OpPIC (12) (19) (CA) Demande-Application

OFFICE DE LA PROPRIETE

CIPO

CANADIAN INTELLECTUAL

INTELLECTUELLE DU CANADA ProrERTY OFFICE

@21 (A 2,252,549

86) 1997/04/23
‘ &7 1997/10/30

(72) LOWERY, Keith, US
(72) LEVINE, Andrew B., US
(72) HOWELL, Ronald L., US
(71 INFOSPINNER INC., US
51) Int.C1.° HO4L 29/02, HOAL 12/24
(30) 1996/04/23 (08/636,477) US
54) SYSTEME POUR LA CREATION ET LA GESTION

DYNAMIQUES D’UN SITE WEB PERSONNALISE
(54) SYSTEM FORDYNAMICALLY CREATING AND MANAGING A

CUSTOM WEB SITE

2 CAHE 412(1)
PAGE SERVERS
PAGE
SERVER . . DATA
i SOURCE
// mh '™,
—»-| DISPATCHER > sg%l < \ s&‘ﬁﬁe
REOUEST| WEBSERVER | NTERCEPTOR 3 - B R o
E L (== :
2 40

(57) La présente invention définit un systéme qui permet
de créer et de gérer des sites Web personnalisés, et plus
précisément, de traiter des demandes de création
dynamique de pages Web adressées a un serveur Web
(201) par un client Web (200). Au lieu que I'exécutable
du serveur Web (201(E)) traite la demande, celle-ci est
interceptée par I'intercepteur (400) qui I’achemine vers
le répartiteur (402). Le répartiteur (402) regoit la
demande interceptée, 1’examine et I’envoie & un serveur
de pages (404) parmi un certain nombre qui existe. Le
serveur de pages choisi (404) traite la demande pendant
que D’exécutable du serveur Web (201(E)) traite
simultanément d’autres demandes émanant de clients
Web.

I*I Industrie Canada Industry Canada

(57) The present invention teaches a system for creating
and managing custom Web sites, specifically, managing
a dynamic Web page generation request from a Web
client (200) to a Web server (201). Instead of Web server
executable (201(E)) processing the request, Interceptor
(400) intercepts the request and routes it to Dispatcher
(402). Dispatcher (402) receives the intercepted request,
examines the request, and dispatches the request to one
of a number of Page servers (404). The specified Page
server (404) processes the request while Web server
executable (201(E)) concurrently process other Web
client requests.

CA

PCT

WORLD INTELLECTUAL PROPERTY ORGANIZATION
International Bureau

02252549 1998-10-22

INTERNATIONAL APPLICATION PUBLISHED UNDER THE PATENT COOPERATION TREATY (PCT)

(51) International Patent Classification 6 :

HO04N 1/00, GO6F 17/00 Al

(11) International Publication Number:

(43) International Publication Date:

WO 97/40617

30 October 1997 (30.10.97)

(21) International Application Number: PCT/US97/06840

(22) International Filing Date: 23 April 1997 (23.04.97)

(30) Priority Data:

08/636,477 Us

23 April 1996 (23.04.96)

(71) Applicant (for all designated States except US): INFOSPIN-
NER INC. [US/US]; Suite 320, 1222 E. Arapaho, Richard-
son, TX 75081 (US).

(72) Inventors; and

(75) Inventors/Applicants (for US only): LOWERY, Keith
[US/US]; 1702 Drake Drive, Richardson, TX 75081 (US).
LEVINE, Andrew, B. [US/US]; 2628 Courtside Lane,
Plano, TX 75093 (US). HOWELL, Ronaid, L. [US/US];
P.O. Box 1491, Rowlett, TX 75030 (US).

(74) Agents: TAYLOR, Edwin, H. et al.; Blakely, Sokoloff, Taylor
& Zafman L.L.P., 7th floor, 12400 Wilshire Boulevard, Los
Angeles, CA 90025 (US).

(81) Designated States: AL, AM, AT, AT (Utility model), AU, AZ,
BA, BB, BG, BR, BY, CA, CH, CN, CU, CZ, CZ (Utility
model), DE, DE (Utility model), DK, DK (Utility model),
EE, EE (Utility model), ES, FI, FI (Utility model), GB, GE,
GH, HU, IL, IS, JP, KE, KG, KP, KR, KZ, LC, LK, LR,
LS, LT, LU, LV, MD, MG, MK, MN, MW, MX, NO, NZ,
PL, PT, RO, RU, SD, SE, SG, SI, SK, SK (Utility model),
TJ, TM, TR, TT, UA, UG, US, UZ, VN, YU, ARIPO patent
(GH, KE, LS, MW, 8D, SZ, UG), Eurasian patent (AM, AZ,
BY, KG, KZ, MD, RU, TJ, TM), European patent (AT, BE,
CH, DE, DK, ES, FI, FR, GB, GR, IE, IT, LU, MC, NL,
PT, SE), OAPI patent (BF, BJ, CF, CG, CI, CM, GA, GN,
ML, MR, NE, SN, TD, TG).

