(19)
Bundesrepublik Deutschland
Deutsches Patent- und Markenamt

(19 DE 696 36 599 T2 2007.08.23

(12) Ubersetzung der europiischen Patentschrift

(97) EP 0 850 462 B1
(21) Deutsches Aktenzeichen: 696 36 599.5
(86) PCT-Aktenzeichen: PCT/US96/12780
(96) Europaisches Aktenzeichen: 96 928 062.7
(87) PCT-Verdffentlichungs-Nr.: WO 1997/006512
(86) PCT-Anmeldetag: 02.08.1996
(87) Veroffentlichungstag
der PCT-Anmeldung: 20.02.1997
(97) Erstverdffentlichung durch das EPA: 01.07.1998
(97) Veroffentlichungstag
der Patenterteilung beim EPA: 04.10.2006
(47) Veroffentlichungstag im Patentblatt: 23.08.2007

symtcte: GO6T 15/00(2006.01)

(30) Unionsprioritat:
511553 04.08.1995 us
560114 17.11.1995 us
671412 27.06.1996 us
671506 27.06.1996 us
672347 27.06.1996 us
672425 27.06.1996 us
672694 27.06.1996 us

(73) Patentinhaber:
Microsoft Corp., Redmond, Wash., US

(74) Vertreter:
BOEHMERT & BOEHMERT, 28209 Bremen

(84) Benannte Vertragsstaaten:
DE, FR, GB, IE

(72) Erfinder:
MYHRVOLD, P., Nathan, Bellevue, WA 98005, US;
KAJIYA, T., James, Duvall, WS 98019, US;
TORBORG, G., John, Redmond, WA 98052, US;
KENWORTHY, L., Mark, Duvall, WA 98019-7806,
US; TOELLE, Allen, Michael, Bellevue, WA 98008,
US; GRIFFIN, E., Kent, Bellevue, WA 98008, US;
LENGYEL, Edward, Jerome, Seattle, WA 98108,
US; GABRIEL, A., Steven, Redmond, WA
98052-3256, US; VERES, E., James, Woodinville,
WA 98072, US; CHAUVIN, W., Joseph, Issaquah,
WA 98029, US; GOOD, Howard, Seattle, WA 98105,
US; POWELL, Chambers, William, Seattle, WA
98122, US

(54) Bezeichnung: VERFAHREN UND SYSTEM ZUR WIEDERGABE VON GRAFISCHEN OBJEKTEN DURCH TEI-
LUNG IN BILDSTUCKE UND ZUSAMMENSETZEN VON BILDLAGEN ZU EINEM WIEDERGABEBILD

Anmerkung: Innerhalb von neun Monaten nach der Bekanntmachung des Hinweises auf die Erteilung des europa-
ischen Patents kann jedermann beim Europaischen Patentamt gegen das erteilte europédische Patent Einspruch
einlegen. Der Einspruch ist schriftlich einzureichen und zu begriinden. Er gilt erst als eingelegt, wenn die Ein-
spruchsgebihr entrichtet worden ist (Art. 99 (1) Europaisches Patentliibereinkommen).

Die Ubersetzung ist gemaR Artikel Il § 3 Abs. 1 IntPatUG 1991 vom Patentinhaber eingereicht worden. Sie wurde
vom Deutschen Patent- und Markenamt inhaltlich nicht gepruft.

DE 696 36 599 T2 2007.08.23

Beschreibung
TECHNISCHES GEBIET DER ERFINDUNG

[0001] Die Erfindung betrifft allgemein die Wiedergabe von Grafiken und betrifft besonders verbesserte Ver-
fahren und Systeme zur Wiedergabe von grafischen Objekten.

ALLGEMEINER STAND DER TECHNIK

[0002] Bei der umfangreichen Anwendung von Computern in allen Bereichen des modernen Lebens besteht
ein verstarktes Bedurfnis, die Mensch-Maschine-Schnittstelle durch die Verwendung von optischen Informati-
onen zu verbessern. Bei grafischer Software und Handware sind durch Fortschritte bereits drastische Verbes-
serungen der Mensch-Maschine-Schnittstelle erreicht worden. Interaktive Grafiken, wie zum Beispiel Fenste-
rumgebungen fiir Desktop-Computer, haben zum Beispiel die leichte Anwendung und Interaktivitat von Com-
putern deutlich verbessert und sind heutzutage allgemein Ublich. Da das Preis-Leistungs-Verhaltnis von Hard-
ware fallt, greift die Verwendung von computererzeugten Grafiken und von Animation immer mehr um sich. Lei-
der haben die Kosten der Herstellung von echt interaktiven und realistischen Effekten ihre Anwendung einge-
schrankt. Es gibt daher ein Bedurfnis nach neuen Grafik verarbeitenden Verfahren und Architekturen, die in-
teraktivere und realistischere Effekte zu niedrigeren Kosten liefern.

[0003] Obwohl es zahlreiche Wege gibt, die Grafikverarbeitung zu klassifizieren, besteht ein haufiger Ansatz
darin, ein Bild im Hinblick auf die Dimensionen des Objektes zu beschreiben, die es reprasentieren soll. Ein
Grafiksystem kann zum Beispiel Objekte in zwei Dimensionen (z.B. mit x- und y-Koordinaten) reprasentieren,
in welchem Fall man sagt, dass die Grafik ,zweidimensional" ist, oder drei Dimensionen (z.B. mit x-, y- und
z-Koordinaten), in welchem Fall man sagt, dass die Grafik ,dreidimensional” (,3D") ist.

[0004] Da Anzeigegerate, wie zum Beispiel Bildschirmréhren (CRTs) zweidimensional sind (,2D"), sind Bilder,
die von Computergrafiksystemen angezeigt werden, im allgemeinen 2D. Wie unten detaillierter diskutiert wird,
kann jedoch der Computer das angezeigte Bild &ndern, um eine andere Perspektive des Objektes im 3D-Raum
zu zeigen, wenn der Computer ein grafisches Modell bewahrt, das das abgebildete Objekt im dreidimensiona-
len Raum reprasentiert. Obwohl ein 2D-Grafikbild vor der Anzeige transformiert werden kann (z.B. skaliert, ver-
schoben oder gedreht), kann im Gegensatz dazu der Computer nicht ohne weiteres das Aussehen des Objek-
tes aus einer anderen Perspektive im 3D-Raum abbilden.

[0005] Die wachsenden Fahigkeiten moderner Computer, mit 2D- und besonders 3D-Grafiken effizient umzu-
gehen, haben zu einer wachsenden Vielfalt von Anwendungen fiir Computer sowie zu grundlegenden Ande-
rungen in der Schnittstelle (Ul) zwischen Computern und ihren Nutzern gefihrt. Die Verfugbarkeit von 3D-Gra-
fiken gewinnt zunehmend an Bedeutung fur das Wachstum von Anwendungen im Unterhaltungsbereich, ein-
schliellich der Herstellung von Qualitatsfilmanimationswerkzeugen sowie Spielen und Multimediaprodukten
mit geringerer Auflésung fir den Heimbereich. Zu den vielen anderen Bereichen, die in Verbindung mit 3D-Gra-
fiken stehen, gehdren Bildung, Videokonferenzen, Videobearbeitung, interaktive Nutzerschnittstellen, comput-
ergestitztes Konstruieren und computergestiitzte Produktion (CAD/CAM), wissenschaftliche und medizini-
sche Bildgebung, Geschaftsanwendungen und das elektronische Publizieren.

[0006] Man kann sich vorstellen, dass ein Grafikverarbeitungssystem ein Anwendungsmodell, Anwendungs-
programm, Grafiksubsystem sowie die konventionellen Hardware- und Softwarekomponenten eines Compu-
ters und seine Peripheriegerate umfasst.

[0007] Das Anwendungsmodell reprasentiert die Daten oder Objekte, die angezeigt werden sollen, wobei
man naturlich annimmt, dass die Bildverarbeitung auf einem Modell beruht. Das Modell umfasst Informationen,
die die Grundelemente betreffen, wie zum Beispiel Punkte, Linien und Polygone, die die Formen der Objekte
sowie die Attribute der Objekte (z.B. Farbe) definieren.

[0008] Das Anwendungsprogramm steuert die Eingaben in und die Ausgaben aus dem Anwendungsmodell,
wobei es effektiv als Ubersetzer zwischen dem Anwendungsmodell und dem Grafiksubsystem fungiert. Und
schlieBlich ist das Grafiksubsystem fiir die Weiterleitung der Nutzereingaben an das Anwendungsmodell ver-
antwortlich und ist fir die Erzeugung des Bildes aus den detaillierten Beschreibungen verantwortlich, die vom
Anwendungsmodell gespeichert werden.

[0009] Das typische Grafikverarbeitungssystem umfasst ein physisches Ausgabegerat, das fiir die Ausgabe

2/147

DE 696 36 599 T2 2007.08.23

oder Anzeige der Bilder verantwortlich ist. Obwohl andere Formen von Anzeigegeraten entwickelt wurden, wird
die heute vorherrschende Technologie als Rastergrafik bezeichnet. Ein Rasterbildschirm umfasst ein Feld von
einzelnen Punkten oder Bildelementen (d.h. Pixeln), die in Zeilen und Spalten angeordnet sind, um das Bild zu
erzeugen. In einer Bildschirmréhre entsprechen diese Pixel einem Leuchtstoffpunktfeld, das auf dem Schirm-
trager der Bildschirmréhre bereitgestellt wird. Die Emission von Licht aus jedem Leuchtstoffpunkt im Feld wird
unabhangig von einem Elektronenstrahl gesteuert, der das Feld nacheinander, jeweils eine Zeile zu einem
Zeitpunkt, als Reaktion auf gespeicherte Informationen abtastet, die reprasentativ fir jedes Pixel im Bild sind.
Die verschachtelte Abtastung alternierender Zeilen des Feldes ist auch ein haufiges Verfahren, zum Beispiel
im Fernsehbereich. Das Feld der Pixelwerte, die auf den Bildschirm abgebildet werden, wird oft als Bitmap oder
Pixmap bezeichnet.

[0010] Ein Problem, das mit Rastergrafikgeraten verbunden ist, ist der Speicher, der zum Speichern der
Bitmap bendtigt wird, selbst fir ein einziges Bild. Das System kann zum Beispiel 3,75 MByte (MB) des RAM
bendtigen, um eine Anzeigeaufldsung von 1280 x 1024 (d.h. Zahl Pixelspalten und -reihen) und 24 Bit Farbin-
formationen pro Pixel zu unterstitzen. Diese Informationen, die wieder das Bild eines einzigen Bildschirms re-
prasentieren, werden in einem Abschnitt des Anzeigespeichers des Computers gespeichert, der als Bildpuffer-
speicher bekannt ist.

[0011] Ein weiteres Problem bei konventionellen Rastergrafikgeraten, wie zum Beispiel Bildschirmréhren, ist
das relativ schnelle Abklingen des Lichts, das von dem Gerat abgegeben wird. In Folge dessen muss die An-
zeige normalerweise mit einer Rate, die bei etwa 60 Hz oder mehr liegt, wiederholt werden (d.h. das Raster
neu abgetastet werden), um ein ,Flackern" des Bildes zu vermeiden. Dies stellt eine strenge Forderung fur das
Bilderzeugungssystem dar, um Bilddaten mit einer festen Rate zu liefern. Einige Systeme gehen dieses Pro-
blem durch Einsatz von zwei Bildpufferspeichern an, wobei einer der Pufferspeicher mit Pixmap-Informationen
aktualisiert wird, die dem nachfolgenden Bild entsprechen, wahrend der andere Pufferspeicher zum Wieder-
anzeigen (refresh) des Bildschirms mit dem Pixmap fur das aktuelle Bild verwendet wird.

[0012] Die Forderungen, die an das System gestellt werden, werden weiter durch die Komplexitat der Infor-
mationen verscharft, die oft verarbeitet werden missen, um ein Bild des Objektes, das vom Anwendungsmo-
dell gespeichert wird, wiederzugeben. Zum Beispiel ist das Modellieren einer dreidimensionalen Oberflache an
sich schon eine komplexe Aufgabe. Die Oberflichenmodellierung wird durch das Anwendungsmodell ausge-
fuhrt und kann die Verwendung von Polygongittern, parametrischen Oberflachen oder quadratischen Oberfla-
chen beinhalten. Wahrend eine gekriimmte Flache durch ein Gitter von ebenen Polygonen reprasentiert wer-
den kann, hangt die ,Glattheit" ihres Aussehens im wiedergegebenen Bild sowohl von der Auflésung der An-
zeige als auch von der Zahl der einzelnen Polygone ab, die zum Modellieren der Flache verwendet werden.
Die Berechnungen, die mit der hochauflésenden Modellierung von komplexen Oberflachen auf der Basis von
Polygongittern verknipft sind, kdnnen aulerst ressourcenintensiv sein.

[0013] Wie oben angedeutet, gibt es ein Bedurfnis, realistischere und interaktivere Bilder zu erzeugen. Der
Begriff ,Echtzeit" wird haufig dazu verwendet, interaktive und realistische Bildverarbeitungssysteme zu be-
schreiben. In einem ,Echtzeit"-System sollte der Nutzer eine kontinuierliche Bewegung von Objekten in einer
Szene wahrnehmen. In einem Videospiel, das Echtzeitfahigkeiten besitzt, sollten die handelnden Personen
und der Blickpunkt mit minimaler Verzégerung auf die Eingaben eines Nutzers reagieren und sollten sich flus-
sig bewegen.

[0014] Um solche Echtzeiteffekte zu erzeugen, muss ein Bildwiedergabesystem ein neues Bild mit einer aus-
reichend hohen Rate generieren, so dass der Nutzer eine kontinuierliche Bewegung von Objekten in einer Sze-
ne wahrnimmt. Die Rate, mit der ein neues Bild fir die Anzeige berechnet wird, wird als ,rechnerische" Rate
oder als ,rechnerische Bildrate" bezeichnet. Die rechnerische Rate, die bendtigt wird, realistische Effekte zu
erreichen, variiert je nachdem, wie schnell sich Objekte durch die Szene bewegen und wie schnell sich die
Sichtperspektive andert. Fir eine typische Anwendung berechnet ein Echtzeit-Grafiksystem ein neues Bild
mindestens zwdlf mal pro Sekunde neu, um eine Reihe von Bildern zu erzeugen, die eine kontinuierliche Be-
wegung simulieren. Fir hochwertige Animationsanwendungen muss jedoch die rechnerische Rate betrachtlich
héher sein.

[0015] Ein weiteres kritisches Problem fiir Echtzeitsysteme ist die Transportverzégerung. Die Transportver-
zogerung ist die Zeit, die zum Berechnen und Anzeigen eines Bildes als Reaktion auf die Eingabe vom Nutzer,
d.h. Bewegung eines Joysticks, um eine Person in einer Szene zu bewegen, bendtigt wird. In dem Mal3e, in
dem die Transportverzdgerungszeit fur einen Nutzer merklich ist, gibt es eine Beeintrachtigung der ,Echt-
zeit"-Interaktivitat. Im idealen Fall sollte der Nutzer keine Transportverzogerung wahrnehmen. In der Praxis je-

3/147

DE 696 36 599 T2 2007.08.23

doch gibt es immer eine gewisse Verzoégerung, die auf die Wiedergabe von Objekten in einer Szene als Reak-
tion auf neue Eingaben und die Erzeugung eines Anzeigebildes zuriickzufiihren ist. Verbesserungen der Echt-
zeitinteraktivitat, onne Daten zu verwerfen, was die Bildqualitat stéren kann, sind sehr erwiinscht.

[0016] Wie oben angefiihrt, umfassen konventionelle Grafiksysteme normalerweise einen Bildpufferspeicher.
Zum Erzeugen eines Bildes gibt das Grafiksystem alle Objekte einer Szene wieder und speichert das resultie-
rende Bild in diesem Bildpufferspeicher. Das System Ubertragt dann die wiedergegebenen Bilddaten auf eine
Anzeige. In einer konventionellen Grafikarchitektur wird der gesamte Bildpufferspeicher geléscht und die Sze-
ne wird neu wiedergegeben, um ein nachstes Bild zu erzeugen. Bei dieser Art von System muss jedes Objekt
fur jedes Bild neu gezeichnet werden, weil der Bildpufferspeicher zwischen den Bildern geléscht wird. Daher
wird jedes Objekt mit derselben Rate aktualisiert, ungeachtet seiner tatsachlichen Bewegung in der Szene
oder seiner Bedeutung fir die spezielle Anwendung.

[0017] Diese konventionelle Architektur stellt mehrere Hurden fur die Erzeugung sehr realistischer und inter-
aktiver Grafiken auf. Erstens wird jedes Objekt in einer Szene fir ein bestimmtes Bild mit derselben Prioritat
bei derselben Aktualisierungsrate wiedergegeben. Objekte im Hintergrund, die als solche wenige Details ha-
ben und sich nicht bewegen, werden mit derselben Rate wiedergegeben wie Objekt im Vordergrund, die sich
schnell bewegen und mehr Oberflachendetails aufweisen. Im Ergebnis dessen werden Verarbeitungs- und
Speicherressourcen beim erneuten Wiedergeben von Hintergrundobjekten verbraucht, selbst wenn diese Hin-
tergrundobjekte sich nicht wesentlich von Bild zu Bild unterscheiden.

[0018] Ein weiterer Nachteil bei dieser konventionellen Architektur ist, dass jedes Objekt in der Szene mit der-
selben Auflosung wiedergegeben wird. Effektiv stehen die Wiedergaberessourcen, die bei dieser Art von An-
satz verbraucht werden, in Beziehung zur Gré3e des Bildschirmflache, die das Objekt belegt, und nicht mit der
Bedeutung des Objektes fiir die Gesamtszene. Mit einem Beispiel lasst sich dieses Problem besser illustrieren.
In einem typischen Videospiel gibt es handelnde Personen im Vordergrund, die sich bei jedem Bild &ndern kon-
nen, und einen Hintergrund, der sich selten von Bild zu Bild andert. Die Kosten fur das Erzeugen des Hinter-
grundes in Form von Speichernutzung sind viel gréer als fir das Erzeugen der handelnden Personen, weil
der Hintergrund viel mehr Flache auf dem Bildschirm einnimmt. Bilddaten mussen fur jede Pixelstelle gespei-
chert werden, die Hintergrundobjekte belegen. Fir die kleineren handelnden Personen jedoch werden Pixel-
daten nur fir die Pixel erzeugt und gespeichert, die von den kleineren Personen belegt werden. In Folge des-
sen belegt der Hintergrund mehr Speicher, obwohl er eine geringere Bedeutung in der Szene besitzt. Auler-
dem muss in einer konventionellen Architektur der gesamte Hintergrund neu fir jedes Teilbild wiedergegeben
werden, was wertvolle Verarbeitungsressourcen verbraucht.

[0019] Eine wesentliche Starke des Ansatzes mit dem Bildpufferspeichers ist, dass er zum Aufbau eines be-
liebigen Bildes auf einem Ausgabegerat mit einer beliebigen Zahl von Grundobjekten verwendet werden kann,
die nur der Begrenzung durch rdumliche und Intensitatsauflésung des Ausgabegerates unterliegt. Es gibt je-
doch mehrere Schwachpunkte bei einem Grafiksystem, das einen Bildpufferspeicher verwendet.

[0020] Ein Bildpufferspeicher verwendet eine gro3e Menge von teurem Speicher (z.B. 64-128 MB). Normaler
Direktzugriffsspeicher (RAM) ist fur Bildpufferspeicher wegen seiner niedrigen Zugriffsgeschwindigkeit nicht
geeignet. Zum Beispiel dauert das Ldschen der Millionen Pixel auf einem 1024 x 1024 grof3en Bildschirm etwa
Ya Sekunde, wenn man annimmt, dass jeder Speicherzyklus 250 Nanosekunden dauert. Daher wird normaler-
weise schnellerer und teurerer Video-RAM (VRAM) oder dynamischer RAM (DRAM) fir Bildpufferspeicher ver-
wendet. Hochleistungssysteme enthalten oft zwei teure Bildpufferspeicher: Ein Bildpufferspeicher wird zur An-
zeige des aktuellen Teilbildes verwendet, wahrend der andere zum Wiedergeben des nachsten Teilbildes ver-
wendet wird. Diese grolte Menge an speziellem Speicher erhéht die Kosten des Grafiksystems dramatisch.

[0021] Speicherbandbreite fiir Bildpufferspeicher ist ebenfalls ein Problem. Die Unterstiitzung der Verarbei-
tung eine Grafikbildes mit Strukturierungs-, Farb- und Tiefeninformationen, die fur jedes Pixel gespeichert sind,
erfordert eine Bandbreite von etwa 1,7 Gigabyte pro Sekunde fiir die Verarbeitung eines Bildes bei 30 Hz. Da
ein typischer DRAM nur eine Bandbreite von 50 MB/s hat, muss ein Bildpufferspeicher aus einer grof3en Zahl
von DRAMs aufgebaut werden, die mit Parallelverarbeitungsverfahren verarbeitet werden, um die gewtinschte
Bandbreite zu erreichen.

[0022] Um interaktive Echtzeiteffekte zu erreichen, verwenden High-End-Grafiksysteme parallele Rende-
ring-Engines. Es sind drei grundlegende Parallelstrategien entwickelt worden, um die Probleme mit grof3em
Bildpufferspeicher zu I6sen: (1) Pipelineverarbeitung des Wiedergabeprozesses Uber mehrere Prozessoren;
(2) Aufteilen des Bildpufferspeichers in Gruppen von Speicherchips, jede mit ihrem eigenen Prozessor, und (3)

41147

DE 696 36 599 T2 2007.08.23

Kombinieren der Verarbeitungsschaltkreise auf den Bildpufferspeicherchips mit dichten Speicherschaltkreisen.
Diese Verfahren haben die Verarbeitung von Grafiksystemen unter Verwendung von groRen Bildpufferspei-
chern verbessert, haben aber auch die Kosten dieser Systeme dramatisch ansteigen lassen.

[0023] Selbst mit teuren Parallelverarbeitungsverfahren ist es sehr schwierig, das ausgekligelte Anti-Ali-
asing-Verfahren zu unterstitzen. Anti-Aliasing betrifft Prozesse zum Reduzieren von Artefakten in einem wie-
dergegebenen Bild, das durch die Darstellung kontinuierlicher Flachen mit diskreten Pixeln verursacht wird. In
typischen Bildpufferspeicherarchitekturen werden Pixelwerte flr ein ganzes Teilbild in beliebiger Reihenfolge
berechnet. Zur Ausfihrung des ausgekligelten Anti-Aliasing missen daher Pixeldaten fiir das ganze Teilbild
erzeugt werden, bevor das Anti-Aliasing beginnen kann. In einem Echtzeitsystem gibt es nicht ausreichend
Zeit, das Anti-Aliasing auf die Pixeldaten anzuwenden, ohne eine zusétzliche Transportverzdégerung zu erhal-
ten. AulRerdem erfordert das Anti-Aliasing zuséatzlichen Speicher zur Speicherung von Pixelfragmenten. Da ein
Bildpufferspeicher eine grolie Menge an teurem Speicher umfasst, wird durch den zusatzlichen Spezialspei-
cher, der zur Unterstiitzung des Anti-Aliasing benétigt wird, das Bildpufferspeichersystem noch teurer.

[0024] Bildkomprimierungsverfahren kénnen ebenfalls nicht ohne weiteres in einem Grafiksystem unter Ver-
wendung eines Bildpufferspeichers wahrend der Bildverarbeitung eingesetzt werden. Durch die Verwendung
von Parallelverarbeitungsverfahren zur Beschleunigung der Verarbeitung in einem Grafiksystem mit einem
Bildpufferspeicher werden Hirden fir den Einsatz von Komprimierungsverfahren aufgebaut. Wahrend der Pa-
rallelverarbeitung kann auf jeden Teil des Bildpufferspeichers direkt zu jeder Zeit zugegriffen werden. Die meis-
ten Bildkomprimierungsverfahren erfordern, dass Bilddaten sich wahrend der Komprimierungsverarbeitung
nicht andern, so dass die Bilddaten spater dekomprimiert werden kénnen.

[0025] In Bildpufferspeicherarchitekturen wird der teure Speicher und die Parallelverarbeitungshardware im-
mer zu wenig ausgenutzt, weil nur ein kleiner Bruchteil des Bildpufferspeichers oder der Parallelverarbeitungs-
einheiten zu einem beliebigen Zeitpunkt aktiv eingesetzt wird. Daher wird, obwohl eine Bildpufferspeicherar-
chitektur eine grol’e Menge an teurem Speicher und Verarbeitungshandware umfasst, diese Hardware nicht
vollstandig ausgenutzt.

KURZDARSTELLUNG DER ERFINDUNG

[0026] Die Erfindung stellt ein Verfahren und System zur Wiedergabe von grafischen Daten bereit, wie zum
Beispiel geometrische Grundelemente zur Erzeugung von Anzeigebildern. Die Erfindung ist besonders gut fir
die Wiedergabe von 3D-Grafiken in Echtzeit geeignet, kann aber auch auf andere Grafik- und Bildverarbei-
tungsanwendungen angewendet werden.

[0027] In einer Implementierung des Grafikwiedergabesystems gibt das System getrennt grafische Objekte
in Bildschichten, die Gsprites genannt werden, wieder und setzt dann die Gsprites zu einem Anzeigebild zu-
sammen. Genauer gesagt, weist das System Gsprites Objekten zu und rendert dann jedes Objekt oder Objekte
in ein entsprechendes Gsprite. Um ein Gsprite zu rendern, gibt das System Bildregionen oder Chunks des
Gsprites nacheinander wieder. Das System unterteilt Gsprites in Chunks, sortiert die Objektgeometrie in die-
sen Chunks und gibt dann diese Chunks nacheinander wieder. Das System setzt die Gsprites zu einem An-
zeigebild zusammen.

[0028] Ein Aspekt der Erfindung ist die Art, wie Gsprites transformiert werden kénnen, um die Bewegung ei-
nes 3D-Objekts zu simulieren und den zusatzlichen Aufwand fur die Wiedergabe zu reduzieren. In einer Imp-
lementierung rendert das System Objekte in einer Szene in separate Gsprites. Nach dem Rendern eines Ob-
jektes in ein Gsprite kann das System den Gsprite flir nachfolgende Teilbilder wieder verwenden, statt das Ob-
jekt neu zu rendern. Um dies zu erreichen, berechnet das System eine affine Transformation, die die Bewe-
gung des 3D-Objektes simuliert, das der Gsprite reprasentiert. Das System fiihrt eine affine Transformation am
Gsprite aus und setzt diesen Gsprite mit anderen Gsprites zusammen, um ein Anzeigebild zu erzeugen.

[0029] Ein weiterer Aspekt der Erfindung ist die Art, wie das System Pixelfragmente fiir Chunks von Bilddaten
verarbeitet. Das System rastert Grundelemente fur einen Chunk, um Pixeldaten fur Pixelorte zu erzeugen, die
von einem Grundelement entweder vollstandig oder teilweise bedeckt werden. In Fallen, in denen ein Grund-
element einen Pixelort teilweise bedeckt oder Lichtdurchlassigkeit besitzt, erzeugt das System ein Pixelfrag-
ment und speichert das Fragment in einem Fragmentpuffer. In Fallen, in denen ein Grundelement einen Pi-
xelort vollstandig bedeckt und lichtundurchlassig ist, speichert das System seine Farbdaten in einem Pixelpuf-
fer. Das System rastert Grundelemente fiir einen Chunk und I6st dann die Pixeldaten fir den Chunk in einem
Nachverarbeitungsschritt auf. Die Architektur zum Rendern von Chunks ermdglicht die Ausfihrung eines aus-

5/147

DE 696 36 599 T2 2007.08.23

gekligelten Anti-Aliasing an den Pixeldaten, wahrend gleichzeitig Anzeigebilder in Echtzeitraten erzeugt wer-
den.

[0030] Ein weiterer Aspekt der Erfindung ist die Art, wie das Rasterprogramm im System Fragmentspeicher
dadurch sparen kann, dass versucht wird, ein erzeugtes Pixelfragment mit einem Fragment zu vereinen, das
im Fragmentpuffer gespeichert ist. Wenn ein gespeichertes Fragment innerhalb einer vorgegebenen Tiefen-
und Farbtoleranz des erzeugten Fragmentes liegt, vereint eine Pixelengine im System die Fragmente. Die Pi-
xelengine vereint die Fragmente zum Teil durch Kombinieren der Bedeckungsdaten (z.B. eine Bedeckungs-
maske) des erzeugten und des gespeicherten Fragments. Wenn das vereinte Pixelfragment voll abgedeckt
und lichtundurchlassig ist, kann die Pixelengine es zu einem entsprechenden Pixelpuffereintrag verschieben
und den Fragmentsatz aus dem Fragmentspeicher |6sen.

[0031] Noch ein weiterer Aspekt der Erfindung ist die Art, wie das Fragmentauflésungssubsystem Listen von
Fragmentsatzen auflést. Bei einem Ansatz hat ein Fragmentaufldsungssubsystem separate Farb- und Alpha-
zwischenspeicher fiir jeden einzelnen Subpixelort eines Pixels, und es speichert die Farbe an jedem Subpi-
xelort separat. Das Subsystem umfasst die Logik zum Kombinieren der zwischengespeicherten Farbe von je-
dem Subpixelort, um ein endgultiges Ausgabepixel zu berechnen. Bei einem anderen Ansatz halt sich das
Fragmentauflésungssubsystem Uber die Subpixelregionen auf dem laufenden, die einen gemeinsamen zwi-
schengespeicherten Alphawert haben, wenn jeder Fragmentsatz in einer nach der Tiefe sortierten Liste der
Fragmente aufgel6st wird. Dieses Fragmentaufldsungssubsystem berechnet die zwischengespeicherte Farbe
fur die Regionen innerhalb eines Pixels (Pixelregionen), die ein gemeinsames zwischengespeichertes Alpha
besitzen. Nach dem Auflésen jedes Fragmentes in einer Liste ist die Ausgabe beider Ansatze eine Ausgabe-
pixel, das einen einzelnen Satz von Farbwerten (RGB) und mdglicherweise einen Alphawert besitzt. Fiir jeden
Pixelort kombiniert das Fragmentauflosungssubsystem die Farbwerte im Pixelpuffer mit allen Fragmentsatzen
in einer zugehdrigen Fragmentliste, um einen aufgeldsten Pixelwert, einschliellich zum Beispiel von
RGB-Farbwerten und einem Alphawert, zu berechnen.

[0032] Ein weiterer Aspekt der Erfindung ist ein Verfahren zur Ausfiihrung einer anisotropen Filterung. Bei der
Texturabbildung im allgemeinen bildet ein grafisches Renderingsystem eine Texturabbildung auf die Flache ei-
nes geometrischen Grundelementes ab. Bei diesem speziellen Verfahren beginnt das System damit festzustel-
len, wie ein Punkt an einem Pixelort im Betrachtungsraum sich auf die Texturkarte abbildet. Konzeptionell be-
stimmt das System, wie sich ein Filterabdruck auf die Texturkarte abbildet. Fur eine perspektivische Abbildung
hat ein isotroper Filterabdruck, der in die Texturkarte abgebildet ist, eine verformte Gestalt in Richtung der An-
isotropie. Daher ist das Filtern der Textur mit einem anisotropen Filter nicht ausreichend, um hochwertige Er-
gebnisse zu erhalten. In einer speziellen Ausflihrungsform bestimmt das System, wie ein Filterabdruck sich in
die Textur abbildet, indem die inverse Jacobi-Matrix fur einen Pixelort in Betrachtungsraumkoordinaten (z.B.
Bildschirmkoordinaten), die auf Texturkoordinaten abgebildet sind, berechnet wird.

[0033] Das System bestimmt dann eine Anisotropielinie von dem abgebildeten Filterabdruck und bestimmt
speziell in dieser einen Ausfihrungsform die Anisotropielinie von der inversen Jacobi-Matrix. Die Anisotropie-
linie ist begrifflich eine Linie, die durch die Koordinaten des Punktes lauft, der aus dem Betrachtungsraum in
den Texturraum abgebildet wird und in Richtung der maximalen Ausdehnung des abgebildeten Filterabdrucks
ausgerichtet ist. Das System wendet den Filter wiederholt entlang der Anisotropielinie an, um Werte aus der
Texturkarte zu prifen. Die Ausgabewerte dieses wiederholten Filtrationsschritts werden gefiltert und gesam-
melt, um endgultige Texturwerte zu berechnen. Es gibt eine Reihe von Variationen zu dieser Vorgehensweise.
In einer speziellen Implementierung fuhrt das System eine trilineare Interpolation entlang der Anisotropielinie
aus. Die Ausgabe des trilinearen Filters wird dann kombiniert, um einen einzelnen Satz von Farbwerten fir ei-
nen Pixelort zu berechnen. Bei dieser Implementierung wendet eine Texturfilter-Engine einen eindimensiona-
len Filter, zum Beispiel in Form eines Dreiecks oder Trapezoids, auf die Ausgabewerte der dreilinigen Interpo-
lation entlang der Anisotropielinie an. Bei Verwendung dieses Verfahrens ist jedoch eine Reihe von Variationen
an den Filtern, die entlang der Anisotropielinie angewendet werden, mdglich.

[0034] Ein weiterer Aspekt der Erfindung ist die Art, wie das System kleine Teile eines Bildes rendern kann,
falls der Fragmentspeicher Uberlauft. In einer Implementierung verfolgt das System die Verwendung des
Fragmentspeichers und kann eine Bildregion in kleinere Teile aufteilen, wenn die Zahl der verwendeten Frag-
menteintrage einen vorgegebenen Wert erreicht. Wenn das System Pixelfragmente erzeugt, verfolgt es die
Zahl der Eintrage in den Fragmentpuffer. Wenn die Zahl der Eintrage einen vorgegebenen Wert erreicht, wird
die Bildregion in kleinere Regionen unterteilt und rendert die kleineren Regionen jeweils eine mit einem Mal,
so dass ausreichend Fragmentspeicher zur Verfiigung steht, um jede Teilregion zu rendern. Das System kann
eine Teilregion in noch kleinere Bildregionen aufteilen, wenn die Zahl der Fragmenteintrage den vorgegebenen

6/147

DE 696 36 599 T2 2007.08.23

Wert erreicht. Im Ergebnis dessen kann das System die Bildregion, die gerade gerendert wird, unterteilen, um
sicherzustellen, dass der Fragmentspeicher nicht Gberschritten wird. Dies ermoéglicht dem System, einen klei-
neren Fragmentspeicher einzusetzen, ohne Fragmente zu verwerfen, wo anderenfalls der Fragmentspeicher
Uberlaufen wurde.

[0035] Ein weiterer Aspekt der Erfindung ist die Art, wie das System Texturabrufoperationen in Umgebungen
mit hoher Latenz ausfuhrt. Zum Beispiel gibt es bei Texturabbildung, Schattenbildung (shadowing) oder Mehr-
fachdurchlauf-Renderingoperationen oft eine hohe Verzégerungszeit bzw. Latenz beim Abrufen der Texturda-
ten, um die Operation auszufiihren. Diese Verzdgerungszeit kann wegen der Verzdgerung, die beim Lesen von
Daten aus dem Speicher auftritt, der Verzégerung, die beim Dekomprimieren von Texturdaten auftritt, oder we-
gen beidem entstehen.

[0036] In einer Implementierung werden geometrische Grundelemente in einem Eingabedatenstrom in einer
Grundelementeschlange gespeichert, die ausreichend lang ist, um die Verzégerungszeit des Abrufens eines
Blocks von Texturdaten aus dem Speicher aufzufangen. Eine Vorrastervorrichtung wandelt die geometrischen
Grundelemente in der Grundelementewarteschlange in Texturblockreferenzen um, die in einer zweiten Schlan-
ge gespeichert werden. Die Texturblécke, auf die in dieser zweiten Schlange verwiesen wird, werden aus dem
Speicher abgerufen und in einen Texturcache gebracht. Nacheinander rastert eine Postrastervorrichtung jedes
Grundelement in der Schlange. Wenn jedes Grundelement gerastert ist, werden Texturdaten aus dem Tex-
turcache nach Bedarf abgerufen, um die Ausgabepixel fiir das aktuelle Grundelement zu berechnen. Die Grun-
delemente werden aus der Schlange entfernt, nachdem sie gerastert sind.

[0037] In einer zweiten Implementierung werden Grundelemente gerastert und die resultierenden Pixeldaten
werden in eine Schlange gebracht, die ausreichend lang ist, um die Verzégerungszeit des Abrufens eines Tex-
turblocks aufzufangen. In einer speziellen Implementierung umfassen die Eintrage in der Schlange eine Pixe-
ladresse, Farbdaten fir diese Adresse und eine Texturanforderung, die aus dem Mittelpunkt einer Texturprobe
in den Koordinaten einer Texturkarte besteht. Die Texturanforderungen werden in Texturblockadressen umge-
wandelt und die Texturblocke werden abgerufen und in einen Texturcache gebracht. Die Eintrage in der
Schlange werden aus der Schlange abgerufen und zugehdérige Texturdaten, die sich nun im Texturcache be-
finden, werden dazu verwendet, Ausgabepixel zu berechnen. Beide Vorgehensweisen erzeugen zwei Satze
von Textanforderungen, wobei jeder Satz gegentiber dem anderen verzogert ist. Der erste Satz wird dazu ver-
wendet, die Texturdaten tatsachlich abzurufen und méglicherweise zu dekomprimieren, und der zweite Satz
wird dazu verwendet, Texturdaten aus einem Texturcache zu holen.

[0038] Weitere Merkmale und Vorteile der Erfindung werden bei Bezugnahme auf die folgende ausfihrliche
Beschreibung und die begleitenden Zeichnungen erkennbar.

KURZBESCHREIBUNG DER ZEICHNUNGEN
[0039] Fig. 1 ist ein Schema eines Bildverarbeitungssystems.
[0040] Fig. 2 ist ein Schema der Systemumgebung fir eine Ausflihrungsform der Erfindung.
[0041] Fig. 3 ist ein Schema der Systemarchitektur fiir eine Ausfiihrungsform.
[0042] Fig. 4A ist ein Schema der Bildverarbeitungshardware fir eine Ausfiihrungsform.

[0043] Fig. 4B ist ein Schema, das Teile eines Bildprozessors zum Rendern der geometrischen Grundele-
mente in einer Ausfiihrungsform zeigt.

[0044] Die Fig. 5A und Fig. 5B sind Flussdiagramme, die einen Uberblick tiber den Renderingprozess in ei-
ner Ausfuhrungsform illustrieren.

[0045] Fig. 6 ist ein Flussdiagramm, das einen Uberblick tiber den Anzeigeerzeugungsprozess einer Ausfih-
rungsform illustriert.

[0046] Fiq. 7 ist ein Diagramm, das einen Aspekt der Anzeigeerzeugung bezuglich der Teilbildperioden in ei-
ner Ausfuhrungsform illustriert.

[0047] Eiq. 8 ist ein Schema eines Digitalen Signalprozessors (DSP) in einer Ausfuihrungsform.

71147

DE 696 36 599 T2 2007.08.23

[0048] Die Fig. 9A-C sind Schemata, die alternative Ausflihrungsformen eines Tilers illustrieren.

[0049] Fig. 10 ist ein Schema, das ein System fur den Zugriff auf Texturdaten aus dem Speicher illustriert.
[0050] Fig. 11 ist ein Schema, das ein System fir den Zugriff auf Texturdaten aus dem Speicher illustriert.
[0051] Die Fig. 12A-B sind Schemata alternativer Implementierungen einer Gsprite-Engine.

[0052] Fig. 13 ist ein Schema eines Zusammensetzungspuffers in einer Ausfihrungsform.

[0053] Fig. 14 ist ein Schema eines Digital-Analog-Converters (DAC) in einer Ausfihrungsform.

[0054] Die Fig. 15A-C sind Diagramme eines Beispiels, das einen Aspekt des Chunking illustriert.

[0055] Die Fig. 16A-B sind Schemata, die Aspekte des Chunking in einer Ausfiihrungsform illustrieren.
[0056] Die Fig. 17A-B sind Flussdiagramme, die Aspekte des Chunking in einer Ausfihrungsform illustrieren.
[0057] Die Fig. 18A-B sind Schemata, die Aspekte des Chunking in einer Ausfiihrungsform illustrieren.
[0058] Die Fig. 19A-B sind Schemata, die Aspekte des Chunking in einer Ausfiihrungsform illustrieren.
[0059] Fig. 20 ist ein Schema, das die Bildkompression in einer Ausfiihrungsform illustriert.

[0060] Die Eig. 21A-B sind Flussdiagramme, die die Verarbeitung von Gsprites in einer Ausfihrungsform il-
lustrieren.

[0061] Fig. 22 ist ein Flussdiagramm, das einen Aspekt eines Verfahrens zur Ausflihrung von Gsprite-Trans-
formationen in einer Ausfihrungsform illustriert.

[0062] Fig. 23 ist ein Diagramm, das illustriert, wie Gsprite-Transformationen die Transportverzégerung in ei-
ner Ausfiihrungsform reduzieren kénnen.

[0063] Fig. 24 ist ein Schema von Gsprite-Datenstrukturen in einer Ausfihrungsform.

[0064] Fig. 25 ist ein Diagramm, das ein Beispiel eines Gsprites, der auf Ausgabegeratekoordinaten abgebil-
det wird, in einer Ausfihrungsform illustriert.

[0065] Fiq. 26 ist ein Flussdiagramm, das einen Aspekt der Anzeigeerzeugung in einer Ausfuhrungsform il-
lustriert.

[0066] Fiq. 27 ist ein Flussdiagramm, das die Anzeigeerzeugung von Fig. 26 in Bezug auf die Bandperioden
illustriert.

[0067] Die Fig. 28A-F sind Flussdiagramme, die Aspekte der Pixel- und Fragmenterzeugung in drei alterna-
tiven Ausflihrungsformen illustrieren.

[0068] Fig. 29 ist ein Flussdiagramm eines Verfahrens zum Verschmelzen von Fragmenten in einer Ausfih-
rungsform der Erfindung.

[0069] Fig. 30ist ein Schema, das eine Implementierung von Fragmentverschmelzungsschaltkreisen in einer
Ausfuhrungsform der Erfindung illustriert.

[0070] Fig. 31 ist ein Schema, das eine Implementierung eines Verschmelzungstestmoduls in den Fragment-
verschmelzungsschaltkreisen illustriert, die in Fig. 30 gezeigt werden.

[0071] FEig. 32 ist ein Diagramm, das einen Teil des Pixel- und Fragmentpuffers illustriert.

[0072] Fig. 33 ist ein Diagramm, das diese hierarchische Zerlegung abbildet.

8/147

DE 696 36 599 T2 2007.08.23

[0073] Die Fig. 34A-B ist ein Flussdiagramm, das ein Verfahren zur Pufferzerlegung im Tiler illustriert.
[0074] Fig. 35 ist ein Schema, das eine Implementierung eines Fragmentauflésungs-Teilsystems illustriert.

[0075] Fig. 36 ist ein Schema, das eine weitere Implementierung eines Fragmentauflésungs-Teilsystems il-
lustriert.

[0076] Fig. 37 ist ein Diagramm, das die Texturabbildung illustriert.

[0077] Die Fig. 38A-D sind Schemata, die ein Verfahren zur anisotropen Filterung in einer Ausfuihrungsform
illustrieren.

[0078] Fig. 39 ist ein Schema, das eine Implementierung eines Textur- und Schattenfilters illustriert.

[0079] Fig. 40 ist ein Schema, das eine Implementierung des Keygenerators in Fig. 39 illustriert.

[0080] Fig. 41 ist ein Schema, das eine Implementierung des Farbinterpolators in Fig. 39 illustriert.

[0081] Fig. 42 ist ein Schema, das eine Implementierung des Schattenfilterakkumulators in Fig. 39 illustriert.

[0082] Fig. 43 ist ein Schema, das eine Implementierung des Akkumulators und Postprozessors in Fig. 39
illustriert.

AUSFUHRLICHE BESCHREIBUNG
Systemiibersicht

[0083] In der folgenden detaillierten Beschreibung beschreiben wir mehrere Ausfiihrungsformen unter Bezug-
nahme auf ein Bildverarbeitungssystem.

[0084] Das Bildverarbeitungssystem unterstiitzt Echtzeit-Bild-Rendering und -Erzeugung sowohl fiir Grafik-
als auch Videoverarbeitung. Auf Grund der neuartigen Architektur und Bildverarbeitungsverfahren, die im Sys-
tem eingesetzt werden, kann es hoch entwickelte Echtzeit-3D-Animationen bei betrachtlichen Kosteneinspa-
rungen gegenuber derzeitigen Grafiksystemen erzeugen. Neben der Grafikverarbeitung unterstitzt das Sys-
tem die Videoverarbeitung, wie zum Beispiel Videoeditieranwendungen, und kann auch Video und Grafik kom-
binieren. Das System kann zum Beispiel dazu benutzt werden, Video auf grafische Objekte anzuwenden, oder
umgekehrt kann es eingesetzt werden, um grafische Objekte zu Videodaten hinzuzufligen.

[0085] Das System unterstiitzt eine breite Palette von interaktiven Anwendungen. Mit seiner Fahigkeit, fort-
geschrittene Echtzeitanimation zu unterstitzen, ist es gut fiir Spiele, Erziehungsanwendungen und viele inter-
aktive Anwendungen geeignet. Das System unterstitzt hochentwickelte Nutzerschnittstellen, einschlielich
3D-Grafik oder eine Kombination von Grafik und Video.

