发明名称
一种磁载二氧化钛光催化剂及其制备方法

摘要
本发明公开了一种磁载二氧化钛光催化剂及其制备方法，属材料制备技术领域。本发明的采用溶剂热法获得尺寸可调的四氧化三铁球形粒子，通过调节反应液的 pH 值、反应温度、反应时间等实验参数，控制钛酸丁酯的水解，使其均匀负载在四氧化三铁磁核表面，从而制得六方晶型磁载二氧化钛光催化剂。本发明提供一种制备工艺可控、安全可靠、产率高，可用于快速催化降解污染物的磁载二氧化钛光催化剂，且其易于实现工业化。
1. 一种磁载二氧化钛光催化剂，其特征在于：所述催化剂以四氧化三铁球形粒子为载体，在四氧化三铁球形粒子的表面负载有二氧化钛。

2. 根据权利要求1所述的一种磁载二氧化钛光催化剂，其特征在于：所述的二氧化钛为六方晶型二氧化钛，包覆于四氧化三铁球形粒子的表面。

3. 一种磁载二氧化钛光催化剂的制备方法，其特征在于，包括以下步骤：
 (1) 以六水合三氯化铁为铁源，无水乙酸钠和聚乙二醇200为添加剂，乙二醇为溶剂，常温常压下，磁力搅拌得到澄清溶液；将该澄清溶液密封置于反应釜中，并将该反应釜置于烘箱中，以5°C/min的加热速率升温至180°C，并在该温度下反应8小时；反应结束后，将反应得到的混合物进行离心分离，得到的黑色固体经无水乙醇洗涤干净后，在80°C的烘箱中烘干8小时，得四氧化三铁球形粒子；
 (2) 将步骤(1)制备的四氧化三铁球形粒子置于圆底烧瓶中，加入无水乙醇，超声分散得黑色悬浊液；
 (3) 在机械搅拌作用下，将步骤(2)制得的黑色悬浊液中加入十八烷基三甲基溴化铵和聚乙二醇200，充分混合后，将混合液在机械搅拌作用下升温至60～80°C，并在该温度下持续搅拌1～2小时；
 (4) 向步骤(3)制得的混合溶液中缓慢加入稀硫酸，并调节溶液的pH值为3～4，再向其中缓慢滴加钛酸丁酯，滴加完毕后，继续搅拌2小时，再加入蒸馏水，继续搅拌6～10小时；反应结束后停止搅拌，自然冷却至室温后陈化12小时后过滤，产物依次用乙醇、蒸馏水洗涤，然后80°C下真空干燥12小时，制得六方晶型磁载二氧化钛光催化剂。

4. 根据权利要求3所述的一种磁载二氧化钛光催化剂的制备方法，其特征在于：所述的步骤1中，反应釜为聚四氟乙烯内衬的不锈钢反应釜。

5. 根据权利要求3所述的一种磁载二氧化钛光催化剂的制备方法，其特征在于：所述的步骤4中，稀硫酸为1～2 mol·L⁻¹浓度的硫酸溶液。

6. 根据权利要求3所述的一种磁载二氧化钛光催化剂的制备方法，其特征在于：所述的步骤4中，钛酸丁酯水解过程中的反应温度为60～80°C。
一种磁载二氧化钛光催化剂及其制备方法

技术领域：

本发明属于材料制备技术领域，特别是涉及一种磁载二氧化钛光催化剂及其制备方法。

背景技术：

近年来，半导体光催化氧化降解有机污染物已成为环境污染治理的一个热点，其中二氧化钛以其活性高、无毒、热稳定性好、持续时间长、价格低廉、无二次污染等优点，倍受人们重视。为了提高二氧化钛的光催化活性，通常利用催化剂的小尺寸效应，这就要求二氧化钛粒子必须是纳米级，这样就形成了催化剂的活性与催化剂易流失、分离回收难的矛盾，因而限制了它的工业化推广应用。一方面，催化剂要有足够小粒径，保证催化剂的活性；另一方面，催化剂与污染物反应后需解决分离回收问题。因此，催化剂的固定成为了新的研究热点，但是对催化剂进行固定后，催化效率往往低于悬浮状态的催化剂，因而限制了光催化剂的实际应用。

有鉴于此，作出本发明。

发明内容：

本发明的第一方面是提供一种磁载二氧化钛光催化剂，其特征在于：所述催化剂以四氧化三铁球形粒子为载体，在四氧化三铁球形粒子的表面负载有二氧化钛。

所述的二氧化钛为六方晶型二氧化钛，包覆于四氧化三铁球形粒子的表面。

本发明的第二方面是提供一种磁载二氧化钛光催化剂的制备方法，包括以下步骤：

（1）以水合三氯化铁为铁源，无水乙酸钠和聚乙二醇 200 为添加剂，乙二醇为溶剂，常温常压下，磁力搅拌得到澄清溶液；将该澄清溶液密封置于反应釜中，并将该反应釜置于烘箱中，以 5℃/min 的加热速率升温至 180℃，并在该温度下反应 8 h（小时）；反应结束后，将反应得到的混合物进行离心分离，得到的黑色固体经无水乙醇洗涤干燥后，在 80℃的烘箱中烘干 8 h，得四氧化三铁球形粒子；