Published
With international search report.
Before the expiration of the time limit for amending the
claims and to be republished in the event of the receipt of
amendments.

(54) Title: SYSTEM FOR DYNAMICALLY CREATING AND MANAGING A CUSTOM WEB SITE

(87) Abstract

CONNECTION
L GAGE 412(1)
PAGE SERVERS
PAGE
SERVER - N DATA
/4 < SOURCE
T\ X
;mmma/> SEfER ‘\EN:TA
ReEQUEST| WEBSERVER | NTERCEPTOR w2 , - e]
WEB \ WEB SSWVER :
CUENT el BXECUTARIE
DATA
SOURCE
4120n) &
2 4

The present invention teaches a system for creating and managing custom Web sites, specifically, managing a dynamic Web page
generation request from a Web client (200) to a Web server (201). Instead of Web server executable (201(E)) processing the request,
Interceptor (400) intercepts the request and routes it to Dispatcher (402). Dispatcher (402) receives the intercepted request, examines the
request, and dispatches the request to one of a number of Page servers (404). The specified Page server (404) processes the request while
Web server executable (201(E)) concurrently process other Web client requests.

CA 02252549 1998-10-22

WO 97/40617 PCT/US97/06840

SYSTEM FOR DYNAMICALLY CREATING AND MANAGING A CUSTOM WEB SITE

FIELD OF VENTI

The present invention relates to the field of Internet technology.
Specifically, the present invention relates to the creation and
10 management of custom World Wide Web sites.

DESCRIPTION OF RELATED ART

The World Wide Web (the Web) represents all of the computers
15 onthe Internet that offer users access to information on the Internet via
interactive documents or Web pages. These Web pages contain
hypertext links that are used to connect any combination of graphics,
audio, video and text, in a non-linear, non-sequential manner.
Hypertext links are created using a special software language known as
20 HyperText Mark-Up Language (HTML).

Once created, Web pages reside on the Web, on Web servers or

Web sites. A Web site can contain numerous Web pages. Web client
machines running Web browsers can access these Web pages at Web

25 sites via a communications protocol known as HyperText Transport
Protocol (HTTP). Web browsers are software interfaces that run on
World Wide Web clients to allow access to Web sites via a simple user
interface. A Web browser aliows a Web client to request a particuiar
Web page from a Web site by specifying a Uniform Resource Locator

30 (URL). A URL is a Web address that identifies the Web page and its
location on the Web. When the appropriate Web site receives the URL,
the Web page corresponding to the requested URL is located, and if
required, HTML output is generated. The HTML output is then sent via
HTTP to the client for formatting on the client's screen.

CA 02252549 1998-10-22

WO 97/40617 PCT/US97/06840

10

15

20

25

30

-2

Although Web pages and Web sites are extremely simple to
create, the proliferation of Web sites on the Internet highlighted a
number of problems. The scope and ability of a Web page designer to
change the content of the Web page was limited by the static nature of
Web pages. Once created, a Web page remained static until it was
manually modified. This in turn limited the ability of Web site managers
to effectively manage their Web sites.

The Common Gateway Interface (CGl) standard was developed
to resolve the problem of allowing dynamic content to be included in
Web pages. CGl "calls" or procedures enable applications to generate
dynamically created HTML output, thus creating Web pages with
dynamic content. Once created, these CGI applications do not have to
be modified in order to retrieve "new" or dynamic data. Instead, when
the Web page is invoked, CGl "calls" or procedures are used to
dynamically retrieve the necessary data and to generate a Web page.

CGIl applications also enhanced the ability of Web site
administrators to manage Web sites. Administrators no longer have to
constantly update static Web pages. A number of vendors have
developed tools for CGl based development, to address the issue of
dynamic Web page generation. Companies like Spider™ and
Bluestone™, for example, have each created development tools for CGl-
based Web page development. Another company, Haht Software™,
has developed a Web page generation tool that uses a BASIC-like
scripting language, instead of a CGl scripting language.

Tools that generate CGl applications do not, however, resolve the
problem of managing numerous Web pages and requests at a Web site.
For example, a single company may maintain hundreds of Web pages
at their Web site. Current Web server architecture also does not allow
the Web server to efficiently manage the Web page and process Web
client requests. Managing these hundreds of Web pages in a coherent

CA 02252549 1998-10-22

WO 97/40617 PCT/US97/06840

10

15

20

25

-3

manner and processing all requests for access to the Web pages is thus
a difficult task. Existing development tools are limited in their capabilities
to facilitate dynamic Web page generation, and do not address the issue
of managing Web requests or Web sites.

MMARY OF THE INVENTION

It is therefore an object of the present invention to provide a
method and apparatus for creating and managing custom Web sites.
Specifically, the present invention claims a method and apparatus for
managing dynamic web page generation requests.

