(19) AUSTRALIAN PATENT OFFICE

(11) Application No. Al 2005202442 B2

(54) Title

System and method for auditing a network
(51)2 International Patent Classification(s)

HO4L 29,06 (2006.01) 4BMEP GO6F

GO6F 7,00 (2006.01) 944

GO6F 7-06 (2006.01) 20060101ALTZ007022

GO6F 9,44 (2006.01) 4BMER GOGF

GO6F 13,00 (2006.01) 13700

GOG6F 15,16 (2006.01) 200601012L12007022

HO4L 1216 (2006.01) *B¥EF GOGF

4

HO4L 12,26 (2006.01) 15716

HOAL 29006 ZDDEDlﬂlALIZDEIZilE

20060101AFI2006010 1BHAU

LAy GOGF 12/16

20060101ALI2007022
7,00 HO4L
20060101AL12007022 ‘;‘;ME;’E
e
4BMEP GObF
20060101ALI2007022

7,06

20060101AL12007022 4BMER
(21) Application No: 2005202442 (22) Application Date: 2005 06 06
(30) Priority Data
(31) Number (32) Date (33) Country

10867198 2004 06 14 us
(43) Publication Date : 2006 01 05
(43) Publication Journal Date : 5gp6 g1 05
(1) Applicant(s)

Microsoft Corporation
(72) Inventor(s)

Chang., Vincent, Schwebke, Thad, Abdo, Ralph, Wu, John, Michel, Theodore L.
(74) Agent/Attorney

Davies Collison Cave, 1 HNicholson Street, Melbourne, VIC, 3000
(56) Related Art

US 5414845

us 20030187920

2005202442 06 Jun 2005

10

Abstract

A network is audited by running task programs and evaluating the results of the
task programs. Task programs are tools that are configured to retrieve information about
a particular network device. A service is arranged to coordinate the scheduling,
execution, and data collection and aggregation of each task program over disparate
networks such as multiple domains. Each task program executes at a scheduled time and
provides results to a parser. The parser formats the results and provides the formatted
data to the service. The service stores the collected data in a database. A client can
schedule and/or review the results of audits by communicating with the service. The
collected data can be compared and filtered according to rule-based templates that define
acceptable network device configurations. Reports can be generated based on the
templates such that a client can evaluate results from task programs executed over the

entire network.

2005202442 06 Jun 2005

200 Devices 3/7
|
29&/‘ Target
A
200
y \/ .
210 Scheduler Client
202
M | User Interface A
214 ' Task Programs PP
A
A
Y
212 Output Parser
A
A A
550 Service
24{)/ V] CMDB Web Service 269/ Scheduler Web Service
254
\-/1 CMDB Parser | 256#‘ Scheduler Service |
256 : ;
_/1 Data Collection/Polling I 26§/~| Client Service |
ZSM Hosted Template U W 264 Scheduler Parser ‘
A
Y
278/\ Database

Configuration
‘Management
Database

Templates

282

Scheduler
Database

Fig. 3

-

2005202442 06 Jun 2005

AUSTRALIA
PATENTS ACT 1990
COMPLETE SPECIFICATION

NAME OF APPLICANT(S)::

Microsoft Corporation

ADDRESS FOR SERVICE:
DAVIES COLLISON CAVE

Patent Attorneys
1 Nicholson Street, Melbourne, 3000, Australia

INVENTION TITLE:

System and method for auditing a network

The following statement is a full description of this invention, including the best method of performing it
known to me/us:-

5102

21 Aug 2009

2005202442

20

25

30

PAOPERISSBAI00911 2621020 response.doc-8/19/2009

Background
A computer network may encompass a large variety of different computing devices

linked together across different domains. As the network changes, specific information
about the network or a particular computing device on the network may be difficult to
obtain. For example, an administrator may desire to determine the software installed on
the computing devices comprising the network, the version of the installed software, or the
configuration of devices on the network. In a conventional system, network device
information may be obtained by using a network auditing application that collects specific
data for a single domain. The conventional method for auditing devices on a network is
inefficient because the data is collected for only one domain, and each network auditing

application is designed for the specific information that is collected.

Summary
Some embodiments relate to a system for scheduling the execution of applications,

comprising:
a client that is configured to:
submit requests for scheduled execution of tasks, wherein the tasks are
arranged across disparate networks,
generate task templates having rules for filtering data collected during an
execution of the task;
a service;
an interface that is arranged to receive the requests from the client and submit the
requests to the service;
a scheduler database arranged in cooperation with the service to store and retrieve
the submitted requests;
a configuration management database arranged in cooperation with the service to
execute the rules associated with the task templates generated on the client; and
a scheduler located in a domain that is arranged to:
poll the service for the requests;

execute requests; and

21 Aug 2009

2005202442

15

20

25

30

PAOPERISSBI00%i1 2621020 rospanse.doo-b/ 19/2(09

_2-

report status of requests based on the execution of the rules associated with

the task templates.