[0086] Durch Verbesserung der begrenzten Grafikfahigkeiten der heutigen Fensterdarstellungsumgebungen
fur Personal Computer kann das System verbesserte grafische 3D-Nutzerschnittstellen fiir Anwendungen un-
terstiitzen, die von der Blroinformationsverarbeitung auf Desktop-Computern bis zu interaktiven Fernsehan-
wendungen in einer Set-Top-Box reichen. Das System nutzt Speicher- und Prozessorzeit sehr effizient und
kann daher eine beeindruckende Bildverarbeitung und -anzeige liefern, ohne die Ausfiihrung der Anwendung
oder die Reaktionsfahigkeit der Nutzerschnittstelle auf Nutzeraktionen ungebuhrlich zu behindern.

[0087] Fig. 1 ist ein Schema des Bildverarbeitungssystems 100. Das Bildverarbeitungssystem umfasst eine
Bilddatenquelle und -speicher 102, einen Bildpraprozessor 104, einen Bildprozessor 106 und eine Anzeigevor-
richtung 108, wenn eine sofortige Anzeige von gerenderten Bildern gewtinscht wird. Die Elemente im System
kommunizieren durch eine Systemschnittstelle 110. Die Bilddatenquelle und -speicher 102 liefert Bilddaten an
das System und speichert Bilddaten und Befehle. Der Bildpraprozessor 104 ist fir die Handhabung der Bild-
daten verantwortlich, durch die sie auf das Rendern vorbereitet werden. Beispiele flr Praprozessorfunktionen
sind u.a.: Definieren von Objekten im Hinblick auf geometrische Modelle, Definieren von Beleuchtungs- und
Schattenbildungsmodelle, Bestimmen von Objektorten, Bestimmen des Orts eines Betrachtungspunktes und
von Lichtquellen und Geometrieverarbeitung.

9/147

DE 696 36 599 T2 2007.08.23

[0088] Der Bildprozessor 106 rendert die Bilder und erzeugt ein Anzeigebild, das auf der Anzeigevorrichtung
108 angezeigt werden soll. Rendern bezieht sich auf den Prozess der Erzeugung von Bildern aus Modellen
und umfasst solche Funktionen wie Geometrieverarbeitung (man beachte, dass die Geometrieverarbeitung
auch eine Vorverarbeitungsfunktion sein kann), Bestimmung sichtbarer Flachen, Scankonversion und Be-
leuchtung, um nur ein paar zu nennen. Nach dem Rendern eines Bildes oder von Teilen eines Bildes Ubertragt
der Bildprozessor 106 die gerenderten Bilddaten auf die Anzeigevorrichtung zur Anzeige.

[0089] Unten beschreiben wir mehrere Merkmale des Bildverarbeitungssystems 100 im Detail unter Bezug-
nahme auf spezielle Hardware- und Software-Architektur. Es ist jedoch wichtig zu bemerken, dass die Bildver-
arbeitung, die unten beschrieben wird, in einer Reihe von alternativen Architekturen implementiert werden
kann.

[0090] Das Bildverarbeitungssystem 100 erreicht eine riesige Verbesserung des Preis-Leistungsverhaltnis-
ses gegenuber hochwertigen 3D-Grafiksystemen, die den Erfindern bekannt sind. Eine Reihe von Fortschritten
in der Computergrafik tragt zu dieser Verbesserung bei. Zu diesen Fortschritten gehdren: zusammengesetzte
Bildschichten, Bildkompression, Chunking und Mehrfachrendering. Wir stellen diese Fortschritte hier vor und
beschreiben detaillierter diese und andere Fortschritte unten.

Zusammengesetzte Bildschichten (Gsprites)

[0091] In unserem System kdénnen mehrere unabhangige Bildschichten bei Videoraten zusammengesetzt
werden, um das Ausgabevideosignal zu erzeugen. In diese Bildschichten, die wir verallgemeinerte Sprites
oder Gsprites nennen, kann gerendert werden, und sie kdnnen unabhangig voneinander manipuliert werden.
Das System verwendet im allgemeinen einen unabhangigen Gsprite fir jedes andere nicht durchdringende
Objekt in der Szene. Dies ermdglicht es, jedes Objekt unabhangig zu aktualisieren, so dass die Objektaktuali-
sierungsrate auf der Basis von Prioritaten in der Szene optimiert werden kann. Ein Objekt, zum Beispiel, das
sich im fernen Hintergrund bewegt, braucht nicht so oft oder mit solcher Genauigkeit wie ein Objekt im Vorder-
grund aktualisiert zu werden.

[0092] Gsprites kdnnen eine beliebige GréRe und Form besitzen. In einer Ausfihrungsform verwenden wir
rechteckige Gsprites. Pixel im Gsprite haben Farb- und Alpha-Informationen, die mit ihnen verbunden sind, so
dass mehrere Gsprites zusammengesetzt werden kénnen, um die Gesamtszene zu erzeugen.

[0093] An Gsprites kbnnen mehrere verschiedene Operationen bei Videoraten ausgefiihrt werden, ein-
schlieRlich Skalieren, Rotation, Subpixelpositionierung und Transformationen zur Imitation von Bewegung, wie
zum Beispiel affine Warps. Wahrend also Gsprite-Aktualisierungsraten variabel sind, kdnnen Gsprite-Transfor-
mationen (Bewegung usw.) bei vollen Videoraten auftreten, was zu einer viel flissigeren Dynamik fihrt, als
durch ein konventionelles 3D-Grafiksystem erreicht werden kdnnte, das keine Aktualisierungsratengarantien
besitzt.

[0094] Viele 3D-Transformationen kénnen durch 2D-Bildoperationen simuliert werden. Ein sich zurlickziehen-
des Objekt kann durch Skalieren der Grofie des Gsprites simuliert werden. Durch die Nutzung von 2D-Trans-
formationen fur vorher gerenderte Bilder fur intermediare Teilbilder werden die Gesamtverarbeitungsanforde-
rungen betrachtlich reduziert, und die 3D-Renderingleistung kann dort angewendet werden, wo sie bendtigt
wird, um Ergebnisse mit hdchster Qualitat zu erreichen. Dies ist eine Form von zeitlicher Ebene des Detailma-
nagements.

[0095] Durch die Anwendung der Gsprite-Skalierung kann das Niveau der raumlichen Detailliertheit ebenfalls
so angepasst werden, dass es den Prioritaten der Szene entspricht. Hintergrundobjekte, bewdlkter Himmel
usw. kdnnen zum Beispiel in einen kleinen Gsprite (niedrige Auflésung) gerendert werden, der dann auf die
richtige GroRe fiir die Anzeige skaliert wird. Durch die Nutzung von hochwertiger Filterung sind die typischen
Artefakte bei niedriger Auflésung nicht wahrnehmbar.

[0096] Eine typische 3D-Grafikanwendung (besonders ein interaktives Spiel) verzichtet auf ein hohes Niveau
an geometrischen Details, um héhere Animationsraten zu erreichen. Gsprites erméglichen dem System, zwei
zusatzliche Szenenparameter zu nutzen — das zeitliche Detailniveau und das raumliche Detailniveau — um die
effektive Ausflihrung zu optimieren, wie sie vom Nutzer gesehen wird. Die rdumliche Aufldsung, bei der das
Bild eines Objektes gerendert wird, braucht nicht mit der Bildschirmauflésung Gbereinzustimmen, mit der es
gerendert wird. Ferner kann das System diese Abstriche automatisch handhaben, ohne Unterstiitzung durch
die Anwendung zu erfordern.

10/147

DE 696 36 599 T2 2007.08.23

Bildkompression

[0097] Der vielleicht wichtigste Faktor bei der Bestimmung von Systemkosten und -leistung ist der Speicher.
Ein traditionelles Highend-3D-Grafiksystem zum Beispiel hat tber 30 MByte Speicher, einschlief3lich Bildpuf-
ferspeicher (doppelt gepuffert), eines Tiefenpuffers, eines Texturpuffers und eines Anti-Aliasing-Puffers. Und
der grofite Teil davon ist spezieller Speicher, der deutlich teurer ist als DRAM. Die Speicherbandbreite ist im-
mer ein kritischer Flaschenhals. Die Kosten fiir Hochleistungssysteme werden oft durch die Notwendigkeit an-
getrieben, zahlreiche Banke von verschachteltem Speicher bereitzustellen, um so fir eine angemessene
Bandbreite fur Zugriffe auf Pixel und Texturdaten zu sorgen.

[0098] Das System wendet weitgehend Bildkompressionstechnologie an, um diese Probleme zu I6sen. Tra-
ditionell ist die Bildkompression wegen der rechnerischen Komplexitat, die fur eine hohe Qualitat erforderlich
ist, und weil sie sich nicht leicht in eine konventionelle Grafikarchitektur einfligen lasst, nicht in Grafiksystemen
verwendet worden. Durch die Verwendung eines Konzepts, das wir Chunking nennen (wird unten beschrie-
ben), sind wir in der Lage, die Kompression wirksam auf Bilder und Texturen anzuwenden, wodurch wir eine
betrachtliche Verbesserung des Preis-Leistungsverhaltnisses erreichen.

[0099] In einer Hinsicht haben Grafiksysteme die Kompression auf Bildpufferspeicher doch angewendet. Spit-
zensysteme verwenden acht Bits fir jede der drei Farbkomponenten und enthalten oft auch einen Achtbit-Al-
phawert. Preiswerte Systeme komprimieren diese 32 Bit pro Pixel in nur vier Bit, wobei Informationen verwor-
fen werden und/oder eine Farbpalette verwendet wird, um die Zahl gleichzeitig anzeigbarer Farben zu redu-
zieren. Diese Kompression flhrt zu stark sichtbaren Artefakten, erreicht keine deutliche Reduzierung in den
Datenanforderungen und zwingt Anwendungen und/oder Treiber dazu, sich mit einer breiten Palette von Pixel-
formaten abzugeben.

[0100] Die Kompression, die in unserem System verwendet wird, kann eine sehr hohe Bildqualitat erreichen
und doch Kompressionsverhaltnisse von 10:1 oder besser bereitstellen. Ein weiterer Vorteil unserer Herange-
hensweise ist, dass ein einziges hochqualitatives Bildformat fir alle Anwendungen verwendet werden kann,
das sich von der Standard-PC-Grafikarchitektur unterscheidet, welche Kompromisse zwischen radumlicher Auf-
I6sung und Farbtiefe erfordert.

Chunking

[0101] Ein weiterer wichtiger Fortschritt in unserem System wird als Chunking bezeichnet. Auf ein traditionel-
les 3D-Grafiksystem (oder eigentlich jeden Bildpufferspeicher) kann direkt zugegriffen werden (und wird zuge-
griffen). Auf beliebige Pixel auf dem Bildschirm kann direkt zugegriffen werden. Da Kompressionsalgorithmen
sich darauf verlassen, dass sie Zugriff auf eine recht groRe Zahl von benachbarten Pixeln haben (um Nutzen
aus der raumlichen Koharenz zu ziehen), kann die Kompression erst angewendet werden, nachdem alle Pixe-
laktualisierungen vorgenommen wurden, was auf die Direktzugriffsmuster zuriickzufiihren ist, die von den Gra-
fikalgorithmen verwendet werden. Dadurch wird die Anwendung der Kompressionstechnologie auf Anzeige-
puffer undurchfiihrbar.

[0102] Dieses Direktzugriffsmuster bedeutet auch, dass die pixelweise Entfernung von verborgenen Flachen
und die Anti-Aliasing-Algorithmen zusatzliche Informationen fir jedes Pixel auf dem Bildschirm enthalten mus-
sen. Dadurch erhéhen sich die SpeichergroRenanforderungen drastisch, und es entsteht ein weiterer Leis-
tungsflaschenhals.

[0103] Unser System zeigt eine andere Herangehensweise. Eine Szene, oder Teile einer Szene, kann in Pi-
xelbereiche (32x32 Pixel in einer speziellen Ausfihrungsform) unterteilt werden, die Chunks genannt werden.
In einer Ausfliihrungsform unterteilt das System die Geometrie, die den Gsprites zugewiesen wird, in Chunks,
eine andere Ausflihrungsform kdénnte das Chunking ohne Gsprites ausfihren. Die Geometrie wird in Bins vor-
sortiert, die darauf beruhen, in welchen Chunk die Geometrie gerendert wird. Dieser Prozess wird als Chunking
bezeichnet. Geometrie, die eine Chunkgrenze Uberlappt, wird vorzugsweise in jedem Chunk referenziert, in
dem sie sichtbar ist. Wenn die Szene animiert ist, wird die Datenstruktur zur Anpassung an die Geometrie mo-
difiziert, die sich von einem Chunk zum anderen bewegt.

[0104] Chunking bietet mehrere groRe Vorteile. Die Verwendung von Chunking sorgt fur eine effektive Form
der Kompression. Da die ganze Geometrie in einem Chunk gerendert wird, bevor zum nachsten Schritt fortge-
schritten wird, braucht der Tiefenpuffer nur so grof3 wie ein einzelner Chunk zu sein. Durch die Verwendung
einer relativ geringen Chunkgrée, wie zum Beispiel 32x32 Pixel, kann der Tiefenpuffer direkt auf dem Gafik-

11147

DE 696 36 599 T2 2007.08.23

renderingchip implementiert werden. Dadurch wird eine betrachtliche Speichermenge eliminiert und ermdéglicht
auch, dass der Tiefenpuffer unter Verwendung einer speziellen Speicherarchitektur implementiert werden
kann, auf die mit sehr hoher Bandbreite zugegriffen werden kann und der wahrend der Doppelpufferoperatio-
nen geldéscht werden kann, was den zusatzlichen Aufwand bei der traditionellen Bildpufferspeicherléschung
zwischen den Teilbildern beseitigt.

[0105] Das Anti-Aliasing ist auch wesentlich einfacher, da jeder Chunk unabhangig behandelt werden kann.
Die meisten Z-gepufferten Spitzengrafiksysteme, die das Anti-Aliasing implementieren, nutzen einen grof3en
Teil von zusétzlichem Speicher und fihren immer noch eine relativ einfache Filterung aus. Beim Chunking wird
jedoch die Menge der benétigten Daten betrachtlich reduziert (um einen Faktor 1000), was die praktische Um-
setzung eines viel hdher entwickelten Anti-Aliasing-Algorithmus ermdglicht.

[0106] Zusatzlich zur Z-Pufferung und zum Anti-Aliasing kann das System gleichzeitig auch die Lichtdurch-
Iassigkeit korrekt und nahtlos unterstiitzen. Wahrend ein Chunk gerade aufgebaut wird, kann das System so-
wohl Anti-Aliasing- als auch Lichtdurchlassigkeitsberechnungen an einem weiteren Chunk ausfihren. Mit an-
deren Worten, wahrend der Zeit, die zum Aufbauen eines Chunks bendtigt wird, kann das System Anti-Aliasing
und Lichtdurchlassigkeit an einem weiteren Chunk verarbeiten. Das System kann zwischen Chunks hin- und
herpendeln und so hoch entwickelte Verarbeitungsvorgange ohne Verzégerung bei der Verarbeitung eines Bil-
des fur Echtzeitanwendungen ausfiuhren.

[0107] Ein weiterer Vorteil ist, dass das Chunking die blockorientierte Bildkompression erméglicht. Sobald ein
Chunk gerendert (und mit Anti-Aliasing behandelt) wurde, kann er mit einem auf Blocktransformation beruhen-
den Kompressionsalgorithmus komprimiert werden. Daher unterstitzt das Chunking zusatzlich zur Kompres-
sion, die aus dem separaten Rendering der Chunks erreicht wird, héher entwickelte und besser anpassbare
Kompressionsmethoden.

Mehrfachrendering

[0108] Ein weiterer Vorteil der Architektur unseres Systems ist die Moglichkeit, dass interaktive 3D-Anwen-
dungen den Look der spaten 70er Jahre von CAD-Grafiksystemen verlassen kénnen: langweilige lambertsche
Gouraud-schattierte Polygone mit Phong-Beleuchtung. Die Texturabbildung von Farbe verbessert das Ausse-
hen, erzeugt aber ein weiteres charakteristisches Aussehen bei Anwendungen. In den 1980er Jahren eréffnete
die Idee von programmierbaren Schattierern (Shader) und prozeduralen Texturabbildungen eine neue Flexibi-
litat fur den Renderingprozess. Diese Ideen gingen durch die Offline-Rendering-Welt und erzeugten die hoch-
wertigen Bilder, die wir heute in Spezialeffekten von Filmen sehen.

[0109] Die starren Rendering-Pipelines und festen Renderingarten der heutigen typischen 3D-Spitzengrafik-
rechner machen es unmoglich, solche Effekte ohne drastische Abstriche bei der Echtzeitleistung zu implemen-
tieren. Im Ergebnis dessen muissen Nutzer, die eine Echtzeitanzeige fordern, sich mit der begrenzten Rende-
ringflexibilitat abfinden.

[0110] Durch Reduzieren der Bandbreitenanforderungen unter Verwendung der Verfahren, die oben umris-
sen wurden, kann das System der vorliegenden Erfindung ein einziges gemeinsam genutztes Speichersystem
fur alle Speicheranforderungen, einschlie3lich der Speicherung von komprimierter Textur und der Speicherung
von komprimierten Gsprites, verwenden. Diese Architektur ermoglicht es, Daten, die durch den Renderingpro-
zess erzeugt wurden, zurlick durch den Texturprozessor zu fihren, um sie als Daten beim Rendering eines
neuen Gsprites zu verwenden. Wegen dieser Unterstlitzung der Rickflihrung kann das System ein effizientes
Mehrfachrendering ausfihren.

[0111] Durch Kopplung des effizienten Mehrfachrendering mit einer Reihe von Zusammensetzungsmodi und
einer flexiblen Schattierungssprache kann das System eine Vielzahl von Renderingeffekten in Echtzeit bereit-
stellen, die vorher die Domane der Offline-Software-Renderer waren. Dazu gehdrt die Unterstiitzung von Funk-
tionen, wie zum Beispiel Schatten (einschlieRlich Schatten von mehreren Lichtquellen), umgebungsabgebilde-
te reflektierende Objekte, Punktleuchtquellen, Bodennebel, realistische Unterwassersimulation usw.

[0112] In einer Ausfiihrungsform umfasst das Bildverarbeitungssystem (100) eine Kombination von Hardware
und Software. Im folgenden Abschnitt beschreiben wir die Systemumgebung unten unter Bezugnahme auf
eine Hardware- und Software-Architektur. Wo méglich, beschreiben wir alternative Architekturen. Jedoch kén-
nen die Hardware- und Software-Architekturen variieren und sind daher nicht auf die speziellen Beispiel be-
grenzt, die unten angefihrt werden.

12147

DE 696 36 599 T2 2007.08.23

[0113] Das Bildverarbeitungssystem, oder Teile davon, kann auf einer Reihe von unterschiedlichen Plattfor-
men implementiert werden, einschlielllich Desktop-Computern, Set-Top-Boxen und Spielesystemen.

[0114] Fig. 2 ist ein Schema eines Computersystems 130, in dem das Bildverarbeitungssystem implementiert
werden kann. Das Computersystem 130 umfasst einen Prozessor 132, Hauptspeicher 134, Speichersteuerung
136, Sekundarspeicher 138, Eingabevorrichtung(en) 140, Anzeigevorrichtung 142 und Bildverarbeitungshard-
ware 144. Die Speichersteuerung 136 dient als Schnittstelle zwischen dem Prozessor 132 und dem Hauptspei-
cher 134; sie fungiert auch als Schnittstelle flr Prozessor 132 und Hauptspeicher mit dem Bus 146.

[0115] Eine Reihe von Computersystemen hat dieselbe oder eine ahnliche Architektur wie die in Fig. 2 illus-
trierte. In solchen Systemen kénnen verschiedene Prozessoren verwendet werden. Aullerdem umfassen eini-
ge Computersysteme mehr als eine Verarbeitungseinheit. Um ein paar zu benennen, kann der Prozessor ein
Pentium- oder Pentium Pro-Prozessor von der Intel Corporation, ein Mikroprozessor aus der MIPS-Familie von
Silicon Graphics, Inc., oder der PowerPC von Motorola sein.

[0116] Der Hauptspeicher 134 ist ein Hochgeschwindigkeitsspeicher und wird in den meisten herkdmmlichen
Computersystemen mit Direktzugriffsspeicher (RAM) implementiert. Der Hauptspeicher lasst sich mit dem Pro-
zessor und Bus mit einer Reihe von bekannten Verfahren verbinden. Hauptspeicher 134 speichert Programme,
wie zum Beispiel das Betriebssystem eines Computers und aktuell laufende Anwendungsprogramme. Unten
beschreiben wir Erscheinungsformen einer Ausfihrungsform mit Bezug auf die symbolischen Reprasentatio-
nen von Anweisungen, die durch das Computersystem ausgeflihrt werden. Diese Anweisungen werden
manchmal als computer-ausgefiihrt bezeichnet. Diese Aspekte der Ausfihrungsform kénnen in einem Pro-
gramm oder Programmen implementiert werden, die eine Reihe von Anweisungen umfassen, welche auf ei-
nem computer-lesbaren Medium gespeichert sind. Das computer-lesbare Medium kann eine der Vorrichtungen
oder eine Kombination der Vorrichtungen, die hierin beschrieben werden, in Verbindung mit einem Hauptspei-
cher oder einem Erganzungsspeicher sein.

[0117] Der Bus 146 verbindet die Speichersteuerung 136, den Erganzungsspeicher 138 und die Bildverarbei-
tungshardware 144 miteinander. In einer Ausflihrungsform ist der Bus zum Beispiel ein PCI-Bus. Der PCI-Stan-
dard ist gut bekannt, und mehrere Computersystemplatinen unterstiitzen diesen Standard. Computersysteme,
die andere Busarchitekturen besitzen, kdnnen ebenfalls das Bildverarbeitungssystem unterstitzen. Beispiele
sind u.a. ISA-Bus, EISA-Bus, lokaler VESA-Bus und der NuBus.

[0118] Die Anzeigevorrichtung 142 ist eine Farbanzeige mit kontinuierlicher Auffrischung zur Anzeige eines
Bildes. Die Anzeigevorrichtung ist in einer Ausflihrungsform eine Bildréhre (CRT), sie kann aber auch eine
Flissigkeitsanzeige (LCD) oder eine andere Form von Anzeigevorrichtung sein.

[0119] Die Erganzungsspeichervorrichtung 138 kann eine Reihe von Speichermedien umfassen. Die Ergan-
zungsspeichervorrichtung kann zum Beispiel Disketten, Festplatten, Band, CD-ROM usw. und andere Vorrich-
tungen umfassen, die elektrisches, magnetisches, optisches oder anderes Aufzeichnungsmaterial verwenden.

[0120] Die Eingabevorrichtung(en) 140 kann eine Tastatur, Cursorpositioniervorrichtung, wie zum Beispiel
eine Maus, Joysticks, sowie eine Reihe von handelsublichen Eingabevorrichtungen umfassen.

[0121] In einer Ausfuhrungsform, die unten detailliert beschrieben wird, wird die Bildverarbeitungshardware
144 auf der Leiterplatte implementiert, die sich mit dem Computersystem uber den PCI-Bus verbindet. In einer
alternativen Implementierung kann die Bildverarbeitungshardware auf einer Systemplatine zusammen mit ei-
nem Prozessor oder anderer Bildverarbeitungshardware und Speicher angeordnet sein. In einem Spielesys-
tem zum Beispiel ist die Bildverarbeitungshardware normalerweise auf der Hauptplatine angeordnet. Analog
kann die Bildverarbeitungshardware in einer Set-Top-Box ebenfalls auf der Hauptplatine angeordnet sein.

[0122] Obwohl wir die Architektur eines Computersystems umrissen haben, ist nicht beabsichtigt, unsere Er-
findung auf die Systemarchitektur, die in Fig. 2 illustriert ist, zu begrenzen. Unser Bildverarbeitungssystem
kann in Spielesystemen, Set-Top-Boxen, Videoeditiervorrichtungen usw. implementiert werden. Wir beschrei-
ben unten eine Ausflihrungsform eines Bildverarbeitungssystems in der Umgebung der Systemarchitektur, die
in Eig. 2 gezeigt wird. Wir beschreiben alternative Implementierungen in der ganzen folgenden Beschreibung,
es ist jedoch nicht beabsichtigt, mit der Beschreibung von Alternativen eine vollstandige Auflistung anderer
moglicher Implementierungen zu liefern. Auf der Basis unserer detaillierten Beschreibung unten kann der
Fachmann auf diesem Gebiet unser Bildverarbeitungssystem oder Erscheinungsformen desselben auf ande-
ren Plattformen implementieren.

13/147

DE 696 36 599 T2 2007.08.23

[0123] Fig. 3 ist ein Schema, das die Beziehung zwischen der Software und der Hardware in einer Ausfih-
rungsform illustriert. In dieser Ausfiihrungsform wird das Bildverarbeitungssystem unter Verwendung von Ver-
arbeitungsressourcen des Prozessors des Hostcomputers und der Bildverarbeitungshardware 144 implemen-
tiert. Die Bildverarbeitungshardware 144 wird auf einer Erweiterungsplatine 164 implementiert, die einen Pro-
zessor (z.B. einen Digitalen Signalprozessor) 166 und Bildverarbeitungsschaltkreise 168 umfasst. Die Prozes-
soren des Hostcomputers 130 und der Bildverarbeitungsplatine 164 teilen sich die Bildverarbeitungsaufgaben.
Unten umreien wir allgemein die Funktionen, die vom Hostcomputer 130 und der Bildverarbeitungsplatine
174 ausgefihrt werden.

[0124] Grafikunterstitzungssoftware 160 wird auf dem Hostcomputersystem 130 ausgefiihrt und kommuni-
ziert mit der Bildverarbeitungsplatine 164 Uber die Hardwareabstraktionsschicht (HAL) 162. Die Bildverarbei-
tungsplatine 164 umfasst einen programmierbaren digitalen Signalprozessor 166, der DSP genannt wird, und
zusatzliche Bildverarbeitungshardware 168, die unten im Detail beschrieben wird.

[0125] Die Grafikunterstutzungssoftware 160 kann Funktionen zur Unterstitzung des Speichermanage-
ments, Betrachtungsvolumen-Culling, Tiefensortierung, Chunking sowie Gsprite-Zuweisung, Transformation
und Detailgrad umfassen. Die Grafikunterstitzungssoftware kann eine Bibliothek von Grafikfunktionen umfas-
sen, die durch Grafikanwendungen zuganglich sind, um die Funktionen, die hier aufgelistet sind, auszufihren.

[0126] Die Grafikunterstitzungssoftware 160 umfasst Funktionen, die das Gsprite-Paradigma, das oben ein-
geflhrt wird, unterstiitzen. Wie oben angegeben, werden Gsprites unabhangig gerendert und brauchen nicht
auf jedem Teilbild gerendert zu werden. Statt dessen kénnen Anderungen in der Position eines Gsprites mit
affinen oder anderen Transformationen angenahert werden. Die Grafikunterstitzungssoftware 160 stellt Funk-
tionen bereit, die helfen, ein Objekt oder Objekte einem Gsprite zuzuweisen und die Bewegungsdaten zu ver-
folgen, die die Position und Bewegung des Gsprites beschreiben. Die Grafikunterstitzungssoftware stellt auch
Funktionen bereit, um festzustellen, wann ein gerenderter Gsprite aktualisiert werden muss. Die Notwendig-
keit, einen Gsprite zu aktualisieren, kann je nach der Objektbewegung, Bewegung des Betrachtungspunktes,
Beleuchtungsanderungen und Objektkollisionen variieren.

[0127] Wir stellen weitere Details bezlglich der Funktionen der Grafikunterstitzungssoftware unten bereit.
Die Bildverarbeitungsplatine 164 flihrt eine Geometrieverarbeitung auf niedriger Ebene aus, einschliel3lich Be-
leuchtung und Schattierung, Texturierung, Anti-Aliasing, Lichtdurchlassigkeit usw. In einer Ausfiihrungsform ist
der DSP 166 verantwortlich fur die Front-End-Geometrieverarbeitungs- und Beleuchtungsberechnungen. Eine
Reihe von diesen Funktionen kann auch durch den Prozessor 132 des Hosts ausgeflihrt werden.

Uberblick tiber die Bildverarbeitungsplatine

[0128] Fig. 4A ist ein Schema, das die Bildverarbeitungsplatine 174 illustriert. Die Bildverarbeitungsplatine
174 kommuniziert mit dem Hostcomputer Uber den Bus 146. Sie umfasst einen DSP 176, Tiler 200, gemeinsam
genutzten Speicher 216, die Gsprite-Engine 204, Zusammensetzungspuffer 210 und einen Digital-Ana-
log-Konverter (DAC) 212. Der Bus 146 (Eig. 2) Ubertragt Befehle und Daten zwischen dem Wirt und dem DSP
176. Als Reaktion auf Befehle vom Wirt rendert die Bildverarbeitungsplatine 174 Bilder und Ubertragt Anzeige-
bilder auf eine Anzeigevorrichtung 142 (Eig. 2) durch den DAC 212.

[0129] In der Ausflhrungsform, die in den Fig. 2-Fig. 4A illustriert ist, teilen sich der Hostprozessor und der
DSP die Funktionen des Bild-Praprozessors von Fig. 1. Der Bildprozessor umfasst Tiler 200, Gsprite-Engine
204, Zusammensetzungspuffer 210 und DAC 212. Unten stellen wir mehr Details zu diesen Elementen bereit.
Es sollte jedoch nicht vergessen werden, dass die Implementierung des Bildverarbeitungssystems variieren
kann.

[0130] Der gemeinsam genutzte Speicher 202 speichert Bilddaten und Bildverarbeitungsbefehle auf der Bild-
verarbeitungsplatine 174. In einer Ausfuhrungsform wird der gemeinsam genutzte Speicher dazu verwendet,
Gsprite- und Texturdaten in komprimierter Form, DSP-Code und -Daten zu speichern, und verschiedene Puffer
dienen zur Ubertragung von Daten zwischen verschiedenen Verarbeitungsteilsystemen.

[0131] Der DSP 176 ist fir die Videokompression/-dekompression und die Grafikvorverarbeitung (Transfor-
mationen, Beleuchtung usw.) verantwortlich. Der DSP sollte vorzugsweise Gleitpunkt- und Ganzzahlrechnun-
gen mit mehr als 1000 MFLOPS/MOPS unterstitzen.

[0132] Der Tiler 200 ist ein VLSI-Chip, der die Scan-Conversion, Schattierung, Texturierung, das Entfernen

14147

DE 696 36 599 T2 2007.08.23

verborgener Flachen, Anti-Aliasing, Lichtdurchlassigkeit, Schattenabbildung und Mischung fur das Mehrfach-
rendering ausflihrt. Die resultierenden gerenderten Gsprite-Chunks werden dann komprimiert und in kompri-
mierter Form im gemeinsam genutzten Speicher abgelegt. Der Tiler flhrt zusatzlich die Dekompression und
die Wiederkompression von Gsprite-Daten als Unterstlitzung der Video- und Fensteroperationen aus.

[0133] Die Gsprite-Engine 204 arbeitet bei Videoraten, um die Gsprite-Chunkdaten zu adressieren und zu de-
komprimieren und die notwendige Bildverarbeitung fur allgemeine affine Transformationen (die das Skalieren,
Translation mit Subpixelgenauigkeit, Rotation, Reflektion und Shearing) auszufiihren. Nach dem Filtern wer-
den die resultierenden Pixel (mit Alpha) an die Zusammensetzungspuffer geschickt, wo die Anzeigepixeldaten
berechnet werden.

[0134] Gsprite-Chunkdaten werden mit einer Geschwindigkeit von ein paar Scanreihen auf einmal zur Anzei-
ge verarbeitet. In einer Ausfliihrungsform werden die Chunkdaten mit jeweils 32 Scanreihen auf einmal verar-
beitet. Der Zusammensetzungspuffer (210) umfasst zwei 32-Scanreihen-Farbpuffer, die zwischen Anzeige und
Zusammensetzungsaktivitdt umgeschaltet werden. Der Zusammensetzungspuffer umfasst auch einen 32 Sc-
anreihen-Alphapuffer, der zum Akkumulieren von Alpha fur jedes Pixel verwendet wird.

[0135] Der DAC 212 umfasst einen RGB-Video-DAC und den entsprechenden Videoport 214 zu Videoeditier-
geraten. Einzelne Komponenten kénnen zum Implementieren der DAC-Funktionalitat verwendet werden.

Systembetrieb

[0136] Die Fig. 5A und Fig. 5B sind Flussdiagramme, die Schritte beim Rendern eines Bildes im Bildverar-
beitungssystem illustrieren. Bevor der Bildverarbeitungsprozessor 106 mit dem Rendern eines Bildes flir den
Betrachtungsraum beginnt, bestimmt der Bildpraprozessor 104 Objekt- und Betrachtungspunktorte (240). In
der Ausflihrungsform, die in den Fig. 2 und Fig. 3 gezeigt wird, stellt die Grafikunterstitzungssoftware 160, die
im Hostcomputersystem lauft, die Objekt- und Betrachtungspunktorte von Daten fest, die von einer Grafikan-
wendung bereitgestellt werden. Die Grafikanwendung, die auf dem Hostprozessor lauft, definiert Modelle, die
die relevanten Objekte reprasentieren, und liefert eine Modelliertransformation, die zum Platzieren des Objek-
tes mit den anderen Objekten in ,Weltkoordinaten" verwendet wird.

[0137] Als Nachstes wahlt der Bildpraprozessor 104 mdglicherweise sichtbare Objekte (242) aus. Er stellt
moglicherweise sichtbare Objekte auf der Basis des Betrachtungsvolumens fest. Das Betrachtungsvolumen ist
ein dreidimensionaler Raum in Weltkoordinaten, der die Grenzen fiir eine Szene bereitstellt. Der Praprozessor
wahlt moglicherweise sichtbare Objekte durch Verschieben von Objekten und Bestimmen, ob ihre Grenzen
das Betrachtungsvolumen schneiden. Objekte, die das Betrachtungsvolumen schneiden, sind im geometri-
schen oder rdumlichen Sinn mdéglicherweise sichtbar.

[0138] In einigen Fallen ist es nutzlich, ,temporar" moglicherweise sichtbare Objekte auferhalb des aktuellen
Betrachtungsvolumens festzustellen, um zukiinftige Anderungen in der Szene zu beriicksichtigen. Dies ermég-
licht dem System, sich auf schnelle Anderungen im Betrachtungsvolumen einzustellen. In typischen 3D-Gra-
fiksystemen besteht die einzige Méglichkeit, auf diese schnellen Anderungen zu reagieren, darin, eine vollkom-
men neue Szene zu erzeugen, die auf der geanderten Eingabe beruht, wobei eine betrachtliche Transportver-
zégerung dazwischengeschaltet ist. Solch eine lange Verzégerung hat negative Auswirkungen auf den Nutzer,
was Probleme verursacht, wie zum Beispiel Uberziehen und Ubelkeit. Zur Verringerung dieser Verzégerung
kann der Bildpraprozessor der vorliegenden Erfindung den Ort on Objekten berechnen, die in einem erweiter-
ten Bereich auRerhalb des sichtbaren Bereichs gelegen sind, und der Bildprozessor kann Bilder innerhalb die-
ses erweiterten Bereichs rendern und speichern. Unter Verwendung der Fahigkeit des Systems zur affinen
Transformation kann die Eingabe des Betrachtungspunktes fiir ein nachfolgendes Teilbild dazu verwendet wer-
den, die Gsprites aus diesem erweiterten Bereich neu zu anzuordnen und so die Systemtransportverzégerung
auf weniger als 2 rechnerische Teilbilder zu reduzieren. Solch eine kurze Transportverzégerung ist mit aktuel-
len 3D-Grafikhardwaresystemen, die den Erfindern bekannt sind, nicht zu erreichen und ermdéglicht Simulatio-
nen viel hdherer Qualitat mit viel starkerem Vertieftsein des Nutzers.

[0139] Der Bildpraprozessor bestimmt die Konfiguration der Gsprites fur das Bild (244). Dieser Schritt bein-
haltet das Feststellen, wie man moéglicherweise sichtbare Objekte auf Gsprites abbildet. Als Teil dieses Pro-
zesses ordnet der Bildpraprozessor 104 Gsprites zu, was das Erzeugen einer Gspritedatenstruktur zum Spei-
chern von Bilddaten umfasst, die einem oder mehreren mdglicherweise sichtbaren Objekten entsprechen.
Wenn es die Verarbeitungsressourcen ermdglichen, wird jedes nicht vollig durchdringende Objekt in der Szene
einem unabhangigen Gsprite zugewiesen. Vollig durchdringende oder selbst verdeckende Objekte kdnnen als

15/147

DE 696 36 599 T2 2007.08.23

einzelner Gsprite verarbeitet werden.

[0140] Der Bildpraprozessor 104 kann Gsprites aggregieren, wenn der Bildprozessor nicht die Leistungsfa-
higkeit besitzt, die Gsprites bei der gewiinschten rechnerischen Teilbildrate zusammenzusetzen oder wenn der
Systemspeicher unzureichend ist, um die Gsprites zu speichern. Das Rendern in getrennte Gsprites ist rech-
nerisch immer effizienter; wenn also das System den Speicher und die Leistungsfahigkeit zum Zusammenset-
zen besitzt, sollten sich nicht tGberschneidende Objekte in getrennte Gsprites gerendert werden. Wenn das
System nicht in der Lage ist, zu speichern oder ein Anzeigebild basierend auf einer aktuellen Zuweisung von
Gsprites zu erzeugen, kénnen einige Gsprites aggregiert werden, um dieses Problem abzuschwachen.

[0141] Nachdem ein Objekt oder Objekte Gsprites zugewiesen wurden, unterteilt der Bildprozessor die Gspri-
tes in Bildregionen, die ,Chunks" (248) genannt werden. Der Bildpraprozessor durchlauft die Gsprites zyklisch
und unterteilt die Gsprites in Chunks (246, 248). In einer Ausflihrungsform umfasst dieser Prozess das Trans-
formieren der Grenzvolumina von Objekten in den Betrachtungsraum und das Finden rechteckiger Bildregio-
nen, die die transformierten Grenzvolumina einschlieRen. Diese Bildregionen definieren die Dimensionen des
Gsprites hinsichtlich des zweidimensionalen Raums, in den das Objekt oder die Objekte des Gsprites geren-
dert werden. Der Gsprite wird in Chunks unterteilt, indem die rechteckige Bildregion in Chunks geteilt und diese
Chunks mit der Gsprite-Datenstruktur verknipft werden.

[0142] Als Optimierung kann das transformierte Grenzvolumen skaliert und/oder gedreht werden, so dass die
Zahl der Chunks, die zum Rendern des Gsprites bendtigt werden, minimiert wird. Wegen dieser zusatzlichen
Transformation (Skalierung oder Drehung) ist der Raum, in den die Objekte, welche den Gsprites zugewiesen
werden, gerendert werden, nicht unbedingt der Bildschirmraum. Dieser Raum wird als Gsprite-Raum bezeich-
net. Beim Prozess der Erzeugung eines Anzeigebildes muss der Gsprite auf den Bildschirmraum zurlcktrans-
formiert werden.

[0143] Der nachste Schritt besteht darin festzustellen, wie man die Objektgeometrie unter den Chunks (250)
aufteilt. Der Bildpraprozessor bestimmt, wie die geometrischen Grundelemente (z.B. Polygone) unter den
Chunks aufgeteilt werden missen, indem er die Polygone auf den 2D-Raum (252) transformiert und feststellt,
in welchen Chunk oder Chunks sich die Polygone projizieren. Auf Grund der Kosten der Beschneidung von
Polygonen ist der bevorzugte Ansatz, die Polygone, die am Rand eines Chunks liegen, nicht zu beschneiden.
Statt dessen umfasst ein Chunk Polygone, die seine Kante tberlappen. Wenn sich ein Polygon tber die Gren-
ze von zwei Chunks erstreckt, werden zum Beispiel bei diesem Ansatz die Eckpunkte in jedem Chunk einge-
schlossen.

[0144] Der Bildpraprozessor stellt dann die Chunkdaten zum Tiling in die Schlange. Tiling bezeichnet den Pro-
zess der Bestimmung von Pixelwerten, wie zum Beispiel Farbe und Alpha fiir Pixelorte, die von einem oder
mehreren Polygonen bedeckt oder teilweise bedeckt werden.

[0145] Der Entscheidungsschritt (254) (Fig. 5B) und der Schritt (256), der darauf folgt, reprasentieren den
Prozess des Tiling der Polygone innerhalb des Chunks. Wahrend der Bildprozessor die Polygone eingeschlos-
sen hat, die die Grenzen des aktuellen Chunks Uberlappen, erzeugt er nur Pixel, die innerhalb des Chunks lie-
gen. Die erzeugten Pixel umfassen Informationen fir das Anti-Aliasing (Fragmentdatensatzen), die gespei-
chert werden, bis alle Pixel erzeugt sind.

[0146] Nach der Beendigung des Tiling von Polygonen in einem Chunk |6st der Bildprozessor die Anti-Ali-
asing-Daten (wie zum Beispiel Fragmentdatensatze) fiir die Pixel (258) auf. In einer Ausfihrungsform verwen-
det der Tiler 200 die Doppelpufferung, um einen vorherigen Chunk aufzulésen, wahrend der nachste getilet
wird. Alternativ kann der Tiler einen gewohnlichen Puffer mit einer freien Liste verwenden. Die freie Liste stellt
den freien Speicher im gewdhnlichen Puffer dar, der zugewiesen wird, wenn neue Fragmentdatensatze er-
zeugt werden, und hinzugefiigt wird, wenn Fragmentdatensatze aufgeldst werden. Eine Kombination von Dop-
pelpufferung und gemeinsamem Speicher kann ebenfalls verwendet werden.

[0147] Der Bildprozessor komprimiert den aufgeldésten Chunk unter Verwendung einer Kompressionsmetho-
de, die weiter unten beschrieben wird (260). Wahrend der Bildprozessor einen Block von Pixeln auflést, kann
er einen anderen Block komprimieren. Der Bildprozessor speichert den komprimierten Chunk im gemeinsam
genutzten Speicher (262).

[0148] FEiq. 6 ist ein Flussdiagramm, das die Schritte illustriert, die zur Anzeige eines Bildes ausgefuhrt wer-
den. Auf der Bildverarbeitungsplatine 174, die oben beschrieben wird, werden Bilder aus dem gemeinsam ge-

16/147

DE 696 36 599 T2 2007.08.23

nutzten Speicher 216 gelesen, in physische Ausgabevorrichtungskoordinaten durch die Gsprite-Engine 204
transformiert, im Zusammensetzungspuffer 210 zusammengesetzt, in den DAC 212 (bertragen und dann auf
eine Ausgabevorrichtung Ubertragen.

[0149] Wahrend des Anzeigeprozesses greift der Bildprozessor auf eine Liste von Gsprites, die angezeigt
werden sollen, fir das aktuelle Teilbild zu. Im Prozess der Bestimmung der Gsprite-Konfiguration bestimmt der
Bildpraprozessor die Tiefenordnung von Gsprites (280). Wie oben bemerkt, wird ein Objekt vorzugsweise ei-
nem Gsprite zugeordnet. Der Bildpraprozessor kann jedoch mehr als ein Objekt einem Gsprite zuordnen, um
zum Beispiel Verarbeitungsbegrenzungen eines bestimmten Bildprozessors, der im System verwendet wird,
zu bericksichtigen. Der Bildpraprozessor sortiert Objekte in Z-Reihenfolge, d.h. nach dem Abstand vom Be-
trachtungspunkt. Neben dem Sortieren der Objekte sortiert er auch Gsprites nach Tiefenordnung und speichert
diese Tiefendaten in den Gsprite-Datenstrukturen.

[0150] Der Entscheidungsschritt (282) in Fig. 6 stellt einen zyklischen Durchlauf durch die Gsprites im Anzei-
geprozess dar. Die Schritte innerhalb dieses zyklischen Durchlaufs kénnen 1) das Berechnen einer Transfor-
mation flr einen gerenderten Gsprite und 2) das Aufstellen einer Gsprite-Anzeigeliste umfassen, um zu steu-
ern, wie die Gsprite angezeigt werden. Diese Schritte werden unten beschrieben.

[0151] Der Bildprozessor berechnet die Gsprite-Transformationen fir Gsprites im mdglicherweise sichtbaren
Bereich. Eine Gsprite-Transformation bezeichnet eine Transformation an einem gerenderten 2D-Gsprite. In ei-
ner Ausfihrungsform kann der Bildprozessor eine Transformation an einem Gsprite ausfiihren, um den Ren-
dering-Zusatzaufwand zu reduzieren. Statt jedes Objekt fiir jedes Teilbild zu rendern, reduziert der Bildprozes-
sor den Rendering-Zusatzaufwand durch Wiederverwendung eines gerenderten Gsprites.

[0152] Es ist nicht notwendig, eine Gsprite-Transformation fir jedes Teilbild der Bilddaten zu berechnen.
Wenn zum Beispiel ein Gsprite fur das aktuelle Teilbild der Bilddaten gerendert wird, braucht er moglicherweise
nicht transformiert zu werden, es sei denn, dass zum Beispiel der Gsprite transformiert wurde, um besser zum
begrenzenden Kasten fur das Objekt zu passen.

[0153] Auflerdem brauchen mdglicherweise einige Gsprites nicht neu gerendert oder transformiert zu wer-
den, weil das Objekt oder die Objekte, die ihnen zugeordnet wurden, sich nicht gedndert haben oder sich nicht
bewegen. Dementsprechend ist der Schritt zum Transformieren eines Gsprites optional.

