(19)

US 20040054725A1

a2 Patent Application Publication (o) Pub. No.: US 2004/0054725 Al

United States

Moller et al.

(43) Pub. Date:

Mar. 18, 2004

(54

(75)

(73)

@D
(22

SYSTEM AND METHOD FOR ENABLING
MULTIMEDIA PRODUCTION
COLLABORATION OVER A NETWORK

Inventors: Matthew D. Moller, San Francisco, CA
(US); Graham Lyus, Kent (GB);
Michael Franke, San Francisco, CA
(US)

Correspondence Address:

FINNEGAN, HENDERSON, FARABOW,
GARRETT & DUNNER

LLP

1300 I STREET, NW

WASHINGTON, DC 20005 (US)

Assignee: Rocket Network, Inc.
Appl. No.: 10/620,062

Filed: Jul. 14, 2003

(63)

G
2

7

Related U.S. Application Data

Continuation of application No. 09/401,318, filed on
Sep. 23, 1999, now Pat. No. 6,598,074.

Publication Classification

Int. CL7 oo GO6F 15/16
US. Clo e 709/204

ABSTRACT

A system and method for collaborative multimedia produc-
tion by users at different geographic locations. The users
produce sequencer data at a plurality of sequencer stations
connected via a network. The sequencer stations encapsulate
sequencer data units into broadcast data units and upload
and download broadcast data units to and from a server, in
response to user commands received at the sequencer sta-

tions.

Server

Remote
Sequence
Station

16 -

Remote ;
Sequencer
Station

24

Services
Component

20

{7VV

22

Client
Application
Component

Control
Component

USER

Patent Application Publication Mar. 18,2004 Sheet 1 of 11 US 2004/0054725 A1

1§2
Server 16
Remote
Sequence
Station
18 :
16 -
Remote
Sequencer
1 Station
/(24
Services
Component
4
20 22
7 y
Cl_ient_ Control
Application Component
Component P
y A
USER
Y Y 10

Fig. 1

Patent Application Publication Mar. 18,2004 Sheet 2 of 11 US 2004/0054725 A1

32

Server
Communication

36 38

; ;
éCaching‘ \ é Rendering‘}

34

Notification Queue
Handier

L, Broadcast Data Packaging ‘)/28

¢~ Handler

—i— Interface
o Module

Services Component 24

Fig. 2

Patent Application Publication Mar. 18,2004 Sheet 3 of 11 US 2004/0054725 A1

CuStom Object

_Arrangement

Project

Fig. 3

references 0.1| Asset

Clip-

Patent Application Publication Mar. 18,2004 Sheet 4 of 11 US 2004/0054725 A1

NEPY g R

ht

has}

B =
:

2 B

-
B
3
B
4
:

Patent Application Publication Mar. 18,2004 Sheet 5 of 11 US 2004/0054725 A1

%*

Fig. 5

has

Patent Application Publication Mar. 18,2004 Sheet 6 of 11 US 2004/0054725 A1

v
L

]

/7
Alternate |
~-renderings

g
Fig. 6

.1

0
0
“Rendering

has

has

Patent Application Publication Mar. 18,2004 Sheet 7 of 11 US 2004/0054725 A1

references 0..1
g.

). U o
SrE K e
R . . K . Tt ‘.;. ‘.;,

Patent Application Publication Mar. 18,2004 Sheet 8 of 11 US 2004/0054725 A1

” ASset

references 0..1

R
SR T e
E e Fa

Fig. 8

Event
/\

Clip Event | references 0..1

Patent Application Publication Mar. 18,2004 Sheet 9 of 11 US 2004/0054725 A1

: _EVent

%*

has

Fig. 9

as
1

- Timeline

\

_Event _

Patent Application Publication Mar. 18, 2004 Sheet 10 of 11 US 2004/0054725 A1l

Project

¢

has

0.7
Custom Object

Fig. 10

Patent Application Publication Mar. 18,2004 Sheet 11 of 11 US 2004/0054725 Al

Fig.11

US 2004/0054725 Al

SYSTEM AND METHOD FOR ENABLING
MULTIMEDIA PRODUCTION COLLABORATION
OVER A NETWORK

BACKGROUND OF THE INVENTION

Field of the Invention

[0001] The invention relates to data sharing and, more
particularly, to sharing of multimedia data over a network.

[0002] Computer technology is increasingly incorporated
by musicians and multimedia production specialists to aide
in the creative process. For example, musicians use com-
puters configured as “sequencers” or “DAWSs” (digital audio
workstations) to record multimedia source material, such as
digital audio, digital video, and Musical Instrument Digital
Interface (MIDI) data. Sequences and DAWSs then create
sequence data to enable the user to select and edit various
portions of the recorded data to produce a finished product.

[0003] Sequencer software is often used when multiple
artists collaborate in a project usually in the form of multi-
track recordings of individual instruments gathered together
in a recording studio. A production specialist then uses the
sequencer software to edit the various tracks, both individu-
ally and in groups, to produce the final arrangement for the
product. Often in a recording session, multiple “takes” of the
same portion of music will be recorded, enabling the pro-
duction specialist to select the best portions of various takes.
Additional takes can be made during the session if neces-
sary.

[0004] Such collaboration is, of course, most convenient
when all artists are present in the same location at the same
time. However, this is often not possible. For example, an
orchestra can be assembled at a recording studio in Los
Angeles but the vocalist may be in New York or London and
thus unable to participate in person in the session. It is, of
course, possible for the vocalist to participate from a remote
studio linked to the main studio in Los Angeles by wide
bandwidth, high fidelity communications channels. How-
ever, this is often prohibitively expensive, if not impossible.