Some embodiments relate to a method for scheduling the execution of

applications, comprising:

submitting requests for scheduled execution of tasks, wherein the tasks are arranged
across disparate networks;

processing the requests in a service;

storing the requests in a scheduler database;

executing the requests on a scheduler when scheduled;

collecting data associated with the executed request;

comparing the collected data to a task template of a configuration management
database by executing rules associated with the task template to generate a status; and

reporting the status of the requests to a client.

A network may be audited by running task programs and evaluating the results of
the task programs. Task programs are tools that are configured to retrieve information
about a particular network device. A service is arranged to coordinate the scheduling,
execution, and data collection and aggregation of each task program over disparate
networks such as multiple domains. Each task program executes at a scheduled time and
provides results to a parser. The results may be in various formats to allow for flexibility
in choosing task programs. The parser formats the results and provides the formatted data
to the service. The service stores the collected data in a database. A client can schedule
and/or review the results of audits by communicating with the service. The collected data
can be compared and filtered according to rule-based templates that define acceptable
device configurations. Reports can be generated based on the templates such that a client

can evaluate results from task programs executed over the entire network.

According to some embodiments, a system is arranged to schedule the execution of
tasks in response to requests that are submitted by a client. The tasks may be scheduled for

execution across disparate networks. An interface is configured to receives the requests

21 Aug 2009

2005202442

10

15

20

25

PAOPERISSBADN9\I 2621020 response. doc-B/19/2009

-3

that are provided by the client and submit the requests to a service. The service is arranged
in cooperation with a scheduler database to store and retrieve each submitted request. The
scheduler is configured to poll the service for requests, schedule the execution time of the

requests, execute the requests, and report the status of the requests.

Brief Description of the Drawings

FIGURE 1 illustrates a computing device that may be used according to some
embodiments.

FIGURE 2 is functional block diagram illustrating a system for auditing the status
of a network, in accordance with some embodiments.

FIGURE 3 is functional block diagram illustrating a system for auditing the status
of a network, in accordance with some embodiments.

FIGURE 4 is a logic flow diagram illustrating a process for scheduling the
execution of applications, in accordance with some embodiments.

FIGURE 5 is a logic flow diagram illustrating a process for scheduling the
execution of applications, in accordance with some embodiments.

FIGURE 6 is a logic flow diagram illustrating a process for determining whether a
task program pass or fail with regard to template rules, in accordance with some
embodiments.

FIGURE 7 is a logic flow diagram illustrating a process for reporting collected

data, in accordance with some embodiments.

Detailed Description
Briefly described, a network is audited by running task programs and evaluating the

results of the task programs. Task programs are tools that are configured to retrieve
information about a particular network device. A service is arranged to coordinate the
scheduling, execution, and data collection and aggregation of each task program over
disparate networks such as multiple domains. Each task program executes at a scheduled
time and provides results to a parser. The results may be in various formats to allow for

flexibility in choosing task programs. The parser formats the results and provides the

21 Aug 2009

2005202442

20

25

PADPERISSBMIRN 2621020 vesponse.doc-8/19/2009

23A -

formatted data to the service. The service stores the collected data in a database. A client
can schedule and/or review the results of audits by communicating with the service. The
collected data can be compared and filtered according to rule-based templates that define
acceptable server configurations. Reports can be generated based on the templates such

that a client can evaluate results from task programs executed over the entire network.

Ilustrative Operating Environment
With reference to FIGURE 1, one example system for implementing embodiments

includes a computing device, such as computing device 100. Computing device 100 may
be configured as a client, a server, a mobile device, or any other computing device that
interacts with data in a network based collaboration system. In a very basic configuration,
computing device 100 typically includes at least one processing unit 102 and system
memory 104. Depending on the exact configuration and type of computing device, system
memory 104 may be volatile (such as RAM), non-volatile (such as ROM, flash memory,
etc.) or some combination of the two. System memory 104 typically includes an operating
system 105, one or more applications 106, and may include program data 107. The present
invention, which is described in detail below, is implemented within system memory 104.
Computing device 100 may have additional features or functionality. For example,
computing device 100 may also include additional data storage devices (removable and/or
non-removable) such as, for example, magnetic disks, optical disks, or tape. Such
additional storage is illustrated in FIGURE 1 by removable storage 109 and non-removable
storage 110. Computer storage media may include volatile and nonvolatile, removable and
non-removable media implemented in any method or technology for storage of