[0154] Der Gsprite kann mit der Einheitsmatrix in Fallen multipliziert werden, wo sich die Position des Gsprites
nicht geandert hat. Dies kann zum Beispiel in Fallen gelten, wo der Bildprozessor den Gsprite fiir das aktuelle
Teilbild gerendert hat oder wo die Gsprite-Position sich nicht gedndert hat, seit er urspriinglich gerendert wur-
de.

[0155] Um festzulegen, wie Gsprites angezeigt werden sollen, erzeugt der Bildprozessor eine Gsprite-Anzei-
geliste. Die Anzeigeliste bezeichnet eine Liste oder Listen, die bestimmen, welche Gsprites auf dem Anzeige-
bildschirm angezeigt werden sollen. Dieses Konzept der Anzeigeliste kann auch fir andere Ausgabevorrich-
tungen zum Prasentieren eines Teilbildes von Bilddaten gelten. Der Bildprozessor verwendet die Anzeigeliste
beim Abbilden und Zusammensetzen gerenderter Gsprites auf die physischen Geratekoordinaten. Obwohl der
Schritt des Ausbauens einer Anzeigeliste als Teil eines zyklischen Durchlaufs durch Gsprites illustriert wird, ist
es nicht notwendig, dass die Liste oder Listen speziell innerhalb dieses zyklischen Durchlaufs erzeugt wird.

[0156] Die Anzeigeliste kann eine Liste oder Listen oder eine Liste von Gsprites pro Band bezeichnen. Ein
,Band" ist ein horizontaler Scanzeilenbereich eines Anzeigebildschirms. In einer Ausflihrungsform ist zum Bei-
spiel ein Band 32 Scanzeilen hoch mal 1344 Pixel breit. Die Anzeigeliste kann eine getrennte Liste von Gspri-
tes fur jedes Band umfassen, in diesem Fall beschreiben die Bandlisten die Gsprites, die auf die jeweiligen
Bander entfallen. Alternativ kann die Anzeigeliste aus einer einzigen Liste bestehen, die durch Kennzeichnen
der Gsprites implementiert wird, um festzustellen, auf welche Bander die Gsprites fallen.

[0157] Die Anzeigeliste in der erlauterten Ausfliihrungsform ist doppelgepuffert. Doppelpufferung erméglicht
es dem System, eine Anzeigeliste zu erzeugen, wahrend es eine weitere liest. Wahrend das System die Gspri-
te-Transformationen berechnet und die Anzeigeliste fir ein Teilbild aufbaut, liest es die Anzeigeliste fir ein an-
deres Teilbild und zeigt die Bilddaten in dieser Liste an.

[0158] Wegen der Doppelpufferung tberlappen sich die Schritte, die in Fig. 6 gezeigt sind: Der Bildprapro-
zessor fuhrt Schritte (280-286) fiir ein Teilbild aus, wahrend der Bildprozessor Schritte (290-298) fiir ein ande-

171147

DE 696 36 599 T2 2007.08.23

res Teilbild ausflhrt.

[0159] Fig. 7 ist ein Schema, das den Zeitablauf dieser Schritte illustriert. Nachdem das System die Schritte
(280-286) (Fig. 6) fir ein Teilbild 310 vollendet hat, wartet es auf ein Teilbildsynchronisierungssignal (vertikaler
Rucklauf) und fiihrt dann den Puffertausch aus. Die Anzeigeliste, die es gerade erzeugt hat, wird dann zur Be-
stimmung der Gsprites verwendet, die im aktuellen Teilbild 312 angezeigt werden sollen. Wahrend diese An-
zeigeliste verarbeitet wird 312, werden Gsprite-Transformationen berechnet und eine Anzeigeliste wird fur das
nachste Teilbild aufgebaut 314. Im nachsten Teilbild werden dann die Gsprite-Transformationen und die Anzei-
geliste, die im vorherigen Teilbild 314 erzeugt wurden, dazu verwendet, das Anzeigebild 316 zu erzeugen.

[0160] Der Bildprozessor konvertiert Gsprites auf Ausgabegeratekoordinaten auf der Basis der Liste der
Gsprites in der Anzeigeliste. Der Bildprozessor liest Gsprite-Daten aus dem gemeinsamen Speicher, ein-
schliellich Farbe, Alpha und Daten, die die Position des Gsprites kennzeichnen. Auf der Basis dieser Daten
bestimmt der Bildprozessor die Farbe und Alpha fiir Pixel, die vom Gsprite bedeckt werden.

[0161] In einer Ausfiihrungsform durchlauft der Bildprozessor zyklisch jedes Band, wobei er Gsprites trans-
formiert, die gemaR der Gsprite-Anzeigeliste auf dieses Band fallen. Wir werden diesen Anzeigeprozess de-
taillierter unten beschreiben.

[0162] Nach dem Transformieren der Gsprite-Daten setzt der Bildprozessor die resultierenden Pixeldaten zu-
sammen. Dies umfasst das Berechnen von Farbe und Alpha fiir Pixel in Ausgabegeratekoordinaten auf der
Basis der Gsprite-Transformationen. Der Bildprozessor transformiert die Pixeldaten fiir Gsprites in der Anzei-
geliste und setzt dann die transformierten Pixeldaten zusammen. Der Prozess beinhaltet das Bestimmen von
Farbe und Alpha an einer Pixelstelle auf der Basis eines Beitrags von einem oder mehreren Pixelwerten von
Gsprites, die diese Pixelstelle bedecken.

[0163] In einer Ausflhrungsform durchlauft der Bildprozessor zyklisch die Bander und setzt Pixeldaten fur je-
des Band zusammen. Der Bildprozessor puffert Pixeldaten doppelt: Er transformiert und setzt Gsprite-Daten
fur ein Band in einem Puffer zusammen, wahrend er zusammengesetzte Pixeldaten fir ein anderes Band an-
zeigt.

[0164] Nach dem Zusammensetzen der Pixeldaten Ubertragt der Bildprozessor dann die zusammengesetz-
ten Pixeldaten an eine Ausgabevorrichtung. Die typischste Ausgabevorrichtung, die in Verbindung mit diesem
System verwendet wird, ist natlrlich eine Anzeige. Zur Anzeige der Pixeldaten werden sie in ein Format um-
gewandelt, das mit der Anzeige vertraglich ist.

[0165] Nachdem wir den Systembetrieb einer Ausfiihrungsform beschrieben haben, stellen wir nun mehr De-
tails bezuglich der Bildverarbeitungsplatine bereit.

Bildverarbeitungsplatine

[0166] In der einen Ausfuhrungsform umfasst der gemeinsam genutzte Speicher 216 4 MB RAM. Er wird un-
ter Verwendung von zwei 8-Bit-RAM-Buskanalen implementiert. Die Menge und Art des Speichers kann jedoch
variieren.

[0167] Fig. 8 ist ein Schema, das den DSP 336 auf der Bildverarbeitungsplatine 174 illustriert. Der DSP 336
ist fur das Parsen des Befehlsstroms aus dem Hostprozessor und die Ausfiihrung eines Teils der Videoverar-
beitung und der Front-End-Geometrieverarbeitung verantwortlich Der DSP fiihrt die Front-End-Geometriever-
arbeitung und die Beleuchtungsberechnungen aus, die fur die 3D-Grafik verwendet werden. Dies umfasst Mo-
dell- und Betrachtungstransformationen, Beschneiden und Beleuchtung. Teile des Gsprite-Animationsma-
nagement werden ebenfalls im DSP gehandhabt, wie zum Beispiel die Gsprite-Bewegungsextrapolation.

[0168] Rendering-Befehle werden in Hauptspeicherpuffern gespeichert und tiber den PCI-Bus und durch den
PCI-Buscontroller 342 auf die Bildverarbeitungsplatine 174 geDMAL. Diese Befehle werden dann im gemein-
sam genutzten Speicher 216 auf der Platine gepuffert, bis sie vom DSP 336 bendtigt werden (Fig. 8).

[0169] Der DSP-Kern 338 umfasst einen Prozessor zur Ausfiihrung der Bildverarbeitungsberechnungen, die

oben beschrieben werden. AuRerdem fuhrt der DSP-Kern die Zeitplanung und das Ressourcenmanagement
aus.

18/147

DE 696 36 599 T2 2007.08.23

[0170] Die Speicherschnittstelle 340 unterstiitzt Hochgeschwindigkeitsdatenlibertragungen, z.B. 64 Bit bei 80
MHz. Sie ist so gestaltet, dass sie eine Schnittstelle zu konventionellen DRAM- und SDRAM-Einrichtungen bil-
det. Der Tiler 200 ist so ausgelegt, dass er direkt an diesen Bus angeschlossen werden kann, womit die fur
den DSP erforderliche Speicherzeitsteuerung simuliert wird.

[0171] Der Datenformatierer und -konverter 346 im DSP formatiert die Rendering-Befehle fiir den Tiler. Dieser
Block konvertiert Gleitkommafarbkomponenten in ganze Zahlen und packt sie in die Tiler-spezifischen Daten-
strukturen. Er puffert auch einen kompletten Befehl und DMAL ihn direkt in einem Speicherpuffer in einem ge-
meinsam genutzten Speicher. Diese Rendering-Befehle werden spater vom Tiler gelesen, wenn er zur Ausflih-
rung der Operationen bereit ist.

[0172] Unter seinen Formatierungsaufgaben formatiert der Datenformatierer und -konverter 346 Dreiecksbe-
fehlsdaten fiur den Tiler. R G B a (Alpha)-Daten, die vom DSP (336) in Gleitpunkt berechnet werden, werden
in 8-Bit-Ganzzahlen umgewandelt. Koordinateninformationen werden vom Gleitkomma in 12.4-Festkomma-
zahlen umgewandelt. Die Daten werden in 64-Bit-Worte gepackt und in einem zusammenhangenden Block in
den gemeinsamen Speicher Ubertragen, um die Bandbreite zu optimieren.

[0173] Die Anzeigespeichermanagementeinheit (MMU) 344 wird fir den Desktop-Anzeigespeicher verwen-
det. Sie fangt PCI-Zugriffe in einem linearen Adressbereich ab, der als Desktop-Anzeigespeicher zugewiesen
wird. Sie bildet dann diese Zugriffe auf Bildbldécke ab, die im gemeinsamen Speicher gespeichert sind.

[0174] Die Architektur der Bildverarbeitungsplatine (Fig. 4A, 174) ist relativ unabhangig vom speziellen DSP.
Jedoch sollte der DSP vorzugsweise eine betrachtliche Gleitkomma-Rechenleistung besitzen. Geeignete
DSPs umfassen den MSP-1 von Samsung Semiconductor und TriMedia von Philips Semiconductor. Diese
speziellen DSPs sind zwei Beispiele fliir DSPs, die eine ausreichende Gleitkomma-Rechenleistung bieten.

[0175] Eig. 9A ist ein Schema des Tilers 200 auf der Bildverarbeitungsplatine 174. Der Tiler ist fir 2D- und
3D-Grafikbeschleunigung und fiir die Steuerung des gemeinsamen Speichers verantwortlich. Wie im Schema
der Bildverarbeitungsplatine gezeigt, schlief3t sich der Tiler direkt an den DSP (176, Fig. 4), die Gsprite-Engine
204 und das gemeinsame Speichersystem 216 an.

[0176] Die Funktionsblocke, die im Schema oben gezeigt werden, werden in diesem Abschnitt beschrieben.

[0177] Der Tiler 378 umfasst eine Reihe von Komponenten zum Rendern von Grundelementen. Die Befehls-
und Speichersteuerung 380 umfasst eine Schnittstelle zum gemeinsamen Speicher 216, der Gsprite-Engine
204 und dem DSP 176. Zugriffe auf den Speicher vom Tiler, DSP und der Gsprite-Engine wurden durch diesen
Block arbitriert. Eine Schlange wird zum Puffern von Lesezugriffen bereitgestellit.

[0178] Der Setup-Block 382 berechnet die linearen Gleichungen, die die Kanten-, Farb- und Texturkoordina-
teninterpolation uber die Flache des Dreiecks bestimmen. Diese Gleichungen werden ebenfalls dazu verwen-
det, um festzustellen, welche Texturblocke bendtigt werden, um das Dreieck zu rendern. Die Kantengleichun-
gen werden auch in den Scanumwandlungsblock 394 geschoben und in den Grundelementeregistern 396 ge-
speichert, bis sie von der Scanumwandlungs-Engine 398 benétigt werden.

[0179] Der Setup-Block 382 umfasst drei Komponenten: den Eckeneingabeprozessor 384, die Ecken- und
Kontrollregister 386 und die Setup-Engine 388. Der Eckeneingabeprozessor 384 parst den Befehlsstrom vom
DSP. Die Ecken- und Kontrollregister 386 speichern Informationen, die fiir die Verarbeitung von Polygonen und
anderen geometrischen Grundelementen notwendig sind. Die Dreiecksverarbeitung wird in dieser speziellen
Ausfuhrungsform verwendet, und der Tiler 200 umfasst Register fiir sechs Ecken (drei fir jedes Dreieck), was
die Doppelpufferung der Dreiecksverarbeitung ermoglicht. Die Setup-Engine 388 berechnet die Differenzen fur
die Farb-, Tiefen-, Kanten- und Texturkoordinateninterpolation tber die Flache des Dreiecks. Diese Gleichun-
gen werden ebenfalls dazu verwendet, festzustellen, welche Texturblécke zum Rendern des Dreiecks verwen-
det werden. Die Setup-Engine ruft auch Texturchunks im voraus ab, so dass sie verfligbar sind, wenn sie von
der Scanumwandlungs-Engine 398 bendtigt werden.

[0180] Die Setup-Engine 388 kommuniziert auch mit der Texturleseschlange 390 und einem Texturadressge-
nerator 392. Die Texturleseschlange 390 puffert Leseanforderungen fur Texturbldcke aus gemeinsamem Spei-
cher. Obwohl wir den Begriff , Textur" bei der Bezugnahme auf die Abschnitte des Tilers verwenden, die zum
Abrufen von Bilddatenbldcken aus dem Speicher verwendet werden, versteht es sich, dass dieser Begriff sich
auf Texturabbildungen, Schattenabbildungen und andere Bilddaten beziehen kann, die bei Mehrfachrendering-

19/147

DE 696 36 599 T2 2007.08.23

operationen verwendet werden. Der Texturadressgenerator 392 bestimmt die Adresse im Speicher der ange-
forderten Chunks und sendet Texturleseanforderungen an die Befehls- und Speichersteuerung 380. Der Tex-
turadressgenerator 392 umfasst eine Speichermanagementeinheit, die das Schreiben von Bilddaten in den
Texturcache steuert.

[0181] Der Scanumwandlungsblock 394 empfangt Differenzen und andere Eckpunktdaten vom Setup-Block
und erzeugt Pixel-Daten. Der Scanumwandlungsblock 394 umfasst Grundelementeregister 396 und die Scan-
umwandlungs-Engine 398. Die Grundelementeregister 396 speichern die Gleichungsparameter fiir jeden Drei-
ecksparameter. Die Grundelementeregister umfassen Register zum Speichern mehrerer Satze von Gleichun-
gen, so dass die Scanumwandlungs-Engine beim Warten auf Texturdaten nicht stecken bleibt.

[0182] Die Scanumwandlungs-Engine 398 scannt und wandelt Polygone um, die in diesem Fall Dreiecke
sind. Der Scanumwandlungsblock 394 umfasst die Interpolatoren fir sich bewegende Kanten und die Bewer-
tung von Farben, Tiefen usw. Die Pixeladresse, zusammen mit Farbe und Tiefe, und Anti-Aliasing-Bede-
ckungsinformationen werden an die Pixelengine zur Verarbeitung geschickt.

[0183] Die Scanumwandlungs-Engine 398 sendet Texturadressen an die Texturfilter-Engine 400, die die Tex-
turdaten berechnet. Die Texturfilter-Engine 400 berechnet Pixelfarbe und Alphadaten fiir Polygone, die gerade
gerendert werden. Die illustrierte Texturfilter-Engine berechnet einen Filterkern, der auf der Z-Neigung und
-Orientierung des Dreiecks, das gerendert wird, und auf der Mitte der Texturanforderung beruht (S- und T-Ko-
ordinaten eines Punktes, der in die Textur abgebildet wird). Das Filtern wird in zwei Durchlaufen in einer Pipe-
line-Weise ausgefuhrt, so dass in jedem Zyklus ein neues Pixel erzeugt wird. Der Filterkern kann ein anisotro-
pes Filter oder ein isotropes Filter sein. Wenn keine Anisotropie bendétigt wird, kann der Filterkern negative
Keulen verwenden, was viel scharfere Texturen ermoglicht, als mit dreiliniger Interpolation méglich ist. Die Tex-
turfilter-Engine 400 handhabt auch Z-Vergleichsoperationen zum Berechnen der Effekte bei Schatten.

[0184] Der Texturcache 402 speichert Bldcke von dekomprimierten Bilddaten. In einer Implementierung spei-
chert der Texturcache 402 Texturdaten fir sechzehn 8x8-Pixelblécke. Die Daten sind so organisiert, dass bei
jedem Taktzyklus auf 16 Texturelemente zugegriffen werden kann.

[0185] Die Dekompressionsengine 404 dekomprimiert Texturdaten und Ubertragt sie zum Texturcache 402.
In dieser Ausfiihrungsform umfasst die Dekompressionsengine zwei Dekompressoren, einen, der eine diskrete
Kosinustransformation (DCT) implementiert, die auf dem Algorithmus fiir kontinuierliche Halbtonbilder, wie
zum Beispiel Texturen, beruht, und den anderen, der einen verlustlosen Algorithmus fir Desktop-Pixeldaten
implementiert. Der DCT-basierende Algorithmus wird durch zwei parallele Dekompressionsbldcke implemen-
tiert, die jeweils acht Pixelelemente (d.h. zwei Pixel) pro Taktzyklus erzeugen kénnen.

[0186] Der komprimierte Cache 416 kann zum Puffern von komprimierten Daten verwendet werden, bevor
die Dekompressionsengine 404 sie dekomprimiert und sie in den Texturcache 402 Gbertragt.

[0187] Die Scanumwandlungs-Engine 398 (bertragt Pixeldaten in die Pixelengine 406. Die Pixelengine 406
fuhrt Berechnungen auf Pixelniveau aus, einschlie8lich Mischen und Tiefenpufferung. Die Pixelengine hand-
habt auch die Z-Vergleichsoperationen, die fiir Schatten bendtigt werden. Um eine optimale Leistung zu erhal-
ten, sollte die Pixelengine vorzugsweise bei einem Pixel pro Takt arbeiten.

[0188] Die Pixelengine 406 steuert die Ubertragungen von Pixeldaten an einen Rasterungspuffer. Der Raste-
rungspuffer umfasst in der erlauterten Ausfiihrungsform Pixelpuffer 408 und Fragmentpuffer 410. Die Pixelpuf-
fer 408 umfassen zwei Puffer zur Unterstiitzung der Doppelpufferung. Bei dieser Implementierung der Pixel-
puffer speichert jeder Pixeleintrag acht Bit pro Farbkomponente (R G B), acht Bit fiir die Alpha-Komponente,
24 Bit fur den Z-Puffer, 8 Bit fiir den Schablonenpuffer und einen Neun-Bit-Zeiger im Fragmentpuffer. Das
macht insgesamt 73 Bit pro Pixel. Ein Pixelpuffer wird von der Pixelengine 406 verwendet, wahrend der andere
durch die Anti-Aliasing-Engine 412 verwendet wird. Dann werden die Puffer getauscht.

[0189] Die Fragmentpuffer 410 speichern Fragmente fur teilweise bedeckte Pixel, Pixelfragmente genannt,
die aus Pixeln von Polygonen resultieren, deren Kanten ein gegebenes Pixel schneiden oder die lichtdurchlas-
sig sind. Der Fragmentpuffer ist ein einzelner Puffer in der Implementierung, die in Eig. 9A gezeigt wird. Eine
freie Liste von Fragmenten wird unterhalten, so dass beim Aufldsen von Fragmenten diese zur freien Liste hin-
zugefligt werden und beim Erzeugen von Fragmenten diese Eintrage aus der freien Liste verwenden. Alterna-
tiv kdnnte der Fragmentpuffer doppelt gepuffert sein, so dass ein Fragmentpuffer von der Anti-Aliasing-Engine
aufgeldst werden kénnte, wahrend der andere parallel dazu von der Pixelengine gefillt wird.

20/147

DE 696 36 599 T2 2007.08.23

[0190] In einer Ausflihrungsform umfasst ein Fragmentdatensatz dieselben Daten wie in den Pixelpufferein-
tragen plus eine 4x4-Maske. Der Neun-Bit-Zeiger wird dazu verwendet, eine verlinkte Liste von Eintragen mit
einem reservierten Wert zu bilden, der das Ende der Liste anzeigt. In dieser Ausfihrungsform umfassen die
Fragmentpuffer 410 insgesamt 512 Eintrage, die GroRRe kann aber variieren.

[0191] Die Anti-Aliasing-Engine 412 berechnet die Farb- und Alphakomponente fur Pixel, die von mehr als
einem Polygon betroffen sind, was passiert, wenn Polygone nur teilweise die Pixelflache abdecken (d.h. die
Polygonkanten schneiden die Pixel) oder wenn Polygone Lichtdurchlassigkeit besitzen. Die Anti-Aliasing-En-
gine 412 Ubertragt aufgeloste Pixeldaten zur Kompressions-Engine 414. In dieser Ausfiihrungsform umfasst
die Kompressions-Engine 414 zwei Kompressoren, einen DCT-basierten fur Halbtonbilder und einen verlust-
losen fiir Desktop-Pixeldaten. Der DCT-basierte Algorithmus wird unter Verwendung eines Kompressors imp-
lementiert, der acht Pixelelemente pro Taktzyklus komprimieren kann. Die Kompressions-Engine 414 kompri-
miert die sich ergebenden gerenderten Gsprites und sendet die komprimierten Daten an den Befehlsspeicher
und -steuerung 380 zur Speicherung im gemeinsamen Speicher 216 (Fig. 4). Der Tiler besitzt ebenfalls einen
komprimierten Cache 416 zum Cachen von komprimierten Daten.

[0192] Die Fig. 10 und Fig. 11 illustrieren zwei alternative Implementierungen fur den Zugriff auf Bilddaten
aus dem Speicher wahrend des Pixelerzeugungsprozesses. Es gibt eine Reihe von Fallen, bei denen auf Bild-
daten aus dem Speicher wahrend der Pixelerzeugung zugegriffen werden muss. Dazu gehért zum Beispiel der
Zugriff auf eine Texturabbildung wahrend einer Texturabbildungsoperation, Zugriff auf eine Schattenabbildung
wahrend einer Schattierungsoperation und Zugriff auf Farb- und/oder Alphadaten wahrend Mehrfachmi-
schungsoperationen Der Einfachheit halber bezeichnen wir die Bilddaten im Speicher als ,Texturen" oder , Tex-
turdaten". Es sollte sich jedoch verstehen, dass die Verfahren und Systeme, die hier beschrieben werden, auch
auf andere Arten von Bilddaten angewendet werden kénnen, auf die vom Speicher wahrend der Pixelerzeu-
gung zugegriffen wird.

[0193] Die Implementierungen, die in den Eig. 10 und Eia. 11 illustriert werden, bieten alternative Herange-
hensweisen, um einen Texturcache auf dem Tiler effizient zu laden und zu nutzen. Ein wesentlicher Vorteil die-
ser Ansatze ist, dass Texturdaten in Speichern mit hoher Verzégerungszeit und selbst in einem komprimierten
Format gespeichert werden kénnen, ohne die Leistungsfahigkeit ibermaflig zu beeintrachtigen. Im Ergebnis
dessen kann weniger spezieller und preiswerterer Speicher verwendet werden, um Hochleistungs-Rende-
ring-Hardware zu implementieren.

[0194] Auf Texturdaten aus dem Speicher wird zugegriffen, und diese werden in Einheiten gespeichert, die
"Blécke" genannt werden, welche normalerweise eine kleine rechteckige Region darstellen, die sich zum effi-
zienten Abrufen und Cachen eignen. Eine typische Blockgrofe hat eine GréRe von etwa 8x8 Abfragewerten.
Fir Texturabbildungen ist ein typischer Block zum Beispiel 8x8 Texel grof3.

[0195] Fig. 10 ist ein Funktionsschema, das eine Ausfihrungsform zum Zugriff auf diese Blocke von Textur-
daten illustriert. Diese Ausfihrungsform I0st das Verzégerungszeitproblem durch Puffern von Pixeldaten aus
dem Rastergenerator 417, einschliel3lich der Texturdatenanforderungen, in einer Texturreferenzdatenschlange
418. Die Schlange umfasst geniigend Eintrage, um die Verzégerungszeit aufzunehmen, die anderenfalls beim
Zugriff (und mdglicherweise Dekomprimieren) eines Texturblocks auftreten wiirde, so dass der Renderingpro-
zess mit voller Geschwindigkeit ablaufen kann. Wenn zum Beispiel 100 Zyklen erforderlich sind, um einen Tex-
turblock abzurufen, und der Tiler in der Lage ist, ein Pixel pro Takt zu erzeugen, dann umfasst die Texturrefe-
renzdatenschlange mindestens 100 Eintrage.

[0196] Der Datenfluss im System, der in Fig. 10 illustriert wird, lauft folgendermalRen ab. Zuerst werden die
geometrischen Grundelemente zum Rastern eingerichtet, wie in Block 416 gezeigt. Die Einrichtungsverarbei-
tung umfasst zum Beispiel das Lesen der Eckpunkte fiir ein geometrisches Grundelement, wie zum Beispiel
ein Dreieck, und die Berechnung von Differenzen fur Farbe, Tiefe und Kanten lber die Flache des Dreiecks.
Die Parameter, die sich aus diesen Berechnungen ergeben, werden dann in den Rastergenerator 417 einge-
speist.

[0197] Der Rastergenerator 417 liest die Gleichungsparameterdaten fir jedes Grundelement und erzeugt Pi-
xeldaten. Der Rastergenerator erzeugt Pixeldaten, einschlief3lich Texturkoordinaten und Filterdaten, und puf-
fert diese Daten in der Texturreferenzdatenschlange 418. Der Texturabrufblock 420 liest die Texturreferenzda-
ten, die in der Schlange 418 gespeichert sind, und ruft die entsprechenden Texturblécke aus dem Speicher
419 ab.

21/147

DE 696 36 599 T2 2007.08.23

[0198] Die Pixeldaten, die in der Texturreferenzdatenschlange 418 in dieser Ausfiihrungsform gespeichert
sind, umfassen: eine Zieladresse fir das Pixel (X, Y), das gerade berechnet wird; Tiefendaten (Z); eine Bede-
ckungsmaske; Farb- und Lichtdurchlassigkeitsdaten; die Koordinaten der Mitte fir die Texturanforderung (S,
T), und Texturfilterdaten. Die Tiefen- und Bedeckungsdaten werden in der Texturreferenzdatenschlange nur
benétigt, wenn ein hochwertiges Anti-Aliasing von Pixeln gewlinscht wird. Alternativ kann das Entfernen ver-
borgener Flachen und das Anti-Aliasing im Rastergenerator 417 ausgefuhrt werden. Wenn das Entfernen ver-
borgener Flachen und das Anti-Aliasing im Rastergenerator ausgefiihrt wird, brauchen Tiefendaten und Bede-
ckungsdaten nicht in der Datenschlange 418 gespeichert zu werden. Die Texturfilterdaten kénnen zum Beispiel
einen Parameter fiir die Detailliertheit fiir die MIP-Abbildung umfassen oder kdnnen anisotrope Filterdaten fir
eine héherwertige Texturfilterung umfassen.

[0199] Die Texturblockabrufung 420 liest die Texturreferenzdaten, die in der Datenschlange gespeichert sind,
und ruft die entsprechenden Texturdaten aus dem Speicher 419 ab. Im Fall von Texturabbildungzugriffen kon-
vertiert die Texturblockabrufeinheit die (S,T)-Mitte der Texturanforderung und die Texturfilterdaten in die Adres-
sen der Bldcke, die bendtigt werden, um die Texturfilteroperation ausfiihren zu kdnnen. Die Blécke, die bei die-
sem Prozess festgestellt werden, werden dann in den Cache geholt, wobei sie andere Blocke bei Bedarf er-
setzen. Bilddatenblécke kénnen unter Verwendung eines Algorithmus zum Ersetzen eines zuletzt verwendeten
(LRU) oder eines anderen geeigneten Cache-Ersetzungsalgorithmus abgerufen werden. Um Speicherzugriffe
zu reduzieren, verfolgt die Texturblockabrufeinheit die Texturblécke, die bereits im Texturcache 421 gespei-
chert sind, und vermeidet das mehr als einmalige Abrufen desselben Blocks. Diese Fahigkeit reduziert be-
trachtlich die Speicherbandbreite, die zur hochqualitativen Texturfilterung benétigt wird, weil die Verzégerungs-
zeit beim Abrufen eines Texturblocks nur einmal beim Berechnen eines Bildes auftritt.

[0200] Die Texturblockabrufeinheit umfasst einen Sperrmechanismus, um das Uberschreiben von Texturblé-
cken zu verhuten, die noch in der Texturfiltereinheit im Tiler bendtigt werden. Eine Moglichkeit, einen solchen
Sperrmechanismus zu implementieren, besteht darin, einen Referenzzahlwert mit jedem Texturblock zu ver-
knipfen, um zu verfolgen, ob der Texturfilter einen bestimmten Texturblock verwendet hat. Dieser Referenz-
zahlwert wird beim Erhalt einer Texturanforderung fir einen Block durch die Texturabrufeinheit erhéht und als
Reaktion auf seine Verwendung durch die Texturfiltereinheit verringert. Die Texturblockabrufeinheit ersetzt
dann nur Blocke, die einen entsprechenden Referenzzahlwert von null besitzen.

[0201] Eine andere Moglichkeit, den Sperrmechanismus zu implementieren, ist das Zuweisen eines Puffers
fur die zeitweilige Speicherung der Texturblockausgabe durch die Texturabrufeinheit. Bei diesem Ansatz wird
der Bildblock zuerst in den temporaren Speicherpuffer geschrieben. Nachdem die Texturabrufeinheit das
Schreiben des Bildblocks in den temporaren Speicherpuffer beendet hat, kann er dann in den Texturcache
Ubertragen werden. Bildblécke werden in den Texturcache geswappt, wenn sie zum ersten Mal von der Tex-
turfiltereinheit 422 bendtigt werden.

[0202] Im Fall von Texturabbildungsoperationen liest der Texturfilterblock 422 Texturproben aus dem Tex-
turcache 421 und die Pixeldaten, die in der Texturreferenzdatenschlange 418 gespeichert sind, und berechnet
Pixelfarb- und moglicherweise Alphawerte aus den Texturprobedaten.

[0203] Zusatzlich zu den Texturabbildungsoperationen kann dieser Ansatz auch auf das Schattierungs- und
Mehrfachmischoperationen angewendet werden. Zum Beispiel kann die Texturreferenzdatenschlange dazu
verwendet werden, eine Schattentiefenabbildung abzurufen, die im Speicher liegt. Alternativ kann die Textur-
referenzdatenschlange dazu genutzt werden, Farb- und/oder Alphadaten abzurufen, die in Mehrfachbeleuch-
tungs- und Schattierungsoperationen verwendet werden. Weitere Details bezliglich Texturabbildungs-, Schat-
tierungs- und Mehrfachoperationen werden unten angefihrt.

[0204] Es gibt eine Reihe von Vorteilen fiir das Puffern von Pixeldaten in der oben beschriebenen Weise. Ein
wesentlicher Vorteil ist, dass Bilddaten in weniger speziellem Speicher (mit hdherer Zugriffszeit) gespeichert
werden kdnnen, was die Kosten fiir das Gesamtsystem reduziert. AuRerdem kénnen Bilddaten, die Texturen
enthalten, in komprimiertem Format gespeichert werden, und es kann darauf immer noch mit ausreichend
schnellen Raten zugegriffen werden, um anspruchsvolle Pixeloperationen, wie die Texturfilterung, auszufiih-
ren. Im Ergebnis ist das System in der Lage, eine verbesserte Leistungsfahigkeit bei niedrigeren Kosten im
Vergleich zu bekannten Verfahren fir den Zugriff auf Texturdaten zu erreichen.

[0205] Ein weiterer Vorteil fur diesen Ansatz ist, dass die Texturreferenzdatenschlange genau vorhersagen

kann, auf welche Bildblécke aus dem Speicher zugegriffen werden muss. Im Ergebnis dessen erfahrt das Sys-
tem eine Verzogerungszeit fir Speicherzugriffe, die nicht gréRer als notwendig ist. Sobald die Bilddatenblécke

22/147

DE 696 36 599 T2 2007.08.23

im Texturcache sind, kann die Texturfiltereinheit mit der vollen Geschwindigkeit des Rastergenerators laufen,
solange es ausreichend Speicherbandbreite und Texturabrufdurchsatz gibt, um die angeforderten Bildblécke
in den Texturcache zu schreiben.

[0206] Mit dem Einstellen von Texturreferenzen in die Schlange mit der Texturanforderungsmitte und dem Fil-
tern der Daten kann die Schlange viel kleiner sein, als wenn die Texel mit ihren entsprechenden Texturfilterge-
wichten in die Schlange gestellt werden.

[0207] Fig. 11 ist ein Funktionsschema, das eine alternative Ausfiihrungsform fir den Zugriff auf Bilddaten
aus dem Speicher illustriert. Bei diesem Ansatz werden geometrische Grundelemente in die Schlange gestellt
und dann in einem Vorrastergenerator verarbeitet, um die Verzégerungszeit des Texturblockabrufs wahrend
des Pixelerzeugungsprozesses zu verbergen. Mit einem Beispiel lasst sich das Konzept besser illustrieren.
Wenn ein durchschnittliches Grundelement 25 Zyklen zum Rastern bendétigt und es 100 Zyklen dauert, einen
Texturblock aus dem Speicher abzurufen, sollte die Grundelementeschlange mindestens vier Grundelemente
lang sein. Eine vereinfachte Version des Postrastergenerators, des Vorrastergenerators umfasst Schaltkreise
zur Bestimmung der Bilddatenblécke, auf die im Speicher zugegriffen werden muss. Sobald die Texturdaten
abgerufen sind, kann der Nachrastergenerator Pixeldaten unter Verwendung von Texturdaten erzeugen, ohne
der Verzdgerungszeit ausgesetzt zu sein, die beim Abruf von Blécken aus dem Speicher auftritt.

[0208] Der Datenfluss durch diese Implementierung verlauft folgendermafien. Wie bei der Implementierung,
die oben beschrieben wird, werden geometrische Grundelemente in einem Setup-Block 425 zur Rasterung
verarbeitet. Bei dieser speziellen Implementierung umfasst der Setup-Block 425 jedoch eine groRere Grunde-
lementeschlange, um mehr Grundelemente zu puffern. Der Vorrastergenerator 426 konvertiert die Grundele-
ment schnell in der Reihenfolge, wie die Blécke vom Nachrastergenerator 427 bendtigt werden, in eine Liste
von Texturblocken, die bendtigt werden, um die Texturfilterungsbeduirfnisse fur alle Pixel zu erfiillen, die vom
Grundelement abgedeckt werden. Der Vorrastergenerator ist eine vereinfachte Version des Nachrastergene-
rator 427 oder des Rastergenerators 417 in der alternativen Implementierung. Bei diesem Ansatz braucht der
Vorrastergenerator nur Texturdatenadressen zu berechnen und Texturanforderungen zu bestimmen.

[0209] Der Vorrastergenerator enthalt auch ein Modell des Texturblockcaches und fihrt den Cacheerset-
zungsalgorithmus, wie zum Beispiel zuletzt verwendet (LRU) aus, um das Uberschreiten der GréRe des Tex-
turblockcaches zu vermeiden. Als Teil des Cacheersetzungsalgorithmus komprimiert der Vorrastergenerator
wiederholte Anforderungen an einen einzelnen Texturblock auf nur eine Anforderung an die Texturblockab-
rufeinheit 429.

[0210] Die Texturblockabrufschlange 428 umfasst Eintrdge zum Speichern von Texturblockanforderungen.
Die Texturblockabrufeinheit 429 liest die Texturabrufe aus der Texturblockabrufschlange und ruft die entspre-
chenden Blécke aus dem Speicher 430 ab.

[0211] Der Nachrastergenerator rastert Grundelemente, die sich im Setup-Block 425 in der Schlange befin-
den, um Pixeldaten fir einen Pixelort zu erzeugen. Wenn auf Bilddaten aus dem Speicher wahrend des Pixel-
erzeugungsprozesses zugegriffen werden muss, rastert der Nachrastergenerator die Grundelemente so
schnell wie die notwendigen Texturblécke in den Texturblockcache 431 Ubertragen werden kdnnen. Wenn der
Nachrastergenerator das Rastern eines Grundelementes, das sich im Setup-Block in der Schlange befindet,
abschlie3t, wird das Grundelement entfernt und durch eine weiteres Grundelement aus dem Eingabedaten-
strom ersetzt. Der Setup-Block ist dafuir verantwortlich, dass die Schlange mit Grundelementen gefiillt gehalten
wird, so dass der Vorrastergenerator und der Nachrastergenerator nicht im Pixelerzeugungsprozess stehen
bleiben.

[0212] Wie die alternative Ausflihrungsform, die oben beschrieben wird, sollte die Texturblockabrufung vor-
zugsweise einen Sperrmechanismus umfassen, um das Uberschreiben der Texturblécke zu verhiiten, die noch
vom Nachrastergenerator bendétigt werden. Die zwei Sperrmechanismen, die oben beschrieben sind, kdnnen
auch in dieser Implementierung verwendet werden. Speziell kann ein Referenzzahlwert dazu verwendet wer-
den zu verfolgen, wann ein Bildblock angefordert und dann verwendet wurde. In diesem Fall wirde ein Refe-
renzkonto beim Erhalt einer Texturanforderung fir einen Block durch den Vorrastergenerator erhdht und bei
Verwendung durch den Nachrastergenerator verringert werden. Die Texturblockabrufeinheit ersetzt dann nur
Bldcke im Texturcache, wenn ihr entsprechender Referenzzahlwert null ist.

[0213] Alternativ kann ein Puffer zur temporaren Speicherung von Texturblockausgaben durch den Texturab-
rufblock zugewiesen werden. Wenn der Texturabrufblock das Schreiben eines Blocks in diesen temporaren

23/147

DE 696 36 599 T2 2007.08.23

Puffer abgeschlossen hat, kann er dann in den Texturblockcache 431 Ubertragen werden, wenn er vom Nach-
rastergenerator 427 angefordert wird. Wenn der Nachrastergenerator 427 zuerst Daten in einem Texturblock
im temporaren Puffer anfordert, wird der Block dann in den Texturblockcache 431 Ubertragen.

[0214] Es gibt eine Reihe von Vorteilen fur diese Vorgehensweise. Erstens kdnnen Texturdaten in weniger
speziellem Speicher gespeichert werden, und darauf kann trotzdem mit Raten zugegriffen werden, die bendtigt
werden, um eine anspruchsvolle Texturfilterung zu unterstitzen. Ein wichtiger, damit verwandter Vorteil ist,
dass Texturdaten in einem komprimierten Format gespeichert und dann zur Verwendung im Pixelerzeugungs-
prozess dekomprimiert werden kénnen.

[0215] Ein weiterer Vorteil dieses Ansatzes ist, dass Anforderungen an Speicher vorhergesagt werden kon-
nen, so dass die Verzdégerungszeit flir den Speicherzugriff nur einmal fur jeden Texturblock zum Rendern einer
Szene auftritt. Sobald die ersten Texturblécke im Texturcache sind, kann der Nachrastergenerator mit voller
Geschwindigkeit laufen, solange es ausreichend Speicherbandbreite und Texturabrufdurchsatz gibt, um den
Cache aktuell zu halten.

[0216] Fig. 9B illustriert eine detailliertere Implementierung des Systems, das in Fig. 10 illustriert wird. Der
Setup-Block 381 in Fig. 9B entspricht dem Setup-Block 416 in Fig. 10. Im Gegensatz zum Setup-Block 382
von Fig. 9A, erzeugt der Setup-Block 381 in dieser alternativen Implementierung keine Texturleseanforderun-
gen. Statt dessen erzeugt der Scanumwandlungsblock 395 Pixeldaten, einschlie3lich Texturreferenzdaten, die
in der Texturreferenzdatenschlange 399 gespeichert werden.

[0217] Der Scanumwandlungsblock 395 von Fig. 9B ist eine spezielle Implementierung des Rastergenera-
tors 417 in Fig. 10. Er berechnet einen Z-Wert, eine Bedeckungsmaske, Farb- und Lichtdurchlassigkeitswerte
und die Mitte der Texturanforderung in Texturkoordinaten. Fur einige Texturabbildungoperationen berechnet er
auch Detailliertheitsdaten oder anisotrope Filterdaten. Die Texturfilter-Engine 401 liest die Texturanforderung
und moglicherweise Texturfilterdaten, die in der Texturreferenzdatenschlange 399 gepuffert sind, und greift auf
die entsprechenden Texturproben im Texturcache zu. Aus diesen Texturdaten berechnet die Texturfilter-Engine
den Beitrag der Textur zu den Pixelfarb- und -Alphawerten. Die Texturfilter-Engine kombiniert Farbe und Alpha
in der Texturreferenzdatenschlange 399 mit dem Beitrag aus der Textur, um Pixelwerte zu erzeugen, die an die
Pixelengine 406 gesendet werden.

[0218] Die Texturcachesteuerung 391, Texturleseschlange 393, Befehls- und Speichersteuerung 380 sind
spezielle Implementierungen des Texturblockabrufs 420 in Eig. 10. AuRerdem sind fiir komprimierte Texturblo-
cke der komprimierte Cache 416 und die Dekompressionsengine 404 auch Teil des Texturblockabrufs 420.

[0219] Eiq. 9C illustriert eine detailliertere Implementierung des Systems, das in Eig. 11 illustriert wird. In die-
ser Implementierung wird die Funktionalitat, die in Verbindung mit den Bldcken 425 und 426 von FEig. 11 be-
schrieben wird, innerhalb des Setup-Blocks 383 implementiert. Speziell umfasst der Setup-Block 383 den Vor-
rastergenerator 426. Der Setup-Block 383 umfasst auch zusatzliche Eckpunktkontrollregister 387 zum Puffern
zusatzlicher Grundelemente, so dass der Vorrastergenerator die Grundelemente schnell konvertieren kann,
um Texturdatenanforderungen in Gang zu setzen. Die Setup-Engine und der Vorrastergenerator 383 senden
Anforderungen fiir Texturblécke an die Texturcachesteuerung 391, die in Fig. 9C gezeigt wird.

[0220] Die Texturcachesteuerung 391 stellt sicher, dass die bendtigten Texturbldcke sich im Texturcache 402
befinden, wenn sie benétigt werden. Die Texturleseschlange puffert Leseanforderungen fiir Texturdatenbldcke
im gemeinsamen Speichersystem. Die Befehls- und Speichersteuerung 380 arbitriert den Zugriff auf das ge-
meinsame Speichersystem, und sie umfasst einen Puffer zur Pufferung von Daten aus dem Speicher. Die Tex-
turcachesteuerung 391, Texturleseschlange 393 und die Befehls- und Speichersteuerung 380 sind spezielle
Implementierungen des Texturblockabrufs 429 in Fig. 11. Fir komprimierte Texturblécke sind der komprimierte
Cache 416 und die Dekompressionsengine 404 auch Teil des Texturblockabrufs 429. Die Texturcachesteue-
rung 391 leitet den Strom von Texturblécken aus dem komprimierten Cache 416 durch die Dekompressions-
engine 404 in den Texturcache 402.

[0221] Der Scanumwandlungsblock 397 und die Texturfilter-Engine 403 sind eine spezielle Implementierung

des Nachrastergenerators 427 in Fig. 11. Der Scanumwandlungsblock 397 und die Texturfilter-Engine 403 ar-
beiten ahnlich wie ihre Gegenstlicke, die in Eig. 9A illustriert und oben beschrieben werden.

24/147

DE 696 36 599 T2 2007.08.23

Texturcachesteuerung

[0222] Oben haben wir zwei Ansatze zum Rastern in Umgebungen mit hoher Verzégerungszeit fur Texturab-
rufoperationen beschrieben. Wir geben nun Erscheinungsformen der Texturcachesteuerung detaillierter an.

[0223] Die Texturcachesteuerungsmethode ermdglicht es dem Rastergenerator, wahrend der Texturabbil-
dung trotz einer hohen Verzégerungszeit fir Texturabbildungsabrufoperationen mit voller Geschwindigkeit zu
arbeiten. Im Tiler ist diese Verzogerungszeit das Ergebnis der Zeit, die zum Lesen nicht komprimierter Textur-
daten aus dem gemeinsamen Speicher (z.B. RAMBUS) benétigt wird, plus der Zeit, die zum Dekomprimieren
von Blécken der Texturabbildung benétigt wird. Das Verfahren gilt auch fir die Gsprite-Engine, die Gsprite-Bl6-
cke aus dem gemeinsamen Speicher abruft, sie méglicherweise dekomprimiert und Pixeldaten im Gspri-
te-Raum in den Betrachtungsraum (oder spezieller in Bildschirmkoordinaten) konvertiert.

[0224] Die Grundvoraussetzung flr das Texturcachesteuerungsverfahren ist die Erzeugung zweier identi-
scher Strome von Texel-(oder Gsprite-Pixel)-Anforderungen, die zeitlich versetzt sind. Der erste (frihere)
Strom ist eine Vorabrufanforderung, fir die keine Texturdaten zurlickgegeben werden, wahrend der zweite
(spatere) Strom eine tatsachliche Anforderung ist, die wirklich Texeldaten zurlckliefert. Die Zeitdifferenz zwi-
schen diesen zwei Stromen wird dazu verwendet, die Verzégerungszeit des Lesens und Dekomprimierens der
Texturdaten zu verbergen.