（2）将步骤（1）制备的四氧化三铁球形粒子置于圆底烧瓶中，加入无水乙醇，超声分散得黑色悬浊液；

（3）在机械搅拌作用下，依次向步骤（2）制得的黑色悬浊液中加入十八烷基三甲基溴化铵和聚乙二醇 200，充分混合后，将混合液在机械搅拌作用下升温至 60～80℃，并在该温度下持续搅拌 1～2 h；

（4）向步骤（3）制得的混合溶液中缓慢加入稀硫酸，并调节溶液的 pH 值为 3～4，再向其中缓慢滴加钛酸丁酯，滴加完毕后，持续搅拌 2 h，再加入蒸馏水，继续搅拌 6～10 h；反应结束后停止搅拌，自然冷却至室温后陈化 12 h 后过滤，产物依次用乙醇、蒸馏水洗涤，然后在 80℃下真空干燥 12 h，制得磁载二氧化钛光催化剂。

所述的步骤 1 中，所述的反应釜优选为聚四氟乙烯内衬的不锈钢反应釜。

所述的步骤 4 中，稀硫酸是指 1～2 mol·L⁻¹ 浓度的硫酸溶液。钛酸丁酯水解过程中的反应温度为 60～80℃。
说明书

[0009] 本发明的有益效果如下：

1、本发明的磁载二氧化钛光催化剂，以二氧化三铁球形粒子为载体，在二氧化三铁球形粒子的表面负载有二氧化钛，二氧化三铁球形粒子是一种磁性材料，可被磁铁吸附，把二氧化钛包覆在二氧化三铁表面，可以用外加永久磁铁的方法将其从废水中快速分离出来。

[0010] 2、本发明采用溶剂热法合成尺寸可调的二氧化三铁磁核，再采用溶胶-凝胶法使其负载二氧化钛，从而制备磁载二氧化钛光催化剂。该合成方法简单，成本低，光催化活性高，催化降解速度快。

[0011] 3、在制备过程中渗入的微量Fe^{3+}能降低二氧化钛的带隙宽度，使吸收波长向可见光区迁移，提高光催化效率。因此，磁载二氧化钛光催化剂，不仅可利用磁分离技术方便、迅速地回收磁载光催化剂，使其既可保持良好的光催化剂活性，又能多次再生利用。

[0012] 4、本发明的制备方法，使用的原料易得，工艺简单，无污染，产率高，催化剂易分离回收，能够高效、快速地催化降解工业和生活废水中的各种有机污染物。

[0013] 以下结合附图和具体实施方式对本发明作进一步说明。

[0014] 附图说明：

图1是本发明实施例一制备的二氧化三铁的扫描电子显微镜(SEM)照片(SEM, JEM-6360LV, 加速电压为10 kV)。

图2是本发明实施例一(a)和实施例二(b)制备的二氧化三铁的X射线衍射(XRD)图(XRD, Shimadzu X-6000, Cu Ka λ=0.15406 nm)。

图3是本发明实施例一(a)和实施例二(b)制备的磁载二氧化钛光催化剂的X射线衍射(XRD)图(XRD, Shimadzu X-6000, Cu Ka λ=0.15406 nm)。

图4是本发明实施例一制备的磁载二氧化钛光催化剂处理活性吸附降解曲线。

图5是本发明实施例二制备的二氧化三铁的扫描电子显微镜(SEM)照片(SEM, JEM-6360LV, 加速电压为15 kV)。

图6是本发明实施例二制备的磁载二氧化钛光催化剂处理活性吸附降解曲线。

[0019] 具体实施方式：

实施例1：

在常温常压下将1×10^{-3} mol FeCl_3 • 6H_2O, 1.44 g 无水乙酸钠和0.4 g 聚乙二醇200分别溶解在20 mL 乙醇中，在磁力搅拌作用下，使其充分混合得澄清溶液。将该澄清溶液密封放置于容积为22 mL 的聚四氟乙烯内衬的不锈钢反应釜中，并将该反应釜置于烘箱中，以5 ℃/min 的加热速率升温至180 ℃，并在该温度下反应8 h。待反应结束后，将反应得到的混合物进行离心机在12000 r/min 速率下分离2 min，将得到的固体用无水乙醇清洗8次以上，得到的固体在80 ℃的烘箱中进行烘干8 h，即可得二氧化三铁。扫描电子显微镜(SEM)表征，如图1可知，产物为分散性良好、直径约200 nm 的球形粒子；X射线衍射(XRD)表征，如图2(a)可知，在18.4°, 30.1°, 35.4°, 43.1°, 53.4°, 57.0°, 62.6°, 70.9°, 74.0° 和 75.0° 附近出现的衍射峰分别对应四面体心立方 Fe_3O_4 (111), (220), (311), (400), (422), (333), (440), (620), (533) 和 (622) 的晶面峰，没有出现其它峰，说明产物为氧化三铁。

