PCT

WORLD INTELLECTUAL PROPERTY ORGANIZATION
International Bureau

INTERNATIONAL APPLICATION PUBLISHED UNDER THE PATENT COOPERATION TREATY (PCT)

(51) International Patent Classification 6.

GO6K 9/46, 9/72 Al

(11) International Publication Number:

(43) International Publication Date:

WO 96/41302

19 December 1996 (19.12.96)

(21) International Application Number: PCT/US96/04151

(22) International Filing Date: 27 March 1996 (27.03.96)

(30) Priority Data:

08/484,630 7 June 1995 (07.06.95) Us

(71) Applicant: WANG LABORATORIES, INC. [US/US]; 600
Technology Park Drive, Mail Stop 01N-440, Billerica, MA
01821-4130 (US).

(72) Inventors: KADASHEVICK, Julie, A.; 43 Sherburne Avenue,
Tyngsboro, MA 01879 (US). HARVEY, Mary, F; 14
Edwards Road, Wobum, MA 01810 (US). KNOWLTON,
Kenneth, C.; 51 Pond View Drive, Memrimack, NH 03054
(US). JOURIJINE, Alexander; P.O. Box 369, Winchester,
MA 01890 (US).

(74) Agent: PAGLIERANI, Ronald, J., Wang Laboratories, Inc.,
600 Technology Park Drive, Mail Stop 01N-440, Billerica,
MA 01821-4130 (US).

(81) Designated States: AU, CA, JP, European patent (AT, BE,
CH, DE, DK, ES, FI, FR, GB, GR, IE, IT, LU, MC, NL,
PT, SE).

Published
With international search report.

ool

(54) Title: CHARACTER RECOGNITION SYSTEM IDENTIFICATION OF SCANNED AND REAL TIME HANDWRITTEN CHAR-

ACTERS
(57) Abstract

A handwritten character recognition system that includes
a document scanner for generating scanned images of a previ-
ously created document containing handwritten characters, and
a pen and digitizing tablet for real time entry of handwritten
characters by a user. The handwritten character recognition
system includes an image processor connected from the docu-
ment scanner for receiving the scanned image of a previously
created document and generating one or more ordered cluster
arrays. The ordered cluster arrays contain spatially ordered
coordinate arrays of skeletal image arcs representing and cor-
responding to the strokes of the handwritten characters wherein
the spatial order represents an induced time ordered sequence
of creation of the strokes of the handwritten characters that em-
ulates the sequence of creation of the character strokes. A low
level recognition processor is connected from the time order in-
duction processor for receiving the ordered cluster arrays and
generating a sequential character array wherein the sequential
character array contains a charazter list for each ordered cluster
array and wherein each character list contains at least one char-
acter identification representing a possible interpretation of the
corresponding ordered cluster array. A linguistic post proces-
sor may be connected from the low level recognition processor
for receiving the sequential character array and generating an
output string representing the most probable interpretation of
the handwritten characters of the document.

26
&
TABC

e

=T

Codes used to identify
applications under the PCT.
AM Armmenia
AT Austria
AU Australia
BB Barbados
BE Belgium
BF Burkina Faso
BG Bulgaria
BJ Benin
BR Brazil
BY Belarus
CA Canada
CF Central African Republic
CG Congo
CH Switzerland
CI Céte d'Ivoire
M Cameroon
CN China
CS Czechoslovakia
Cz Czech Republic
DE Germany
DK Denmark
EE Estonia
ES Spain
FI Finland
FR France
GA Gabon

FOR THE PURPOSES OF INFORMATION ONLY

States party to the PCT on the front pages of pamphlets publishing international

United Kingdom
Georgia

Kyrgystan

Democratic People’s Republic
of Korea

Republic of Korea
Kazakhstan

Liechtenstein

Sri Lanka

Liberia

Lithuania

Republic of Moldova
Madagascar

Mali

Mongolia

Mauritania

Malawi

Mexico

Niger

Netherlands
Norway

New Zealand
Poland

Portugal

Romania

Russian Federation
Sudan

Sweden

Singapore
Slovenia

Slovakia

Senegal

Swaziland

Chad

Togo

Tajikistan
Trinidad and Tobago
Ukraine

Uganda

United States of America
Uzbekistan

Viet Nam

WO 96/41302 ; » PCT/US96/04151

CHARACTER RECOGNITION SYSTEM
IDENTIFICATION OF SCANNED AND REAL TIME

HANDWRITTEN CHARACTERS
Cross References to Related Applications

This patent application is related to:

Field of the Invention

The present invention relates to a system for the recognition of handwritten
characters and, in particular, to a system for recognition of handwritten characters
contained in a scanned document, as well as real time user handwritten characters and
to lexical and linguistic processing of recognized possible character combinations.

~ Background of the Invention

Computer systems originally limited user input to a few standard devices
capable of generating standardized and readily and clearly defined inputs, such as the
keyboard and various pointing devices, such as a mouse or touchpad. More recently,
however, there has been a general recognition of the need and usefulness of systems
that accept less standardized user inputs, such as handwritten inputs through, for
example, digitizing tablets and pens.

The common problem faced by all such systems is in developing handwritten
character input processing methods and mechanisms that can rapidly and reliably
recognize inputs that have no standardized characteristics. The size, spacing,
orientation and even the shape of handwritten characters entered through a digitizing
tablet and pen, for example, vary widely from user to user.

Various systems have been developed for handwritten character recognition,
but most handwritten character recognition systems are limited in that they depend, to
a great extent, upon the dynamic characteristics of the formation of characters as they
are entered. That is, the order and orientation of the character strokes, and even they
direction in which the strokes are formed, are all used to identify characters as they are
entered. An example of such is the system shown in co-pending Patent Application
Serial No. 08/476,826, filed on even date with the present Patent Application, and
disclosing a newly developed system for recognition of handwritten characters as they

are entered.

WO 96/41302 PCT/US96/04151

g

There is still a significant problem, however, in recognizing handwritten
characters when the dynamic characteristics of the characters creation is not available
to be used in the recognition process. An example of such is the recognition of
handwritten characters in previously created documents, such as documents that are
scanned into a system as images after their creation.

Another problem is that that no handwritten character recognition system is
completely capable of recognizing all handwritten character inputs with complete
accuracy and reliability. Literally every handwritten character recognition system
provides outputs that, for virtually every string of input handwritten characters,
contains at least some ambiguous results, that is, characters or combinations of
strokes, that cannot be recognized by the system. Some attempts have been made to
solve this problem, for example, by use of spelling checkers, but these approaches have

been generally unsuccessful.

The present invention provides solutions to these and other problems of the
prior art.

Summary of the Invention

The present invention is directed to a handwritten character recognition system
that includes a document scanner for generating scanned images of a previously
created document containing handwritten characters and, in certain implementations, a
pen and digitizing tablet for real time entry of handwritten characters by a user.

The handwritten character recognition system of the present invention includes
an image processor connected from the document scanner for receiving the scanned
image of a previously created document and generating one or more ordered cluster
arrays. The ordered cluster arrays contain spatially ordered coordinate arrays of
skeletal image arcs representing and corresponding to the strokes of the handwritten
characters wherein the spatial order represents an induced time ordered sequence of
creation of the strokes of the handwritten characters that emulates the sequence of
creation of the character strokes.

A low level recognition pfocessor is connected from the time order induction
processor for receiving the ordered cluster arrays and generating a sequential character

array wherein the sequential character array contains a character list for each ordered

WO 96/41302 _ PCT/US96/04151

¥/

cluster array and wherein each character list contains at least one character
identification representing a possible interpretation of the corresponding ordered
cluster array. '

Finally, a linguistic post processor may be connected from the low level
recognition processor for receiving the sequential character array and generating an
output string representing the most probable interpretation of the handwritten
characters of the document.

According to the present invention, the image processor may be implemented
to include a segmentor for receiving a scanned image of a document and identifying
one or more segments of each handwritten character stroke appearing in the scanned
image. A thinning processor connected, in turn, from the segmentor and operates to
reduce each segment to one or more skeletal images wherein each skeletal image
represents one or more strokes of a handwritten characters in the scanned image and
wherein each skeletal image includes one or more skeletal image arcs wherein each
skeletal image arc is a single pixel wide image representing the corresponding one or
more strokes of a handwritten character.

A time order induction processor is connected from the thinning processor and
receives the skeletal image arcs and generates the ordered cluster arrays by ordering
the skeletal image arcs into a spatial sequence representing an induced time ordered
sequence of handwritten generation of the skeletal images. A transcriber is connected
from the time order induction processor and reads the coordinates of points along the
skeletal image arcs énd generates the ordered cluster arrays that are the output of the
image processor.

In a further implementation of the present invention, the time order induction
processor operates to join selected ones of the skeletal image arcs by a ballistic motion
emulation of handwritten character generation to generate skeletal image arcs
comprised of two or more skeletal image arcs and thereby emulating the handwritten
creation of strokes having certain characteristics that indicate that they were originally
parts of a single stroke when created by hand.

According to the present invention, the low level recognition processor may be

implemented to include a stroke feature recognizer for extracting stroke recognition

WO 96/41302 PCT/US96/04151

features from the coordinate arrays representing the skeletal image arcs and assigning a

meaning to each skeletal image arc of each ordered cluster array. The stroke feature

recognizer is followed by a cluster recognizer connected from the stroke feature
recognizer that is responsive to the meaning assigned to each skeletal image arc for
recognizing and assigning at least one character identification to each ordered cluster
array. A character array generator connected from the cluster recognizer then
generates a sequential character array containing a character list for each ordered
cluster array wherein each character list contains at least one possible character
identification representing a possible interpretation of the corresponding ordered
cluster array.

In further embodiments of the present invention, the low level recognition
processor further may include a real time handwritten character processor connected
from a digitizing tablet and pen that is used by a user to generate handwritten character
inputs. The real time handwritten character processor is in turn connected to the stroke
feature recognizer for providing stroke descriptor information representing real time
handwritten characters to the stroke feature recognizer. The stroke feature recognizer
and the following portions of the character recognition system then operate upon the
real time handwritten character inputs in the same way as they operate upon the
handwritten character information scanned from a previously created document.

In the embodiment of the present invention, the low level recognition processor
may be implemented with a pen input detector for detecting and indicating user inputs
through the tablet and pen, the user inputs including pen strokes and pen states, and an
input buffer connected from the pen input detector for storing stroke descriptor
information of a current stroke as the current stroke is entered by the user. The stroke
feature recognizer is connected from the input buffer and is responsive to the pen
states for extracting stroke recognition features from the stroke descriptor information
of the current stroke and assigning a meaning to the current stroke. The cluster
recognizer is connected in turn from the stroke feature recognizer and is responsive to

the meaning assigned to each stroke for recognizing and assigning a character
identification to each cluster of strokes,

WO 96/41302 PCT/US96/04151

=

Finally, the handwritten character recognition system of the present invention
may include a linguistic post processor for performing linguistic and lexical processor
of the character identifications provided from the low level recognition processor to
determine the most probable interpretation of the character identifications based upon
linguistic and lexical principles. According to the present invention, the linguistic post
processor includes a linguistics analyzer for receiving the character lists, assembling the
character lists into character strings, and performing a linguistic analysis on the
character strings to determine the most probable correct combinations of characters in
each character string. The linguistic processor is connected to a lexical processor that
then performs a lexical analysis of each combination of characters to determine the
most probable meaning of each character of each character string and generate an
output string representing the most probable interpretation of the handwritten
characters of the document.

According to the present invention, the linguistic processor receives a
sequential character array wherein a sequential contains a character list for each cluster
of strokes in a document and representing a handwritten character and wherein each
character list contains at least one possible character identification representing a
possible interpretation of the corresponding cluster of strokes. The linguistic processor
includes a linguistic analyzer that assembles the character lists into character strings
and performs a linguistic analysis on each character string to determine the most
probable correct combinations of characters in each character string. A lexical analyzer
may then be invoked to perform a lexical analysis of each combination of characters in
each character string to determine the most probable meaning of each character of
each character string, and the linguistic processor then generates an output string
representing the most probable interpretation of the handwritten characters of the
document.

Further according to the present invention, the linguistic analyzer reads the
character lists to select a character string of character lists having a predetermined
initial length, performs a first linguistic analysis upon a pair of character lists occurring
at the beginning of the initial character string and a pair of character lists occurring at

the ending of the initial character string, and selects the beginning or ending pair of

WO 96/41302 PCT/US96/04151

¢

character lists having a high probability of correct identification of the corresponding

handwritten characters. The linguistic analyzer then performs a second linguistic

each
subsequent pair of character lists being selected starting with one character of the

analysis upon subsequent pairs of character lists of the initial character string,

selected beginning or ending pair of character lists and preceding along the character
string away in steps of one character list.

Other features, objects and advantages of the present invention will be
understood by those of ordinary skill in the art after reading the folldwing descriptions
of a present implementation of the present invention, and after examining the drawings,
wherein:

‘Brief Description of the Drawings
Fig. 1is a block diagram of a system in which the present invention is

implemented;

Fig. 2 is a diagrammatic representation of the character recognition system of
the present invention;

Fig. 3 is a diagrammatic representation of the segmentation process;

Fig. 4 is an illustration of skeletized representations of character strokes;

Figs. 5 and 6 are illustrations of the segmentation, thinning and transcription

processes,

Figs. 7 and 8 are illustrations of skeletal image arcs and skeletal image arc
descriptors;

Fig. 9 is an illustration of pixel configurations in the thinning process;

Fig. 10 is an illustration of a pixel index array;

Fig. 11 is an illustration of a pixel array used in the thinning process;

Fig. 12 is an illustration of a pixel index array used in the thinning process;
Fig. 13 is an illustration of a pixel array for accelerated processing;

Fig. 14 is an illustration of a pixel array defining a thinning rule;

Fig. 15 is an illustration of rotation and reflection codes;

Figs. 16 and 17 are illustrations of extended pixel arrays;

Fig. 18 is an illustration of program commands for generating thinning rule
tables;

WO 96/41302 PCT/US96/04151

7

Fig. 19 represents exemplary code illustrating nested reiterations of thinning
steps;

Fig. 20 is an illustration of an index array;

Fig. 21 is an illustration of a 2x2 pixel array;

Fig. 22 is an illustration of a pixel pattern of a thinning rule;

Figs. 23 and 24 are illustrations of pixel patterns illustrating thinning rules;

Fig. 25 is a pseudocode listing illustrating the thinning process;

Fig. 26 is a diagrammatic representation of the time order induction processor
of the present invention;

Fig. 27A is a diagrammatic representation of a stroke descriptor generator of
the present invention,;

Fig. 27B is a diagrammatic representation of a stroke descriptor;

Figs. 28A, 28B, 28C and 28D are diagrammatic representations of stranding;

Fig. 29 is a diagrammatic representation of a low level recognition processor;

Fig. 30 is a diagrammatic representation of stroke and segment descriptors;

Fig. 31 is a diagrammatic representation of a stroke feature processor;

Fig. 32 is a diagrammatic representation of a stroke representation generator, a
stroke representation selector and a stroke proportion discriminator;

Fig. 33 is a diagrammatic representation of an ideal prototype representation;

Fig. 34 is a diagrammatic representation of a cluster recognition processor;

Figs. 35A and 35 B are diagrammatic representations of a linguistic post
processor;]

Figs. 36A, 36B and 36C are diagrammatic representations of regular, sparse
and busy letter look-up lists comprising a lexical look-up table; and

Fig. 37 is a diagrammatic representation of a correction lexicon trie structure.

Description of the Invention

A. General Description (Figs. 1 and 2)

Referring to Fig. 1, therein is illustrated a block diagram of a System 10
comprised of a Memory (MEM) 12 and a Processing Unit (PU) 14 for respectively
storing and operating upon Data Structures (DSs) 16 under control of a plurality of

Processing Routines (PRs) 18 executing on PU 14 and including a Mass Storage (MS)

WO 96/41302 PCT/US96/04151

g

20 for storing and providing DSs 16 and PRs 18 to be operated upon by PU 14 in
MEM 12. As shown, System 10 further comprises an Image Scanner (IS.) 22 for
providing a first input comprising scanned images of characters and a second, real time
input comprising images of characters as represented by the sampled positions of an
Electronic Pen (EP) 24 over a Digitizing Tablet (DT) 26.

DSs 16 and PRs 18 executing on System 10 comprise a Character Recognition
System (CRS) 28 for recognition of both the scanned i images of characters, for
example, from a document scanned by IS 12, and the real time recognition of
characters provided as an input of EP 24 and DT 26. Each of PRs 18 control the

operation of PU 14 to perform a specific character recognition operation, each PR 18

thereby transforming PU 14 into corresponding, dedicated purpose processor for

performing a corresponding character recognition operation, while DSs 16 comprise
the data structures constructed by PRs 18 and PU 14 in performing the character
recognition operations.

As represented in Fig. 2, CRS 28 is comprised of four major functional
elements, respectively identified as Scanned Image Thinning Processor (SITP) 30,
Time Order Induction Processor (TOIP) 32, Low Level Recognition Processor
(LLRP) 34 and Linguistic Post Processor (LPP) 36. It will be noted that in the present
1mp1ementat10n of the present invention, each of SITP 30, TOIP 32, LLRP 34 and LPP
36 are implemented as a process, or group of routines, executing on PU 14 and
operating upon the following described DSs 16 residing in MEM 12.

SITP 30 is connected from IS 22 to receive scanned images of characters,
identified as Scanned Character Images (SCIs) 38, wherein each Scanned Character
Image(SCI) 38 represents a document, a page of a document or a portion of a page,
and functions in a reiterative manner to reduce the Scanned Character Images (SCIs)
38 to one or more equivalent Skeletal Images (SKIs) 40. Each Skeletal Image (SKI)
40 represents a handwritten stroke or group of handwritten strokes appearing in an
Scanned Character Image (SCD)) 38, such as a symbol or character, and is comprised
of one or more Skeletal Image Arcs (SARCs) 42. Each Skeletal Image Arc (SARC) 42
is comprised of a one pixel wide i 1mage representing a stroke, that is, a line of a

character, such that the topological and geometric semblance between the handwritten

WO 96/41302 ' ' PCT/US96/04151

7

strokes appearing in an Scanned Character Image (SCI) 38 and the Skeletal Image Arc
(SARC) 42 of the Skeletal Images (SKIs) 40 corresponding to the Scanned Character
Image (SCI) 38 is preserved. '

TOIP 32 receives the Skeletal Image Arcs (SARCs) 42 of the Skeletal Images
(SKIs) 40, orders the Skeletal Image Arcs (SARCs) 42 into clusters in a spatial
sequence simulating the time ordered generation of handwritten strokes, and joins the
ends of selected ones of the Skeletal Image Arcs (SARCs) 42 in such a manner as to
emulate a real time handwritten character input, such as may be provided from EP 24
and DT 26. The joining of Skeletal Image Arcs (SARCs) 42 is performed by a ballistic
motion approximation which induces the minimum change in the angle between each
pair of joined arcs, that is, each pair of joined Skeletal Image Arcs (SARCs) 42, to
emulate the natural hand motion occurring in the creation of handwritten characters.
TOIP 32 then generates Ordered Cluster Arrays (OCAs) 44 corresponding to one or
more Scanned Character Images (SCIs) 38 wherein each Ordered Cluster array (OCA)
44 is an ordered array of coordinates defining and corresponding to points along the
Skeletal Image Arcs (SARCs) 42 in such a manner as to simulate and correspond to
the sampled coordinates that would be received from a digitizing tablet for an
equivalent handwritten character image.

LLRP 34 is connected from EP 24 and DT 26 to receive Tablet Characters
(TABCs) 46 from DT 26 and EP 24, wherein each Tablet Character (TABC) 46 is
comprised of a set of Sampled Coordinates (SCORDs) 48 defining and corresponding
to points alohg the lines forming the Tablet Characters (TABCs) 46. LLRP 34 is
further connected from TOIP 32 to receive the Ordered Cluster Arrays (OCAs) 44
wherein, as described, each Ordered Cluster Array (OCA) 44 is an ordered array of
coordinates defining and corresponding to points along the Skeletal Image Arc
(SARC)s 42 representing the Scanned Character Images (SCIs) 38 in a manner
simulating the sampled coordinates received from EP 24 and DT 26. The Tablet
Character (TABC) 46 and Ordered Cluster Array (OCA) 44 inputs to LLRP 34 are
thereby equivalent, both being comprised of sets or arrays of coordinates defining the

lines forming input characters.

WO 96/41302 PCT/US96/04151

/0
LLRP 34 then generates a Sequential Character Array (SCA) 50 which

includes a Character List (CL) 52 for each character representation from either input,
that is, from IS 22 or from EP 24 and DT 26, wherein each Character List (CL) 52
contains one or more Character Identifications (CIDs) 54, each of which represents a
character that is a possible interpretation of the corresponding input character as
represented by a Tablet Character (TABC) 46 or an Ordered Cluster Array (OCA) 44.

Each Cluster Identification (CID) 54 is accompanied by a Confidence Level (CL) 56,

which is a measure of the likelihood, or probability, that the corresponding Cluster

Identification (CT) 54 represents a true interpretation of the corresponding handwritten
character.

Finally, LPP 36 receives each Character List (CL) 50 from LLRP 34, assembles

the Character Lists (CL)s 50 into character strings of two or more characters, and
performs linguistic and lexical processing operations upon the character strings to
determine the most probable correct interpretation of the handwritten input characters
as elements or components of words, LPP 36 then generates a corresponding Output
String (OS) 58 representing the most probable interpretation of the handwritten input

characters as words, characters or symbols.

B. Description of Scanned Image Thinning Processor (SITP) 30
1. General Description

Hand written alphanumeric text, whether scanned or created in "real time", may

be regarded as characterized by connected or otherwise spatially related groups of
strokes or lines. Tﬁat is, messages or text is comprised of words and groups of
characters or numbers, words and numbers are comprised of characters, and characters
are comprised of topologies and geometry’s of connected pieces, that is, strokes or
lines, which are created in directions and orders, or sequences, that are constrained
according to the rules of construction of the characters.

Documents containing handwritten information provide the general topologies
and geometry’s of the strokes comprising the characters, but lack two properties that
are helpful in automatic recognition of the characters. The first is geometric precision,
that is, the strokes comprising the characters will vary in geometry and width from the

fact of being hand formed and because various implements will be used in forming the

WO 96/41302 PCT/US96/04151

/

strokes. The second lack is the time order of - =ation of the strokes comprising the
characters when the characters are scanned from a previously created document as, in
this instance, only the final result of the character creation process is available. SITP 30
of the present invention addresses the first lack by providing a method and apparatus
for idealizing hand written characters by reducing the character strokes to one pixel
wide images as if the characters had been drawn with a one pixel wide pen, thereby
providing a degree of geometric precision and allowing the characters to be described
as probability related groups of strokes in terms of their locations and geometry’s and
the topology of the interconnections of the strokes. Other mechanisms of the character
recognition system of the present invention then infer the time order of creation and
directions of the strokes and use other character recognition methods to further
analyze this reconstructed data.

SITP 30 accordingly performs three operations upon input characters and it
should be noted that, although SITP 30 is implemented in CRS 28 specifically for the
analysis of scanned characters, the operations of SITP 30 may also applied to "real
time" characters, that is, as characters are entered with a pen and tablet. These
operations are the initial segmentation of a character or characters into connected
objects comprised of strokes, the thinning of character strokes to skeletal form at
various image resolutions, and the transcribing of the skeletalized strokes as
topological and geometric entities.

a. Segmentation

First considering the initial segmentation of a character or characters or parts of
a character into connected objects comprised of strokes, that is, lines or arcs, a stroke
is defined herein as comprised of foreground, or "black" pixels, as opposed to
background, or "white" pixels. A connected object is comprised of one or more strokes
and is further defined herein as a collection of foreground, or "black", pixels each of
which can be reached from another foreground pixel through a path of successive steps
across adjacent foreground pixels wherein each step may be in any one of eight
directions, that is, to any one of the eight pixels adjoining a given central pixel in a
square three by three array. A connected object may comprise a complete character, or

a part of a character, or a combination to two or more characters or parts of a

WO 96/41302 PCT/US96/04151

/ P
character and it can be expected, given data from scanners or pens and tablets of

sufficient quality, that a connected object will frequently have come from a single pen-

down to pen-up stroke or a combination of touching or intersecting stokes.

Segmentation of the data from a scanned page into connected objects thus
represents a first approximation at dividing a page of data into manageable and
possibly meaningful parts or components by identifying those portions of the page
comprised of connected objects comprised of foreground data. The initial
segmentation of Scanned Character Image (SCI) 38 data into connected objects further
allows the objects thus created to be analyzed at various resolutions, that is, in various
representations, thus providing groups of alternate data sets for subsequent analysis,
each of which has been derived from the same data subset, that is, connected object.

Segmentation is accomplished by a process which takes as its input a Scanned
Character Image (SCI) 38 and lists, for each connected object found therein, the spans
of contiguous foreground pixels comprising the connected objects wherein a connected
object is defined herein as a group of set of intersecting or connected lines of pixels.
The segmentation process recognizes the joining and separation of collections or
groups of foreground pixels into objects, determines when the page has been
completely scanned, and writes the resulting data into an output file for subsequent
processing. This step thereby generates data representing the connected objects
appearing on the page, and in a useable spatial order. This step also provides a
significant data compression for many text pages, which usually contain a large
proportion of background space.

As described, Scanned Character Image (SCI) 38 may comprise a scanned
image of a page or a portion of a Page and segmentation may be performed upon an
entire Scanned Character Image (SCI) 38 or upon a portion of the image data in a
Scanned Character Image (SCI) 38. Segmentation may therefore be effectively
accomplished in the manner most effective for the scanning and segmentation
processes themselves and for the subsequent processes described below, such as a
single "pass" across a page, for example, from top to bottom, or in several passes

across a page, but accumulates data for all objects currently to be processed.

WO 96/41302 PCT/US96/04151

/5

Finally, a Scanned Character Image (SCI) 38 is preferably a high resolution -
representation of the image, for example, at 302 dots per inch (dpi), to facilitate the
generation and processing of representations of the Scanned Character Image (SCI) 38
at various resolutions as described below.