[0225] Zwei Ansatze zum Erzeugen dieser zeitlich getrennten Anforderungen, die oben beschrieben werden,
sind: (1) Doppelte Rastergeneratoren, die beide von einem einzigen Grundelemente-FIFO (Fig. 11 und
Fig. 9C) lesen, und (2) ein einziger Rastergenerator, gefolgt von einem Pixel-FIFO (Fig. 10 und Fig. 9B).

[0226] Bei Ansatz (1) schaut der erste Rastergenerator sich die Grundelemente aus Positionen an der oder
in der Nahe der Eingabeseite des Grundelemente-FIFOs an und rastert die Grundelemente, wobei Texturan-
forderungen gemacht werden, aber keine Texel zurlickgeliefert werden und keine Pixel erzeugt werden. Der
zweite Rastergenerator entfernt Grundelemente aus dem FIFO-Ausgang und erstellt zu einem spateren Zeit-
punkt identische Anforderungen, empfangt die Texel aus der Texturcachesteuerung und erzeugt die Pixel. Die
Tiefe der Grundelementeschlange, kombiniert mit der Zahl der Pixel pro Grundelement, bestimmt die potenzi-
elle zeitliche Differenz zwischen den zwei Anforderungsstrémen.

[0227] Bei Ansatz (2) verarbeitet der einzige Rastergenerator Grundelemente und erstellt Texturanforderun-
gen und gibt teilweise vollstandige Pixeldaten in einen Pixel-FIFO aus. Diese Teilpixeldaten umfassen alle Da-
ten, die notwendig sind, um die Berechnung des Pixels abzuschliel3en, sobald die Texturanforderungen erfiillt
wurden. Auf der Ausgabeseite des Pixel-FIFO wird das Teilpixel abgeschlossen, was den identischen Strom
von Texturanforderungen erzeugt, die Texel empfangt und fertig gestellte Pixel erzeugt. Die Tiefe der Pixel-
schlange bestimmt die potenzielle zeitliche Differenz zwischen den zwei Anforderungsstromen.

Texturcachesteuerung

[0228] Die Texturcachesteuerung umfaldt zwei konzeptionelle Caches: den virtuellen Cache und den physi-
schen Cache. Der virtuelle Cache ist mit dem ersten (Vorabruf-)-Anforderungsstrom verknupft und umfaft kei-
ne Daten, die direkt die Cache-Eintrage begleiten (Anforderungen an diesen Cache geben keine Daten zu-
riick). Der physische Cache ist mit dem zweiten (tatsachlichen) Anforderungsstrom verknipft und umfaf3t echte
Texturdaten, die jeden Cache-Eintrag begleiten (und gibt daher Daten an den Anfordernden zurtick). Diese Ca-
ches haben dieselbe Zahl von Eintragen.

[0229] Der virtuelle Cache steuert und verfolgt den zukulnftigen Inhalt des physischen Caches; daher hat er
an einer beliebigen Position in seinem Anforderungsstrom einen Satz von Cache-Key- und Eintragsverknup-
fungen, die der physische Cache an derselben relativen Position in seinem Anforderungsstrom (zu einem zu-
kinftigen Zeitpunkt) haben wird.

[0230] Beim Erhalt einer Anforderung (eines neuen ,Keys') fiihrt der virtuelle Cache den Vergleich mit seinem
aktuellen Satz von Keys aus. Wenn der angeforderte Key nicht im virtuellen Cache ist, dann wird eine Ca-
che-Ersetzungsoperation ausgefiihrt. Die virtuelle Cache-Ersetzung umfasst 1) Auswahlen eines Eintrags zum
Auswechseln (iber LRU oder einen anderen Algorithmus), 2) Ersetzen des Keys flr diesen Eintrag und 3) Auf-
rufen des (Speicher- und) Dekompressionsteilsystems, um mit dem Prozess des Abrufens und Dekomprimie-
rens der Daten zu beginnen, die mit diesem Key verbunden sind. In den speziellen Implementierungen, die in
den Fig. 9B und Fig. 9C gezeigt werden, umfasst das Dekompressionsteilsystem die Befehls- und Speicher-

25/147

DE 696 36 599 T2 2007.08.23

steuerung 380, den komprimierten Cache 416 und die Dekompressionsengine 404.

[0231] Die Ausgabe des Dekompressionsteilsystems ist ein Block von Texturdaten, der dann in einen Eintrag
im physischen Cache (den Texturcache 402 zum Beispiel) gebracht wird. Im Tiler, der in den Fig. 9B und C
gezeigt wird, wird die Verarbeitung, die vom Dekompressionsteilsystem ausgefiihrt wird, in einer Mehrein-
trags-Pipeline realisiert, in der eine Reihenanordnung eingehalten wird.

[0232] Man beachte, dass bei Vorhandensein des angeforderten Keys im virtuellen Cache keine Aktion erfor-
derlich ist, weil sich die damit verknipften Daten zu dem Zeitpunkt, zudem sie vom zweiten Anforderungsstrom
angefordert werden, im physischen Cache befinden.

[0233] Anforderungen an den physischen Cache flihren zu einem ahnlichen Key-Vergleich, um festzustellen,
ob die angeforderten Daten bereits im Cache sind. Wenn ein passender Key gefunden wird, werden die damit
verknupften Daten zuriickgegeben. Wenn nichts Passendes gefunden wird, dann ist garantiert, dass die
nachste Datenausgabe durch das Dekompressionsteilsystem die gewlinschten Daten enthalt. Man beachte,
dass der physische Cache keine Auswahlverarbeitung von Ersetzungseintragen ausfiihrt — der Eintrag im phy-
sischen Cache, der durch die neuen Daten ersetzt wird, wird durch den virtuellen Cache tber einen Cache-Ein-
tragszielindex diktiert, der durch den virtuellen Cachecontroller berechnet wird und durch das Dekompressi-
onsteilsystem mit den gewilinschten Daten geschickt wird.

[0234] Das korrekte Funktionieren des Verfahrens erfordert, dass die Strdmungskontrolle auf die Schnittstelle
zwischen dem Dekompressionsteilsystem und dem physischen Cache angewendet wird. Wenn dekomprimier-
te Daten ihren Zieleintrag im physischen Cache Uberschreiben dirfen, sobald sie verfligbar sind, ist es mog-
lich, dass moglicherweise nicht alle Referenzen auf den vorherigen Inhalt dieses Cache-Eintrags vervollstan-
digt sind. (Man beachte, dass der Controller des physischen Cashes moglicherweise ebenfalls auf Daten war-
ten muss, die vom Dekompressionsteilsystem auszugeben sind.) Diese Flusssteuerung wird durch Warten er-
reicht, bis der neue Eintrag angefordert wird, bevor der Inhalt des vorherigen Eintrags uberschrieben wird. Das
Eintragen neuer Daten in den Texturcache wird also immer bis zum letzten Moment, wenn sie benétigt werden,
verzogert.

[0235] Da diese Ersetzung verzogert wird, bis sie erforderlich ist, kann jede Zeit, die benétigt wird, um die Da-
ten in den physischen Cache zu bringen, eine Verzégerungszeit in den Prozess einfuhren, der den zweiten
Anforderungsstrom antreibt. Die zwei Verfahren zur Abschwachung dieser Verzdgerungszeit sind folgende.

[0236] Das erste Verfahren besteht darin, die Daten im physischen Cache doppelt zu puffern. Das ermdglicht
es dem Dekompressionsteilsystem, die Daten jedes Eintrags sofort auf seine Seite des Doppelpuffers zu
schreiben, und der Controller des physischen Caches kann einen (vermutlich schnellen) Puffertausch vorneh-
men, um die Daten auf seiner Seite des Caches abzubilden. Das Dekompressionsteilsystem braucht nur zu
warten, ob der zu fillende Eintrag bereits voll ist und noch nicht getauscht wurde. Man beachte, dass der Ca-
che-Ersetzungsalgorithmus, der vom Controller des virtuellen Caches verwendet wird, nicht die Neigung be-
sitzt, denselben Eintrag wiederholt zu Uberschreiben und so das Schreiben auf die Cache-Eintrage auszudeh-
nen.

[0237] Das zweite Verfahren bestehet darin, fur den physischen Cache ein oder mehrere ,Extra'-Eintrage zu-
satzlich zu der Zahl der ,keyed" bzw. verschlisselten Eintrage vorzusehen. Die Zahl der ,keyed'-Eintrage ist
die Zahl, fur die Cache-Keys existieren, und entspricht der Zahl der Eintrage im virtuellen Cache. Die Zahl der
Extraeintrage stellt die Zahl der Eintrage dar, die nicht abgebildet sind (d.h. die aktuell nicht verschlisselt sind).
Die Summe dieser ist die Gesamtzahl von Dateneintragen im physischen Cache.

[0238] Im zweiten Verfahren kénnen alle Cache-Eintrage zwischen nicht abgebildet und abgebildet (mit ei-
nem Key verknupft) wechseln. Die Menge der nicht abgebildeten Eintrage bildet einen FIFO von Eintragen, in
den das Dekompressionsteilsystem fertig gestellte Blécke von Daten schreibt. Eine separate FIFO-Struktur
wird fir die Hauptzielindizes geflihrt, die mit diesen nicht abgebildeten Eintragen verknipft sind. Wenn eine
Anforderung an den physischen Cache erstellt wird, fir die kein passender Key vorhanden ist, wird der erste
Eintrag in der Schlange der nicht abgebildeten Eintrage in den Zielindex abgebildet und mit diesem Key ver-
knipft. Der ersetzte Eintrag wird nicht abgebildet und (leer) an das Ende der nicht abgebildeten Schlange ge-
setzt.

26/147

DE 696 36 599 T2 2007.08.23
Cache-Key-Erzeugung

[0239] Die Grundvoraussetzung des Verfahrens ist, dass zwei identische Strome von Anforderungen erzeugt
werden. Es ist jedoch nicht erforderlich, dass die speziellen Keys, die mit diesen Anforderungen verknupft wer-
den, identisch sind.

[0240] Die Cache-Keys, die den ersten (friihen) Strom von Anforderungen bilden, werden zur Steuerung des
Lesens und der nachfolgenden Dekompression der Texturdaten verwendet. Diese Keys miissen eine gewisse
direkte Relevanz fiir die angeforderten Daten besitzen (wie zum Beispiel eine Speicheradresse).

[0241] Die Cache-Keys, die den zweiten (spateren) Strom von Anforderungen bilden, brauchen nicht genau
dem Inhalt des ersten Stroms zu entsprechen — es ist nur eine Forderung, dass es eine eindeutige 1:1-Abbil-
dung zwischen den beiden gibt. Dies ist auf die Tatsache zurlickzufihren, dass die Keys fur den zweiten Strom
nur zum Abstimmen vorhandener Cache-Eintrage verwendet werden, nicht fur Datenabrufoperationen. Der kri-
tische Fakt ist hier, dass die Verknlpfung zwischen dem Key des physischen Caches und einem Cache-Eintrag
hergestellt wird, wenn die neuen Daten auf den physischen Cache abgebildet werden und der Index des zu-
gehorigen Eintrags vom virtuellen Cache berechnet und durch das Dekompressionsteilsystem geschickt wird.

[0242] Diese Tatsache kann ausgenutzt werden, um die Steuerelemente fir den Prozess zu vereinfachen,
der gerade die Keys fiir den zweiten Anforderungsstrom erzeugt, da die Keys flir den Strom nur eindeutig und
nicht ganz ,korrekt' sein missen.

[0243] Fig. 12A ist ein Schema, das die Gsprite-Engine 436 auf der Bildverarbeitungsplatine 174 illustriert.
Die Gsprite-Engine 436 ist flir das Erzeugen der Grafikausgabe aus einer Sammlung von Gsprites verantwort-
lich. Sie hat eine Schnittstelle zur Tiler-Speicherschnittstelleneinheit fir den Zugriff auf die Gsprite-Datenstruk-
turen im gemeinsamen Speicher. Gsprites werden von der Gsprite-Engine transformiert (gedreht, skaliert usw.)
und zum Zusammensetzungspuffer weitergeleitet, wo sie mit Pixeln zusammengesetzt werden, die von ande-
ren Gsprites bedeckt werden.

[0244] Die Schnittstellensteuerung 438 wird zum Verbinden der Gsprite-Engine mit dem gemeinsamen Spei-
chersystem Uber den Tiler verwendet. Dieser Block umfasst einen FIFO, um Zugriffe vom Speicher zu puffern,
bevor sie durch die Gsprite-Engine verteilt werden.

[0245] Der Anzeigesteuerprozessor 440 wird zur Steuerung der Videoanzeigeaktualisierungen verwendet. Er
umfasst einen Videotaktgenerator, der die Videoanzeigeauffrischung steuert und die Taktsignale erzeugt, die
zur Steuerung der Gsprite-Zugriffe notwendig sind. Dieser Block durchlauft auch die Gsprite-Anzeigedaten-
strukturen zur Feststellung, welche Gsprites fir ein gegebenes 32-Scanzeilen-Band gelesen werden sollen.

[0246] Die Gsprite-Header 442-Register speichern Gsprite-Headerdaten, die vom Bildprozessoradressgene-
rator 454 und der Gsprite-Filterengine 456 dazu verwendet werden, die Transformationen an jedem Gsprite
festzustellen. Sie werden auch vom Gsprite-Headerdecoder 444 zur Bestimmung der Blécke (in diesem Fall
der 8x8-Kompressionsbldcke) verwendet, die bendétigt werden, um den Gsprite in jedem Band zu rendern.

[0247] Der Gsprite-Headerdecoder 444 bestimmt, welche Blécke aus jedem Gsprite im 32-Scanzeilen-Band
sichtbar sind, und erzeugt Blockleseanforderungen, die zur Gsprite-Leseschlange 446 Ubertragen werden.
Dieser Block beschneidet auch den Gsprite unter Verwendung der Gsprite-Kantengleichungsparameter auf
das aktuelle Band. Dieser Prozess wird detaillierter unten beschrieben.

[0248] Die Gsprite-Leseschlange 446 puffert Leseanforderungen fir Gsprite-Blocke. Diese Schlange spei-
chert in dieser Ausfiihrungsform Anforderungen fir sechzehn Bloécke

[0249] Der Gspritedaten-Adressgenerator bestimmt die Adresse im Speicher der angeforderten Gsprite-BIo-
cke und sendet Gsprite-Leseanforderungen an den Schnittstellensteuerungsblock. Der Gspritedaten-Adress-
generator 448 umfasst eine Speichermanagementeinheit.

[0250] Komprimierte Daten, die aus dem gemeinsamen Speicher 216 (Fig. 4A) abgerufen werden, kdnnen
temporar im komprimierten Cache 458 gespeichert werden.

[0251] Die Dekompressionsengine 450 umfasst zwei Dekompressoren, einen, der einen DCT-basierten Al-
gorithmus fir Halbtonbilder, wie zum Beispiel 3D-Gsprites, implementiert, und den anderen, der einen verlust-

27/147

DE 696 36 599 T2 2007.08.23

losen Algorithmus fur Desktop-Pixeldaten implementiert. Der DCT-basierte Algorithmus wird durch zwei paral-
lele Dekompressionsbldcke implementiert, die jeweils acht Pixelelemente (d.h. zwei Pixel) pro Taktzyklus er-
zeugen konnen.

[0252] Der Gsprite-Cache 452 speichert dekomprimierte Gsprite-Daten (R G B a) fiir sechzehn 8x8-Blocke.
Die Daten sind so organisiert, dass bei jedem Taktzyklus auf 16 Gspritepixel zugegriffen werden kann.

[0253] Der Bildprozessoradressgenerator 454 wird dazu verwendet, jeden Gsprite auf der Basis der festge-
legten affinen Transformation abzuscannen und die Filterparameter fiir jedes Pixel zu berechnen. Gsprite-Ca-
cheadressen werden erzeugt, um auf Gsprite-Daten im Gsprite-Cache 452 zuzugreifen und sie in die Gspri-
te-Filterengine zuzufihren. Der Bildprozessoradressgenerator 454 steuert auch den Zusammensetzungspuf-
fer.

[0254] Die Gsprite-Filterengine 456 berechnet die Pixelfarbe und Alphadaten fur Pixelorte auf der Basis der
Filterparameter. Diese Daten werden in die Zusammensetzungspuffer zum Zusammensetzen Gbertragen. Die-
ser Block 456 berechnet einen 4- oder 16-Pixel-Filterkern auf der Basis der Gsprite-s- und -t-Koordinaten an
einem Pixelort. Das Filter kann zum Beispiel entweder bilinear oder eine anspruchsvollere Kosinussummen-
funktion sein. Der 16-Pixel-Filterkern kann negative Keulen haben, was eine viel scharfere Filterung ermdg-
licht, als mit bilinearer Interpolation mdglich ist. Die Gsprite-Filterengine 456 erzeugt vier neue Pixel, die bei
jedem Taktzyklus zusammengesetzt werden. Diese Pixel sind in einem Muster von zwei mal zwei ausgerichtet.

[0255] Die Gsprite-Engine 436 ist mit dem Tiler 200 und dem Zusammensetzungspuffer 210 verbunden.
Steuersignale steuern die Videozeitablaufe und den Datentransfer zum DAC 212.

[0256] Fia. 12B ist ein Schema einer alternativen Implementierung der Gsprite-Engine 437. Diese spezielle
Implementierung umfasst sowohl einen Vorrastergenerator 449 als auch den Rastergenerator 454, so dass die
Gsprite-Engine Gsprite-Pixeldaten aus dem Gsprite-Raum in den Bildschirmraum konvertieren kann, ohne
eine Verzogerungszeit beim Abrufen und Dekomprimieren von Bldcken der Gsprite-Pixeldaten zu erfahren.
Der Ansatz mit zwei Rastergeneratoren, der in dieser Implementierung verwendet wird, wird oben in Verbin-
dung mit Fig. 11 und Fig. 9C beschrieben.

[0257] Der Betrieb der Blocke in der Gsprite-Engine 437 istim allgemeinen so wie oben fiir Fig. 12A beschrie-
ben, aulder dass diese Implementierung das Doppel-Rastergenerator-Verfahren zum Abrufen von Blécken von
Texturdaten verwendet. Bei dieser Implementierung (Fig. 12B) liest der Gsprite-Headerdecoder 444 das
Gsprite-Headerregister 442, beschneidet den Gsprite auf das aktuelle Anzeigeband und setzt den Gsprite zum
Rastern in die Gsprite-Schlange 447. Der Datenadressgenerator oder ,Vorrastergenerator" 449 scannt jeden
Gsprite auf der Basis der festgelegten affinen Transformation im Gsprite-Header und erzeugt Leseanforderun-
gen fur die Gsprite-Cachesteuerung 451. Unter Verwendung eines Verfahrens, das oben in Verbindung mit der
Texturcachesteuerung beschrieben wird, stellt die Gsprite-Cachesteuerung 451 sicher, dass die erforderlichen
Gsprite-Datenbldcke in der Gsprite-Engine 437 und speziell im Gsprite-Cache 452 sind, wenn der Bildprozes-
sorblock 455 sie bendtigt. Sie steuert den Strom von Gspritedatenbldcken aus dem komprimierten Cache 458
durch die Dekompressions-Engine 450 in den Gspritecache 452. Die Leseschlange 453 puffert Anforderungen
fur Gsprite-Datenblécke zum gemeinsamen Speichersystem, und die Schnittstellensteuerung 438 liest die An-
forderungen in der Leseschlange 453, steuert Zugriffe auf den gemeinsamen Speicher und setzt Blécke von
Gsprite-Daten in den komprimierten Cache 458.

[0258] Das Dekompressionsteilsystem in der Gsprite-Engine umfasst den komprimierten Cache 458 und die
Dekompressions-Engine 450. Die Cachesteuerung 451 steuert den Strom von Gsprite-Blécken durch das De-
kompressionsteilsystem, wie oben in Verbindung mit der Texturcachesteuerung beschrieben.

[0259] Der Bildprozessoradressgenerator (Rastergenerator) 454 scannt jeden Gsprite auf der Basis der fest-
gelegten affinen Transformation im Gsprite-Header und berechnet die Filterparameter fiir jedes Pixel. Er er-
zeugt auch Gsprite-Cacheadressen von Gsprite-Daten, die er an eine Cache-Adressenkarte im Gsprite-Cache
zur Verwendung durch die Gsprite-Filterengine 456 sendet. In einer speziellen Implementierung des Caches
wahlt die Cache-Adressenkarte aus, welche 14 Pixelblocke aktiv sind und welche zwei Blécke aus der Dekom-
pressions-Engine gefillt werden.

[0260] Die Gsprite-Filterengine 456 bildet Farb- und Alphawerte an Pixelorten im Gsprite-Raum auf den Bild-

schirmraum ab. Bei dieser Implementierung wendet sie entweder einen 2x2- oder einen 4x4-Filterkern an, um
Pixelwerte (Farbe oder Farbe und Alpha) an Pixelorten im Bildschirmraum zu berechnen. Die Steuerung 457

28/147

DE 696 36 599 T2 2007.08.23

des Zusammensetzungspuffers sendet Pixelwerte, in diesem Fall vier Pixel pro Taktzyklus, an den Zusammen-
setzungspuffer. Die Steuerung 457 des Zusammensetzungspuffers tberwacht die Bereitschaftsleitung vom
Zusammensetzungspuffer, um sicherzustellen, dass die Gsprite-Engine 437 nicht den Zusammensetzungspuf-
fer Uberlaufen lasst. Der Rastergenerator 454 steuert die Steuerung des Zusammensetzungspuffers.

[0261] Fig. 13 ist ein Schema, das den Zusammensetzungspuffer 480 auf der Bildverarbeitungsplatine 174
illustriert. Der Zusammensetzungspuffer 480 ist eine spezielle Speichervorrichtung, die zum Zusammensetzen
der Gsprite-Daten aus der Gsprite-Engine und zur Erzeugung digitaler Videodaten zur Ubertragung zum DAC
212 verwendet wird. Der Zusammensetzungspuffer arbeitet jeweils mit 32 Scanzeilen auf einmal — wobei er
Gsprites flr ein 32-Scanzeilenband zusammensetzt, wahrend gleichzeitig die vorherigen 32 Scanzeilen ange-
zeigt werden.

[0262] Die Zusammensetzungslogik 482 ist fiir die Berechnung der Pixelwerte verantwortlich, wenn sie in den
Scanzeilenpuffer geschrieben werden. Dies wird durch Ausfiihren einer Mischoperation zwischen dem Pixel-
wert, der aktuell im Scanzeilenpuffer gespeichert ist, und dem, der gerade in den Zusammensetzungspuffer
geschrieben wird, erreicht. Diese Operation wird detaillierter unten beschrieben. In einer Implementierung fuhrt
die Zusammensetzungslogik vier parallele Pixeloperationen pro Taktzyklus aus.

[0263] Die Speichersteuerung 484 wird zur Steuerung der Adresse und des zyklischen Durchlaufens der
Speicherbanke verwendet. Adresseninformationen werden in einem Zeilenspaltenformat wie bei normalen
DRAMS weitergeleitet.

[0264] Die Alphapuffer 486 umfassen einen Achtbitwert fir jedes von 1344x32 Pixel. Der Speicher ist so or-
ganisiert, dass bei jedem Taktzyklus vier zusammenhangende Pixel gelesen und geschrieben werden kénnen.
Der Alphapuffer besitzt auch einen schnellen Ldschmechanismus, um den Puffer schnell beim Umschalten
zwischen den 32-Scanzeilenbandern zu I6schen.

[0265] Es werden zwei unabhangige Scanzeilenpuffer 488 bereitgestellt. Die Scanzeilenpuffer umfassen drei
Achtbitfarbwerte fiir jedes von 1344x32 Pixeln. Der Speicher ist so organisiert, dass bei jedem Taktzyklus vier
zusammenhangende Pixel gelesen und geschrieben werden kénnen. Ein Puffer wird dazu verwendet, die Pi-
xeldaten fiir ein Band zum DAC zu Ubertragen, wahrend der andere zum Zusammensetzen der Pixel fir das
nachste Band dient. Sobald das Band abgeschlossen ist, wechseln ihre Funktionen.

[0266] Ein Multiplexer dient dazu, Daten aus einem der zwei Scanzeilenpuffer 488 auszuwahlen und die Pi-
xelanzeigedaten an den DAC zu senden. Der Multiplexer schaltet nach jeweils 32 Scanzeilen zwischen den
Puffern um.

[0267] Der Zusammensetzungspuffer 480 ist mit der Gsprite-Engine 204 verbunden und lbertragt Bilddaten
zum DAC 212.

[0268] Fiq. 14 ist ein Schema, das den DAC 514 auf der Bildverarbeitungsplatine 174 illustriert. Der DAC 514
implementiert die Grundfunktionen, die bei den meisten RAMDACSs, die heute auf dem Markt sind, vorhanden
sind. Der DAC umfasst Logik zum Lesen und Schreiben interner Steuerbefehlsregister und zur Pipelineverar-
beitung der Videosteuersignale. Weitere Funktionsbldcke werden unten beschrieben.

[0269] Der Pixeldatenroutingblock 516 wird zur Steuerung der Weiterleitung von Pixeldaten aus den Zusam-
mensetzungspuffern verwendet. Im normalen Betriebsmodus werden diese Daten mit Pixelraten zu den
Farb-LUTs 518 fir jeden der drei Kanale weitergeleitet. Dieser Block ermoglicht auch, dass die Daten fir dia-
gnostische Zwecke zum DSP zurlckgelesen werden.

[0270] Der Stereobildsplitter 520 unterstitzt zwei getrennte Videosignale fir die stereoskopische Anzeige un-
ter Verwendung eines kopfmontierten Anzeigesystems. Bei diesem Modus werden zwei Videokanale (522,
524) vom Zusammensetzungspuffer verschachtelt und missen vom DAC 514 getrennt werden. Der Stereo-
bildsplitter 520 flhrt diese Funktion am DAC 514 aus. Im normalen Einkanalmodus werden die LUT-Daten di-
rekt zu den Primaren DACs weitergeleitet.

[0271] Alternativ kann der DAC 514 so ausgelegt werden, dass er eine einzelne Videoausgabe erzeugt. Bei
einer einzelnen Videoausgabe kann der DAC eine stereoskopische Anzeige unter Verwendung eines linien-
verschachtelten Formats erzeugen, wo auf eine Scanzeile fiir ein Auge die Scanzeile fur das andere Auge
folgt. Der resultierende Videostrom hat ein Format, wie zum Beispiel 640%x960, das zwei Bildern von 640x480

29/147

DE 696 36 599 T2 2007.08.23

entspricht.

[0272] Der Taktimpulsgenerator 526 wird zum Erzeugen der Video- und Audiotaktimpulse verwendet. Diese
Taktimpulse werden durch zwei phasensynchronisierte Taktimpulsgeneratoren erzeugt, um die Synchronisati-
onsdrift zu beseitigen. Der Taktimpulsgenerator kann auch mit einem Steuersignal aus dem Medienkanal
fremdsynchronisiert werden, was ermdglicht, die Bildverarbeitungsplatine mit einer externen Synchronisati-
onsquelle zu synchronisieren.

[0273] Nachdem wir die Struktur und den Betrieb des Bildverarbeitungssystems oben beschrieben haben, be-
schreiben wir nun verschiedene Komponenten und Merkmale des Systems mit mehr Details. Wir beginnen mit
einer Einfliihrung in die Datenstrukturen, die im System zur Implementierung der Konzepte, die oben vorgestellt
wurden, verwendet werden kénnen.

Chunking

[0274] Im Gegensatz zu herkdbmmlichen Grafiksystemen, die einen grof3en Bildpufferspeicher und Z-Puffer in
RAM verwenden, um Farb-, Tiefen- und andere Informationen fir jedes Pixel zu speichern, unterteilt unser
System Objekte in einer Szene in Bildregionen, die ,Chunks" genannt werden, und rendert Objektgeometrien
getrennt in diese Chunks. In einer Ausfihrungsform werden die Objekte in Gsprites gerendert. Die Gsprites
werden in Chunks unterteilt, und die Chunks werden getrennt gerendert. Obwohl unsere Beschreibung sich
auf mehrere spezielle Ausfihrungsformen bezieht, versteht es sich, dass das Chunking auf vielerlei Weise an-
gewendet werden kann, ohne den Geltungsbereich der Erfindung zu verlassen.

[0275] Mit ein paar Beispielen Iasst sich das Konzept des Chunking besser illustrieren. Wie in Eig. 15A ge-
zeigt, wird ein Objekt 546 in einer Grafikszene von einem Kasten umschlossen, der als Begrenzungskasten
548 bezeichnet wird. Wendet man sich Fig. 15H zu, so kann ein Objekt 5650 in der Grafikszene, das durch ei-
nen Begrenzungskasten eingeschlossen ist, in eine Bildregion gerendert werden, die ein Gsprite 552 genannt
wird. Der Begrenzungskasten kann gedreht, skaliert, gedehnt oder auf andere Weise transformiert (z.B. affin
transformiert) werden, um einen Gsprite im Bildschirmraum zu erzeugen. Nachdem der Begrenzungskasten
erzeugt wurde, wird der Begrenzungskasten sowohl in X- als auch in Y-Richtung um das Objekt herum ge-
dehnt, so dass er ein ganzzahliges Vielfaches der 32-Pixel-ChunkgréRe wird, wenn der Begrenzungskasten
nicht auf eine 32-Pixel-Grenze (d.h. die Chunkgrenze) 554 fallt. Wie aus dem Objekt 550 in Eig. 15B zu erken-
nen ist, wird ein Begrenzungskasten, der um das Objekt 546, in Fig. 15A gezeigt, gezeichnet wurde, auf die
32x32-Pixelgrenzen in Eig. 15B erweitert. Der Gsprite wird dann vor dem Rendern in 32x32-Pixel"chunks" 556
unterteilt. Es kdnnten jedoch auch andere kleinere oder grof3ere ChunkgréRen und alternativ geformte Chunks
verwendet werden. Rechteckige und die bevorzugten quadratischen Chunks werden jedoch erlautert.

[0276] Wie in Eig. 15C gezeigt, enthalt eine Grafikszene 558 eine Reihe von Uberlappenden Objekten (560,
562). Diese Objekte sind in Begrenzungskasten eingeschlossen und werden Gsprites (564, 566) zugewiesen.
Die Begrenzungskasten, die in Fig. 15C gezeigt werden, sind bereits auf das Mehrfache von 32 Pixeln gedehnt
(und gedreht, skaliert und anderweitig transformiert) worden, so dass 32x32-Chunks 568 erzeugt werden koén-
nen. Wie man jedoch aus Fig. 15C erkennen kann, richten sich die Gsprites und ihre entsprechenden
32x32-Pixel-Chunkgrenzen 570 normalerweise nicht exakt auf die 32-Pixel-Bildschirmgrenzen 572 aus. Daher
sind zusatzliche Gsprite-Manipulationen wahrend des Chunkings erforderlich, so dass der Gsprite in den Bild-
schirmraum verschoben werden kann.

[0277] Ein Ansatz zum Erzeugen von Gsprites, die unter Verwendung des Chunking gerendert werden, be-
steht darin, eine Reihe von Objekten zu kombinieren, um einen gréReren zusammengesetzten Gsprite zu er-
zeugen, statt eine Reihe von kleineren individuellen Gsprites zu erzeugen und zu rendern, die die geometri-
sche Elemente der einzelnen Objekte enthalten. Diese Kombination von Gsprites erspart Verarbeitungszeit
wahrend des Renderns und ist oft erwiinscht, wenn die kombinierten Objekte sich nicht sehr oft innerhalb einer
Grafikszene andern. Ein weiterer Ansatz zur Erzeugung von Gsprites ist, sich Komponenten eines Objekts mit
komplexen Geometrien vorzunehmen und dann diese komplexen Geometriekomponenten in eine Reihe von
Gsprites aufzuteilen. Diese Aufteilung kann zusatzliche Verarbeitungszeit erfordern, wird aber verwendet, um
die Ausgabeauflésung eines bestimmten komplexen Objekts, das sich haufig andert, zu verbessern. An eini-
gen Objekten kann auch eine Kombination dieser Verfahren verwendet werden.

[0278] Man betrachte zum Beispiel eine Person in einem Videospiel, deren Arme mit einer Reihe von Sta-

cheln unterschiedlicher GréRRe bedeckt ist und deren Arme sich haufig bewegen. Der Kérper und Kopf und an-
dere Teile der Person kdnnen kombiniert werden und einen gréReren zusammengesetzten Gsprite bilden, da

30/147

DE 696 36 599 T2 2007.08.23

diese Teile des Objektes sich nicht haufig &ndern. Die Arme der Person jedoch, die mit Stacheln besetzt sind
und komplexe Geometrien darstellen und sich haufig andern, werden in eine Reihe von Gsprites unterteilt, um
die Ausgabeaufldsung zu verbessern. In diesem Fall wird sowohl die Kombination als auch die Unterteilung
verwendet. Da es nicht einfach oder praktisch ist, solch eine Person zu zeichnen, wird zum Zweck der Erlau-
terung ein viel einfacheres Objekt, eine ,Kaffeetasse" statt dessen verwendet, um die Kombination und die Un-
terteilung zu illustrieren.

[0279] Fig. 16A zeigt eine ,Kaffeetasse". Diese ,Kaffeetasse" ist tatsachlich aus eine Reihe von separaten
Objekten zusammengesetzt. Man kann zum Beispiel die ,Kaffeetasse" als aus einem Tassenbehalter, einem
Tassengriff, einer Untertasse und Dampfen, die aus der Tasse kommen, bestehend betrachten. Ein Ansatz wa-
re, diese einzelnen Objekte zu einem grolRen Gsprite (d.h. zu einer ,Kaffeetasse") zu kombinieren, wie in
Fig. 16A gezeigt. Ein weiterer Ansatz ware, die ,Kaffeetasse" in eine Reihe von kleineren Objekten (z.B. Tas-
senbehalter, Tassengriff, Untertasse und Dampfe) zu unterteilen und kleinere einzelne Gsprites zu erzeugen,
wie in Fig. 16B gezeigt. Fig. 16B erldutert auch, wie ein Objekt mit komplexen Geometrien unterteilt werden
kann.

[0280] Wenn man die ,Kaffeetasse" 574 als ein einfaches Objekt behandelt, wie in Fig. 16A gezeigt, kdnnen
die einzelnen Komponenten (z.B. Tassenbehalter, Tassengriff, Untertasse, Dampfe) des Objekts kombiniert
werden, um einen gro3en Gsprite zu erzeugen. In diesem Fall wiirde ein Begrenzungskasten 576 um das Ob-
jekt gezeichnet werden, um das Objekt in den Bildschirmraum zu transformieren und einen grof3en Gsprite zu
erzeugen. Der Begrenzungskasten kann gedreht, skaliert, gedehnt oder auf andere Weise manipuliert werden,
um einen Gsprite zu erzeugen, der auf die 32x32-Pixelgrenzen im Bildschirmraum fallt. Der Gsprite wird dann
in eine Reihe von 32x32-Pixelchunks 578 unterteilt.

[0281] Eine Moglichkeit, einen Gsprite in Chunks zu teilen, ist, durch die ganze Geometrie, die in den Objek-
ten vorhanden ist, zu laufen und die geometrischen Elemente in Chunks zu legen. Ein weiterer Ansatz durch-
lauft die Chunks und zeichnet dabei alle Geometrien auf, die den betreffenden Chunk berlhren. Die illustrierte
Ausfuhrungsform verwendet den zweiten Ansatz, jedoch kann der erste Ansatz und kdnnen weitere Ansatze
ebenfalls verwendet werden. Wie aus Fig. 16A zu ersehen ist, sind einige Chunks leer (d.h. werden nicht von
Objektgeometrien berihrt). Diese Chunks kénnen beim Rendern ignoriert werden, wie unten erklart wird.

[0282] Wenn man nun die ,Kaffeetasse" als komplexes Objekt behandelt, so wird das Objekt in kleinere Ob-
jektkomponenten unterteilt, die verarbeitet werden, um eine Reihe von kleineren Gsprites zu erzeugen, wie in
Fig. 16B gezeigt. Zum Beispiel umfasst das Objekt ,Kaffeetasse" die Teilobjekte Tassenbehalter ohne den Griff
579, den Tassengriff 580, die Untertasse 581 und die Dampfe 582. Jedes dieser Teilobjekte wird von Begren-
zungskasten, die durch 583-586 gezeigt werden, eingeschlossen, um vier einzelne Gsprites zu erzeugen. Die
.Kaffeetasse", die die vier einzelnen Gsprites umfasst, wird ebenfalls von einem einschlieRenden Begren-
zungskasten eingeschlossen, wie durch 587 gezeigt. Jeder der Begrenzungskasten kann gedreht, skaliert, ge-
dehnt oder auf andere Weise transformiert (z.B. affin transformiert) werden, um einen Gsprite zu erzeugen, der
auf die 32x32-Pixelgrenzen im Bildschirmraum fallt. Jeder einzelne Gsprite wird dann in eine Reihe von
32x32-Pixelchunks unterteilt. Der umschlielende Begrenzungskasten 587 wird dann in Chunks geteilt und
enthalt Bereiche von leeren Chunks 588, die beim Rendern ignoriert werden. Die Chunks des umschlief3enden
Begrenzungskastens werden jedoch in Fig. 16B nicht gezeigt.

[0283] Als Ergebnis des Chunkings wird das Grafikbild nicht als einzelnes Teilbild gerendert, sondern wird als
Folge von Chunks gerendert, die spater zu einem Teilbild oder Betrachtungsraum zusammengefiihrt werden.
Nur Objekte innerhalb eines einzelnen Gsprites, die den 32x32-Pixelchunk des Bildes, das gerade gezeichnet
wird, schneiden, werden gerendert. Das Chunking ermdglicht es, dass der Bildpufferspeicher und der Z-Puffer
von geringer physischer Grof3e im Speicher sind (d.h. deutlich weniger Speicher als in den traditionellen Gra-
fiksystemen belegen, die oben beschrieben werden) und einen hohen Ausnutzungsgrad des Speichers, der
belegt ist, sowie eine steigende Speicherbandbreite erreichen. Die geringe ChunkgréRe ermdéglicht auch die
Verwendung anspruchsvollerer Renderingverfahren, Verfahren, die bei groRen Bildpufferspeichern und Z-Puf-
fern nicht effektiv angewendet werden kdnnten.

[0284] Das Rendern von Chunks wird im Tiler ausgefiihrt. Das Rendern kénnte jedoch auch in anderen Hard-
warekomponenten oder unter Verwendung von Software ausgefihrt werden. VLSI-Speicher auf dem Ti-
ler-Chip wird zum Speichern der kleinen Chunks (32x32 Pixel) des Teilbildes, das gerade gerendert wird, ver-
wendet. Der chipintegrierte VLSI-Speicher ist viel schneller und hat eine viel gréere Speicherbandbreite als
ein externer RAM. Wegen des Chunkingprozesses wird jedoch eine gro3e Menge an Speicher zum Speichern
des gesamten Bildpufferspeichers und des Z-Puffers fir den Renderingprozess nicht mehr bendétigt. Der inter-

31/147

DE 696 36 599 T2 2007.08.23

ne Speicher innerhalb des Tilers wird nur zur Verarbeitung des aktuellen Chunks verwendet und wird dann fur
jeden nachfolgenden Chunk, der verarbeitet wird, immer wieder neu verwendet. Im Ergebnis dessen wird der
verfugbare interne Speicher wahrend des Grafikrenderns gut ausgenutzt.

[0285] Die Verwendung von internem VLSI-Speicher beseitigt auch Pinansteuerungsverzégerungen, die nor-
malerweise auf Grund der chipexternen Kommunikation sowie des zusatzlichen Aufwandes, der mit der Aus-
fihrung von LESE- und SCHREIB-Operationen auf groliem externem Speicher verbunden ist, welcher fir kon-
ventionellen Bildpufferspeicher und Z-Puffer benétigt wird, auftreten. AuRerdem ermoglicht die kleine Chunk-
grélRe anspruchsvollere Anti-Aliasing- (z.B. Fragmentpuffer) und Texturierungsmethoden, die am Chunk aus-
zufiihren sind, als an einem grof3en Bildpufferspeicher und Z-Puffer, der in einer groRen Menge an externem
Speicher untergebracht ist, ausgefiihrt werden kdnnte, weil ein ganzer 32x32-Pixelchunk vollstandig in der er-
lauterten Ausfuhrungsform gerendert werden kann, bevor der nachste Chunk berechnet wird. Die geringe
Chunkgrofie bietet sich auch fir Bildkompressionsverfahren an, die detailliert unten beschrieben werden.

[0286] Nachdem alle sich schneidenden Polygone in den Chunk gezeichnet wurden und die Fragmente auf-
geldst sind, werden die Pixeldaten, einschlieflich Farbe und Opazitat, im Tiler-Chip komprimiert und dann zum
externen Speicher bewegt.

[0287] Das Flussdiagramm in den Fig. 17A und Fig. 17B zeigt einen Uberblick auf hoher Ebene, wie man
eine Grafikszene in Chunks aufteilt. Zuerst wird eine oder werden mehrere Begrenzungskasten fir jedes Ob-
jekt erzeugt. (592) (Fig. 17A). Wenn das Objekt eine komplexe Geometrie besitzt (z.B. mosaikartig fein unter-
teilt usw.), dann wird eine Reihe von Begrenzungskasten erzeugt, um jede komplexe Komponente des Objekts
einzuschliel3en (mehrere Gsprites zu erzeugen) (596). Wenn die Objektgeometrie nicht komplex ist, dann kann
ein einziger Begrenzungskasten zum EinschlieRen des Objektes und Erzeugen eines Gsprites (598) verwen-
det werden. Wenn das Objekt jedoch komplex ist, dann umschlief3t ein einzelner Begrenzungskasten auch die
mehreren Begrenzungskasten, die zum Umschlief3en der komplexen Komponenten des Objekts erzeugt wur-
den. Wenn der Begrenzungskasten oder die -kasten kein ganzzahliges Vielfaches von 32 Pixeln (600) sind,
wird/werden der Begrenzungskasten oder die -kasten symmetrisch in X- oder Y-Richtung (oder in beiden Rich-
tungen) gedehnt, so dass sich ein ganzzahliges Vielfaches von 32 Pixeln ergibt. Das Objekt (oder die Objekt-
komponenten, wenn die Geometrie komplex ist) wird werden dann im Begrenzungskasten (602) zentriert. Dies
wird durch die Gsprites illustriert, die in den Fig. 15B und Fig. 15C gezeigt werden. Die symmetrische Ausdeh-
nung ist vorzuziehen, obwohl nicht erforderlich, da sie das beste Gleichgewicht fir die Verarbeitung zwischen
Chunks in einem einzelnen Gsprite bietet.

[0288] Wieder mit Bezugnahme auf Fig. 17, werden die Gsprites dann in 32x32-Pixelchunks (604) (Eig. 17B)
unterteilt. Wie erkennbar ist, befinden sich diese Chunks nicht an festen Orten im Betrachtungsraum, sondern
sind an adressierbaren und variablen Orten je nach dem Ort des gechunkten Objektes. Nach dem Teilen der
Gsprites in Chunks, werden die Chunks verarbeitet. Wenn das Rendern der Chunks abgeschlossen ist (606),
endet der Prozess. Wenn das Rendern der Chunks nicht abgeschlossen ist, wird die Verarbeitung des nachs-
ten Chunks gestartet, nachdem zuerst untersucht wurde, ob er leer ist (608). Wenn der Chunk leer ist, wird er
nicht verarbeitet, und der nachste Chunk wird untersucht. Wenn der Chunk nicht leer ist, dann setzt sich das
Rendern (610) des Chunks im Tiler fort, bis alle Objekte, die auf dem Chunk liegen, verarbeitet sind. Dieser
Prozess setzt sich fort, bis alle Chunks in jedem Gsprite und alle Gsprites verarbeitet sind.

[0289] Die Grofie der Gsprites kann als Prozentsatz der Gesamtbildschirmflache ausgedriickt werden. Hin-
tergrund-Gsprites sind ziemlich grof3, jedoch andere Komponenten der Szene sind normalerweise ziemlich
klein im Vergleich zur Gesamtbildschirmflache. Die Leistungsfahigkeit jeder Chunkingmethode, die verwendet
wird, schwankt mit der BildschirmraumgréRe der Grundelemente in den Gsprites. Im Ergebnis dessen ist es
notwendig, den Objektdateneingabestrom, der zur Erzeugung der Gsprites verwendet wird, richtig zu regulie-
ren (z.B. in eine Schlange zu setzen). Die richtige Regulierung des Objektdateneingabestroms ermdglicht es,
die Objektverarbeitung mit einer gréReren Bandbreite abzuschlieften und den Systemdurchsatz zu erhéhen.

[0290] Unser System verwendet einen Befehlsstromcache, um den Objektdateneingabestrom zu cachen. Der
Befehlsstromcache kann zum Cachen des gesamten Inhalts eines Gsprites und dann zum Iterieren Gber jeden
Chunk und seine zugehdérigen Geometrien im Gsprite, die im Cache gespeichert sind, verwendet werden.

[0291] Der Cache kann auch zum selektiven Cachen verwendet werden. Zum Beispiel wenn man einen
Schwellwert definiert, so dass geometrische Grundelemente automatisch gecacht werden, wenn sie eine be-
stimmte Zahl von Chunks berihren. Wenn ein Cache verfugbar ist, kann das virtuelle Chunking ausgefihrt
werden. Beim virtuellen Chunking wird ein Chunk-Speicherbereich erzeugt, der den Regionen von N x M

32/147

DE 696 36 599 T2 2007.08.23

Chunks entspricht, wobei jede Region ein virtueller Chunk ist. Das virtuelle Chunking ermdglicht es, die virtu-
ellen Chunks dem Inhalt und der Gré3e der Geometrie, die bearbeitet wird, entsprechend adaptiv in der GroRRe
zu bemessen.