In one embodiment, the present invention claims a computer-
implemented method for managing a dynamic Web page generation
request to a Web server, the computer-implemented method comprising
the steps of routing the request from the Web server to a page server,
the page server receiving the request and releasing the Web server to
process other requests, processing the request, the processing being
performed by the page server concurrently with the Web server, as the
Web server processes the other requests, and dynamically generating a
Web page in response to the request, the Web page including data
dynamically retrieved from one or more data sources. Other
embodiments also include connection caches to the one or more data
sources, page caches for each page server, and custom HTML
extension templates for configuring the Web page.

Other objects, teatures and advantages of the present invention
will be apparent from the accompanying drawings and from the detailed
description.

CA 02252549 1998-10-22

WO 97/40617 PCT/US97/06840

10

15

20

25

30

-4 -

BRIEF _DESCRIPTION OF THE DRAWINGS

Figure 1 illustrates a typical computer system in which the
present invention operates.

Figure 2 illustrates a typical prior art Web server environment.

Figure 3 illustrates a typical prior art Web server environment in
the form of a flow diagram.

Figure 4 illustrates one embodiment of the presently claimed
invention.

Figure 5 illustrates the processing of a Web browser request in
the form of a flow diagram, according to one embodiment of the
presently claimed invention.

DETAILED DESCRIPTION OF THE PREFERRED
EMBODIMENT

The present invention relates to a method and apparatus
for creating and managing custom Web sites. In the following detailed
description, numerous specific details are set forth in order to provide a
thorough understanding of the present invention. It will be apparent to
one of ordinary skill in the art, however, that these specific details need
not be used to practice the present invention. In other instances, well-
known structures, interfaces and processes have not been shown in
detail in order not to unnecessarily obscure the present invention.

Figure 1 illustrates a typical computer system 100 in which the
present invention operates. The preferred embodiment of the present
invention is implemented on an IBM™ Personal Computer
manufactured by IBM Corporation of Armonk, New York. An alternate
embodiment may be implemented on an RS/6000™ Workstation

CA 02252549 1998-10-22

WO 97/40617 PCT/US97/06840

10

15

20

25

30

-5-

manufactured by IBM Corporation of Armonk, New York. It will be
apparent to those of ordinary skill in the art that other computer system
architectures may also be employed.

In general, such computer systems as illustrated by Figure 1
comprise a bus 101 for communicating information, a processor 102
coupled with the bus 101 for processing information, main memory 103
coupled with the bus 101 for storing information and instructions for the
processor 102, a read-only memory 104 coupled with the bus 101 for
storing static information and instructions for the processor 102, a
display device 105 coupled with the bus 101 for displaying information
for a computer user, an input device 106 coupled with the bus 101 for
communicating information and command selections to the processor
102, and a mass storage device 107, such as a magnetic disk and
associated disk drive, coupled with the bus 101 for storing information
and instructions. A data storage medium 108 containing digital
information is configured to operate with mass storage device 107 to
allow processor 102 access to the digital information on data storage
medium 108 via bus 101.

Processor 102 may be any of a wide variety of general purpose
processors or microprocessors such as the Pentium™ microprocessor
manufactured by Intel™ Corporation or the RS/6000™ processor
manufactured by IBM Corporation. It will be apparent to those of
ordinary skill in the art, however, that other varieties of processors may
also be used in a particular computer system. Display device 105 may
be a liquid crystal device, cathode ray tube (CRT), or other suitable
display device. Mass storage device 107 may be a conventional hard
disk drive, floppy disk drive, CD-ROM drive, or other magnetic or optical
data storage device for reading and writing information stored on a hard
disk, a floppy disk, a CD-ROM a magnetic tape, or other magnetic or
optical data storage medium. Data storage medium 108 may be a hard
disk, a floppy disk, a CD-ROM, a magnetic tape, or other magnetic or
optical data storage medium.

CA 02252549 1998-10-22

WO 97/40617 PCT/US97/06840

10

15

20

25

30

In general, processor 102 retrieves processing instructions and
data from a data storage medium 108 using mass storage device 107
and downloads this information into random access memory 103 for
execution. Processor 102, then executes an instruction stream from
random access memory 103 or read-only memory 104. Command
selections and information input at input device 106 are used to direct
the flow of instructions executed by processor 102. Equivalent input
device 106 may also be a pointing device such as a conventional
mouse or trackball device. The results of this processing execution are
then displayed on display device 105.

The preferred embodiment of the present invention is
implemented as a software module, which may be executed on a
computer system such as computer system 100 in a conventional
manner. Using well known technigues, the application software of the
preferred embodiment is stored on data storage medium 108 and
subsequently loaded into and executed within computer system 100.
Once initiated, the software of the preferred embodiment operates in the
manner described below.