[0021] 取称干燥后的二氧化三铁60 mg 置于圆底烧瓶中，再向其中加入50 mL 无水乙醇，超声分散得黑色悬浊液。在机械搅拌作用下，依次向黑色悬浊液中加入40 mg 十八烷基三
甲基溴化铵和 20 mL 聚乙二醇 200，待充分混合后，将该混合液以 3 °C/min 的速率升温至 60 °C，并在该温度下持续搅拌 1 h。搅拌结束后，向该混合液中缓慢加入 1 mol · L⁻¹ 稀硫酸，并调节溶液的 pH 值为 3，再向其中缓慢滴加钛酸丁酯 6 mL，滴加完毕后，持续搅拌 2 h，并向其中加入 10 mL 蒸馏水，继续搅拌 6 h。反应结束后，停止搅拌，自然冷却至室温，陈化 12 h。将产物过滤，依次用乙醇、蒸馏水洗涤，并将固体放入真空干燥箱中 80 °C，干燥 12 h，即可得磁载二氧化钛。X 射线衍射 (XRD) 表征，如图 3 (a) 可知，在 35.4、43.1、56.9 和 62.5。附近出现的衍射峰分别对应面心立方 Fe₂O₃ (311)、(400)、(333) 和 (440) 的晶面峰，在 17.9 和 24.4。附近出现的衍射峰是六方 TiO₂ (220) 和 (411) 的晶面峰，表明产物是四氧化三铁和六方晶型二氧化钛的复合物。

在常温常压下将 2×10⁻³ mol FeCl₃ • 6H₂O、1.44 g 无水乙酸钠和 0.4 g 聚乙二醇 200 分别溶解在 20 mL 乙醇中，在磁力搅拌作用下，使其充分混合得澄清溶液。将该澄清溶液密封放置于容积为 22 mL 的四氟乙烯内衬的不锈钢反应釜中，并将该反应釜置于烘箱中，以 5 °C/min 的加热速率升温至 180 °C，并在该温度下反应 8 h。待反应结束后，将反应得到的混合物进行离心机在 12000 r/min 速率下分离 2 min，将得到的黑色固体用无水乙醇洗涤 8 次以上，得到的固体在 80 °C 的烘箱中进行烘干 8 h，即可得四氧化三铁。扫描电子显微镜 (SEM) 表征，如图 5 可知，产物为分散性良好、直径约 400 nm 的球形粒子；X 射线衍射 (XRD) 表征，如图 2 (b) 可知，在 18.2，30.1，35.6，43.1，53.4，57.0，62.5，70.9，73.9 和 74.9。附近出现的衍射峰分别对应面心立方 Fe₂O₃ (111)、(220)、(311)、(400)、(422)、(333)、(440)、(620)、(533) 和 (622) 的晶面峰，没有出现其它峰，说明产物为四氧化三铁。

称取干燥后的四氧化三铁 60 mg 置于圆底烧瓶中，再向其中加入 50 mL 无水乙醇，超声分散得黑色悬浊液。在机械搅拌作用下，依次向黑色悬浊液中加入 40 mg 十八烷基三甲基溴化铵和 20 mL 聚乙二醇 200，待充分混合后，将该混合液以 3 °C/min 的速率升温至 80 °C，并在该温度下持续搅拌 2 h。搅拌结束后，向该混合液中缓慢加入 2 mol · L⁻¹ 稀硫酸，并调节溶液的 pH 值为 4，再向其中缓慢滴加钛酸丁酯 6 mL，滴加完毕后，继续搅拌 2 h，并向其中加入 20 mL 蒸馏水，继续搅拌 10 h。反应结束后，停止搅拌，自然冷却至室温，陈化 12 h，将产物过滤，依次用乙醇、蒸馏水洗涤，并将固体放入真空干燥箱中 80 °C，干燥 12 h，即可得磁载二氧化钛。X 射线衍射 (XRD) 表征，如图 3 (b) 可知，在 35.6，43.1，56.9 和 62.6。附近出现的衍射峰分别对应面心立方 Fe₂O₃ (311)、(400)、(333) 和 (440) 的晶面峰，在 17.8 和 24.4。附近出现的衍射峰是六方 TiO₂ (220) 和 (411) 的晶面峰，表面产物是四氧化三铁和六方晶型二氧化钛的复合物。

将上述制备的六方晶型磁载二氧化钛光催化剂 50 mg，放入装置好的 50 mL 100 mg · L⁻¹ 活性溶液的石英容器中，再将该石英容器置于紫外灯下光照，光照仅 2 min，活性橙的降解率就超过 90 %，降解活性橙的曲线如图 6 所示。