The segmentation process is illustrated in Fig. 3, wherein Segmentor (SEG) 60
receives a current Scanned Character Image (SCI) 38 from Scanning Processor
(SCANP) 62 as an Scanned Character Image (SCI) File (SCIF) 64 wherein each
Scanned Character Image File (SCIF) 64 is a data structure storing information

identifying the foreground and background pixels of the scanned image. A Scanned
Character Image File (SCIF) 64 data structure can assume one of several different
forms, depending upon which form is most efficient for processing by Segmentor
(SEG) 60. For example, an Scanned Character Image File (SCIF) 64 may be a bitmap
array wherein each bit in the array represents a pixel of the Scanned Character Image
(SCI) 38 image, with the state of bit (0 or 1) representing whether the corresponding
pixel is a background or foreground pixel and the location of the bit in the array
representing the coordinates of the corresponding pixel in the image.

Segmentor (SEG) 60 then scans the current Scanned Character Image File
(SCIF) 64 to identify foreground pixels and, as described below in descriptions of the
smoothing and thinning processes, associated background pixels, defining the context
of each foreground pixel. Segmentor (SEG) 60 also identifies, for each foreground
pixel, all associated contiguous foreground pixels and generates, for each Scanned
Character hhage (SCI) 38, a set of Object Lists (OL) 66 wherein each Object List
(OL) 66 corresponds a Connected Object (CO) 68 wherein a Connected Object (CO)
is defined as a group of contiguous foreground pixels, that is, as a stroke or connected
group of strokes of the image represented by the Scanned Character Image (SCI) 38.

Again, Object Lists (OLs) 66 may assume one of several possible forms,
depending upon the form most efficient for the implementation of the thinning process
described below. For example, an Object List (OL) 66 may be comprised of a bitmap
of a group of contiguous foreground pixels and the associated background pixels
forming the local context of the foreground pixels and a set of coordinates identifying

the location of the bitmap in the Scanned Character Image (SCI) 38. In another

WO 96/41302 PCT/US96/04151

/Y

implementation an Object List (OL) 66 may be comprised of a list of the coordinates of
the foreground pixels and contextual background pixels of the connect object, together
with the states of the pixels as foreground or background pixels.

Segmentor (SEG) 60 then provides the Object Lists (OLs) 66 representing the
strokes appearing in a Scanned Character Image (SCI) 3810 a Thinning Processor 70.

b. Thinning

Character strokes, whether scanned from an image or entered individually in
real time through a tablet and pen, are often many pixels in width and the width of the
strokes may vary significantly, both within a stroke and between strokes. The data
representing the character strokes, however, are more readily processed for character
recognition when the strokes have been transformed into a uniform format, or width,
such as single pixel wide lines, as provided by the thinning operation of SITP 30.

The thinning operation fundamentally performs the thinning operation by

“stripping away" the "outside edges", that is, the outside pixels, of a stroke, without

destroying the stroke as a connected object to reduce each stroke to a line of
connected, that is, adjacently located, single pixels. The thinning operation, however,
should be fast because the process is inherently reiterative and must be applied to
thousands of pixels and their neighborhoods and should be readily modifiable, for
example, to accommodate different conditions, such as the use of recognition
processes which use multiple pixel wide strokes.

The thinning operation of the present invention is thereby implemented in a
cellular processing method which assumes a 3x3 data kernel, that is, the operation
performed in each iteration operates upon kernels of 3x3 square arrays of pixels
comprised of a central pixel and its 8 adjacent pixels. The operation as implemented is
also table driven, that is, uses a look-up table to determine the thinning result for each
3x3 array of pixels, and operates upon 4 pixels and their neighborhood at a time,
although this may vary from implementation to implementation. The operation as
implemented is further defined and redefined by a setup process, or routine, which

accepts new or modified image alteration rules to adapt to different conditions or
requirements.

WO 96/41302 PCT/US96/04151

/5

. iz thinning operation is implemented in a Thinning Processor 70, which in
turn is comprised of two subprocessors implemented through PRs 18 executing on PU
14. The first is identified in Fig. 3 as Table Constructor (TBLC) 72 and controls the
run-time construction of a Look-up Rule Table (LRT) 74 which embodies and defines
a set of rules for smoothing and thinning of strokes, identified respectively in Fig. 3 as
Smoothing Rule (SMR) 76 and Thinning Rule (THR) 78. The second, identified in Fig.
3 as Image Thinner (IMGTH) 78, reads the rules from Look-up Rule Table (LRT) 74
and performs these operations upon each Object List (OL) 66 in turn, that is, upon
each Connected Object (CO) 68 of the Scanned Character Image (SCI) 38 in turn, and
generates, for each connected object, a corresponding Thinned Image (THIM) 78
containing a skeletized representation of the corresponding connected objects defined
defining the smoothing and thinning operations defined performs the rule defined in the
table throughout a specified area of pixels, for example, upon the foreground and
background pixels defining a connected object, to generate a skeletized representation
of the connected object.

The fundamental operation for the thinning processing may be stated, in
summary, as smoothing the edges of a connected object and then reiteratively
removing one layer of pixels from each of the left, bottom, right and top sides of the
connected object, so long as the removal of a pixel does not destroy the connectivity of
the object, until a complete cycle has been performed without any further changes in
the object. The result of the thinning operation will then be a maximally connected
object wherein the only remaining foreground pixels having more than two
neighboring, or adjacent, foreground pixels will be those pixels located at the junctures
of otherwise one pixel wide paths or lines.

The present implementation of Smoothing Rule (SMR) 76 and Thinning Rule
(THR) 78 are described in further detail in a following detailed description of SITP 30.

Lastly, it must be noted that a thinning operation may result in loss of
information that is useful in recognition of characters or the retention of more
information than is necessary and that the amount of information retained for each
stroke after the thinning process is dependent, in part, upon the resolution in which the
stroke is represented, such as 75 dpi, 150 dpi or 302 dpi . That is, an external

WO 96/41302 PCT/US96/04151

/6

protrusion or an internal void of a stroke may be accidental or meaningful, but the
value of such information will not be known until a later point in the recognition
process. In the reverse, the retention of too much information will slow the recognition
process because of the need to process addition but unneeded information.

As such, SITP 30 as presently implemented generates and performs the
thinning operation upon a high resolution representation of each input Connected
Object (CO) 68, such as at 302 dpi, and then generates two additional representations
at lower resolutions, such as 75 dpi and 150 dpi, from the result of each thinning
operation on a Connected Object. As indicated, this operation is performed by a
Multiple Resolution Generator (MRG) 80 which, as commonly understood in the art,
effectively deletes every other pixel from the 302 dpi representations to generate
corresponding 150 dpi representations and three of every four pixels from the 302 dpi
representations to generate corresponding 75 dpi representations. Multiple
Representation Generator (MRG) 80 may also generate skeletized representations of
the connected objects at other resolutions, as is also well understood in the art.

As shown, the multiple skeletized representations of each Scanned Character
Image (SCI)) 38 generated by Multiple Representation Generator (MRG), at the
various resolutions are stored in corresponding Skeletized Scanned Character Images
(SSCIs) 82, identified respectively as SSCIs 82a, 82b and 82¢ for a given Scanned
Character Image (SCI) 38 for subsequenf operations by a Transcriber Processor 84.

¢. Transcribing '

As shown in Fig. 4, the skeletized representations of the strokes comprising the
original Scanned Character Image (SCI) 38 input images are read from Skeletized
Scanned Character Images (SSCiIs)s 82 and transcribed into corresponding data
structures referred to as Skeletal Image Files (SIFs) 86, correspondingly identified as
SIFs 86a, 86b and 86c, by a Transcriber Processor (Transcriber) 84 implemented
through corresponding PRs 18 executing on PU 14,

In this process, Transcriber Processor (Transcriber) 84 will, for each Skeletized
Scanned Character Image (SSCI) 82, read the coordinates of the pixels comprising the
lines of the skeletized image residing in an Skeletized Scanned Character Image (SSCI)
82, will identify the Skeletal Image Arcs (SARC)s 42 of the skeletized image, will

WO 96/41302 PCT/US96/04151

/7

construct a Skeletal Image Arc Descriptor (SIAD) 88 for each Skeletal Image Arc
(SARC) 42 in the skeletized image in the and will store the Skeletal Image Arc
Descriptors (SIADs) 88 in a Skeletized Image File (SIF) 86 corresponding to the
Skeletized Scanned Character Image (SSCI) 82.

The operations of Segmentor (SEG) 60, Thinning Processor (THINP) 70 and
Transcriber Processor (Transcriber) 84 are illustrated in Figs. 5 and 6, wherein Fig. 5
represents an original scanned image of two crossed lines forming an X. Fig. 6 in turn
illustrates the results of the segmentation and thinning operations whéreby the original
image has been segmented from other images as comprising a single Connected Object
(CO) 68 and the strokes of the object have been thinned, or skeletized, to lines having
a width of one pixel.

In the example shown in Figs. 5 and 6, Transcriber Processor (Transcriber) 84
will identify this Connected Object (CO) 68 as comprised of four Skeletal Image Arcs
(SARCs) 42, identified respectively in Fig. 6 as Skeletal Image Arcs (SARCs) 42a,
42b, 42c and 42d, which meet at a Node 90. As identified by the transcription
operation, each of Skeletal Image Arc (SARC)s 42a through 42d is comprised of a
contiguous path of pixels that begins or ends either at a junction or meeting, referred
to as a Node 90, with another contiguous path of pixels comprising another Skeletal
Image Arc (SARC) 42, as determined by the occurrence of a pixel that is shared by
two or more Skeletal Image Arc (SARC)s 42, or in “space”, that is, at a point where
there are no further pixels along the contiguous path of pixels. A Skeletal Image Arc
(SARC) 42 may also be regarded as having an end, and a next Skeletal Image Arc
(SARC) 42 as having a beginning, at a point where a path of pixels contains a
significant change in direction, whereupon the path of pixels is separated into btwo
Skeletal Image Arc (SARC)s 42 meeting at the pixel where the change in direction
occurs.

As was illustrated in Fig. 4, each Skeletized Image File (SIF) 86 includes a
Skeletal Image Arc Descriptor (SIAD) 88 for and corresponding to each Skeletal
Image Arc (SARC) 42 of each Connected Object (CO) 68 found in the Skeletized
Scanned Character Image (SSCI) 82. As illustrated in Figs. 7 and 8, each Skeletal
Image Arc (SARC) 42 is comprised of Nodes 90, Links 92 and Incremental Steps

WO 96/41302 PCT/US96/04151

22

(INCSs) 94 along Links 92 and each Skeletal Image Arc Descriptor (SIAD) 88
correspondingly includes Node Descriptors (NODDs) 96 and Link Lists of Incremental
Steps (LLISs) 98 for and corresponding to each Skeletal Image Arc (SARC) 42
represented therein.

A Node 90 is a location along a Skeletal Image Arc (SARC) 42 of a Connected
Object (CO) 68 and occurs, in particular, at an end of a Skeletal Image Arc (SARC) 42
where, for example, a line of a Connected Object (CO) 68 terminates or where a line
connects or intersects with another line of the Connected Object, or at the point that a
line bf a Connected Object (CO) 68 changes direction, thereby defining the start
another Skeletal Image Arc (SARC) 42. The Skeletal Image Arc Descriptor (SIAD) 88
corresponding to a given Node 90 thereby contt;lins a Node Descriptor (NODD) 96 for
each Node 90 of the corresponding Skeletal Image Arc (SARC) 42 and each Node
Descriptor (NODD) 96 contains the coordinates of the corresponding Node 90.

A Link 92 is comprised of a path of contiguous pixels defining a Skeletal Image
Arc (SARC) 42, that is, a fine or stroke of a Connected Object (CO) 68, between two

Nodes 90 of the Connected Object (CO) 68 and is described by a Link List of

Incremental Steps (LLIS) 98 describing the Incremental Steps (INCSs) 94 along the

path or line of the Link 92 wherein each Incremental Step (INCS) 94 describes the
direction and location of a next contiguous pixel along the path and wherein a Link
List of Incremental Steps (LLIS) 98 be read in either direction along the path to locate
successive pixels of the path.

In the present implementation, each Incremental Step (INCS) 94 is of a single
pixel, that is, a Link List of Incremental Steps (LLIS) 98 describes the locations and
directions of successive single pixels along the path of the Link 92 and each
Incremental Step (INCS) 94 is therefore required to describe only the directions to the
next pixels in either direction along the path of the Link 92. In alternate embodiment,
each Incremental Step (INCS) 94 may cover spans of two or more pixels at a time and
will thus describe the locations of successive groups of two or more pixels; in this
instance, each Incremental Step (INCS) 94 will describe the directions and distances to
the next groups of two or more pixels in either direction along the path of the Link 92.

Lastly, in yet another alternate implementation, each Incremental Step (INCS) 94 may

WO 96/41302 PCT/US96/04151

/7

contain the coordinates of a corresponding pixel of the Link 92 path and the
coordinates of the next pixels or groups of pixels in either direction along the Link 92
path. . .

A Node Descriptor 96 and its associated Link List of Incremental Steps (LLIS)
98 of a Skeletal Image Arc Descriptor (SIAD) 88 thereby describe a Skeletal Image
Arc (SARC) 42 of a Connected Object (CO) 68 represented therein. An Skeletized
Image File (SIF) 86 will thereby contain a complete description, in terms of Nodes 90
and Incremental Steps (INCSs) 94, of each stroke of the skeletal representation each
Connected Object (CO) 68 represented therein, that is, of each stroke and group of
connected strokes originally present in the original Scanned Character Image (SCI) 38.

In the instance of a Connected Object (CO) 68 comprised of two or more
connected or contiguous strokes, the Skeletal Image Arcs (SARCs) 42 of the
Connected Object (CO) 68 are further connected by link pointers into a cyclically
connected ring of the Nodes 90 of the Skeletal Image Arc (SARC)s 42 of the
Connected Object (CO) 68. The Skeletal Image Arc Descriptor (SIAD) 88 of each
such Connected Object (CO) 68 will thereby further include Node Pointers 100, which
include a Node Pointer 102 to the Node Descriptor (NODD) 96 of another Node 90 of
the cyclically connected ring of Nodes 90 of the Connected Object (CO) 68, usually
the closest other Node 90 of the Connected Object (CO) 68, a Link End Pointer 104
to an end of the Link List of Incremental Steps (LLIS) 98 associated with that other
Node 90, wherein the Link Pointers 100 of that other Node 90 will include a reverse
Link End Pointer 104 to the Link List of Incremental Steps (LLIS) 98 of the Skeletal
Image Arc Descriptor (SIAD) 88, a Next Link End Pointer 106 to an end of the Link
List of Incremental Steps (LLIS) 98 associated with a next Node 90 along the
cyclically connected ring of Nodes 90, which in turn will include a Link End Pointer
104 to an end of the Link List of Incremental Steps (LLIS) 98 of the Skeletal Image
Arc Descriptor (SIAD) 88, and a Link List Pointer 108 to the Link List of Incremental
Steps (LLIS) 98 of the Skeletal Image Arc Descriptor (SIAD) 88.

Transcriber Processor (Transcriber) 84 may use a variety of processes to
construct a Skeletal Image Arc Descriptor (SIAD) 88 from the skeletized images
residing in a Skeletized Scanned Character Image (SSCI) 82 , the specific

WO 96/41302 PCT/US96/04151

70

implementation of Transcriber Processor (Transcriber) 84 depending in part upon the
form in which the skeletized image data is presented in Skeletized Scanned Character
Images (SSCISs) 82. For example, the skeletized image data in Skeletized Scanned
Character Image (SSCI) 82 may be stored as bitmaps or as sets of pixel coordinates,
each bitmap or set of pixel coordinates corresponding to and representing a Connected
Object (CO) 68.

Whatever representation is used, Transcriber Processor (Transcriber) 84
begins, for each Skeletal Image Arc (SARC) 42, by finding one end pixel of the
Skeletal Image Arc (SARC) 42, either by finding a pixel that has only one adjacent

pixel, thus representing an end of a line in “space”, or a pixel that has two or more

adjacent pixels, thus representing a pixel of a line at the point where that line connects
with one or more other lines, or a pixel that has two adjacent pixels located
orthogonally with respect to one another, thus representing a point of the line where
the line has a significant change of direction and wherein one of the two adjacent pixels
is thereby the first pixel of a new Skeletal Image Arc (SARC) 42. This step may be
accomplished by either searching for pixels meeting these criteria directly, or by
selecting a starting pixel and traversing along the path of adjacent pixels until a pixel is
reached meeting these criteria.

Having found an “end” pixel, and thus a Node 90 of the Skeletal Image Arc
(SARC) 42, Transcriber Processor (Transcriber) 84 will then traverse the path of
pixels starting from the Node 90 pixel, constructing the associated Link List of
Incremental 'Steps (LLIS) 98 while traversing the path, until the other “end”
the line, representing the other Node 90 of the path, is reached.

pixel of

If one or both of the Nodes 90 of that path is an intersection or connection with
another Skeletal Image Arc (SARC) 42, that is, if the Connected Object (CO) 68
contains two or more Skeletal Image Arc (SARC)s 42, Transcriber Processor
(Transcriber) 84 will continue along the next Skeletal Image Arc (SARC) 42,
eventually traversing all of the Skeletal Image Arc (SARC)s 42 of the Connected
Object (CO) 68 and constructing Node Pointers 100, Node Descriptors (NODDs) 96
and Link Lists of Incremental Steps (LLISs) 98 while doing so until the Skeletal Image
Arc Descriptors (SIADs) 88 of the Connected Object (CO) 68 are completed.

WO 96/41302 ’ PCT/US96/04151

*

Transcriber Processor (Transcriber) 84 will then repeat this process for each
Connected Object (CO) 68 represented in the Skeleiized Scanned Character Image
(SSCI) 82. _ A

At this point, the handwritten characters or symbols of the original scanned
image have been reduced to skeletal forms, and the skeletal forms have been separated
into individual Skeletal Image Arc (SARC)s 42, with each Skeletal Image Arc (SARC)
42 and its associations with other Skeletal Image Arc (SARC)s 42 being individually
described by a corresponding Skeletal Image Arc Descriptors (SIADs) 88 in a
Skeletized Image File (SIF) 86.

The Skeletized Image File (SIF) 86 data structures are then provided to Time
Order Induction Processor (TOIP) 32, which uses this data to infer or deduce a time
order of creation of the strokes for use in subsequent character recognition, thereby
generating character stroke information that is similar to and analogous to that
provided by a "real time" character recognition input, such as that provided by an
electronic pen and digitizing tablet.

2. Detailed Discussion of SITP 30 Smoothing and Thinning Rules

a. Smoothing and Thinning Rules and Operations On Images

Next considering the operation of SITP 30 in further detail, as described above
SITP 30 performs operations on, for example, 3x3 kernel arrays of binary images
wherein the outcome of an operation on a pixel depends upon the state of the pixel
itself and its 8 surrounding neighbors. These operations may be used once or
reiterative, or as pﬁrt of a sequence of different operations, and may be used, for
example, for the removal of "stray" pixels or noise, for smoothing of edges of the
image, or, as described above, for reducing connected objects to skeletal
representations for subsequent recognition based upon the resulting abstracted images.
The following describes two table driven methods for performing these operations, one
treating one pixel at a time and the second operating with two by two sets of pixels.

The fundamental image processing methods utilized herein basically perform
the operation of turning background pixels into foreground pixels and foreground
pixels into background pixels dependent upon their contexts as defined by neighboring

pixels. For example, it may be desirable to change all foreground (1) pixels that have

WO 96/41302 PCT/US96/04151

FF
exactly one neighbor that is a foreground pixel into to background (0) pixel. Thus the
central pixel in each of the following 8 configurations shown in Fig. 9 would be turned
into a background pixel. _
In practice, the rules for which pixels are changed in given contexts are usually
more complex, but each rule states, for configurations like those illustrated above,
which pixels are to change state. It will be appreciated, however, that the number of

possible rules is very large as, for example, there are 512 possible configurations of a

3x3 pixel array and thus there are 5122 possible rules. Further complexity may arise

from the use of a sequence of different processing rules, such as a rule for smoothing
edges followed by the reiterative application of a rule for "removal" of edge pixels as in
generating a skeletal representation of the original image.

It should be noted that the method described below is implemented for a byte
oriented PU 14, such as an Intel 80486 microprocessor, but the present invention may
also be implemented in a dedicated bit addressable graphics processor or in a special
purpose processor which is capable of processing up to three image scan lines in
parallel.

As will be described in further detail below, the following method assumes a
byte oriented processor and that the image being processed is an integral number of
bits wide. The method further assumes that the image is densely packed, for example,
with 8 pixels to the byte, and that the represented image is surrounded by at least a
single layer or boundary of implied background pixels, to establish "

neighboring"
pixels, that fs, a group of adjacent pixels, for pixels on the edge of the image.

The method further operates upon a set of scan lines of the original image at a
time, wherein the current set of scan lines are held in a temporary work buffer. The
current set of scan lines preferably includes at least one line ahead of the line
containing the pixel or pixels currently being operated upon, to avoid the unwanted
spatial propagation of effects resulting from a current operation, and the process

generates "off image" pixels for this purpose, if necessary.
Finally, during each iteration the image is processed one byte at a time and the
results of the processing of each image byte are accumulated in a corresponding

operation byte wherein the bits of the operation byte represent image pixels whose

WO 96/41302 PCT/US96/04151

>3

state is to ciiange. The operation byte is then exclusive ORed with the image byte, if
the operation byte is non-zero, to generate a modified image byte which replaces the
original image byte.

To illustrate for an implementation of the present invention operating upon a
single bit at a time, this implementation will create a 9 bit index array for each 3x3
local configuration of pixels, referring as a subject array, wherein the index array
contains three bits from each of the line currently being processed, the line above or
proceeding the line being processed and the line below or following the line being
processed, which are referred to respectively as the current, above and below lines.
The relationship of the index array to a current subject array being processed may be
illustrated as shown in Fig. 10,
wherein d e f are the pixels of the current line, a b ¢ are the pixels of the above line and
g hi are the pixels of the below line.

Anindex abcd efghiis generated from the 3x3 pixel index array and
contains the states, 1 or 0, of the index array as read in the orderabcdef ghiand
are used to index a table. The table contains an entry, referred to as an operation array,
for each index wherein each operation array of the present example contains a single
bit, corresponding to pixel "e", and the state of the bit of the operation array, such as
"1" or "0", indicates whether the currently central pixel, that is, pixel e, is to retain its
current state or to change its current state. The single bit of the operation array is then
exclusive ORed with the "e" pixel to determine a modified "e" pixel which replaces the
original "e" pixel.

It should be noted, with respect to the following discussions, that there are a
number of methods by which the processing of the image can be accelerated when
appropriate to the processing rule. For example, consider the byte
XX XX XX X X in its neighborhood of 8 adjacent bytes, which may be represented as
shown in Fig. 11.

The 8 pixel byte represented by x x x x x x x x may be "passed over" with
detailed processing if the current processing rule accommodates any of a number of
conditions. For example, if the rule directs that a background pixel will never under

any conditions be transformed into a foreground pixel, then a byte having all

WO 96/41302 PCT/US96/04151

27

background pixels can be passed over. Likewise, if the rule directs that a foreground
pixel will never be transformed into a background pixel, then a byte having all
foreground pixels can be passed over. Further, if the rule directs that a foreground
pixel completely surrounded by foreground pixels never transforms into a background
pixel, then a byte having all foreground pixels can be passed over if all eight

neighboring bytes are also all foreground pixels. Finally, if the rule directs that a

background pixel completely surrounded by background pixels never transforms into a
foreground pixel, then a byte having all background pixels can be passed over if all
eight neighboring bytes are also all background pixels.

It should be noted that there are other possible accelerations that may be used,
again if appropriate to the current rule, but consideration must be taken of the

increased processing cost necessary for conditions which require pixel by pixel
examination of a neighborhood.

Finally, there may be accelerations applicable to iterative processing of the

same image with the same rule. For example, if a rule operates iteratively on an image,
then in any iteration after the first pixels of the image that did not change during the
last iteration cannot change during the current iteration unless they are, or are
neighbors of] pixels that did change during the preceding iteration.

This acceleration recognizes the principle that the effects of a process
according to a given rule propagate by at most one pixel per iteration and may be
implemented, as in the present invention, by a mechanism for tracking changes in
image pixels during processing according to the current rule or rules.

For this reason, the change tracking mechanism generates a return array for
each line of the scanned image wherein each return array indicates, for the
corresponding line, the "span" defined by the leftmost and rightmost bytes that were
changed in the current iteration. The mechanism initializes the return arrays to
encompass the full image at the start of the first iteration of a process and at the
conclusion of the process, which is indicated by no changes occurring in the current
iteration, indicates the useful end of the iterations by generating a return array having
an "impossible"

byte.

span having a leftmost byte that is locate to the right of the rightmost

WO 96/41302 PCT/US96/04151

25"

The change tracking mechanism uses the return arrays to bound the process -
during all iterations after the first but assumes that the current contents of each return
array bind the span to be processed in the current iteration by one pixel too tightly,
which is a possible result of an preceding iteration. The change tracking mechanism
therefore extends, or "fattens", the span to be processed by one byte on both the right
and the left of the indicated span and by one pixel along all edges parallel to the scan
line, wherein the "fattening" operation is clipped, or limited, by the actual bounds of
the image.

The change tracking mechanism further generates or sets a flag stating whether
the changed span was null and provides a number or value representing the number of
pixels that were changed in the iteration, the mechanism thereby being informed when
to stop iterating because there are no more changes resulting from iterations of the
process.

Finally, and as described above, SITP 30 may apply a sequential set of rules to
an image, perhaps in a cyclic manner, and SITP 30 will preferable bound these
processes in a like manner using return arrays to control the reiteration of the
sequential set of rules. In this instance, SITP 30 will generate a return array for each
rule and at the start of each new rule in the sequence of rules will pass to the new
current rule a return array which is a logical union of the last iteration of the preceding
rule. The union array thereby represents the results of the application of each
succeeding iteration of the rules and is used as the starting return array for the first
current iteration of the new current rule. The new current rule will thereby set its "left"
and "right" edges at the "leftmost" and "rightmost" edges of the span resulting from
the previous applications of itself and the preceding iterations of the other rules in the
sequence of rules.

As has been described, the present implementation of SITP 30 is preferably
table driven, wherein a table is used to store and look up the processing results for
groups or sets of pixels, because of the increased processing speed that can be
obtained with table driven processing. While there is no limit in principle to the sizes of
the tables used in the processing, there may be limits due to memory and processing

limitations.

