

(12) UK Patent (19) GB (11) 2 171 554 (13) B

(54) Title of Invention

Gas-discharge lamp

(51) INT CL⁴; H01J 61/06, C22C 14/00, 27/02

(21) Application No
8527318

(22) Date of filing
6 Nov 1985

(30) Priority data

(31) 3506296

(32) 22 Feb 1985

(33) Fed. Rep. of
Germany (DE)

(43) Application published
28 Aug 1986

(45) Patent published
18 Jan 1989

(73) Proprietor(s)
Helmann GmbH

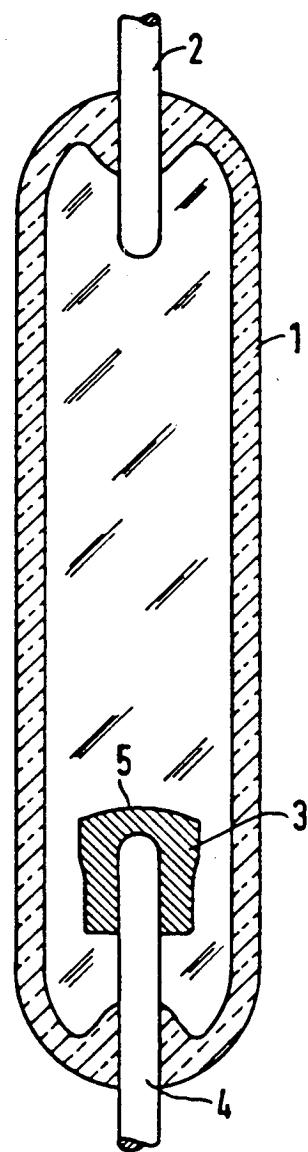
(Incorporated in,
FR Germany)

D-6200 Wiesbaden
Weher Koppel 6
Federal Republic of
Germany

(72) Inventor(s)
Ingo Dunish
Michael Lausch

(74) Agent and/or
Address for Service
Haseltine Lake & Co
Hazlitt House
28 Southampton Buildings
Chancery Lane
London WC2A 1AT

(52) Domestic classification
(Edition J)
H1D 13B5 13E 13F 17A3
17AY 35 7A1H3 7A1H5
7A1H6 7A1H7 PA
C7A 71X A249 A279 A299
A329 A330 A337 A339 A33Y
A340 A341 A343 A345 A347
A349 A34Y A369 A370 A37X
A37Y A390 A39X A39Y A439
A459 A509 A529 A549 A579
A599 A609 A629 A671 A673
A675 A677 A679 A67X A681
A683 A685 A687 A689 A68X
A693 A695 A697 A699 A69X
A70X


(continued on next page)

2 171 554 B - continuation

U1S 1925 C7A H1D

(56) Documents cited
None

(58) Field of search
H1D
C7A
Selected US
specifications from IPC
sub-classes H01J C22C

1

GAS-DISCHARGE LAMP

This invention relates to a gas-discharge lamp which contains two electrodes in a gas-filled light transparent housing, with the cathode being provided by a 5 connection wire fitted through the housing in vacuum-tight manner and a cathode body fixed thereto.

It is known to form the cathode as a porous sintered metal body. Salts of alkali or alkaline earth metals are taken up by the pores of the sintered body.

10 Accordingly the following requirements are placed on the sintered body:

1. The porosity should be as large as possible in order to offer a large surface to the alkali or alkaline earth metal salts.

15 2. Its strength should be as high as possible, and in particular, no particles should come away from the cathode when operating the lamps, (flash discharges).

3. The ductility and shear strength should be as high 20 as possible if the cathodes are generally to be fixed in mass production by mechanical pressing on to the current supply wire and accordingly strongly deformed.

4. The metals used should have a high melting point.

25 5. The metals used should have a high affinity (Getter effect) for O_2 , H_2 , CO , CO_2 .

Understandably, as a result of partially contradicting requirements, only a compromise may be achieved by mixing several pure metal powders.

