构 132 的横向侧而基本上形成了一个锁藏袋。自由侧边 162 可沿着其纵向侧而结合有片状弹性件 136，这在本领域中是通常已知的。

图 4 显示了代表性制品 100 的面向身体的平面图，在这种情况下它是处于其大致展平的未收缩状态下（即消除了基本上所有的弹性引发的褶起和收缩）的一次性尿布。尿布结合了任何方式的传统的固定或紧固装置，例如图中所示的钩型或环型垂片 135。垂片 135 可直接与外罩件接合，或者与设置在外罩件 130 上的相应钩状或环状材料接合，这在本领域中是已知的。部件通过传统的适当连接方法连接或结合在一起，例如粘合剂粘合、超声波结合、热结合、销连接或其领域中已知的任何其它连接技术及其组合。例如，可采用粘合剂的均匀连续层、粘合剂的印花层、粘合剂的喷涂层或者结构粘合剂的分开的线、旋涡或点的阵列将各个部件粘附在一起。

尿布 100 一般包括叠置在吸收体结构 132 上的多孔的、液体可渗透的体侧衬里 128；基本上液体不可渗透的外罩件 130；以及位于外罩件 130 与体侧衬里 128 之间并与之相连的吸收体结构 132。在一些实施例中，喷油层 148 可选择性地设置在吸收体结构的附近，并例如通过粘合剂而与之相连。

如图 4a 所示，外罩件 130 和体侧衬里 128 可以是分开的片材，它们在其各自的横向侧处连接在一起。腿部弹性件 134 可在吸收体
结构 132 的外侧沿着底片 120 的横向侧边缘而结合进来，并构造成将底片 120 拉紧和保持贴在穿戴者的腿部上。衬里 128、外罩 130、吸收体结构 132、喷涌层 148 以及弹性件 134 和 132 可装配在一起，形成多种众所周知的吸收制品结构。

弹性件 134 在弹性收缩的状态下紧固在底片 120 上，使得在正常的受应变条件下，弹性件 134 有效地收缩成贴在穿戴者的学生。在吸收制品例如一次性尿布和训练内裤中使用弹性腰部位在本领域中是公知的和可理解的。

使用弹性腰带在本领域中也是公知的和可理解的。在图 3 和 4 所示的实施例中，腰带弹性件 133 设置成部分地穿过前腰带 117 和后腰带 111。腰带弹性件 133 可由任何适当的弹性体材料构成，例如弹性体薄膜、弹性泡沫、多条弹性绞绳、弹性体织物，等等。可用于根据本发明的制品 100 中的腰带结构的实施例还在美国专利 No.5601547、No.5500063、No.5545158、No.6358350B1、No.6336921B1 和 No.5711832 中有介绍，这些专利通过引用而通用地整体结合于本文中。

在一些实施例中采用了根据本发明的复合材料 10、复合弹性体条带 14 可在横向上为底片提供充分的伸展性能，使得可以去掉单独施加的弹性腰带结构。

图 4A 是一次性尿布 100 沿着图 4 中所示线的示意图剖视图。在该实施例中，体侧衬里 128 由上述材料 10 构成。在图 4A（以及图 5 和 6）中，材料的复合部分 14 显示为带有细小的剖面线，以表示这些部分是多层/复合的弹性结构。该材料可在生产线外形成，并直接结合到吸收制品 100 的在线制造工艺中。作为另选，该材料可制成制品 100 的在线制造中直接地形成和传送。复合材料的基底材料 16（图 1）通常是液体可渗透的，但可以是适用于体侧衬里的任何材料。复合材料 10 的条带或区域 12 是不可伸长的，并设置在吸收体结构 132 之上。喷涌层 148 可设于吸收体结构 132 与不可伸长条带 12 之间。
需要将条带 12 的整个重叠部分用粘合剂 183 粘结在吸收体结构 132（或喷涌层 148）上。通过这种构造，即使在复合条带 14 横向伸展的情况下，条带 12 的重叠区域的毛细结构也能够保持。复合弹性体的侧条带或区域 14 从中心条带 12 中侧向向外延伸至底片 120 的横向侧处，并例如通过热粘和/或粘合剂 185 而连接在外罩件 130 上。外罩件 130 可通过中心线粘合剂 182 而粘合到吸收体结构 132 上。如上所述，腿部弹性件 134 可沿着侧缝而结合在外罩件 130 与复合条带 14 之间。在这种构造中，复合条带 14 为体侧衬里 128 提供了横向伸展性，而不必将单独的侧片或材料连接在适当体侧衬里材料的侧边上。复合条带 14 将在横向伸展，不必对不可伸长的中心条带 12 和下侧的吸收体结构 132 施加扭曲张紧力。在该实施例中，可能希望外罩件 130 也是弹性体的。