WO 96/41302 PCT/US96/04151

2<

For example, an implementation providing table driven simultaneous processing
of 2x2 pixel subject arrays using an index generated from 4x4 index arrays of the
image pixels may be illustrated by the array illustrated in Fig. 12, wherein the individual
pixel operations for the 2x2 subject array comprising pixels F, G, J and K is to be
determined using the index generated from the 4x4 index array comprising pixels A, B,
C,D,E,F,GHLJK L MN,OandP asan index into a table. A table
constructed on these arrays will provide an operation array of four bits, corresponding
individually to the pixels of the input processing array and designated respectively as f

g, j and k, to be exclusive ORed with the four pixels of the 2x2 subject array to

selectively "flip" or not "flip" the states of the individual pixels of the 2x2 subject array.

It should be noted that this implementation can provide an operation array defining the

individual operations, flip or not flip, to be performed on each of the four individual

pixels of the subject array because the index array contains the information necessary
to completely define the local contexts of each of the four pixels of the subject array.

This table will contain 64 Kbytes of operation array information, which may be
reduced to 32 Kbytes by denser packing of the information therein, For example, the
index may be reduced to 15 bits, by eliminating pixel A from the index, and each entry
in the table may store two operation arrays. In each entry in the table, one operation
array, identified as f-g-j-k, will apply when the state of pixel A is "1" and the other
operation array, identified as f-g'-j-k', will apply when the state of pixel A is "0".

This implementation will process two lines of an image at a time and, after four
table look-ups, will have generated two bytes of operation array which, if non-zero,
will be exclusive ORed with the pixels of the original image to generate the modified
pixels of the modified image.

Again, certain accelerations are available to reduce the required processing,
which may be illustrated with the pixel array represented in Fig. 13.-

In this example, if the rule directs that no background pixel ever turns into a
foreground pixel and if both x x x x x x x x and YYYYYyyy are all background
pixels, then x x x x x x x x and YYYYyyyy need not be processed. Simularly, if the
rule further directs that no foreground pixel ever turns into a background pixel and if

bothxxxxxxxxandyyyyyyyyarebothforegroundpixels, thenxxxxxxx x

WO 96/41302 PCT/US96/04151

27

andyyyyyyyy need not be processed. i the rule directs that a background pixel -
completely surrounded by background pixels never turns into a foreground pixel and x
xxxxxxxandyyyyyyyy are background pixels, thenxx xxxxxxandyyyy
yyyy need not be processed if all ten of the surrounding pixels are background pixels.
Finally, if the rule directs that a foreground pixel completely surrounded by foreground
pixels never turns into a background pixel and x x xxxxxxandyyyyyyyy are
foreground pixels, thenx x xxxxxxand yyyyyyyy need not be processed if all
ten of the surrounding pixels are foreground pixels. .

b. Specification of Rules

As described above, a present implementation of SITP 30 operates upon 3x3
index arrays having 1x1 subject arrays and is thus defined by a processing rule
comprised of a set of 512 rules wherein each rule defines the operation to be
performed on a subject array for each of the possible index arrays. The processing rule
may be stored as "truth values" in a rule table or list, wherein each truth value
corresponds to a rule of the processing rule, and a specific or particular processing rule
may be generated by successive modifications to a basic or starting processing rule
initially embodied in the rule table. The following will describe, in part by example, the
construction of a processing rule table using a 2 dimension notation for defining
meaningful sets of 3x3 arrays of pixels and their corresponding truth values specifying
the operation to be performed on the central pixel of each 3x3 array according to the
processing rule.

According to the notation used in the following, a "B" represents a black, or
foreground, pixel while a "-" represents a white, or background, pixel and an "e"
indicates that the pixel may be either a foreground or background pixel. Thus,
considering the following patterns illustrated in Fig. 14, the left array represents an
array having all foreground (black) pixels with four orthogonal background (white)
pixels, regardless of the states of the states of the diagonal pixels while the right array
represents an array having a background (white) pixel located vertically between two
foreground (black) pixels. There are 16 possible arrays which meet the conditions
expressed in the left array and 64 possible arrays which meet the conditions expressed

in the right array.

WO 96/41302. PCT/US96/04151

27

A set of basic array patterns such as those illustrated just above can be
extended to include the versions, variations or modifications of the basic array patterns
that result from rotation or reflection of the basis array patterns, the reflections and

rotations being represented or identified, for example, by numeric codes based upon
the diagram illustrated in Fig. 15.

The numeric codes are based upon summations of the values of the positions of
the above diagram to which a selected pixel of a basic array pattern maps for each

rotation or reflection, starting with the basic array pattern superimposed on the

diagram with the selected pixel in the "1" position of the diagram. Thus, the numeric

code 1+128 is the sum of the values at positions 1 and 128 are indicates or represents a

basic array pattern in its original position at "1" and with the pattern reflected about
the vertical axis of the diagram while the numeric code 1+4+16+64 is the sum of the
values at positions 1, 4, 16 and 64 and corresponds to a basic array pattern in its

original position at "1", with rotations of +90 and -90 degrees, respectively to

positions "4" and "64", and with a rotation of 180 degrees to the "16" position. It is
apparent that numeric code values generated by use of this diagram is sufficient to
express rotations of a basic array pattern of 90, 180 and 270 degrees, plus right-left
and/or top/bottom reflections.

Two examples of extended basic array patterns and interpretations of the
extended patterns are shown in Fig. 16, which represents all pixels, foreground or
background, with only one diagonal foreground pixel, with any combination of
orthogonal pixels, and Fig. 17, which represents a foreground pixel between two
diametrically opposite background pixels with any combination for the remaining pixels
in the array.

Finally, there are four operations that can be performed on the center pixel of a

3x3 array: the pixel can be "flipped” to its opposite state, the pixel can be transformed

into a foreground pixel, the pixel can be transformed into a background pixel, or the
pixel can be left in its original state. It should be noted that there are equivalence’s
among these operations for certain conditions, a example being to transform a pixel
into a background pixel when it is already a background pixel. Such equivalencies,

however, are neither meaningless nor redundant as it is the intention of the present

WO 96/41302 PCT/US96/04151

>7

implementation that a processing rule be developed progressively, so that such
equivalencies are the outcome of the method of development of the processing rules.

Examples of rules developed as described above may be implemented through
computer program type statements, or commands, wherein the first parameter in such
commands would be a pointer to a particular rule table or set of rule tables. Such
statements can be incorporated into routines called by higher levels of code specifying
at different times the particular orientation to use or the processing rule that is to be
changed. Examples of such could include the following two exemplary commands in
the C language, illustrated in Fig. 18, wherein the first clears the rule table, effectively
directing that neither foreground or background pixels are to be transformed or
modified, regardless of their context. The second directs that isolated and projecting
foreground pixels be transformed into background pixels, that is, "trimmed" from the
edge of a connected object.

c. Automatic Construction of Rule Tables

As described, a rule'table for operating upon a 1x1 subject array in a 3x3 index
array contains 512 entries wherein the index of each entry represents a pixel bit pattern
of a 3x3 index array and wherein the value of the entry, that is, the state of the single
bit in the 1x1 operation array, has a value of, for example, 0, if the rule directs the
subject pixel is to be unchanged and 1 if the rule directs the subject pixel to be
"flipped" to the opposite state.

The modification of an existing rule table according to the previously described
methods is sfraightforward, gaining complexity only from the generation of the
multiplicity of array patterns implied by the "e" states in the array pattern and the
multiplicity of orientations specified by the orientation sets specified by the numeric
codes.

A multiplicity of array patterns and orientations is generated by nested
iterations which may be illustrated by the pseudocode illustrated in Fig. 19. wherein:
determines values of, and set the (probably four) shortcut flags and returns a no-error
code. ,

To maintain consistency among modify rule operations, the “shortcuts” are

reestablished at the end of each modify rule operation, with the resulting shortcut flags

WO 96/41302 PCT/US96/04151

Jo

becoming an appendage to the rule table. In the instance of a 3x3 index array,

four “shortcuts”, which may be expressed as:

there are

1) To determine whether a background pixel can ever be transformed into a
foreground pixel, determine whether there is a non-zero entry in any of the rule
locations *_* * * 1 * * * * where every ‘*” takes a value of 0 or 1;

2) To determine whether a foreground pixel can ever be transformed into a

background pixel, determine whether there is a non-zero entry in any of the rule
locations *_* * * 1 * * *

3) To determine whether a background pixel completely surrounded by

background pixels is transformed into a foreground pixel, test whether rule location
00000000O0O0is non-zero; and,

4) To determine whether a foreground pixel completely surrounded by

foreground pixels is transformed into a background pixel, test whether rule location

d. Automatic Construction of Rule Tables for Processing 2x2 Pixel
Index Arrays
A 32K byte table for processing 2x2 index arrays contains exactly the same
information as a 512 byte table, but the information is rearranged and contains
redundancies to increase the speed of processing. The table for 2x2 index arrays differs
from that for 3x3 index arrays, however, in that the process will set individual bits,
rather than bytes, and, wherein in the 512 byte table a byte would be set to 1 or 0, the
32K byte tabie will set 512 distinct bits to 1 or 0.

For example, consider the index array represented Fig. 20 wherein this index

array may occupy several different positions relative to a 2x2 array of pixels and the

neighborhoods of pixels of a 2x2 array, such as is illustrated in Fig. 21 wherein the any

of the “*’s may assume a value of 0 or 1.

""Each of these patterns represents the addresses of 128 bits in the rule table that
must be set, for a total of 512 bits, for each orientation of each pattern of each modify
rule command contributing to the specification of each rule. Because rule table

development is thereby so deeply nested, that is, requires to many iterations, significant

WO 96/41302 PCT/US96/04151

3/

processing time can be required to develop a table each time it is used and it is
generally preferable to pre-generate and store the table for use a required.

For this larger 32K byte table, as for the smaller 512 byte table, it is preferable
to automatically determine the truth values for possible processing shortcuts. As
described above, this is done at the end of execution of the modify rule command by
examining the resulting state of the rule table and the shortcuts may include, for
example:

1) To determine whether a background pixel can ever be transformed into a
foreground pixel, choose a specific pixel, such a ‘p’, in the pattern shown in Fig. 22
and determine whether there is a bit having the value 1 in any of the 256 bit locations
implied by
0.0000***(0*0*0**x

2) To determine whether a foreground pixel can ever be transformed into a
background pixel, determine for the same pattern whether there are any bits having the
value 1 in the locations implied by

00000 ***(0*1]*xp***

3) To determine whether a background pixel completely surrounded by
background pixels is ever transformed into a foreground pixel, determine whether
there is a bit having a value of 1 in the locations implied by the pattern illustrated in
Fig. 23; and

4) To determine whether a foreground pixel completely surrounded by
foreground pixels fs ever transformed into a background pixel, determine whether
there is a bit having a value of 1 in the locations implied by the pattern illustrated in
Fig. 24.

e. Table Construction In Abstraction of Objects to Skeletal Form

As described, the above processing of image pixels according to rule tables is
applied, in the present implementation, to operating upon bitmap images of black
(foreground) lines on white (background), such as handwritten or handprinted
characters to reduce the characters to one pixel wide lines. As has been described, this

process is generally performed according to the present invention by first smoothing

the outer contours, that is, edges, of the characters, referred to herein as objects, and

WO 96/41302 PCT/US96/04151

37

then iterative stripping off a layer of pixels from the left, top, right, bottom, and so on
of the objects in such a way that no foreground (black) pixel is removed which is an
essential connection between to other foreground pixels, that is, in such a manner
which preserves an object as a connected object. In general, this process will end when
there has been no change in an object after a predetermined number of consecutive
processing iterations, such as four consecutive processing iterations.

The smoothing operation, which may be executed once or several times, as

* required, may be defined by the pseudocode illustrated in Fig. 25 wherein certain of the
terms therein have been defined and discussed above,

Finally, exemplary C programming language code listings for the construction
and use of rule tables for processing 2x2 pixel arrays is illustrated and the
corresponding code for the processing of one pixel at a time can readily be derived
from this code by those of ordinary skill in the art.

C. Description of Time Order Induction Processor (TOIP) 32

1. General Description of TOIP 32

As described above, SITP 30 functions in a reiterative manner to reduce the
input character images as represented by Scanned Character Images (SCIs) 38 to their
equivélent skeletal images, referred to previously and in the following as Skeletal
Images (SKIs) 40, wherein each Skeletal Image (SKI) 40 is comprised of one or more
Skeletal Image Arcs (SARCs) 42, and stores the Skeletal Images (SKIs) 40 in
Skeletized Image Files (SIFs) 86 as Skeletal Image Arc Descriptors (SIADs) 88. SITP
30 further generates a plurality of Skeletized Image Files (SIFs) 86 from each Scanned
Character Image (SCI)) 38, each Skeletized Image File (SIF) 86 containing equivalent
representations of the skeletized characters, but at different resolutions,

Referring to Fig. 26, it is illustrated therein that TOIP 32 operates upon each
Skeletized Image File (SIF) 86 corresponding to a given Scanned Character Image
(SCT) 38 to order the strokes, that is, the Skeletal Image Arcs (SARCs) 42,
represented in the Skeletal Image Arc Descriptors (SIADs) 88 into Stroke Clusters
(SCs) 110 wherein each Stroke Cluster (SC) 110 is a group of one or more Stroke
Descriptors (SDs) 112 containing information describing Skeletal Image Arcs
(SARCs) 42 having a geometric and topological relationship such that the Skeletal

WO 96/41302 : PCT/US96/04151

33
Image Arcs (SARCs) 42 of a Stroke Cluster (SC) 110 have potential meaning asa -

stroke or strokes of a character or part of a character. TOIP 32 then orders the Stroke
Clusters (SCs) 110 of a Skeletized Image File (SIF) 86 into a spatial sequence
representing a left to right order across a page, thereby inferring a time order of
creation of the strokes represented by the Skeletal Image Arcs (SARCs) 42, and writes
the Stroke Clusters (SCs) 110 into a corresponding Ordered Cluster Array (OCA) 44.
Each Stroke Cluster (SC) 110 will thereby include at least one Skeletal Image Arc
(SARC) 42 and may therefore represent a Connected Object (CO) 68 or a plurality of
Connected Objects (COs) 68 wherein the spatial relationship of the Connected Objects
(COs) 68 of a Stroke Cluster (SC) 110 is such that the Connected Objects (COs) 68
may form a meaningful stroke or group of strokes of a character or part of a character.

. The process wherein TOIP 32 writes the Stroke Clusters (SCs) 110 derived
from each Skeletized Image File (SIF) 86 into a corresponding Ordered Cluster Array
(OCA) 44 is illustrated in Fig. 26 wherein the suffix attached to the reference numeral
of each Stroke Descriptor (SD) 112 indicates the spatial relationships between the
Skeletal Image Arcs (SARCs) 42 described therein. That is, Stroke Descriptor (SD)
112b contains descriptions of strokes which occur, in left to right order, before those
represented in Stroke Descriptor (SD) 112c and after those represented in Stroke
Descriptor (SD) 112c.

TOIP 32 then performs a stranding operation on the Skeletal Image Arc
(SARC)s 42 of the Stroke Clusters (SCs) 110 in each Ordered Cluster Array(OCA) 44
wherein, in those Stroke Clusters (SCs) 110 containing two or more intersecting
Skeletal Image Arcs (SARCs) 42, TOIP 32 joins the ends of selected ones of the
Skeletal Image Arcs (SARCs) 42 to generate “strands” of connected strokes, that is,
strands of connected Skeletal Image Arc (SARC)s 42 which are stored in
corresponding Stranded Stroke Descriptors (SSDs) 114. In this regard, it will be
remembered from a previous discussion that SITP 30 operates upon Connected
Objects (COs) 68 comprised of two or more connected but separately identifiable
paths of pixels to separate the connected paths into separately defined Skeletal Image
Arcs (SARCs) 42. In the stranding operation, therefore, TOIP 32 thereby effectively
rejoins selected ones of the Skeletal Image Arcs (SARCs) 42 of Connected Objects

WO 96/41302 PCT/US96/04151

34/

(COs) 68 originally comprised of two or more connected Skeletal Image Arcs
(SARCs) 42 into corresponding single stranded Skeletal Image Arcs (SARCs) 42 and
thereby effectively reconstructs, in part or in whole, the original Connected Objects
(COs) 68.

TOIP 32 then writes the Stranded Stroke Descriptors (SSDs) 114 into the
corresponding Ordered Cluster Arrays (OCAs) 44, that is, into the Ordered Cluster
Arrays (OCAs) 44 containing the corresponding non-stranded strokes, as illustrated in
Fig. 26. In Fig. 26, the dashed lines connecting Skeletal Image Arc Descriptors
(SIADs) 88 represent Skeletal Image Arc Descriptors (SIADs) 88 containing Skeletal
Image Arcs (SARCs) 42 which are stranded into single stranded Skeletal Image Arc
(SARC)s 42 and the arrows lines connecting certain Stroke Descriptors (SDs) 112
with corresponding Stranded Stroke Descriptors (SSDs) 114 represent the stranding of
corresponding Stroke Descriptors (SDs) 112 into Stranded Stroke Descriptors (SSDs)
114. As illustrated therein, Stranded Stroke Descriptor (SSD) 114x is created from
Stroke Descriptors (SDs) 112a and 112b, corresponding to Stroke Skeletal Image Arc
Descriptors (SIADs) 88a and 88b, and Stranded Skeletal Image Arc Descriptor
(SSIAD) 112y is created from Stroke Descriptors (SDs) 112d, 112e and 112f,
corresponding to Skeletal Image Arc Descriptors (SIADs) 88d, 88¢ and 88f

TOIP 32 passes the Ordered Cluster Arrays (OCAs) 44 to LLRP 34 which, as

will be described in a following discussion, assigns possible meanings to the strokes
described therein.

2. Detailed Description of TOIP 32

a. Stroke Descriptor Generator (SDG) 116 (Figs. 27A and 27B)

Considering Fig. 27A, TOIP 32 includes a Stroke Descriptor Generator (SDG)
116 implemented as a corresponding Program Routine (PR) 18 executing on PU 14 for
reading the information describing each Skeletal Image Arc (SARC) 42 of a selected
Skeletal Image File (SIF) 86 and constructing a Stroke Array (SA) 118 corresponding
to each Skeletal Image File (SIF) 86. Each Stroke Array (SA) 118 in turn contains a
Stroke Descriptor (SD) 112 for and corresponding to each Skeletal Image Arc
(SARC) 42 in the corresponding Skeletal Image File (SIF) 86.

WO 96/41302 ’ PCT/US96/04151

75

As illustrated in Fig. 27B, each Stroke Descriptor (SD) 112, in turn, contains
the Skeletal Image Arc Descriptor (SIAD) 88 of the corresponding Skeletal Image Arc
(SARC) 42, including coordinates of the end Nodes 90 in the NQDD 96 and the
coordinates of the pixels along the Link 92 path as described in the Link List of
Incremental Steps (LLIS) 98, and an Induced Direction String (DIRS) 120. As will be
discussed further below, an Induced Direction String (IDIRS) 120 contains a Stroke
Direction Entry (SDE) 122 for each pixel along the stroke path represented in the
Stroke Descriptor (SD) 112 and represents, for each pixel represented in the Stroke
Descriptor (SD) 112, an assumed direction of motion of an imaginary pen at the pixel
in forming the stroke described by the corresponding Stroke Descriptor (SD) 112. The
direction of motion is imposed upon each stroke under the assumed convention that
the strokes of characters are formed, by most writers, top to bottom and left to right
motions of a pen. This process is repeated for each Skeletal Image File (SIF) 86
corresponding to a g_iven Scanned Character Image (SCI) 38, that is, for each
resolution of representation of the skeletized image of the given Scanned Character
Image (SCI) 38.

In the present implementation, Stroke Descriptor Generator (SDG) 116
determines the coordinates of each pixel along a Link 92 path by reading the
Incremental Steps (INCSs) 94 of the associated Link List of Incremental Steps (LLIS)
98 along the pixel path of the Skeletal Image Arc (SARC) 42 starting from one Node
90 and converting the Incremental Steps (INCSs) 94 into corresponding x-y
coordinate locations of the pixels along the path described by the Link List of
Incremental Steps (LLIS) 98 by cumulatively adding the direction and distance
information in the successive Incremental Steps (INCSs) 94 to the starting coordinates
obtained from the starting end Node 90.

The Incremental Step (INCS) 94 information is also used to generate the
corresponding Stroke Direction Entries (SDEs) 122 for the Induced Direction String
(IDIRS) 120 of a Stroke Descriptor (Sb) 112. In the present implementation of Stroke
Descriptor Generator (SDG) 116, the imposed direction of motion of creation of the
stroke is resolved to four directions, that is, left, right, up and down, and is determined

either solely from the direction information from Link List of Incremental Steps (T.LIS)

WO 96/41302 PCT/US96/04151

| 7¢
98 or from the pixel coordinates by determining whether the maximum change in the x-

y coordinates from one pixel location to a next occurs in the x or y axis and in which
direction the maximum change occurs, that is, whether the maximum change is in the +
or - direction along that axis. In other implementations, the direction of motion may be
resolved to higher resolutions if necessary for consistent and accurate identification of
the characters and symbols. For example, and as will be well understood by those of
ordinary skill in the art, the direction of motion may easily be resolved to the 8
directions comprising left, left-up, up, up-right, right, right-down, down, and down-left
by noting the magnitude of change in the coordinate locations of from one pixel to the
next along the x and y axis and determining the simple ratio of these magnitudes,
rounded to the 90° and 45° angles comprising these directions, or, again, from the
direction information from the Link List of Incremental Steps (LLIS) 98.

It has been described above that in certain implementations of SITP 30 each
Incremental Step (INCS) 94 stores the coordinates of the locations of pixels or groups
of pixels along each Link List of Incremental Steps (LLIS) 98 path, rather than the
directions and distances to successive pixels or pixels along each Link List of
Incremental Steps (LLIS) 98 path. If SITP 30 is implemented in this manner, it will not
be necessary for Stroke Descriptor Generator (SDG) 116 to convert Incremental Step
(INCS) 94 direction and distance information into pixel coordinates as this information
will be available directly from Incremental Steps (INCS) 94, but it will then be
necessary for Stroke Descriptor Generator (SDG) 116 to generate Direction Strings
(DIRSs) 122 from the successive coordinates of the pixels.

b. Stranding Processor (STRP) 124 (Figs. 27A, 28A and 28B)

TOIP 32 further includes a Stranding Processor (STRP) 124 which, as
previously described, reads the Stroke Descriptors (SDs) 112 of each Stroke Array
(SA) 118, identifies those strokes whose Skeletal Image Arcs (SARCs) 42 as described
in the Stroke Descriptors (SDs) 112 indicate that the strokes intersect, and constructs
corresponding Stranded Stroke Descriptors (SSDs) 114.

In this regard, it has been described previously that SITP 30’s Transcriber
Processor (Transcriber) 84 divides a pixel path of a Connected Object (CO) 68 into

separate Skeletal Image Arcs (SARCs) 42 at those points where the pixel path meets

WO 96/41302 PCT/US96/04151

77

another pixel path of the Connected Object (CO) 68 or where there is a significant
change in direction in the pixel path. As such, what had been a single pixel path, that is,
a single stroke, of a character, is transcribed as two or more separately identified and
described strokes.

This process is illustrated in Fig. 28A wherein a Connected Object (CO) 68 is
illustrated in its original skeletized form as comprised of two intersecting Skeletal
Image Arcs (SARCs) 42, identified as Skeletal Image Arcs (SARCs) 42u and 42v.
Transcriber Processor (Transcriber) 84 operates upon such a Connected Object (CO)
68 by detecting the intersection or joining of Skeletal Image Arc (SARC) 42u and
Skeletal Image Arc (SARC) 42v at a common pixel, indicated as Intersection 126, and,
as illustrated in Fig. 28B, transcribing Skeletal Image Arc (SARC) 42u and Skeletal
Image Arc (SARC) 42v as Skeletal Image Arc (SARC)s 42w, 42x, 42y and 42z.

As has been described, Stroke Descriptor Generator (SDG) 116 will describe
each of Skeletal Image Arcs (SARCs) 42w, 42x, 42y and 42z in separate Stroke
Descriptors (SDs) 112 of a Stroke Array (SA) 118.

As has been briefly described above, Stranding Processor (STRP) 124 performs
stranding operations upon certain of the Skeletal Image Arc (SARC)s 42 described in
the Stroke Descriptors (SDs) 112 of each Stroke Array (SA) by joining the ends of
selected pairs of Skeletal Image Arc (SARC)s 42 into single connected strokes, that is,
joins each selected pair into a single Skeletal Image Arc (SARC) 42. The pairs of
Skeletal Image Arc (SARC)s 42 are selected from pairs of intersecting Skeletal Image
Arc (SARC)s 42 described in the Stroke Descriptors (SDs) 112 in each Stroke Array
(SA) 118 wherein each pair is selected has having the minimum angle of intersection
between the strokes at their point of intersection. This process is based upon the fact
that the human hand, when writing normal text characters or symbols, follows ballistic
motions that avoid sudden or acute changes in the direction of movement along a
stroke, unless necessary to form the stroke. The process thereby restores certain
strokes of Connected Objects (COs) 68 that have been divided into two separately
identified strokes by Transcriber Processor (Transcriber) 84 into single strokes in a
manner that replicates the strokes as they would be formed by a human hand writing

the original image in “real time”, for example, with a pen and tablet.

WO 96/41302 PCT/US96/04151

35
The process performed by Stranding Processor (STRP) 124 may illustrated -

with the aid of Fig. 28C wherein Stranding Processor (STRP) 124 will identify six
possible pairs of intersecting strokes as actual or possible members of a Stroke Cluster
(SC) 110. These pairs of strokes are represented by Skeletal Image Arc (SARC) 42w
with Skeletal Image Arc (SARC) 42x, Skeletal Image Arc (SARC) 42w with Skeletal
Image Arc (SARC) 42y, Skeletal Image Arc (SARC) 42w with Skeletal Image Arc
(SARC) 42z, Skeletal Image Arc (SARC) 42x with Skeletal Image Arc (SARC) 42y,
Skeletal Image Arc (SARC) 42x with Skeletal Image Arc (SARC) 42z, and Skeletal
Image Arc (SARC) 42y with Skeletal Image Arc (SARC) 42z. Stranding Processor
(STRP) 124 will determine the respective angles of intersection between the possible
pairs of strokes, represented as Angles (As) 128wx, 128wy, 128wz, 128xy, 128xz, and
128yz. As illustrated in Fig. 28D, Stranding Processor (STRP) 124 will identify the
pair comprised of Skeletal Image Arc (SARC) 42w and Skeletal Image Arc (SARC)
42x with angle of intersection A 128wx and the pair comprised of Skeletal Image Arc
(SARC) 42y with Skeletal Image Arc (SARC) 42z with angle of intersection A 128yz
as representing the joined stroke pairs having the minimum angle of intersection
between the strokes of each pair. Stranding Processor (STRP) 124 will then generate a
new first Stranded Stroke Descriptor (SSD) 114wx for and corresponding to the pair
Skeletal Image Arc (SARC) 42w/Skeletal Image Arc (SARC) 42x and a new second
Stranded Stroke Descriptor (SSD) 114yz for and corresponding to the pair Skeletal
Image Arc (SARC) 42y/Skeletal Image Arc (SARC) 42z wherein the two new
Stranded Strbke Déscn’ptors (SSDs) 114 will be similar in all respects to Stroke
Descriptors (SDs) 112, but will describe the strokes as joined, or stranded, single
entities. That is, in each pair their end Nodes 90 at their point of intersection will be
merged as another pixel point along the joined path, their Direction Strings (DIRSs)
120 will be merged into a single Induced Direction String (IDIRS) 120, and so on.