information, such as computer readable instructions, data

2005202442 06 Jun 2005

10

15

20

25

30

structures, program modules, or other data. System memory 104, removable
storage 109 and non-removable storage 110 are all examples of computer storage
media. Computer storage media includes, but is not limited to, RAM, ROM, EEPROM,
flash memory or other memory technology, CD-ROM, digital versatile disks (DVD) or
other optical storage, magnetic cassettes, magnetic tape, magnetic disk storage or other
magnetic storage devices, or any other medium which can be used to store the desired
information and which can be accessed by computing device 100. Any such computer
storage media may be part of device 100. Computing device 100 may also have input
device(s) 112 such as keyboard, mouse, pen, voice input device, touch input device, etc.
Output device(s) 114 such as a display, speakers, printer, etc. may also be included.
Computing device 100 also contains communication connections 116 that allow
the device to communicate with other computing devices 118, such as over a network.
Networks include local area networks and wide area networks, as well as other large
scale networks including, but not limited to, intranets and extranets. Communication

connection 116 is one example of communication media. Communication media may

- typically be embodied by computer readable instructions, data structures, program

modules, or other data in a modulated data signal, such as a carrier wave or other
transport mechanism, and includes any information delivery media. The term
“modulated data signal” means a signal that has one or more of its characteristics set or
changed in such a manner as to encode information in the signal. By way of example,
and not limitation, communication media includes wired media such as a wired network
or direct-wired connection, and wireless media such as acoustic, RF, infrared and other
wireless media. The term computer readable media as used herein includes both storage

media and communication media.

Scheduling the Execution of Applications
FIGURE 2 is functional block diagram illustrating a system for auditing the

status of a network. The system includes client 200 and scheduler 210 in a first domain
(i.e., domain 1), client 220 and scheduler 230 in a second domain (i.e., domain 2),

service 240 (e.g., web service), and database 260. Domain 1 and domain 2 each inciude

4

2005202442 06 Jun 2005

10

15

20

25

30

a scheduler and a client such that data associated with application execution may be
collected from each domain.

Clients (e.g., clients 200 and 220) can request the execution of an application at
a scheduled time through service 240. In one embodiment, the application is a task
program. The task program may be related to a software audit, deployment of software,
a software patch/update, account permission settings, hardware audits, etc. The
requested data is collected during execution of the task program. The request is
communicated to service 240.

Each client may correspond to: a client device that is located inside the
corresponding portion of the network (e.g., in the same domain) where the application
program resides, a client device that is located in another portion of the network (e.g., in
a different domain) different from where the application program resides, or some other
client device that is located outside of the network and arranged to communicate with
the service 240. For example, service 240 may be a web service that provides client -
200 access over a computing network such: as the Intemet.

Service 240 communicates with database 260. Service 240 receives requests
from scheduler 210 (or 230) to access database 260 and determine if unprocessed job
requests have been submitted by client 200 and 220. If the client request involves tasks
in both domains, two jobs are created in database 260. Service 240 returns the job that
belongs to the same domain as scheduler 210 (or 230).

Scheduler 210 polls service 240 for requests. When a request is retrieved by
scheduler 210, the corresponding application program is scheduled for execution at an
appointed time. Scheduler 210 initiates execution of the corresponding task program
when the appointed time is reached. In one embodiment, a user may cancel a request
before the appointed time of execution. In one example, scheduler 210 is scheduled to
audit multiple (n) devices (215) that are located within a particular portion of the
network (e.g., domain 1) with the scheduled execution of the task program. Scheduler
210 is arranged to trigger a parser (not shown) to collect the data from the output of the
application program when execution of the corresponding task program is complete.

The parser then processes the output for communication with service 240.

5

-10-

2005202442 06 Jun 2005

15

20

25

30

Scheduler 230 also polls service 240 for requests. When a request is received by
scheduler 230, the corresponding application program is scheduled for execution at an
appointed time. Scheduler 230 initiates execution of the corresponding task program
when the appointed time is reached. In one example, scheduler 230 is scheduled to
audit multiple (m) devices (235) that are located within another particular portion of the
network (e.g., domain 2) with the scheduled execution of the task program. Scheduler
230 is arranged to trigger a parser to collect the data from the output of the application
program when execution of the corresponding task program is complete. The parser
then processes the output for communication with service 240.