[0292] Eine weitere Verwendung fir den Cache ist das modifizierte Cachen von Szenengraphen. Statt zu ca-
chen und sich auf statische Abschnitte der Szene zu beziehen, wird gecacht, und auf dynamische Abschnitte
wird durch Anspielung verwiesen. Nehmen wir zum Beispiel einen Gsprite an, der in einer Kuckucksuhr mit
recht komplexen Geometrien enthalten ist. Die Uhr selbst ist recht komplex, aber die einzigen sich bewegen-
den Teile sind ein Vogel, zwei Turen und zwei Uhrzeiger. Ferner ist jede dieser Geometrien starr und andert
sich nicht. Daher beinhaltet das Rendern der Uhr sechs statische Baume und sechs Transformationen (d.h.
einen fur Uhr, Vogel, 2 Tlren und 2 Uhrzeiger). Wenn der Cache grof genug ist, wird der ganze Szenengraph
in einen Befehlsstrom transformiert. Beim Rendern werden die aktuellen Transformationen tber den gecach-
ten Befehlsstrom gepatcht, und der resultierende Befehlsstrom wird fir alle Chunks im Gsprite eingeleitet. Die
gepatchten Teile des Befehlsstroms haben dann Uber alle Renderingoperationen hinweg dieselbe GroRe. Ein
flexiblerer Ansatz besteht darin, einen Aufrufbefehl in den gecachten statischen Szenengraphen einzufihren.
Beim Rendern werden die dynamischen Teile in Speicher veranderlicher GréRe geschrieben und gecacht.
Adressen dieser dynamischen Abschnitte werden dann in den zugehdrigen Aufrufbefehl im statischen Befehls-
strom gepatcht. Dieser Ansatz ist flexibler, da die GréRe des dynamischen Befehls von Rendering zu Rende-
ring variieren kann. Dieser Ansatz ist also vom Effekt her ein speicher-gecachter Rickrufansatz. Im Fall der
Kuckucksuhr wiirde dies das Schreiben von sechs Transformationen und moglicherweise einen Rickruf fir die
Vogelgeometrie bedeuten, so dass er leer sein konnte, wenn die Turen geschlossen sind. Dieser Ansatz ist
aullerst kompakt in Bezug auf Busbandbreite und bietet sich fir den schnellen, gerichteten Durchlauf des Sze-
nengraphen an.

[0293] Auch wenn der Cachespeicher begrenzt ist, kdnnen einige geometrische Strukturen oder Attribute
Uber mehrere Renderings im Cache bleiben. Zum Beispiel wiirde bei einem Autorennspiel das Cachen einer
Autokarosseriegeometrie zu einer betrachtlichen Gesamteinsparung Uber die Renderings fuhren. In gleicher
Weise kénnten haufige Attributzustéande (oder Teilzustéande) Uiber viele Gsprites oder das Rendering eines ein-
zelnen Gsprites wieder verwendet werden. Wie gerade beschrieben, kann das Verwenden eines Caches in ei-
ner Chunkingmethode zu betrachtlichen Zeiteinsparungen flihren. Jedoch kénnte eine angemessene Chun-
kingleistungsfahigkeit auch ohne den Befehlsstromcache dadurch erreicht werden, dass ein Befehlsstrom flie-
gend fir jeden beriihrten Chunk im Gsprite erzeugt wird.

[0294] Bei der Implementierung des Tilers, die in den Fig. 9A-Fig. 9C gezeigt wird, werden Chunks sequen-
ziell verwendet, um ein ganzes Teilbild auf einem Prozessor zu rendern, statt mehrere gleichzeitige Chunks
auf parallelen Prozessoren zu verwenden, um die rechnerische Last zu teilen. Obwohl dies in geringerem
Mafe bevorzugt wird, kbénnte auch eine Kombination von serieller und paralleler Verarbeitung von Chunks ver-
wendet werden. Bei einer vollstandig parallelen Verarbeitungsimplementierung von Chunks wiirde ein Objekt,
das sich uber den Bildschirm bewegt, notwendigerweise konstante Chunkingoperationen erfordert, wenn es
Uber den Bildschirm bewegt wird. In der erlduterten Ausflihrungsform der Erfindung kann jedoch ein Objekt
wegen der seriellen Verarbeitung von Chunks an den Chunkgrenzen in einem Gsprite festgemacht werden und
daher KEIN Chunking erfordern, wenn das Objekt tGber den Bildschirm bewegt wird. Das Rendern von Chunks
bei Parallelverarbeitung ermdglicht auch keine Anwendung von anspruchsvollen Anti-Aliasing- und Texturie-
rungsmethoden auf einzelne Chunks, wie dies fir das serielle Rendern von Chunks der Fall ist. Die Chunkgro-
Re und das sequenzielle Rendern sind fir Bildkomprimierungsverfahren sehr wertvoll, da ein ganzer 32x32-Pi-
xelchunk vor dem Berechnen des nachsten Chunks gerendert wird und daher sofort komprimiert werden kann.

[0295] Der Zweck der Bildkomprimierung besteht darin, Bilder mit weniger Daten darzustellen, um Speicher-
kosten und/oder Ubertragungszeit und -kosten zu sparen. Je weniger Daten zum Darstellen eines Bildes er-
forderlich sind, desto besser, vorausgesetzt, das Bild kann angemessen wiederhergestellt werden. Die effek-
tivste Kompression wird durch Annahern des Originalbildes anstelle von einer exakten Reproduktion erreicht.
Je groRRer die Kompression, umsomehr wird das Endbild eine Naherung (,verlustbehaftete Kompression") sein.

[0296] Der Prozess des Chunkings ist selbst ein Komprimierungsverfahren. Objekte werden mit einem oder
mehreren Gsprites angenahert, die wiederum aus einer Reihe von 32x32-Pixelchunks erzeugt werden. Das
tatsachliche Objekt wird mit Gsprites angenahert und aus gerenderten Gsprites rekonstruiert. Die Rekonstruk-
tion des Originalobjekts hangt davon ab, wie effektiv das Objekt durch seine Aufteilung in Gsprites und an-
schliefendes Chunking angenahert wurde (z.B. unter Verwendung komplexer Objektgeometrieteilungsverfah-
ren, die oben beschrieben werden).

33/147

DE 696 36 599 T2 2007.08.23

[0297] Die einzelnen 32x32-Chunks werden ebenfalls unter Verwendung von Bildkomprimierungsverfahren
komprimiert. Ein komprimierter 32x32-Pixelchunk nimmt weniger Raum in dem verfuigbaren kleinen Umfang
an internem Speicher ein. Die 32x32-Pixelchunks kénnen in sechzehn 8x8-Pixelchunks aufgeteilt werden, wel-
ches die GroRe ist, die haufig in Bildkomprimierungsverfahren, die diskrete Kosinustransformationen (DCT)
einsetzen, verwendet wird.

[0298] In einer Implementierung unterstitzen die Kompressions- und Dekompressionsengines im Tiler und
die Dekompressionsengine in der Gsprite-Engine sowohl verlustbehaftete als auch verlustfreie Formen der
Kompression/Dekompression. Die verlustbehaftete Form umfasst eine verlustfreie Farbtransformation von
RGB nach YUV, eine DCT, gleichférmige oder wahrnehmbare Quantisierung und Entropiecodierung (Lauflan-
gen- und Huffman-Codierung). Die verlustfreie Form umfasst eine Farbtransformation von RGB nach YUV,
eine Vorhersagestufe und Entropiecodierung, wie sie in der verlustbehafteten Form ausgefihrt wird.

[0299] Um die Speicheranforderungen zur Verarbeitung von Grafikbildern unter Verwendung des Chunkings
drastisch zu reduzieren, wird in der erlauterten Ausfihrungsform ein kleiner Z-Puffer (z.B. etwa 4 Kilobyte (kB))
verwendet. Speziell ist der Z-Puffer in dieser Implementierung etwas kleiner als 4 kB (1024x26), jedoch kann
die Zahl der Prazisionsbits variieren. Es kdnnten jedoch auch ein kleinerer oder gréfierer Z-Puffer verwendet
werden. Durch die Verwendung eines kleinen 4-kB-Z-Puffers kdnnen jeweils nur 1024 Pixel Z-Puffer-gerendert
werden. Um Szenen (z.B. Szenen, die aus Gsprites bestehen) mit beliebiger GrolRe unter Verwendung eines
4-kB-Z-Puffers zu rendern, wird die Szene in Chunks mit der Grof3e von 32x32 Pixeln aufgeteilt (es gibt nor-
malerweise mehrere Gsprites in einer Szene, jedoch wird jeder Gsprite in Chunks aufgeteilt). Bei dieser Me-
thode sendet der Bildpraprozessor die entsprechende Geometrie an jeden Chunk in einem Gsprite zum Z-Puf-
fer-Rendern.

[0300] Als Beispiel daflr, wie das Chunking arbeitet, betrachte man die acht Objekte und ihre zugehdrigen
geometrischen Strukturen, die in Fig. 18A gezeigt werden. Der Einfachheit halber werden die acht Objekte
612-619 durch ein einziges Attribut 620 (z.B. Farbe) definiert, das einen von vier Werten A-D haben kann. Die
acht Objekte werden dann in einer Grafikszene Uberlagert, wie in Fig. 18B gezeigt. Wenn man individuelle
Gsprites und ihre Erzeugung ignoriert, sich aber statt dessen fur Zwecke der Erlauterung auf vier isolierte
Chunks konzentriert, werden die vier isolierten Chunks 621-624 in Fig. 18B gezeigt. Die vier isolierten Chunks
621-624 (Fig. 18B) werden von den geometrischen Strukturen 1-8 und den Attributen A-D berthrt, wie in
Eig. 19A gezeigt. Chunk 1 630 (Eig. 19A) wird von den geometrischen Strukturen 1, 2 und 5 und dem Attribut
B, Chunk 2 639 wird von keinen geometrischen Strukturen und den Attributen A-D berihrt, Chunk 3 632 wird
von den geometrischen Strukturen 2, 4, 7 und 8 und den Attributen A, B, D berthrt, und Chunk 4 634 wird von
den geometrischen Strukturen 4 und 6 und den Attributen A, C berthrt. Ein Beispiel fir einen Teilszenengra-
phen, der von der Bildvorverarbeitung (unter Verwendung der Chunks, die in den Eig. 18B und Fig. 19A ge-
zeigt werden) aufgebaut wird, wird in Fig. 19B gezeigt. Die Attribute jedes Chunks (z.B. Farbe usw., die durch
A-D, X gezeigt werden) werden als Kreise 638 und die geometrischen Strukturen (z.B. die verschiedenen For-
men, gezeigt durch 1-8) werden als Quadrate 640 gezeigt. Der Buchstabe X bezeichnet einen Vorgabewert fir
ein Attribut. Die Zwischenknoten enthalten Attributoperationen zur Anwendung auf die geometrischen Struktu-
ren der Grundelemente. Die Blattknoten im Szenengraphen enthalten Grundelementestrukturen, die auf die
Chunks angewendet werden sollen, und kénnen auch Begrenzungsvolumina um die Strukturen herum enthal-
ten, die die Chunks beschreiben (Blattknoten mit Begrenzungsvolumina werden unten beschrieben).

[0301] Ein Ansatz fur eine Chunkingmethode besteht darin, tGber jeden Chunk zu iterieren und jedes Mal die
volle geometrische Struktur zu senden. Ein anderer, besserer Ansatz besteht darin, nur geometrische Struktu-
ren zu senden, die im aktuellen Chunk sichtbar sind (Man beachte, dass im optimalen Fall geometrische Struk-
turen Ubersprungen werden, die verdeckt oder anderweitig unsichtbar sind). Das Verfahren zum Chunken ei-
nes Gsprites in einem 32x32-Pixelblock, das tatsachlich in unserem System verwendet wird, liegt zwischen
den zwei Extremen und wird Bucket Chunking genannt. Jedoch kénnen auch andere Methoden, die auf oder
zwischen die zwei Extreme fallen, verwendet werden, um Chunks fiir eine Chunkingmethode zu erzeugen.

[0302] Die Bucket Chunking-Methode besteht aus zwei Durchldufen. Der erste Durchlauf durchlauft den Sze-
nengraphen, wahrend gleichzeitig die aktuelle Transformation in den Betrachtungsraum mit dem Ziel aufrecht-
erhalten wird, einen beschreibenden Befehlsstrom fiir jeden Chunk im Betrachtungsraum aufzubauen. Der Be-
trachtungsraum wird in N x M Chunk Buckets (Speicherbereiche) aufgeteilt, die am Ende jeweils eine Liste der
geometrischen Strukturen enthalten, die auf den entsprechenden Chunk fallen. Wenn ein Geometrie-Grunde-
lement-Knoten auftritt, wird die aktuelle Transformation auf das Begrenzungsvolumen angewendet, um eine
2D-,Fuspur" im Betrachtungsraum zu erhalten. Fur jeden Chunk, der von der Fuldspur bertihrt wird, wird die
geometrische Struktur (und der akkumulierte Attributzustand) zum entsprechenden Bucket hinzugefugt. Am

34/147

DE 696 36 599 T2 2007.08.23

Abschluss dieses ersten Durchlaufs enthalt jeder Bucket die notwendigen Daten, um den entsprechenden
Chunk zu rendern. Man beachte, dass diese Chunkingmethode empfindlich auf die Qualitat der berechneten
Fullspur reagiert — eine lose Grenze am Objekt ergibt eine grolere FulRspur und trifft Chunks, die nicht von der
umschlossenen geometrischen Struktur berihrt werden. Eine enge Grenze am Objekt ergibt eine kleinere
FuRspur und trifft die meisten Chunks, die von den umschlossenen geometrischen Strukturen berihrt werden.

[0303] Als Beispiel fir den ersten Durchlauf betrachte man eine Teilmenge von vier Chunks, die sich berla-
gernde Objekte enthalten, die von den geometrischen Strukturen 1-8 und den Attributen A-D, X, in Fig. 19A
gezeigt, beschrieben werden. Ein Ansatz fir das Durchlaufen des Szenegraphen in Durchlauf eins besteht da-
rin, den aktuellen Zustand fiir jeden Chunk beizubehalten und dann die geometrische Struktur zu Gbersprin-
gen, die nicht in einen gegebenen Chunk fallt. Damit wird sichergestellt, dass der Attributkontext fir jede geo-
metrische Struktur in jedem Chunk aktuell ist. Die Anwendung dieses Ansatzes auf den Szenegraphen in
Fig. 19B ergibt den folgenden Befehlsstrom in den Chunk Buckets nach Durchlauf eins:

Chunk 1 Bucket: X, A, B, 1,2,5,A, X,C,D, C, X

Chunk 2 Bucket: X, A, B, A, X, C, D, C, X

Chunk 3 Bucket: X, A, B, 2,7,8,A,4,X,D, 3,C, X

Chunk 4 Bucket: X, A, B, A, 4,X,C,6,D,C, X

[0304] Ein weiterer Ansatz besteht im Beibehalten des aktuellen Attributzustandes und Senden des vorheri-
gen Zustandes vor dem Senden jeder akzeptierten geometrischen Struktur. Dies fihrt zu den folgenden Be-
fehlsstrémen in den Chunk Buckets:

Chunk 1 Bucket: B, 1,B,2,B, 5

Chunk 2 Bucket: <leer>

Chunk 3 Bucket: B, 2,B,7,B,8,A,4,D, 3

Chunk 4 Bucket: A, 4,C, 6

[0305] Der zweite Ansatz ist eine Verbesserung gegeniiber dem ersten Ansatz. Man beachte, dass das Attri-
but B vor den geometrischen Strukturen 2 und 5 ein zweites und ein unnétiges drittes Mal angegeben wird.
Dieses Verhalten zeigt sich auch in Chunk 3 fiir B fur die geometrischen Strukturen 7 und 8. In der Realitat ist
die Situation schlimmer als hier dargestellt, weil ein Speicherauszug des aktuellen Attributzustandes bedeutet,
dass jedes einzelne Attribut fiir jede geometrische Struktur neu angegeben wird. Mit anderen Worten: Selbst
wenn die Texturtransformationsmatrix invariant flir den ganzen Szenegraphen ist, wird sie immer noch vor je-
der einzelnen geometrischen Struktur in jedem Chunk gesendet.

[0306] Daher widmet sich dieser spezielle Ansatz der Attributbeibehaltung fiir vorrangige Attribute und statt
dessen dem fur das Zusammensetzen der Attribute. Diffuse Farbe ist ein vorrangiges Attribut. Wie durch den
Bildpraprozessor definiert (z.B. Bildvorverarbeitungssoftware, die zum Beispiel auf dem Bildpraprozessor 24
usw. lauft), der den Szenegraphen erzeugt, fuhren Attribute, die auf rot(blau(Wirfel)) angewendet werden, zu
einem roten Wirfel. Dies steht im Gegensatz zu anderen Bildpraprozessorgrafikschnittstellen, die das nachst-
gelegene Attribut an das Objekt binden. Binden des nahegelegensten Attributes an das Objekt fir
rot(blau(Wirfel)) wirde zu einem blauen Wirfel fihren.

[0307] Die Verwendung des am weitesten auflen gelegenen Attributs als vorrangiges Attribut vereinfacht die
Attributbeibehaltung fir Attribute in groRem Male. Wahrend des Durchlaufs durch den Szenegraphen kann
man beim Treffen eines Attributknotens alle Knoten dieser Attributart unterhalb desselben im Szenegraphen
ignorieren, da das am weitesten oben gelegene Attribut alle anderen nichtig macht.

[0308] Eine lokale Transformation ist ein Zusammensetzungsattribut. Der aktuelle Wert wird also durch den
vorherigen Wert und den neuen Wert bestimmt. Das Zusammensetzungsattribut erfordert eine gewisse Art von
Stack, wahrend der Szenegraph durchlaufen wird, um vorherige Werte zu speichern.

[0309] Die Bucket Chunking-Methode verwendet die folgenden Strukturen:
+ Den Attributknoten, der den aktuellen Wert enthalt,
* Den Durchlaufkontext. Das ist eine Struktur, die fir jedes vorrangige Attribut einen Zeiger auf den aktuel-
len Attributwert enthalt.
« Ein Gitter von Buckets, wovon jeder einen Befehlsstrompuffer und eine Bucketkontextstruktur derselben
Art wie der globale Durchlaufkontext enthalt.
» Eine Liste von Vorgabeattributwerten, wobei auf jeden von ihnen vom Durchlaufkontext verwiesen werden
kann.

35/147

DE 696 36 599 T2 2007.08.23

[0310] Zur Initialisierung wird der Kontext in den Vorgabezustand versetzt, so dass alle Attribute sich auf den
Vorgabekontext beziehen. Vorgabewerte werden langsam geladen und nicht en masse vor dem Senden der
Renderingbefehle abgeladen.

Attributerhaltung Initialisieren:

fiir jedes Attribut: attr
fiir jeden Bucket: bucket
Bucket.Kontext(attr) <-- nil // Kontext fiir jeden Bucket l6schen
end
Kontext[attr] <-- Vorgabe[attr] /lAuf Vorgabewerte initialisieren
end

[0311] Das Folgende diktiert, wie ein gegebener Attributknoten zu verarbeiten ist:

Attribut verarbeiten:

if Kontext[attr] # Vorgabe[attr]

ProcessGeom() IAttr bereits gesetzt, nachfolgenden Wert ignorieren.
else
Kontext[attr] < SetAttr(attr, Wert) //Auf neuen Wert setzen
ProcessGeom()
Kontext[attr] < SetAttr(attr, Vorgabe[attr])
endif

[0312] Der Prozess zur Handhabung von Geometrieknoten synchronisiert den aktuellen Durchlaufstatus mit
den Attributzustanden jedes Buckets:

Geometrie verarbeiten:

geomCommand < ConvertGeometry (geom) // In Befehlsstrom konvertieren.
fiir jeden beriihrten Bucket: bucket
fiir jedes Attribut: attr
if(Bucket.Kontext(attr) # Kontext[attr])
Bucket.Kontext[attr] < Kontext[attr]
append (Bucket.Kontext(attr))
endif
end
append (Bucket.geomCommand)

end

[0313] Zusammensetzungsattribute fungieren in einer ahnlichen Weise gegeniiber vorrangigen Attributen,

mit der Ausnahme, dass ein Stack wahrend des Durchlaufs beibehalten wird. Dies wird durch die Verwendung

von Knoten fiir die Speicherung der Stackwerte erreicht. Dieses Verfahren erfordert die folgenden Strukturen:
* Der aktuelle Attributknoten, der die Zusammensetzung der vorherigen Werte mit dem neuen Wert enthalt.
» Den Durchlaufkontext. Das ist eine Struktur, die fiir jedes Zusammensetzungsattribut einen Zeiger auf den
aktuellen Attributknoten enthalt.

36/147

DE 696 36 599 T2 2007.08.23

» Eine Liste von Vorgabeattributwerten, wobei auf jeden von ihnen vom Durchlaufkontext verwiesen werden
kann.

+ Ein Gitter von Buckets, wovon jeder einen Befehlsstrompuffer und eine Bucketkontextstruktur derselben
Art wie der globale Durchlaufkontext enthalt.

[0314] Die Initialisierung zur Zusammensetzung von Attributen sieht so wie fir vorrangige Attribute aus:

Attributerhaltung Initialisieren:

fur jedes Attribut: attr
fur jeden Bucket: bucket
Bucket.Kontext(attr) < nil// Kontext fiir jeden Bucket loschen
end
Kontext[attr] < Vorgabe[attr] /Auf Vorgabewerte initialisieren
end

[0315] Das Verarbeiten eines zusammensetzenden Attributknotens beinhaltet die Zusammensetzung des
neuen Wertes mit allen Werten vor dem aktuellen Knoten im Durchlauf. Man beachte, dass der vorherige Wert
gespeichert und wieder abgerufen werden muss, um einen Stack von Werten zu implementieren.

Attribut verarbeiten:

Knoten.ZusammengesetzterWert < Zusammensetzen(Kontext[attr], Knoten. Wert)
SavePtr < Kontext[attr] /vorherigen zusammengesetzten Wert speichern
Kontext[attr] < Knoten

ProcessGeom()

Kontext[attr]<>SavePtr //den vorherigen zusammengesetzten Wert wiederherstellen

[0316] Das Geometrie-Handhabungsprogramm ist identisch mit dem Fall der vorrangigen Attribute:

Process Geometrie:

geomCommand <~ ConvertGeometry(geom) //In Befehlsstrom konvertieren.
fiir jeden bertihrten Bucket: bucket
fiir jedes Attribut: attr
if(bucket. Kontext(attr)ZKontext(attr)
bucket.Kontext(attr)<Kontext(attr)
anhdngen(bucket.Kontext(attr))
endif

end

anhangen(bucket,geomCommand)
end

[0317] Der zweite Durchlauf der Bucket Chunking-Methode iteriert iber das Gitter von Buckets und gibt den
entsprechenden Befehlsstrom aus. Fir jeden nicht leeren Bucket wird der entsprechende Chunk aus den In-
formationen, die in diesem Bucket gespeichert sind, gerendert. Man beachte, dass es leere Buckets in der Sze-
ne geben kann, was bedeutet, dass nicht jeder Chunk im Gsprite gerendert werden muss. Fur die aktivsten

371147

DE 696 36 599 T2 2007.08.23

Gsprites, die aus einem lichtundurchlassigen Objekt auf einem transparenten Hintergrund bestehen, sollte ein
guter Teil der Chunks leer sein.

[0318] Der Ansatz zur Aufrechterhaltung des Attributzustandes, der oben beschrieben wird, ist zum Rendern
von Geometrie in einer gechunkten Weise besonders geeignet. Das Chunking bewirkt, dass Satze von geo-
metrischen Strukturen in anderer Reihenfolge, als urspriinglich angegeben, gerendert werden. Beim Rendern
eines Chunks, zum Beispiel, tGberspringt das Renderingsystem Gruppen von geometrischen Strukturen, die
den Chunk nicht schneiden. Daher sollten auf dem unteren Niveau des gechunkten Geometrierenderns hochs-
tens zwei Zustandsniveaus aufrechterhalten werden: 1) ein globaler Zustand in einem Format, das mit dem
Tiler oder alternativer Rendering-Hardware kompatibel ist, um das Rendern der geometrischen Strukturen zu
ermoglichen; und 2) kleine Statusiberlagerungen innerhalb eines Satzes von geometrischen Strukturen, die
nur fur diesen Satz von geometrischen Strukturen gelten. Mit dieser Herangehensweise kann jeder Satz von
geometrischen Strukturen unabhangig voneinander gerendert werden, und das Rendern eines Satzes von ge-
ometrischen Strukturen kann als frei von Nebeneffekten angesehen werden.

Bildkompression

[0319] Wie oben beschrieben wurde, ist die Chunkgréfte und das sequenzielle Rendern fiir Bildkomprimie-
rungsverfahren sehr wertvoll, da ein ganzer 32x32-Pixelchunk vor dem Berechnen des nachsten Chunks ge-
rendert wird und daher sofort komprimiert werden kann. Der Tiler unterstitzt verlustbehaftete und verlustfreie
Formen von Kompression, um Chunks zu komprimieren. Sowohl die verlustbehaftete als auch verlustfreie
Kompressionsform komprimiert Chunks in unabhangigen Blécken von 8x8 Pixeln. Also wiirde jeder 32x32-Pi-
xelchunk aus 16 solcher komprimierter Blécke bestehen.

[0320] Die Kompression von Bildern erméglicht einen kleineren SpeichergréRenbedarf und einen ungemein
reduzierten Speicherbandbreitenbedarf. Die Konstruktion verwendet eine Kombination von Caching, Strategi-
en zum vorherigen Abrufen sowie Chunking, um die Verzégerungszeiten und den zusatzlichen Aufwand auf
Grund der Kompression des Blockzugriffs zu reduzieren. Da das gesamte Bild in einem 32x32-Pixelpuffer be-
rechnet wird, wird die Gsprite-Bildkompression mit minimalem zusatzlichem Aufwand erreicht. Der Gesamtent-
wurf der Kompressionsarchitektur wird in Fig. 20 gezeigt.

[0321] Die Transformationsengine 660 (Fig. 20) berechnet Modell- und Betrachtungstransformationen, Be-
schneiden (Clipping), Beleuchtung usw. und leitet diese Informationen an den Tiler 662 weiter. Wahrend der
Tiler Transformationsinformationen verarbeitet, liest er Texturdaten aus dem Texturspeicher 664. Die Textur-
daten werden in einem komprimierten Format gespeichert, daher werden die Texturblécke, wenn sie bendtigt
werden, von der Tiler-Dekompressionsengine 666 dekomprimiert und in einem chipinternen Texturcache im Ti-
ler gecacht. Wenn der Tiler Pixeldaten aufldst, transferiert er die aufgeldsten Daten zur Tiler-Kompressionsen-
gine 668, die die aufgeldsten Daten komprimiert und die komprimierten Daten im Gsprite-Speicher 670 spei-
chert. Wenn die Gsprite-Engine 672 die komprimierten Gsprite-Daten bendétigt, verwendet sie die Gsprite-De-
kompressionsengine 674, um die Gsprite-Daten aus dem Gsprite-Speicher 667 zu dekomprimieren und die
Daten in einem chipinternen Gsprite-Cache zu cachen. In der tatsachlichen Hardware sind der Texturspeicher
664 und der Gsprite-Speicher 670 identisch (d.h. die komprimierten Daten werden in einem Speicher gespei-
chert, der von den verschiedenen Engines gemeinsam genutzt wird). Gemeinsam genutzter Speicher wird
nicht benétigt, solange die verwendeten Kompressions- und Dekompressionsverfahren kompatibel sind. Die
Gsprite-Daten kénnen auch aus einer Datenbank oder einer anderen Bildquelle 676 genommen und im Tex-
turspeicher 664 oder dem Gsprite-Speicher 670 gespeichert werden.

[0322] Eine Implementierung der Erfindung unterstitzt die verlustbehaftete und die verlustfreie Kompression
und Dekompression von Pixelblécken

[0323] Die verlustbehaftete Form der Bildkompression besitzt zwei Stufen: eine verlustbehaftete erste Stufe
und eine verlustfreie zweite Stufe. Die verlustbehaftete Form der Kompression beginnt mit einer optionalen
Farbraumumwandlung von roten, griinen, blauen (R, G, B) Intensitatswerten in Leuchtdichte-(Y) und Chromi-
nanz-(U und V, auch als Cr und Cb bezeichnet) Werte. Die verlustbehaftete Stufe umfasst eine direkte Kosi-
nustransformation (DCT) und eine Quantisierung, die die Genauigkeit bestimmter Frequenzkomponenten re-
duziert.

[0324] Die zweite Stufe ist eine verlustfreie Form der Kompression, die die Huffman-Codierung und die Lauf-

langencodierung (RLE) umfasst. Alternative Codierverfahren, wie zum Beispiel das arithmetische Codieren,
kénnen an Stelle der Huffman-Codierung verwendet werden.

38/147

DE 696 36 599 T2 2007.08.23

[0325] Die Dekompression flir das verlustbehaftete Verfahren umfasst eine Decodierstufe, eine Dequantisie-
rung der komprimierten Daten, eine inverse DCT und eine optionale Farbraum-Konversion von YUV nach
RGB.

[0326] Die verlustfreie Form der Kompression umfasst eine optionale Farbraum-Konversion von RGB nach
YUV, eine Vorhersagestufe und eine verlustfreie Codierungsstufe. Diese Codierungsstufe kann identisch mit
der Entropiecodierungsstufe in der verlustbehafteten Form der Kompression sein. Die Dekompression flr die-
ses verlustfreie Verfahren umfasst eine Decodierstufe, eine inverse Vorhersagestufe fir jede Farbkomponente
und eine optionale Farbraum-Konversion von YUV nach RGB.

Verlustbehaftete Kompression/Dekompression

[0327] Eine spezielle Implementierung des verlustbehafteten Kompressionsverfahrens in der Kompressi-
ons-Engine 414 (Fig. 9A-C) des Tilers geschieht in vier oder funf Schritten:
1. Konvertiere die RGB-Dateneingabe in ein YUV-ahnliches Leuchtdichte-Chrominanz-System (optional).
2. Fihre eine vorwarts gerichtete zweidimensionale diskrete Kosinustransformation (DCT) individuell an je-
der Farbkomponente aus.
3. Ordne die zweidimensionalen DCT-Koeffizienten annahernd in einer monoton steigenden Frequenzord-
nung an.
4. Quantisiere die DCT-Koeffizienten: Teile entweder durch einen einheitlichen Teiler oder einen frequenz-
abhangigen Teiler.
5. Codiere die sich ergebenden Koeffizienten unter Verwendung der Huffman-Codierung mit festen Code-
tabellen.

[0328] Die verlustbehaftete Dekompression lauft in vier oder finf Schritten ab:
1. Decodiere die komprimierte Dateneingabe unter Verwendung der Huffman-Decodierung mit festen Co-
detabellen.
2. Dequantisiere die komprimierten Daten: Multipliziere mit einem einheitlichen Multiplikator oder mit dem
frequenzabhangigen Multiplikator, der beim Quantisierungsschritt der Kompression verwendet wurde.
3. Ordne das lineare Feld von Daten in die richtige zweidimensionale Ordnung fur die DCT-Koeffizienten
um.
4. Fuhre eine inverse zweidimensionale DCT individuell an jeder einzelnen Farbkomponente aus.
5. Konvertiere die Farben in dem YUV-ahnlichen Leuchtdichte-Chrominanz-System in RGB-Farben, wenn
der Kompressionsschritt den entsprechenden optionalen Schritt umfasste.

Farbraumumwandlung
[0329] Die Farbraumumwandlung transformiert die RGB-Farben in ein Helligkeits-Farbsystem mit der Hellig-
keitskoordinate Y und den Farbkoordinaten U und V. Dieses Leuchtdichte-Chrominanz-System ist kein Stan-
dardfarbraum. Die Verwendung dieses Systems verbessert den Grad der Kompression, weil die Farbkoordi-
naten nur einen kleinen Bruchteil der Bits benétigen, die zum Komprimieren der Helligkeit bendtigt werden. Die
verlustlose, reversible Umwandlung wird auf jedes Pixel unabhangig angewandt und verandert den Wert von
Alpha nicht.
RGB nach YUV (zur Kompression

[0330] Die Umwandlung von ganzzahligen RGB-Werten in ganzzahlige YUV-Werte verwendet die folgende
Transformation:

Y = (4R +4G + 4B)/3-512
U=R-G
V =14B - 2R - 2G)/3
YUV nach RGB (zur Dekompression)

[0331] Die Umwandlung von ganzzahligen YUV-Werten in ganzzahlige RGB-Werte verwendet die folgende
Transformation:

39/147

DE 696 36 599 T2 2007.08.23
R=(((Y +512) = V)2 + U + 1)/2
G = (((Y +512) = V)2 = U + 1)/2
B =((Y +512)2 +V +1)2
Diskrete Kosinustransformation

[0332] Bilder und Texturen sind Pixel, die die Amplituden fir drei Farben und die Amplitude fiir Lichtundurch-
Iassigkeit (Opazitat) enthalten. Die Pixelpositionen entsprechen einem raumlichen Ort in einem Bild oder einer
Texturabbildung. Ein Bild oder eine Textur in dieser Form liegt in der rdumlichen Doméane. Fir Bilder und Tex-
turen berechnet die diskrete Kosinustransformation (DCT) Koeffizienten, die mit den Basisfunktionen des DCT
multipliziert werden. Die Anwendung der DCT auf ein Bild oder eine Textur ergibt einen Satz von Koeffizienten,
die das Bild oder die Textur aquivalent reprasentieren. Ein Bild oder eine Textur in dieser Form liegt in der Fre-
quenzdomane.

[0333] Die DCT bildet die Amplitude der Farben und Opazitat eines 8x8-Pixelblocks zwischen der raumlichen
Domaéane und der Frequenzdomane ab. In der Frequenzdomane sind benachbarte Koeffizienten weniger stark
korreliert, und der Kompressionsprozess kann jeden Koeffizienten unabhangig behandeln, ohne die Kompres-
sionseffizienz zu reduzieren.

[0334] Die Vorwarts-DCT bildet die rdumliche Doméane auf die Frequenzdomane ab, und umgekehrt bildet die
inverse DCT die Frequenzdomane auf die raumliche Domane ab. Ein geeigneter Ansatz fir die Vorwarts- und
die inverse DCT ist der Ansatz, der in den Fig. A.1.1 und A.1.2 in Discrete Cosine Transform Rao, K. R, und
P. Yip. San Diego: Academic Press, Inc., 1990, beschrieben wird.

[0335] Die zweidimensionale DCT erzeugt ein zweidimensionales Feld von Koeffizienten fiir die Frequenzdo-
manendarstellung jeder Farbkomponente. Die Zickzackordnung ordnet die Koeffizienten so neu an, dass die
niedrigen DCT-Frequenzen hauptsachlich an niedrigen Positionen eines linearen Feldes auftreten. Bei dieser
Ordnung ist die Wahrscheinlichkeit, dass ein Koeffizient null ist, anndhernd eine monoton steigende Funktion
der Position im linearen Feld (wie sie durch den linearen Index gegeben ist). Dieses Ordnen vereinfacht die
Wahrnehmungsquantisierung und LOD-Filterung und verbessert auch betrachtlich die Leistungsfahigkeit der
Lauflangencodierung (RLE).

Quantisierung

[0336] Quantisierung verringert durch Teilen der Koeffizienten durch eine ganze Zahl die Zahl unterschiedli-
cher Werte, die die zickzackgeordneten DCT-Koeffizienten haben kénnen. Je nach dem Wert des Parameters
der Kompressionsart kann die Quantisierung entweder gleichférmig oder perzeptiv bzw. wahrnehmend erfol-
gen. Keiner der beiden Falle modifiziert den DC-Frequenzkoeffizienten (Index = 0), sondern leitet ihn unveran-
dert weiter.

[0337] Der Quantisierungsprozess beginnt mit der Festlegung des Quantisierungsfaktors fiir ein Bild oder ei-
nen Teil eines Bildes. Bei dieser Implementierung wird ein Quantisierungsfaktor fir einen 32x32-Pixelchunk
festgelegt. Ein Quantisierungsindex (QIndex) gibt einen entsprechenden Quantisierungsfaktor (QFaktor) zur
Verwendung fur den Chunk an. Die folgende Tabelle zeigt die Beziehung zwischen QIndex und QFaktor.

40/147

DE 696 36 599 T2 2007.08.23

Quantisierungsfaktor

QIndex QFaktor QIndex QFaktor
0 2 8 32
1 3 9 48
2 4 10 64
3 6 11 96
4 8 12 128
5 12 13 192
6 16 14 256
7 24 15 4096

[0338] Jede Farbebene hat einen anderen Wert flir den Chunk-QIndex. Ein QIndex von 15 wahlt einen QFak-
tor von 4096, was bei der Quantisierung und inversen Quantisierung Nullen produziert. Der Quantisierungs-
prozess teilt jeden Koeffizienten in einem Block durch einen QFaktor und rundet ihn auf eine ganze Zahl. Der
inverse Quantisierungsprozess multipliziert jeden Koeffizienten mit einem QFaktor. Quantisierung und inverse
Quantisierung andern die DC-Frequenzkomponente nicht.

Blockquantisierungsfaktor

[0339] Der QIndex, und damit der QFaktor, kann von Block zu Block (8x8 Pixel) variieren. Der QIndex fur ei-
nen Block ergibt sich aus der Inkrementierung des QIndex fir den Chunk mit einem Wert, der in die Blockkom-
pressionsart eingebettet ist:

Block-QIndex = Chunk-QIndex + (Blockkompressionsart — 3)

[0340] Dadurch wird der Chunk-QIndex um eins, zwei, drei oder vier inkrementiert. Weil der gréRRtmdgliche
QIndexwert 15 ist, wird jeder inkrementierte Wert groRer als 15 auf 15 gesetzt.

[0341] Der QIndex, und damit der QFaktor, kann auch von Koeffizient zu Koeffizient (von Feldindex zu Feld-
index) variieren, wenn die Quantisierungsart perzeptiv ist.

[0342] Fur eine gleichférmige Quantisierung ist der Koeffizient Qlndex gleich dem Block-QIndex, daher mul-
tipliziert (inverse Quantisierung) oder dividiert (Quantisierung) der entsprechende QFaktor jeden Koeffizienten
im Block.

[0343] Fur die perzeptive Quantisierung hangt der Koeffizient QiIndex vom Wert (0...63) des Index im linearen
Feld ab. Die folgende Tabelle fuhrt den resultierenden Koeffizienten QIndex als Funktion des Feldindexwertes
an.

Koeffizient QIndex Feldindex

Block-QIndex Index < 12

Block-QIndex +1 12 < Index < 28

Block-QIndex + 2 28 < Index < 52

Block-QIndex + 3 52 < Index

Entropiecodierung

[0344] Die Huffman/RLE-Codierung verarbeitet das lineare Feld quantisierter DCT-Koeffizienten durch:
1. Unabhéangiges Codieren von nichtverschwindenden Koeffizienten mit méglichst wenigen Bits (weil die
DCT-Koeffizienten nicht korreliert sind).
2. Optimales Codieren kontinuierlicher ,Durchgange" von Koeffizienten mit Nullwerten — besonders am
Ende des linearen Feldes (wegen der Zickzackordnung).

[0345] Ein geeigneter Ansatz fiir den Huffrnan/RLE-Codierungsprozess ist der Huffman/RLE-Codierungspro-
zess, der fur die AC-Koeffizienten im wohlbekannten JPEG-Standbildkompressionsstandard verwendet wird.

41/147

DE 696 36 599 T2 2007.08.23

[0346] Um einen direkten Zugriff auf Blocke zu ermdglichen, codiert dieser spezielle Ansatz den DC-Fre-
quenzkoeffizienten (Index = 0) nicht, sondern leitet ihn unverandert weiter.

[0347] Der Algorithmus berechnet eine Reihe von Codewdrtern mit variabler Lange, von denen jedes be-
schreibt:
1. Die Lange, von null bis 15, einer Folge von Nullen, die dem nachsten nichtverschwindenden Koeffizienten
vorangehen.
2. Die Zahl zusatzlicher Bits, die zum Angeben des Vorzeichens und der Mantisse des nachsten nichtver-
schwindenden Koeffizienten erforderlich ist.

[0348] Das Vorzeichen und die Mantisse des nichtverschwindenden Koeffizienten folgen dem Codewort. Ein
reserviertes Codewort gibt an, dass die restlichen Koeffizienten in einem Block alles Nullen sind.

Codierung

[0349] Die Codierung aller Blocke verwendet die typischen Huffman-Tabellen fiir AC-Koeffizienten aus An-
hang K Abschnitt K.3.2 des Internationalen 1ISO-Standards 10918. Dies umfasst die Tabelle K.5 fiir die Lumi-
nanz (Y)-AC-Koeffizienten und Tabelle K.6 fur die Chrominanz (U und V)-AC-Koeffizienten.

Decodierung

[0350] Die Decodierung aller Blocke verwendet dieselben festen Tabellen wie der Codierungsprozess. Daher
ist es niemals notwendig, die Huffmnan-Tabellen mit den Daten zu speichern oder weiterzugeben.

Verlustfreie Kompression/Dekompression

[0351] Die verlustfreie Kompression lauft in der Kompressions-Engine 414 im Tiler in zwei oder drei Schritten
ab:
1. Konvertiere die einlaufenden RGB-Daten in ein YUV-ahnliches Luminanz-Chrominanz-System (optio-
nal).
2. Fuhre eine Differenzenvorhersageberechnung an jeder Farbkomponente aus. Codiere die sich ergeben-
den Koeffizienten unter Verwendung der Huffman-Codierung mit festen Codetabellen.

[0352] Die verlustfreie Dekompression lauft in den Dekompressionsengines 404, 450 im Tiler und der Gspri-
te-Engine in zwei oder drei Schritten ab:
1. Decodiere die einlaufenden komprimierten Daten unter Verwendung der Huffman-Decodierung mit fes-
ten Codetabellen.
2. Fuhre eine inverse Differenzenvorhersage (Rekonstruktion) an jeder Farbkomponente aus.
3. Konvertiere die Farben im YUV-ahnlichen Luminanz-Chrominanz-System in RGB-Farben, wenn der
Kompressionsschritt diesen entsprechenden optionalen Schritt umfasste.

Farbraumumwandlung

[0353] Die Farbraumumwandlung transformiert die RGB-Farben reversibel in ein Helligkeits-Farbsystem mit
der Helligkeitskoordinate Y und den Farbkoordinaten U und V. Dies ist ein eindeutiger Farbraum, der den Grad
der Kompression starker selbst als das YUV-System verbessert, da die Zahlen, die in den Huffman/RLE-Ko-
dierer einlaufen, kleiner und damit kompressibler sind. Die Farbraumumwandlung wird auf jedes Pixel unab-
hangig angewandt und verandert den Wert von Alpha nicht.

RGB nach YUV (zur Kompression)

[0354] Die Umwandlung von ganzzahligen RGB-Werten in ganzzahlige YUV-Werte verwendet die folgende
Transformation:

Y=G
U=R-G
V=B-G

42/147

DE 696 36 599 T2 2007.08.23
YUV nach RGB (zur Dekompression)

[0355] Die Umwandlung von ganzzahligen YUV-Werten in ganzzahlige RGB-Werte verwendet die folgende
Transformation:

R=Y+U
G=Y
B=Y+V

[0356] Die Alphainformationen werden wahrend der Farbraumumwandlung nicht geandert.

[0357] Die Farbraumumwandlung kann umgangen werden. Die Dekompressionshardware wird in den Fallen,
in denen die Farbtransformation umgangen wird, durch ein Kennzeichen (Flag) in der Gsprite-Steuerdaten-
struktur informiert.

[0358] Die Vorhersagestufe tritt nach der Farbraumtransformation auf. Die Vorhersage ist ein verlustfrei um-
kehrbarer Schritt, der die Entropie der meisten Quellbilder reduziert, insbesondere Bilder mit viel leerem Raum
und horizontalen und vertikalen Linien.

[0359] In der Vorhersagestufe der Kompression und der inversen Vorhersagestufe der Dekompression:
1. sind p(x, y) die Pixelwerteingabe in die Kompressions- und die Ausgabe aus der Dekompressionsengine;
;.ngind d(x, y) die Differenzwerteingabe in den Codierer in der nachsten Stufe der Kompressions-Engine
und Ausgabe aus der Umkehrung des Codierers in der Dekompressionsengine.

[0360] Die Vorhersage wird folgendermalfien berechnet:

d(x,y)=p(x,y)furx=0,y=0

d(x, y) =p(x,y)-p(x,y - 1) farx=0,y >0

d(x, y) = p(x,y)-p(x-1,y) firx>0

[0361] Die umgekehrte Vorhersage in der Dekompressionsengine wird folgendermafien berechnet:

p(x,y)=d(x,y)firx=0,y=0

p(x, y) = p(x,y - 1) +d(x,y) firx=0,y>0

p(x,y)=p(x—-1,y) +d(x,y) firx >0

[0362] Die Huffman/RLE-Codierung und -Decodierung ist in dieser Implementierung dieselbe wie fir die ver-
lustbehaftete Form der Kompression/Dekompression.