It will be noted that the above described stranding operation requires Stranding
Processor (STRP) 124 to determine the angle of intersection between the pixel paths
of each possible pair of Stroke Descriptors (SDs) 112 to identify the pairs of

intersecting pixel paths that have the minimum angle between the directions of their

paths at the point of intersection at their end Nodes 90.

WO 96/41302 PCT/US96/04151

39

Stranding Processor (STRP) 124 may determine the angles of intersection
between the pixel paths of the possible pairs of strokes by determining the respective
directions of the first pixels along each pixel path adjoining the pixel that forms the
common end Nodes 90 of the pixel paths. This method, however, quantifies each pixel
path’s direction to one of only 8 possible angles and is susceptible to “noise” in the
original quantizing of the document image into a pixel map by the scanner and to
“noise” introduced in the thinning process.

The present implementation of Stranding Processor (STRP) 124 therefore
determines the angles of the strokes relative to one another at their common, shared
end Node 90 location over a greater length of each stroke. In one implementation,
Stranding Processor (STRP) 124 may perform this operation by determining, for each
stroke of a group of two or more intersecting strokes, the angle, relative to either a
selected axis of the x-y coordinate plane or to a selected one of the strokes of the
group, of a line connecting the location of the shared end Node 90 location and a point
along the stroke in a direction away from the common end Node 90 location by some
predetermined distance. The line connected the selected point along each stroke with
the shared end Node 90 location will thereby represent an average angle of motion or
direction of the stroke relative to the selected axis of the x-y coordinate plane or to the
selected one of the paths, and the angles of the strokes of the group may then be
compared to determine the pairs having the minimum angles of intersection at the
shared end Node 90 location.

In this implementation, Stranding Processor (STRP) 124 may use a single pixel
along each stroke of the group as the selected the point along the stroke. In this
instance, the pixel may be selected, for example, as that at the other end Node 90 of
each stroke or a pixel at predetermined distance, that is, a predetermined number of
pixels, along the path away from the shared end Node 90 location, or, again, at the end
Node 90 if the stroke ends before the predetermined distance. In another
implementation, Stranding Processor (STRP) 124 may determine the relative angle of a
stroke from the average determined from two or more pixels selected along the stroke
in the direction away from the common end Node 90. These pixels may be comprised

of, for example, the other end Node 90 of each stroke and a pixel located midway

WO 96/41302 PCT/US96/04151

.

between the end Nodes 90 of each stroke, as identified, for example, by counting
pixels along each stroke, or one or more pixels located at predetermined distances
along each stroke in the direction away from the common end Node 90 location. Given
the coordinate location of two or more points along the line of each stroke, one of
which is the shared end Node 90 at the intersection of the strokes. Stranding Processor
(STRP) 124 may then determine the angles of intersection of the strokes, either
relative to the x-y coordinate plane or relative to a selected one of the strokes, by
methods that are well known to those or ordinary skill in the art, but essentially by
determining from the coordinates of the two or more points along the line, the change
in location of the line along one of the x-y axis with respect to the change in location of
the line along the other of the X-y axis.

In another and preferred implementation, Stranding Processor (STRP) 124 will
determine the angle of intersection of each stroke, relative to the x-y coordinate plane
or to a selected one of the strokes, by determining the incremental x or y coordinate

change of the stroke path location relative to the x or y coordinate of shared end Node
90, for a predetermined incremental distance along, respectively, the y or x axis relative
to the y or x coordinate of the shared end Node 90, That is, and for example,
Stranding Processor (STRP) 124 will determine the y coordinate of the shared end
Node 90, move a predetermined distance along the x axis, and determine the y
coordinate of the stroke at that point along the x axis; the change in y coordinate
location will then represent the angle of direction or movement of the stroke relative to
the x axis.

As described, Stranding Processor (STRP) 124 performs the joining operation
upon each pair of strokes described by a corresponding pair of Stroke Descriptors
(SDs) 112 in each Stroke Array (SA) 118. Stranding Processor (STRP) 124 then
writes the Stranded Stroke Descriptors (SSDs) 114 into the Stroke Arrays (SAs) 118
contalmng the Stroke Descriptors (SDs) 112 from which they are constructed. It is
preferable, when doing so, that Stranding Processor (STRP) 124 append a stranded
identifier to each Stroke Descriptor (SD) 112 that has been used in constructing a
Stranded Stroke Descriptor (SSD) 114, to indicate the dual representation of the

stroke described therein, and that Stranding Processor (STRP) 124 also append to

WO 96/41302 PCT/US96/04151

4/

each Stranded Stroke Descriptor (SSD) 114 component identifiers of those Stroke
Descriptors (SDs) 112 from which it was constructed.

In an alternate embodiment, however, and dependent at least in part upon the
specific implementation of LLRP 34, Stranding Processor (STRP) 124 may construct
stranded Stroke Arrays (SAs) 118 by deleting from a copy of each Stroke Array (SA)
118 containing strokes that have been stranded each stroke that has been combined
with another stroke to form a stranded stroke and substituting therefor the Stranded
Stroke Descriptors (SSDs) 114. In this embodiment, therefore, there will be two
versions of the Stroke Arrays (SAs) 118 for each Skeletized Image File (SIF) 86
having strandable strokes, that is, a non-stranded Stroke Array (SA) 118 and a
stranded Stroke Array (SA) 118.

Finally, it will be noted that Stranding Processor (STRP) 124 may execute the
above described process reiteratively and may thereby combine a sequence of three or
more strokes into a single stroke by forming consecutive pairs of the sequential strokes
into a single stroke and then combining the single strokes formed from pairs of strokes
into yet further pairs of strokes. This may be illustrated by reference to the symbol #
wherein each of the strokes in this symbol will have been transcribed as three separate
strokes. That is, and for example, the upper horizontal stroke of this symbol will have
been transcribed as a first stroke extending to the left of the leftmost upright stroke, a
second stroke extending between the two upright strokes, and a third stroke extending
to the right of the rightmost upright stroke. Stranding Processor (STRP) 124 will join
the first and second strokes into a first joined stroke and the second and third strokes
into a second joined stroke and will then combine the first and second joined strokes
into a third joined stroke which represents the original upper horizontal stroke of the
symbol.

¢. Cluster Recognizer (CLR) 130 (Fig. 27A)

As indicated in Fig. 27A, TOIP 32 includes a Cluster Recognizer (CLR) 130,
again implemented as a Program Routine (PR) 18 executing on Processor Unit (PU)
14, which identifies the Skeletal Image Arcs (SARCs) 42 in each Stroke Array (SA)
118 that are members of a group of one or more strokes which have potential

significance as members of clusters of strokes, that is, as characters or parts of a

WO 96/41302 PCT/US96/04151

el

character. Cluster Recognizer (CLR) 130 will form Stroke Clusters (SCs) 110 by
identifying those Skeletal Image Arcs (SARCs) 42 whose paths actually connect, that
is, those Stroke Descriptors (SDs) 112 that have been used to construct Stranded
Stroke Descriptors (SSDs) 114, and, secondly, by identifying those Skeletal Image
Arcs (SARCs) 42 whose locations and extents indicate that they are spatially related so
as to probably be members of a cluster of strokes forming a character or symbol or a

part of a character or symbol.

In the first instance, Cluster Recognizer (CLR) 130 will read the identifiers
associated with the Stroke Descriptors (SDs) 112 that have been used in the
construction of Stranded Stroke Descriptors (SDs) 114. Cluster Recognizer (CLR)
130 then writes the Stroke Descriptors (SDs) 112 of the Skeletal Image Arcs (SARCs)
42 having a common point of origin, that is, that intersect and have been incorporated
into a Stranded Stroke Descriptor (SSD) 114, into a corresponding Stroke Cluster
(SC) 110 that is stored in a Cluster Array (CA) 132 corresponding to the Skeletized
Image File (SIF) 86 containing the stroke, and in the spatial order of their locations
and extents.

In embodiments wherein the Stroke Descriptors (SDs) 112 have not been
identified as having been used in the construction of Stranded Stroke Descriptors
(SSDs) 114, that is, as have not been identified as intersecting with the strokes of other
Stroke Descriptors (SDs) 112, Cluster Recognizer (CLR) 130 reads and compares the
coordinates of the end Nodes 90 represented in each Stroke Descriptor (SD) 112 of a
Stroke Array (SA) 118 with the coordinates of the end Nodes 90 of the other Stroke
Descriptors (SDs) 112 of the Stroke Array (SA) 118. Cluster Recognizer (CLR) 130
identifies the Skeletal Image Arcs (SARCs) 42 having end Nodes 90 sharing identical
coordinates as representing Skeletal Image Arcs (SARCs) 42 which have a common
point of origin, that is, commonly located end Nodes 90, and writes their Stroke
Descriptors (SDs) 112 into a Cluster Array (CA) 132 of Stroke Clusters (SCs) 110.

Cluster Recognizer (CLR) 130 will identify those strokes that do intersect but
that have not been selected to constructed stranded strokes, because of selection by
minimum angle of intersection, and those strokes not intersect but that have spatial

locations and extents such that they probably are members of a Stroke Cluster 100 by

WO 96/41302 PCT/US96/04151

73

determining and comparing the locations and extents of each Skeletal Image Arc
(SARC) 42 from the information contained in and read from the corresponding Stroke
Descriptors (SDs) 120 of the current Stroke Array (SA) 118. In this regard, two or
more Skeletal Image Arcs (SARCs) 42 will be regarded as spatially related such that
they are probably members of a cluster when the strokes overlap, or cross, or the when
extents of the Skeletal Image Arcs (SARCs) 42 overlap or are sufficiently close
wherein the extents of a Skeletal Image Arc (SARC) 42 are determined, in various
embodiments of Cluster Recognizer (CLR) 130, by the maximum range of the x or y
coordinates of the pixels and end Nodes 90 of the Skeletal Image Arc (SARC) 42.

In one embodiment, Cluster Recognizer (CLR) 130 may determine the extents
of a Skeletal Image Arc (SARC) 42 as defined by the x coordinates of the end Nodes
90 of the Skeletal Image Arc (SARC) 42 wherein the x coordinates of the end Nodes
90 of a Skeletal Image Arc (SARC) 42 are the locations of the end Nodes 90 of the
Skeletal Image Arc (SARC) 42 along an x axis defined as extending horizontally from
left to right across a page. In this implementation, two Skeletal Image Arcs (SARCs)
42 will be regarded as members of a Stroke Cluster (SC) 100 when their x axis extents
either overlap or are within a predetermined distance of one another. As has been
previously described, this distance may be fixed, or may be determined, for example, as
a proportion of the extents of the Skeletal Image Arcs (SARCs) 42.

It is recognized, however, that a long vertical stroke may have greater actual
extents than a relatively shorter horizontal stroke, as in the character 1 opposed to the
character e, but that the character e would be determined to have greater extents along
the x axis than the character 1. Extent determination by consideration of only the x axis
coordinates may therefore be insufficient in certain instances and, as such, alternate
embodiments of Cluster Recognizer (CLR) 130 will consider both the x and y
coordinates of the end Nodes 90 of each Skeletal Image Arc (SARC) 42 to determine
and compare the extents of the Skeletal Image Arc (SARC)s 42.

It is also recognized that certain strokes, such as the rightward extending loops
of the characters B, D and R, may have greater actual extents that are indicated by the
x and y coordinates of their end Nodes “: and that this may be a significant factor in
determining the extents of the Skeletal Image Arcs (SARCs) 42. As such, other

WO 96/41302 PCT/US96/04151

%

alternate embodiments of Cluster Recognizef/(CLR) 130 will determine and compare
the actual, full extents of each Skeletal Image Arc (SARC) 42 by determining the
maximum and minimum x and y axis coordinates of the actual Skeletal Image Arc
(SARC) 42 pixel path described in the corresponding Stroke Descriptor (SD) 112.

Finally, Cluster Recognizer (CLR) 130 will write the Stroke Descriptors (SDs)
112 of those Skeletal Image Arcs (SARCs) 42 that are identified as non-intersecting
but as probable members of a stroke cluster into the appropriate Stroke Cluster (SC)
110 of the Cluster Array (CA) 132, possibly together with other strokes that have been
identified as members because their Skeletal Image Arcs (SARCs) 42 intersect, and
again in the order of their spatial locations and extents.

d. Cluster Order Processor (COP) 134

TOIP 32 further includes a Cluster Order Processor (COP) 134, implemented
as a Program Routine (PR) 18 executing on Processor Unit (PU) 14, which then reads
the Stroke Descriptors (SDs) 112 and Stranded Stroke Descriptors (SSDs) 114 of the
Stroke Clusters 110 of each Cluster Array (CA) 132, orders the Stroke Clusters (SCs)
110 of each Cluster Array (CA) 132 into an inferred time order of creation according
to the increasing locations of the “centers of mass” of the Stroke Clusters (SCs) 110
along the x axis, and writes the ordered Stroke Clusters (SCs) 110 into a
corresponding Ordered Cluster Array (OCA) 44.

The x axis used for the logical ordering of Stroke Descriptors (SDs) 112 and
Stranded Stroke Descriptors (SSDs) 114 has been defined as extending horizontally
across a page of a document or image and is also used in the ordering of Stroke
Clusters (SCs) 110 by Cluster Order Processor (COP) 134. The x axis coordinate
sequence that is imposed on the Stroke Clusters (SCs) 110 thereby simulates the time
order of creation of the strokes of the original characters from left to right across a
page or an image according to the most common convention for writing characters, It
will be recognized, however, that any other axis and direction along an axis may be
used for both the ordering of Stroke Descriptors (SDs) 112 in a Stroke Cluster SO
110 and the order of Stroke Clusters (SCs) 110 in an Ordered Cluster Array (OCA)

44, depending upon the convention preferred for a given document or image.

WO 96/41302 PCT/US96/04151

e

75

In one implementation of TOIP 32, Cluster Order Processor (COP) 134 may -
determine the “center of mass” of each Stroke Cluster (SC) 110 by determining the
average of the x-coordinate axis extents of the Skeletal Image Arcs (SARCs) 42
described by the Stroke Descriptors (SDs) 112 and Stranded Stroke Descriptors
(SSDs) 114 contained therein by reading the x coordinates of the end Nodes 90 of the
Skeletal Image Arcs (SARCs) 42 from the Stroke Descriptors (SDs) 112 and Stranded
Stroke Descriptors (SSDs) 114 and finding the average of the values of the maximum
and minimum x coordinates found from all of the end Nodes 90 therein. It is
recognized, however, that this approach may not provide an accurate representation of
the center of mass of certain strokes, for example, the rightwards extending loops of
characters such as B, D and R wherein there is little difference between the x
coordinates of the end Nodes 90 of the Skeletal Image Arc (SARC) 42 path relative to
the actual extents of the path.

For this reason, an alternate and preferred implementation of Cluster Order
Processor (COP) 134 will also read the x-y coordinate locations of the pixels along all
of the Skeletal Image Arc (SARC) 42 paths described by the Stroke Descriptors (SDs)
112 and Stranded Stroke Descriptors (SSDs) 114 contained in the Stroke Cluster (SC)
110 and determine the maximum and minimum values of x axis coordinates occurring
among the pixel paths described by the Stroke Descriptors (SDs) 112 and Stranded
Stroke Descriptors (SSDs) 114, thereby more accurately determining the “center of
mass” along the x axis of the actual strokes described by the Stroke Descriptors (SDs)
112 and Strahded Stroke Descriptors (SSDs) 114.

In a further alternate implementation, Cluster Order Processor (COP) 134 will
accumulate the values of the x coordinates of each of the pixels along the Skeletal
Image Arc (SARC) 42 paths described by the Stroke Descriptors (SDs) 112 and
Stranded Stroke Descriptors (SSDs) 114 in the Stroke Cluster (SC) 110 and will
determine the “center of mass” of the path as the average of the accumulated x axis
coordinates. This implementation thereby provides a still more accurate determination
of the “center of mass” of the strokes of a given Stroke Cluster (SC) 110, and in
particular for strokes having a more complex path, such as the character S created as a

single stroke.

WO 96/41302 PCT/US96/04151

"

As described, Cluster Order Processor (COP) 134 stores the ordered Stroke
Clusters (SCs) 110 in Ordered Cluster Arrays (OCAs) 44 and there will be an Ordered
Cluster Array (OCA) 44 for and corresponding to each Skeletized Image File (STF) 86.
TOIP 32 then provides the Ordered Cluster Arrays (OCAs) 44 to LLRP 34, which, as
described in a following discussion, assigns possible meanings to each Stroke Cluster
(SC) 110, this process being repeated for each Ordered Cluster Array (OCA) 44.

D. Description of Low Level Recognition Processor (LLRP) 34 (Fig. 29)

As has been described, LLRP 34 is connected from TOIP 32 and from EP 24
and DT 26 to receive and assign possible meanings to both Scanned Character Images
from TOIP 32 and “real time” handwritten character inputs from EP 24 and DT 26
wherein the scanned character and symbol data received from TOIP 32 simulates the
sampled pen writing coordinates received from EP 24 and DT 26. The possible
meanings assigned to the scanned and real time character and symbol inputs are then
provided to Linguistic Post Processor (LPP) 36, which generates character strings
from the strokes, distinguishes and selects between the possible meanings of the
scanned and real time strokes as characters and symbols, and provides as a final output
representing the most probable interpretation of each scanned or real time input
character.

As has been described above, TOIP 32 provides the scanned character and
symbol data to LLRP 34 in the form of Ordered Cluster Arrays (OCAs) 44 wherein
there will be an Ordered Cluster Array (OCA) 44 for and corresponding to each
Skeletized Image File (SIF) 86. Each Ordered Cluster Array (OCA) 44 contains a
Stroke Cluster (SC) 110 for and corresponding to each cluster of strokes is identified
in the corresponding Skeletized Image File (SIF) 86 wherein each stroke is described
by a corresponding Stroke Descriptors (SDs) 112 or Stranded Stroke Descriptors
(SSDs) 114 representing an assumed and imposed direction of movement of a pen in
creating the strokes represented therein,

As has also been described previously, EP 24 and DT 26 provide character and
symbol data to LLRP 34 in the from of Tablet Characters (TABCs) 46 wherein each
Tablet Character (TABC) 46 is comprised of a set of Sampled Coordinates (SCORDs)
48 defining and corresponding to points along the lines forming the Tablet Characters

WO 96/41302 PCT/US96/04151

&7

(TABCs) 46 and wherein the Sampled Coordinates (SCORDSs) 48 generally
correspond to Stroke Descriptors (SDs) 112 or Stranded Stroke Descriptors (SSDs)
114 from TOIP 32. _

1. Low Level Recognition of “Real Time” EP 24 and DT 26 Inputs

A. Stroke Processor 136, Real Time Character Inputs (Fig. 29, 30,
31)

First considering the processing of “real time” inputs from EP 24 and DT 26 by
LLRP 34, as indicated in Fig. 29 LLRP 34 includes a Stroke Processor (STKP) 136
comprised of a Stroke Feature Processor (SFP) 138 which extracts features to be used
in recognizing strokes from the stroke inputs from EP 24 and DT 26 and constructs
descriptions of the stroke features and a Stroke Recognition Processor (SRP) 140
which then assigns possible meanings to the strokes based upon the descriptions of the
stroke features. ,
| a. Stroke Feature Processor (138) (Figs. 30 and 31)

As shown in Fig. 31, Stroke Feature Processor (SFP) 138 includes a Pen Input
Detector (PID) 142 connected from EP 24 and DT 26 for detecting and indicating user
inputs through the tablet and pen, wherein the user inputs including pen strokes and
pen states. An Input Stroke Buffer (ISB) 144 is connected from Pen Input Detector
(PID) 142 for storing the Sampled Coordinates (SCORDs) 48 of TABCs 46 as strokes
are entered by a user wherein each Sampled Coordinate (SCORD) 48 is comprised of a
set of sampled coordinates representing successive coordinate locations of a pen stroke
as the stroke is entered onto DT 26 by EP 24. A Point Buffer (PBUF) 146 is in turn
connected from Input Stroke Buffer (ISB) 144 and is responsive to the pen states for
transferring the Sampled Coordinate (SCORD) 48 stroke descriptor information of
each current stroke into Point Buffer (PBUF) 146 to be stored therein.

Stroke Feature Processor (SFP) 138 further includes a Stroke Feature
Recognizer (SFR) 148 connected from Input Stroke Buffer (ISB) 144 and Point Buffer
(PBUF) 146 and responsive to the pen states of EP 24 for extracting stroke
recognition features from the stroke descriptor information of the current stroke for
the purpose of assigning a meaning to the current stroke. As indicated therein, Stroke
Feature Recognizer (SFR) 148 includes a Dynamic Stroke Feature Extractor (DSFE)

WO 96/41302 PCT/US96/04151

78

150 connected from Input Stroke Buffer (ISB) 144 and a Static Stroke Feature
Extractor (SSFE) 152 connected from Point Buffer (PBUF) 146.

Dynamic Stroke Feature Extractor (DSFE) 150 is responsive to EP 24 states,
such as the pen down state, for extracting Dynamic Stroke Recognition Features
(DSRFs) 154 from the stroke descriptor information of the current stroke as the
current stroke is entered by the user. As represented in Fig. 30, Dynamic Stroke
Recognition Features (DSRFs) 154 include those stroke descriptive features that may
be extracted during entry of a stroke by a user, that is, before completion of a stroke.
In a present implementation of LLRP 34, Dynamic Stroke Recognition Features
(DSRFs) 154 may include, for example, at least the coordinates of the first point of the
line, a sequence of points along the line, short of the last point of the line, and an
Entered Direction String (EDIRS) 156, all of which are stored in a corresponding
Descriptor (DESC) 218. The coordinates of the points along the line are stored in
corresponding Point Descriptors (PDSCs) 158 of the Descriptor (DESC) 218 and the
Entered Direction String (EDIRS) 156 of a Descriptor (DESC) 218 includes a Stroke
Direction Entry (STDE) 162 for each point of the line, as entered, wherein each Stroke
Direction Entry (STDE) 162 indicates the direction of movement of the line of the
stroke at the point. The direction of movement of the line at each point is determined
by the motion of EP 24 at the point and is determined, for example, by the incremental
change in the x-y location coordinates of EP 24 at the point as EP 24 passes through
that point from the preceding point to the next point. In the present implementation of
Dynamic Strbke Feéture Extractor (DSFE) 150, the direction of motion of EP 24 is
resolved to four directions, that is, left, right, up and down, and is determined by
whether the maximum change in the x-y coordinates of the EP 24 location occurs in
the x or y axis and in which direction the maximum change occurs, that is, whether the
maximum change is in the + or - direction along that axis. In other implementations of
Dynamic Stroke Feature Extractor (DSFE) 150, the direction of motion may be
resolved to higher resolutions if necessary for consistent and accurate identification of
the characters and symbols. For example, and as will be well understood by those of

ordinary skill in the art, the direction of motion of EP 24 may easily be resolved to the

8 directions comprising left, left-up, up, up-right, right, right-down, down, and down-

WO 96/41302 PCT/US96/04151

949

left by noting the magnitude of change in the location of EP 24 along the x and y axis
and determining the simple ratio of these magnitudes, rounded to the 90° and 45°
angles comprising these directions. A

Static Stroke Feature Extractor (SSFE) 152 is connected from Point Buffer
(PBUF) 146 and is responsive to the EP 24 states, such as the pen up state, for
extracting Static Stroke Recognition Features (SSRFs) 164 of the current stroke when
the current stroke is completed and writing these features into the corresponding
Descriptor (DESC) 218. As represented in Fig. 30, Static Stroke Recognition Features
(SSRFs) 164 will include at least the coordinates of the last point along the line of the
current stroke and the Stroke Direction Entry (STDE) 162 corresponding to the last
point along the line of the current stroke and may include up to all of the stroke
recognition features that are extracted by Dynamic Stroke Feature Extractor (DSFE)
150. That is, that Dynamic Stroke Recognition Features (DSRFs) 154 are a subset of
Static Stroke Recognition Features (SSRFs) 164 and, in certain implementations of
LLRP 34 Static Stroke Feature Extractor (SSFE) 152 may perform all of the stroke
recognition feature extraction operations performed by Dynamic Stroke Feature
Extractor (DSFE) 150. Dynamic Stroke Feature Extractor (DSFE) 150 is provided in
the presently preferred embodiment of LLRP 34, however, to decrease the time
required to extract the stroke recognition features from a current stroke by allowing at
least some of the stroke recognition features to be extracted while the stroke is being

. entered, rather than waiting until after the stroke is completed.

As shbwn in'Fig. 31, the Stroke Descriptors (STKDs) 160 generated by
Dynamic Stroke Feature Extractor (DSFE) 150 and Static Stroke Feature Extractor
(SSFE) 152 and comprising Dynamic Stroke Recognition Features (DSRFs) 154 and
Static Stroke Recognition Features (SSRFs) 164 are stored in a Stroke Recognition
Feature Data Structure (SRFDS) 166.

For purposes of following stroke recognition steps, which will described below,
each stroke is then divided into one or more segments which are each described in a
corresponding Segment Descriptor (SEGDE) 168 and wherein a segment of a stroke is
defined herein as a portion of a stroke that is essentially straight or a relatively even

curve; that is, a segment of a stroke is a portion of a stroke does not contain a change

WO 96/41302 PCT/US96/04151

in direction of movement of the line of the sfroie. A segment of a stroke is thereby a
portion of a stroke that does not contain a significant or abrupt change of direction and
is bounded on one or both ends by either the end of the stroke or a point wherein the
stroke has a significant or abrupt change of direction.