[0005] Various methods of overcoming this problem are
known in the prior art. For example, the Res Rocket system
of Rocket Networks, Inc. provides the ability for geographi-
cally separated users to share MIDI data over the Internet.
However, professional multimedia production specialists
commonly use a small number of widely known profes-
sional sequencer software packages. Since they have exten-
sive experience in using the interface of a particular software
package, they are often unwilling to forego the benefits of
such experience to adopt an unfamiliar sequencer.

[0006] Tt is therefore desirable to provide a system and
method for professional artists and multimedia production
specialists to collaborate from geographically separated
locations using familiar user interfaces of existing sequencer
software.

SUMMARY OF THE INVENTION

[0007] Features and advantages of the invention will be set
forth in the description which follows, and in part will be
apparent from the description, or may be learned by practice
of the invention. The objectives and other advantages of the
invention will be realized and attained by the systems and

Mar. 18, 2004

methods particularly pointed out in the written description
and claims hereof, as well as the appended drawings.

[0008] In accordance with the purpose of the invention as
embodied and broadly described, the invention includes
apparatus for sharing sequence data between a local
sequencer station and at least one remote sequencer station
over a network via a server, the sequence data representing
audiovisual occurrences each having descriptive character-
istics and time characteristics. The apparatus includes a first
interface module receiving commands from a local
sequencer station and a data packaging module coupled to
the first interface module. The data packaging module
responds to the received commands by encapsulating
sequence data from the local sequencer station into broad-
cast data units retaining the descriptive characteristics and
time relationships of the sequence data. The data packaging
module also extracts sequence data from broadcast data
units received from the server for access by the local
sequencer terminal. The apparatus further includes a broad-
cast handler coupled to the first interface module and the
data packaging module. The broadcast handler processes
commands received via the first interface module. The
apparatus also includes a server communications module
responding to commands processed by the broadcast handler
by transmitting broadcast data units to the server for distri-
bution to at least one remote sequencer station, the server
communications module also receiving data available mes-
sages and broadcast data units from the server. The appa-
ratus further includes a notification queue handler coupled to
the server communications module and responsive to receipt
of data available messages and broadcast data units from the
server to transmit notifications to the first interface for
access by the local sequencer terminal.

[0009] In another aspect the invention provides a method
for sharing sequence data between a local sequencer station
and at least one remote sequencer station over a network via
a server, the sequence data representing audiovisual occur-
rences each having descriptive characteristics and time
characteristics. The method includes receiving commands
via a client application component from a user at a local
sequencer station; responding to the received commands by
encapsulating sequence data from the local sequencer station
into broadcast data units retaining the descriptive character-
istics and time relationships of the sequence data and
transmitting broadcast data units to the server for distribu-
tion to at least one remote sequencer station; receiving data
available messages from the server; responding to receipt of
data available messages from the server to transmit notifi-
cations to the client application component; responding to
commands received from the client application component
to request download of broadcast data units from the server;
and receiving broadcast data units from the server and
extracting sequence data from the received broadcast data
units for access by the client application component.

[0010] Tt is to be understood that both the foregoing
general description and the following detailed description
are exemplarily and explanatory and are intended to provide
further explanation of the invention as claimed.

[0011] The accompanying drawings are included to pro-
vide a further understanding of the invention and are incor-
porated in and constitute a part of this specification to

US 2004/0054725 Al

illustrate embodiments of the invention and, together with
the description, serve to explain the principles of the inven-
tion.

BRIEF DESCRIPTION OF THE DRAWINGS

[0012] The accompanying drawings which are incorpo-
rated in and constitute a part of this specification illustrate
embodiments of the invention and together with the descrip-
tion serve to explain the objects advantages and principles of
the invention.

[0013]

[0014] FIG. 1 is a block diagram showing system consis-
tent with a preferred embodiment of the present invention;

[0015] FIG. 2 is a block diagram showing modules of the
services component of FIG. 1;

[0016] FIG. 3 is a diagram showing the hierarchical
relationship of broadcast data units of the system of FIG. 1;

In the drawings:

[0017] FIG. 4 is a diagram showing the relationship
between Arrangement objects and Track objects of the
system of FIG. 1;

[0018] FIG. 5 is a diagram showing the relationship
between Track objects and Event objects of the system of
FIG. 1;

[0019] FIG. 6 is a diagram showing the relationship
between Asset objects and Rendering objects of the system
of FIG. 1;

[0020] FIG. 7 is a diagram showing the relationship
between Clip objects and Asset objects of the system of
FIG. 1;

[0021] FIG. 8 is a diagram showing the relationship
between Event objects, Clip Event objects, Clip objects, and
Asset objects of the system of FIG. 1;

[0022] FIG. 9 is a diagram showing the relationship
between Event objects, Scope Event objects, and Timeline
objects of the system of FIG. 1;

[0023] FIG. 10 is a diagram showing the relationship of
Project objects and Custom objects of the system of FIG. 1;
and

[0024] FIG. 11 is a diagram showing the relationship
between Rocket objects, and Custom and Extendable objects
of the system of FIG. 1.

DETAILED DESCRIPTION OF THE
PREFERRED EMBODIMENTS

[0025] Computer applications for musicians and multime-
dia production specialists (typically sequencers and DAWs)
are built to allow users to record and edit multimedia data to
create a multimedia project. Such applications are inherently
single-purpose, single-user applications. The present inven-
tion enables geographically separated persons operating
individual sequencers and DAWSs to collaborate.