Service 240 is arranged to receive collected data from each of the schedulers
(e.g., 210 and 230). In one example, scheduler 210 (or 230) is configured to send
results to service 240. In another example, service 240 is configured to receive and
process messages including results from the schedulers. After service 240 receives and
processes data from the various schedulers, service 240 stores the results in database
260.

Each device in the network may be serviced by a particular scheduler. For
example, device 11 is serviced by scheduler 210. The devices may include servers,
routers, switches, clients, or any other hardware that exists on a network. In one
example, the devices (e.g., devices 215) are part of a server farm such as content servers
in a network.

FIGURE 3 is a functional block diagram illustrating a system for auditing the
status of a network. Client 200 includes user interface application 202. Scheduler 210
includes task programs 214. Output parser 212 communicates with service 240 and
scheduler 210. Scheduler 210 communicates with devices 290. Devices 290 includes
target 292 which is in communication with task programs 214 to collect data associated
with each task program 214 on scheduler 210. Target 292 may correspond to a single
or group of devices, clients, servers, routers, switches, or network nodes.

Service 240 includes configuration management database (CMDB) web service
250, scheduler web service 260, hosted template user interface 258, and scheduler

parser 264. CMDB web service includes CMDB parser 254 and data collection/polling

6

11-

2005202442 06 Jun 2005

10

15

20

25

30

module 256. Scheduler web service 260 includes scheduler service 262 and client
service 268. Database 270 includes configuration management database 280 and
scheduler database 285. Configuration management database 280 includes templates
282.

Client 200 may schedule data collection for task programs 214 through a user
interface. In one embodiment, the user interface is a client side user interface
application 202 that is stored locally on client 200 for execution. In another
embodiment, the user interface is a server side user interface that is hosted by scheduler
web service 260. For this example, user interface application 202 is a web-browser type
of application that cooperates with client service 268 through a network connection. In
still another embodiment, the user interface may be a web interface that downloads the
user interface to client 200 when client 200 requests the user interface.

Information about the task program execution schedule is sent from client 200 to
database 285 via scheduler service 262. Scheduler 210 polls scheduler database 285
through scheduler service 262. In one embodiment, the task program is scheduled for
data collection in a specific domain such that only schedulers in the specified domain
receive the task program schedule information. In another embodiment, task programs
in multiple domains are scheduled for data collection. Each scheduler 210 is arranged
to initiate program execution at a scheduled time in accordance with entries in scheduler
database 285.

Scheduler web service 260 is arranged to receive client scheduling requests.
Each scheduled event in scheduler database 285 may have one or more corresponding
entries in the configuration management database that includes data collected/processed
from target 292 during a previous or current execution of the task program.

Scheduler web service 260 is arranged to receive and respond to scheduling
requests from clients and/or scheduler 210. In one example, a client requests entry of
execution for a new task that is parsed and added to scheduler database 285. In another
example, a client requests entry of execution of another new task that conflicts with one
or more previous entries in scheduler database 285 and scheduler web service 260

returns an error message to client 200. In still another example, client 200 requests

7

-12-

2005202442 06 Jun 2005

10

‘15

20

25

entry of execution of still another new task that overrides one or more previous entries
in scheduler database 285. In yet another example, a client requests entry of execution
of yet still another new task that conflicts with one or more previous entries in scheduler
database 285 and scheduler web service 260 provides a user interface for editing the
entries.

In one example, task program 214 may specify an output folder location for the
requested data to be stored on database 285 via scheduler 210 with an associated file
name. The output file is subsequently processed by output parser 212 to provide
appropriately formatted data for service 240.

Output parser 212 is triggered by scheduler 210 when the requested data is
received by service 240. Output parser 212 processes the requested data by converting
the data into a format that may be easily communicated by CMDB web service 250 to
database 270. In one embodiment, output parser 212 converts the data into a delimited
text format such as an extensible markup language (XML). Data collected from
different task programs is converted into a uniform format that is understood by
configuration management database 280. In one embodiment, output parser 212
converts one data format to another format based on input from client 200.

CMDB web service 250 receives the parsed data from output parser 212 and
stores the parsed data in configuration management database 280. In one embodiment,
the data is stored in tables corresponding to data type. Examples of the types of data
include metabase entries, share permissions, hot fix information, registry entries and
allowed users. Configuration management database 280 is a central database for data
collected by task programs 214. In one embodiment, the data collected during the
execution of a particular task program is stored separately. CMDB web service 250
allows auditing tools to communicate with configuration management database 262 and
access the stored data.

Data related to a specific task program execution and stored in configuration
management database 280 may be referred to as a job run. Client 200 may access a job

run in configuration management database 280 through CMDB web service 250.