For this reason, Stroke Feature Extractor (SFR) 148 further includes a
Segment Analyzer (SEGAZ) 170 to read the Stroke Descriptors (STKDs) 160 from
Stroke Recognition Feature Data Structure (SRFDS) 166, to identify segments of each
stroke, and to generate corresponding Segment Descriptors (SEGDs) 166. These
operations are performed by a Direction Analyzer (DIRAZ) 172 and a Segment
Constructor (SEGCON) 174 contained in Segment Analyzer (SEGAZ) 170.

Direction Analyzer (DIRAZ) 172 reads the Descriptor (DESC) 218 of a
current stroke and identifies changes in the direction of movement of the line of a
stroke wherein a change in direction of movement of the line of a stroke occurs when
an angle between any two consecutive sections of the line of the stroke as defined by
the line of the stroke between and connecting three consecutive points along the line of
the stroke exceeds a predetermined boundary. The boundary is defined by a boundary
cone defined by boundary cone lines extending from the first one of the three points in
the direction of movement of the pen at that point and the angle between the cone

lines, and thus the boundary, is defined by predetermined displacements along the

coordinate axis orthogonal to the coordinate axis along the direction of movement of
the pen at that point.

Segrhent Constructor (SEGCON) 174, in turn, is responsive to Direction
Analyzer (DIRAZ) 172 for dividing the line of a stroke into two segments at any point
wherein there is a change of direction of the line of the stroke that exceeds the cone
boundary by inserting an additional point at such a change in direction of the line of a
stroke and generating corresponding Segment Descriptors (SEGDEs) 168 for each of
the newly generated segments of the stroke. This additional point is located at the end
point of the segment before the change in direction of the line of the stroke and
operating as the beginning point of the segment following the change in direction of
the line of the stroke. A Segment Descriptor (SEGDE) 168 correspondingly includes
at least the coordinates of a beginning point of the segment and an end point of the

WO 96/41302 PCT/US96/04151

57/

segment and may include the coordinates of one or more other intermediate points -
along the segment, thereby including a portion of the stroke’s Point Descriptor
(PDSC) 158, and will include the portion of the Entered Direction String (EDIRS) 156
corresponding to the points in the segment. It is therefore apparent that, as illustrated
in Fig. 30, a Segment Descriptor (SEGDE) 168 is essentially equivalent to a
Descriptor (DESC) 218 or, alternately, that a Descriptor (DESC) 218 is a Segment
Descriptor (SEGDE) 168 for a stroke comprised of a single segment.

The segment recognition features extracted from each current stroke are stored
in a Stroke Recognition Feature Data Structure (SRFDS) 166 wherein, as described,
the stroke recognition features describe each segment with variable degrees of
hierarchical approximation for subsequent stroke and segment recognition processing,
which will be described next below.

The hierarchical levels of stroke and segment description stored in Stroke

‘Recognition Feature Data Structure (SRFDS) 166 therefor begin with a direction
string indicating, for points along the line of the stroke or segment, the direction of
movement of the line of the stroke at each point and further include the coordinates of
at least the beginning and end points of the line of the stroke or segment of a stroke
and an array of coordinates of all points along the line of the stroke or segment as
received as input coordinates from the tablet.

B. Stroke Recognition Processor (SRP) 140, Real Time and
Scanned Character Inputs (Figs.)

As shown in Figs. 29, 31 and 32 and as will be described below, the two
handwritten character recognition paths of the system of the present invention, that is,
the path taken by “real time” character inputs from EP 24 and DT 26 and through
Stroke Feature Processor (SFP) 138 and the path followed by scanned image inputs
from Image Scanner (IS) 22 and through Scanned Image Thinning Processor (SITP)
30 and Time Order Induction Processor (TOIP) 32, converge in Stroke Representation
Processor (SRP) 140. Thereafter, the handwritten characters and symbols from both
sources are subsequently processed in the same manner.

As represented in Fig. 32, Stroke Recognition Processor (SRP) 140 is
comprised of a Stroke Representation Generator (SREPG) 180, a Stroke

WO 96/41302 PCT/US96/04151

5FH

Representation Selector (SREPS) 182, a Stroke Proportion Processor (SPP) 184 and a
Cluster Recognition Processor (CRP) 186.

As will be described below, Stroke Representation Generator (SREPG) 180
generates representations of each real time character input from stroke or segment
from Stroke Descriptors (STKDs) 160 and Segment Descriptors (SEGDs) 166 from
Stroke Recognition Feature Data Structure (SRFDS) 168 while Stroke Representation
Selector (SREPS) 182 which receives the real time character representations from
Stroke Representation Generator (SREPG) 180 and the scanned character
representations from SITP 30 and TOIP 32 and selects an optimum representation of
each stroke. Stroke Proportion Processor (SPP) 184 is connected from Stroke
Representation Selector (SREPS) 182 and identifies possible meanings of the selected
representation of each stroke or segment. Cluster Recognition Processor (CRP) 186
then assigns meanings to the strokes and segments as clusters forming characters and
symbols or parts of characters and symbols and provides this information to LPP 36.

In his regard, and as will be described below, in the presently preferred
implementation of LLRP 34, Stroke Representation Processor (SRP) 176, and in
particular Stroke Proportion Processor (SPP) 184, stores a single copy of each of a
plurality of idealized representations of strokes while Stroke Representation Generator -
(SREPG) 180 and TOIP 32 generate multiple versions of, respectively, each current
real time input stroke and each scanned input stroke, for comparison to the idealized
representations to identify possible meanings of the current real time input stroke. This
method is chbsen as requiring significantly less memory and data storage space than
would be required for storing multiple cépies of the idealized representations of each
possible input stroke or segment and comparing a single copy of each input stroke or
segment to the multiple, idealized representations of each possible input stroke or
segment. This method also requires less processing resources and is faster than using a
single copy of an input stroke and generating multiple, idealized copies of each
possible input as required, that is, during the recognition process.

C. Stroke Representation Generator (SREPG) 180

Stroke Representation Generator (SREPG) 180 reads the Stroke Descriptor

(STKD) 160 or Segment Descriptor (SEGD) 166 representation of each stroke or

WO 96/41302 PCT/US96/04151

57

segment from Stroke Recognition Feature Data Structure (SRFDS) 168 and generates
multiple representations of each input stroke or segment from the corresponding stroke
and segment feature descriptions by generating a plurality of Scaled Topological
Representations (STOPREPs) 188 of each stroke. Each Scaled Topological
Representation (STOPREP) 188 is one of a plurality of progressively smoothed
representations of the current stroke generated from the stroke representation features
of the current stroke and each Scaled Topological Representation (STOPREP) 188 is
generated from a preceding Scaled Topological Representation (STOPREP) 188
reduction, or combination, of the number of points representing the stroke or segment.

A first and highest resolution Scaled Topological Representation (STOPREP)
188, for example, would be comprised of the representation of a stroke or segment as
originally represented in the corresponding Descriptor (DESC) 218 or Segment
Descriptor (SEGD) 166 and would include the Descriptor (DESC) 218’s or Segment
Descriptor (SEGD) 166’s Point Descriptors (PDSCs) 158, representing all of the
points originally defining the stroke or segment, and the Entered Direction String
(EDIRS) 156, comprising the direction string of the stroke-or segment. A second and
coarser Scaled Topological Representation (STOPREP) 188 would be generated, for
example, by selecting every fourth point from the Descriptor (DESC) 218 or Segment
Descriptor (SEGD) 166 representing the stroke or segment, but including the first and
last points of the stroke or segment, and would thereby include correspondingly scaled

~ versions of the Point Descriptors (PDSCs) 158 and the Entered Direction String

(EDIRS) 156. The next coarser Scaled Topological Representation (STOPREP) 188
would then be generated from the preceding second Scaled Topological
Representation (STOPREP) 188 by selecting each fourth point in that preceding
second Scaled Topological Representation (STOPREP) 188, again using at least the
first and often the last points of the preceding Scaled Topological Representation, and
so on, and would thereby include correspondingly scaled versions of the Point
Descriptors (PDSCs) 158 and the Entered Direction String (EDIRS) 156.

The present implementation of Stroke Representation Generator (SREPG) 180
generates three Scaled Topological Representations (STOPREPs) 188, represented
respectively as Scaled Topological Representations (STOPREPs) 188a, 188b and

WO 96/41302 PCT/US96/04151

57

188c, with the finest resolution Scaled Topological Representation (STOPREP) 188a
being comprised of all of the points of the stroke or segment as originally defined in the
corresponding Descriptor (DESC) 218 or Segment Descriptor (SEGD) 166. Each

succeeding Scaled Topological Representation (STOPREP) 188 will then be a

progressively “smoother” and simpler representation of the stroke or segment being

represented in the sense that each successive Scaled Topological Representation
(STOPREP) 188 will be represented by successively fewer points and will include
progressively fewer fine details of the stroke or segment.

D. Stroke Representation Selector (SREPS) 182,
Joining and Selection of Real Time and Scanned Character Inputs
It will therefore be apparent that the function performed by Stroke
Representation Generator (SREPG) 180 is analogous to, although different in

operation from, Scanned Image Thinning Processor (SITP) 30. As was described with

respect to SITP 30, SITP 30 “thins” each stroke or segment a scanned character or

symbol image to a width of one pixel, and then generates a plurality of representations
of each such stroke or segment at differing resolutions, such as 302, 150 and 75 dpi.

Each resolution of a stroke or segment provided by SITP 30 thereby provides a

progressively “smoother” and simpler representation representing the stroke with

progressively fewer pixels and with progressively fewer fine details. It will be noted
that it is not necessary for Stroke Representation Generator (SREPG) 180 to perform
a “thinning” operation as the “real time” character input from EP 24 and DT 26 is in
the form of é sequence of x-y coordinate positions, so that the “real time” stroke and
segment inputs are already effectively in the form of single pixel wide strokes and

segments when received from EP 24 and DT 26 by LLRP 34.

Further, the stroke and segment representations provided to Stroke
Representation Selector (SREPS) 182 from the two paths are similar. As described just

above, Stroke Representation Generator (SREPG) 180 generates representations of

each stroke or segment of the “real time” inputs, wherein each stroke or segment is

represented by a corresponding Descriptor (DESC) 218 or Segment Descriptor
(SEGD) 166. Each Descriptor (DESC) 218 and Segment Descriptor (SEGD) 166 is

comprised of an Entered Direction String (EDIRS) 156 indicating, for points along the

WO 96/41302 _ PCT/US96/04151

55

line of the stroke or segment, the direction of movement of the line of the stroke at
each point, and Point Descriptors (PDSCs) 158, comprising the coordinates of at least
the beginning and end points of the line of the stroke or segment of a stroke and an
array of coordinates of points along the line of the stroke or segment.

In comparison, and as has been described previously, TOIP 32 provides the
scanned character representations to LLRP 34 in the form of Ordered Cluster Arrays
(OCAs) 44 wherein there will be an Ordered Cluster Array (OCA) 44 for and
corresponding to each Skeletized Image File (SIF) 86. Each Ordered Cluster Array
(OCA) 44 contains a Stroke Cluster (SC) 110 for and corresponding to each cluster
identified in the Skeletized Image File (SIF) 86 wherein each stroke is described by a
corresponding Stroke Descriptor (SD) 112 of Stranded Stroke Descriptor (SSD) 114
as an ordered array of coordinates defining and corresponding to points along the
stroke, that is, by a Link List of Incremental Steps (LLIS) 98, and a corresponding
Induced Direction String (IDIRS) 120 representing an assumed and imposed direction
of movement of a pen in creating the stroke.

Stroke Representation Selector (SREPS) 182 examines the Scaled
Topological Representations (STOPREPs) 188 of the “real time” character and symbol
stroke and segment inputs from EP 24 and DT 26 and the Ordered Cluster Arrays
(OCAs) 44 from TOIP 32 and selects a scaled topological representation of a stroke to
provide the optimum representation of the stroke or segment wherein the optimum
representation is defined as providing the “maximum signal to noise ratio”. For
purposes of stroke or segment recognition herein, the representation providing the
“maximum signal to noise” ratio is defined is the representation which occupies the
largest area of the x-y coordinate plane containing the locations of the points of the
stroke or segment. In the selected representation, therefore, the pixels or points
occupied by “white” background space and “black” line points is maximized with
respect to the number of pixels or points occupied by minor or extraneous features or
pixels and the apparent sharpness of curvature of each curved stroke or segment is
reduced because the curve occupies a long space in the representation of the stroke or

segment.

WO 96/41302 PCT/US96/04151

A

E. Stroke Proportion Processor (SPP) 184

As described above, Stroke Proportion Processor (SPP) 184 is connected from
Stroke Representation Selector (SREPS) 182 and, as shown in Fig. 32, includes a
Ideal Prototype Representation Data Structure (IPRDS) 190, a Stroke Boundary
Discriminator (SBD) 192 and a Stroke Proportion Discriminator (SPD) 194 which
operate to identify possible meanings of the selected representation of each stroke or
segment as an element of a character or symbol.

Ideal Prototype Representation Data Structure (IPRDS) 190 stores a set of
Ideal Prototype Representations (IPRs) 196 corresponding to possible meanings of
each possible stroke or stroke segment as elements of characters or symbols. In the
present implementation of Stroke Proportion Processor (SPP) 184, Ideal Prototype
Representation Data Structure (IPRDS) 190 is implemented as a B-tree database
structure wherein the nodes and leafs of the tree are indexed by Entered Direction
Strings (EDIRSs) 156 of the Stroke/Segment Descriptors (STDKs 160/SEGDEs 168)
and the Induced Direction Strings (IDIRSSs) 120 of Stroke/Stranded Stroke
Descriptors (SDs 112/SSDs 114) of the strokes and segments. As illustrated generally
in Fig. 33, the tree node and leaf entries of Ideal Prototype Representation Data
Structure (IPRDS) 190 that comprise Ideal Prototype Representations (IPRs) 196,
each of which corresponds to an ideal prototype representation possibly matching a
current stroke or segment, contain Boundary Descriptors (BNDs) 198 and
corresponding Stroke Meanings (STKMs) 200 wherein each Stroke Meaning (STKM)
200 identifies one or more characters or symbols, each of which is referred to in Fig.
32 as a Character (CHAR) 202 that the corresponding stroke or segment may be an
element of,

Each Boundary Descriptor (BND) 198 defines one or more linear combinations
of one or more features of an ideal prototype representation of a stroke, such as a set
of coordinates along the line of the ideal prototype stroke wherein each linear
combination of features, in turn, is an idealized and abstracted representation of a
stroke or segment. Each Boundary Descriptor (BND) 198 thereby identifies a set of
“boundaries” for each idealized prototype stroke or segment wherein a “boundary” is a
set of stroke or segment characteristics, expressed in terms of the coordinates of an

WO 96/41302 PCT/US96/04151

57

idealized representation of a stroke or segment, defining the relative orientation, length
and degree or direction of curvature of the prototype stroke or segment. The
representations of the prototype strokes and segments, that is, the groups of
coordinates describing the lines of the strokes and segments, are constructed to a
uniform scale and coordinate system. For example, the representations of the upright
strokes and loops of the characters L, R and B and , r and b, and so on, are all sized
proportionally with respect to one another and the coordinates describing the locations
along the line of each prototype stroke or segment are abstracted in being relative to an
origin local to the stroke or segment, such as an end point of the stroke or segment,
with the coordinates of the other points along the stroke or segment being determined
relative to that local origin.

Stroke Boundary Discriminator (SBD) 192 is responsive to a scaled
topological representation of a current stroke, that is, to a Descriptor (DESC) 218,
Segment Descriptor (SEGDE) 168, Stroke Descriptor (SD 112) or Stranded Stroke
Descriptor (SSD 114) received from Stroke Representation Selector (SREPS) 182 to
index Ideal Prototype Representation Data Structure (IPRDS) 190 with the Entered
Direction String (EDIRS) 156 or Induced Direction Strings (IDIRSs) 120 contained
therein and to construct a Possible Stroke Match List (PML) 204 of Possible Matches
(PMATCHs) 206 corresponding to part or all of the Entered Direction String (EDIRS)
156 of the current stroke or segment wherein each Possible Match (PMATCH) 206

_ includes the Boundary Descriptors (BNDs) 198 and Stroke Meanings (STKMs) 200
with their corresponding Characters (CHARs) 202.

In this regard, it should be noted that the presently preferred embodiment of
Stroke Proportion Processor (SPP) 184 further includes a Reversed Prototype
Generator (RPG) 208 which generates, from and for each Ideal Prototype
Representation (IPR) 196, a corresponding Reversed Ideal Prototype Representation
(IPR) 210 having a reversed direction string, so that the Entered Direction String
(EDIRS) 156 or Induced Direction Strings (IDIRSs) 120 of a stroke or segment
received from Stroke Representation Selector (SREPS) 182 is compared to both the
forward and reversed direction strings of possible matching entries in Ideal Prototype
Representation Data Structure (IPRDS) 190.

WO 96/41302 PCT/US96/04151

x1 |

Stroke Boundary Discriminator (SBD) 192 then compares the topological
representation of each current stroke or segment, that s, the direction string and line
point coordinates of each current stroke or segment, with the boundaries of the ideal
prototype representations of the Possible Matches (PMATCHs) 206 in Possible Stroke
Match List (PML) 204 and determines the degree of match between the current stroke
or segment and the ideal prototype representations of Possible Matches (PMATCHs)
206.

This comparison process can be implemented in a number of ways. For
example, Stroke Boundary Discriminator (SBD) 192 perform a direct comparison by
scaling the topological representation of the current stroke or segment, that is, the
direction string and set of point coordinates of the line of the stroke or segment, into
the scale and coordinate system in which the ideal prototype representations are
constructed. In this implementation, Stroke Boundary Discriminator (SBD) 192 would
select an origin point of the topological representation of the current stroke or segment

that most closely matches the origin point of the prototype representation, determine

the ratio between maximum and minimum x and y coordinate deviations of the
coordinates of the points of the topological representation of the current stroke or
segment and of the prototype.

Stroke Boundary Discriminator (SBD) 192 will then convert the coordinates of
the topological representation into a coordinate system centered on the selected origin
point, and determine the coordinates of the topological representation relative to that
origin, but scaled in proportion to the ratio between maximum and minimum x and y
coordinate deviations of the coordinates of the points of the topological representation
of the current stroke or segment and of the prototype. Stroke Boundary Discriminator
(SBD) 192 may also scale the Entered Direction String (EDIRS) 156 of the
topological representation in the same manner, inserting steps in the Entered Direction
String (EDIRS) 156 so as to achieve the closest proportionate match with the direction
string of the prototype.

Stroke Boundary Discriminator (SBD) 192 will then compare the scaled
topological representation with each Possible Match (PMATCH) 206 and determine
the degree of match between the representations. The degree of match, in turn, may be

WO 96/41302 PCT/US96/04151

determined, for each Possible Matches (PMiTiHs) 206 in the Possible Stroke Match
List (PML) 204, by determining the coordinate deviation, or difference, between each
coordinate point of the scaled topological representation and the closest matching
coordinate point of each of a prototype representation and by comparing the number of
matching steps in the two direction strings. The degree of match then represents, for
each idealized prototype represented in Possible Matches (PMATCHs) 206 in Possible
Stroke Match List (PML) 204, the probability that a given prototype in the Possible
Stroke Match List (PML) 204 matches the current stroke or segment, and thus that the
current stroke or segment has the meaning associated with that prototype.

In an alternate embodiment, Stroke Boundary Discriminator (SBD) 192 may
perform a proportional comparison by identifying the end points of the topological
representation, selecting an end point of the topological representation most closely
matching the origin point of the prototype representation as an origin point of the
topological representation, and identifying the points of the topological and prototype
representations having the maximum x and y coordinate deviations. Stroke Boundary
Discriminator (SBD) 192 will then scale the coordinates of these points of the
topological representation into the scale and coordinate system in which the ideal
prototype representations are constructed. Stroke Boundary Discriminator (SBD) 192
will then determine the relative proportions of the topological representation of the
current stroke or segment and each of the idealized prototypes represented in the
Possible Stroke Match List (PML) 204. The relative proportions of the topological
representation and eéch of the idealized prototypes represented in the Possible Stroke
Match List (PML) 204 are found by determining the proportionality, or ratio, between
the x and y extents of the identified points of the topological representation and each
prototype representation, wherein the x and y extents define a coordinate frame which
in turn represents the overall length and curvature of the representations. The
proportionality so determined for each prototype representation represented in the
Possible Stroke Match List (PML) 204 will thereby provide one measure of the degree
of match between the topological representation of the current stroke or segment and
each prototype representation represented in the Possible Stroke Match List (PML)
204. Stroke Boundary Discriminator (SBD) 192 will generally also compare the

WO 96/41302 PCT/US96/04151

cZ
ntation and each prototype representation
represented in the Possible Stroke Match List (PML) 204, thereby providing another

measure of the degree of match between the topological representation of the current

direction strings of the topological represe

stroke or segment and each prototype representation represented in the Possible
Stroke Match List (PML) 204.

The proportionality or the combination of the proportionality and the
comparison of the direction strings may then be used to determine, for each prototype
representation represented in the Possible Stroke Match List (PML) 204, a Match
Probability (MATCHP) 210 that a given prototype in the Possible Stroke Match List
(PML) 204 matches the current stroke or segment, and thus that the current stroke or
segment has the meaning associated with that prototype. Stroke Boundary
Discriminator (SBD) 192 then writes each Match Probability (MATCHP) 210 into the
corresponding Possible Match (PMATCH) 206 in Possible Stroke Match List (PML)
204,

Stroke Proportion Discriminator (SPD) 194 then reads the Possible Matches
(PMATCHs) 206 from Possible Stroke Match List (PML) 204 and determines, from

- the Match Probabilities (MATCHPs) 210 determined for each current stroke or
segment, the one or more ideal prototypes most clésely matching the current stroke or
segment and assigns to the current stroke the identification of an ideal prototype
representation having boundaries matching the scaled topological representation of the
current stroke, an assigned identification of the matching ideal prototype

- Tepresentation representing a stroke meaning assigned to the current stroke.

Stroke Proportion Discriminator (SPD) 194 then constructs a Stroke Identifier
Data Structure (SIDS) 212 containing a Stroke Identifier Entry (SIE) 214 for each of
the Possible Matches (PMATCHs) 206 selected as most closely matching the current
stroke or segment. Each Stroke Identifier Entry (SIE) 212 is identified by a Stroke
Identifier (STID) 216 and includes a Descriptor (DESC) 218 the corresponding
stroke’s or segment’s Descriptor (DESC) 218, Segment Descriptor (SEGDE) 168,
Stroke Descriptor (SD 112) or Stranded Stroke Descriptor (SSD 114), and one or
more Stroke Identities (SIDNTs) 220, each of which contains a Stroke Meaning
(STKM) 200 with its Characters (CHARs) 202, and corresponding Match Probability

WO 96/41302 PCT/US96/04151

24

(MATCHP) 210 of a stroke meaning most closely matching the corresponding current
stroke or segment. The Stroke Identifier (STID) 216 of each current stroke or segment
is passed, in turn, to Cluster Recognition Processor (CRP) 186.

Before proceeding to a discussion of Stroke Cluster Processor (CRP) 186, it
should first be noted that it was described above that Stroke Representation Selector
(SREPS) 182 selects a single optimum representation of each current stroke or
segment to be passed to Stroke Proportion Processor (SPP) 184 for identification of
possible meanings of the stroke or segment as an element of a character or symbol. In
other applications, however, such as those dealing with less clearly defined and written
characters, Stroke Representation Selector (SREPS) 182 may pass each of the Scaled
Topological Representations (STOPREPS) 188 of a current stroke or segment to
Stroke Proportion Processor (SPP) 184 and Stroke Proportion Processor (SPP) 184
will perform the above described meaning identification operation upon each of the
plurality of scale representations of a current stroke or segment to determine both
possible meanings of the current stroke or segment and the scale of the Scaled
Topological Representations (STOPREPs) 188 that provides optimum identification
results. In this regard, the optimum scale of the Scaled Topological Representations
(STOPREPs) 188 is determined as the particular scale that provides the fewest number
of highest probability matches between the current stroke or segment and the ideal
prototype representations. Having identified an optimum scale of Scaled Topological

. Representations (STOPREPS) 188 for an initial current stroke or segment, or a sample
set of initial current stroke or segments, Stroke Proportion Processor (SPP) 184 will
identify the optimum scale to Stroke Representation Selector (SREPS) 182 and Stroke
Representation Selector (SREPS) 182 will thereafter pass to Stroke Proportion
Processor (SPP) 184 the Scaled Topological Representations (STOPREPs) 188 in that
scale. |

2. Cluster Recognition Processor (CRP) 186 (Fig. 34)

As described just above, Stroke Proportion Processor (SPP) 184 passes the
Stroke Identifiers (STIDs) 216 of each current stroke or segment to Cluster
Recognition Processor (CRP) 186. The Stroke Identifiers (STIDs) 216 are passed to
Cluster Recognition Processor (CRP) 186 in the time order of their entry wherein, as

WO 96/41302 PCT/US96/04151

a

has been described, the time order of entry of each current stroke may be the “real -

time” order of the stroke’s creation through EP 24 and DT 26, or an induced time
order of creation. ‘ ‘

As shown in Fig. 34, Cluster Recognition Processor (CRP) 186, in turn,
includes a Cluster Recognizer (CLREC) 222 for ordering strokes in time and spatial
sequence and forming meaningful clusters of strokes or segments, that is, as possible
characters or symbols or parts of characters or symbols, and a Position Discriminator
(POSDIS) 224, which assigns meanings to clusters of strokes as chafacters or symbols.

Cluster Recognizer (CLREC) 222 includes a Current Stroke Buffer (CSB) 226
a First Previous Stroke Buffer (FPSB) 228, a Second Previous Stroke Buffer (SPSB)
230 and a Stroke Buffer Controller (SBC) 232. Current Stroke Buffer (CSB) 226 is

connected from Stroke Proportion Processor (SPP) 184 for receiving and storing the

2

Stroke Identifiers (STIDs) 216 of a Current Cluster (CC) 234 of strokes in the order
received from Stroke Proportion Processor (SPP) 184 wherein the number of strokes
represented in a Current Cluster (CC) 234 is sufficient to comprise at least the
maximum number of strokes expected to comprise a single character or symbol. First
Previous Stroke Buffer (FPSB) 228, in turn, stores the Stroke Identifiers (STIDs) 216
of an Immediately Preceding Cluster (IPC) 236 of strokes, that is, a set or cluster of
strokes that immediately precede the strokes represented in Current Stroke Buffer
(CSB) 226 and that have been identified as actually or potentially comprising a
character or symbol of the Current Cluster (CC) 234 of strokes and which comprise a
cluster of oné or more strokes that have been identified as actually or potentially
comprising a character or symbol. Second Previous Stroke Buffer (SPSB) 230, in turn,
stores the Stroke Identifiers (STIDs) 216 of an Previously Preceding Cluster (PPC)
238 of strokes, that is, a set or cluster of strokes that immediately precede the strokes
represented in First Previous Stroke Buffer (FPSB) 228 and that have been identified
as actually or potentially comprising a character or symbol.

