发明名称
背光组件

摘要
本发明提供了背光组件。该背光组件能够提高多个灯的发光效率。该背光组件的壳体在其与各个灯相对应的位置处包括多个孔。
1、一种背光组件，该背光组件包括:
多个灯；和
壳体，该壳体在与各个灯相对应的部分处包括多个孔。
2、根据权利要求1所述的背光组件，其中，所述多个灯布置在同一平面上。
3、根据权利要求1所述的背光组件，该背光组件还包括:
光学片，其布置在所述多个灯上方;
导板，其固定支撑所述光学片并连接到所述壳体；以及
反射片，其形成在所述壳体的上表面上。
4、根据权利要求1所述的背光组件，其中，所述多个孔形成在所述壳体的下部和所述壳体的侧部上。
5、根据权利要求1所述的背光组件，其中，所述多个孔与所述多个灯的长度相对应。
6、根据权利要求1所述的背光组件，其中，所述多个孔与所述多个灯的长度相对应，其中针对各个灯形成一个或更多个孔。
7、根据权利要求6所述的背光组件，其中，所述多个孔被形成为圆形。
8、根据权利要求6所述的背光组件，其中，所述多个孔被形成为椭圆形。
9、根据权利要求6所述的背光组件，其中，所述多个孔的宽度小于所述多个灯之间的距离。
10、根据权利要求1所述的背光组件，其中，所述多个孔的长度小于所述多个灯的长度。
11、根据权利要求1所述的背光组件，其中，所述多个孔被形成为与对应的灯同心。
12、根据权利要求1所述的背光组件，其中，所述多个灯中的每一个是冷阴极荧光灯和外电极荧光灯中的一种。
13、一种背光组件，该背光组件包括：
多个灯；
壳体，该壳体在与各个灯垂直对应的部分处包括多个孔；以及，
绝缘体，该绝缘体形成在各个孔内。

14、根据权利要求13所述的背光组件，其中，所述多个灯布置在同一平面上。

15、根据权利要求13所述的背光组件，其中，所述绝缘体的体电阻率为10^{10} \cdot \Omega \cdot m或更多。

16、根据权利要求13所述的背光组件，其中，所述绝缘体是从包括以下物质的组中选出的任一种：三聚氰胺、酚醛树脂、乙烯醇、丙烯酸、环氧树脂、聚苯乙烯、苯乙烯-丙烯腈聚合物、丙烯腈-丁二烯-苯乙烯共聚物、聚碳酸酯、聚氯乙烯、尼龙、聚乙烯、聚砜、聚苯醚、聚四氟乙烯、以及氟化乙烯丙烯。

17、根据权利要求13所述的背光组件，该背光组件还包括：
光导，其布置在所述多个灯上方；
导板，其固定并支撑所述光学片并连接到所述壳体；以及
反射片，其形成在所述壳体的上表面上。

18、根据权利要求13所述的背光组件，其中，所述多个孔形成在所述壳体的下部和所述壳体的侧部上。

19、根据权利要求13所述的背光组件，其中，所述多个孔各自与所述多个灯的长度相对应。

20、根据权利要求13所述的背光组件，其中，所述多个孔各自与所述多个灯的长度相对应，其中针对每个灯形成一个或多个孔。

21、根据权利要求20所述的背光组件，其中，所述多个孔为圆形。

22、根据权利要求20所述的背光组件，其中，所述多个孔为椭圆形。

23、根据权利要求13所述的背光组件，其中，所述多个孔的宽度小于所述多个灯之间的距离。

24、根据权利要求13所述的背光组件，其中，所述多个孔的长度小于所述多个灯的长度。
25. 根据权利要求 13 所述的背光组件，其中，所述多个孔被形成为与对应的灯同心。

26. 根据权利要求 13 所述的背光组件，其中，各个灯是冷阴极荧光灯和外电极荧光灯中的一种。
背光组件

技术领域

本发明涉及背光，更具体地涉及一种能够提高灯的发光效率的背光组件。

背景技术

阴极射线管（CRT）广泛用于电视（TV）以及测量仪器、信息终端等的监视器。然而，CRT 由于其自身的重量和体积无法有力地满足对电子设备进行小型化及轻重量设计的要求。为此，CRT 对 TV 或监视器的应用受到限制。

作为 CRT 的替代品，小、轻且薄的显示器件受到了更多的关注。这些显示器件包括液晶显示（LCD）器件、等离子显示板（PDP）以及电致发光显示器（ELD）。

在这些显示器件中，LCD 器件除了又小又轻之外，还具有低功耗及全彩色再现的优点。因此，LCD 器件广泛用于移动设备、台式计算机、以及大屏幕 TV 的监视器，并且这种趋势有望增强。