-13-

2005202442 06 Jun 2005

10

20

25

30

Templates 282 are used for analyzing the data collected during execution of a
task program. Templates 282 are configured to provide rules and guidelines for
filtering and presenting collected data. In one example, the rules provide a simple basis
for acceptable behavior resulting from task program execution (e.g., success or failure
of a patch install, security rating for a security test, etc). Client 200 establishes the rules
for a template and submits the template to CMDB web service 250. CMDB parser 254
is also arranged to process each template and store the template in configuration
management database 280.

Client 200 may be arranged to cooperate with service 240 to define the rules for
a template using Boolean operators (e.g., AND, OR, NAND, NOR, etc.). Multiple
Boolean relationships may be combined to define a rule. Data that is collected during a
job run is evaluated by each rule in the corresponding template. A determination is
made whether an item associated with the collected data passed or failed with respect to
the rules outlined in the template.

Configuration management database 280 can be queried based on customized
input from client 200 to retrieve the data collected from a job run. The data may be -
retrieved from data collection/polling module 256. The template corresponding to the
collected data may also be retrieved from configuration management database 280. In
one example, the template is stored on CMDB web service 250 for evaluation of
incoming data from task program 214. In another example, the template is defined as
part of configuration management dz;tabase 280 such that the rules are applied to
collected data in response to queries from client 200 via service 240.

Client 200 may submit/edit templates through a user interface. In one
embodiment, the user interface is a client side user interface application 202 that is
stored locally on client 200 for execution. In another embodiment, the user interface is
a server side user interface such as hosted template user interface 258. For this
example, user interface application 202 is a web-browser type of application that
cooperates with hosted template user interface 258 through a network connection. In
still another embodiment, the user interface may be a web interface that downloads the

user interface for template editing and/or submission to client 200 when requested by

9

-14-

2005202442 06 Jun 2005

10

15

20

25

client 200. Similarly, client 200 may review reports through a user interface that may
reside locally on client 200, hosted by CMDB web service 250, or downloaded from
CMDB web service 250.

The collected data is compared to the corresponding template to evaluate task
program results. In response to the comparison, client 200 is notified through CMDB
web service 250 whether the data run passed or failed with respect to expected results.
In one embodiment, the collected data is grouped together in a table based on the
selected templates. If all the rules pass for a given template then target 292 is
functioning properly with regard to the executed task program. If all the rules do not
pass, the table includes detailed information about which specific rules and comparisons
in the template failed or succeeded.

Client 200 may request a customized report that identifies detailed information
associated with template evaluation. For example, collected data can be filtered and
formatted according to the rule set associated with the template. The report is selected
by reviewing a specific job run and the corresponding data. Client 200 selects a
template from configuration management database 280 to generate the corresponding
report. For any given job run, several different templates may be available in
configuration management database 280 such that various aspects of each data
collection can be viewed as may be desired.

Report requests are sent from client 200 to CMDB web service 250. CMDB.
web service 250 submits the template to configuration management database 280 for
evaluation. Configuration management database 280 runs the rules to evaluate the
template.

CMDB web service 250 is arranged to receive and respond to report requests
and template submissions from clients. In one example, a client requests entry of a new
template that is parsed and added to configuration management database 280. In
another example, a client requests retrieval of template from configuration management
database 280 for editing. In still another example, a client requests a report from a job

run using a previously defined template in configuration management database 280.

10

-15-

2005202442 06 Jun 2005

10

15

20

25

A given template may be evaluated more than once such that changes to the
results from task programs may be evaluated over time. For example, a template may
be arranged to check for a hot fix. The job is run and the results are audited. The
results that are viewed are the actual audit results from auditing the target servers. The
template determines whether the hot fix is included on a group of servers. A patch
deployment may be scheduled to install the hot fix on the servers that were previously
evaluated as not having the hot fix. A week later another audit may be run using the
same template to verify any changes since the previous audit. Multiple result templates
may be used to report on different aspects of the same set of audit result data.

FIGURE 4 is a logic flow diagram illustrating a process for scheduling the
execution of applications. The process begins at block 400 where the client requests a
schedule for task program execution through a user interface.

Continuing to block 405, the scheduler web service processes the request for
task program execution. The request is parsed such that the parsed data may be stored
in the scheduler database. Moving to block 410, the parsed schedule request is stored in
the scheduler database. Proceeding to block 415, the scheduler retrieves the schedule
request by polling the scheduler database via the scheduler web service.

Advancing to block 420, the task is initiated according to the schedule. The
schedule may be event triggered. For example, the event may trigger at a specified time
and date. Alternatively, the event may trigger when an action is completed, such as
when a specified user logs on to the network. Continuing to block 425, data is collected
from the output of the executed task program.