Figure 2 illustrates a typical prior art Web server environment.
Web client 200 can make URL requests to Web server 201 or Web
server 202. Web servers 201 and 202 include Web server executables,
201(E) and 202(E) respectively, that perform the processing of Web
client requests. Each Web server may have a number of Web pages
201(1) - (n) and 202(1) - (n). Depending on the URL specified by the
Web client 200, the request may be routed by either Web server
executable 201(E) to Web page 201 (1), for example, or from Web
server executable 202(E) to Web page 202 (1). Web client 200 can
continue making URL requests to retrieve other Web pages. Web client
200 can also use hyperlinks within each Web page to "jump" to other
Web pages or to other locations within the same Web page.

CA 02252549 1998-10-22

WO 97/40617 PCT/US97/06840

10

15

20

25

30

-7

Figure 3 illustrates this prior art Web server environment in the
form of a flow diagram. In processing block 300, the Web client makes a
URL request. This URL request is examined by the Web browser to
determine the appropriate Web server to route the request to in
processing block 302. In processing block 304 the request is then
transmitted from the Web browser to the appropriate Web server, and in
processing block 306 the Web server executable examines the URL to
determine whether it is a HTML document or a CGl application. If the
request is for an HTML document 308, then the Web server executable
locates the document in processing block 310. The document is then
transmitted back through the requesting Web browser for formatting and
display in processing block 312.

If the URL request is for a CGlI application 314, however, the Web
server executable locates the CGl application in processing block 316.
The CGI application then executes and outputs HTML output in
processing block 318 and finally, the HTML output is transmitted back to
requesting Web browser for formatting and display in processing block
320.

This prior art Web server environment does not, however, provide
any mechanism for managing the Web requests or the Web sites. As
Web sites grow, and as the number of Web clients and requests
increase, Web site management becomes a crucial need.

For example, a large Web site may receive thousands of requests
or "hits" in a single day. Current Web servers process each of these
requests on a single machine, namely the Web server machine.
Although these machines may be running "multi-threaded” operating
systems that allow transactions to be processed by independent
“threads," all the threads are nevertheless on a single machine, sharing
a processor. As such, the Web executable thread may hand off a
request to a processing thread, but both threads will still have to be
handled by the processor on the Web server machine. When numerous

CA 02252549 1998-10-22

WO 97/40617 PCT/US97/06840

10

15

20

25

30

-8-

requests are being simultaneously processed by multiple threads on a
single machine, the Web server can slow down significantly and
become highly inefficient. The claimed invention addresses this need
by utilizing a partitioned architecture to facilitate the creation and
management of custom Web sites and servers.

Figure 4 iliustrates one embodiment of the presently claimed
invention. Web client 200 issues a URL request that is processed to
determined proper routing. In this embodiment, the request is routed to
Web server 201. Instead of Web server executable 201(E) processing
the URL request, however, Interceptor 400 intercepts the request and
routes it to Dispatcher 402. In one embodiment, Interceptor 400 resides
on the Web server machine as an extension to Web server 201. This
embodiment is appropriate for Web servers such as Netsite™ from
Netscape, that support such extensions. A number of public domain
Web servers, such as NCSA™ from the National Center for
Supercomputing Applications at the University of lllinois, Urbana-
Champaign, however, do not provide support for this type of extension.
Thus, in an alternate embodiment, Interceptor 400 is an independent
module, connected via an "intermediate program" to Web server 201.
This intermediate program can be a simple CGl application program that
connects Interceptor 400 to Web server 201. Alternate intermediate
programs the perform the same functionality can also be implemented.

In one embodiment of the invention, Dispatcher 402 resides on a
different machine than Web server 201. This embodiment overcomes
the limitation described above, in prior art Web servers, wherein all
processing is performed by the processor on a single machine. By
routing the request to Dispatcher 402 residing on a different machine
than the Web server executable 201(E), the request can then be
processed by a different processor than the Web server executable
201(E). Web server executable 201(E) is thus free to continue servicing
client requests on Web server 201 while the request is processed "off-
line," at the machine on which Dispatcher 402 resides.

CA 02252549 1998-10-22

WO 97/40617 PCT/US97/06840

10

15

20

25

30

Dispatcher 402 can, however, also reside on the same machine
as the Web server. The Web site administrator has the option of
configuring Dispatcher 402 on the same machine as Web server 201,
taking into account a vatiety of factors pertinent to a particular Web site,
such as the size of the Web site, the number of Web pages and the
number of hits at the Web site. Although this embodiment will not enjoy
the advantage described above, namely off-loading the processing of
Web requests from the Web server machine, the embodiment does
allow flexibility for a small Web site to grow. For example, a small Web
site administrator can use a single machine for both Dispatcher 402 and
Web server 201 initially, then off-load Dispatcher 402 onto a separate
machine as the Web site grows. The Web site can thus take advantage
of other features of the present invention regardless of whether the site
has separate machines configured as Web servers and dispatchers.