作为单独的外罩件 130 的各种材料在本领域中是可得到的和已知的。外罩件 130 的构造可包括编织的或非编织的纤维网层，其被全部地或部分地构造或处理成可使相邻或接近吸收体的所选区域具有所需程度的液体不可渗透性。作为备选，分开的液体不可渗透的材料可与吸收体结构 132 相关联。外罩可包括可透气的非织造物衬层，其层压在可透气或不可透气的聚合物薄膜衬层上。纤维的、布料状外罩材料的其它示例可包括伸展变薄的或伸展热层压的材料。尽管外罩件 130 通常提供了制品的最外层，然而制品可选择性地包含附加在外罩件上的单独的外罩件。

如上所述，外罩件 130 可以大致由弹性体材料形式。作为备选，外罩件可由非弹性体的可伸长材料形成。外罩件 130 例如可由弹性体材料或聚合物材料的单层、多层、层压片、纺粘织物、薄膜、熔喷织物、弹性网眼、微孔性纤维网、粘合梳理纤维网或泡沫构成。弹性体的非织造层压纤维网可包括非织造材料，其连接到一种或多种可折叠的非织造纤维网、薄膜或泡沫上。伸展粘合层压片（SBL）、颈缩粘合层压片（NBL）和颈缩伸展粘合层压片（SBL）是弹性体复合材
料的一些例子。非织造织物是不需要使用织物编织工艺就可成形的材料的任何纤维网，该工艺可生产出以可识别的重复性方式交织在一起的单独纤维的结构。合适材料的例子有纺粘-熔喷织物、纺粘-熔喷-纺粘织物、熔喷织物，或者这种织物与薄膜、泡沫或其它非织造纤维网的层压片。弹性体材料可包括流延薄膜或吹塑薄膜、泡沫，或者由聚乙烯、聚丙烯或聚烯烃共聚物及其组合所构成的熔喷织物。

外罩 130 可包括具有通过机械加工、印刷加工、热加工或化学处理而得到的弹性或可伸长性能的材料。例如，这种材料可进行穿孔、起绒、收缩伸展、热激活、压花和微形变；或者可以是薄膜、纤维网和层压片的形式。

如图 4A 所示，制品 100 可包含分开的锁藏翼片 158，其中连接在复合材料的侧面上，例如连接在弹性体条带 14 上。翼片 158 可沿着其自由的侧向内侧面 162 的至少一部分而包含有弹性件 136。这种锁藏翼片 158 的构造是众所周知的，因此不必详细介绍。锁藏翼片 158 的适当构造和设置例如公开于美国专利 No.4704116 中，该专利通过引用而通过地整体结合于本文中。

在图 4B 中显示了根据本发明的吸收制品 100 的一个实施例，它在许多方面与图 4A 所示的实施例类似。然而在该实施例中，弹性体条带 14 具有足够的宽度，以便环绕着吸收体结构 132，并在吸收体结构的大致“下方”的某些位置处而相互连接。因此，条带 14 基本上包围了吸收体结构 132，并形成了外罩 130。叠置在喷嘴层 148 上的不可伸长区域 12 一般通过粘合剂 183 完全地粘合在喷嘴层上，使得区域 12 的毛细结构是“固定”的，并且一般不会受到侧条带 14 伸展的影响。条带 14 通过粘合剂 182 的中心带而连接在吸收体结构 132 的下侧。通过这种构造，条带 14 形成了侧衬里 128 和弹性体外罩 130 的弹性体部分，侧片 156（弹性的或不可伸长的）可在底片的横向侧处连续在条带 14 上。