30 According to the present invention, there is provided a gas-discharge lamp, which contains two electrodes in a gas filled light transmissive housing, the electrode which is to act as a cathode being formed from a connecting wire led through the housing in a 35 vacuum tight manner and a cathode body fixed thereon, which cathode body is a sintered body formed of the elements Ti, V and one or both of Ta and Nb and has a

1 particle size \leq 50 μm , with Ti being present in an amount of at least 40% and V being present in an amount of at least 10%.

5 For a better understanding of the invention and to show how the same can be carried into effect, reference will now be made, by way of example only, to the accompanying drawing:

10 With the flash lamp shown in the drawing, an anode 2 and a cathode are fused into a transparent housing 1 formed of quartz or hard glass. The cathode is composed of a cathode body 3 and a connection wire 4, with the cathode body 3 being fixed to the connection wire 4 by pressing on.

15 The cathode body 3 is a sintered body made from a mixture of metal powders. The mixture of metal powders consists of at least three of the four pure metals Ti, Ta, Nb, V and has a particle size \leq 50 μm , with Ti having a weight content of at least 40% and V a weight content of at least 10%. The following mixtures have been 20 successfully investigated (all amounts in % by weight):

1a.	Ti	Ta	V		
b.	50	20	30		
c.	50	30	20		
d.	60	30	10		
25	e.	60	20		
2a.	Ti	Nb	V		
b.	40	30	30		
c.	40	40	20		
d.	50	40	10		
30	3a.	Ti	Ta	Nb	V
b.	40	10	20	30	
c.	50	10	30	10	
d.	50	10	20	20	

35 A good compromise for porosity, strength and ductility was obtained with each of the indicated mixing ratios. Furthermore all four of the elements Ti, V, Ta and Nb are high melting metals and have good Getter

1 properties. The following advantageous results have
been obtained with flash tubes constructed with the above
indicated cathodes:

1. 15% higher light yield, in particular in
5 comparison to Ni-basis-cathodes.
2. 10% lower blackening after the required length of
use.
3. 20% higher specific capacitance.
4. 10% lower blackening after the required period of
10 use.
5. 80% less attrition in use on account of loosened
cathode particles and optical defects.
6. Reduction in the so-called "noise" (that is a high
frequency disturbance on initiation of
15 ionisation).

20

25

30

35

1 Claim

1. A Gas-discharge lamp, which contains two electrodes in a gas filled light transmissive housing the electrode which is to act as a cathode being formed from 5 a connecting wire led through the housing in a vacuum tight manner and a cathode body fixed thereon, which cathode body is a sintered body formed of the elements Ti, V and one or both of Ta and Nb and has a particle size \leq 50 μm , with Ti being present in an amount of at 10 least 40% and V being present in an amount of at least 10%.

2. A gas-discharge lamp as claimed in claim 1, wherein the cathode body is pressed onto the connecting wire.

15 3. A gas-discharge lamp, substantially as hereinbefore described with reference to, and as shown in the accompanying drawing in conjunction with the cathode body being formed of any one of mixtures 1a to 1e, 2a to 2d and 3a to 3d set out herein.

20

25

30

35

Publication No.
2171554 dated 28 August 1986

Patent Granted: WITH EFFECT FROM
SECTION 25(1) 18 JAN 1989

Application No.
8527318 filed on 6 November 1985

Priority claimed:
22 February 1985 in Germany (Federal Republic of) doc: 3506296

Title: Gas-discharge lamp
Application No. 8527318 filed on 6 November 1985

Applicant: FR
Heimann GmbH (FR Germany), D-6200 Wiesbaden, Weher Koppel 6, Democratic Republic of
Germany
Name: Fischer, Philips
Name: Haselton, Philips
Name: Dunish, Ingo
Name: Lausch, Michael
Name: Obergrund, Michael
Name: Taunusstein, Ingo
Name: Taunusstein, Michael
Name: Wunastrasse, Ingo
Name: Obergrund, Michael

Examination Requested: 6 November 1985

Classified to:

Acc: H1D-C7A.U1S

P: Duxall, Mill Lane House

Address for Service:
Haseltine Lake & Co, Hazlitt House, 28 Southampton Buildings, Chancery Lane, London,
WC2A 1AT

Page 1

Last page

Printed by the Patent Office at St. Mary Cray, 30 JUN 86