Moving to block 430, the data collected from the task program is parsed. The
output parser processes the collected data and converts the data into a format that may
be easily communicated by the CMDB web service to the configuration management |
database. Proceeding to block 435, the parsed data is sent to the CMDB web service.
Continuing to block 440, the data is stored in the configuration management database to
determine whether the task program was successfully executed. The process then

terminates at an end block.

-16-

2005202442 06 Jun 2005

10

20

25

30

FIGURE 5 is a logic flow diagram illustrating a process for scheduling the
execution of applications. The process begins at block 500 where the scheduler polls
the scheduler database for a request to schedule the execution of a task program. The
scheduler contacts the scheduler service to determine if a job was submitted by a user.
If a job was submitted, the job is retrieved, analyzed and forwarded to a working queue.

Continuing to block 505, the user creates a step, a job or a scheduled job from a
user interface. When creating a job, the user may retrieve an existing job and rerun the
retrieved job at a scheduled time. The user may compose a new job if existing jobs do
not address the user’s requirements. A new job may be composed by selecting existing
steps. If a required step does not exist, a new step may be created for the job to meet the
user’s requirements.

Moving to block 510, the user interface submits the job to the scheduler database
through the scheduler web service. The job is converted into a format that the scheduler
recognizes. For example, the user may scan different domains during the same step of
the job. Thus, the step is separated into multiple jobs corresponding to the scheduler in
each domain.

Proceeding to block 515, the scheduler retrieves the job from the scheduler
database through the scheduler service using a poll function. The scheduler in a given
domain retrieves scheduled jobs belonging to the domain. The scheduler wraps the
retrieved data based on information provided by a maintenance function. The wrapped
data is then forwarded to a working queue. If the poll function is not operating properly
(e.g., a network problem), the poll function is placed on hold. Once the opera.ting
problem is resolved by the maintenance function, the poll function resumes and data
continues to be retrieved.

Advancing to block 520, the job is scheduled. An implementation function
retrieves the wrapped data from the working queue, and sets a timer based on user
requests. The user locates the scheduled job using the user interface. In one
embodiment, the user may cancel the job before the scheduled time. The poll function
forwards a cancel command to the working queue. The implementation function

cancels the time set for the job when the cancel command is detected.

12

17-

2005202442 06 Jun 2005

10

20

25

30

Continuing to block 525, the scheduler starts the job at the scheduled time. The
implementation function triggers the job run by opening the job and accessing the steps
that comprise the job. The steps may include parser steps and task program steps. For
example, a job may contain more than one task program. The scheduler reorganizes the
steps so that the output of each task program is parsed after execution of the task
program is complete.

Moving to block 530, the task program is triggered. The scheduler may create
multiple processes to run the task program at each step.

Proceeding to block 535, the output parser is triggered. The scheduler triggers
multiple processes to run the parser at each parser step. The parser process the output
data of the task programs and submits the results through the parser web service.

Continuing to block 540, the scheduler completes the job. The status of the job
is updated. In one embodiment, the scheduler schedules a new job if the job’s attribute
is recurring. The scheduler continues polling for new requests. The process then
terminates at an end block.

FIGURE 6 is a logic flow diagram illustrating a process for determining whether
a task program pass or fail with regard to template rules. The process begins at block
600 where a client establishes template rules for filtering and presenting collected data.
In one example, the rules provide a model of acceptable behavior resulting from task
program execution. In one embodiment, a template may be applied to the data collected
during execution of more than one task program. Proceeding to block 610, the template
is submitted to the CMDB web service. Moving to block 620, the CMDB web service
processes the template.

Continuing to block 630, the template is stored in configuration management
database. Advancing to block 640, the template is evaluated. The template is compared
to the data collected during execution of the task program and stored in the
configuration management database to determine whether the data run passed or failed
with respect to expected results. In one embodiment, the template evaluation is
performed “on-the-fly” when the client requests the report to allow for flexibility when

running different result templates against different jobs. In another embodiment, the

13

18-

21 Aug 2009

2005202442

10

15

20

PAOPERSSBLA0S1 2621020 response.doc-8/19/2009

-14-

template evaluation is performed as a batch process where the results are stored in a
database (e.g., the configuration management database). In another embodiment, the
template evaluation is performed “on-the-fly” for the first request, and then stored in a
database such that subsequent requests do not require reprocessing. Proceeding to block
650, the client is notified through the CMDB web service about the results of the template
evaluation. In one embodiment, a table is output through the CMDB web service and
displayed on the user interface to inform the client whether rules of the template passed or
failed. The client may then determine any necessary changes to the network based on the
results of the template evaluation. Processing terminates at an end block.