[0363] Die Kompressionsverfahren, die oben beschrieben werden, komprimieren Bilder in unabhangigen Bl6-
cken von 8x8 Pixeln. Daher besteht bei der Chunking-Architektur, die oben beschrieben wird, jeder kompri-
mierte 32x32-Pixelchunk aus 16 solcher Blocke. Um die Kompression eines 32x32-Pixelchunks zu erleichtern,
I6st die Anti-Aliasing-Engine 412 Pixeldaten in 8x8-Pixelblocke auf. Die 8x8-Pixelbldcke werden gepuffert, so
dass ein erster Puffer gefullt wird, wahrend ein zweiter Puffer komprimiert wird.

Steuerungselemente und Parameter

[0364] Wie oben eingeflhrt, rendert der Tiler (Fig. 9A-Fig. 9C) Gsprites mit immer einem Chunk auf einmal.
Diese Chunks bestehen aus Pixelbldcken (in diesem Fall 16 8x8-Pixelbldcke). Zur Texturabbildung, Schattie-
rung und fir einige Mehrfach-Renderingoperationen ruft der Tiler Gsprite- oder Texturblécke aus dem Speicher
ab. Um ein Teilbild zusammenzusetzen, ruft die Gsprite-Engine (Fig. 12A-B) Gsprite-Blocke ab, transformiert
Pixel in den Bildschirmraum und setzt Pixel in einem Zusammensetzungspuffer zusammen.

43/147

DE 696 36 599 T2 2007.08.23

[0365] Es gibt eine Reihe von Steuerungsparametern, die die Verarbeitung von Gsprites, Chunks und BIo-
cken bestimmen. Eine Gsprite-Anzeigeliste speichert eine Liste von Gsprites, die ein Anzeigebild beinhalten.
Diese Anzeigeliste umfasst Zeiger auf Gsprites, und spezieller, Gsprite-Headerblocke. Wie weiter unten be-
schrieben wird, speichern Gsprite-Headerblocke eine Reihe von Attributen eines Gsprites, einschlieflich
Gsprite-Breite, -H6he und eine affine Transformation, die in Form eines Bildschirmraumparallelogramms defi-
niert ist. Der Gsprite-Headerblock umfasst auch eine Liste seiner zugehoérigen Chunks. In einer Implementie-
rung ist diese Liste in der Form von Zeigern oder Handles zum Chunken der Steuerungsblocke.

[0366] Chunksteuerungsblécke umfassen Parameter pro Chunk und pro Block. Die Parameter pro Chunk
umfassen eine YUV-Farbconverterumgehung, Vorgabe-Q-Faktoren, ein perzeptives Quantisierungs-Flag, Pi-
xelformat und ob die Pixeldaten im Speicher liegen, der in den Speicherzuweisungseinheiten (MAU) in linea-
rem Speicher gemanagt wird. Eine MAU ist ein Stick gemeinsamer Speicher, der zum Zuweisen von Chunk-
speicher verwendet wird. MAU-gemanagter Speicher umfasst eine Liste von MAUs (124 Byte, zum Beispiel),
wobei jede MAU einen Zeiger auf die nachste MAU hat. In einer speziellen Implementierung zum Beispiel wer-
den die Chunksteuerungsblécke in sequenziellen MAUs fiir jeden Gsprite gespeichert.

[0367] Die Parameter pro Block umfassen die Kompressionsart, Zahl der MAUSs, die der Block Uberspannt,
und einen Blockzeiger, der auf das erste Byte der Pixeldaten fir den Block zeigt. Das spezielle Blockformat ist
ein 8x8x4-Feld von Pixeln, die 32-Bit-Pixel codieren (8 Bit fur RGB und Alpha).

[0368] Die Schritte zum Abrufen eines Pixels mit (X, Y)-Koordinaten in einem Gsprite unter Verwendung der
obigen Steuerungsparameter umfassen:

1) Dividiere Y und X durch 32, um die Chunk-Zeile bzw. -Spalte abzuleiten.

2) Bilde die Chunknummer durch: (Chunkzeile)-(Spritebreite in Chunks) + Chunkspalte.

3) Bilde den Chunksteuerungsblockversatz durch: (Chunknummer)-(Gréfte des Chunkheaderblocks))

4) Bilde den Blockversatz innerhalb des Chunksteuerungsblocks durch: (Y<4:3>:4 + X<4:3>)-3.

5) Sende den Blockzeiger an die Logik des dekomprimierten Caches, empfange einen Block.

6) Bilde den Pixelversatz innerhalb des Blocks durch (Y<2:0>-8) + X<2:0>

[0369] Hier wird ein Chunkversatz zum Auswahlen eines Chunks verwendet. Dann wird ein Blockversatz zum
Auswahlen eines Blockzeigers verwendet. Der Blockzeiger wahlt einen Block, der das Pixel enthalt, und der
Pixelversatz wahlt das Pixel.

[0370] Um auf den Block fiir ein gegebenes Pixel unter komprimierten Blocken von Pixeldaten zuzugreifen,
fuhren die Cache-Steuerelemente im Tiler und der Gsprite-Engine die folgenden Schritte aus:
1) Bilden der MAU-Adresse durch Aufsuchen des Blockzeigerwerts im Chunksteuerungsblock und durch
Teilen durch die GroRe des MAU.
2) Suchen der Zahl der MAUSs, die im Chunksteuerungsblock fiir diesen Block zugewiesen ist.
3) Suchen der nachsten Blockzeigeradresse im Chunksteuerungsblock.
4) Bilden der Lange des komprimierten Blocks durch: MAUS, zugewiesen-MAU-GréRe + Zweierkomple-
ment von ((Blockzeiger) mod MAU-GrélRe) + (nachster Blockzeiger) mod (MAU-GréRe)
5) Senden der Blockadresse und der Lange des komprimierten Blocks an die Logik des Komprimierten Ca-
ches.

[0371] Der komprimierte Cache liest die erste MAU, und wenn die Lange der Ubertragung nicht erfiillt wurde,
dann wird der Zeiger, der in der MAU enthalten ist, fur den Zugriff auf den Beginn der nachsten MAU verwen-
det. Dieser Prozess setzt sich fort, bis die Ubertragungslénge erreicht ist.

[0372] Zur Unterstitzung von MIP-Abbildungstexturoperationen unterstutzt der Tiler ein weiteres Indexie-
rungsniveau. Ein Verfahren zum Indexieren eines MIP-Abbildungsniveaus umfasst die folgenden Schritte:
1) Bilde fiir einen gegebenen Sprite eine Tabelle von Versatzwerten auf MIP-Chunkniveau durch:
mipChunkOffset[0] = 0 \\Versatz fiur Niveau von Detail 0
Fir jedes Niveau der MIP-Abbildung:
mipChunkOffset[level + 1] = Breite von Sprite/(2*Niveau)-H6he von Sprite/(2*Niveau) + mipChunkOffset[Ni-
veau]
2) Verwenden Sie den LOD-Parameter, um den MIP-Chunkversatz zu erhalten.

[0373] An diesem Punkt kann mit MIP-Chunkversatz, Breite des Sprites/(2*Niveau) und HOhe des Spri-

tes/(2*Niveau) jeder gewlinschte Chunk innerhalb des gewahlten Detailniveaus flr den aktuellen Gsprite ge-
funden werden.

44/147

DE 696 36 599 T2 2007.08.23

Gsprites

[0374] Oben haben wir das Konzept eines Gsprites vorgestellt. Um es kurz zu wiederholen, kénnen ein oder
mehrere Objekte im Betrachtungsvolumen einem Gsprite zugeordnet werden. Gsprites kdnnen unabhangig
gerendert werden, was ermdglicht, sie bei unterschiedlichen Auflésungen zu rendern und mit variierender Hau-
figkeit zu aktualisieren. Um den Zusatzaufwand beim Rendern zu reduzieren, kann das System Bewegung ei-
nes Objektes durch Ausfiihren einer affinen Transformation am Gsprite angenahert werden, statt das Objekt
neu zu rendern. Um die Gsprites, die eine Szene umfassen, anzuzeigen, setzt das System die Gsprites, die
die Objekte in der Szene reprasentieren, zusammen. Wir werden diese und andere Merkmale detaillierter un-
ten beschreiben.

[0375] Wie oben beschrieben, beginnt das System damit, geometrische Strukturen einem Gsprite zuzuord-
nen. Ein Gsprite ist eine zweidimensionale Region, die in den Koordinaten des physischen Ausgabegerates
gemessen wird. In der Implementierung, die unten im Detail dargestellt wird, ist die Gsprite-Form ein Rechteck,
er kann aber auch andere Formen haben. Gsprites kdnnen affin durch die Gsprite-Engine transformiert werden
(d.h. sie kénnen skaliert, verschoben, gedreht, reflektiert und/oder geschert werden — es ist jede Transforma-
tion mit einer 2x2-Matrix plus Translation mdglich). Eine Anwendung der 2D-Transformation besteht darin, eine
3D-Bewegung zu simulieren. Gsprites kdnnen derart instanziert werden, dass dasselbe Gsprite-Bild mehrmals
auf dem Bildschirm mit unterschiedlichen Transformationen erscheinen kann. Das Instanzieren kann fur recht-
eckige Teilmengen eines Gsprite-Bildes wie fiir das gesamte Bild gelten. Es kann auch auf eine Farbkompo-
nentenbasis angewendet werden, z.B. kdnnte Alpha von einem Gsprite kommen, wahrend die Farbe von ei-
nem anderen kommt.

[0376] Im allgemeinen ordnet der Bildpraprozessor ein Objekt einem Gsprite zu, jedoch kann auch mehr als
ein Objekt einem Gsprite zugeordnet werden. Der Bildpraprozessor kombiniert sich durchdringende oder
selbst verdeckende Objekte in einem einzelnen Gsprite. Er vereint auch Objekte auf der Basis von Speicher-
und Verarbeitungsnebenbedingungen. Der Bildprozessor ist zum Beispiel mdglicherweise nicht in der Lage,
mehrere unabhangige, aber sich Uberlappende Gsprites in der Zeit zusammenzusetzen, die von der Auffri-
schungsrate des Ausgabegerates bendtigt wird. In diesem Fall kann das System diese iberlappenden Objekte
zu einem einzigen Gsprite vereinen.

[0377] Nach der Zuordnung von Objekten zu Gsprites rendert der Bildprozessor die Gsprites flir das Teilbild
(Frame). Das unabhangige Rendern der Objekte ermoglicht es dem System, den Rendering-Zusatzaufwand
zu reduzieren, da es nicht jedes Objekt in einer Szene in jedem Teilbild zu rendern braucht. Wir werden dieses
Merkmal ausfiihrlich unten behandeln.

[0378] Um die Objekte in einer Szene anzuzeigen, setzt der Bildprozessor die Gsprites, die die Objekte in der
Szene umfassen, zusammen. Das Zusammensetzen bezieht sich auf den Prozess des Kombinierens von
Farbdaten aus Gsprite-Schichten. Zur Unterstitzung der Lichtdurchlassigkeit berticksichtigt der Bildprozessor
auch die Alphawerte von transformierten Gsprite-Pixeln, wenn er sie zum Anzeigen zusammensetzt.

[0379] Die Fig. 21a und Fig. 21B sind Flussdiagramme, die illustrieren, wie Gsprites in einer Ausflihrungs-
form verarbeitet werden. In der erlduterten Ausfihrungsform Uberspannt die Verarbeitung von Gsprites zwei
Teilbildperioden. Objekte in einer Szene werden Gsprites zugeordnet und in der ersten Teilbildperiode geren-
dert; Gsprite in der Szene werden dann transformiert und in einer nachsten Teilbildperiode zusammengesetzt.

[0380] Zuerst bestimmt der Bildpraprozessor moglicherweise sichtbare Objekte. In Fig. 21A illustrieren wir
diesen Prozess als Folge von Schritten. Fr ein Teilbild bestimmt der Bildprozessor moéglicherweise sichtbare
Objekte durch das Durchlaufen einer Liste von Objekten (696, 698) und Bestimmen, welche Objekte magli-
cherweise in einer Szene, d.h. in einem Betrachtungsraum, sichtbar sind.

[0381] Der Bildpraprozessor ordnet dann Gsprites zu, ordnet sie neu zu oder hebt die Zuordnung auf. Zuord-
nen eines Gsprites bezieht sich im allgemeinen auf das Erzeugen einer Datenstruktur, um den Gsprite im Sys-
tem zu reprasentieren. Wenn ein Objekt potentiell nicht sichtbar ist (700) und das System keinen Gsprite daftr
zugewiesen hat (702), ist keine weitere Verarbeitung notwendig. Wenn ein Objekt méglicherweise nicht sicht-
bar ist (702) und das System bereits einen Gsprite dafir zugewiesen hat (702), dann hebt der Bildpraprozessor
die Zuordnung des Gsprites flir dieses Objekt auf (704).

[0382] Der Bildpraprozessor ordnet eine neue Gsprite-Datenstruktur méglicherweise sichtbaren Objekten zu,
denen das System keinen Gsprite zugeordnet hat (706, 708). In diesem Fall erzeugt der Bildpraprozessor eine

45/147

DE 696 36 599 T2 2007.08.23

Gsprite-Datenstruktur und stellt Bilddaten, die dem Objekt entsprechen, zum Rendern in die Schlange (710).
Dieses ,Einreihen in die Schlange" zum Rendern wird als Hinzufiigen zu einer Liste von Objekten zum 3D-Ren-
dern dargestellt (710). Der Bildpraprozessor berechnet auch eine affine Transformation fir den Gsprite (714).
Die affine Transformation dient in dieser Ausflihrungsform zwei Zwecken. Erstens kann sie zum Annahern von
Bewegung des Objektes verwendet werden, der sie in der Szene entspricht. Zweitens kann sie verwendet wer-
den, um einen Gsprite aus dem Gsprite-Raum in die Ausgabegeratekoordinaten zu transformieren. Gspri-
te-Raum bezieht sich auf ein Koordinatensystem, das beim Unterteilen des Objektes in Chunks verwendet
wird. Das Koordinatensystem, das zum Unterteilen des Objektes in Chunks verwendet wird, kann so optimiert
werden, dass Chunkregionen das Objekt, das in den 2D-Raum transformiert wurde, sehr effizient abdecken.

[0383] Wenn ein Objekt moglicherweise sichtbar ist (700) und das System bereits einen Gsprite daflir zuge-
wiesen hat (706), dann berechnet der erlauterte Bildpraprozessor eine affine Transformation (714). Wie wir un-
ten detaillierter erklaren, kann die affine Transformation zum Annahern der Bewegung des Objektes verwendet
werden. Der Bildpraprozessor bewertet die Genauigkeit dieser Naherung, und wenn sie eine zu starke Verzer-
rung erzeugt (716), ordnet der Bildpraprozessor dem Objekt einen Gsprite neu zu (708). In diesem Fall bringt
der Bildpraprozessor die geometrische Struktur, die in den Gsprite gerendert werden soll, zum Rendern in die
Schlange (d.h. Orte in der 3D-Liste) (710) und fligt auch den Gsprite zur Anzeigeliste hinzu (718).

[0384] Wenn jedoch die affine Transformation zur genauen Naherung der Bewegung des Objektes verwendet
werden kann (716, Verzerrung liegt innerhalb der vorgegebenen Toleranz), dann gibt es keine Notwendigkeit,
das Objekt neu zu rendern, und der Bildpraprozessor stellt den Gsprite, der mit dem Objekt verknuipft ist, in die
Anzeigeliste (718).

[0385] In der nachsten Teilbildperiode erzeugt der Bildprozessor das Anzeigebild. Die Teilbildperiode wird
durch die gestrichelte Linie illustriert, die die Schritte (718) und (720) trennt. Der Bildprozessor durchlauft die
Anzeigeliste und transformiert die Gsprites in der Liste auf die physischen Ausgabegeratekoordinaten (720).
Die Transformation auf die Ausgabekoordinaten umfasst im allgemeinen das Scannen von Pixeldaten aus ei-
nem verdrehten, gedrehten oder skalierten Gsprite in die Pixelorte des Ausgabegerates. Der Bildprozessor
setzt dann diese transformierten oder ,gescannten" Gsprite-Daten zusammen. Zum Schluss konvertiert der
Bildprozessor die Pixeldaten in analoge Werte und zeigt das Bild an (724).

[0386] Die Fig. 5A und Fig. 5B sind Flussdiagramme, die den Prozess des Renderns von geometrischen
Strukturen in einer Chunking-Architektur illustrieren. Es ist wichtig zu beachten, dass die Gspritekonzepte, die
oben beschrieben werden, nicht auf eine Chunking-Architektur begrenzt sind. Die Eig. 5A und der begleitende
Text oben liefern mehr Beschreibung beziglich dessen, wie der Bildpraprozessor die Gsprite-Konfiguration
aus der Geometrie in einer Szene bestimmt. Siehe Schritte (240-244) und den begleitenden Text. Speziell kon-
nen Objekte auf Grund von Verarbeitungsbeschrankungen des Bildprozessors vereinigt und in einen einzigen
Gsprite oder eine kleine Zahl von Gsprites gerendert werden, falls notwendig. Wenn zum Beispiel der Tiler, die
Gsprite-Engine und der Zusammensetzungspuffer die aktuelle Zuordnung von Objekten zu Gsprites fir ein
Teilbild mit der erforderlichen Teilbildauffrischungsrate nicht verarbeiten kénnen, dann kénnen die Daten zu-
rick zum DSP oder Wirtsprozessor geleitet werden, um Objekte zu vereinigen und mehrere Objekte in einen
Gsprite zu rendern.

[0387] FEig. 6 liefert zusatzliche Informationen bezliglich der Verarbeitung von Gsprites in einer Ausflihrungs-
form. Wie in Fig. 6 gezeigt und oben beschrieben, bestimmt der Bildpraprozessor auch die Tiefenordnung von
Gsprites (280).

[0388] Wenn der Bildpraprozessor einen Gsprite zuordnet, erzeugt er eine Datenstruktur, um den Gsprite zu
reprasentieren. Die Gsprite-Datenstruktur umfasst einen Header zum Speichern verschiedener Attribute des
Gsprites und um zu verfolgen, wo die zugehorigen Bilddaten im Speicher gespeichert werden. Die Datenstruk-
tur umfasst Felder zum Speichern der GréRRe des Gsprites, zum Darstellen der Kantengleichungen fiir die Kan-
ten des Gsprites, zum Flihren der 2D-Transformationsdaten und anderer Bildattribute.

[0389] Nach dem Bestimmen der Gsprite-Konfiguration fiir den Betrachtungsraum bestimmt der Bildprapro-
zessor, welche Gsprites gerendert werden sollen. Statt alle Objekte in einer Szene zu rendern, kann das Sys-
tem Gsprites, die fiir ein anderes Teilbild gerendert wurden, wieder verwenden. Die Anderung in der Position
eines Objektes von Teilbild zu Teilbild kann durch Ausfuhren einer affinen Transformation an einem gerender-
ten Gsprite genahert werden. Wie in Fig. 6 gezeigt, durchlauft der Bildpraprozessor zyklisch Gsprites
(282-286) und berechnet Gsprite-Transformationen (284). Im folgenden Abschnitt behandeln wir weiter aus-
fuhrlich die Gsprite-Aktualisierung und das Verzerren von Gsprites.

46/147

DE 696 36 599 T2 2007.08.23

[0390] Das Bildverarbeitungssystem kann Bewegung eines 3D-Objektes durch Ausfiihren einer affinen
Transformation an einem gerenderten 2D-Gsprite, der das Objekt reprasentiert, nahern. Wir bezeichnen den
Prozess des Ausfuhrens einer affinen Transformation an einem gerenderten Bild als ,Verzerren" (warping) und
einen Gsprite, der sich aus diesem Prozess ergibt, als ,verzerrten Gsprite" (warped gsprite). In einer Imple-
mentierung umfasst der Prozess des Simulierens des 3D-Rendering eines Objektes die folgenden Schritte: 1)
Berechnen einer affinen Transformationsmatrix, um die geometrische Bewegung von charakteristischen Punk-
ten zu ndhern; 2) Messen der Genauigkeit der Naherung in Schritt 1; und 3) Wenn die Genauigkeit ausreichend
ist, dann Ausfiihren einer affinen Transformation am Gsprite zur Zeit t,, um seine Position zu einer spéateren
Zeit t zu nahern.

[0391] Fig. 22 ist ein Flussdiagramm, das den Prozess der Ausfiihrung einer affinen Transformation zur Si-
mulierung der 3D-Bewegung illustriert. Zur Vervollstandigung zeigt Fig. 22 ,Wahle charakteristische Punkte"
als ersten Schritt (744). Wie aus der Diskussion unten ersichtlich wird, werden charakteristische Punkte nor-
malerweise nicht wahrend der Bildverarbeitung gewahlt, sondern werden vielmehr vom Autor der geometri-
schen Modells festgelegt.

[0392] Die affine Transformation, die zum Simulieren der Bewegung eines Objektes verwendet wird, wird un-
ter Verwendung charakteristischer Punkte berechnet. Charakteristische Punkte sind Punkte, die fiir ein Objekt
gewahlt werden, damit sie seine Position oder andere wichtige Bildmerkmale reprasentieren, wie sie sich mit
der Zeit andern. Da wir uns auf die charakteristischen Punkte in Weltkoordinaten eines 3D-Modells und die
Bildschirmkoordinaten des Models beziehen, die in den Bildschirmraum transformiert sind, ist es hilfreich, Be-
griffe zu klaren, die wir verwenden, um diese Punkte zu beschreiben. Wir bezeichnen charakteristische Punkte
im Bildschirmraum als ,charakteristische Betrachtungspunkte”, und wir bezeichnen charakteristische Punkte
in Weltkoordinaten als ,charakteristische Modellierungspunkte".

[0393] Durch Wahlen eines reprasentativen Satzes von charakteristischen Punkten, statt die gesamte Menge
der Objektpunkte zu beriicksichtigen, vereinfachen wir die Berechnung der affinen Transformation betrachtlich.
Die Zahl der charakteristischen Punkte, die bendtigt werden, um eine genaue Naherung der 3D-Bewegung ei-
nes Objektes zu erhalten, variiert je nach dem Modell. Wenn das Objekt ein starrer Kérper ist, kbnnen charak-
teristische Punkte aus einem Begrenzungskasten gewahlt werden, der das ganze Objekt umschlie3t. Wenn
die Punkte, die den Begrenzungskasten definieren, mit derselben Transformation transformiert werden, dann
folgen die Punkte des Begrenzungskastens der Transformation der Objektgeometrie.

[0394] Fur Objekte mit einer komplexeren Bewegung, kénnen mehr charakteristische Punkte erforderlich
sein, um eine zutreffende Naherung zu erhalten. Zum Beispiel kann ein Objekt in eine Reihe von starren Koér-
pern unterteilt werden, jeder mit einem Begrenzungskasten, der seine Position ndhert. Wenn das Objekt aus
einer Hierarchie von starren Kérpern mit individuellen Bewegungstransformationen besteht, dann kénnen die
charakteristischen Punkte aus der Vereinigung der Ecken der sich bewegenden Teilobjekt-Begrenzungskéasten
abgeleitet werden.

[0395] Als weitere Alternative kann der Autor des Modells charakteristische Punkte fir das Modell festlegen.
Dies ermdglicht es dem Autor des Modells, speziell charakteristische Punkte festzustellen, die zum Nahern der
3D-Bewegung des Objekts verwendet werden. Wie ferner unten beschrieben, kann die Genauigkeit der affinen
Transformation gemaf einer Reihe von Metriken Uberprift werden. Dadurch, dass der Autor die charakteristi-
schen Punkte festlegen kann, kann er Punkte festlegen, die die grofite Relevanz fir die Metrik oder die Metri-
ken besitzt, die zum Bewerten der Genauigkeit der affinen Transformation verwendet werden.

[0396] Wenn ein Satz von charakteristischen Punkten gegeben ist, kann eine affine Transformation berechnet
werden, um die Anderung der Position eines Gsprites von der Zeit t, zur Zeit t zu nahern. Dieser Schritt wird
als Schritt (746) in Fig. 22 illustriert.

[0397] Die affine Transformation wird aus den charakteristischen Betrachtungspunkten zur Zeit t, und t be-
rechnet. Je nachdem, wie die charakteristischen Punkte gewahlt werden, reprasentieren die charakteristischen
Modellierungspunkte Punkte auf einem Objekt oder seinem Begrenzungskasten. Die Position der charakteris-
tischen Modellierungspunkte andert sich mit der Zeit gemaR der Modellierungstransformation. Um die charak-
teristischen Betrachtungspunkte zu finden, werden die charakteristischen Modellierungspunkte mit der Be-
trachtungstransformation multipliziert. Die folgende Diskussion wird bei der Klarung des Prozesses der Be-
rechnung der affinen Transformationsmatrix helfen, die zum Transformieren eines 2D-Gsprites verwendet
wird.

47/147

DE 696 36 599 T2 2007.08.23

[0398] Das Format der affinen Transformationsmatrix ist folgendermafen:

a b p,
S =
c d p,
[0399] Ein Mall zum Kontrollieren der Naherung ist die Positionsmetrik. Die Positionsmetrik bezieht sich auf
die Differenz in der Position zwischen den charakteristischen Punkten zur Zeit t und der Position der charak-

teristischen Punkte zur Zeit t,, multipliziert mit der affinen Transformationsmatrix. Die allgemeine Formel der
Positionsmetrik ist folgendermalien:

ZIIX(t) - SHX'(t)I?

[0400] Im Fall der Positionsmetrik ist die Position der charakteristischen Punkte im Bildschirmraum am rele-
vantesten, weil der Unterschied in der Position auf dem Bildschirm angibt, wie genau der transformierte Gsprite
die Bewegung seines entsprechenden 3D-Modells ndhert. Fir andere Metriken jedoch kann die Genauigkeit
der Naherung in Form der charakteristischen Modellierungspunkte berechnet werden. Fiir das Beispiel der Po-
sitionsmetrik betrachten wir die Bildschirmraumpunkte direkt. Es seien

X(t) = V) T(t)x(t)

die Bildschirmraumpunkte, wobei V(t) die Betrachtungstransformation und T(t) die Modellierungstransformati-
on ist. Um die affine Transformationsmatrix zu berechnen, kann ein Standardverfahren der kleinsten Quadrate
verwendet werden. Lést man das lineare System:

[X'(t)IS(t) = X'(t)

erzeugen die Standardverfahren der kleinsten Quadrate ein Ergebnis, das die Positionsmetrik minimiert.
[0401] Fur den Fall, daBd es drei charakteristische Punkte gibt, kann die affine Transformationsmatrix direkt
gel6st werden. Wenn zum Beispiel drei Punkte auf den Achsen eines Begrenzungskastens verwendet werden,

ist das Ergebnis eine geschlossene Ldsung fur die zeitabhangige affine Transformationsmatrix, wie unten ge-
zeigt.

X ¥ 1| la ¢ x* y°
Xy e dl=|x Y
2 2 2 2
Xyt (P by (XY
-1
S =[x ()" x(2)
y' =y y =y y =y
[X(to) 1]_1=B x?—x' x'=x’ x'—x°

1.2 2.1 2_0
X'yl =x2y' 2P0 —x0p7 xOpt—x'y0

wo D = x'y2 — x2y" + x2y° — x%2 + x0y! — x'y°

ist.
[0402] Im allgemeinen Fall kann ein Verfahren der kleinsten Quadrate, wie zum Beispiel Normalgleichungen

oder Einzelwertzerlegung, zum Lésen der affine Transformationsmatrix verwendet werden. Das verallgemei-
nerte Problem wird unten illustriert:

48/147

DE 696 36 599 T2 2007.08.23

Xo Yo) Xy Yo

X nfae ¢ XN

x, y|b dl=|x y
t, L,

[0403] Um eine Losung fir die affine Transformationsmatrix zu erhalten, muss die Pseudoinverse einer N x
3-Matrix berechnet werden. Fir eine beliebige Zahl von charakteristischen Punkten verwenden wir ein Verfah-
ren der kleinsten Quadrate zum Aufldsen nach der Pseudoinversen. In einer Ausfiihrungsform wird das Nor-
malgleichungsverfahren verwendet.

[0404] X sei die transponierte Matrix der charakteristischen Punkte zur Zeit t,, und X sei die transponierte Ma-
trix der charakteristischen Punkte zur Zeit t.

(X 115=x

~ ~0 :

X 1

~1 .;il 1 a ¢ 1 yl
e al= 4

~n-1 ;n—lgl P. P, s yn—]

[0405] Fur eine Losung mit dem Verfahren der Normalgleichungen werden beide Seiten der Gleichung mit
der Transponierten der geeigneten Matrix multipliziert, und dann wird die sich ergebende hermitesche inver-
tiert. Die typische Schwache der Normalgleichungen ist, dass die resultierende Matrix singular ist oder zur In-
stabilitat auf Grund des Rundungsfehlers neigt. Die Matrix ist singular, wenn die charakteristischen Punkte ent-
artet sind. In der speziellen Form der Matrix kann der Rundungsfehler durch Normalisieren der Terme be-
herrscht werden.

[X1T[X1]S = [X1]'X

Z,’ii‘i’ Zij,ij)i Iji a c Z,—iixi Z;iiyi
Z’jij;i Zij«}ij;i Z,—j}i b d |= Z,-J;ixi Z,—j}iyi
YE Y F 0 | p] | XYY

[0406] Es gibt nur 5 Terme in der resultierenden Matrix. Die 3x3-Matrix wird dann invertiert, um die affine
Transformation zu erhalten. Da andererseits die Summe der Terme der x-Koordinaten und die Summe der
y-Koordinaten dem Schwerpunkt der charakteristischen Punkte entspricht, kdnnen diese Terme durch eine An-
derung des Koordinatensystems eliminiert werden, um den Schwerpunkt auf 0,0 zu verschieben. Die resultie-
rende Matrix ist vom Typ 2 x 2 und leicht zu invertieren.

[0407] Nach dem Berechnen der affinen Transformationsmatrix wird die Genauigkeit der Naherung unter Ver-
wendung von einer oder mehreren Metriken kontrolliert. Der Entscheidungsschritt (748) von Fig. 18 illustriert
den Schritt der Kontrolle von einer oder mehreren Metriken und zeigt im allgemeinen, wie die Logik sich auf
der Basis der Metrik/Metriken verzweigt. Wie oben beschrieben, ist die Positionsmetrik ein Beispiel daflr, wie
die Genauigkeit der affinen Transformation kontrolliert werden kann. Um zu messen, ob die affine Transforma-
tion die Positionsmetrik erfiillt, werden die charakteristischen Betrachtungspunkte zur Zeit t;, die unter Verwen-
dung der berechneten affinen Transformation transformiert wurden, mit den charakteristischen Betrachtungs-
punkten zur Zeit t verglichen.

49/147

DE 696 36 599 T2 2007.08.23

[0408] Ein weiterer Ansatz besteht darin, die innere Drehung des 3D-Modells als Metrik zu verwenden. In die-
sem Fall werden die charakteristischen Modellierungspunkte zur Zeit t,, die unter Verwendung der berechne-
ten affinen Transformation transformiert wurden, mit den charakteristischen Modellierungspunkten zur Zeit t
verglichen.

[0409] Noch ein weiterer Ansatz besteht darin, eine Beleuchtungsmetrik zu verwenden. Wie bei der Metrik fir
die innere Drehung, werden die charakteristischen Modellierungspunkte dazu verwendet, die Genauigkeit der
Naherung zu kontrollieren.

[0410] Neben den Metriken, die oben beschrieben werden, gibt es eine Vielzahl anderer Alternativen. Um die-
se Metriken zu berechnen, kdnnen relevante charakteristische Daten zusammen mit den charakteristischen
Punkten gefiihrt werden. Je nach der gewiinschten Genauigkeit kann eine einzelne Metrik, oder eine Kombi-
nation von Metriken verwendet werden.

[0411] Wenn die charakteristischen Punkte, die den transformierten Gsprite reprasentieren, ausreichend ge-
nau sind, dann kann der transformierte Gsprite an Stelle eines neu gerenderten Gsprites verwendet werden.
Um die 2D-Transformation zu berechnen, wird der Gsprite fur die Zeit t, mit der affinen Transformationsmatrix
multipliziert (750). Im Gegensatz zum Rendern des Gsprites braucht diese Berechnung betrachtlich weniger
Verarbeitungszeit. Das Simulieren der 3D-Bewegung mit einer 2D-Transformation kann daher den Verarbei-
tungsaufwand, der zum Rendern eines Bildes erforderlich ist, betrachtlich reduzieren.

[0412] Auf der Basis der Naherungsgenauigkeit kann das System den Zusatzaufwand beim Rendern nach
Bedarf reduzieren, um innerhalb der Grenzen seiner Renderingkapazitat fir ein Teilbild der Bilddaten zu blei-
ben. Um das Konzept allgemein zu illustrieren, zeigt Fig. 22, dass ein Gsprite neu gerendert wird, wenn die
2D-Transformation nicht ausreichend genau ist (754). Wie in weiteren Details unten beschrieben wird, ist es
jedoch nicht notwendigerweise vorzuziehen, einen Gsprite auf der Basis einer Metrik zu akzeptieren oder ab-
zulehnen. Es ist vielmehr oft nitzlich zu bestimmen, wie genau die Naherung fir eine Reihe von Gsprites in
einer Szene ist und so viele Gsprites wie moglich neu zu rendern.

Farbverzerrung von Gsprites

[0413] Als weitere Optimierung kann das Renderingsystem die Beleuchtungsanderungen von Teilbild zu Teil-
bild abfragen und die Farbwerte des Gsprite modifizieren, um diese Anderungen zu néhern. Dieser Ansatz um-
fasst drei Grundschritte: 1) Abfragen der Beleuchtungsanderung zwischen den Teilbildern; 2) Bestimmen, wie
die Farbwerte im Gsprite zu andern sind, um die Beleuchtungsénderung zu ndhern (d.h. eine Farbverzerrung
zu berechnen); und 3) falls ausreichend genau, Ausflihren einer Farbverzerrung am Gsprite, um die Beleuch-
tungsanderung zu ndhern. Wenn nach der Bewertung der Beleuchtungsgleichung der Bildpraprozessor fest-
stellt, dass sich die Beleuchtung um mehr als einen vorgegebenen Betrag verandert hat, dann weist er den
Tiler an, das Objekt neu zu rendern.

[0414] Im ersten Schritt testet das Renderingsystem die Beleuchtungsanderung flir ein Objekt, das mit dem
Gsprite verknupft ist. Es testet die Beleuchtungsanderung zwischen einem ersten Teilbild, in dem ein Objekt in
einen Gsprite gerendert wird, und einem nachfolgenden Teilbild, in dem das Renderingsystem versucht, den
Gsprite Farb-zu-verzerren, um die Beleuchtungsanderung zu nahern. Eine Moglichkeit zum Testen der Be-
leuchtungsanderung besteht darin, die Beleuchtungsgleichung an charakteristischen Punkten mit Normalen
fur das erste Teilbild und das nachfolgende Teilbild zu testen und die Ergebnisse des Tests bei jedem der Teil-
bilder zu vergleichen. Die charakteristischen Punkte sollten vorzugsweise auf dem Objekt verteilt sein, um ei-
nen genauen Test der Beleuchtungsanderung Gber den Gsprite zu liefern. Die spezielle Zahl und der Ort von
charakteristischen Punkten kann variieren und ist im allgemeinen modellspezifisch.

[0415] Ein Beispiel fir die Beleuchtungsgleichung ist:
1y = 13KeOgy + T a[K4Ogn(N-L) + ksOyp (R-V)]

WO:

l,, das Umgebungslicht ist,

ke der Umgebungsreflexionskoeffizient ist,

0,, die diffuse Farbe des Objekts ist,

f,« der Lichtquellenabschwéchungsfaktor ist, der beschreibt, wie sich die Lichtenergie verringert, wenn es sich
von der Lichtquelle weiter wegbewegt.

50/147

DE 696 36 599 T2 2007.08.23

|, das Licht von einer Punktlichtquelle ist,

kq der diffuse Reflektionskoeffizient, eine Konstante zwischen 0 und 1, die von Material zu Material variiert, ist,
0,, die Spiegelreflektionsfarbe des Objekts ist,

ks der Spiegelreflektionskoeffizient des Materials ist, der im Bereich zwischen 0 und 1 liegt.

[0416] (N-L) ist das Skalarprodukt der Oberflachennormale N und der Richtung der Lichtquelle L.

[0417] (R-V) ist das Skalarprodukt zwischen der Richtung der Reflektion R und der Richtung zum Betrach-
tungspunkt V, der Exponent n ist der Spiegelreflektionsexponent des Materials, der normalerweise zwischen 1
und mehreren hundert variiert.

[0418] A zeigt an, dass ein Term, der diesen Index aufweist, wellenlangenabhéangig ist. Eine Annahme zum
Vereinfachen der Beleuchtungsgleichung besteht darin anzunehmen, dass das RGB-Farbmodell die Wechsel-
wirkung des Lichts mit Objekten ausreichend modellieren kann. Unter Verwendung dieser Annahme kann das
Beleuchtungsmodell auf jede R-, G- und B-Farbkomponente angewendet werden.

[0419] Die Beleuchtungsgleichung oben ist nur ein Beispiel, das ein Verfahren zum Berechnen der Beleuch-
tung an Punkten auf der Oberflache eines Objektes illustriert. Die Beleuchtungsgleichung kann zum Beispiel
durch Nichtbeachten des Lichtabschwachungsfaktors oder der Spiegelreflektion vereinfacht werden. Auf dem
Gebiet des 3D-Grafikrenderns gibt es eine Reihe von anderen konventionellen Beleuchtungsgleichungen, die
zum Modellieren der Beleuchtung auf der Oberflache eines grafischen Objektes verwendet werden. Daher
kann jede beliebige Zahl von unterschiedlichen Beleuchtungsgleichungen verwendet werden, um die Beleuch-
tung an charakteristischen Punkten zu testen, die mit einem grafischen Objekt verknUlpft sind. Im allgemeinen
berechnet der Bildpraprozessor die Beleuchtungsgleichung und bestimmt, wie der resultierende Beleuch-
tungswert | (mdglicherweise fir jede RGB-Komponente) sich in der Grofe von Teilbild zu Teilbild andert.

[0420] Um die Anderung in der Beleuchtung von Teilbild zu Teilbild einzuschéatzen, berechnet der Bildprapro-
zessor die Beleuchtungsgleichung flir charakteristische Punkte in einem ersten Teilbild und einem nachfolgen-
den Teilbild unter Verwendung der Flachennormale am charakteristischen Punkt, der Richtung der Lichtquelle
fur jedes Teilbild und mdglicherweise anderen Daten, die mit der speziellen Beleuchtungsgleichung verbunden
sind.

[0421] Das System kann die Beleuchtungsanderung an charakteristischen Punkten auf einem Objekt, das
durch den Gsprite reprasentiert wird, oder an charakteristischen Punkten auf einem Begrenzungsvolumen des
Objektes testen. Ein Ansatz fiir das Testen der Beleuchtungsanderung besteht darin, die Beleuchtungsande-
rung auf der Oberflache eines Begrenzungsvolumens des Objektes zu testen. Das System kann zum Beispiel
Beleuchtungsanderungen an den Normalen auf der Oberflache einer Begrenzungskugel des Objektes oder
Teilen des Objektes testen. Eine Begrenzungskugel ermoglicht dem Bildpraprozessor, die wesentlichen Ver-
anderungen zu verfolgen, die auf Grund dessen, dass eine lokale Lichtquelle innerhalb des ,Raums" eines Ob-
jektes bewegt wird, auftreten kénnen. Wenn der Bildpraprozessor einfach einen Satz von Vektoren verwende-
te, die sich am Schwerpunkt eines Objektes befinden, kdnnte die Bewegung einer lokalen Lichtquelle keine
wesentlichen Beleuchtungsanderungen bewirken, sondern kdnnte einen Einfluss auf die Beleuchtung des Ob-
jektes als Ganzes haben. Unter diesen Umstanden kann das Testen von Beleuchtungsanderungen auf der
Oberflache einer Begenzungskugel die Beleuchtungsanderungen fir das Objekt genauer erfassen, die an-
sonsten durch selektives Betrachten von charakteristischen Punkten auf der Oberflache des Objektes verlo-
rengehen wirden.

[0422] Als weitere Alternative kann eine Kombination von Normalen an den charakteristischen Punkten auf
dem Objekt oder auf der Oberflache einer Begrenzungskugel verwendet werden, um die Beleuchtungsande-
rungen abzufragen. Dieser Ansatz kann Beleuchtungsanderungen effektiver verfolgen, weil er die Beleuch-
tungsanderungen an charakteristischen Punkten auf dem Objekt und auf der Oberflache eines Begrenzungs-
volumens fur das Objekt verfolgt.

[0423] Auf der Basis der Beleuchtungsanderungen kann das System bestimmen, wie die Gsprite-Farbwerte
zu @ndern sind, um diese Beleuchtungsanderungen zu nahern. Ahnlich wie bei der Geometrietransformation,
die an einem Gsprite ausgeflihrt wird, berechnet das System, wie die Farbwerte des Gsprites zu &ndern sind,
um die Beleuchtungsanderung naherungsweise zu berlcksichtigen. Eine Mdglichkeit zur Berechnung der
Farbverzerrung besteht darin, einen Anpassungsansatz nach der Fehlerquadratmethode zu verwenden, wie
oben beschrieben. Das Ergebnis dieses Schritts ist eine konstante, lineare Anderung oder eine Anderung hé-
herer Ordnung, mit der die Farbwerte an den Pixelorten Uber den Gsprite modifiziert (z.B. mit einem Skalie-

51/147

DE 696 36 599 T2 2007.08.23

rungsfaktor multipliziert und/oder einem Versatz versehen) werden.

[0424] Die Farverzerrung umfasst einen Multiplikator oder ein Feld von Multiplikatoren, die Gber den Gsprite
hinweg angewendet werden. Im einfachsten Fall kann die Farbverzerrung einfach ein konstanter Mal3stabs-
faktor sein, der auf alle Pixel im Gsprite angewendet wird. Ein genauerer Ansatz ist, eine Verzerrung mit line-
arer Anderung oder einer héheren Ordnung zu verwenden, um die Beleuchtungsénderungen anzunahern. Der
Multiplikator ist vorzugsweise ein Vektorwert, so dass die Farbkomponenten unabhangig skaliert werden kon-
nen. Um die Anderungen durch farbige Lichtquellen genau zu modellieren, sollte jede Farbkomponente unab-
hangig skaliert werden.

[0425] Zusatzlich zum Multiplikator kann auch ein Versatzwert, der zu einem Farbwert im Gsprite addiert wird,
auf der Basis der Beleuchtungsanderungen an den charakteristischen Punkten berechnet werden.

[0426] Eine Mdglichkeit, den Multiplikator und die Versatzwerte zu berechnen, ist nach einem Multiplikator
und dem Versatzwert aufzulésen, der die Anderung in der Beleuchtungsgleichung an jedem charakteristischen
Punkt reprasentiert, um festzustellen, ob die charakteristischen Punkte sich an der Oberflache des Objektes,
an der Oberflache eines Begrenzungsvolumens oder von beiden befinden. Der Bildpraprozessor kann einen
Multiplikator, einen Versatzwert oder beide durch Wahlen eines Multiplikators oder Versatzwerts oder einer
Kombination aus einem Multiplikator und einem Versatzwert berechnen, die dieselbe oder im wesentlichen die-
selbe Anderung der Beleuchtungsgleichung an jedem charakteristischen Punkt bewirkt, wie wahrend des Test-
stadiums beobachtet wurde. Sobald diese Multiplikatoren und/oder Versatzwerte berechnet sind, gibt es eine
Reihe von Méglichkeiten, den Multiplikator und die Versatzwerte zu berechnen, die auf die Farbwerte im Gspri-
te angewendet werden. Eine Mdglichkeit besteht darin, die Multiplikatoren zu mitteln, um einen einzigen Ska-
lierungsfaktor flir den Gsprite abzuleiten. Eine andere Mdglichkeit besteht darin, die Versatzwerte zu mitteln,
um einen einzigen Versatzwert fir den Gsprite abzuleiten. Noch eine weitere Moglichkeit ist, eine Anpassung
nach der Fehlerquadratmethode auf den Multiplikator und die Versatzwerte unabhangig anzuwenden, um Aus-
driicke abzuleiten, die darstellen, wie sich die Multiplikatoren und die Versatzwerte mit dem Ort auf der Ober-
flache des Objekts andern. Dieser Ausdruck kann in Hardware unter Verwendung von Interpolatoren imple-
mentiert werden, um unabhangige Multiplikatoren und/oder Versatzwerte fur Pixelorte im Gsprite zu berech-
nen. Die Gsprite-Engine kann zum Beispiel einen Rastergenerator mit Interpolatoren zum Interpolieren der
Multiplikatoren und/oder Versatzwerte fiir jeden Pixelort umfassen, bevor ein Farbwert mit dem Multiplikator
multipliziert wird oder bevor ein Versatzwert zu einem Farbwert oder einem skalierten (d.h. skaliert durch den
entsprechenden Multiplikator, der fir den Pixelort berechnet wurde) Farbwert addiert wird.

[0427] Gerade so wie das System die Genauigkeit der geometrischen Anderung bewertet, kann das System
auch die Genauigkeit der Farbverzerrung durch Vergleichen der Farbwerte, die durch Farbanderung berechnet
wurden, mit entsprechenden Farbwerten, die fiir das aktuelle Teilbild unter Verwendung des normalen Rende-
ringprozesses berechnet wurden, bewerten. Wenn die Farbwerte sich um mehr als eine vorgegebene Toleranz
unterscheiden, sollte der Gsprite neu gerendert werden.