Stroke Buffer Controller (SBC) 232 is connected from Stroke Proportion
Processor (SPP) 184 and is responsive to each Stroke Identifier (STID) 216 received
from Stroke Proportion Processor (SPP) 184 for ordering and organizing the Stroke

Identifiers (STIDs) 216 of current and previous strokes among Current Stroke Buffer

WO 96/41302 PCT/US96/04151

¢ 3

(CSB) 226, First Previous Stroke Buffer (FPSB} 228 anc Second Previous Stroke
Buffer (SPSB) 230. Stroke Buffer Controller (SBC) 232 orders the Stroke Identifiers
(STIDs) 216 in Current Stroke Buffer (CSB) 226, First Previous Stroke Buffer
(FPSB) 228 and Second Previous Stroke Buffer (SPSB) 230 according to the order
the strokes are received from Stroke Proportion Processor (SPP) 184 and among
Current Stroke Buffer (CSB) 226, First Previous Stroke Buffer (FPSB) 228 and
Second Previous Stroke Buffer (SPSB) 230 according to the potential membership of
the strokes in clusters that actualiv or potentially comprise characters of symbols.

Stroke Buffer Controller (SBC) 232 also constructs an Influence List (INFL)
240 wherein the strokes of Current Cluster (CC) 234 are ordered according to their
spatial coordinates and extents, for example, from left to right along the x, or
horizontal, axis of a page. Stroke Buffer Controller (SBC) 232 thereby operates to
order the strokes received from Stroke Proportion Processor (SPP) 184 in time and in
spatial relationship.

Upon receiving each new Stroke Identifier (STID) 216 from Stroke Proportion
Processor (SPP) 184, Stroke Buffer Controller (SBC) 232 reads the Descriptor
(DESC) 218 from the corresponding Stroke Identification Entry (SIE) 214 in Stroke
Identifier Data Structure (SIDS) 212, determines a corresponding Area of Influence
(AINF) 242 for the stroke, and constructs a corresponding Influence List Entry (INFE)
244 in Influence List (INFL) 240. In general, the Area of Influence (AINF) 242 of a
stroke is determined by determining the extents of the stroke, for example, the four
coordinates points defining a frame enclosing the maximum and minimum x and y
coordinates of the points along the stroke or segment, including the end points and the
intermediate points having the greatest x or y deviation from a straight line joining the
end points.

Stroke Buffer Controller (SBC) 232 orders the Influence List Entries (INFEs)
244 in Influence List (I'"FL) 240 according to the spatial relationships of the extents of
the strokes or szzment: :=presented by t'ic Influence List Entries (INFEs) 244; for
example, by increasing location of the leftmost point of the stroke’s or segment’s
extents along the x axis. Each Influence List Entry (INFE) 244 includes the stroke’s
Stroke Identifier (STID) 216, Stroke Identities (SIDNTSs) 220 and Area of Influence

WO 96/41302 PCT/US96/04151

¢

(AINF) 242. As will be described below, the Areas of Influence (AINFs) 242 are used
to determine whether a stroke is spatially related to other strokes, by their x/y
coordinates and their extents, such that they actually or potentially comprise the
strokes or segments of a character or symbol.

Stroke Buffer Controller (SBC) 232 examines the Area of Influence (AINF)
242 of each new current stroke with respect to the Areas of Influence (AINFs) 242 of
previously received strokes having Stroke Identifiers (STIDs) 216 residing in Current
Stroke Buffer (CSB) 226. When the Area of Influence (AINF) 242 of the current
stroke indicates that the current stroke is potentially a member of a Current Cluster
(CC) 234, Stroke Buffer Controller (SBC) 232 writes the Stroke Identifier (STID) 216
of the current stroke into the Current Stroke Buffer (CSB) 226. When the Area of
Influence (AINF) 242 of the current stroke indicates that the current stroke is probably
not a member of Current Cluster (CC) 234, Stroke Buffer Controller (SBC) 232
transfers the preceding Stroke Identifiers (STIDs) 216 residing in Current Stroke
Buffer (CSB) 226 into First Previous Stroke Buffer (FPSB) 228 and the Stroke
Identifiers (STIDs) 216 residing in First Previous Stroke Buffer (FPSB) 228 into
Second Previous Stroke Buffer (SPSB) 230 and writes the Stroke Identifier (STID)
216 of the current stroke into Current Stroke Buffer (CSB) 226 tb begin a new
Current Cluster (CC) 234.

v Position Discriminator (POSDIS) 224 includes a Stroke Buffer Scanner
(SBSC) 246 which, among other functions, scans and reads Influence List (INFL) 240.
Stroke Buffer Controller (SBC) 232 is responsive to an indication from Stroke Buffer
Scanner (SBSC) 246 that a current stroke has spatial coordinates or extents that are
spatially located between strokes which are previous in time for reordering the Stroke
Identifiers (STIDs) 216 in Current Stroke Buffer (CSB) 226, First Previous Stroke
Buffer (FPSB) 228 and Second Previous Stroke Buffer (SPSB) 230 according to the
spatial coordinates or extents of the current stroke, thereby reordering the time
relationship of the strokes in the buffers according to their spatial relationship.

Stroke Buffer Controller (SBC) 232 will identify two strokes as potential
members of a cluster when the extents of the strokes either overlap or are within a

given influence distance of one another. It should be noted, this regard, that it is

WO 96/41302 PCT/US96/04151

/5
generally necessary for Stroke Buffer Controller (SBC) 232 to consider only those
strokes that are within the same “neighborhood”, that is, that have extents falling
within a limited range of x/y coordinates of one another. For example, it is generally
sufficient for Stroke Buffer Controller (SBC) 232 to consider two to four strokes to
“either side” of a current stroke in order to determine whether the current stroke is a
member of a cluster with those strokes. Also, an identification of a first stroke as a
member of a cluster with a second stroke is also an identification of the second stroke
as a member of the cluster with the first stroke, so that it is not necessary to repeat the
cluster identification process for each stroke of each pair of strokes.

Stroke Buffer Controller (SBC) 232 determines overlap among strokes by
comparison of the x-y extents of the stroke currently under consideration and each
stroke in the same “neighborhood” as indicated by their positions in Influence List
(INFL) 240 to determine if their respective extents overlap. For example, a stroke
currently under consideration will be found to overlap a second stroke located to the
“right” of a stroke currently under consideration if the “rightmost” extents of the
stroke under consideration extend to the “right” of the “leftmost” extents of the second
stroke.

It is generally sufficient to execute the overlap comparison process along a
single coordinate dimension of the strokes, generally by examining and comparing the
x coordinates of the stroke’s or segment’s extents, as most handwritten characters and
symbols will be sufficiently oriented along the x, or horizontal axis, of a page that the

-order and relaﬁonship of the strokes will not be confused. In other implementations,
however, the comparison may be performed according to the same principles along
both the x and y coordinate axis of the strokes and the extension of this process to two
dimensional comparison will be apparent to those of skill in the art.

It is also possible a stroke that does not have overlapping extents with another
stroke or strokes of a cluster should be included in the cluster as having a significant
probability of being part of the same character or symbol as the other strokes when the
extents of the stroke under consideration are sufficiently close to the extents of the
other strokes in the to be defined as “overlapping”. An example of such is the character

R wherein the extents of the right extending upper loop and the right extending lower

WO 96/41302 PCT/US96/04151

[~
right slanting line may not overlap the upn’gf; line of the character, but wherein these
two strokes in fact comprise parts of the character.

Stroke Buffer Controller (SBC) 232 will include such non-overlapping strokes
in a cluster when Stroke Buffer Controller (SBC) 232 determines that the extents of
such strokes are separated by no more than a specified influence distance. This
influence distance may be arbitrarily defined, such as a specified number of pixels or
distance along the x and/or y coordinates, or may be determined dynamically. In the

latter instance, Stroke Buffer Controller (SBC) 232 may, for example, determine the

influence distance as a proportion of the average separation between the strokes, for

example, from the coordinates of the “centers of mass” of the strokes, as the average

of their extents, or as a proportion of their extents, so that the influence distance is
greater for strokes and segments of relatively larger extents, and thus larger characters,
and smaller for strokes having smaller extents, and thus smaller characters.

Position Discriminator (POSDIS) 224, as described above, assigns meanings to
clusters of strokes as characters or symbols. Position Discriminator (POSDIS) 224’s
Stroke Buffer Scanner (SBSC) 246, mentioned above, scans Influence List (INFL) 240
and writes a Window Subset (WINSET) 248 of the Stroke Identifiers (STIDs) 216
residing therein into a Window Buffer (WINBUF) 250. Each current Window Subset
(WINSET) 248 of Stroke Identifiers (STIDs) 216 is written into Window Buffer
(WINBUF) 250 in spatial order of the corresponding strokes, for example, from left to
right with respect to the horizontal x axis and thereby reflecting the order of strokes as
forming a character of symbol on a page. Stroke Buffer Scanner (SBSC) 246 selects
the strokes represented in Window Buffer (WINBUF) 250 according to their spatial
relationships as comprising a cluster of strokes having possible meaning as a character
or symbol.

It should be noted, in this regard, that Stroke Buffer Scanner (SBSC) 246
scans Influence List (INFL) 240 rather than Current Stroke Buffer (CSB) 226 to
identify possible meaningful clusters of strokes because this decouples the character
recognition operations from the stroke ordering operations. This, in turn, allows
character identification to be performed independently of the entry of new strokes, and

thus without interference from the entry of new strokes and allows new strokes to be

WO 96/41302 PCT/US96/04151

c7

ordered into Current Stroke Buffer (CSB) 226, First Previous Stroke Buffer (FPSB)
228, Second Previous Stroke Buffer (SPSB) 230 and Influence List (INFL) 240
regardless of the position of previous strokes. ‘

Position Discriminator (POSDIS) 224 further includes a Position Discriminator
Processor (PDISP) 252 connected from Window Buffer (WINBUF) 250 and from
Stroke Identifier Data Structure (SIDS) 212 to read combinations of Stroke Identifiers
(STIDs) 216 from Window Buffer (WINBUF) 250, wherein each combination of
Stroke Identifiers (STIDs) 216 comprises a Potential Character Cluster (POTCC) 254
of strokes potentially forming a character or symbol, and the corresponding Stroke
Identifier Entries (SIEs) 214 from Stroke Identifier Data Structure (SIDS) 212.

As described above, the corresponding Stroke Identifier Entries (SIEs) 214
read from Stroke Identifier Data Structure (SIDS) 212 are comprised of the Stroke
Identifiers (STIDs) 216, Descriptors (DESCs) 218 and Stroke Identities (SIDNTs)
220 of the strokes whose Stroke Identifiers (STIDs) 216 reside in Potential Character
Cluster (POTCC) 254. Position Discriminator Processor (PDISP) 252 indexes, or
accesses, a Character Identifier Data Structure (CIDS) 256 with the combination of the
Descriptors (DESCs) 218 of each selected combination of strokes. Character Identifier
Data Structure (CIDS) 256 is comprised of a B-tree database structure which contains,
in its nodes and leafs, Character Identity Entries (CIEs) 258 corresponding to
combinations of Descriptors (DESCs) 218. Each Character Identity Entry (CIE) 258
includes one or more Character Identifications (CHIDS) 260 of characters or symbols
corresponding to a one of the possible combinations of Descriptors (DESCs) 218,
together with the corresponding Descriptors (DESCs) 218 and, when accessed with a
combination of Descriptors (DESCs) 218, will provide one or more corresponding
Character Identity Entries (CIEs) 258 when a match or matches are found.

Position Discriminator Processor (PDISP) 252 compares the Descriptors
(DESCs) 218 read from Stroke Identifier Data Structure (SIDS) 212 and
corresponding to the selected combinations of strokes from Window Buffer
(WINBUF) 250 with the Descriptors (DESCs) 218 of the Character Identity Entries
(CIEs) 258 read from Character Identifier Data Structure (CIDS) 256 and determines

the degree of match between the combination of strokes represented in Window Buffer

WO 96/41302 PCT/US96/04151

6§
(WINBUF) 250 the combination of strokes represented by the Character Identity
Entries (CIEs) 258. The degree of match is determined by comparison of several
factors, including, for example, the relative positions and extents of the strokes. It

should be noted that the Stroke Identities (SIDNTSs) 220 read from Stroke Identifier

Data Structure (SIDS) 214 may, in some implementations of the present invention, be

used in the comparison operation.

Position Discriminator Processor (PDISP) 252 performs the accessing and
comparison match operation for each combination of strokes represented in Window
Buffer (WINBUF) 250 and determines the best match or matches between a
combination of strokes represented in Window Buffer (WINBUF) 250 and the
corresponding character identifications in Character Identifier Data Structure (CIDS)
256. Upon identifying a combination of strokes having a best match or matches,
Position Discriminator Processor (PDISP) 252 generates a corresponding Character
List (CLST) 262 and writes the Character List (CLST) 262 into a Sequential Character
Array (SCA) 264 in a spatial Sequence corresponding to the sequence in which the
cluster of strokes comprising the character occur in Influence List (INFL) 240. Each
Character List (CLST) 262 is comprised of at least one Character Identification
(CHID) 260 with an associated Confidence Level (CNL) 266. Each Character
Identifications (CHID) 26 identifies a character having a significant degree of match
with the corresponding cluster of strokes and the associated Confidence Level (CNL)
266, which is determined in the comparison operation by Position Discriminator
Processor (PDISP) 252, indicates the level of confidence that the corresponding
character matches the cluster of strokes, that is, the degree of match, While a given
Character List (CLST) 262 may contain more than one Character Identification
(CHID) 26 and associated Confidence Level (CNL) 266, the included Character
Identifications (CHIDSs) 260 will be comprised of at least the character having the
highest degree of match, together with any other characters also having significant
degrees of matching when compared to the character having the highest degree of
match. It is recognized that some stroke clusters may have a plurality of matching

characters, none of which have a high degree of match, and in this instance a Character

WO 96/41302 PCT/US96/04151

¢ 7

List (CLST) 262 may include a c:::responding plurality of characters having relatively
low degrees of match, that is, relatively low confidence levels.

Position Discriminator Processor (PDISP) 252 then provides the Stroke
Identifiers (STIDs) 216 of the strokes in the identified combination of strokes to
Stroke Buffer Controller (SBC) 232, removes the Stroke Identifiers (STIDs) 216 from
Window Buffer (WINBUF) 250, and again scans Influence List (INFL) 240 to
construct a new set of stokes in Window Buffer (WINBUF) 250. Stroke Buffer
Controller (SBC) 232 responds to the Stroke Identifiers (STIDs) 216 identified by
Position Discriminator Processor (PDISP) 252 as corresponding to a character by
moving the Stroke Identifiers (STIDs) 216 from Current Stroke Buffer (CSB) 226 to
First Previous Stroke Buffer (FPSB) 228 as a cluster of strokes comprising a character
or symbol. Stroke Buffer Controller (SBC) 232 also moves and the Stroke Identifiers
(STIDs) 216 previously residing in First Previous Stroke Buffer (FPSB) 228 to Second
Previous Stroke Buffer (SPSB) 230, discarding the oldest cluster of strokes from
Second Previous Stroke Buffer (SPSB) 230 if necessary.

Lastly, it has been described above that Stroke Buffer Scanner (SBSC) 246 is
responsive to a current stroke newly entered into Influence List (INFL) 240 and that
has spatial coordinates or extents that are spatially located between strokes which are
previous in time for indicating this event to Stroke Buffer Controller (SBC) 232 and
that Stroke Buffer Controller (SBC) 232 is responsive to such an indications for

. reordering the Stroke Identifiers (STIDs) 216 in Current Stroke Buffer (CSB) 226,
First Previoué Stroke Buffer (FPSB) 228 and Second Previous Stroke Buffer (SPSB)
230 according to the spatial coordinates or extents of the current stroke, thereby
reordering the time relationship of the strokes in the buffers according to their spatial
relationship. Stroke Buffer Scanner (SBSC) 246 is also responsive to the reordering of
Current Stroke Buffer (CSB) 226 and First Previous Stroke Buffer (FPSB) 228 for re-
scanning Influence List (INFL) 240 and rewriting the contents of Window Buffer
(WINBUF) 250 in a corresponding new spatial order with a new set of strokes as
necessary. Position Discriminator Processor (PDISP) 252, in turn, is then responsive to
the rewriting of Window Buffer (WINBUF) 250 for determining a new cluster
meaning from the new combinations of strokes in Window Buffer (WINBUF) 250,

WO 96/41302 PCT/US96/04151

70
thereby allowing a user to write new strokes into any location along a previously

entered series of strokes, or characters. Finally, Cluster Recognition Processor (CRP)

186 provides Sequential Character Array (SCA) 264 to Linguistic Post Processor
(LPP) 36.
E. Description of Linguistic Post Processor (LPP) 36 (Figs. 35A and 35B)

1t has been described that LPP 36 receives Sequential Character Array (SCA)
264 from LLRP 34 and assembles the Character Lists (CLSTs) 262, each of which
represents one or more interpretations of a given cluster of strokes as a character or
symbol, into character strings of two or more characters. LPP 36 then uses linguistic
principles to select the most probable interpretations, as words, of the strings of
characters represented in the Sequential Character Array (SCA) 264. LPP 36 thereby
significantly enhances the accuracy of interpretation of the handwritten input
charac_:ters by distinguishing between ambiguous or erroneous interpretations of
handwritten inpu{ characters, as represented in Sequential Character Array (SCA) 264,
by selecting, for each input character and from the possible interpretations of each
input character contained in the corresponding Sequential Character Array (SCA) 264,
the most probable interpretation of each input character based upon the character's
context as an element in a word or combination of characters.

For these purposes, LPP 36 performs two primary operations based upon the
properties of letters and words in natural languages. As shown in Figs. 35A and 35B,
respectively, the first is a linguistic analysis performed by a Linguistic Processor
(LNGP) 266 to select among ambiguous character possibilities based upon the
linguistic relationships of characters existing in any natural language, in this instance
English, thereby selecting between a plurality similarly ranked interpretations of a
handwritten characters. The second operation is a lexical analysis performed by a
Lexical Analyzer (LEXAZ) 290 first using a look-up table of words and similarity
measures to identify and resolve possible words occurring in character string. The
operations performed by Lexical Analyzer (LEXAZ) 290 further include substitution
error correction, when necessary, which performs correction and verification on

commonly confused letters and letter combinations to resolve instances wherein a

WO 96/41302 PCT/US96/04151

7/

correct character has been misidentified, that is, confused with, an incorrect character
in the previous stages of handwritten character recognition.

1. General Discussion of Linguistic and Lexical Analysis

First considering linguistic analysis, it is commonly known and understood that
all languages, including natural languages such as English, exhibit linguistic properties
wherein the linguistic properties of a language may be generally described as the
tendency for certain combinations of characters to occur in greater or lesser frequency
in the words of the language. That is, certain characters are frequently followed or
associated with other characters, certain letters frequently appear on combination, and
certain letters and letter combinations occur more frequently, for example, at the
beginning or ending or middle of words than at other places in words. For example, if
there is an ambiguity between the letters “u” and “a” in the possible interpretations
identified by LLRP 34, and the letter in question appears in a combination wherein they
are preceded by “q” and followed by “ick”, the linguistic characteristics of English will
indicate that the probably correct choice is “u”.

This relationship, as described below, is captured and implemented in a Markov
process, of the type well known and understood in the art, wherein LPP 36 chooses
among the possible interpretations of each input character from LLRP 34, and in
particular among ambiguous characters, based upon a combination of likelihood
measures stored in Markov tables and the confidence levels, or ratings, provided by
LLRP 34 in association with each potential interpretation of a character.

Lexical analysis, in turn, is based upon the vocabulary, words, or morphemes of
a language, such as the known and identifiable spelling of certain words in a language.
Examples of such are the spelling of at least the common words occurring in a
language, such as “cat”, “rat”, “boat”, and the spelling of proper names, such as
personal names and place names, and so on. Lexical analysis also includes the
identification of certain common errors arising from the substitution, or
misidentification, of certain characters for other characters, for example, the
misrecognition of the strokes of “5” as the strokes of “s” or the misrecognition of the
combinations “in” or “ni” as “m” or the misrecognition of “m” as the combination
“iw”,

WO 96/41302 PCT/US96/04151

77

2. Linguistic Processor (LNGP) 266 (Fig. 35A)

Referring to Fig, 35A, there is presented a diagrammatic representation of
Linguistic Processor (LNGP) 266. As has been described LLRP 34 provides LPP 36
with a sequence of Character Lists (CLSTs) 262 in Sequential Character Array (SCA)

264, wherein each Character List (CLST) 262 corresponds to a cluster of strokes

identified by LLRP 34 as having meaning, or potential meaning, as a character and

wherein each Character List (CLST) 262 includes one or more Character
Identifications (CHIDs) 260. Each Character Identification (CHID) 260 , in turn,
identifies a possible interpretation of a cluster of strokes as a character and has
associated with it a Confidence Level (CNL) 266 which indicates the level of
confidence that the corresponding character is a correct interpretation of the
corresponding cluster of strokes.

Linguistic Processor (LNGP) 266 includes an Initial Character String Selector
(ICSS) 270 which receives Character Lists (CLSTs) 262 from LLRP 34 and assembles
the Character Lists (CLSTs) 262, in the sequence received, into an Initial Character
String (ICS) 272 containing two or more Character Lists (CLSTs) 262 and which
potentially comprises a word. It should be noted that Initial Character String Selector
(ICSS) 270 will generally begin each attempt to identify a word occurring in the
sequence of Character Lists (CLSTs) 262 received from LLRP 34 by selecting the next
two sequential Character Lists (CLSTs) 262 occurring after the preceding |
identification of a word in the sequence of Character Lists (CLSTs) 262, and may
assemble progressively longer sequences of Character Lists (CLSTs) 262, depending
upon the outcome of the linguistic analysis for each selected Initial Character String
(ICS) 272.

A Linguistic Analyzer (LINAZ) 274 reads the Character Lists (CLSTs) 262 of
Initial Character String (ICS) 272 and performs two, sequential linguistic analyses, the
first based upon the relative frequency of occurrence of character pairs at the beginning
and ending of words and the second based upon the relative frequency of occurrence
of combinations of characters occurring at any point in a character string potentially
comprising a word. As indicated in Fig. 35, there are accordingly two corresponding

Markov tables associated with Linguistic Analyzer (LINAZ) 274, the first designated

WO 96/41302 PCT/US96/04151

73
as Beginning/Ending Markov Table (BEMT) 276 and the second designated as

Anywhere Markov Table (AMT) 278.

The first analysis is based upon characters appearing at the beginning and
ending of words as providing initial, additional constraints upon the possible pairing of
characters in words. For example, although the character pair “It” can appear together
in a word, the probability that this character pair would occur at the beginning of a
word is very low while the probability that the character pair “th” is relatively high
Correspondingly, and as indicated in Fig. 35, Beginning/Ending Markdv Table
(BEMT) 276 contains a Beginning Character Pair Probability Weight (BPPW) 280 for
each possible pair of beginning characters in a given language, such as English, and an
Ending Character Pair Probability Weight (EPPW) 282 for each possible pair of ending
characters in the language.

It should be noted that the initial linguistic analysis based upon the probabilities
of character pairs occurring at the beginning or ending of words is also of value in
identifying the beginning or ending of a given word occurring in the sequence of
Character Lists (CLSTs) 262 received from LLRP 34, and thus in assembling the
Character Lists (CLSTs) 262 into Initial Character Strings (ICSs) 272 which comprise
words.

Linguistic Analyzer (LINAZ) 274 performs the initial beginning and ending
analysis by identifying and reading from Initial Character String (ICS) 272 the first two

- and last two Character Lists (CLSTs) 262 occurring therein, reads the Character
Identifications (CHIDs) 260 contained in each of the beginning and ending pairs of
Character Lists (CLSTs) 262 and forms each possible combination of beginning
Character Identifications (CHIDs) 260 and each possible pair of ending Character
Identifications (CHIDs) 260. Linguistic Analyzer (LINAZ) 274 then accesses
Beginning/Ending Markov Table (BEMT) 276 with each possible combination of
beginning Character Identifications (CHIDs) 260 and each possible pair of ending
Character Identifications (CHIDs) 260 and reads from Beginning/Ending Markov
Table (BEMT) 276 a Beginning Character Pair Probability Weight (BPPW) 280 for
each pair of beginning characters and an Ending Character Pair Probability Weight
(EPPW) 282 for each pair of ending Character Identifications (CHIDs) 260.

WO 96/41302 PCT/US96/04151

74

Linguistic Analyzer (LINAZ) 274 then writes the selected beginning and ending
Character Identifications (CHID) 260 pairs into an Intermediate Character String
(IMCS) 284 in locations corresponding to their respective locations in Initial Character
String (ICS) 272, together with their Character Identifications (CHIDs) 260. This
processing is represented in Fig. 35A by the lines and appended suffixes, “a”, “b” and
s0, between the Character Identiﬁcationv(CHID) 260 pairs of Intermediate Character
String (IMCS) 284.

Linguistic Analyzer (LINAZ) 274 modifies the Confidence Level (CNL) 266
associated with each Character Identification (CHID) 260, however, with the
corresponding Beginning Character Pair Probability Weight (BPPW) 280 or Ending
Character Pair Probability Weight (EPPW) 282 read from Beginning/Ending Markov
Table (BEMT) 276 to generate a new Intermediate Confidence Level (ICL) 286 which
is associated with each Character Identification (CHID) 260. This modification may be
a simple replacement of the original Confidence Level (CNL) 266 with the
corresponding Beginning Character Pair Probability Weight (BPPW) 280 or Ending
Character Pair Probability Weight (EPPW) 282, but may also obtained, for example,
by multiplying the original Confidence Level (CNL) 266 by the corresponding
Beginning Character Pair Probability Weight (BPPW) 280 or Ending Character Pair
Probability Weight (EPPW) 282, 50 that Intermediate Confidence Level (ICL) 286
preserves the stroke cluster/character probability assessment performed by LLRP 34.