图 7 显示了与图 4B 所示实施例类似的实施例，不同之处在于其
使用了图 2D 所示的材料 10。在这里，单一的复合侧条带 14 具有足够的宽度，以便折叠在吸收体结构 132 之下，并且连接在不可伸长材料的区域 12 的相对的横向侧上。因此，单一的复合侧条带 14 还形成了外罩件 130。

图 5 显示了结合有复合材料 10 的吸收制品 100 的另一实施例。该实施例则在许多方面与图 4B 所示实施例类似。该实施例例如可以为训练内裤，其结合有如上参见图 3 所述的弹性体侧片 156。不可伸长条带 12 具有足够的宽度以便叠置在喷涌层 148 上（或叠置在吸收体结构 132 上，如果未设置喷涌层的话），并用粘合剂 183 连接在喷涌层 148 上，参见图 4A 和 4B 如上所述。在该实施例中，弹性体侧条带可由两种不同材料 14a 和 14b 形成。例如，材料 14a 可包括可透气的液体不可渗透的薄膜，或者液体渗透的弹性体非织造材料。另外的条带 14b 例如可在横向侧折痕 129 处连接在条带 14a 上，并包括可透气的液体不可渗透的材料。

应当理解，还可以其它方式来实现条带 14 中的不同弹性体性能/区域。其例子包括并排设置（存在部分的重叠或无部分重叠）的两种不同材料，重叠的两种不同材料，或者对弹性体层中的一部分进行后处理，例如对较小一部分区域进行后粘合工艺，以便在该子区域中产生不同的弹性。

参见图 1，该实施例中所用的复合材料可通过将两种不同的弹性体材料条带连接在不可伸长的中心区域 12 的各侧上来形成。换句话说，条带 18 将由相邻的条带 18a 和 18b（未示出）形成，而条带 20 可由相邻的条带 20a 和 20b 形成。条带 14b 的边缘连接在一起，并例如通过中心线粘合剂 182 连接到吸收体结构 132 上，腿部弹性件 134 设置在折叠的侧边缘中，弹性体侧片 156 可沿着侧边缘粘合线 127 处连接。因此，通过该实施例，材料 10 形成了体侧衬里 128 和外罩件 130，并为这些部件提供了所需的弹性体伸展性能。

在该实施例中，复合材料 10 的基底材料 16 选择成可为体侧衬
里提供所需的特性，而弹性体材料 18 与 20 选择成可为外罩件 130 提供所需的特性。

如图 5 所示，锁藏翼片 158 可由弹性体条带 14a 的折叠部分来形成。例如，条带可折叠成如图所示的 Z 形结构，并在折叠层中包含有翼片弹性件 136。可采用合适的粘合剂来连接弹性件 136 并“固定”该折叠结构。作为备选，可以如图 4A 所示的实施例那样来结合单独的锁藏翼片。

可利用本领域技术人员自知的连接手段如粘合剂、热粘合或超声波粘合来将弹性体侧片在粘合线 127 处永久性地粘合在底片 120 的横向侧上。用于将一对可弹性伸长部件固定在制品的横向侧部上以便能横向向外延伸到制品的外罩和衬里件的横向相对的侧面区域之外的适当结构的具体示例可在美国专利 No.4938753 中找到，该专利通过引用而通常地整体结合于本文中。之后，可沿着侧缝 126 未永久性地或可释放地连接侧片 156 的横向侧部，以形成裤结构。这些粘合侧缝可以如上所述地撕开。作为备选，可利用任何类型的适当的可释放紧固系统来沿着侧缝 126 可释放地连接侧片，如上所述。