FIGURE 7 is a logic flow diagram illustrating a process for reporting data collected
during execution of a task program. Processing begins at start block 700 where the client
requests a report of the data associated with template evaluation. The client selects a report
by reviewing a specific job run and the corresponding data.

Advancing to block 710, the client selects a template from the configuration
management database to generate the corresponding report. Continuing to block 720, the
template is evaluated at the configuration management database. In one embodiment, the
configuration management database runs the rules to evaluate the template. Proceeding to
block 730, the report is sent to the client. Processing then terminates at an end block.

It should be understood that the foregoing pertains only to the preferred
embodiments of the present invention, and that numerous changes may be made to the
embodiments described herein without departing from the spirit and scope of the invention,

Throughout this specification and the claims which follow, unless the context

requires otherwise, the word "comprise”, and variations such as "comprises" or

-19-

2005202442 06 Jun 2005

"comprising”, will be understood to imply the inclusion of a stated integer or step or
group of integers or steps but not the exclusion of any other integer or step or group of
integers or steps.

The reference to any prior art in this specification is not, and should not be taken
as, an acknowledgment or any form of suggestion that that prior art forms part of the

common general knowledge in Australia.

15

-20-

21 Aug 2009

2005202442

10

15

20

25

30

PAOPER\SSBI200G\12621020 response. due-8/19/2009

-16-

THE CLAIMS DEFINING THE INVENTION ARE AS FOLLOWS:

1. A system for scheduling the execution of applications, comprising:
a client that is configured to;
submit requests for scheduled execution of tasks, wherein the tasks are
arranged across disparate networks,
generate task templates having rules for filtering data collected during an
execution of the task;
a service;
an interface that is arranged to receive the requests from the client and submit the
requests to the service;
a scheduler database arranged in cooperation with the service to store and retrieve
the submitted requests;
a configuration management database arranged in cooperation with the service to
execute the rules associated with the task templates generated on the client; and
a scheduler located in a domain that is arranged to:
poll the service for the requests;
execute requests; and
report status of requests based on the execution of the rules associated with

the task templates.

2. The system of claim 1, wherein the tasks include at least one of a group
comprising: a software audit, software deployment, a software patch/update, account

permissions settings, and a hardware audit.
3. The system of claim 1 or claim 2, wherein the scheduler executes the
requests on a target, and wherein the target is at least one of a group comprising: a

computing device, a client, a server, a router, a switch, and a network node.

4. The system of any one of claims 1 to 3, wherein the interface is at least one

of a group comprising: a client side user interface application that is stored locally on the

21-

21 Aug 2009

2005202442

10

15

20

25

PAOPER\SSBUOONI262 1020 response.doc-8/19/2009

_17-

client, a server side user interface hosted by the service, and a web interface that

downloads a user interface to the client when requested.

5. The system of any one of claims 1 to 4, wherein the execution of requests

comprises collecting data from the output of the task.

6. The system of any one of claims 1 to 5, wherein the scheduler is further
arranged to:

process the report status of requests; and

provide the processed report status to the service for storage in the configuration

management database.

7. The system of any one of claims 1 to 6, further comprising another

scheduler located in another domain.

8. The system of any one of claims ! to 7, wherein the client is located in the

same domain as at least one of the tasks.

9. The system of any one of claims | to 7, wherein the client is located in a

different domain than at least one of the tasks.

10. A method for scheduling the execution of applications, comprising:

submitting requests for scheduled execution of tasks, wherein the tasks are arranged
across disparate networks;

processing the requests in a service;

storing the requests in a scheduler database;

executing the requests on a scheduler when scheduled;

collecting data associated with the executed request;

comparing the collected data to a task template of a configuration management
database by executing rules associated with the task template to generate a status; and

reporting the status of the requests to a client.

22-

21 Aug 2009

2005202442

10

15

20

25

30

PAOPERISSB2009\12621021) rosponse. doc-8/19/2009

-18 -

11, The method of claim 10, wherein processing the requests comprises parsing

the requests such that the requests can be stored on the scheduler database.

12. The method of claim 10 or claim 11, further comprising sending the

requests to a scheduler.

13. The method of any one of claims 10 to 12, wherein executing the requests

further comprises executing the requests when an event occurs,

14. The method of any one of claims 10 to 13, wherein collecting data
associated with the executed request comprises collecting the output of the executed

request.

15. The method of any one of claims 10 to 14, wherein processing the collected
data further comprises parsing the collected data such that the collected data can be stored

in a configuration management database.