[0026] The basic paradigm of the present invention is that
of a “virtual studio.” This, like a real-world studio, is a
“place” for people to “meet” and work on multimedia
projects together. However, the people that an individual
user works with in this virtual studio can be anywhere in the
world—connected by a computer network.

Mar. 18, 2004

[0027] FIG. 1 shows a system 10 consistent with the
present invention. System 10 includes a server 12, a local
sequencer station 14, and a plurality of remote sequencer
stations 16, all interconnected via a network 18. Network 18
may be the Internet or may be a proprietary network.

[0028] Tocal and remote sequencer stations 14 and 16 are
preferably personal computers, such as Apple PowerMacin-
toshes or Pentium-based personal computers running a ver-
sion of the Windows operating system. Local and remote
sequencer stations 14 and 16 include a client application
component 20 preferably comprising a sequencer software
package, or “sequencer.” As noted abov, sequencers create
sequence data representing multimedia data which in turn
represents audiovisual occurrences each having descriptive
characteristics and time characteristics. Sequencers further
enable a user to manipulate and edit the sequence data to
generate multimedia products. Examples of appropriate
sequencers include Logic Audio from Emagic Inc. of Grass
Valley, Calif.,; Cubase from Steinberg Soft- und Hardware
GmbH of Hamburg, Germany; and ProTools from Digide-
sign, Inc. of Palo Alto, Calif.

[0029] Tocal sequencer station 14 and remote sequencer
stations 16 may be, but are not required to be, identical, and
typically include display hardware such as a CRT and sound
card (not shown) to provide audio and video output.

[0030] TLocal sequencer station 14 also includes a connec-
tion control component 22 which allows a user at local
sequencer station 14 to “log in” to server 12, navigate to a
virtual studio, find other collaborators at remote sequencer
stations 16, and communicate with those collaborators. Each
client application component 20 at local and remote
sequencer stations 14 and 16 is able to load a project stored
in the virtual studio, much as if it were created by the client
application component at that station—but with some
important differences.

[0031] Client application components 20 typically provide
an “arrangement” window on a display screen containing a
plurality of “tracks,” each displaying a track name, record
status, channel assignment, and other similar information.
Consistent with the present invention, the arrangement win-
dow also displays a new item: user name. The user name is
the name of the individual that “owns™ that particular track,
after creating it on his local sequencer station. This novel
concept indicates that there is more than one person con-
tributing to the current session in view. Tracks are preferably
sorted and color-coded in the arrangement window, accord-
ing to user.

[0032] Connection control component 22 is also visible on
the local user’s display screen, providing (among other
things) two windows: incoming chat and outgoing chat. The
local user can see text scrolling by from other users at
remote sequencer stations 16, and the local user at local
sequencer station 14 is able to type messages to the other
users.

[0033] In response to a command from a remote user, a
new track may appear on the local user’s screen, and specific
musical parts begin to appear in it. If the local user clicks
“play” on his display screen, music comes through speakers
at the local sequencer station. In other words, while the local
user has been working on his tracks, other remote users have
been making their own contributions.

US 2004/0054725 Al

[0034] As the local user works, he “chats” with other users
via connection control component 22, and receives remote
users’ changes to their tracks as they broadcast, or “post,”
them. The local user can also share his efforts, by recording
new material and making changes. When ready, the local
user clicks a “Post” button of client application component
20 on his display screen, and all remote users in the virtual
studio can hear what the local user is hearing—Ilive.

[0035] Asshown in FIG. 1, local sequencer station 14 also
includes a services component 24 which provides services to
enable local sequencer station 14 to share sequence data
with remote sequencer stations 16 over network 18 via
server 12, including server communications and local data
management. This sharing is accomplished by encapsulating
units of sequence data into broadcast data units for trans-
mission to server 12.

[0036] Although server 12 is shown and discussed herein
as a single server, those skilled in the art will recognize that
the server functions described may be performed by one or
more individual servers. For example, it may be desirable in
certain applications to provide one server responsible for
management of broadcast data units and a separate server
responsible for other server functions, such as permissions
management and chat administration.

[0037] FIG. 2 shows the subsystems of services compo-
nent 24, including first interface module 26, a data packag-
ing module 28, a broadcast handler 30, a server communi-
cations module 32, and a notification queue handler 34.
Services component 24 also includes a rendering module 36
and a caching module 38. Of these subsystems, only first
interface module 26 is accessible to software of client
application component 20. First interface module 26
receives commands from client application component 20 of
local sequencer station 14 and passes them to broadcast
handler 30 and to data packaging module 28. Data packag-
ing module 28 responds to the received commands by
encapsulating sequence data from local sequencer station 14
into broadcast data units retaining the descriptive character-
istics and time relationships of the sequence data. Data
packaging module 28 also extracts sequence data from
broadcast data units received from server 12 for access by
client application component 20.

[0038] Server communications module 32 responds to
commands processed by the broadcast handler by transmit-
ting broadcast data units to server 12 for distribution to at
least one remote sequencer station 16. Server communica-
tions module 32 also receives data available messages from
server 12 and broadcast data units via server 12 from one or
more remote sequencer stations 16 and passes the received
broadcast data units to data packaging module 28. In par-
ticular, server communications module receives data avail-
able messages from server 12 that a broadcast data unit
(from remote sequencer stations 16) is available at the
server. If the available broadcast data unit is of a non-media
type, discussed in detail below, server communications
module requests that the broadcast data unit be downloaded
from server 12. If the available broadcast data unit is of a
media type, server communications module requests that the
broadcast data unit be downloaded from server 12 only after
receipt of a download command from client application
component 20.