Dispatcher 402 receives the intercepted request and then
dispatches the request to one of a number of Page servers 404 (1) - (n).
For example, if Page server 404 (1) receives the dispatched request, it
processes the request and retrieves the data from an appropriate data
source, such as data source 406, data source 408, or data source 410.
Data sources, as used in the present application, include databases,
spreadsheets, files and any other type of data repository. Page server
404 (1) can retrieve data from more than one data source and
incorporate the data from these multiple data sources in a single Web

page.

Iin one embodiment, each Page server 404(1) - (n) resides on a
separate machine on the network to distribute the processing of the
request. Dispatcher 402 maintains a variety of information regarding
each Page server on the network, and dispatches requests based on
this information. For example, Dispatcher 402 retains dynamic
information regarding the data sources that any given Page server can
access. Dispatcher 402 thus examines a particular request and

CA 02252549 1998-10-22

WO 97/40617 PCT/US97/06840

10

15

20

25

30

-10~

determines which Page servers can service the URL request.
Dispatcher 402 then hands off the request to the appropriate Page
server.

For exampie, if the URL request requires financial data from data
source 408, dispatcher 402 will first examine an information list.
Dispatcher 402 may determine that Page server 404(3), for example,
has access to the requisite data in data source 408. Dispatcher 402 will
thus route the URL request to Page server 404(3). This "connection
caching" functionality is described in more detail below, under the
heading "Performance."

Alternately, Dispatcher 402 also has the ability to determine
whether a particular Page server already has the necessary data
cached in the Page server's page cache (described in more detail
below, under the heading "Performance"). Dispatcher 402 may thus
determine that Page server 404(1) and 404(2) are both logged into Data
source 408, but that Page server 404(2) has the financial information
already cached in Page server 404(2)'s page cache. In this case,
Dispatcher 402 will route the URL request to Page server 404(2) to more
efficiently process the request.

Finally, Dispatcher 402 may determine that a number or all Page
servers 404(1) - (n) are logged into Data source 408. In this scenario,
Dispatcher 402 can examine the number of requests that each Page
server is servicing and route the request to the least busy page server.
This "load balancing" capability can significantly increase performance
at a busy Web site and is discussed in more detail below, under the
heading "Scalability".

If, for example, Page server 404(2), receives the request, Page
server 404(2) will process the request. While Page server 404(2) is
processing the request, Web server executable 201(E) can concurrently
process other Web client requests. This partitioned architecture thus

CA 02252549 1998-10-22

WO 97/40617 PCT/US97/06840

10

15

20

25

30

11

aliows both Page server 404(2) and Web server executable 201(E) to
simultaneously process different requests, thus increasing the efficiency
of the Web site. Page server 404(2) dynamically generates a Web page
in response to the Web client request, and the dynamic Web page is
then either transmitted back to requesting Web client 200 or stored on a
machine that is accessible to Web server 201, for later retrieval.

One embodiment of the claimed invention also provides a Web
page designer with HTML extensions, or "dyna" tags. These dyna tags
provide customized HTML functionality to a Web page designer, to aliow
the designer to build customized HTML templates that specify the
source and placement of retrieved data. For example, in one
embodiment, a "dynatext” HTML extension tag specifies a data source
and a column name to allow the HTML template to identify the data
source to log into and the column name from which to retrieve data.
Alternatively, "dyna-anchor" tags allow the designer to build hyperlink
queries while "dynablock” tags provide the designer with the ability to
iterate through blocks of data. Page servers use these HTML templates
to create dynamic Web pages. Then, as described above, these
dynamic Web pages are either transmitted back to requesting Web
client 200 or stored on a machine that is accessible to Web server 201,
for later retrieval.

The presently claimed invention provides numerous advantages
over prior art Web servers, including advantages in the areas of
performance, security, extensibility and scalability.

Performance

One embodiment of the claimed invention utilizes connection
caching and page caching to improve performance. Each Page server
can be configured to maintain a cache of connections to numerous data
sources. For example, as illustrated in Figure 4, Page server 404(1)

CA 02252549 1998-10-22

WO 97/40617 PCT/US97/06840

10

15

20

25

30

12

can retrieve data from data source 406, data source 408 or data source
410. Page server 404(1) can maintain connection cache 412(1),
containing connections to each of data source 406, data source 408 and
data source 410, thus eliminating connect times from the Page servers
o those data sources.

Additionally, another embodiment of the present invention
supports the caching of finished Web pages, to optimize the
performance of the data source being utilized. This "page caching"
feature, illustrated in Figure 4 as Page cache 414, allows the Web site
administrator to optimize the performance of data sources by caching
Web pages that are repeatedly accessed. Once the Web page is
cached, subsequent requests or "hits" will utilize the cached Web page
rather than re-accessing the data source. This can radically improve the
performance of the data source.

Security

The present invention allows the Web site administrator to utilize
multiple levels of security to manage the Web site. In one embodiment,
the Page server can utilize all standard encryption and site security
features provided by the Web server. In another embodiment, the Page
server can be configured to bypass connection caches 412(1)-(n),
described above, for a particular data source and to require entry of a
user-supplied identification and password for the particular data source
the user is trying to access.