LCD 器件可通过将图像信息单个地提供给按矩阵排列的多个像素，并且控制这些像素的透光率，来显示期望的图像。

LCD 器件是自身不能发光的非发光显示器件。因此，必须从外部提供光，使得 LCD 器件可显示图像。LCD 器件可包括用于发光的背光组件。

根据光源的安装位置，可将背光组件分类为边缘型和直接型。

直接型背光组件包括在同一平面上以预定间隔排列的多个灯。在直接型背光组件中，来自各个灯的光输出直接向前发射。

相对地，边缘型背光组件包括置于导光板侧面的灯。来自灯的光输出从侧面入射到导光板。然后，导光板将光转换为面光，并向前照射该光。
直接型背光组件可实现均匀亮度，由此广泛用在具有大屏幕板的 LCD 器件的领域中。

图 1 是示出了普通直接型背光组件的图。

如图 1 所示，普通直接型背光组件包括排列在壳体 1 的同一平面上的多个灯 5。壳体 1 由金属材料制成。在多个灯 5 的上方距灯 5 预定间隔地放置有光学片 9。光学片 9 包括漫射片 9a 和棱镜片 9b。光学片 9 置于岸（bank）1a 上。在壳体 1 的上表面上附有用来反射光的反射片 3。由导板 7 来固定并支撑光学片 9。导板 7 连接到壳体 1。光学片 9 固定并支撑在壳体 1 的岸 1a 与导板 7 之间。

灯 5 利用从逆变器（未示出）提供的 AC 电压来发光。即，从灯 5 的阴极发射电子，发射的电子与灯的玻璃管内的汞和惰性气体碰撞，从而指数地增加电子量。由于这些电子的流动使得在电流在玻璃管内流动，这些电子激怒惰性气体来发射 UV 线。UV 线与涂覆在玻璃管的内表面上的荧光物质碰撞，由此发光。

由光学片 9 来扩散并会聚来自灯 5 的光输出，并将其导向前方。

如图 2 所示，该背光组件的问题在于对灯施加的 AC 电压导致漏电流。即，由于壳体 1 是由金属制成的，所以该金属和灯 5 起到了电极的作用，填充壳体 1 与灯之间的空间的材料（例如，空气）起到了介质物质的作用。由此，在壳体 1 与灯之间形成寄生电容（C）。寄生电容（C）可由下面的等式 1 来表示：

\[C = \frac{\varepsilon A}{d} \quad \text{等式 1} \]

其中，C 表示灯 5 与壳体 1 之间形成的寄生电容，ε 表示填充灯 5 与壳体 1 之间的空间的材料的介电常数，A 表示灯与壳体的相面对的面积（下文中称作相对面积），d 表示灯 5 与壳体 1 之间的距离。

如根据等式 1 所理解的，寄生电容随着距离（d）变长及随着相对面积（A）变小而减小。由于在布置背光组件的情况下，距离（d）和相对面积（A）是固定设置的，所以壳体 1 与灯 5 之间的寄生电容（C）也是固定的。

灯 5 与壳体 1 之间的寄生电容包括各个灯 5 与壳体 1 的下部之间的
第一寄生电容 (C1)，以及最外的灯 5 与壳体 1 的侧部之间的第二寄生电容 (C2)。

由此，在普通的直接型背光组件中，漏电流通过各个灯 5 与壳体 1 之间的寄生电容流过壳体 1。

为此，漏电流导致灯的亮度减小，由此降低了灯的发光效率，并劣化了图像质量。

发明内容

因此，本发明致力于一种背光组件，其基本上消除了由于现有技术的局限和缺点导致的一个或更多个问题。

本发明的目的是提供一种通过使漏电流最小化而能够提高灯的发光效率的背光组件。

本发明的其他优点、目的和特征将部分地在以下说明中提出，并且通过本领域技术人员对于以下内容的考察而部分地变得显而易见，或者可以从对本发明的实践中习得。本发明的这些目的以及其他优点将通过在所写说明书及其权利要求以及附图中具体指出的结构而实现和获得。

为了实现这些目的和其他优点并且根据本发明的目的，如具体实施和广泛描述的，提供了一种背光组件，该背光组件包括：多个灯；和壳体，该壳体在与各个灯相对应的部分处包括多个孔。