[0039] Notification queue handler 34 is coupled to server
communications module 32 and responds to receipt of data

Mar. 18, 2004

available messages from server 12 by transmitting notifica-
tions to first interface module 26 for access by client
application component 20 of local sequencer terminal 14.

[0040] Typically, a user at, for example, local sequencer
station 14 will begin a project by recording multimedia data.
This may be accomplished through use of a microphone and
video camera to record audio and/or visual performances in
the form of source digital audio data and source digital audio
data stored on mass memory of local sequencer station 14.
Alternatively, source data may be recorded by playing a
MIDI instrument coupled to local sequencer station 14 and
storing the performance in the form of MIDI data. Other
types of multimedia data may be recorded.

[0041] Once the data is recorded, it can be represented in
an “arrangement” window on the display screen of local
sequencer station 14 by client application component 20,
typically a sequencer program. In a well known manner, the
user can select and combine multiple recorded tracks either
in their entirety or in portions, to generate an arrangement.
Client application component 20 thus represents this
arrangement in the form of sequence data which retains the
time characteristics and descriptive characteristics of the
recorded source data.

[0042] When the user desires to collaborate with other
users at remote sequencer stations 16, he accesses connec-
tion control component 22. The user provides commands to
connection control component 22 to execute a log-in pro-
cedure in which connection control component 22 estab-
lishes a connection via services component 24 through the
Internet 18 to server 12. Using well known techniques of
log-in registration via passwords, the user can either log in
to an existing virtual studio on server 12 or establish a new
virtual studio. Virtual studios on server 12 contain broadcast
data units generated by sequencer stations in the form of
projects containing arrangements, as set forth in detail
below.

[0043] A method consistent with the present invention will
now be described. The method provides sharing of sequence
data between local sequencer station 14 and at least one
remote sequencer station 16 over network 18 via server 12.
As noted above, the sequence data represents audiovisual
occurrences each having a descriptive characteristics and
time characteristics.

[0044] When the user desires to contribute sequence data
generated on his sequence station to either a new or existing
virtual studio, the user activates a POST button on his screen
which causes client application component 20 to send com-
mands to service component 24. A method consistent with
the present invention includes receiving commands at ser-
vices component 24 via client application component 20
from a user at local sequencer station 14. Broadcast handler
30 of service component 24 responds to the received com-
mands by encapsulating sequence data from local sequencer
station 14 into broadcast data units retaining the descriptive
characteristics and time relationships of the sequence data.
Broadcast handler 30 processes received commands by
transmitting broadcast data units to server 12 via server
communications module 32 for distribution to remote
sequencer stations 16. Server communication module 32
receives data available messages from server 12 and trans-
mits notifications to the client application component 20.
Server communication module 32 responds to commands

US 2004/0054725 Al

received from client application component 20 to request
download of broadcast data units from the server 12. Server
communication module 32 receives broadcast data units via
the server from the at least one remote sequencer station.
Data packaging module 28 then extracts sequence data from
broadcast data units received from server 12 for access by
client application component 20.

[0045] When a user is working on a project in a virtual
studio, he is actually manipulating sets of broadcast data
managed and persisted by server 12. In the preferred
embodiment, services component 24 uses an object-oriented
data model managed and manipulated by data packaging
module 28 to represent the broadcast data. By using broad-
cast data units in the form of objects created by services
component 24 from sequence data, users can define a
hierarchy and map interdependencies of sequence data in the
project.

[0046] FIG. 3 shows the high level containment hierarchy
for objects constituting broadcast data units in the preferred
embodiment. Each broadcast object provides a set of inter-
faces to manipulate the object’s attributes and perform
operations on the object. Copies of all broadcast objects are
held by services component 24.

[0047] Broadcast objects are created in one of two ways:

[0048] Creating objects locally and broadcasting
them to server 12. Client application component 20
creates broadcast objects locally by calling Create
methods (set forth in detail in the Appendix) on other
objects in the hierarchy.

[0049] Receiving a new broadcast object from server
12. When a broadcast object is broadcast to server
12, it is added to a Project Database on the server and
rebroadcast to all remote sequence stations con-
nected to the project.

[0050] Services component 24 uses a notification system
of notification queue handler 34 to communicate with client
application component 20. Notifications allow services com-
ponent 24 to tell the client application about changes in the
states of broadcast objects.

[0051] Client application 20 is often in a state in which the
data it is using should not be changed. For example, if a
sequencer application is in the middle of playing back a
sequence of data from a file, it may be important that it finish
playback before the data is changed. In order to ensure that
this does not happen, notification queue handler 34 of
services component 24 only sends notifications in response
to a request by client application component 20, allowing
client application component 20 to handle the notification
when it is safe or convenient to do so.

[0052] At the top of the broadcast object model of data
packaging module 28 is Project, FIG. 3. A Project object is
the root of the broadcast object model and provides the
primary context for collaboration, containing all objects that
must be globally accessed from within the project. The
Project object can be thought of as containing sets or “pools”
of objects that act as compositional elements within the
project object. The Arrangement object is the highest level
compositional element in the Object Model.

[0053] As shown in FIG. 4, an Arrangement object is a
collection of Track objects. This grouping of track objects
serves two purposes:

Mar. 18, 2004

[0054] 1. It allows the Arrangement to define the
compositional context of the tracks.

[0055] 2. It allows the Arrangement to set the time
context for these tracks.