[0428] Neben der Verringerung des zusatzlichen Renderingaufwandes kann das Verzerren der Gsprites die
Transportverzégerung reduzieren. In Anwendungen, in denen sich die Betrachtungsperspektive schnell an-
dert, ist es auf Grund der Transportverzégerung schwierig, die sich schnell andernde Perspektive anzuzeigen.
Transportverzégerung bezieht sich auf die Verzdégerung, die zwischen dem Erhalt der Eingabe, welche eine
Anderung des Betrachtungspunktes bewirkt, und dem schlieRlichen Anzeigen des entsprechenden Bildes fiir
diesen neuen Betrachtungspunkt auftritt. Fig. 23 illustriert ein Beispiel daflr, wie die Transportverzégerung re-
duziert werden kann. Die Abschnitte entlang der horizontalen Achse reprasentieren Zeitschritte entsprechend
der Teilbildverzégerung.

[0429] In diesem Beispiel gibt es eine Verzégerung von drei Teilbildperioden zwischen der Abfrage der Ein-
gabe und der Anzeige der Ausgabe auf einem Anzeigegerat. Zuerst wird die Eingabe in einem ersten Teilbild
774 abgefragt. Als Nachstes berechnet der Computer die affinen Transformationen und rendert Objekte in den
Gsprites 776. Zum Schluss werden die gerenderten Bilddaten fiir das Teilbild zusammengesetzt und auf das
Anzeigegerat ausgegeben 778. Obwohl die Zeit, die zum Ausflhren jedes dieser Schritte nicht notwendiger-
weise eine ganze Teilbildverzégerung ist, die durch eine Teilbildperiode gemessen wird, verwenden wir den
Zuwachs einer Teilbildperiode, um das Konzept zu illustrieren. Wie illustriert, liegen drei Teilbildperioden der
Verzégerung zwischen Eingabe und Anzeige der entsprechenden Bilddaten.

[0430] Um die Transportverzdgerung zu reduzieren, kdnnen Betrachtungspunktdaten aus einem nachfolgen-
den Bild auf die Renderingphase des aktuellen Bildes angewendet werden 782. Dies wird durch den Pfeil von

52/147

DE 696 36 599 T2 2007.08.23

der Eingabephase fiir ein nachfolgendes Bild 782 auf die Gsprite-Transformation und die Renderingphase 776
des aktuellen Bildes illustriert. Die Verarbeitungsschritte (782, 784, 780) flir das nachste Teilbild der Bilddaten
werden neben den Schritten (776, 778) gezeigt, wie in Fig. 23 zu sehen ist. Wie illustriert, 1auft die Verarbeitung
in Pipelineart ab. Eingaben werden nach einem nachfolgenden Teilbild abgefragt, wahrend die Gsprite-Trans-
formationen berechnet und das Rendern fiir das aktuelle Teilbild ausgefihrt wird.

[0431] Die Modellierungstransformation fur das aktuelle Bild kann in Verbindung mit der Betrachtungstrans-
formation fir das nachfolgende Bild verwendet werden, um eine Gsprite-Transformation zu berechnen, die nor-
malerweise in der Form einer affinen Transformationsmatrix ist. Ein gerenderter Gsprite kann dann verzerrt
werden, um so seine Position relativ zum Betrachtungspunkt des nachfolgenden Bildes zu simulieren. Dieser
Ansatz verringert den Effekt der Transportverzégerung auf den Nutzer, weil er dem System ermdglicht, sich
schneller auf schnelle Anderungen in der Betrachtungspunktperspektive einzustellen.

[0432] Neben der Reduzierung der Transportverzdogerung in diesem Kontext, kbnnen nachfolgende Bilddaten
dazu verwendet werden, die Transportverzégerung auch in anderen Zusammenhangen zu reduzieren.

[0433] Wie oben angedeutet wurde, gibt es eine Reihe von Vorteilen fir das unabhangige Rendern der Gspri-
tes. Gsprites kdnnen unterschiedliche Aktualisierungsraten haben und daher variiert die Zahl der Gsprites, die
in einem bestimmten Teilbild aktualisiert wird. Einige Gsprites missen vielleicht bei jedem Teilbild aktualisiert
werden, wahrend andere Gsprites mdglicherweise weniger haufig aktualisiert werden. Wenn eine Reihe von
Gsprites in einem bestimmten Teilbild aktualisiert werden muss, kann sich der Rendering-Zusatzaufwand dra-
matisch erhéhen und das System belasten. Um dieses Problem anzugehen, fiihrt das System ein Prioritats-
rendering aus, was ihm ermdglicht, das Rendern tber eine Reihe von Teilbildern zu verteilen und Gsprites ef-
fizienter zu verarbeiten.

[0434] Ohne Prioritatsrendering kann die Zahl der Gsprites, die fur das Rendern in einem bestimmten Teilbild
eingeteilt sind, variieren. Einige Gsprites kdnnen zum Beispiel vorgegebene Aktualisierungsraten haben. Die
Aktualisierungsrate fiir einen Gsprite kann je nachdem variieren, ob er im Vordergrund oder Hintergrund einer
Szene ist. Mit der Unterstutzung fir affine Verzerrungen, die oben beschrieben sind, kann das System mit einer
affinen Transformation das erneute Rendern eines Gsprites durch Simulieren einer Positionsanderung vermei-
den. Im Fall von affinen Verzerrungen kann die Notwendigkeit, einen Gsprite neu zu rendern, variieren, je nach-
dem, ob sich die Szene andert.

[0435] Um das Prioritatsrendern zu implementieren, priorisiert das System das Rendern nach dem Grad der
Verzerrung, die sich durch Wiederverwenden eines gerenderten Gsprites ergeben wirde. Die Verzerrung wird
auf der Basis von einer oder mehreren Fehlerschwellen berechnet. Um die Verzerrung eines Gsprites zu quan-
tifizieren, misst das System, wie nahe, oder umgekehrt, wie weit ein Gsprite von seiner Fehlerschwelle entfernt
ist. Die Fehlerschwelle kann fir jeden Gsprite variieren und kann auf einem oder mehreren Faktoren beruhen.
Ein nach Verzerrung geordnete Liste von Gsprites wird gefiihrt, die die relative Qualitat der Gsprites vor dem
erneuten Rendern darstellt. Dann werden so viele Gsprites in einem Teilbild wie mdglich unter Bertcksichti-
gung der Systemressourcen neu gerendert. Gsprites werden neu gerendert, beginnend bei dem am starksten
verzerrten Gsprite, und dann weiter in absteigender Reihe zu den weniger verzerrten Gsprites. Das Verarbei-
tenin dieser Weise beseitigt die Moglichkeit einer Teilbildiberladung durch das Rendern der Gsprites, wahrend
statt dessen ein effizienter Mechanismus zum Ausbalancieren von Szenenkomplexitat und Bewegung mit der
Gsprite-Genauigkeit bereitgestellt wird.

[0436] Neben den Merkmalen, die oben beschrieben werden, erméglicht das Rendern in Gsprites dem Sys-
tem, die Auflésung von Objekten in einer Szene zu variieren. Dies gibt dem System die Moglichkeit, Gsprites
Verarbeitungs- und Speicherressourcen auf der Basis ihrer Bedeutung in einer Szene zuzuweisen.

[0437] Die Kosten eines Gsprites konnen in Form von Speicher, den er belegt, und der Verarbeitung, die zu
seinem Rendern erforderlich ist, gemessen werden. Beide Kosten hangen stark von der Zahl der Pixel im
Gsprite-Bild ab. Wenn Gsprite-Bilder bei einer festen Aufldsung, der Bildschirmauflésung, gespeichert und ge-
rendert werden, werden die Kosten, die fur ein Gsprite anfallen, von seinen Bildschirmabmessungen bestimmt.

[0438] Es ist wichtig, Verarbeitungs- und Speicherressourcen auf der Basis der Art und des Ortes eines Ob-
jektes, statt lediglich seiner GroéRRe, die es auf dem Bildschirm einnimmt, zuzuordnen. Aktive Objekte im Vor-
dergrund einer Szene sind normalerweise wichtiger fur die Szene als die im Hintergrund. Wenn jedoch dem
Gsprite Ressourcen auf der Basis der Grof3e zugeordnet werden, dann sind die Verarbeitungs- und Speicher-
kosten fur den Hintergrund auf Grund seiner gréReren Bildschirmabmessungen viel groRer.

53/147

DE 696 36 599 T2 2007.08.23

[0439] Das System kann die Bildschirmauflésung von der Auflésung des Gsprites entkoppeln, so dass die
Kosten eines Gsprites unabhangig von seiner endguiltigen Bildschirmauflésung festgelegt werden kénnen. Das
System erreicht dies durch Wahlen der geeigneten Auflésung des Gsprites und dann durch Skalieren des
Gsprites auf die entsprechende GroRe.

[0440] Der Vergrofierungs- oder Skalierungsfaktor kann aus den Bildschirmabmessungen des Bildes und der
Gsprite-Auflésung abgeleitet werden. Normalerweise liefert die Grafikanwendung die Bildschirmabmessun-
gen. Die Grafikanwendung kann auch die Aufldsung angeben. Alternativ kann der Bildpraprozessor die Gspri-
te-Auflésung auf der Basis der verfigbaren Ressourcen und der relativen Bedeutung des Gsprites in der Sze-
ne bestimmen.

[0441] Beim Betrieb rendert der Bildprozessor den Gsprite in einen kleineren Bereich in Ausgabegeratekoor-
dinaten, als er tatsachlich im Betrachtungsraum einnimmt. Die GréRe des Bereichs, in den der Gsprite geren-
dert wird, leitet sich aus der Auflésung und den Bildschirmabmessungen ab. Der gerenderte Gsprite kann dann
auf seine tatsachliche GroRe, wie durch seine Bildschirmabmessungen definiert sind, skaliert werden. Da der
Gsprite einen kleineren Bereich hat, verbraucht er weniger Speicher und weniger Verarbeitungsressourcen
zum Rendern. AuBRerdem kénnen in der erlauterten Ausfihrungsform Gsprites mit wechselnden Auflésungen
immer noch in einer gewohnlichen Grafikpipeline verarbeitet werden.

[0442] Eine Mdglichkeit, diesen Ansatz zu unterstitzen, besteht darin, den Vergréf3erungs- oder Skalierungs-
faktor in der Gsprite-Datenstruktur zu speichern. Der Skalierungsfaktor kann dann dazu verwendet werden,
den Gsprite zu skalieren, bevor er mit anderen Gsprites zusammengesetzt wird, um das Anzeigebild zu erzeu-
gen. Der Bildpraprozessor kann die Skalierung des Gsprites ausflihren. Spezieller gesagt, skaliert in der Imp-
lementierung, die oben beschrieben wird, der DSP den Gsprite.

[0443] So wie ein Gsprite skaliert werden kann, um die Auflosung zu reduzieren, kann er auch auf eine Grofie
gerendert und dann auf eine kleinere Anzeigeflache skaliert werden. Dieses Verfahren kann auf Objekte in ei-
ner Szene angewendet werden, die in der Grof3e schwinden. Statt das Objekt fiir jedes Teilbild neu zu rendern,
kann das System den Gsprite skalieren, der das Objekt reprasentiert. Dieser Ansatz kann auch durch Spei-
chern des Skalierungsfaktors in der Gsprite-Datenstruktur implementiert werden.

[0444] Oben haben wir die Gsprite-Verarbeitung durch ein Bildverarbeitungssystem beschrieben, und wir ha-
ben auch beschrieben, wie eine Gsprite-Transformation berechnet und in einem Bildverarbeitungssystem an-
gewendet werden kann. Wir beschreiben jetzt detaillierter, wie man Pixeldaten transformieren, zusammenset-
zen und anzeigen kann.

[0445] In dieser Ausfihrungsform richtet der DSP 176 die Gsprite-Datenstrukturen ein und speichert sie im
gemeinsamen Speicher 216 auf der Bildverarbeitungsplatine 174. Der DSP liest und schreibt in die Gsprite-En-
gineregister durch den Tiler Uber eine speicherabgebildete Schnittstelle. Die Register in der Gsprite-Engine
umfassen einen Zeiger auf die aktuelle Anzeigeliste. Weitere Details zur Gsprite-Engine 436 werden oben un-
ter Bezugnahme auf Fig. 12 bereitgestellt.

[0446] Die primare Eingabe in die Gsprite-Engine 204 erfolgt tGber die Gsprite-Anzeigeliste. Fig. 24 illustriert
ein Beispiel fur eine Anzeigeliste 800 und Gsprite-Datenstrukturen. In dieser Implementierung umfasst die An-
zeigeliste 800 ein Feld von Gsprite-Steuerblockadressen, die SCB (Sprite-Kontrollblock)-Handles 840 genannt
werden, wobei auf jeden eine Bandmaske 802 folgt. Das erste Wort in der Liste 800 umfasst die Anzahl von
Gsprites in der Liste. Ein gesetztes Bit in der Bandmaske zeigt an, dass der Gsprite im Band vorhanden ist.
Obwohl wir hier ein spezielles Beispiel bereitstellen, kann die Anzeigeliste auf andere Weise implementiert
werden. Die Liste kann zum Beispiel aus separaten Listen fiir jedes einzelne Band bestehen, wobei jede Band-
liste die Gsprites aufzahlt, die auf dieses Band fallen. Wie oben bemerkt, sind die Gsprites in der Anzeigeliste
nach Tiefe geordnet und in diesem Fall sind sie von vorn nach hinten geordnet.

[0447] Der Gsprite-Kontrollblock (SCB) 806 umfasst Informationen zum Scannen des Gsprites in Ausgabe-
geratekoordinaten. Rechteckige Gsprites bilden sich auf ein Parallelogramm im Bildschirmraum unter einer af-
finen Transformation ab. Die Kantengleichungen des Gsprites haben die Form: Ajx + By + C, = F; Ax + By
+C,=F,; -Ax-By +C,=F, -Ax-B,y + C, = F,. Die rechte Seite dieser Gleichungen ist an den entspre-
chenden Kanten gleich null. Der DSP 176 bestimmt den Wert der Koeffizienten aus der affinen Transformation
fur den Gsprite. Nach der affinen Transformation ist die Form des Gsprites ein Parallelogramm, und daher
brauchen nur 2 Satze von A- und B-Koeffizienten gespeichert zu werden. Die C-Terme werden Gberhaupt nicht
gebraucht, da die Gsprite-Engine nur die F-Werte am Startpunkt benétigt, und sie braucht auch eine Beschrei-

54/147

DE 696 36 599 T2 2007.08.23

bung, wie sich die F-Werte mit Schritten im Bildschirmraum X und Y andern, was durch die A- und B-Koeffizi-
enten angegeben wird. Zur Unterstiitzung der Abbildung von gespeicherten Gsprite-Daten in Ausgabegerate-
koordinaten wird das Vorzeichen des Koeffizienten so gesetzt, dass das Ergebnis eine positive Zahl ist, wenn
die Koordinaten eines Punktes im Parallelogramm in der Kantengleichung ermittelt werden.

[0448] Speziell umfasst der SCB A,, B,; A,, B;; Fy, F,, F,, F5; den am weitesten links liegenden Punkt xs, ys;
den am weitesten rechts liegenden Punkt xf, yf; die Neigung des am weitesten links liegenden Punktes gegen-
Uber der Oberseite des Gsprites und die Neigung des am weitesten links liegenden Punktes gegeniiber dem
Boden und die Breite und Hohe des Parallelogramms.

[0449] Der Startpunkt fir den Scan ist der am weitesten links liegende Punkt des Parallelogramms, und der
Scan bewegt sich Spalte fiir Spalte von links nach rechts im Bildschirmraum. Um den Gsprite auf jedes
32-Scanzeilenband zu beschneiden, umfasst der SCB auch die Neigungen dx/dy vom Startpunkt (dem am wei-
testen links liegenden Punkt) zu den oberseitigen und bodenseitigen Punkten des Gsprites, so dass der am
weitesten links liegende Punkt in einem bestimmten Bildschirmband bestimmt werden kann.

[0450] Die Kantengleichungen des Parallelogramms sind im DSP 176 derart normalisiert worden, dass F =0
an einer Kante des Parallelogramms und F = Gsprite-Breite oder -Hohe an der gegeniberliegenden Kante gilt.
Die F-Werte fur die Kanten 0 und 1 des Parallelogramms kénnen daher direkt verwendet werden, um ein
Sample S, T eines bestimmten Gsprite-Bildes an einem bestimmten Bildschirmort X, Y nachzusehen. Da die
Abbildung von einem Bildschirm X, Y auf einen Gsprite S, T selten direkt auf einer Gsprite-Bildabfrage landen
wird, interpoliert die Gsprite-Engine die nachstgelegenen 4-(oder 16-) Gsprite-Bildabfragen, um das Ausga-
besample zu finden.

[0451] Der SCB 806 umfasst die Grofie des urspringlichen Gsprites (horizontale und vertikale Schrittweite)
und die GréRe und den Ort des Teil-Gsprites, der gescannt werden soll (Breite, Hohe, Start S und T). Er kann
auch Kennzeichen (Flags) umfassen, die beschreiben, wie die Bildchunks komprimiert wurden und welches
Pixelformat in den Chunks verwendet wird.

[0452] Bei dieser Chunking-Architektur wird der Gsprite in 32x32-Pixelchunks unterteilt. Es ist nicht notwen-
dig, Gsprites zum Rendern in Chunks zu teilen. Eine Chunking-Architektur besitzt aber eine Reihe von Vortei-
len, wie oben dargelegt. Zur Unterstiitzung der Chunking-Architektur umfasst der SCB ein zweidimensionales
Feld von Zeigern (Chunk-Handles), das die Adresse fiir das erste Wort des komprimierten Chunks im gemein-
samen Speicher reprasentiert. Der Chunkspeicher wird in 512-Bit-Blécken gehandhabt. Jeder Zeiger oder
Chunk-Handle hat 18 Bit, was einen Gesamtwert von 16 MB addressierbarer Speicher ermdglicht. Da die Men-
ge an Speicher, die zum Komprimieren jedes Chunks bendtigt wird, variabel ist, enthalt jeder 512-Bit-Block ei-
nen 18-Bit-Zeiger auf den nachsten Block. Blécke, die nicht mehr bendtigt werden, werden einer verlinkten Lis-
te von freien Blécken hinzugefligt, so dass sie fur andere Chunks verwendet werden kénnen.

[0453] Wenn Objekte, die einem Gsprite zugeordnet sind, in Chunks geteilt werden, wird die Gsprite-Daten-
struktur aktualisiert, so dass sie einen Verweis auf die Chunks enthalt, die Bilddaten fur den Gsprite umfassen.

[0454] Gsprite-Daten kdnnen aus einem anderen Gsprite instanziert werden. In dem Beispiel, das in Fig. 20
gezeigt wird, instanziert ein Gsprite Bilddaten von einem anderen. Hier zeigt der erste Chunk-Handle (808) fur
den SCB auf den SCB 810 eines anderen Gsprites. In einer alternativen Implementierung zeigen Chunk-Hand-
les nur auf Orte im Speicher, an denen Chunks gespeichert sind.

[0455] Fig. 25 ist ein Beispiel, das illustriert, wie ein Gsprite von 6 Chunks mal 2 Chunks sich auf horizontale
Bander in der Anzeige abbilden kénnte. Fig. 25 zeigt den Startpunkt 836 und den Endpunkt 834, die beim
Scannen von Bilddaten aus dem Gsprite-Raum auf den physischen Ausgabegeratraum verwendet werden.
Wir erklaren unten mit mehr Details, wie Gsprite-Bilddaten auf den Ausgabegerateraum abgebildet werden.

[0456] Nach dem Rendern und der Berechnung der affinen Transformationen fiir Gsprite in einem Teilbild
fuhrt der Bildprozessor dann die Erzeugung der Anzeige aus. Wie in Fig. 21B gezeigt, transformiert der Bild-
prozessor Gsprites in physische Ausgabekoordinaten und setzt die Gsprites zusammen. Nach dem Zusam-
mensetzen der Pixeldaten transferiert der Bildprozessor diese zur Anzeige.

[0457] In dieser Ausflihrungsform liest die Gsprite-Engine in der Anzeigeliste und bildet das Gsprite-Bild auf

die Ausgabegeratekoordinaten ab. Wahrend die Gsprite-Engine die Gsprite-Daten transformiert, sendet sie Pi-
xeldaten an einen Zusammensetzungspuffer zur Anzeige. Der Zusammensetzungspuffer ist vorzugsweise

55/147

DE 696 36 599 T2 2007.08.23

doppelt gepuffert, so dass zusammengesetzte Pixeldaten von einem Puffer Gbertragen werden kénnen, wah-
rend Pixeldaten im anderen Puffer zusammengesetzt werden.

[0458] Spezieller gesagt, liest die Gsprite-Engine Gsprite-Bilddaten im AYUV-Format aus dem gemeinsamen
Speicher, dekomprimiert, transformiert und filtert sie, konvertiert sie ins ARGB-Format und sendet sie an den
Zusammensetzungspuffer mit Videoraten (z.B. 75 Hz). Der Zusammensetzungspuffer setzt die dekomprimier-
ten ARGB-Pixel in einem 1344 x 32-Puffer zur Anzeige zusammen.

[0459] Fig. 26 ist ein Flussdiagramm, das illustriert, wie die Gsprite-Engine Bilddaten verarbeitet. Beim Erhalt
eines Bildsynchronisierungssignals (858) durchlauft die Gsprite-Engine jedes Band (860) fur ein Teilbild und
scannt jeden Gsprite in einem Band (862). Nach dem Scannen der Gsprites fur ein Band fahrt sie dann mit
dem nachsten Band (860) fort. Die Gsprite-Engine wiederholt den Scanprozess fir jedes Band im Betrach-
tungsraum.

[0460] Da in einer Echtzeitanwendung die Gsprite-Engine den Scan innerhalb einer Zeit abschlieen muss,
die von der Bildwiederholrate vorgegeben wird, ist es moglich, dass die Gsprite-Engine nicht in der Lage ist,
jeden Gsprite in jedem Band zu verarbeiten. Um diesen Fall verhiten zu helfen, meldet die Gsprite-Engine fir
jedes Teilbild die freie Verarbeitungszeit fur jedes Band an den Host-Rechner. Unter Verwendung dieser Infor-
mationen kann der Bildpréprozessor Objekte nach Notwendigkeit vereinigen, um eine Uberladung eines be-
stimmten Bandes zu verhindern.

[0461] Beim Scannen der Pixel aus dem Gsprite-Raum konvertiert die Gsprite-Engine die Pixeldaten in die
Ausgabegeratekoordinaten (866). Es kann eine beliebige Zahl von herkémmlichen Scanverfahren verwendet
werden, um den Gsprite in Ausgabegeratekoordinaten zu scannen. Es kann entweder ein Backward Mapping
oder ein Forward Mapping verwendet werden. Die Gsprite-Engine verwendet in dieser Ausfiihrungsform einen
Backward Mapping-Ansatz.

[0462] Die Gsprite-Engine bestimmt unter Verwendung der Kantengleichungsdaten im SCB den Ort fiir den
Start des Scans in jedem Band durch Zuschneiden des Gsprites auf das Band. Eig. 25 zeigt zum Beispiel, wie
die Kanten des Gsprites in das dritte Band hineinragen (830, 832). Die Schnittpunkte sind der Start- und Stopp-
punkt fur den Scan des Gsprites in diesem speziellen Band. Ein Ansatz fir das Scannen besteht darin, das
Scannen zickzackartig vom Startpunkt aus durchzufiihren. Der Startpunkt in einem Band kann gefunden wer-
den, indem die zum Schnittpunkt nachstgelegenen Pixel in Ausgabegeratekoordinaten herangezogen werden.
Sobald der Startpunkt berechnet ist, schreitet die Gsprite-Engine schrittweise in Inkrementen weiter, bis sie aus
dem Gsprite oder aus dem Band heraustritt. Sie schreitet dann eine Spalte nach rechts und dann nach unten,
bis sie entweder aus dem Gsprite oder aus dem Band heraustritt. Bei jedem Schritt interpoliert sie aus den Pi-
xeldaten im Gsprite-Raum, um einen Pixelwert fur einen Pixelort zu finden. Wenn sie diesen Pixelwert an je-
dem Ort berechnet, sendet sie die Pixeldaten zum Zusammensetzen an den Zusammensetzungspuffer.

[0463] Fig. 27 ist ein Schema, das illustriert, wie die Gsprite-Engine und die Zusammensetzungspuffer Ban-
der von Bilddaten verarbeiten. In diesem Schema bezieht sich der Begriff ,Band" auf die Zeitdauer (Bandperi-
ode), die zur Verarbeitung eines Bandes von Pixeldaten zugewiesen ist. Diese Zeit kann zum Teil aus der Bild-
wiederholrate und der Zahl der Bander im Anzeigegerat abgeleitet werden. Wie in Eig. 27 gezeigt, fullt die
Gsprite-Engine 204 die Zusammensetzungspuffer 210 fiir ein Band 888, und diese zusammengesetzten Bild-
daten werden zur Anzeige 892 herausgescannt. Diese Schritte kdnnen unter Verwendung der Doppelpuffe-
rung fur aufeinander folgende Bander Uberlappt werden. Wahrend die Gsprite-Engine 204 einen Zusammen-
setzungspuffer fur ein Band fiillt 890, Gbertragt der Zusammensetzungspuffer die zusammengesetzten Bildda-
ten fr ein weiteres Band an den DAC 212, 892. In der nachsten Bandperiode wird das Band, das gerade zu-
sammengesetzt wurde, dann angezeigt 894. Dieser Prozess wiederholt sich fir Bander in der Anzeige. Wegen
dieser Doppelpufferung kann der Prozess des Transformierens und des Zusammensetzens von Pixeln gleich-
zeitig mit dem Prozess des Anzeigens eines Bandes ablaufen.

[0464] Gsprites konnen in Echtzeit zusammengesetzt werden, um das Bild zu erzeugen, das auf dem Aus-
gabegerat angezeigt wird. Die Gsprite-Pixeldaten, die aus der Gsprite-Adressierungs- und Bildverarbeitungs-
engine erzeugt wurden, werden an einen Zusammensetzungspuffer weitergeleitet. Der Zusammensetzungs-
puffer hat zwei 32-Scanline-Puffer, einen, der zum Zusammensetzen zu Videodaten zur Anzeige verwendet
wird, und einen, der zum Erzeugen der Videodaten zur Anzeige verwendet wird. Die zwei Puffer schalten vor
und zurtick, so dass wahrend des Anzeigens einer Scanline-Region die nachste zusammengesetzt wird.

[0465] Die Gsprite-Engine leitet die primaren Farbdaten und Alphadaten an den Zusammensetzungspuffer

56/147

DE 696 36 599 T2 2007.08.23

fur jedes Pixel, das zusammengesetzt werden soll, weiter. Ein 32-Scanline-Alphapuffer ist mit dem Scanline-
puffer verbunden, der gerade zum Zusammensetzen verwendet wird. Da die Gsprites in der Reihenfolge vorn
nach hinten verarbeitet werden, kann der Alphapuffer zum Ansammeln von Opazitat fur jedes Pixel verwendet
werden, was ordnungsgemalfies Anti-Aliasing und Transparenz ermdglicht.

[0466] Der Scanline-Farbpuffer wird mit 0,0 initialisiert. (alle Bits zurlickgesetzt), wahrend der Alphapuffer auf
1,0 (alle Bits gesetzt) initialisiert wird. Fir jedes Pixel berechnet sich die Farbe, die in den Scanlinepuffer ge-
laden wird, zu Farbe(neu) = Farbe(dst) + Farbe(src)-Alpha(src)-Alpha(dst). Der Alphawert, der im Alphapuffer
gespeichert wird, berechnet sich zu Alpha neu) = Alpha(dst):(1 minus Alpha(sic)). Die Farbverweistabelle
(LUT) ist vorzugsweise 256 x 10 Bit: die Extrabits (10 gegentiber 8) kénnen dazu verwendet werden, fir eine
genauere Gammakorrektur zu sorgen.

Tiling

[0467] Wie oben angeflhrt, fiihrt der Bildprozessor (Fig. 1) eine Scan-Konvertierung aus, entfernt verborgene
Flachen, fihrt Anti-Aliasing, Lichtdurchlassigkeitsberechnungen, Texturierung und Schattierung aus. In diesem
Abschnitt beschreiben wir detailliert Scan-Konvertierung, Anti-Aliasing und Lichtdurchlassigkeitsberechnung.

[0468] Fig. 4B ist ein Schema, das Teile des Bildprozessors 462 zum Erzeugen von gerenderten Bilddaten
aus geometrischen Grundelementen illustriert. Der Bildprozessor umfasst einen Rastergenerator 464, eine Pi-
xelengine 466, eine Anti-Aliasing-Engine 468 und einen Rastererzeugungspuffer, der die Pixelpuffer 470 und
einen Fragmentpuffer 472 in dieser Ausfiihrungsform umfasst. Der ,Rastergenerator" bezieht sich auf den Teil
des Bildprozessors, der Pixelwerte aus den geometrischen Grundelementen, d.h. Polygonen, bestimmt. Der
Rastergenerator 464 liest die Daten fir jedes Grundelement und erzeugt Pixeldaten, die mit dem Pixelort ver-
knupft sind. Diese Pixeldaten umfassen Farbe, Alpha und Tiefe (Abstand vom Betrachtungspunkt). Wenn ein
Pixel nicht vollstandig von einem Polygon bedeckt ist, erzeugt der Rastergenerator Pixelfragmentdaten.

[0469] Wahrend er ein Polygon scannt, leitet der Rastergenerator Pixeldaten an die Pixelengine zur Verarbei-
tung weiter. Die Pixelengine 468 liest Pixeldaten aus dem Rastergenerator und bestimmt, welche Pixeldaten
in Pixel- und Fragmentpuffern zu speichern sind. Die Pixelpuffer 472 sind zweidimensionale Felder, wobei die
Elemente in den Feldern Pixelorten entsprechen, und umfassen Speicher zum Speichern von Farb-, Alpha-
und Tiefendaten. Der Fragmentpuffer 470 speichert Fragmentdaten, die das teilweise Abdecken eines Pixels
reprasentieren.

[0470] Die Pixelengine 466 fuhrt eine Entfernung verborgener Flachen unter Verwendung der Tiefenwerte
aus, die durch den Rastergenerator erzeugt wurden, und halt auch die Pixelfragmente und lichtdurchlassigen
Pixel fir das Anti-Aliasing und die Lichtdurchlassigkeitsverarbeitung aufrecht. Fir einen gegebenen Pixelort
bewahrt die Pixelengine das nachstgelegene voll abgedeckte lichtundurchlassige Pixel, falls vorhanden. In die-
sem Kontext bedeutet ,voll abgedeckt", dass das Pixel vollstandig von einem Polygon bedeckt wird, das gera-
de im Rastergenerator scan-konvertiert wird. Die Pixelengine bewahrt auch Pixel mit Lichtdurchlassigkeit (Al-
pha kleiner als 1) und Pixelfragmente vor dem nachstgelegenen lichtundurchlassigen Pixel. Die Pixelengine
speichert das nachstgelegene lichtundurchlassige Pixel fir einen Pixelort im Pixelpuffer und speichert im Frag-
mentpuffer alle Fragmente oder lichtdurchldssigen Pixel an diesem Pixelort, die sich vor dem nachstgelegenen
lichtundurchlassigen Pixel befinden.

[0471] Nachdem die Pixelengine Pixeldaten erzeugt hat, I16st die Anti-Aliasing-Engine 468 die Pixeldaten in
Pixel- und Fragmentpuffer auf. Die Konstruktion des Bildprozessors, der in Fig. 4B illustriert wird, unterstitzt
die Doppelpufferung von Pixeldaten und die einfache Pufferung von Fragmentdaten. Die Pixelengine erzeugt
Pixeldaten in einem der Pixelpuffer und fugt Fragmentinformationen zum Fragmentpuffer hinzu, wahrend die
Anti-Aliasing-Engine die Pixeldaten aus dem anderen Pixelpuffer und Fragmentdaten aus dem Fragmentpuffer
auflost. Wenn jedes Fragment aufgelOst ist, wird der Fragmenteintrag zur Liste der freien Fragmente zur Ver-
wendung durch neue Pixeldaten hinzugefiigt.

[0472] Nachdem wir einen Uberblick iiber den Prozess der Erzeugung und Auflésung von Pixeldaten gege-
ben haben, beschreiben wir nun detaillierter eine Ausfiihrungsform.

[0473] Die Komponenten von Eig. 4B kdnnen im Tiler implementiert werden. Der Tiler liest Grundelemente-
daten und Renderinganweisungen aus dem gemeinsamen Speichersystem 216 (Fig. 4A), erzeugt gerenderte
Bilddaten und speichert komprimierte Bilddaten im gemeinsamen Speicher. Wie oben beschrieben, sind die
grundlegenden 3D-Grafikgrundelemente im System Dreiecke. Das Rendern von Dreiecken sorgt fir zahlreiche

571147

DE 696 36 599 T2 2007.08.23

Vereinfachungen in der Hardware, die zur Grafikerzeugung verwendet wird, da das Dreieck immer planar und
konvex ist. Alternativ kbnnen jedoch auch n-seitige Polygone verwendet werden.

[0474] Oben haben wird die Komponenten des Tilers 200 erklart. Hier beschreiben wir detaillierter den Da-
tenfluss durch den Tiler.

[0475] Da der Tiler Eingaben aus dem DSP erhalt, beginnen wir mit einer kurzen Wiederholung von Funktio-
nen des DSP 176 (Fig. 4). Wie oben beschrieben, kann der DSP 176 die Geometrievorverarbeitung und die
Beleuchtungsberechnungen ausfiihren, die fir die 3D-Grafik benétigt werden. Der DSP 176 berechnet Modell-
und Betrachtungstransformationen, Beschneiden, und Beleuchtung usw. Renderbefehle werden in Hauptspei-
cherpuffern gespeichert und zur Bildverarbeitungsplatine Gber einen PCI-Bus geDMAt (durch direkten Spei-
cherzugriff erfasst). Die Renderbefehle werden dann im gemeinsamen Speicher 216 (Fig. 4A) gepuffert, bis
sie vom DSP bendtigt werden. Die Renderingbefehle werden vom Tiler 200 (Fig. 4A) gelesen, wenn er zur
Ausfiuihrung von Bildverarbeitungsoperationen bereit ist.

[0476] Wie im Flussdiagramm in den Fig. 28A und Fig. 28B gezeigt, verarbeitet der Setup-Block Anweisun-
gen zum Rendern von Grundelementen, die aus dem gemeinsamen Speicher gelesen wurden. Der Eckpunk-
teingabeprozessor parst den Eingabestrom (914) (Fig. 28A) und speichert die Informationen, die firr die Grun-
delemente-Dreiecksverarbeitung in den Eckpunktsteuerregistern (916) bendtigt werden.

[0477] Die zwei Eckpunktsteuerregister speichern sechs Eckpunkte, drei fiir jedes Dreieck, in jedem Register.
Die zwei Eckpunktsteuerregister ermdglichen das Doppelpuffern der Dreiecksinformationen, um sicherzustel-
len, dass die Setup-Engine immer Uber Dreiecksinformationen zum Verarbeiten verfligt.

[0478] Die Setup-Engine berechnet dann die linearen Gleichungen (918), die die Kanten-, Farb- und Textur-
koordinateninterpolation ber die Flache des Dreiecks bestimmen. Diese linearen Gleichungen werden dazu
verwendet festzustellen, welche Texturblécke bendtigt werden, um das Dreieck zu rendern. Die Kantenglei-
chungen werden auch in den Scanumwandlungsblock (920) geschoben und in den Grundelementeregistern
innerhalb des Scanumwandlungsblocks gespeichert, bis sie von der Scanumwandlungs-Engine bendtigt wer-
den. Die Grundelementeregister sind in der Lage, mehrere Satze von Kantengleichungen zu speichern.

[0479] Die Setup-Engine sendet Texturadressen an die Texturlese-Schlange (922), die Anforderungen fir
Texturchunks puffert. Der Texturadressgenerator bestimmt dann die Adresse im Speicher der angeforderten
Texturchunks (924) und sendet Texturleseanforderungen an den Befehls- und Speichersteuerungsblock (926)
(Eig. 28B), der die Texturdaten (928), die vom Scanumwandlungsblock verwendet werden, abruft.

[0480] Texturdaten werden im gemeinsamen Speicher (216) (Eia. 4A) in einem komprimierten Bildformat ge-
speichert, das mit dem Format der Bilddaten ubereinstimmen kann. Das Kompressionsformat wird auf indivi-
duelle 8x8-Pixelblécke angewendet. Die 8x8-Blécke werden fur Zwecke des Speichermanagements zu
32x32-Blocken zusammengestellt, um den Zusatzaufwand fir das Speichermanagement zu reduzieren.

[0481] Wenn Texturblocke bendtigt werden, werden sie in den Tiler abgerufen, von der Dekompressionsen-
gine (930) dekomprimiert und in einem chipintegrierten Texturcache gecacht (932). Es kénnen insgesamt
32x32-Pixelblécke gecacht werden, obwohl jeder einzelne Block nur eine Farbkomponente speichert. Die Tex-
turdaten werden im RGB- und Alpha-Format gecacht.

[0482] Die Scanumwandlungs-Engine liest dann die Kantengleichungen aus den Grundelementeregistern
(934), um die Dreieckskanteninformationen zu scan-konvertieren. Die Scanumwandlungs-Engine umfasst die
Interpolatoren fir das Bewegen der Kanten der Dreiecke, das Interpolieren von Farben, Tiefen, Lichtdurchlas-
sigkeit usw.

[0483] Die Scanumwandlungs-Engine sendet Texturadressen an die Texturfilter-Engine (936). Die Texturfil-
ter-Engine berechnet Texturdaten fiir die Polygone, die gerade gerendert werden. Die Texturfilterengine be-
rechnet einen Filterkern, der auf der Z-Neigung und Orientierung des Dreiecks und auf den s- und t-Koordina-
ten beruht. Der Texturcache, der an der Texturfilterengine hangt, speichert Texturdaten fiir sechzehn 8x8-Pi-
xelblécke. Der Texturcache steht auch mit der Dekompressionsengine in Verbindung, die die Texturdaten (wel-
che in einem komprimierten Format gespeichert sind) zur Verwendung durch die Texturfilterengine dekompri-
miert.

[0484] Wenn die Texturfilterung abgeschlossen ist, leitet die Texturfilterengine die Informationen zur Scanum-

58/147

DE 696 36 599 T2 2007.08.23

wandlungs-Engine (938) zurtick, so dal sie von der Scanumwandlungs-Engine zur weiteren Verarbeitung ver-
wendet werden kdénnen. Neben der Texturverarbeitung scankonvertiert die Scanumwandlungs-Engine die
Dreieckskantendaten (940), und die individuellen Pixeladressen werden zusammen mit Farb- und Tiefeninfor-
mationen an die Pixelengine zur Verarbeitung geleitet (942).

[0485] Das Verfahren, das in den Fig. 28A und Fig. 28B illustriert wird, variiert fur die alternativen Verfahren,
die in Verbindung mit den Fig. 10 und Fig. 11 beschrieben werden. Die Fig. 28C und Fig. 28D illustrieren ein
Verfahren fur den Zugriff auf Bilddaten entsprechend Fig. 10 und Fig. 9B. In ahnlicher Weise illustrieren die
Fig. 28E und Fig. 28F ein Verfahren fir den Zugriff auf Bilddaten entsprechend Fig. 11 und Fig. 9C.

[0486] Bezieht man sich zuerst auf die Fig. 28C und Fig. 28D, so beginnt diese Implementierung des Verfah-
rens im Setup-Block 381 von Fig. 9B. Der Eckeneingabeprozessor 384 verarbeitet den Eingabedatenstrom
(947). Als Nachstes puffern die Eckpunktsteuerregister 386 Dreiecksdaten aus dem Eingabedatenstrom (948).
Die Setup-Engine 388 berechnet dann die Kantengleichungen (949) und leitet sie an den Scanumwandlungs-
block 395 weiter (950).

[0487] Der Scanumwandlungsblock 395 liest die Kantengleichungen, die in den Grundelementeregistern
(951) gespeichert sind, und scan-konvertiert die Dreiecksdaten (952). Die Scanumwandlungs-Engine 398
schreibt dann Pixeldaten, einschlief3lich Pixeladresse, Farb- und Alphadaten und Bedeckungsdaten, in einen
Eintrag in die Texturreferenzdatenschlange 399 (953) (Fig. 28D). Im Fall der Texturabbildungsoperationen um-
fasst dieser Eintrag auch Texturreferenzdaten, namlich die Koordinaten des Texturmittelpunkts. Der Eintrag
kann auch Texturfilterdaten umfassen, wie zum Beispiel Ebenendetails oder anisotrope Filtersteuerungsdaten.

[0488] Aus den Texturreferenzdaten bestimmt die Texturcachesteuerung 391, welche Texturblécke abzurufen
sind, und bewirkt, dass der/die entsprechende(n) Textblock/-blécke aus dem Speicher (954) abgerufen wer-
den.

[0489] Die Texturadresscachesteuerung 391 sendet Texturleseanforderungen an den Befehls- und Speicher-
steuerungsblock 380 (955). Die Texturleseschlange 393 puffert Leseanforderungen fiir Texturblocke an das
gemeinsame Speichersystem. Die Speichersteuerung 380 ruft die Texturdaten aus dem gemeinsamen Spei-
cher ab, und wenn sie komprimiert sind, stellt sie den komprimierten Block oder Blécke in den komprimierten
Cache 416 (956). Die Dekompressionsengine 404 dekomprimiert komprimierte Bilddaten und setzt sie in den
Texturcache 402 (957, 958). Wie oben in Verbindung mit Fig. 10 beschrieben, setzt sich das Ersetzen von BI6-
cken im Texturcache gemal einem Cacheersetzungsalgorithmus fort.

[0490] Um eine Texturabbildung oder andere Pixeloperationen auszufiihren, die Bilddaten im Texturcache er-
fordern, liest die Texturfilterengine 401 Texturadressen aus der Texturreferenzdatenschlange 399 (959). Die
Texturfilter-Engine 401 greift auf die Bilddaten im Texturcache 402 zu, berechnet den Beitrag aus der Textur
und kombiniert diesen Beitrag mit den Farb- und mdglicherweise Alphadaten aus der Texturreferenzdaten-
schlange 399.

[0491] Die Texturfilterengine 401 leitet Pixeldaten an die Pixelengine 406, die das Entfernen verborgener Fla-
chen ausflihrt und die Speicherung der Pixeldaten in einem Rastererzeugungspuffer steuert.

[0492] Die Fig. 28E und Fig. 28F illustrieren ein Verfahren fur den Zugriff auf Bilddatenbldcke aus dem Spei-
cher entsprechend dem Ansatz in Fig. 11. In dieser alternativen Implementierung beginnt das Verfahren durch
Einreihen von Grundelementen in die Schlange im Setup-Block 383. Der Eckpunkteingabeprozessor 384 parst
den Eingabedatenstrom und reiht Dreiecksdaten in die Schlange in Eckpunktsteuerregistern 387 ein (961,
962). Wenn auf Bilddatenblocke aus dem Speicher zugegriffen werden muss, wie dies im Fall einer Texturab-
bildungsoperation ist, scankonvertiert der Vorrastergenerator 389 die Grundelemente, die sich in der Schlange
in den Eckpunktsteuerregistern 386 befinden, um Leseanforderungen fir Texturdatenblécke im gemeinsamen
Speicher zu erzeugen (963).

[0493] Wenn der Vorrastergenerator ein Grundelement scannt, das sich in der Schlange im Setup-Block be-
findet, leitet er Texturleseanforderungen an die Texturcachesteuerung 391 (964). Die Texturcachesteuerung
391 bestimmt die geeigneten Texturblécke (965) und Gbertragt Leseanforderungen Gber die Texturleseschlan-
ge 393 an den Befehls- und Speichersteuerungsblock 380 (989) (Fig. 28F). Der Speichersteuerungsblock ruft
die angeforderten Texturdaten ab, und wenn sie komprimiert sind, stellt er sie in den komprimierten Block 416
(990). Die Dekompressionsengine dekomprimiert Texturblocke im komprimierten Cache 416 und schreibt die
dekomprimierten Bilddaten in den Texturcache 402 (991, 992). Die Texturcachesteuerung leitet den Strom von

59/147

DE 696 36 599 T2 2007.08.23

Texturblécken aus dem komprimierten Cache 416 durch die Dekompressions-Engine 404 in den Texturcache
402.

[0494] Der Scanumwandlungsblock 397 liest die geometrischen Grundelemente, die sich in der Schlange im
Setup-Block befinden. Der Scanumwandlungsblock 397 fiihrt Pixelerzeugungsoperationen aus, sobald ange-
forderte Texturdaten im Texturcache 402 verfiigbar sind. Beim Prozess der Ausflihrung dieser Pixeloperatio-
nen liest die Scanumwandlungs-Engine 398 Kantengleichungen aus dem Grundelementeregistern (393) und
leitet Texturadressen an die Texturfilterengine 403 (994). Die Texturfilterengine greift auf die entsprechenden
Bilddaten zu, die im Texturcache 402 gespeichert sind, und gibt dann gefilterte Daten an den Scanumwand-
lungsblock 397 zurlck (995). Der Scanumwandlungsblock 397 konvertiert die Dreiecksdaten und berechnet
aus den konvertierten Dreiecksdaten und den gefilterten Daten Ausgabepixeldaten (996). Er leitet dann diese
Ausgabepixeldaten an die Pixelengine 406 weiter.