在本发明的另一方面中，提供了一种背光组件，该背光组件包括：多个灯；壳体，该壳体包括在与各个灯相对应的部分处的多个孔；以及，绝缘体，该绝缘体形成在各个孔内。

应当理解，对本发明的以上总体说明和以下详细说明都是示例性和说明性的，并旨在提供对如权利要求所保护的本发明的进一步说明。

附图说明

附图被包括进来以提供对本发明的进一步理解，并且被并入且构成本申请的一部分，附图例示了本发明的实施例并与说明书一起用于解释本发明的原理。在附图中；
图 1 是例示普通直接型背光组件的图；
图 2 是图 1 中的直接型背光组件的区域 A 的放大图；
图 3 是例示根据本发明第一实施例的背光组件的图；
图 4 是图 3 中的背光组件的区域 B 的放大图；
图 5 和图 6 是例示图 3 中的孔的形状的图；
图 7 是例示用于防止图 3 中的背光组件的寄生电容的结构的图；以及
图 8 是例示根据本发明第二实施例的背光组件的图。

具体实施方式

将详细说明本发明的优选实施例，其示例在附图中示出。只要可能，相同的标号将在所有附图中用于指代相同或者相似部件。

图 3 是例示根据本发明第一实施例的背光组件的图，而图 4 是图 3 中的背光组件的区域 B 的放大图。

如图 3 所示，根据本发明第一实施例的背光组件包括置于壳体 11 上的同一表面处的多个灯 15。可利用灯座（未示出）等将灯 15 固定在壳体 11 上。各个灯 15 可以是冷阴极荧光灯（CCFL）或外电极荧光灯（EEFL）。在多个灯 15 的上方距灯 15 预定间隔处放置有光学片 19。光学片 19 包括漫射片 19a 和棱镜片 19b。在壳体 11 的两侧形成有岸 11a 以将光学片 19 与灯 15 间隔开。各个岸 11a 从壳体 11 的底部突出预定高度。光学片 19 安装在岸 11a 上。在壳体 11 的上表面上附有用于反射光的反射片 13。由导板 17 来固定并支撑光学片 19。导板 17 连接到壳体 11。光学片 19 固定并支撑在壳体 11 的岸 11a 与导板 17 之间。

壳体 11 在其与各个灯 15 相对应的位置处包括多个孔 21。如前所述，在灯 15 与壳体 11 之间形成寄生电容。因此，当在壳体 11 的与各个灯 15 相对应的预定部分处形成孔 21 时，不会产生寄生电容。具体地，寄生电容是由两个电极及其间的介电体形成的，并随着电极的面对面积变大及电极间距变短而增大。

在本发明中，各个灯 15 用作一个电极，而在与各个灯 15 相对应的
位置处去除了用作另一电极的壳体 11。因此，当假设虚拟电极位于距灯 15 的无穷远处时，寄生电容几乎为零。

由此，通过去除壳体的与各个灯 15 相对应的预定部分，可使寄生电容为零，从而寄生电容导致的漏电流也可为零。

参照图 4，在壳体 11 的与各个灯 15 相对应的任何位置处形成有孔 21。即，孔 21 不仅分别形成在壳体 11 的下部（下文中称作下壳体 11），而且形成在与各个灯 15 相对应的壳体 11 的侧部（下文中称作侧壳体 11）。可通过线切割工艺与各个灯 15 相对应地形成孔 21。此外，可通过注模工艺与各个灯 15 相对应地形成孔 21。

图 5 和图 6 例示了形成在壳体 11 处的孔 21 的形状。即，如图 5 所例示的，可与灯的长度相对应地形成孔 21。由此，孔 21 可被形成为与灯 15 一样多。

然而，在背光组件应用于大屏幕 LCD 器件的情况下，需要长度非常长的灯 15。当灯 15 的长度相当长时，与灯 15 的长度相对应的孔 21 可导致壳体 11 的强度降低，从而即使很小的振动也会使壳体 11 可能经受热膨胀或产生噪声。

为了解决这一问题，如图 6 所示，可针对各个灯 15 沿着灯 15 的纵向形成两个孔 21a 和 21b。在这种情况下，孔 21a 和 21b 的数量是灯 15 的数量的两倍大。尽管在本发明中针对各个灯 15 形成两个孔 21a 和 21b，然而必要时可针对各个灯 15 形成两个以上的孔 21。

在特定情况下，可针对各个灯 15 沿着灯 15 的纵向形成具有圆形或椭圆形的多个孔 21。

参照图 7，下面将描述对孔 21 的优化。在描述中，X 表示灯 15 之间的距离，Y 表示孔 21 的宽度，C 表示孔 21 的长度，而 D 表示灯 15 的长度。