[0056] Track objects, FIG. 5, are the highest level con-
tainers for Event objects, setting their time context. All
Event objects in a Track object start at a time relative to the
beginning of a track object. Track objects are also the most
commonly used units of ownership in a collaborative set-
ting. Data packaging module 28 thus encapsulates the
sequence data into broadcast data units, or objects, including
an arrangement object establishing a time reference, and at
least one track object having a track time reference corre-
sponding to the arrangement time reference. Each Track
object has at least one associated event object representing
an audiovisual occurrence at a specified time with respect to
the associated track time reference.

[0057] The sequence data produced by client application
component 20 of local sequencer station 14 includes mul-
timedia data source data units derived from recorded data.
Typically this recorded data will be MIDI data, digital audio
data, or digital video data, though any type of data can be
recorded and stored. These multimedia data source data
units used in the Project are represented by a type of
broadcast data units known as Asset objects. As FIG. 6
shows, an Asset object has an associated set of Rendering
objects. Asset objects use these Rendering objects to repre-
sent different “views” of a particular piece of media, thus
Asset and Rendering objects are designated as media broad-
cast data units. All broadcast data units other than Asset and
Rendering objects are of a type designated as non-media
broadcast data units.

[0058] Each Asset object has a special Rendering object
that represents the original source recording of the data.
Because digital media data is often very large, this original
source data may never be distributed across the network.
Instead, compressed versions of the data will be sent. These
compressed versions are represented as alternate Rendering
objects of the Asset object.

[0059] By defining high-level methods, (set forth in detail
in the Appendix), for setting and manipulating these Ren-
dering objects, Asset objects provide a means of managing
various versions of source data, grouping them as a common
compositional element. Data packaging module 28 thus
encapsulates the multimedia source objects into at least one
type of asset rendering broadcast object, each asset render-
ing object type specifying a version of multimedia data
source data exhibiting a different degree of data compres-
sion.

[0060] The sequence data units produced by client appli-
cation component 20 of local sequencer station 14 include
clip data units each representing a specified portion of a
multimedia data source data unit. Data packaging module 28
encapsulates these sequence data units as Clip objects,
which are used to reference a section of an Asset object, as
shown in FIG. 7. The primary purpose of the Clip object is
to define the portions of the Asset object that are composi-
tionally relevant. For example, an Asset object representing
a drum part could be twenty bars long. A Clip object could
be used to reference four-bar sections of the original record-
ing. These Clip objects could then be used as loops or to
rearrange the drum part.

US 2004/0054725 Al

[0061] Clip objects are incorporated into arrangement
objects using Clip Event objects. As shown in FIG. 8, a Clip
Event object is a type of event object that is used to reference
a Clip object. That is, data packaging module 28 encapsu-
lates sequence data units into broadcast data units known as
Clip Event objects each representing a specified portion of
a multimedia data source data unit beginning at a specified
time with respect to an associated track time reference.

[0062] At first glance, having two levels of indirection to
Asset objects may seem to be overly complicated. The need
for it is simple, however: compositions are often built by
reusing common elements. These elements typically relate
to an Asset object, but do not use the entire recorded data of
the Asset object. Thus, it is Clip objects that identify the
portions of Asset objects that are actually of interest within
the composition.

[0063] Though there are many applications that could
successfully operate using only Arrangement, Track, and
Clip Event objects, many types of client application com-
ponents also require that compositional elements be nested.

[0064] For example, a drum part could be arranged via a
collection of tracks in which each track represents an indi-
vidual drum (i.e., snare, bass drum, and cymbal). Though a
composer may build up a drum part using these individual
drum tracks, he thinks of the whole drum part as a single
compositional element and will—after he is done editing—
manipulate the complete drum arrangement as a single part.
Many client application components create folders for these
tracks, a nested part that can then be edited and arranged as
a single unit.

[0065] In order to allow this nesting, the broadcast object
hierarchy of data packaging module 28 has a special kind of
Event object called a Scope Event object, FIG. 9.

[0066] A Scope Event object is a type of Event object that
contains one or more Timeline objects. These Timeline
objects in turn contain further events, providing a nesting
mechanism. Scope Event objects are thus very similar to
Arrangement objects: the Scope Event object sets the start
time (the time context) for all of the Timeline objects it
contains.

[0067] Timeline objects are very similar to Track objects,
so that Event objects that these Timeline objects contain are
all relative to the start time of the Scope Event object. Thus,
data packaging module 28 encapsulates sequence data units
into Scope Event data objects each having a Scope Event
time reference established at a specific time with respect to
an associated track time reference. Each Scope Event object
includes at least one Timeline Event object, each Timeline
Event object having a Timeline Event time reference estab-
lished at a specific time with respect to the associated scope
event time reference and including at least one Event object
representing an audiovisual occurrence at a specified time
with respect to the associated timeline event time reference.

[0068] A Project object contains zero or more Custom
Objects, FIG. 10. Custom Objects provide a mechanism for
containing any generic data that client application compo-
nent 20 might want to use. Custom Objects are managed by
the Project object and can be referenced any number of times
by other broadcast objects.

[0069] The broadcast object model implemented by data
packaging module 28 contains two special objects: rocket

Mar. 18, 2004

object and extendable. All broadcast objects derive from
these classes, as shown in FIG. 11.

[0070] Rocket object contains methods and attributes that
are common to all objects in the hierarchy. (For example, all
objects in the hierarchy have a Name attribute.)