用于侧片 156 的适当弹性材料以及将弹性侧片结合在训练内裤中的上述工艺例如在以下美国专利中有介绍：4940464；5224405；5104116；5046272 以及 WO 01/88245，这些专利通过引用而通常地整体结合于本文中。在特定实施例中，弹性材料包括热伸展层压片 (STL)、颈缩粘合层压片 (NBL)、逆向颈缩层压片或者伸展粘合层压片 (SBL) 的材料。制造这种材料的方法例如在美国专利 No.4663220、No.5226992 和欧洲专利申请 0217032 中有介绍，这些专利通过引用而通常地整体结合于本文中。

图 6 所示的制品 100 是一个备选实施例，它在许多方面与图 5 所示的实施例类似。然而该实施例中，复合弹性体条带 14 比较宽，并且还形成了弹性体侧片 156。这种构造可能特别适用于训练内裤。
其中采用单件片材来形成体侧衬里 128、外罩件 130 和可伸长的侧片 156。训练内裤制品 100 在穿戴者的腰部和侧面区域上具有所需的伸展性，并具有整体上类似于内裤的外观。所使用的材料明显更少，并且可以大大降低制造工艺的复杂性。

图 8 所示实施例在许多方面与图 5 所示实施例类似，不同之处在于其使用了图 2D 所示的材料 10。在该实施例中，单条带复合条带 14 具有足够的宽度，并被折叠以形成锁藏翼片 158 和外罩 130。条带 14 通过任何适当的手段连接在叠置于吸收体结构 132 上的不可伸长材料的区域 12 的相对横向侧上。

同样，图 9 所示实施例在许多方面与图 6 所示实施例类似，不同之处在于其使用了图 2D 所示的材料 10。在该实施例中，单条带复合条带 14 具有足够的宽度，并被折叠以形成弹性体侧片 156、锁藏翼片 158 和外罩 130。条带通过任何适当的手段连接在叠置于吸收体结构 132 上的不可伸长材料的区域 12 的相对横向侧上。

吸收体结构 132 可以是一般可压缩、柔顺、对穿戴者的皮肤无刺激性，并且能够吸收和保持液体和某些人体废物的组合的任何结构或组合。例如，结构 132 可包括纤维素纤维（例如木质纸浆纤维）、其它天然纤维、合成纤维、纺织或非纺织片材、稀松布网织品或其它稳定性结构、超吸收性材料、粘合材料、表面活性剂、经选择的疏水性材料、颜料、洗剂、芳香剂等及其组合的吸收性纤维网材料。在一个特定实施例中，吸收性纤维网材料是纤维素蓬松物（fluff）和超吸收性的水凝胶成形粒子的基体。纤维素蓬松物可包括木质纸浆蓬松物的混合物。蓬松物的一种优选类型为可从美国亚拉巴马州的 U.S. Alliance of Childerburg 公司得到的商品 CR 1654，它是经漂白的、主要含有软木纤维的高吸收性的木质纸浆。吸收材料可通过使用各种传统的方法和技术来形成纤维网结构。例如，吸收性纤维网可由干法成型技术、气流成型技术、湿法成型技术、泡沫成型技术等及其组合来形成。用于执行这些技术的方法和装置在本领域中是已知的。
作为一般规律，超吸收性材料以占纤维网总重量的约0到约90%重量的量而存在于吸收性纤维网中。纤维网可具有每立方厘米约0.10至约0.35克范围内的密度。

超吸收性材料在本领域中是普遍已知的，并且可从天然的、合成的和改性的天然聚合物和材料中选择。超吸收性材料可以是无机材料如硅胶，或者是有机物如交联聚合物。一般而言，超吸收性材料能够吸收至少为其自身重量的15倍的液体，并优选能吸收超过其自身重量的25倍的液体。合适的超吸收性材料容易地从多家供应商处得到。例如，Favar 880超吸收体可从德国的StockhausenGambH得到；Drytech 2035可从美国密歇根州Midland的DowChemicalCompany公司得到。