It should be noted that Linguistic Analyzer (LINAZ) 274 may find no matches
between the selected beginning Character List (CLST) 262 pair or the selected ending
Character List (CLST) 262, or both, and an entry in Beginning/Ending Markov Table
(BEMT) 276, or may find that the matches found are all of low weighté, that is, low
probabilities. This may occur, for example, when the selected Initial Character String
(ICS) 272 is an incomplete word, when an Initial Character String is comprised of

parts of two words, or, again in this latter instance, when one of the characters in the

string is a single character word, such as “A” or “I”. In the first two cases, Linguistic

Analyzer (LINAZ) 274 will direct Initial Character String Selector (ICS S) 270 to
either assemble a next Initial Character String (ICS) 272 containing at least one
additional Character List (CLST) 262 or, depending upon the number of Character

WO 96/41302 PCT/US96/04151

75"

Lists (CLSTs) 262 in Initial Character String (ICS) 272, to eliminate the leftmost
Character List (CLST) 262 from the present a Initial Character String (ICS) 272.
Linguistic Analyzer (LINAZ) 274 will repeat this beginning/ending analysis until an
Initial Character String (ICS) 272 is identified as having beginning and ending
character pairs having an acceptable probability of comprising the beginning and
ending of a word.

In the instance of a single character word contained in the Initial Character
String, this case will probably be indicated by a Character Identification (CHID) 260 as
a capitol letter, such as “A” or “I” and this character will be written into Intermediate
Character String (IMCS) 284 as a single character word with its Intermediate
Confidence Level (ICL) 286 either being the original Confidence Level (CNL) 266 or,
if obtainable from Beginning/Ending Markov Table (BEMT) 276, an Intermediate
Confidence Level (ICL) 286 modified by a Beginning Character Pair Probability
Weight (BPPW) 280 or Ending Character Pair Probability Weight (EPPW) 282
indicative of a single character accepted as the beginning/ending pair of a word. This,
however, requires that Beginning/Ending Markov Table (BEMT) 276 contain entries
corresponding to and providing weights for pairs that include an initial capital letter
and have a significant probability of occurring as a single character word.

Once Linguistic Analyzer (LINAZ) 274 has achieved acceptable interpretations
for the beginning and ending character pairs of an Initial Character String (ICS) 272,
and generated the corresponding entries in Intermediate Character String (IMCS) 284,
Linguistic Analyzer (LINAZ) 274 will perform the second linguistic analysis using
Anywhere Markov Table (AMT) 278, which contains Anywhere Character Pair
Probability Weights (APPWs) 288 reflecting the probabilities of occurrence of all
possible character combinations occurring anywhere in a character string. In this
process, Linguistic Analyzer (LINAZ) 274 first selects 1= Character List (CLST) 262
in Initial Character String (ICS) 272 occurring between the beginning and ending
character pairs and having the highest original Confidence Level (CNL) 266, wherein it
will be recognized that this initial Character List (CLST) 262 may be a member of
either the beginning or ending pair, or both. Linguistic Analyzer (LINAZ) 274 then
selects the Character Lists (CLSTs) 262 occurring to either side of the initial Character

WO 96/41302 PCT/US96/04151

7¢

List (CLST) 262, forms the possible pair combinations of the Character Identifications
(CHIDs) 260 of the initial Character List (CLST) 262 and the Character Identifications
(CHIDs) 260 of the neighboring Character Lists (CLSTs) 262. ' |

Linguistic Analyzer (LINAZ) 274 accesses Anywhere Markov Table (AMT)
278 with these combinations of Character Identifications (CHIDs) 260 and will read

- from Anywhere Markov Table (AMT) 278 an Anywhere Character Pair Probability
Weight (APPW) 288 for and corresponding to each combination of Character
Identifications (CHIDs) 260. Linguistic Analyzer (LINAZ) 274 then writes the
Character Identification (CHID) 260 and its neighboring Character Identifications
(CHIDs) 260 having the highest confidence levels into Intermediate Character String
(IMCS) 284 at locations corresponding to their locations in Initial Character String
(ICS) 272, again modifying each original Confidence Level (CNL) 266 according to
the corresponding Anywhere Character Pair Probability Weights (APPWs) 288, in the
manner described above, to generate corresponding Intermediate Confidence Levels
(ICLs) 286.

Linguistic Analyzer (LINAZ) 274 will select a neighboring Character List
(CLST) 262 of the initial Character List (CLST) 262 as a next Character List (CLST)
262 to form pairs with neighboring Character Lists (CLSTs) 262 and will repeat the
above described process, selecting the highest successive pairs of Character Lists
(CLSTs) 262 having the highest confidence levels upon each repetition of the process
and proceeding from the initial Character List (CLST) 262 to the ends of Initial
Character Stﬁng (ICS) 272 while generating corresponding entries in Intermediate
Character String (IMCS) 284 in the manner described above.

It will be noted with respect to the above described linguistic processing that
the initial processing operation, that is, beginning/ending processing takes advantage of
the more restrictive constraints in possible linguistic combinations of beginning and
ending character combinations to provide enhanced accuracy in correctly identifying
the characters appearing at those points in a word, and in identifying the beginnings
and endings of words. It will also be noted that the second linguistic analysis starts
with the Character List (CLST) 262 from LLRP 34 having the highest confidence

level, and thus the most probably correct interpretation of a cluster of strokes by LLRP

WO 96/41302 PCT/US96/04151

77

34, uses this character as the basis to identify neighboring characters, those characters
to identify further neighboring characters, and so on, thereby providing the highest
probability of resolving ambiguously identified characters of the character string,
Finally, it will be noted that the above linguistic processing, which has been described
as operating with character pairs, may be extended to character triplets, particularly
with respect to the second processing operation, in the manner well understood in the
art. Linguistic processing with character pairs has been selected in the present
implementation, however, as offering acceptable performance with acceptable cost in
processing time and complexity and acceptable size in the Markov tables.

Lastly, at the conclusion of the linguistic analyses performed by Linguistic
Processor (LNGP) 266, Intermediate Character String (IMCS) 284 is available to
Lexical Analyzer (LEXAZ) 290 for lexical processing.

3. Lexical Processor (LEXP) 268 (Fig. 35B)

As described above, the lexical processing of Intermediate Character String
(IMCS) 284 is performed in two stages, the second stage, illustrated in Fig. 35B is a
word lexical analysis performed in Lexical Processor (LEXP) 268 by a Lexical
Analyzer (LEXAZ) 292 operating in association with a Lexical Look-up Table (LLT)
292 comprised of a Start Handle Table (SHT) 294 and three “letter in position” lists
respectively designated as Busy List (BUSY) 296, Regular List (REGULAR) 298 and
Sparse List (SPARSE) 300, containing commonly occurring words of the language

. and words that are proper names, that is, of persons and places.

As has been discussed above, Intermediate Character String (IMCS) 284 is
comprised of an ordered sequence or string of Character Lists (CLSTs) 262 wherein
each Character List (CLST) 262 may include one or more Character Identifications
(CHIDs) 260, each having an associated Intermediate Confidence Level (CNL) 266
and it is apparent that there may still be, and probably will be, ambiguities among the
characters represented in Intermediate Character String (IMCS) 284, that is, that there
may be more than one possible remaining interpretation for one or more of the
characters represented in Intermediate Character String (IMCS) 284.

The operation performed by Lexical Analyzer (LEXAZ) 290 is referred to as a

lexical lookup with uncertain input, that is, with an input having any number of

WO 96/41302 PCT/US96/04151

77

characters having low confidence levels. In this regard, it must be noted that standard
lexical lookup methods use the initial characters of a character string as a primary key
for efficient lookup. It will be apparent, however, that in an optical or handwritten

character recognition system the level of confidence in each letter varies from character

to character and that the initial characters may, in fact, have lower confidence levels

than other characters of the word. Asa result, standard lexical lookup methods may
not provide acceptable results when the confidence level of the initial characters is low.

As a consequence, the lookup method used in such instances, as in the present system,

must be flexible in selecting the primary key, building the primary key from those

characters having the highest confidence levels regardless of the characters’ relative
positions in the word.

In this stage, Lexical Analyzer (LEXAZ) 290 identifies and reads from
Intermediate Character String (IMCS) 284 a Primary Key Character Identification
(PRKEY) 302, such as (*H*), that is word comprised of the (CHIDs) 260 therein
having the highest associated Intermediate Confidence Level (ICL) 286. Lexical
Analyzer (LEXAZ) 290 then accesses Lexical Look-up Table (LLT) 292 with the
Primary Key Character Identification (PRKEY) 302, reads from Lexical Look-up
Table (LLT) 292 all potential words therein that have the selected primary key
character in the same location as in Intermediate Character String (IMCS) 284, such as
(P/T)HE, (P/T)HA, (P/T)HL, and (P/T)HO, and assembles these words into a Potential
List (POTLST) 304.

Lexical Analyzer (LEXAZ) 290 the identifies and reads one or more
Secondary Key Character Identifications (SECKEYs) 306 from Intermediate Character
String (IMCS) 284, if any, such as TH* and PH*, wherein each Secondary Key
Character Identification (SECKEY) 306 is a potential word comprised of (CHIDs) 260
therein having Intermediate Confidence Levels (ICLs) 286 less than that of Primary
Key Character Identification (PRKEY) 302 but higher than an acceptable threshold.
Lexical Analyzer (LEXAZ) 290 then scans Potential List (POTLST) 304 using
Primary Key Character Identification (PRKEY) 302 and the Secondary Key Character
Identifications (SECKEYs) 306 and compares the Primary Key Character

Identification (PRKEY) 302 and Secondary Key Character Identifications (SECKEYs5)

WO 96/41302 ‘ PCT/US96/04151

77

306 with the characters appearing in corresponding locations in each word in Potential
List (POTLST) 304. Lexical Analyzer (LEXAZ) 290 then constructs a Candidate List
(CADL) 308 of Potential List (POTLST) 304 words that have the same characters
occurring in the same locations as the Primary Key Character Identification (PRKEY)
302 and the Secondary Key Character Identifications (CHIDs) 260.

Finally, Lexical Analyzer (LEXAZ) 290 ranks the words of Candidate List
(CADL) 308 according to their similarity with the characters represented in
Intermediate Character String (IMCS) 284, such as (P/T)HE, (P/T)HA, (P/T)HI and
(P/T)HO, taking into account the Intermediate Confidence Levels (ICLs) 286
associated with the characters represented in Interme.diate Character String (IMCS)
284. Lexical Analyzer (LEXAZ) 290 preferably and initially uses the character
represented in any given location in Intermediate Character String (IMCS) 284 having
the highest Intermediate Confidence Level (ICL) 286, but considers alternative
character interpretations at each location to determine the match having the highest
overall confidence level.

If Lexical Analyzer (LEXAZ) 290 finds a complete match between a word of
Candidate List (CADL) 308 and a combination of the characters represented by
(CHIDs) 260 in Intermediate Character String (IMCS) 284, Lexical Analyzer
(LEXAZ) 290 accepts this word as a correct interpretation of the corresponding
original handwritten input word and writes the word into Output String (OUTS) 310
as an Identified Word (IDWORD) 312 thereof for subsequent display, storage,
printing, or so on. '

If a complete match is not found, then Correction Processor (CORRP) 314 is
invoked to operate upon the combination of the characters represented by (CHIDs)
260 most closely matching one or more words of Candidate List (CADL) 308. If no
match is found, Correction Processor (CORRP) 314 will also be invoked, but in this
instance will be provided with the Candidate List (CADL) 308 entry having the
Intermediate Confidence Levels (ICLs) 286, that is, the results of the linguistic analysis
having the highest probability, based upon the linguistic analysis and the stroke
characteristics determined by Low Level Recognition Processor (LLRP) 34.

WO 96/41302 PCT/US96/04151

g0

Before proceeding to a description of Correction Processor (CORRP) 314,
Figs. [Figures From LPP Disclosure] illustrate the structure of Lexical Look-up Table
(LLT) 292. As described, in order to facilitate lexical lookup with uncertain input it is

necessary to be able to access a lexicon, such as Lexical Look-up Table (LLT) 292,

using any letter of the input word as a primary key, rather than only the initial letter or

letters. This is achieved in the system of the present invention by storing the lexicon of

words in “letter-in-position” lists identified in Figs. [Figures From LPP Disclosure] as

Busy List (BUSY) 296, Regular List (REGULAR) 298 and Sparse List (SPARSE)
300, which are accessed, or indexed, through Start Handle Table (SHT) 294. The three
types of list, busy, regular and sparse, are based upon the number of words in the
lexicon, that is, in Lexical Look-up Table (LLT) 292, having a given character in a
given position. In the present implementation, if the number of words having a given
character in a given position is less than 10, it is considered to be “sparse” and is stored

in Sparse List (SPARSE) 300, If the number of words is between 10 and 100 it is

considered “regular” and stored in Regular List (REGULAR) 298 and if the number of

words is greater than 100 it is considered “busy” and stored in Busy List (BUSY) 296.

This structure has been implemented to maximize the efficiency of lookup and to
minimize the amount of space required to store Lexical Look-up Table (LLT) 292.

As indicated in Figs. [Figures From LPP Disclosure], Start Handle Table
(SHT) 294 contains a Start Entry (START) 316 for each letter of the alphabet in every
possible position and each Start Entry (START) 316 includes a Primary Key Type
(PKT) 318, B‘, Roor §, identifying respectively whether the corresponding words reside
in Busy List (BUSY) 296, Regular List (REGULAR) 298 or Sparse List (SPARSE)
300, and a Pointer Handle (PTRH) 320 to the corresponding entries in Busy List
(BUSY) 296, Regular List (REGULAR) 298 or Sparse List (SPARSE) 300 wherein
the Primary Key Type (PKT) 318 determines which list the Pointer Handle (PTRH)
320 is pointing to.

In Busy List (BUSY) 296, words with the same length and same primary key
are blocked together, in a Busy Block (BUSYB) 322, and a Secondary Index Table

(SIT) 324 determines which partition, or Busy Block (BUSYB) 322, belongs to. For

example, and as illustrated, an “a-in-the-second-position for names 5 characters long”

WO 96/41302 PCT/US96/04151

74

links “Aaron” to “Bambi” to “Bardo” and so on. Words with less common lengths,
however, are blocked together in a single Busy Block (BUSYB) 322.

It should be noted that the letter-in-position list of Busy List (BUSY) 296
contains the words each followed by either an End of Data Marker (ENDD) 326 at the
end of the last Busy Block (BUSYB) 322 or an End of Block Marker (ENDB) 328
followed by a Previous Block Pointer (PBP) 330 to the start of the previous Busy
Block (BUSYB) 322 for Busy Blocks (BUSYBs) 322 other than the last Busy Block
(BUSYB) 322. It should also be noted that the list does not have to be sorted or
organized alphabetically because all of the matched strings must be returned to Lexical
Analyzer (LEXAZ) 290.

For Regular Lists (REGULARs) 298 the lengths of the words are not a factor
in organizing the list. Words of any length with a specific primary key designated as
“regular” are stored together in a Regular Block (REGB) 332 and there is,
accordingly, no Secondary Index Table (SIT) 324 associated with a Regular List
(REGULAR) 298. The format of the letter-in-position blocks in a Regular List
(REGULAR) 298 is otherwise the same as in a Busy List (BUSY) 296.

Finally, in Sparse Lists (SPARSEs) 300 neither the length nor the letter
position of the of the words are used in organizing the list and all words with primary.
keys designated as “sparse” are blocked together in a Sparse Block (SPARSEB) 334.
For example, “u-in-the-third-position” and “z-in-the-eighth-position” are in the same

. Sparse Block (SPARSEB) 334 and, again, there is, accordingly, no Secondary Index
Table (SIT) 324 associated with a Sparse List (SPARSE) 300.

4. Correction Processor (CORRP) 314

As described above, if a complete match is not found between an interpretation
of the of Intermediate Character List (CLST) 262 and a word of Candidate List
(CADL) 308, then Correction Processor (CORRP) 314 is invoked to operate upon the
combination of the characters represented by (CHIDs) 260 most closely matching one
or more words of Candidate List (CADL) 308.

As also discussed previously, the errors that appear in recognition of
handwritten characters are different from the typographical errors that appear in text

that has been typed in that most handwritten character errors are substitution errors,

WO 96/41302 PCT/US96/04151

g2
that is, replacement of a letter by another letter due to a misidentification of their shape
and form. The use of a spelling type corrector is therefore not effective in recognition
of handwritten characters. _

As indicated in Fig. 35, Correction Processor (CORRP) 314 reads the
combination of the characters represented by (CHIDs) 260 most closely matching one
or more words of Candidate List (CADL) 308 and identifies the mismatching
characters. Correction Processor (CORRP) 314 then accesses a Smudge Table (SMG)
336, which contains a compilation of list of common mistakes in character recogrﬁtion
and Correction Rules (RULEs) 338 for amending such errors, such as (P/T), to
determine whether there exists in Smudge Table (SMG) 336 a Correction Rule
(RULE) 338 that is applicable to a mismatching character.

In a recursive process Correction Processor (CORRP) 314 attempts the
substitutions into the mismatching characters of Intermediate Character String (IMCS)
284 that are indicated by the applicable Correction Rules (RULESs) 338 and accesses,
or indexes, a Correction Lexicon (CORLEX) 340 with the resulting corrected versions
of Intermediate Character String (IMCS) 284, such as THE, THA, THI and THO.
Corrections that result in words unknown in Correction Lexicon (CORLEX) 340, such
as THA, THI and THO result in no match and are eliminated (THA, THI and THO)
from consideration while corrected versions of Intermediate Character String (IMCS)
284 that are matched by one or more words in Correction Lexicon (CORLEX) 340 are
identified as potentially correct versions of Intermediate Character String (IMCS) 284,
such as THE. ‘Correction Processor (CORRP) 314 accepts the corrected version of
Intermediate Character String (IMCS) 284 having the highest aggregate confidence
level, as determined from the Intermediate Confidence Levels (ICLs) 286 associated
with the characters of the corrected versions of Intermediate Character String (IMCS)
284 as a correct interpretation of the corresponding original handwritten input word
and writes the word, such as THE, into Output String (OUTS) 310 as an Identified
Word (IDWORD) 312 thereof for subsequent display, storage, printing, or so on.

Referring finally to Fig. [Figure From LPP Disclosure], Correction Lexicon
(CORLEX) 340 is represented therein as comprised of a letter trie structure, As

described, the correction processes uses the data from Smudge Table (SMG) 336 to

WO 96/41302 . PCT/US96/04151

73

evaluate possible character string substitutions, that is, possible corrections, wherein
the string substitutions are evaluated against the words in Correction Lexicon
(CORLEX) 340 and this trie structure allows Correction Processor (CORRP) 314 to
analyze and correct all common word substrings at the same time. In particular, as the
trie is traversed with a substitution version of character string, all invalid paths are
automatically rejected as invalid corrections while all valid paths are considered as
possible correct corrections. If Correction Processor (CORRP) 314 reaches the end of
a path with the substitution indicated by Smudge Table (SMG) 336 in i)lace, the
corrected version of the word is considered to be successfully corrected. As has been
described, however, this process may result in more than one possible successful
correction and Correction Processor (CORRP) 314 may use other criteria, such as
confidence levels or similarity comparisons between the corrected versions and the
original versions of Intermediate Character String (IMCS) 284 to reach a final
decision.

While the invention has been particularly shown and described with reference
to preferred embodiments of the apparatus and methods thereof, it will be also
understood by those of ordinary skill in the art that various changes, variations and
modifications in form, details and implementation may be made therein without
departing from the spirit and scope of the invention as defined by the appended claims.
Therefore, it is the object of the appended claims to cover all such variation and

modifications of the invention as come within the spirit and scope of the invention.

WO 96/41302 PCT/US96/04151

87

1. A handwritten character recognition system, comprising:

What is claimed is:

a document scanner for generating scanned images of a document containing
handwritten characters, .

an image processor connected from the document scanner for receiving the
scanned image of a document and generating one or more ordered cluster arrays, the
ordered cluster arrays containing spatially ordered coordinate arrays of skeletal image
arcs representing and corresponding to the strokes of the handwritten characters and

the spatial order representing an induced time ordered sequence of the strokes of
handwritten characters of the document,

a low level recognition processor connected from the time order induction
processor for receiving the ordered cluster arrays and generating a sequential character

array containing a character list for each ordered cluster array, each character Jist

containing at least one character identification representing a possible interpretation of
the corresponding ordered cluster array, and

a linguistic post processor connected from the low level recognition processor

for receiving the sequential character array and generating an output string

representing the most probable interpretation of the handwritten characters of the
document.

2. The handwritten character recognition system of claim 1, wherein the image
processor further comprises:

a segmentor for receiving a scanned image of a document and identifying one
Or more segments of each handwritten character stroke appearing in the scanned
image,

a thinning processor connected from the segmentor for reducing each segment
to one or more skeletal images

wherein each skeletal image represents one or more strokes of a
handwritten characters in the scanned image and

wherein each skeletal image includes one or more skeletal image
arcs wherein each skeletal image arc is a single pixel wide image representing a

corresponding one or more strokes of a handwritten character,

WO 96/41302 PCT/US96/04151

75

a time order induction processor connected from the scanned image thinning
processor for receiving the skeletal image arcs and generating the ordered cluster
arrays by ordering the skeletal image arcs into a spatial sequence representing an
induced time ordered sequence of handwritten generation of the skeletal ixnages, and

a transcriber for reading the coordinates of points along the skeletal image arcs
and generating the ordered cluster arrays.

3. The handwritten character recognition system of claim 2, wherein the time order
induction processor further: .

joins selected ones of the skeletal image arcs by a ballistic motion
emulation of handwritten character generation to generate skeletal image arcs
emulating strokes of hahdwritten characters.
4. The handwritten character recognition system of claim 1, wherein the low level
recognition processor further comprises:

a stroke feature recognizer for extracting stroke recognition features
from the coordinate arrays répresenting the skeletal image arcs and assigning a
‘meaning to each skeletal image arc of each ordered cluster array, and

a cluster recognizer connected from the stroke feature recognizer and
responsive to the meaning assigned to each skeletal image arc for recognizing and
assigning at least one character identification to each ordered cluster array, and

a character array generator for generating a sequential character array
containing a character list for each ordered cluster array, each character list containing
at least one possible character identification representing a possible interpretation of
the corresponding ordered cluster array.
5. The handwritten character recognition system of claim 1 wherein the linguistic post
processor further comprises:

a linguistics analyzer for receiving the character lists

arsembling the character lists into character strings, and
performing a linguistic analysis on the character strings to

determine the most probable correct combinations of characters in each character
string, and

a lexical analyzer for performing

WO 96/41302 PCT/US96/04151

f¢
a lexical analysis of each combination of characters to determine
the most probable meaning of each character of each character string, and

generating an output string representing the most probable
interpretation of the handwritten characters of the document.

6. The handwritten character recognition system of claim 4, wherein the low level
recognition processor further comprises: _

a real time handwritten character processor connected from a tablet and pen for
generating handwritten character inputs and to the stroke feature recognizer for
providing stroke descriptor information representing real time handwritten characters

to the stroke feature recognizer.

7. The handwritten character recognition system of claim 5, wherein the real time
handwritten character processor comprises:

a pen input detector for detecting and indicating user inputs through the tablet
and pen, the user inputs including pen strokes and pen states, and

an input buffer connected from the pen input detector for storing stroke

descriptor information of a current stroke as the current stroke is entered by the user,
wherein

the stroke feature recognizer is connected from the input buffer and responsive
to the pen states for extracting stroke recognition features from the stroke descriptor
information of the current stroke and assigning a meaning to the current stroke, and

the cluster recognizer connected from the stroke feature recognizer is
responsive to. the meaning assigned to each stroke for recognizing and assigning a
character identification to each cluster of strokes.
8. An image processor connected from a document scanner for use in a handwritten
character recognition system for receiving a scanned image of a document containing
handwritten characters and generating a representation of the scanned handwritten
characters emulating the real time generation of handwritten characters, comprising;

a segmentor for receiving the scanned image of a document and identifying one

or more segments of each handwritten character stroke appearing
image,

in the scanned

WO 96/41302 PCT/US96/04151

77

a thinning processor connected from the segmentor for reducing each segment

to one or more skeletal images,

wherein each skeletal image represents one or more strokes of a
handwritten character in the scanned image and

wherein each skeletal image includes one or more skeletal image
arcs wherein each skeletal image arc is a single pixel wide image representing the
corresponding one or more strokes of a handwritten character,

a time order induction processor connected from the scanned image thinning
processor for receiving the skeletal image arcs and generating ordered cluster arrays,
the ordered cluster arrays containing spatially ordered coordinate arrays of skeletal
image arcs representing and corresponding to the strokes of the handwritten characters
and the spatial order representing an induced time ordered sequence of the strokes of
handwritten characters of the document, including

a transcriber for reading the skeletal image arcs and generating a
coordinate array for each skeletal image arc.
9. The handwritten character recognition system of claim 2, wherein the time order
induction processor further:

joins selected ones of the skeletal image arcs by a ballistic motion
emulation of handwritten character generation to generate skeletal image arcs
emulating strokes of handwritten characters.
10. A low level recognition processor for use in a handwritten character recognition
system for assigning possible identifications to handwritten characters, the character
recognition system including a tablet and pen for providing real time entry of
handwritten characters by a user and an image processor connected from an image
scanner for providing handwritten characters from a document as ordered cluster
arrays containing spatially ordered coordinate arrays of skeletal image arcs
representing and corresponding to an induced time ordered sequence of generation of
the handwritten characters of a document, comprising:

a pen input detector for detecting and indicating user inputs through the tablet

and pen, the user inputs including pen strokes and pen states,

WO 96/41302 PCT/US96/04151

§5

an input cluster buffer connected from the pen input detector for storing stroke
descriptor information of a current stroke as the current stroke is entered by the user,

a point buffer connected from the input cluster buffer for storing the stroke
descriptor information of the current stroke, and

a point detector connected from the input cluster buffer and responsive to the

pen states for transferring the stroke descriptor information of the current stroke into
the point buffer, wherein

a stroke feature recognizer

connected from the point buffer and responsive to the pen states for
extracting stroke recognition features from the stroke descriptor information of the
current stroke and assigning a meaning to the current stroke, and
connected from the image processor for extracting stroke recognition
features from the ordered cluster arrays, and
a cluster recognizer connected from the stroke feature recognizer and

responsive to the meaning assigned to each stroke for recognizing and assigning at
least one character identification to each cluster of strokes.