Additionally, another embodiment of the presently claimed
invention requires no real-time access of data sources. The Web page
caching ability, described above, enables additional security for those
sites that want to publish non-interactive content from internal
information systems, but do not want real-time Internet accessibility to
those internal information systems. In this instance, the Page server can

CA 02252549 1998-10-22

WO 97/40617 PCT/US97/06840

10

15

20

25

30

13

act as a "replication and staging agent” and create Web pages in
batches, rather than in real-time. These "replicated” Web pages are
then "staged" for access at a later time, and access to the Web pages in
this scenario is possible even if the Page server and dispatcher are not
present later.

In yet another embodiment, the Page server can make a single
pass through a Web library, and compile a Web site that exists in the
traditional form of separately available files. A Web library is a collection
of related Web books and Web pages. More specifically, the Web
library is a hierarchical organization of Web document templates,
together with all the associated data source information. Information
about an entire Web site is thus contained in a single physical file, thus
simplifying the problem of deploying Web sites across multiple Page
servers. The process of deploying the Web site in this embodiment is
essentially a simple copy of a single file.

Extensibility

One embodiment of the present invention provides the Web site
administrator with Object Linking and Embedding (OLE) 2.0 extensions
to extend the page creation process. These OLE 2.0 extensions also
allow information submitted over the Web to be processed with user-
supplied functionality. Utilizing development tools such as Visual Basic,
Visual C++ or PowerBuilder that support the creation of OLE 2.0
automation, the Web site administrator can add features and modify the
behavior of the Page servers described above. This extensibility allows
one embodiment of the claimed invention to be incorporated with
existing technology to develop an infinite number of custom web
servers.

For example, OLE 2.0 extensions allow a Web site administrator
to encapsulate existing business rules in an OLE 2.0 automation

CA 02252549 1998-10-22

WO 97/40617 PCT/US97/06840

10

15

20

25

30

-14-

interface, to be accessed over the Web. One example of a business rule
is the steps involved in the payoff on an installment or mortgage loan.
The payoff may involve, for example, taking into account the current
balance, the date and the interest accrued since the last payment. Most
organizations already have this type of business rule implemented
using various applications, such as Visual Basic for client-server
environments, or CICS programs on mainframes. |f these applications
are OLE 2.0 compliant, the Page server "dynaobject” HTML extension
tag can be used to encapsulated the application in an OLE 2.0
automation interface. The Page server is thus extensible, and can
incorporate the existing application with the new Page server
functionality.

Scalability
One embodiment of the claimed invention ailows "plug and play"
scalability. As described above, referring to Figure 4, Dispatcher 402
maintains information about all the Page servers configured to be
serviced by Dispatcher 402. Any number of Page servers can thus be
"plugged" into the configuration illustrated in Figure 4, and the Page
servers will be instantly activated as the information is dynamically
updated in Dispatcher 402. The Web site administrator can thus
manage the overhead of each Page server and modify each Page
server's load, as necessary, to improve performance. In this manner,
each Page server will cooperate with other Page servers within a multi-
server environment. Dispatcher 402 can examine the load on each
Page server and route new requests according to each Page server's
available resources. This "load-balancing” across multiple Page
servers can significantly increase a Web site's performance.

Figure 5 illustrates the processing of a Web browser request in
the form of a flow dlagram, according to one embodiment of the
presently claimed invention. A Web browser sends a URL request to a

CA 02252549 1998-10-22

WO 97/40617 PCT/US97/06840

10

15

20

25

30

15

Web server in processing block 500. In processing block 502, the Web
server receives the URL request, and an interceptor then intercepts the
handling of the request in processing block 504. The interceptor
connects to a dispatcher and sends the URL request to the dispatcher in
processing block 506. In processing block 508, the dispatcher
determines which Page servers can handle the request. The dispatcher
also determines which Page server is processing the fewest requests in
processing block 510, and in processing block 512, the dispatcher
sends the URL request to an appropriate Page server. The Page server
receives the request and produces an HTML document in processing
block 514. The Page server then responds to the dispatcher with
notification of the name of the cached HTML document in processing
block 516. In processing block 518, the dispatcher responds to the
interceptor with the document name, and the interceptor then replaces
the requested URL with the newly generated HTML document in
processing block 520. The Web server then sends the new HTML
document to the requesting client in processing block 522. Finalily, the
Web browser receives and displays the HTML document created by the
Page server at processing block 524.

Thus, a method and apparatus for creating and managing custom
Web sites is disclosed. These specific arrangements and methods
described herein are merely illustrative of the principles of the present
invention. Numerous modifications in form and detail may be made by
those of ordinary skill in the art without departing from the scope of the
present invention. Although this invention has been shown in relation to
a particular preferred embodiment, it should not be considered so
limited. Rather, the present invention is limited only by the scope of the
appended claims.