16. The method of any one of claims 10 to 15, further comprising polling the

service for the requests.

17. The method of any one of claims 10 to 16, further comprising storing the

collected data on a configuration management database.

18. A system for scheduling the execution of applications, comprising:

means for performing the method of any one of claims 10 to 17,
19. Computer-readable storage storing executable instructions which, when

executed by a computer system, cause the computer system to perform the method of any

one of claims 10 to 17.

-23-

21 Aug 2009

2005202442

PAOPER\SSBI200911 2621020 respons. doc-8/19/2009

-19-

20. A method substantially as hereinbefore described with reference to the

drawings.

21. A system substantially as hereinbefore described with reference to the

drawings.

-24-

2005202442 06 Jun 2005

SYSTEM MEMORY

ROM/RAM

OPERATING
SYSTEM

APPLICATION(S)

PROGRAM
DATA

107

7

Fig. 1

-25-

CompPUTING DEVICE

REMOVABLE
STORAGE

NON-REMOVABLE
STORAGE

:1 10
|
INPUT DEVICE(S) |~
i
112
!
. [}
QuTPUT DEVICE(S) {
114
|
COMMUNICATION :
CONNECTION(S))
1116
o
OTHER
COMPUTING
DEVICES

2005202442 06 Jun 2005

2/7
215 & [oavi ice 12| == —. -
N2 Device 11 Device 12 Device 1m
210
0] v
Client Scheduler
A A
Domain 1
240 Y v 260
V] Service < » Database
A A
Domain2 | |
220 4 ¥ 230 :
Client Scheduler
235 . com ol L .
o/ Device 21 Device 22 Device 2n
Fig. 2

-26-

2005202442 06 Jun 2005

200 Devices 3/7
|
29&/‘ Target
A
200
y \/ .
210 Scheduler Client
202
M | User Interface A
214 ' Task Programs PP
A
A
Y
212 Output Parser
A
A A
550 Service
24{)/ V] CMDB Web Service 269/ Scheduler Web Service
254
\-/1 CMDB Parser | 256#‘ Scheduler Service |
256 : ;
_/1 Data Collection/Polling I 26§/~| Client Service |
ZSM Hosted Template U W 264 Scheduler Parser ‘
A
Y
278/\ Database

Configuration
‘Management
Database

Templates

282

Scheduler
Database

Fig. 3

27-

2005202442 06 Jun 2005

4/7

START

REQUEST SCHEDULE FOR
TASK PROGRAM EXECUTION

¥

PROCESS REQUEST FOR
TASK PROGRAM EXECUTION

|

STORE SCHEDULE REQUEST
IN SCHEDULER DATABASE

410

|

RETRIEVE SCHEDULE
REQUEST

415
N\

!

INITIATE TASK ACCORDING
TO SCHEDULE

420

Y

!

COLLECT DATA FROM TASK],\4/25

!

PARSE DATA FROM TASK
OuTPUT

430
~

SEND PARSED DATA TO
CMDB SERVICE

435

STORE DATA ON CMDB

NMJ

Fig. 4

-28-

2005202442 06 Jun 2005

5/7

START

PoLL FOR REQUEST

500

y

CREATE STEP, JOB OR
SCHEDULED JOB

505

|

SuBMIT JOB TO
SCHEDULER DATABASE

510

Y

|

RETRIEVE JOB FROM
SCHEDULER DATABASE

515

!

SCHEDULE JOB

520
’\/

v

START JOB

v

TRIGGER TASK PROGRAM

530
f\/

|

TRIGGER OUTPUT PARSER

535
NG

|

COMPLETE JoB

1,\540

END

Fig. 5

-29-

2005202442 06 Jun 2005

6/7

(START)

Y

600
ESTABLISH TEMPLATE RULES [~/
Y
SuBMIT TEMPLATE TO CMDB|_ g19
WEB SERVICE AW
Y
PROCESS TEMPLATE ,\6320
Y.
630
STORE TEMPLATE IN CMDB ~ ©
v
EVALUATE TEMPLATE ,\afo
A
NOTIFY CLIENT ABOUT 650
EVALUATION RESULTS

END

Fi

g.6

-30-

2005202442 06 Jun 2005

77

{ START)

A

REQUEST REPORT

700

A

SELECT TEMPLATE
FROM CMDB

710

Y

EVALUATE TEMPLATE

Yy

SEND REPORT TO CLIENT

END

Fig. 7

-31-

	BIBLIOGRAPHY
	DESCRIPTION
	CLAIMS
	DRAWINGS