[0071] Extendable objects are objects that can be extended
by client application component 20. As shown in FIG. 11,
these objects constitute standard broadcast data units which
express the hierarchy of sequence data, including Project,
Arrangement, Track, Event, Timeline, Asset, and Rendering
objects. The extendable nature of these standard broadcast
data units allows 3™ party developers to create specialized
types of broadcast data units for their own use. For example,
client application component 20 could allow data packaging
module 28 to implement a specialized object called a
MixTrack object, which includes all attributes of a standard
Track object and also includes additional attributes. Client
application component 20 establishes the MixTrack object
by extending the Track object via the Track class.

[0072] As stated above, Extendable broadcast data units
can be extended to support specialized data types. Many
client application components 20 will, however, be using
common data types to build compositions. Music sequencer
applications, for example, will almost always be using
Digital Audio and MIDI data types.

[0073] Connection control component 22 offers the user
access to communication and navigation services within the
virtual studio environment. Specifically, connection control
component 22 responds to commands received from the user
at local sequencer station 14 to establish access via 12 server
to a predetermined subset of broadcast data units stored on
server 12. Connection control component 22 contains these
major modules:

[0074] 1. A log-in dialog.

[0075] 2. Apass-through interface to an external web
browser providing access to the resource server 12.

[0076] 3. A floating chat interface.

[0077] 4. A private chat interface

[0078] 5. Audio compression codec preferences.

[0079] 6. An interface for client specific user prefer-
ences.

[0080] The log-in dialog permits the user to either create
anew account at server 12 or log-in to various virtual studios
maintained on server 12 by entering a previously registered
user name and password. Connection control component 22
connects the user to server 12 and establishes a web browser
connection.

[0081] Once a connection is established, the user can
search through available virtual studios on server 12, specify
a studio to “enter,” and exchange chat messages with other
users from remote sequence stations 16 through a chat
window.

[0082] In particular, connection control component 22
passes commands to services component 24 which
exchanges messages with server 12 via server communica-
tion module 32. Preferably, chat messages are implemented
via a Multi User Domain, Object Oriented (MOO) protocol.

US 2004/0054725 Al

[0083] Server communication module 32 receives data
from other modules of services component 24 for transmis-
sion to server 12 and also receives data from server 12 for
processing by client application component 20 and connec-
tion control component 22. This communication is in the
form of messages to support transactions, that is, batches of
messages sent to and from server 12 to achieve a specific
function. The functions performed by server communication
module 32 include downloading a single object, download-
ing an object and its children, downloading media data,
uploading broadcasted data unit to server 12, logging in to
server 12 to select a studio, logging in to server 12 to access
data, and locating a studio.

[0084] These functions are achieved by a plurality of
message types, described below.

[0085] ACK

[0086] This is a single acknowledgement of
receipt.

[0087] NACK

[0088] This message is a no-acknowledge and
includes an error code.

[0089] Request single object

[0090] This message identifies the studio, identi-
fies the project containing the object, and identi-
fies the c lass of the object.

[0091] Request object and children

[0092] This message identifies the studio, identi-
fies the project containing the object, identifies
object whose child objects and self is to be down-
loaded, and identifies the class of obj ct.

[0093] Broadcast Start

[0094] This message identifies the studio and iden-
tifies the project being broadcast.

[0095] Broadcast Create

[0096] This message identifies the studio, identi-
fies the project containing the object, identifies the
object being created, and contains the object’s
data.

[0097] Broadcast Update

[0098] This message identifies the studio, identi-
fies the project containing the object, identifies the
object being updated, identifies the class of object
being updated, and contains the object’s data.

[0099] Broadcast Delete

[0100] This message identifies the studio, identi-
fies the project containing the object, identifies the
object being deleted, and identifies the dass of
object being updated.

[0101] Broadcast Finish

[0102] This message identifies the studio, and
identifies the project being broadcast.

[0103] Cancel transaction

[0104] This message cancels the current transac-
tion.

Mar. 18, 2004

[0105] Start object download

[0106] This message identifies the object being
downloaded in this message, identifies the class of
object, identifies the parent of the object, and
contains the object’s data.

[0107] Single object downloaded

[0108] This message identifies the object being
downloaded, identifies the dass of the object, and
contains the object data.

[0109] R quest m dia d wnload

[0110] This message identifies the studio, identi-
fies the project containing the object, identifies the
rendering object associated with the media to be
downloaded, and identifies the class of object
(always Rendering).

[0111] Broadcast Media

[0112] This message identifies the studio, identi-
fies the project containing the object, identifies the
Media object to be uploaded, identifies the class of
object (always Media), identifies the Media’s Ren-
dering parent object, and contains Media data.

[0113] Media Download

[0114] This message identifies the rendering object
associated with the media to be downloaded,
identifies the class of object (always Rendering),
and contains the media data.

[0115] Request Timestamp
[0116] This message requests a timestamp.
[0117] Response Timestamp

[0118] This message contains a timestamp in the
format YYYYMMDDHHMMSSMMM (Year,
Month, Day of Month, Hour, Minute, Second,
Milliseconds).

[0119] Request Login

[0120] This message identifies the name of user
attempting to Login and provides an MD5 digest
for security.

[0121] Response SSS Login

[0122] This message indicates if a user has a
registered ‘Pro’ version; and provides a Session
token, a URL for the server Web site, a port for
data server, and the address of the data server.

[0123] R quest Studi Locati n

[0124] This message identifies th studio whose
location is being requested and the community
and studio names.

[0125] Response Studio Location

[0126] This message identifies the studio, the port
for the MOO, and the address of the MOO.