CA 02252549 1998-10-22

WO 97/40617 PCT/US97/06840

10

15

20

25

- 1 6._
CLAIMS
We claim:

1. A computer-implemented method for managing a dynamic
Web page generation request to a Web server, said computer-
implemented method comprising the steps of:

routing said request from said Web server to a page server, said
page server receiving said request and releasing said Web server to
process other requests;

processing said request, said procesrsing being performed by
said page server concurrently with said Web server, as said Web server
processes said other requests; and

dynamically generating a Web page in response to said request,
said Web page including data dynamically retrieved from one or more
data sources.

2. The computer-implemented method in Claim 1 wherein said
step of routing said request includes the steps of:)

intercepting said request at said Web server,;

routing said request from said Web server to a dispatcher; and

dispatching said request to said page server.

3. The computer-impiemented method in Claim 2 wherein said
step of processing said request includes the step of identitying said one
or more data sources from which to retrieve said data.

4. The computer-implemented method in Claim 3 wherein said
step of dynamically generating said Web page includes the step of
dynamically retrieving said data from said one or more data sources.

CA 02252549 1998-10-22

WO 97/40617 PCT/US97/06840

10

15

20

25

30

._17_.

5. The computer-implemented method in Claim 4 wherein said
step of processing said request includes the step of said page server
maintaining a connection cache to said one or more data sources.

6. The computer-implemented method in Claim 4 wherein said
step of processing said request includes the step of logging into said
one or more data sources.

7. The computer-implemented method in Claim 4 wherein said
step of dynamically generating said Web page includes the step of
maintaining a page cache containing said Web page.

8. The computer-implemented method in Claim 4 wherein said
page server includes custom HTML extension templates for configuring
said Web page.

9. The computer-implemented method in Claim 8 wherein said
step of processing sad request further includes the step of inserting said
dynamically retrieved data from said one or more data sources into said
custom HTML extension templates.

10. A computer-implemented method for managing a Web site
including one or more Web servers, each Web server having one or
more Web pages, said computer-implemented method comprising the
steps of:

creating a master Web management page wherein said master
Web management page includes said one or more Web pages from
each of said one or more Web servers at said Web site; and

utilizing said Web management page to recreate said Web site at
a new location.

CA 02252549 1998-10-22

WO 97/40617 PCT/US97/06840

18

11. A networked system for managing a dynamic Web page
generation request, said system comprising:

one or more data sources;
5 a page server having a processing means;

a first computer system including means for generating said
request;

a second computer system including means for receiving said

request from said first computer, said second computer system also

10 including a router, said router routing said request from said second
computer system to said page server, said page server receiving said
request and releasing said second computer system to process other
requests, said page server processing means processing said request
and dynamically generating a Web page in response to said request,

15 said Web page including data dynamically retrieved from said one or
more data sources.

12. The networked system in Claim 11 wherein said router in
said second computer system includes:
20 an interceptor intercepting said request at said second computer
system and routing said request; and
a dispatcher receiving said routed request from said interceptor
and dispatching said request to said page server.

25 13. A Web server for receiving a dynamic Web page generation
request, said Web server comprising:
a Web server executable receiving said request; and
intercepting means for intercepting said request and routing said
request from said Web server executable to a page server.

CA 02252549 1998-10-22

WO 97/40617 PCT/US97/06840

10

15

20

...19._

14. A page server for receiving a dynamic Web page generation
request, said page server comprising;

means for receiving said request;

means for maintaining a connection cache to one or more data
sources; and

means for processing said request.

15. The page server in Claim 14 wherein said means for
processing said request further includes means for dynamically
retrieving data from said one or more data sources.

16. An article of manufacture comprising a computer readable
medium having computer instructions embodied therein for causing a
processor to manage a dynamic Web page generation request to a Web
server, said computer instructions in said article of manufacture causing
said processor to perform the steps of:

routing said request from said Web server to a page server, said
page server receiving said request and releasing said Web server to
process other requests;

processing said request, said processing being performed by
said page server, and

dynamically generating a Web page, said Web page including
data retrieved from one or more data sources.

02252549 1998-10-22

CA

PCT/US97/06840

WO 97/40617

1/5

80

WNIJ3In
JOVHOLS
vivd

001
201
HOSSIV0Hd
10T
sng A
[0T ¥O0T g01
30IA30
AHOWIWN AHOWIW
JOVHOLS ATNO QV3H NIVIA

SSYAN

pe J I |

90t
30IA30
L1NdNI

Gor

30IA3d
AV1dSId

SUBSTITUTE SHEET (RULE 26)

WO 97/40617

CA 02252549 1998-10-22

2/5

PCT/US97/06840

WEB SERVER
WEB WEB SERVER WEB
CLIENT — v .| EXECUTABLE |—p PAGE
200 | REQUEST 201(E) 20111
A
WEB
PAGE
201(2)
—REQUEST WEB
PAGE
201(n)
201
WEB SERVER
y
WEB SERVER WEB
EXECUTABLE PAGE
202(E) 202(1
VES
PAGE
202(2)
WEB
PAGE
2| . | FIG. 2