孔 21 的宽度（Y）小于灯 15 之间的距离（X）（Y<X）。当孔 21 的宽度（Y）与灯 15 间的距离（X）相同时，去除了整个下壳体 11，从而壳体 11 不再执行其固定和支撑的功能。为此，孔 21 的宽度（Y）必须小于灯 15 间的距离（X）。
孔 21 的长度可小于灯 15 的长度（C<D）。当布置了灯 15 时，在壳体 11 上沿灯 15 的纵向几乎没有余量（margin）。如果孔 21 的长度长于灯 15 的长度，则壳体 11 沿灯 15 的纵向几乎被穿透，因此壳体 11 沿灯 15 的纵向在两侧上的剩余部分不再能进行固定和支撑。为此，孔 21 的长度必须小于灯 15 的长度。

根据本发明，因为孔 21 形成在壳体 11 的与各个灯 15 相对应的部位处，所以可防止形成最大的寄生电容。形成在壳体 11 的孔 21 周围部分与灯 15 之间的寄生电容非常小，因此可以被忽略。

然而，当灯 15 的中心与孔 21 的中心不一致时，寄生电容在孔 21 周围（例如，孔的右侧与左侧之间）发生变化。孔 21 周围变化的寄生电容可造成灯 15 的亮度的变化。

为解决这一问题，可将孔 21 形成为与灯 15 同心。因为灯 15 和孔 21 具有同一中心，所以寄生电容在孔 21 周围变得均匀，从而实现了各个灯 15 中的均匀亮度。

图 8 是例示根据本发明第二实施例的背光组件的图。

本发明的第二实施例与本发明的第一实施例相同，只是在形成在壳体 11 的各个孔 21 内形成有绝缘体 23。因此，下面将仅描述第二实施例不同于第一实施例之处。

如图 8 所例示的，壳体 11 包括垂直对应于各个灯 15 的多个孔 21。各个灯 15 可以是冷阴极荧光灯（CCFL）或外电极荧光灯（EEFL）。各个孔 21 沿对应的灯 15 的纵向被形成为矩形。可针对各个灯 15 形成一个或两个孔 21。在特定情况下，可针对各个灯 15 形成多个圆形或椭圆形的孔 21。

孔 21 可不仅形成在下壳体 11 处，而且可以形成在侧壳体 11 处。即，针对放置在壳体 11 的边缘的灯 15，对应于该灯 15 的孔 21 可分别形成在侧壳体 11 与下壳体 11 两者上。

在本发明的第二实施例中，将具有优异电绝缘特性的绝缘体 23 插入到各个孔 21 中。绝缘体 23 是体电阻相当大的体电阻增加元件。通过插入绝缘体（其是通过将绝缘材料和粘性材料混合在一起而获得的），并使
所插入的绝缘胶硬化，而在对应的孔 21 内形成绝缘体 23。因此，绝缘体 23 可通过绝缘体 23 内的粘性材料而附于壳体 11 的壁上，并能够通过绝缘材料而截止漏电流的流动。

可以采用任何材料作为绝缘体 23，只要该材料的体阻率为 $10^{10} \Omega \cdot \text{m}$ 或以上。例如，绝缘体 23 可以是三聚氰胺（melamine）、酚醛树脂（phennolic）、乙缩醛（acetal）、丙烯酸、环氧树脂、聚苯乙烯（polystyrene）、苯乙烯-丙烯腈聚合物（SAN）、丙烯腈-丁二烯-苯乙烯共聚物（ABS）、聚碳酸酯（polycarbonate）、聚氯乙烯（PVC）、尼龙、聚乙烯、聚砜（polysulfone）、聚苯醚（PPO）、聚四氟乙烯（PTFE）、氟化乙烯丙烯（FEP）等。

当在各个孔中形成绝缘体时，可以防止出现由寄生电容造成的漏电流。

另外，与其中只形成孔的第一实施例相比，形成在各个孔中的绝缘体可以用于增加壳体的强度，并提高壳体的固定和支撑性能。

描述至此，根据本发明，壳体在与各个灯相对应的部分处包括多个孔，从而使漏电流最小化，由此提高了发光效率。

根据本发明，由于在壳体的与各个灯相对应的预定部分处形成多个孔，并在各个孔中形成绝缘体，所以使漏电流最小化，提高了发光效率，并增加了壳体的强度，以使得壳体用作更强的支撑体。

对于本领域技术人员来说，显然可以对本发明进行各种修改和变型。由此，本发明旨在覆盖落入所附权利要求及其等同物范围内的对本发明进行的修改和变型。
图 1（现有技术）

图 2（现有技术）