US 2004/0054725 Al

[0127] Request single object

[0128] This message identifies the studio, identi-
fies project containing the object, identifies object
to be downloaded, and identifies the class of
object.

[0129] Finish object download

[0130] This message identifies the object that has
finished being downloaded, identifies the class of
object, and identifies the parent of object.

[0131] Client application component 20 gains access to
services component 24 through a set of interface classes
defining first interface module 26 and contained in a class
library. In the preferred embodiment these classes are imple-
mented in straightforward, cross-platform C++ and require
no special knowledge of COM or other inter-process com-
munications technology.

[0132] A sequencer manufacturer integrates a client appli-
cation component 20 to services component 24 by linking
the class library to source code of client application com-
ponent 20 in a well-known manner, using for example,
visual C++ for Windows application or Metroworks
Codewarrier (Pro Release 4) for Macintosh applications.

[0133] Exception handling is enabled by:

[0134] Adding Initialization and Termination entry
points to client application component 20 (_initialize
and _terminate),

[0135] Adding “MSL RuntimePPC++.DLL” to client
application component 20, and

[0136] Add “MSL AppRuntime.Lib” to client appli-
cation component 20

[0137] Once these paths are specified, headers of
services component 24 simply are included in source
files as needed.

[0138] A detailed description of the classes of the class
library necessary to implement a system consistent with the
present invention is set forth in the Appendix.

[0139] To client application component 24, the most fun-
damental class in the first interface module 26 is CrktSer-
vices. It provides methods for performing the following
functions:

[0140] Initializing Services component 24.

[0141] Shutting down Services component 24.

[0142] Receiving Notifications from Services com-
ponent 24.

[0143] Creating Project objects.

[0144] Handling the broadcast of objects to Server 12
through services component 24.

[0145] Querying for other broadcast object inter-
faces.

[0146] Each implementation that uses services component
24 is unique. Therefore the first step is to create a services
component 24 class. To do this, a developer simply creates
a new class derived from CRktServices:

Mar. 18, 2004

class CMyRktServices : public CrktServices

public:
CMyRktServices();
virtual ~CMyRktServices();
etc. ..

[0147] An application connects to Services component 24
by creating an instance of its

CRktServices class and calling CRktServices::Initialize():
try

CMyRocketServices *pMyRocketServices =
new CMyRocketServices;

pMyRocketServices->Initialize();
¥
catch(CRrktException& e)

{

// Initialize Failed

[0148] CRtServices:: Initialize() automatically performs
all operations necessary to initiate communication with
services component 24 for client application component 20.

[0149] Client application component 20 disconnects from
Services component 24 by deleting the CRktServices
instance:

// If a Services component 24 Class was created, delete it
if (m__pRktServices != NULL)

delete m__pRktServices;
m__pRktServices = NULL;

[0150] Services component 24 will automatically down-
load only those custom data objects that have been regis-
tered by the client application. CRktServices provides an
interface for doing this:

try

// Register for our types of custom data.
m__pRktServices->RegisterCustomDataType(CUSTOMDATATYPEID1);
m_ pRktServices->RegisterCustomDataType(CUSTOMDATATYPEID?2);
catch(CrktException& e)

// Initialize Failed

[0151] Like CRktServices, all broadcast objects have cor-
responding CRKkt interface implementation classes in first
interface module 26. It is through these CRkt interface
classes that broadcast objects are created and manipulated.

US 2004/0054725 Al

[0152] Broadcast objects are created in one of two ways:

[0153] Creating objects locally and broadcasting
them to the Server.

[0154] Receiving a new objects from the server.

[0155] There is a three-step process to creating objects
locally:

[0156] 1. Client application component creates
broadcast objects by calling the corresponding Cre-
ate() methods on their container object.

[0157] 2. Client application component calls Cre-
ateRktlnterface() to get an interface to that object.

[0158] 3. Client application component calls CRkt-
Services::Broadcast () to update the server with
these new objects.

[0159] Broadcast objects have Create() methods for every
type of object they contain. These Create() methods create
the broadcast object in services component 24 and return the
ID of the object.

[0160] For example, CRktServices has methods for creat-
ing a Project. The following code would create a Project
using this method:

CRktProject* pProject = NULL;
// Wrap call to RocketAPI in try-catch for possible error conditions
try
{
// attempt to create project
pProject =
CMyRktServices::Instance()->CreateRktProjectInterface

CRktServices::Instance()->CreateProject());
/f user created. set default name
pProject->SetName(“New Project”);

3y

catch(CRktException& ¢)

delete pProject;
e.ReportRktError();
return false;

[0161] To create a Track, client application component 20
calls the CreateTrack() method of the Arrangement object.
Each parent broadcast object has method(-s-) to create its
specific types of child broadcast objects.

[0162] It is not necessary (nor desirable) to call CRktSer-
vices::Broadcast() immediately after creating new broad-
cast objects. Broadcasting is preferrably triggered from the
user interface of client application component 20. (When the
user hits a “Broadcast” button, for instance).

[0163] Because services component 24 keeps track of and
manages all changed broadcast objects, client application
component 20 can take advantage of the data management
of services component 24 while allowing users to choose
when to share their contributions and changes with other
users connected to the Project.

[0164] Note that (unlike CRktServices) data model inter-
face objects are not created directly. The must be created
through the creation methods or the parent object.

Mar. 18, 2004

[0165] Client application component 20 can get CRkt
interface objects at any time. The objects are not deleted
from data packaging module 28 until the Remove() method
has successfully completed.

[0166] Client application component 20 accesses a broad-
cast object as follows:

/I Get an interface to the new project and
// set name.