在已被成形或切割成所需的形状之后，超吸收性纤维网材料可被合适的包装来包住或封装，这有助于保持吸收体结构132的完整性和形状。

吸收性纤维网材料还可以是共成形(coform)材料。用语“共成形材料”一般指包含有热塑性纤维和第二非热塑性材料的混合物或稳定基体的复合材料。作为一个示例，共成形材料可以通过这样的工艺来制成，其中在斜管的附近设置至少一个熔喷模，再在纤维网成形时其它材料通过该斜管而加入到纤维网中。这类其它材料可包括但不限于纤维状有机材料，如木质的或非木质的纸浆，例如棉、人造丝、再生纸、纸浆蓬松物和超吸收粒子，以及无机吸收材料，经处理的聚合物人造短纤维，等等。多种合成聚合物的任一种均可用作共成形材料的熔喷组分。例如，在一些实施例中可采用热塑性聚合物，可以使用的热塑性塑料的一些示例包括聚烯烃，例如聚乙烯、聚丙烯、聚丁烯等；聚酰胺；以及聚酯。在一个实施例中，热塑性聚合物为聚丙烯。这种共成形材料的一些例子公开在Anderson等人的美国专利No.4100324、Everhart等人的美国专利No.5284703以及Georger等人的美国专利No.5350624中；这些专利通过引用而通用。
地整体结合于本文中。

吸收体结构 132 可包括弹性体的共成形吸收性纺织网材料，例如如美国专利 No.4663220 和 No.4741949 中所述，在一些具体方面，弹性体共成形材料可能具有总体的共成形基重，至少为约 50 克/平方米的最小值。共成形基重可为至少约 100 克/平方米，或是为至少约 200 克/平方米，以提高改进的性能。另外，共成形基重可以是不超过 1200 克/平方米。作为备选，共成形基重可以是不超过 900 克/平方米，或是作为选择可以是不超过 800 克/平方米，以便提供改善的优点。这些数值是重要的，因为它们可为吸收体结构提供所需的伸展性和结构稳定性，同时不会过度地损害吸收体结构的物理性能或液体处理功能。具有过低比例的弹性体共成形材料的保存部分可以是不能充分伸长的。具有过多的大量弹性体共成形材料的吸收性纤维网材料会使其吸收功能过度地下降，例如使吸水、分布和/或保存性能的过度地下降。

弹性体吸收结构的其它例子在美国专利 No.6362389 B1 中有介绍，该专利通过引用而通用地整体结合于本文中。

吸收体结构 132 中所用的吸收性纤维网材料还可选择成使得单独的吸收体结构可根据制品的预期用途而具有各自的特定总吸收能力。例如对于婴儿护理用品而言，总吸收能力可在约 200-900 克的 0.9% 重量盐水的范围内，一般为约 500 克盐水。对于成人护理用品而言，总吸收能力可在约 400-2000 克盐水的范围内，一般为约 1300 克盐水。对于女性护理用品而言，总吸收能力可在约 7-50 克月经液的范围内，一般约 30-40 克月经液。

如上所述，吸收体结构 132 还可包括喷涌控制层 148，其有助于减缓和扩散可能快速进入到制品吸收体中的液体的喷涌或喷出。优选的是，喷涌控制层可快速地接受和暂时保持液体，然后将液体释放到吸收体结构的储存或保存部分中。喷涌层可设置在体侧衬里 128 之下。作为备选，喷涌层可设置在体侧衬里的面向身体的表面上。
适当喷涌控制层的例子在美国专利 No.5486166 和美国专利 No. 5490846 中有介绍。其它合适的喷涌处理材料在美国专利 No.5820973 中有介绍。这些专利的全部公开内容通过引用而通用地整体结合于本文中。5

应当理解，在阅读了本发明的说明书之后，在不脱离本发明的范围和精神的前提下，本领域的技术人员可以构思出并采用各种其它的实施例，以及本文所述的本发明实施例的改进及等效物。
图 3
图 4