SUBSTITUTE SHEET (RULE 28)

CA 02252549 1998-10-22

WO 97/40617

PCT/US97/06840

3/5

BEGIN
TRANSACTION

WEB CLIENT MAKES URL REQUEST

Y

URL EXAMINED BY WEB BROWSERTO | 392
DETERMINE APPROPRIATE WEB SERVER

A

REQUEST TRANSMITTED TO | ¢ 304
APPROPRIATE WEB SERVER

\

WEB SERVER EXAMINES URL TO DETERMINE WHETHER | 306
IT 1S AN HTML DOCUMENT OR A CG! APPLICATION

HTML
DOCUMENT—_

CGl

308
l 310

APPLICATION
f” 314
316

WEB SERVER LOCATES DOCUMENT WEB SERVER LOCATES CG! APPLICATION

v ~

DOCUMENT TRANSMITTED BACK
TO REQUESTING WEB BROWSER
FOR FORMATTING AND DISPLAY

312 +

318 _| CGIAPPLICATION EXECUTES
| AND QUTPUTS HTML OUTPUT

Y

320 HTML OUTPUT TRANSMITTED
BACK TO REQUESTING WEB BROWSER
FOR FORMATTING AND DISPLAY

/

Fi1G. 3

TRANSACTION

SUBSTITUTE SHEET (RULE 26)

PCT/US97/06840

4/5

02252549 1998-10-22

CA

WO 97/40617

L~) K |

VI¥
3HOVD
39vd
(T L 0o% 14
oy NIBEEG
mwm:o.w N s
va \ 39vd v/
: T 02
. TAVINODG |« > aEm
: H3IAHIS £3M / M
50v i~ T pi HOLEOHIINI | banms@am | LS3n03W
30UNOS) > e D
y1va HAEES [H3HOLYASIg |
4/ 3Vd - \
& o ¥
HNOS N
HIAHIS
viva , N3
SHIAHIS JOVd
)2ty 3HOVD 7/
NOLLI3NNGD

SUBSTITUTE SHEET (RULE 26)

WO 97/40617

CA 02252549 1998-10-22

PCT/US97/06840

5/5

BEGIN PROCESSING

500
WEB BROWSER SENDS URL REQUEST -~

Y

WEB SERVER RECEIVES URL REQUEST

Y

J'/- 504
INTERCEPTOR INTERCEPTS HANDLING OF REQUEST

Y

[INTERCEPTOR CONNECTS TO DISPATCHER | — 506

502

AND SENDS REQUEST TO DISPATCHER

Y

DISPATCHER DETERMINES WHICH 508
PAGE SERVERS CAN HANDLE REQUEST

Y

DISPATCHER DETERMINES WHICH PAGE - 510
SERVER IS PROCESSING FEWEST REQUESTS

+ 512
DISPATCHER SENDS REQUEST TO APPROPRIATE PAGE SERVER |-

Y

514
PAGE SERVER RECEIVES REQUEST AND PRODUCES HTML DOCUMENT S

Y

PAGE SERVER RESPONDS TO DISPATCHERWITH | — 516
NOTIFICATION OF NAME OF CACHED HTML DOCUMENT

Y

DISPATCHER RESPONDS TO | — 518
INTERCEPTOR WITH DOCUMENT NAME

Y

INTERCEPTOR REPLACES REQUESTEO URL |_— 520
WITH NEWLY GENERATED HTML DOCUMENT

Y

WEB SERVER SENDS NEW NEW | (— 5&
HTML DOCUMENT TO CLIENT

'R

WEB BROWSER RECEIVES AND DISPLAYS 524
. | HTML DOCUMENT CREATED BY PAGE SERVER

L

SUBSTITUTE SHEET (RULE 26)

 GACHE 412(1)

WEB
EXECUTASLE

	Page 1 - COVER_PAGE
	Page 2 - ABSTRACT
	Page 3 - DESCRIPTION
	Page 4 - DESCRIPTION
	Page 5 - DESCRIPTION
	Page 6 - DESCRIPTION
	Page 7 - DESCRIPTION
	Page 8 - DESCRIPTION
	Page 9 - DESCRIPTION
	Page 10 - DESCRIPTION
	Page 11 - DESCRIPTION
	Page 12 - DESCRIPTION
	Page 13 - DESCRIPTION
	Page 14 - DESCRIPTION
	Page 15 - DESCRIPTION
	Page 16 - DESCRIPTION
	Page 17 - DESCRIPTION
	Page 18 - CLAIMS
	Page 19 - CLAIMS
	Page 20 - CLAIMS
	Page 21 - CLAIMS
	Page 22 - DRAWINGS
	Page 23 - DRAWINGS
	Page 24 - DRAWINGS
	Page 25 - DRAWINGS
	Page 26 - DRAWINGS
	Page 27 - REPRESENTATIVE_DRAWING