CRktPtr < CRktProject > pMyProject =
CMyRktServices::Instance()->CreateRktProjectInterface (Project);
MyProject->SetName(szProjName);
Y/ try
catch(CRktException& ¢)

e.ReportRktError();

[0167] The CRktPtr<> template class is used to declare
auto-pointer objects. This is useful for declaring interface
objects which are destroyed automatically, when the CRk-
tPtr goes out of scope.

[0168] To modify the attributes of a broadcast object,
client application component 20 calls the access methods
defined for the attribute on the corresponding CRkt interface
class:

// Change the name of my project
pRktObj->SetName(“My Project”);

[0169] Each broadcast object has an associated Editor that
is the only user allowed to make modifications to that object.
When an object is created, the user that creates the object
will become the Editor by default.

[0170] Before services component 24 modifies an object it
checks to make sure that the current user is the Editor for the
object. If the user does not have permission to modify the
object or the object is currently being broadcast to the server,
the operation will fail.

[0171] Once created, client application component 20 is
responsible for deleting the interface object:

[0172] delete pTrack;

[0173] Deleting CRkt interface classes should not be con-
fused with removing the object from the data model. To
remove an object from the data model, you call the object’s
Remove() method is called:

[0174] pTrack-> Remove(); // remove from the data
model

[0175] Interface objects are “reference-counted.”
Although calling Remove() will effectively remove the
object from the data model, it will not de-allocate the
interface to it. The code for properly removing an object
from the data model is:

US 2004/0054725 Al

CRktTrack* pTrack;
// Create Interface . . .
pTrack->Remove();
delete pTrack;

// remove from the data model
// delete the interface object

[0176] or using the CRktPtr Template:

CRktPtr < CRrktTrack > pTrack;

/f Create Interface . . .

pTrack->Remove ();

// pTrack will automatically be deleted when it
// goes out of scope

[0177] Like the create process, objects are not deleted
globally until the CRktServices::Broadcast at() method is
called.

[0178] 1If the user does not have permission to modify the
object or a broadcast is in progress, the operation will fail,
throwing an exception.

[0179] Broadcast objects are not sent and committed to
Server 12 until the CRktServices::Broadcast() interface
method is called. This allows users to make changes locally
before committing them to the server and other users. The
broadcast process is an asynchronous operation. This allows
client application component 20 to proceed even as data is
being uploaded.

[0180] To ensure that its database remains consistent dur-
ing the broadcast procedure, services component 24 does not
allow any objects to be modified while a broadcast is in
progress. When all changed objects have been sent to the
server, an OnBroadcastComplete notification will be sent to
the client application.

[0181] Client application component 20 can revert any
changes it has made to the object model before committing
them to server 12 by calling CRktServices::Rollback().
When this operation is called, the objects revert back to the
state they were in before the last broadcast. (This operation
does not apply to media data.) Rollback() is a synchronous
method.

[0182] Client application component 20 can cancel an
in-progress broadcast by calling CrktServices::Cancel-
Broadcast(). This process reverts all objects to the state they
are in on the broadcasting machine. This includes all objects
that were broadcast before CancelBroadcast() was called.

[0183] CancelBroadcast() is a synchronous method.

[0184] Notifications are the primary mechanism that ser-
vices component 24 uses to communicate with client appli-
cation component 20. When a broadcast data unit is broad-
cast to server 12, it is added to the Project Database on server
12 and a data available message is rebroadcast to all other
sequencer stations connected to the project. Services com-
ponent 24 of the other sequencer stations generate a notifi-
cation for their associated client application component 20.
For non-media broadcast data units, the other sequencer
stations also immediately request download of the available
broadcast data units; for media broadcast data units, a

Mar. 18, 2004

command from the associated client application component
20 must be received before a request for download of the
available broadcast data units is generated.

[0185] Upon receipt of a new broadcast data unit, services
component 24 generates a notification for client application
component 20. For example, if an Asset object were
received, the OnCreateAssetComplete() notification would
be generated.

[0186] All Notifications are handled by the CRktServices
instance and are implemented as virtual functions of the
CRktServices object.

[0187] To handle a Notification, client application com-
ponent 20 overrides the corresponding virtual function in its
CRktService a class. For example:

class CMyRktServices : public CRktServices

/I Overriding to handle OnCreateAssetComplete Notifications
virtual void OnCreateAssetComplete (

const RktObjectIdType& rObjectld,

const RktObjectldType& rParentObjectld ;

[0188] When client application component 20 receives
notifications via notification queue handler 28, these over-
ridden methods will be called:

RktNestType
CMyRktServices::OnCreate AssetStart (
const RktObjectldType&
rObjectld,
const RktObjectldType&

{

rParentObjectId)

try
// Add this Arrangement to My Project
if (m_pProjTreeView != NULL)
m__pProjTree View->NewAsset (rParentObjectId-rObjectId);
} /1 try catch(CRktException& e)
e.ReportRktError();

return ROCKET__QUEUE_ DO_ NEST;

[0189] Sequencers are often in states in which the data
they are using should not be changed. For example, if client
application component 20 is in the middle of playing back
a sequence of data from a file, it may be important that it
finish playback before the data is changed.

[0190] In order to ensure data integrity, all notification
transmissions are requested client application component
20, allowing it to handle the notification from within its own
thread. When a notification is available, a message is sent to
client application component 20.

[0191] On sequencer stations using Windows, this notifi-
cation comes in the form of a Window Message. In order to
receive the notification, the callback window and notifica-