11. A linguistic processor for use in a handwritten character recognition system for
receiving a sequential character array and generating an output string representing the
most probable interpretation of the handwritten characters of the document,
comprising;
a linguistics analyzer for
| receiving a sequential character array,

a sequential containing a character list for each cluster of
strokes in a document and representing a handwritten character,

each character list containing at least one
possible character identification representing a possible interpretation of the

corresponding cluster of strokes,

assembling the character lists into character strings, and

performing a linguistic analysis on each character string to
determine the most probable correct combinations of characters in each character
string, and

WO 96/41302 PCT/US96/04151

7

performing a lexical analysis of each combination of characters

a lexical analyzer for

in each character string to determine the most probable meaning of each character of
each character string, and
generating an output string representing the most probable
interpretation of the handwritten characters of the document.
12. The linguistic processor of claim 11, wherein the linguistic processor:
reads the character lists to select a character string of character lists having a
predetermined initial length,
performs a first linguistic analysis upon
a pair of character lists occurring at the beginning of the initial character
string, and
a pair of character lists occurring at the ending of the initial character
string, and
selects the beginning or ending pair of character lists having a high
probability of correct identification of the corresponding handwritten characters, and
performs a second linguistic analysis upon subsequent pairs of character lists of
the initial character string, each subsequent pair of character lists being selected
starting with one character of the selected beginning or ending pair of character lists
and preceding along the character string away in steps of one character list.
. 13. A method for recognizing handwritten characters contained in a previously created
document, coinprising the steps of:
scanning the document with a document scanner to generate scanned images of
the document containing handwritten characters,
by operation of an image processor connected from the document scanner
receiving the scanned image of a document, and
generating one or more ordered cluster arrays, the ordered cluster
arrays containing spatially ordered coordinate arrays of skeletal image arcs
| representing and corresponding to the strokes of the handwritten characters and the
spatial order representing an induced time ordered sequence of the strokes of

handwritten characters of the document,

WO 96/41302 PCT/US96/04151

70

by operation of a low level recognition processor connected from the time
order induction processor

receiving the ordered cluster arrays and

generating a sequential character array containing a character list for
each ordered cluster array, each character list containing at least one character

identification representing a possible interpretation of the corresponding ordered
cluster array, and

by operation of a linguistic post processor connected from the low level
recognition processor

receiving the sequential character array
performing a linguistic analysis of the character identifications in the

character lists of the sequential character array, and

generating an output string representing the most probable
interpretation of the handwritten characters of the document.

14. The method for recognizing handwritten characters of claim 13, wherein the step
of generating the order cluster arrays further comprises the steps of’
by operation of a segmentor
identifying one or more segments of each handwritten character stroke
appearing in the scanned image,
by operation of a thinning processor connected from the segmentor
reducing each segment to one or more skeletal images
| wherein each skeletal image represents one or more strokes of a

handwritten characters in the scanned image and

wherein each skeletal image includes one or more skeletal image
arcs wherein each skeletal image arc is a single pixel wide image representing a

corresponding one or more strokes of a handwritten character,

by operation of a time order induction processor connected from the thinning
processor
receiving the skeletal image arcs and generating the ordered cluster
arrays by ordering the skeletal image arcs into a spatial sequence representing an

induced time ordered sequence of handwritten generation of the skeletal images, and

WO 96/41302 PCT/US96/04151

7/

by operation of a . :nscriber,
reading the coordinates of points along the skeletal image arcs and
generating the ordered cluster arrays. v
15. The method for recognizing handwritten characters of claim 14, wherein the steps
of generating the skeletal image arcs further comprises the step of:
joining selected ones of the skeletal image arcs by a ballistic motion
emulation of handwritten character generation to generate skeletal image arcs
emulating strokes of handwritten characters.
16. The method for recognizing handwritten characters of claim 13, wherein the step
of generating the sequential character array further comprises the steps of:
by operation of a stroke feature recognizer,
extracting stroke recognition features from the coordinate
arrays representing the skeletal image arcs and assigning a meaning to each skeletal
image arc of each ordered cluster array, and
by operation of a cluster recognizer connected from the stroke feature
recognizer
in response to the meaning assigned to each skeletal image arc
for recognizing, assigning at least one character identification to each ordered cluster
array, and
by operation of a character array generator,
generating a sequential character array containing a character
list for each ordered cluster array, each character list containing at least one possible
character identification representing a possible interpretation of the corresponding
ordered cluster array.
17. The method for recognzing handwritten characters of claim 13 wherein the steps of
performing a linguistic analysis and generating on output string further comprised the
steps of’
by operation of a linguistics analyzer
receiving the character lists,

assembling the character lists into character strings, and

WO 96/41302 PCT/US96/04151

72—

performing a linguistic analysis on the character strings to

determine the most probable correct combinations of characters in each character
string, and

by operation of a lexical analyzer

performing a lexical analysis of each combination of characters
to defermine the most probable meaning of each character of each character string, and
generating the output string representing the most probable
interpretation of the handwritten characters of the document,
18. The method for recognizing handwritten characters of claim 16, wherein the step
of generating the sequential character array further comprises the steps of’

generating handwritten character inputs by means of a a tablet and pen and

by operation of a real time handwritten character processor connected
from the tablet and pen,

providing stroke descriptor information representing real time
handwritten characters to the stroke feature recognizer.
19. The handwritten character recognition system of claim 18, wherein the step of
providing stroke descriptor information further comprises the steps of:
by operation of a pen input detector
detecting and indicating user inputs through the tablet and pen, the user
inputs including pen strokes and pen states, and
by operation of an input buffer connected from the pen input detector
storing stroke descriptor information of a current stroke as the current
stroke is entered by the user, wherein
the stroke feature recognizer is responsive to the pen states for
extracting stroke recognition features from the stroke descriptor information of the
current stroke and assigning a meaning to the current stroke,
20. A method for receiving scanned images of a document containing handwritten
characters from a document scanner and generating a representation of the scanned

handwritten characters emulating the real time generation of handwritten characters,
comprising the steps of:

'

by operation of a segmentor,

WO 96/41302 PCT/US96/04151

73

receiving the scanned image of a document and
identifying one or more segments of each handwritten character stroke
appearing in the scanned image, |
by operation of a thinning processor connected from the segmentor
reducing each segment to one or more skeletal images,
wherein each skeletal image represents one or more strokes of a
handwritten character in the scanned image and
wherein each skeletal image includes one or more skeletal image
arcs wherein each skeletal image arc is a single pixel wide image representing the
corresponding one or more strokes of a handwritten character, and
by operation of a time order induction processor connected from the thinning
processor,
receiving the skeletal image arcs and
generating ordered cluster arrays,
the ordered cluster arrays containing spatially ordered
coordinate arrays of skeletal image arcs representing and corresponding to the strokes
of the handwritten characters and the spatial order representing an induced time
ordered sequence of the strokes of handwritten characters of the document, and
transcriber the coordinates of points along the skeletal image
arcs and generating a coordinate array for each skeletal imé.ge arc wherein each
. skeletal image arc represents at least a part of a stroke of a character.
21.The method for receiving scanned images of a document containing handwritten
characters from a document scanner and generating a representation of the scanned
handwritten characters emulating the real time generation of handwritten characters of
claim 20, wherein the step of generating skeletal image arcs further comprises the step
of:
joining selected ones of the skeletal image arcs by a ballistic motion
emulation of handwritten character generation to generate skeletal image arcs
emulating strokes of handwritten characters. '
22. A method for assigning possible identifications to handwritten characters received

from a tablet and pen for providing real time entry of handwritten characters by a user

WO 96/41302 PCT/US96/04151

and handwritten characters contained in images of a document received from an image
scanner for providing handwritten characters from a document as ordered cluster

arrays containing spatially ordered coordinate arrays of skeletal image arcs

representing and corresponding to an induced time ordered sequence of generation of

the handwritten characters of a document, comprising:
by operation of a pen input detector
detecting and indicating user inputs through the tablet and pen, the user
inputs including pen strokes and pen states,
by operation of an input cluster buffer connected from the pen input detector
storing stroke descriptor information of a current stroke as the current
stroke is entered by the user,
by operation of a point buffer connected from the input cluster buffer,
storing the stroke descriptor information of the current stroke, and
by operation of a segmentor
identifying one or more segments of each handwritten character stroke
appearing in the scanned image,
by operation of a thinning processor connected from the segmentor
reducing each segment to one or more skeletal images
wherein each skeletal image represents one or more strokes of a

handwritten characters in the scanned image and

wherein each skeletal image includes one or more skeletal image

arcs wherein each skeletal image arc is a single pixel wide image representing a
corresponding one or more strokes of a handwritten character,

by operation of a time order induction processor connected from the thinning
processor

receiving the skeletal image arcs and generating the ordered cluster

arrays by ordering the skeletal image arcs into a spatial sequence representing an
induced time ordered sequence of handwritten generation of the skeletal images, and

by operation of a transcriber,

reading the coordinates of points along the skeletal image arcs and
generating the ordered cluster arrays

WO 96/41302 PCT/US96/04151

75

by operation of a stroke feature recognizer
extracting stroke recognition features from the stroke descriptor
information of the current stroke and assigning a meaning to the current stroke, and
extracting stroke recognition features from the ordered cluster arrays,
and
by operation of a cluster recognizer connected from the stroke feature
recognizer,
in response to the meaning assigned to each stroke
recognizing and assigning at least one character identification to
each cluster of strokes.
23. A method for performing a linguistics analysis for recognition of handwritten
characters contained in a sequential character array and generating an output string
representing the most probable interpretation of the handwritten characters of the
document, comprising the steps of:
by operation ofa linguistics analyzer
receiving a sequential character array,
a sequential containing a character list for each cluster of
strokes in a document and representing a handwritten character,
each character list containing at least one
possible character identification representing a possible interpretation of the
corresponding cluster of strokes,
assembling the character lists into character strings, and
performing a linguistic analysis on each character string to
determine the most probable correct combinations of characters in each character
string, and
by operation of a lexical analyzer
performing a lexical analysis of each combination of characters
in each character string to determine the most probable meaning of each character of
each character string, and
generating an output string representing the most probable

interpretation of the ::andwritten characters of the document.

WO 96/41302 PCT/US96/04151

24. The method of claim 23 for performing a linguistics analysis, further comprising
the steps of:

reading the character lists to select a character string of character lists having a
predetermined initial length,

performing a first linguistic analysis upon

a pair of character lists occurring at the beginning of the initial character
string, and

a pair of character lists occurring at the ending of the initial character
string, and

selecting the beginning or ending pair of character lists having a high

probability of correct identification of the corresponding handwritten characters, and

performing a second linguistic analysis upon subsequent pairs of character lists

of the initial character string, each subsequent pair of character lists being selected

starting with one character of the selected beginning or ending pair of character lists

and preceding along the character string away in steps of one character st

WO 96/41302 » PCT/US96/04151

1/23

MS

20
DSs 18 PRs

22 24 26
SYSTEM 10

FIG. 1

WO 96/41302 PCT/US96/04151

2/23
22
IS I 38
. J SCi
Y
30
SITP
7421 42\ 42
SARC SARC § » ¢ ¢ |SARC
0‘/__—- I—I I—-I
SKi

CRS 28

FIG. 2

WO 96/41302

PCT/US96/04151

SITP.30
1’ ““““ SEGMENT AND THIN

82b
-

82c D
SsCl e ssci'] eee |
! L._I L_..I . FIG. 3

WO 96/41302

PCT/US96/04151

FIG. 5

SARC 42a

SARC 42b
SARC 42d NODE 90

SARC 42¢

FIG. 6

‘WO 96/41302 PCT/US96/04151

5/23

INCS 94
SARC 42~

INCS 94

NODE 90

NODE 90

NODE 90

SARC 42 S
LINK 92

,____J <-’\—SARC 42
' NODE 90

-~ SARC 42

NODE 90
FIG.7
SIAD 88 7
96
100
N I

I NODD NODE POINTERS

, NODE POINTER 102
LINK END POINTER 104

NEXT LINK END POINTER 106

LINKLIST POINTER 108

WO 96/41302 PCT/US96/04151

6/23

100 010 001 000 000 000 000 000
010 010 010 110 011 010 010 010
000 000 000 000 000 100 010 o001

FIG. 9

abc aaaaaaaa bbbbbbbb ccceceece
def dddddddd xxxxxxxx eeeeeeee

ghi ffffffff gggggggg hhhhhhhh

FIG. 10 | FIG.11

ABCD
EFGH
I J KL
MNOP

FIG. 12

aaaaaaaa bbbbbbbb ccccccce

dddddddd XxXXXXXXX eeeeeeee

ffffffff yyyyyyyy g9gggggggg
hhhhhhhh iiiiiiii hhhhhhhh

FIG. 13

WO 96/41302 PCT/US96/04151

7/23
e-e e Be
-B - e -e
e-e e Be
FIG. 14
128 1 Be-
64 2 1+4+16+64 eee
32 4
16 8 e
FIG. 15 FIG. 16
-ee e -e
1+4 e Be e Be
e e - e -e

FIG. 17

WO 96/41302 PCT/US96/04151

8/23
(1) modifyrule(&trimrule, LEAVE, 1, ~ “eee”
“eee”
“eee”
(2) modifyrule(&trimrule, FLIP, 1+4+16+64, “-- BB-"
: : “B- BB-
“eee --_"

FIG. 18

for each pattern of the modify() rule command
if there is a syntax error, return an error code for each of the specified
orientations
for each implied pattern (each combination of e's as 0 vs1) do
| one, depending on the directive:
LEAVE: store ‘0’
FLIP: store ‘1’
BLACKEN:{ if central pixel is black, store ‘0’ else
(central pixel white) store ‘1'}
WHITEN:{ if central pixel is black, store ‘1’ else
(central pixel white) store ‘0’}
end
end

end

FIG. 19

WO 96/41302 PCT/US96/04151

9/23
abc
def
ghi
FIG. 20
abc* *abc * % % % * % % *x
def* *def abcgc * *abec
ghl~™ *ghi de f * *de f
* % % * * * % % ghl* *ghl
FIG. 21
0000 0000 0000
o* * * 0000 0111
0O*p * 0000 0111
o* * * 0000 0111

FIG. 22 FIG. 23 FIG. 24

PCT/US96/04151

-WO 96/41302

10/23

mN .MV_H&) ‘wnjad *

/.sdn pue ‘sabpuq,/ ‘(000 ©oo00 o009 099,
/.punoibaio} 0} punoibaioy,/ ‘~g9- -g- -g- °g-,
/«|elluasse aAes| Inq,/ ‘‘eg- -gga -g- e-g,
‘PO+91+p+1 ‘GAVIT ‘ndajgey)snifyipow
/.punoibaioy ojul,/ 90090,
/.premuybu,/ ‘24 -,
/.punoibyoeq pusixa,/ ‘999,
‘uonejuso ‘4|14 ‘ndejgey)ajniAjpow
(8909,
\i@—ﬂ.ﬂw m__-_._t\ .:0 ° m:
/«84} 8zZijeniul,/ ‘098,
‘1 ‘3AV3IN ‘ndejges)siniAypow w
‘uonejuauo il

:ndeige), 31gv.L31NYH
(uonejusuo ‘ndejqe))daisdduys
‘19| 8y} wolj suop asem Buiddns J1 se pauyep
s| ‘apooopnasd Buimojjoy ay) Aq paquosep ‘aulnol UodNJIISUOD Bjge]} By} ulBJaym pue

/x8In1y8| Jo uonejol salbep 06- aul,/ {($9‘enuduysiogy)daiddins
/,8|n1y8} Jo uonejos aaibap 0gL aul,/ ‘91 ‘enudisyrg)daiddiys
/.2In1Yyo| Jo uoneios aaibap 06+ 8yl,/ ‘(¢ ‘enuduysdoyg)daisdduys
/.8UONBIUBLIO plepue)ls, ayl,/ (1 ‘einudinsjopg)daiddiys
:opooopnasd ay} Aq uiny ui paquoasap aq Aew saigel buiddiuys [euonoaaip 1noj eyt
‘/,S19x1d punoiboeq pepunouns jsowe,/ ‘gag o8 - 909,
/+8U} os[e dijj ‘sjexid punoibaioy,/ ‘d- g9 -89 -g-
/.Bunosfoid pue pajelos| dij./ ‘“9—- ege -gg -,
'‘v9+9L+p+1 ‘'dind ‘sjniyioowsg)ajniAypow
u-mmmnv
/+2lqe} @y}, / 999,

/.ozifenul,/ 299, L'IAVIT ‘aIniyioowsy)ejnijpow

WO 96/41302 PCT/US96/04151

11/23
SC11SDSC1’1£DSC11O:
/ NI \/ 1126 \
1123112b112c112d

32 stistl|s

D

TOIP
OCA 44 |
44
44

FIG. 26

smoaa;
/ ¢ 96 o100 < 98 \ G120
NODD | NODE POINTERS LLIS IDIRS
SDE 122

112

FIG. 27B

WO 96/41302 PCT/US96/04151

86 12/23

86\

SIF

8 FIG. 27A

‘SMD@I .
- TOIP 32
®
[
116/7
SDG
18N 124
118
STRP
134
130
> COP
CLR

WO 96/41302 ‘ PCT/US96/04151

13/23
>SARC 42u ‘ >SAHC 42w
/SARC 42v ~/SARC 42y
INTERSECTION 126
~ “_SARC 42x
SARC 42z
FIG. 28A FIG. 28B

FIG. 28C

SSD 114wx

SD 114yz

FIG. 28D

WO 96/41302 PCT/US96/04151

14/23
IEPzgloTzﬁl ‘_5;136
STKP
13€ﬁ\\ '
SFP
32
1407
TOIP >

LPP 36

FIG. 29

DSRFs 154 / SSRFs 164

S STKD 160/ SEGDE 168

FIG. 30

PCT/US96/04151

WO 96/41302

8El d4S

16/23

143

0Lt

Vil

NODD3S

cll

ZVHdId

Zvo3s |

091 AMLS

8% QHOOS
8% A4OOS

dNngd

8 dHOOS

8¥ @4OOS
8Y 40O0S

gSl|

- aid

09T A)LS
091 LS
sQdys

M\mwr

(443

nﬂmww0m<h
—@Mko\wmaw_

L€ "Old

WO 96/41302

44

OCA

PCT/US96/04151

204
/

PML

PMATCH 206

MATCHP 210

PMATCH 206

MATCHP 210

PMATCH 206

MATCHP 21

RPG

~SIE 214

FIG. 32

216 7 218) 220)

I STID IDESC l SIDNTI

SIE 214

WO 96/41302 PCT/US96/04151

17/23

STKM
CHAR 202

IPS 196
CHAR 202 :\/
[

195 7 200 7
BND

FIG. 33

WO 96/41302

184

PCT/US96/04151

STIDs
216

Y

212

sips|

INFL 244 5
INFE
[STID 216

SIDNT 220

POSDIS
250

WINBUF
WINSET 248

POTCC 254

CIDS CIE 258 5

CHARID 260
DESC 218

[CHARI

O

260

CLST

CHID 260
CNL 266

CLST

WO 96/41302

PCT/US96/04151
19/23)
SCA 264
cLsT] |cisT], . |cCLsT FIG. 35A
262 262 262
| 266
s 270 LNGP
ICS 272
)

CLST262 D CLST262) : KCLST262 CLST262)
CHID260Q CHID260
CNL266

CLST262; QCLST262 CLST262

CHIDZ_QQ
CNLZQG

BEMT

L J

IMCS 284 ?

\
CLST262) CLST262) KCLST262 CLST262) QSLST262 CCLST262

lCHID_z_e_QI CHID_z_@l |cHID260] [CHID260 CHID260] [CHID260
ICL286 J ICL286 ICL286 I IcL286 | ICL286 \Sl ICL286 |
I = e

CHID260 Yﬁmog_s_q CHlDQGO Tcmoz_eg .. [cHiD250 f CHID260
ICL286 | ICL286 ICL286 | ICL286 ICL286 ICL286

268

LEXP
(FIG. 35B)

WO 96/41302

20/23

IMCS 284

PCT/US96/04151

266
LNGD
Sf268
PRKEY 302
290 292
P 4 (th) ;_
LLT
BUSY
2967
LEXA - REGULAR
SPARSE
SECKEY 306
| (TH")
‘ (PH")
POTLST
(PIT)HE
(PIT)H1
(P/T)HA 304
(PMHO
f 308
314
CADL CORLEX
(P/T)HE — THE
(PIMHA— INA CORRP
(PMHI — IHF
(PMHO— THO

RULES
338

l THE END I

FIG. 35B

PCT/US96/04151

WO 96/41302

21/23

96¢ ASNg

VoE Oid

Ol <HLON31
01-6 = HLON3T
8 =HLON3
L=H1ON3T

9 = H1ON3IT

S =HLON3T

¢t gASNg

-1 = HLON3

9le
NR.LARS

gle
14HV.1S

8lE
g1)d

adiHL -

«b» HOS
IIANVH 1Si1
8 =3dAl 1S

\ng

giXd

L vee 1S

1HV1S

91€

aNoO3s -
——w: EO“*
A1ANVH 1SI1
g = 3dAL 1SN

v ¥6¢ LHS

PCT/US96/04151

WO 96/41302

22/23

96¢ HYINO3Y

g9¢€ ‘old

8le
HiMd

1SHId - \\N

:Q- mom
JTANVH LS
H=3dAL 1SN

£€ 9934

adiHL -

«» HOS
ITANVH 1SN
H =3dAl 18I

L v62 IHS

8lE
HiMd

PCT/US96/04151

WO 96/41302

23/23

g 'Ol

N

_u/h .
.

e

n

\.

OPE X3THOD

00€ 3SHVdS

-

Asupno)
elzeueoysy
ejleurug

09¢€ "Oid

8l
€S1Md

HLHOI3 - \\N

.—N: mom
IAIANVH 1511
S =3dAL 1SN

€€ §3SHvdS

adiHL -

::- mou
3TANVH 1SI7
S =3dALl 1SI1

L v62 1HS

8lE
SIMd

INTERNATIONAL SEARCH

REPORT

Intern

PCT/US 96/04151

al Application No

. CLASSIFICATION OF SUBJECT MATTER

TeC B GO6KO/46 GO6K9/72

According to International Patent Classification (IPC) or to both national classification and IPC

B. FIELDS SEARCHED

IPC 6 GB6K

Minimum documentation searched (classification system followed by classification symbols)

Documentation searched other than minimum documentation to the extent that such documents are included in the fields searched

Electronic data base consuited during the international search (name of data base and, where practical, search terms used)

C. DOCUMENTS CONSIDERED TO BE RELEVANT

Category * | Citation of dpcument, with indication, where appropriate, of the relevant passages Relevant to claim No.
Y PATTERN RECOGNITION, 1-7,10,
vol. 26, no. 3, 1 March 1993, 13-19,22
pages 409-418, XP000367313
BOCCIGNONE G: "“RECOVERING DYNAMIC
INFORMATION FROM STATIC HANDWRITING"
X see the whole document 8,9,20,
21
Y TIEEE TRANSACTIONS ON COMPUTERS, 1-7,10,
vol. C-24, no. 2, February 1975, NEW YORK 13-19,22
us,
pages 182-194, XP002004459
R. W. EHRICH AND K. J. KOEHLER:
"Experiments in the Contextual Recognition
of Cursive Script"
X see pages 183, 184: chapter: "THE 11,12,
GENERALIZED POSTPROCESSOR" 23,24
- / -

Further documents are listed in the continuation of box C.

D Patent family members are listed in annex.

* Speaial categories of cited documents :

"A" document defining the general state of the art which is not
considered to be of particular relevance

earlier document but published on or after the international
filing date

document which may throw doubts on priority claim(s) or
which is cited to establish the publication date of another
citation or other special reason (as specified)

document referring to an oral disclosure, use, exhibition or
other means

P" document published prior to the international filing date but
later than the priority date claimed

g
L

0"

vy

"T* later document published after the international filing date

or priority date and not in conflict with the application but
cited to understand the principle or theory underlying the
invention

" document of particular reievance; the claimed invention
cannot be considered novel or cannot be considered to
involve an inventive step when the document is taken alone

document of particular relevance; the claimed invention
cannot be considered to involve an inventive step when the
document is combined with one or more other such docu-
ments, such combination being obvious to a person skilled
in the art.

“ documnent member of the same patent family

Date of the actual completion of the international search

31 May 1996

Date of mailing of the international search report

055 %

Name and mailing address of the ISA
Euro Patent Office, P.B. 5818 Patentlaan 2
NL - 22380 HV Rijswijk
Tel. (+31-70) 340-2040, Tx. 31 651 epo nl,
Fax: (+31-70) 340-3016

Authorized officer

Sonius, M

Form PCT/ISA/210 (second sheet) (July 1992)

page 1 of 2

INTERNATIONAL SEARCH REPORT

Intern: . Application No

PCT/US 96/04151

C.(Continuation) DOCUMENTS CONSIDERED TO BE RELEVANT
Category °

Citation of document, with indication, where appropriate, of the relevant passages Relevant to claim No.

A TEEE TRANSACTIONS ON SYSTEMS, MAN AND
CYBERNETICS,

vol. 22, no. 4, 1 July 1992,

pages 755-771, XP000298670

SUKHAN LEE ET AL: “OFFLINE TRACING AND

REPRESENTATION OF SIGNATURES"

see the whole document

1-24

A CVGIP GRAPHICAL MODELS AND IMAGE
PROCESSING,

vol. 56, no. 4, 1 July 1994,

pages 324-335, XPO00464481

ABUHAIBA 1 S I ET AL: "PROCESSING OF
OFF-LINE HANDWRITTEN TEXT: POLYGONAL

APPROXIMATION AND ENFORCEMENT OF TEMPORAL
INFORMATION"

see the whole document

1-24

A TEEE TRANSACTIONS ON PATTERN ANALYSIS AND
MACHINE INTELLIGENCE, JAN. 1989, USA,

vol. 11, no. 1, ISSN 0162-8828,

pages 68-83, XP000003358

BOZINOVIC R M ET AL: “0ff-line cursive

script word recognition"

see the whole document

1-24

Form PCT/ISA/210 (continuation of second sheet) (July 1992)

page 2 of 2

	Abstract
	Bibliographic
	Description
	Claims
	Drawings
	Search_Report