[0495] Die Pixelengine 406 fuhrt Berechnungen auf Pixelniveau aus, einschlieBlich Entfernen von verborge-
nen Flachen und Mischoperationen. Um verborgene Flachen zu entfernen, vergleicht die Pixelengine 406 die
Tiefenwerte fur einlaufende Pixel (vollstandig bedeckte Pixel oder Pixelfragmente) mit Pixeln an entsprechen-
den Orten in den Pixel- oder Fragmentpuffern. Bei Schattierungsoperationen fuhrt die Pixelengine 406 Tiefen-
vergleichsoperationen aus, um das erste und zweite nachstgelegene Grundelement zur Lichtquelle an Orten
in einer Schattenabbildung festzustellen, und aktualisiert den ersten und zweiten nachstgelegenen Tiefenwert,
wo notwendig. Nach der Ausfiihrung der Berechnungen auf Pixelebene speichert die Pixelengine die entspre-
chenden Daten im Pixel- oder Fragmentpuffer.

[0496] Der Tiler implementiert einen hochwertigen Anti-Aliasing-Algorithmus zur Behandlung nicht lichtun-
durchlassiger Pixel. Der Pixelpuffer speichert die Pixeldaten fir das am weitesten vorn gelegene nichttranspa-
rente Pixel fir Pixelorte in einem Chunk. Der Fragmentpuffer speichert Pixelfragmente fir lichtdurchlassige Pi-
xel und fur teilweise bedeckte Pixel, die ndher am Betrachtungspunkt liegen als die Pixel im Pixelpuffer fur ent-
sprechende Pixelorte. Unter Verwendung einer Fragmentlistenstruktur kann mehr als ein Fragment fiir einen
Pixelort gespeichert werden. In einem Prozess, der als Auflésen bezeichnet wird, verarbeitet die Anti-Ali-
asing-Engine die Fragmentlisten, um Farb- und Alphawerte fir Pixelorte zu berechnen.

[0497] Um die Zahl der Fragmente zu reduzieren, die erzeugt werden, implementiert die Pixelengine ein Ver-
fahren zum Vereinigen von Pixelfragmenten, das das Fragment, das gerade erzeugt wird, mit Fragment(en),
die aktuell im Fragmentpuffer gespeichert sind, vergleicht. Wenn die neuen und vorherigen Attribute eines
Fragments (Farbe und Tiefe) sich innerhalb einer vorgegebenen Toleranz ahnlich sind, werden die Fragmente
im Vorbeigehen kombiniert, und es wird kein zusatzliche Fragment erzeugt.

[0498] Wenn bei einem kombinierten Fragment festgestellt wird, dass es vollstandig bedeckt ist (mit einer Be-
deckungsmaske und lichtundurchlassigem Alpha), dann wird das Fragment in den Farbpuffer geschrieben und
der Fragmentort wird freigegeben, so dass er fir nachfolgende Polygone innerhalb des aktuellen Chunks ver-
wendet werden kann.

[0499] Sobald alle Polygone fiir den Chunk gerendert sind, werden die Pixelpuffer getauscht. Wahrend die
Anti-Aliasing-Engine die Pixeldaten im Fragmentpuffer und einem der Pixelpuffer auflést, schreibt die Pixelen-
gine Pixeldaten flr den nachsten Chunk in den anderen Pixelpuffer und die restlichen freien Stellen im Frag-
mentpuffer. Das Pixelauflésen umfasst im allgemeinen das Berechnen eines einzelnen Farbwerts (und mogli-
cherweise Alphawerts) fur einen Pixelort auf der Grundlage der Pixeldaten im Pixel- und Fragmentpuffer ent-
sprechend dem Ort. Wir stellen zusatzliche Details unten bereit, die diese Fragen betreffen.

[0500] In den Implementierungen des Tilers, die in den Fig. 9A-Fig. 9C gezeigt werden, haben die Pixelen-
gine und die Anti-Aliasing-Engine Zugriff auf einen einzelnen Fragmentpuffer und ein Paar Pixelpuffer. Die zwei
32x32-Pixelpuffer werden zur Doppelpufferung zwischen der Pixelengine und der Anti-Aliasing-Engine bereit-
gestellt. Der Pixelpuffereintrag umfasst die folgenden Daten:

L R G B o Z P J

wo R, G, B die roten, grinen bzw. blauen Farbkomponenten sind, a die Alphakomponente ist, die die Licht-
durchldssigkeit des Pixels reprasentiert, und Z die Tiefenkomponente ist, die die Tiefe des Pixels vom Betrach-
tungspunkt reprasentiert. Die x, y-Adresse ist fest und implizit in der Pixelpufferadressierung. Es werden acht

60/147

DE 696 36 599 T2 2007.08.23

Bit pro Farbkomponente verwendet (d.h. Rot, Griin und Blau), acht Bit werden fur die a-Komponente verwen-
det, und sechsundzwanzig Bit werden verwendet, um den Z-Wert, Schablonenwert und einen Prioritatswert zu
speichern. Von diesen 26 Bit kbnnen bis zu 24 Bit als Z-Werte verwendet werden, bis zu 3 kénnen als Schab-
lonenebenen verwendet werden, und bis zu drei kénnen als Prioritatswerte verwendet werden. Wie oben mit
Bezug auf Fig. 9 beschrieben, umfasst der Puffer auch einen 9-Bit-Fragmentpufferzeiger.

[0501] Der Prioritatswert ist pro Grundelement fixiert und wird verwendet, um bei der Auflésung von Objekten
zu helfen, die coplanar sind, wie zum Beispiel Stral3en auf einem Gelande, indem wahrend der Z-Vergleichs-
operation Prioritdtsbeziehungen verwendet werden, die von der Tiler-Engine genutzt werden, um die einge-
henden Pixel-Z-Werte im Vergleich zu dem gespeicherten Z-Wert abzugrenzen.

[0502] Der Fragmentpuffer wird zum Speichern von Informationen Uber Pixelfragmente fir Polygone, deren
Kanten ein gegebenes Pixel tiberschneiden, oder fir Polygone mit Lichtdurchlassigkeit verwendet. Jeder Ein-
trag im Fragmentpuffer liefert Farb-, a-, Z- und Bedeckungsdaten, die mit der Oberflache verbunden sind.

[0503] Mehrere Fragmentpuffereintrage kdnnen mit einem einzigen Pixel (Uber einen verlinkten Listenmecha-
nismus) fur Falle verknlpft sein, in denen mehrere Polygone eine Teilbedeckung fir denselben Pixelort auf-
weisen. Der Fragmentpuffer hat zwei Ports, so dass er parallel von der Anti-Aliasing-Engine und der Pixelen-
gine betrieben werden kann. In einer Implementierung ist der Fragmentpuffer ein eindimensionales Feld von
Fragmentdatensatzen und umfasst insgesamt 512 Fragmentdatensatzeintrdge. Das Speichermanagement
des Fragmentpuffers erfolgt unter Verwendung einer verlinkten Listenstruktur. Jeder Fragmentpuffereintrag
umfasst die folgenden Daten:

R G B a zZ M P S

wo R, G, B die roten, griinen bzw. blauen Farbkomponenten sind, a die Alphakomponente ist, die die Licht-
durchlassigkeit des Pixels reprasentiert, und Z die Tiefenkomponente ist, die die Tiefe des Pixels vom Betrach-
tungspunkt reprasentiert. M ist eine 4x4-Pixelbedeckungsmaske fur jedes Pixel, das teilweise bedeckt ist. P ist
ein Zeiger auf den nachsten Fragmentpuffereintrag, und S wird zur Darstellung einer Fragmentschablone ver-
wendet. Es werden acht Bit pro Farbkomponente (d.h. Rot, Griin und Blau) und acht Bit fiir die a-Komponente
verwendet. Sechsundzwanzig Bit werden verwendet, um den Z-Wert plus Schablone und Prioritat zu spei-
chern, und neun Bit werden flir den Fragmentzeiger P verwendet.

[0504] Die Pixelbedeckungsmaske wird durch Festlegen eines Bedeckungsmaskenwertes fiir jede Kante und
ihre bitweise AND-Verknipfung berechnet. Die Berechnung der Bedeckungsmaske ist ein zweistufiger Pro-
zess. Die erste Stufe besteht darin zu bestimmen, wie viele von den Subpixelbits in der Bedeckungsmaske
auszuschalten sind, und die zweite Stufe besteht darin zu bestimmen, welche speziellen Bits aktiviert werden
sollen.

[0505] Die erste Stufe verwendet die Flache des Pixels, die von der Kante verdeckt wird, um festzustellen,
wie viele von den Bedeckungsmaskenbits eingeschaltet werden sollen. Diese Flache wird durch eine Daten-
entnahme aus der Tabelle berechnet, die durch die Kantenneigung und den Abstand von der Pixelmitte inde-
xiert ist. Die zweite Stufe verwendet die Kantenneigung, um die Reihenfolge festzustellen, in der die Abfrage-
bits eingeschaltet werden sollen. Der Satz der Bitreihenfolgen wird in einer vorherberechneten Tabelle gespei-
chert, die ,Bedeckungsordnungstabelle’ genannt wird. Jeder Eintrag in der Bedeckungsordnungstabelle be-
steht aus einer speziellen Ordnung der Abtastbits, die fiir einen Bereich von Neigungswerten korrekt ist. Die
Kantenneigung wird gegenuber einem Satz von Neigungsbereichen geprift, und der Index, der mit dem Be-
reich verknupft ist, welcher diesen Neigungswert umfasst, wird als Index in die Bedeckungsordnungstabelle
verwendet.

[0506] Ein Verfahren zum Berechnen der Bedeckungsmaske wird in Schilling, A, "A New Simple and Efficient
Anti Aliasing with Subpixel Masks [Ein neues und effizientes Anti-Aliasingverfahren mit Subpixelmasken]”,
Computer Graphics, Bd. 25, Nr. 4, Juli 1991, S. 133-141, beschrieben.

Entfernen verborgener Flachen und Vereinen von Fragmenten
[0507] Oben haben wir angegeben, dass die Pixelengine das Entfernen verborgener Flachen vornimmt, in-

dem sie Tiefenvergleichsoperationen an einlaufenden Pixeldaten vornimmt. Wir haben auch bemerkt, dass Pi-
xelfragmente vereinigt werden kdnnen, um Fragmentspeicher freizusetzen. Verschmelzen von Fragmenten re-

61/147

DE 696 36 599 T2 2007.08.23

duziert die Speicheranforderungen, um eine gegebene Szene dem Anti-Aliasing zu unterwerfen, und be-
schleunigt das Auflésen der Fragmente, um ein Endbild zu erzeugen. Wir beschreiben nun eine Implementie-
rung fir das Entfernen verborgener Flachen, die das Verschmelzen eines einlaufenden Pixelfragments mit ei-
nem gespeicherten Pixelfragment umfasst, wenn das einlaufende Fragment innerhalb vorgegebener Farb- und
Tiefentoleranzen des gespeicherten Fragments liegt.

[0508] Fig. 4B ist ein Schema, das die Komponenten im Tiler 462, einschliellich Rastergenerator 464, Pixe-
lengine 466, Pixel- und Fragmentpuffern 470 und 472, illustriert. Die Pixel- und Fragmentpuffer dienen als Ras-
tergenerierungspuffer zum Speichern gewahlter Pixeldaten. Wenn der Rastergenerator ein geometrisches
Grundelement scannt, erzeugt er Beispiele von Pixeldaten. Die Pixelengine steuert die Z-Pufferung und stellt
auch fest, ob ein eingehendes Pixelfragment mit einem Pixelfragment verschmolzen werden kann, das im
Fragmentpuffer an einem entsprechenden Pixelort gespeichert ist. Die lllustrationen von Tilern, die in den
Fig. 9A-Fig. 9C gezeigt werden, und der begleitende Text oben liefern weitere Details bezliglich spezieller Im-
plementierungen des Tilers. Das Verfahren und die Hardware zum Verschmelzen von Pixelfragmenten, die un-
ten beschrieben werden, kénnen in diesen Tiler-Konstruktionen und auch in alternativen Konstruktionen imp-
lementiert werden.

[0509] Wie oben beschrieben, erzeugt der Scanumwandlungsblock (Rastergenerator) im Tiler Beispiele von
Pixeldaten, die reprasentieren: 1) voll abgedeckte, lichtundurchlassige Pixel; 2) voll abgedeckte lichtdurchlas-
sige Pixel; 3) teilweise abgedeckte, lichtundurchlassige Pixel; oder 4) teilweise abgedeckte, lichtdurchlassige
Pixel.

[0510] Der Pixelpuffer speichert Farbe und Tiefe (Z) der am weitesten vorn gelegenen, voll abgedeckten licht-
undurchlassigen Pixel. Der Pixelpuffer speichert auch einen Zeiger auf eine Fragmentliste, einschlieBlich der
Fragmente, die eine Bedeckungsmaske haben, die nicht voll abgedeckt ist oder die ein Alpha haben, das nicht
vollstandig lichtundurchlassig ist. Der Kopf oder das erste Fragment in der Fragmentliste ist das neueste Pixel-
fragment, das verarbeitet wird. In dieser speziellen Implementierung versucht die Pixelengine, einlaufende Pi-
xelfragmente mit dem neuesten Pixelfragment zu verschmelzen. Da es einen bestimmten Betrag an rdumlicher
Koharenz beim Rendern von Polygonen gibt, erhdht der Versuch, mit dem neuesten Fragment zu verschmel-
zen, das flr einen gegebenen Pixelort erzeugt wurde, die Wahrscheinlichkeit, dass die Verschmelzung erfolg-
reich sein wird.

[0511] Die Fragmentlisten fir jeden Pixelort werden in unsortierter Form gefihrt, wobei das oberste Fragment
das neueste Fragment ist, das fur einen bestimmten Pixelort erzeugt wurde. Die Pixelfragmente hinter dem
obersten Fragment bleiben unsortiert, kénnen aber auch sortiert werden, wenn zusatzliche Rechenzeit verfug-
bar ist, um bei der Optimierung der Fragmentauflésungsphase zu helfen.

[0512] In einer alternativen Implementierung umfasst die Pixelengine eine zusatzliche Logik, um Fragment-
listen nach einem Pixelfragment abzusuchen, das die Fragmentverschmelzungskriterien erflillt. Dieser Ansatz
wird nicht bevorzugt, weil der zusatzliche Aufwand fir die Suchlogik nicht die kleine Verbesserung bei der Iden-
tifizierung von mehr Verschmelzungskandidaten rechtfertigt. Dies gilt besonders in einem Echtzeitsystem, wo
zusatzliche Taktzyklen, die im Verschmelzungsprozess verbraucht werden, die Zeit erhdhen, die zum Rendern
eines Animationsteilbildes bendtigt wird.

[0513] In einer anderen Implementierung fihrt die Pixelengine eine nach Tiefe sortierte Liste von Pixelfrag-
menten und versucht, mit dem Fragment zu verschmelzen, das dem Betrachtungspunkt fiir einen gegebenen
Pixelort am nachsten liegt. Dieser letztere Ansatz wird jedoch nicht bevorzugt, weil er weniger wahrscheinlich
erfolgreiche Verschmelzungskandidaten findet, d.h. Fragmente mit Z- und Farbwerten innerhalb der Toleranz
zum einlaufenden Fragment. Er hat jedoch den potenziellen Vorteil, das Freisetzen von zuséatzlichem
Fragmentspeicher zu vereinfachen. Wenn ein verschmolzenes Pixel vollstdndig abgedeckt wird und lichtun-
durchlassig ist, kdnnen alle Pixelfragmente an diesem Pixelort freigesetzt werden, da das verschmolzene Pixel
naher am Betrachtungspunkt als die anderen Pixelfragmente ist, die fiir diesen Pixelort gespeichert werden.

[0514] Fig. 29 ist ein Schema, das eine Implementierung des Entfernens von verborgenen Flachen und der
Fragmentverschmelzung im Tiler illustriert. Die Verarbeitung beginnt mit der Erzeugung einer neuen Gruppe
von Pixeldaten, die Farbe, Z und Bedeckungsmaske fiir einen Pixelort haben (968). Wenn das Pixelpuffer-Z
fur diesen Pixelort naher als das Z einer neuen Gruppe der Pixeldaten ist (ein vollstandig oder teilweise abge-
decktes Pixel) (970), dann wird die neue Gruppe von Pixeldaten vollkommen verdunkelt und wird verworfen
(972). Die Verarbeitung setzt sich dann mit der nachsten Gruppe von Pixeldaten fort, solange der Rastergene-
rator nicht alle Pixel fur den aktuellen Satz von Grundelementen, die gerendert werden, erzeugt hat.

62/147

DE 696 36 599 T2 2007.08.23

[0515] Wenn das Pixelpuffer-Z nicht naher als das Z der neuen Gruppe von Pixeldaten ist (d.h. das Z der neu-
en Gruppe von Pixeldaten ist naher am Betrachtungspunkt), dann kontrolliert die Pixelengine die Bedeckungs-
maske der einlaufenden Pixel (974). In Fallen, wo die Bedeckungsmaske fir die einlaufenden Pixel voll ist, er-
setzt die Pixelengine die Pixelpuffer Farbe und Z durch die neue Farbe und das neue Z (976). Es werden in
diesem Fall keine neuen Daten zur Fragmentliste hinzugefiigt, und mit dem Speicher wird sparsam umgegan-
gen.

[0516] Wenn die Bedeckungsmaske der neuen Gruppe von Pixeldaten nicht voll ist, dann fihrt die Pixelengi-
ne einen Verschmelzungstest aus, um festzustellen, ob die neue Farbe und das neue Z innerhalb der vorge-
gebenen Toleranzen der Farbe und des Z des obersten Fragmentes ist (978). Dieser Verschmelzungstest kann
auch die Feststellung umfassen, ob das Alpha (Lichtdurchlassigkeit) der einlaufenden Pixel innerhalb einer
vorgegebenen Toleranz des Alpha im obersten Fragment liegt. Wenn die neue Fragmentfarbe und Z nicht in-
nerhalb der vorgegebenen Toleranzen liegen, dann wird ein neues Pixelfragment zum Fragmentpuffer am Kopf
der Fragmentliste hinzugefligt (980).

[0517] Wenn die neue Fragmentfarbe und Z innerhalb der vorgegebenen Toleranzen liegen und die neue Be-
deckungsmaske nicht voll ist, dann wird das einlaufende Pixelfragment dem oberen Fragment in der Fragment-
liste hinzugefiigt (982). Die Pixelengine verschmilzt die Pixelfragmente durch Ausfiihren einer OR-Operation
auf die obere Bedeckungsmaske und die neue Bedeckungsmaske, wobei das Ergebnis in der oberen Bede-
ckungsmaske gelassen wird.

[0518] Nach dem Kombinieren der Bedeckungsmasken wird die verschmolzene obere Bedeckungsmaske
kontrolliert, um festzustellen, ob sie ein vollstandig bedecktes Pixel reprasentiert (984). Wenn die verschmol-
zene obere Bedeckungsmaske nicht voll ist, dann setzt sich die Verarbeitung mit der nachsten Gruppe der Pi-
xeldaten fort (966). Wenn die verschmolzene obere Bedeckungsmaske voll ist, hat die verschmolzene obere
Bedeckungsmaske zur vollstdndigen Pixelbedeckung gefiihrt. Daher wird der Speicher, der fir das oberste
Fragment verwendet wird, freigesetzt und die oberste Fragment-Farbe, -Z und -Bedeckungsmaske werden
durch die neue Fragment-Farbe, -Z und -Bedeckungsmaske ersetzt.

[0519] In Fallen, in denen die Pixelengine einen Eintrag im Pixelpuffer durch ein neues, vollstandig bedecktes
Pixel ersetzt, setzt die Pixelengine auch alle Pixelfragmente in der entsprechenden Fragmentliste mit Tiefen-
werten frei, die gréRer als dieses vollstandig bedeckte Pixel sind (988).

[0520] Dies tritt auf, wenn ein einlaufendes vollstandig bedecktes, lichtundurchlassiges Pixel einen niedrige-
ren Z-Wert als der Pixelpuffereintrag am selben Pixelort hat. Dies tritt auch auf, wenn ein verschmolzenes Frag-
ment vollstandig bedeckt, lichtundurchlassig ist und einen niedrigeren Z-Wert als der Pixelpuffereintrag am sel-
ben Pixelort hat. Unter diesen Umstanden lauft die Pixelengine durch die Fragmentliste, vergleicht den Z-Wert
des neuen vollstandig bedeckten Pixels mit dem Z-Wert der Fragmente in der Liste und setzt jedes Fragment
mit einem gréReren Z als das Z des neuen, vollstadndig bedeckten Pixels frei. Alternativ kdnnte der Z-Puffer fur
den Packungsprozess gespeichert werden, was die Notwendigkeit beseitigt, die Fragmentliste zu durchsu-
chen, und die Echtzeitleistung verbessert.

[0521] Der Ansatz, der in Fig. 29 gezeigt ist, reduziert die Speicheranforderungen, um eine gegebene Szene
dem Anti-Aliasing zu unterwerfen, und beschleunigt das Auflésen der Fragmente, um ein Endbild durch Ver-
werfen der Pixelfragmente, die nicht verwendet werden, zu erzeugen. Das Einstellen von Farb- und Z-Toleranz
ermoglicht es, die Zahl der erzeugten Fragmente, die verworfen werden, mit der Anti-Aliasing-Genauigkeit zu
verrechnen, je nach den Bedurfnissen des Nutzers. Wenn Farbe und Z an der Kante des Polygons bewertet
werden, die zur Pixelmitte am nachsten gelegen ist, kénnen engere Farbtoleranzen und Z-Toleranzen verwen-
det und trotzdem Speicher gespart werden.

[0522] Fig. 30ist ein Schema, das eine Implementierung der Fragmentverschmelzungsschaltkreise illustriert,
die zur Ausfiihrung eines Verschmelzungstests an einlaufenden Pixelfragmenten verwendet werden. In dieser
Implementierung vergleicht die Pixelengine die einlaufenden Farb-(RGB), Alpha- und Tiefenwerte mit den
Farb-, Alpha- und Tiefenwerten des neuesten Pixelfragments fiir den Pixelort der einlaufenden Pixel. Die Farb-,
Tiefen- und Alphakomponenten, die als ,neu" dargestellt werden, beziehen sich auf eine einlaufende oder
,neu" erzeugte Gruppe von Pixeldaten, wahrend die Komponenten, die als ,prev. [vorherig]" dargestellt wer-
den, sich auf das neueste Pixelfragment fir einen Pixelort beziehen.

[0523] In einer alternativen Ausfiihrungsform, bei der die Pixelengine die Fragmentliste durchlauft, um ein Pi-
xelfragment innerhalb der Farb- und Tiefentoleranzen zu finden, beziehen sich die Komponenten, die als ,prev.

63/147

DE 696 36 599 T2 2007.08.23

[vorherig]" dargestellt werden, auf jedes der Pixelfragmente in der Fragmentliste fir den Pixelort, die unter Ver-
wendung des Verschmelzungstests analysiert werden.

[0524] Die Verschmelzungstestblocke 1000-1008 vergleichen die Tiefen-, Farb- und Alphakomponenten fur
neue und vorherige Pixelfragmente, und wenn die neuen und vorherigen Werte innerhalb einer vorgegebenen
Toleranz liegen, geben sie ein Bit aus, das anzeigt, dass das neue Pixelfragment ein Verschmelzungskandidat
ist. Die Pixelengine flhrt dann eine bitweise AND-Operation aus (1010), um festzustellen, ob jeder der Ver-
schmelzungstests bestanden wurde. Wenn ja, verschmilzt die Pixelengine die neuen und vorherigen Pixelfrag-
mente. Die Pixelengine berechnet durch OR-Verkniipfung der neuen und vorherigen Bedeckungsmaske eine
neue Bedeckungsmaske flr das vorherige Fragment. Wenn einer der Verschmelzungstests versagt, flgt die
Pixelengine das neue Pixelfragment an oberster Stelle in die Fragmentliste ein. Dieses neue Pixelfragment
wird Teil der verlinkten Liste und weist auf den vorherigen Kopf der Fragmentliste.

[0525] Fig. 31 ist ein Schema, das ein Verschmelzungstestmodul 1012 detailliert illustriert. Das Verschmel-
zungstestmodul berechnet den absoluten Wert des Unterschieds zwischen einem neuen und einem vorheri-
gen Wert 1014. Ein Komparator 1016 im Verschmelzungstestmodul vergleicht den Unterschied mit einem Re-
ferenzwert, der in einem Tiler-Register 1018 gespeichert ist, und liefert einen booleschen Wert, der anzeigt, ob
der neue und der vorherige Wert innerhalb der vorgegebenen Toleranz liegen. Die Ausgabe des booleschen
Werts aus den Verschmelzungstestmodulen sind Eingabe in den bitweisen AND-Block 1010, wie in Fig. 30 ge-
zeigt. Die Ausgabe des bitweisen AND zeigt an, ob jede der Farben, das Alpha und der Tiefenwert innerhalb
der vorgegebenen Toleranzen liegen. Wenn ja, verschmilzt die Pixelengine die einlaufenden und die obersten
Pixelfragmente, wie oben beschrieben.

[0526] Wie oben bemerkt, gibt es eine Reihe von méglichen Variationen zu dem Verfahren zum Verschmelzen
von Pixelfragmenten. In einer alternativen Implementierung kann die Pixelengine eine Fragmentliste durchsu-
chen und einen Verschmelzungstest an jedem Pixelfragment ausflihren, bis:1) sie das Ende der Liste erreicht,
oder 2) ein gespeichertes Pixelfragment findet, das den Verschmelzungstest besteht. In einer anderen Imple-
mentierung kann die Pixelengine die Pixelfragmente in sortierter Form bewahren, indem sie zum Beispiel eine
Einfigesortierung mit jedem einlaufenden Fragment ausfiihrt. Die Pixelengine kann versuchen, ein einlaufen-
des Pixelfragment nur mit dem Pixelfragment zu verschmelzen, das dem Betrachtungspunkt (mit dem niedrigs-
ten Z-Wert) am nachsten ist, oder kann versuchen, es mit mehreren Pixelfragmenten zu verschmelzen, die fir
einen Pixelort gespeichert sind.

Unterteilen von Bildregionen, um Pixelspeicheruberlauf zu verhindern

[0527] Wenn der Tiler geometrische Grundelemente rastert, speichert er Pixeldaten in Pixel- und Fragment-
puffern. Der Tiler 16st dann diese Pixeldaten in einem Nachverarbeitungsschritt auf. Weil der Tiler einen Spei-
cher fester Gré3e zum Speichern dieser Pixeldaten verwendet, ist es mdglich, dass er die Speicherkapazitat
Uberschreitet. Um dieses Problem anzugehen, tberwacht der Tiler die Speicherkapazitat und, falls notwendig,
reduziert er die GroRe des Bildbereichs, der aktuell gerade gerendert wird, um ein Uberlaufen des Fragment-
speichers zu verhindern.

[0528] In einer Ausfiihrungsform baut der Tiler das Grafikausgabebild durch Verarbeiten einer Reihe von
32x32-Pixelchunks auf. Fig. 32 ist ein Diagramm, das einen Teil des Pixel- und Fragmentpuffers illustriert. Wie
in diesem Beispiel gezeigt, 16st der Tiler den 32x32-Pixelpuffer (1118) unter Verwendung eines zugehdrigen
512-Eintrags-Fragmentpuffers auf (1120). In dieser Implementierung kann der Fragmentpuffer bis zu 512 Pi-
xelfragmenten speichern, die in einem spateren Verarbeitungsschritt kombiniert werden, um den 32x32-Pixe-
lausgabepuffer zu bilden. Bei der Verwendung eines Fragmentpuffers mit 512 Eintrdgen, um einen 32x32-Aus-
gabepixelpuffer zu erzeugen, gibt es eine eindeutige Mdglichkeit, dass der Fragmentspeicher knapp wird,
wenn fein mosaikartig gemusterte grafische Objekte oder Objekte, die eine betrachtliche Lichtdurchlassigkeit
aufweisen, gerastert werden. In diesen Fallen ist mehr Fragmentspeicher erforderlich, um Pixelfragmentdaten
fur teilweise bedeckte oder lichtdurchlassige Pixel zu speichern. Ein Fragmentpuffer mit 512 Pixeleintragen
speichert nur halb so viele Pixel wie der 32x32-Ausgabepuffer, der 1024 (32 x 32 = 1024) Pixel speichert.

[0529] Zur Abmilderung der Auswirkungen dieser Speicherbegrenzung ist das Pixelspeicherformat im Tiler so
strukturiert, dass es 2 Ebenen von hierarchischer Zerlegung unterstitzt. Fig. 33 ist ein Diagramm, das diese
hierarchische Zerlegung abbildet. Wenn der Fragmentspeicher bei der Verarbeitung eines 32x32-Pixelpuffers
erschopft ist, 16scht der Tiler die Pixel- und Fragmentpuffer und verarbeitet den Eingabestrom von geometri-
schen Grundelementen flr einen Satz von vier 16x16-Pixelteilpuffern neu (1122). Das Verarbeiten eines
16x16-Pixelpuffers mit dem 512-Eintrag-Speichersystem ergibt doppelt so viele Fragment-Eintrage wie ge-

64/147

DE 696 36 599 T2 2007.08.23

wilinschte Ausgabepixel, womit eine sehr grofle Mehrheit von Fallen mit zahlreichen teilweise bedeckten oder
lichtdurchlassigen Pixeln erfasst wird.

[0530] Wenn der Fragmentspeicher bei der Verarbeitung eines der 16x16-Pixelteilpuffers erschopft ist, I6scht
der Tiler die Pixel- und Fragmentpuffer und verarbeitet den Eingabestrom von Grundelementen fir einen Satz
von vier 8x8-Pixelteilpuffern neu (1124). Jeder 16x16-Pixelteilpuffer kann in vier 8x8-Pixelteilpuffer fir insge-
samt sechzehn 8x8-Teilpuffer aufgeteilt werden. Das Verarbeiten eines 8x8-Pixelpuffers mit dem 512-Ein-
trag-Speichersystem ergibt acht mal so viele Eintrage wie gewtinschte Ausgabepixel, womit die meisten denk-
baren komplexen Grafikobjekte erfasst werden. Ein zusatzlicher Vorteil der 8x8-Teilpuffer ist, dass sie im For-
mat sind, das von der Kompressions-Engine gefordert wird, die zum Komprimieren der Pixeldaten verwendet
wird. Also ist keine weitere Pixelpufferzerlegung vor der Kompression erforderlich.

[0531] Wenn jeder Pixelteilpuffer (d.h. entweder der 16x16 oder der 8x8) erfolgreich verarbeitet ist, werden
die Pixel aufgelést und an die Kompressions-Engine gesandt. Da der Tiler die 16x16- und 8x8-Teilpuffer in der
Reihenfolge der Aufldsung und Kompression eines vollstandigen 32x32-Pixelpuffers verarbeitet, fihrt der Ab-
schluss der gesamten Verarbeitung aller Teilpuffer zu einem vollstdndigen 32x32-Pixelpuffer, der im System-
speicher in einem komprimierten Format, ohne zusatzliche Verarbeitungsanforderungen, gespeichert wird.

[0532] Der Pufferzerlegungsprozess wird rekursiv im Voribergehen angewendet, um mit anspruchsvollen
Fallen (z.B. Uberlappende fein mosaikartig strukturierte Objekte mit betrachtlicher Lichtdurchlassigkeit, Schat-
ten und Beleuchtung mit mehr als einer Lichtquelle) umzugehen. Die folgende Beschreibung illustriert das Ver-
fahren.

[0533] Die Fig. 34A-B ist ein Flussdiagramm, das ein Verfahren zur Pufferzerlegung im Tiler illustriert. In einer
Vorverarbeitungsphase erzeugt der DSP den Eingabedatenstrom einschlieRlich der Renderbefehle und der
Polygone, die unter Bildregionen, Chunks genannt, sortiert sind. Der DSP leitet dann einen Eingabedatenstrom
an den Tiler zur Verarbeitung. Als Reaktion auf die Renderbefehle im Eingabedatenstrom rastert ein Raster-
generator im Tiler Polygone im Eingabedatenstrom, um Pixeldaten zu erzeugen (1130, 1132, 1136).

[0534] In diesem speziellen Beispiel illustriert das Flussdiagramm, dass Polygone seriell verarbeitet werden.
Es gibt jedoch eine Reihe von Moglichkeiten, Grundelemente zu rendern. Die Art und Weise, wie die Grunde-
lemente gerastert werden, ist flr den Zerlegungsprozess nicht kritisch.

[0535] Wenn der Rastergenerator Pixeldaten erzeugt, Uberwacht er die Kapazitat des Fragmentpuffers. In
dieser Implementierung erhdht der Rastergenerator schrittweise einen Pufferzahler fir jeden Eintrag, der dem
Fragmentspeicher hinzugefligt wird, und kontrolliert den Wert des Zahlers, wahrend er Pixeldaten erzeugt
(1138, 1142). Wenn der Wert des Pufferzahlers 512 erreicht, dann ist der Fragmentspeicher voll. An diesem
Punkt kontrolliert der Tiler die aktuelle ChunkgréRRe, um festzulegen, wie man ihn unterteilt (1144, 1150).

[0536] In der speziellen Implementierung, die hier beschrieben und illustriert wird, wird die Speicherzerlegung
ausgel6st, wenn der Fragmentspeicher seine Kapazitat, 512 Pixelfragmente, erreicht. Es ist jedoch mdglich,
die Zerlegung in Gang zu setzen, bevor der Fragmentspeicher seine volle Kapazitat erreicht.

[0537] Wenn die ChunkgroRe 32x32 Pixel ist (1144), dann teilt der Tiler die ChunkgréRe in vier 16x16-Pi-
xelchunks (1146). Der Tiler leert dann die Pixel- und Fragmentpuffer (1146) und beginnt mit dem Rastern des
Eingabestroms fiir den aktuellen Chunk in die vier 16x16-Teilchunks (1158). Bei dieser Implementierung sen-
det der DSP den Eingabedatenstrom fiir den Chunk erneut. Statt die Polygone unter den Teilchunks neu zu
sortieren, verarbeitet der Tiler den Eingabestrom von Polygonen wiederholt fiir jeden Teilchunk und weist Po-
lygone ab, die auRerhalb der jeweiligen Teilchunks fallen. Als Alternative kann der DSP den Eingabedaten-
strom erneut verarbeiten, wobei die Polygone im Strom unter den jeweiligen Teilchunkregionen sortiert werden.
Diese Alternative reduziert die Zahl der Polygone fir jeden Teilchunk, erhéht aber den Zusatzaufwand fiir die
Verarbeitung im DSP.

[0538] Der Tiler verarbeitet 16x16-Teilchunks in ahnlicher Weise (1150, 1152). Wenn die aktuelle Chunkgrofie
16x16 Pixel ist, dann teilt der Tiler den Chunk in vier 8x8 Pixel und leert die Pixel- und Fragmentpuffer (1152).
Bei dieser Implementierung unterteilt der Tiler die Chunks nicht in kleinere als 8x8-Blécke. Die Kapazitat des
Fragmentspeichers, in diesem Fall 512 Elemente, sollte ausreichend sein, selbst fein mosaikartig strukturierte
und/oder lichtdurchlassige Objekte durch Unterteilen von Bildchunks in 8x8-Blécke zu handhaben. Jedoch ist
der Tiler, der hier beschrieben wird, nur eine mdgliche Implementierung: Die Notwendigkeit, die Gré3e des Bil-
des aufzuteilen, kann je nach solchen Faktoren, wie Komplexitat der Szene, Form des Anti-Aliasing und der

65/147

DE 696 36 599 T2 2007.08.23

Lichtdurchlassigkeit, die unterstitzt wird, und Speicherkapazitat des Fragmentpuffers, variieren.

[0539] Wenn der Pufferzahler 512 fiir einen 8x8-Pixelblock erreicht, 16st der Tiler die Pixelfragmente auf, die
mit dem 8x8-Pixelchunk verbunden sind, und fiihrt einen Puffertausch aus (1154). Nachdem der 8x8-Chunk
aufgeldst ist, kontrolliert der Tiler, ob es mehr 8x8-Pixelchunks gibt (1156). Wenn es weitere 8x8-Pixelchunks
gibt, dann setzt sich die Verarbeitung durch Neustart der Polygonverarbeitung fir den nachsten 8x8-Teilchunk
fort (1158).

[0540] Wenn es keine 8x8-Chunks mehr gibt, dann kontrolliert der Tiler, ob es weitere 16x16-Pixelchunks gibt
(1148). Wenn zusatzliche 16x16-Pixelchunks bleiben, dann startet der Tiler die Polygonverarbeitung fir alle
restlichen 16x16-Teilchunks neu (1158). Wenn es keine zusatzlichen 16x16-Pixelchunks mehr gibt, dann er-
halt der Tiler den Eingabedatenstrom fiir den nachsten Chunk (1160) und fahrt mit der Verarbeitung der Poly-
gone darin fort (1158).

[0541] Wenn die Kapazitat des Fragmentpuffers wahrend der Verarbeitung des Eingabedatenstroms fiir ei-
nen Chunk oder Teilchunk nicht Uberschritten wird, dann fahrt der Tiler mit der Auflésung der Pixeldaten in den
Pixel- und Fragmentpuffern fort (1132, 1134). Wenn der Tiler die Verarbeitung des Eingabedatenstroms flr den
aktuellen Chunk abschlie3t, dann setzt er die Auflésephase fur den Chunk oder Teilchunk in Gang. Wenn zum
Beispiel die Chunkgrofie 32x32 Pixel ist (1162), dann wird der 32x32-Pixelchunk aufgeldst, und die Puffer wer-
den getauscht (1164). Die Verarbeitung setzt sich dann mit dem Erhalt des nachsten Chunks fort (1160)

(Fig. 34A).

[0542] Wenn die ChunkgroRRe 16x16 Pixel ist (1166), dann wird der 16x16-Pixelchunk aufgeldst, und die Puf-
fer werden getauscht (1168). Der Tiler fahrt dann mit der Kontrolle fort, ob weitere 16x16-Chunks Ubrig sind
(1148). Wenn ja, startet die Polygonverarbeitung neu durch erneutes Senden der Polygone fir den nachsten
Teilchunk (1158). Wenn nicht, dann ruft er den Eingabestrom fiir den nachsten Chunk ab und startet die Ver-
arbeitung der Polygone fiir diesen Chunk (1160).

[0543] Wenn die Chunkgrofle nicht 16x16 Pixel ist, dann betragt sie als Vorgabe 8x8 Pixel. Der Tiler fahrt mit
dem Auflésen des 8x8-Pixelchunks und dem Tauschen der Puffer fort (1154). Der Tiler verarbeitet dann alle
restlichen 8x8-Teilchunks und dann alle restlichen 16x16-Teilchunks. Nach dem Abschluss der Verarbeitung
aller restlichen Teilchunks fahrt der Tiler mit dem nachsten Chunk fort. Die Verarbeitung endet schliel3lich,
wenn es keine weiteren Chunks im Eingabedatenstrom mehr gibt.

[0544] Wahrend der Chunkverarbeitung werden Daten gesammelt, um die Maximalzahl der Pixelfragmente
festzustellen, die jeder Chunk erzeugt. Die Zahl der Eintrage, die im 512-Fragmentpuffer nach der Verarbeitung
jedes Chunks frei ist, wird ebenfalls gesammelt. Diese Daten werden als Hilfe bei der Feststellung verwendet,
wann die Pufferzerlegung automatisch beim Wiederverarbeiten eines Objektes ausgefihrt werden sollte.
Wenn zum Beispiel ein komplexes Objekt eine Reihe von Malen im Verlauf eines Spiels neu gezeichnet wird,
wirde die Verarbeitung des komplexen Objektes automatisch die Pufferzerlegung auf der Basis der Pixelpuf-
ferdaten einschalten, die gesammelt wurden, um das kontinuierliche Wiederverarbeiten des Eingabestroms
von Pixelinformationen zu verhindern.

[0545] Die Pufferzerlegung in 16x16- oder 8x8-Teilpuffer kann auch angefordert werden, wenn ein bekannter
komplexer (d.h. fein mosaikartig strukturierter) Pixelchunk an den Tiler gesendet wird. Dadurch wird die Be-
stimmung einer Notwendigkeit der Pufferzerlegung, Leeren der Pixel- und Fragmentpuffer und Wiederverar-
beitung des Eingabestroms beseitigt, wenn ein Pixelchunks bekanntermalRen komplex ist und eine intensive
Verarbeitung erfordert.

[0546] Es gibt mindestens zwei alternative Verfahren zum Neustarten des Scanumwandlungsprozesses,
wenn ein Uberlauf entdeckt wird. Bei einem Verfahren kann die Pixelengine den Scanumwandlungsblock an-
weisen, anzuhalten, wenn ein Uberlauf festgestellt wird, und dann alle Fragmentlisten im Pixelspeicher fiir Pi-
xelorte auBerhalb des Teilchunks, der verarbeitet werden soll, zu leeren. Um dies zu erreichen, findet die Pi-
xelengine Fragmentlisten auf3erhalb des Teilchunks durch Lesen der Fragmentlistenzeiger im Pixelpuffer an
den Pixelorten auRerhalb des Teilchunks, und durch Freisetzen der Fragmente im Fragmentpuffer, der mit die-
sen Pixelorten verbunden ist. Der Scanumwandlungsblock fahrt dann mit dem Rastern des aktuellen Satzes
von geometrischen Grundelementen fur den Chunk fort, wo er aufgehdrt hat.

[0547] In einem zweiten Verfahren startet der Scanumwandlungsblock nach dem Ldschen des gesamten
Fragmentspeichers neu. In diesem Fall startet der Scanumwandlungsblock neu und beginnt mit dem Rastern

66/147

DE 696 36 599 T2 2007.08.23

der geometrischen Grundelemente am Beginn des Satzes von Grundelementen fiir einen Chunk.

[0548] Pufferzerlegung im Voriibergehen (On-the-fly) sorgt fur eine Moglichkeit, einen kleinen Pixelausgabe-
puffer, einen kleinen Umfang an Fragmentpufferspeicher zu verwenden und den Fragmentdatenspeicheriber-
lauf wahrend der Verarbeitung von grafischen Objekten zu reduzieren, selbst beim Verarbeiten von grafischen
Objekten, die sehr komplexe Kennwerte besitzen (z.B. mehrere Lichtquellen, fein mosaikartige Struktur, Licht-
durchlassigkeit usw.).

[0549] Obwohl wir die Zerlegung in Form von speziellen Ausfihrungsformen beschrieben haben, versteht es
sich, dass die Erfindung in einer Reihe von anderen Arten und Weisen implementiert werden kann. Es ist nicht
notwendig, Bildregionen in der speziellen Weise, die beschrieben wurde, aufzuteilen. Vielmehr kdnnen Bildre-
gionen in Teilregionen unterschiedlicher GroRe aufgeteilt werden. Obwohl die Chunking-Architektur fur die
Bildaufteilung besonders geeignet ist, kann auch ein vollstandiger Bildpuffer in kleinere Regionen zerlegt wer-
den, um die Fragmentspeicheranforderungen zu reduzieren. Die speziellen Arten von Logik oder Software, die
zum Verfolgen des Speicherverbrauchs verwendet werden, kdnnen ebenfalls variieren. Kurz gesagt, es gibt
eine Reihe von mdglichen alternativen Implementierungen innerhalb des Geltungsbereichs der Erfindung.

Pixelnachverarbeitung

[0550] Nachdem der Bildprozessor Fragmentdaten fiir einen Pixelort erzeugt hat, sortiert er dann diese Frag-
mentdaten und I16st sie auf, um die Farbe an diesem Ort zu berechnen. Wie oben beschrieben, erzeugt der
Bildprozessor Fragmente fur teilweise bedeckte Pixel und bewahrt sie auf. Ein Pixel wird von einem Polygon
teilweise bedeckt, wenn eine oder mehrere Kanten des Polygons das Pixel schneiden oder wenn das Polygon
Lichtdurchlassigkeit besitzt. Das Aufbewahren der Fragmentdaten zum Ausfiihren von Anti-Aliasing- und Licht-
durchlassigkeitsberechnungen kann eine betrachtliche Speicherplatzmenge erfordern. Wenn sich die Zahl der
gerenderten Polygone erhoht, erhoht sich auch die Speicherplatzmenge zum Speichern der Pixeldaten und
Fragmente.

[0551] Neben den erhdhten Speicheranforderungen kann auch der Verarbeitungsumfang, der zum Auflésen
der Fragmente erforderlich ist, betrachtlich sein. Bei einem Z-Puffer-Ansatz werden Fragmentdaten nach Tiefe
sortiert. Die Grundelementedaten werden im allgemeinen nicht nach der Tiefenreihenfolge sortiert, wenn sie
zum Rendern ankommen. Da die Grundelementedaten in beliebiger Tiefenreihenfolge ankommen, muss der
Bildprozessor die Fragmentdaten nach ihrer Erzeugung sortieren. Die sortierten Daten werden dann verarbei-
tet, um die Farbe und méglicherweise das Alpha an einem Pixelort zu bestimmen. An jedem Pixelort kbnnen
mehrere Fragmente zur Farbe beitragen. Wenn Alpha ebenfalls berechnet wird, steigt auch die Zahl der Frag-
mente und die Komplexitat der Verarbeitung.

[0552] Aus den Griinden, die oben hervorgehoben wurden, kénnen die Speicher- und Verarbeitungsanforde-
rungen zur Unterstiitzung des fortgeschrittenen Anti-Aliasing und der Lichtdurchlassigkeit betrachtlich sein. Es
gibt einen Konflikt zwischen der Unterstlitzung der anspruchsvollen Anti-Aliasing- und Lichtdurchlassigkeits-
berechnungen einerseits und Verringerung der Speicheranforderungen andererseits. Um die Kosten des Sys-
tems zu reduzieren, sollte die Verwendung von Speicher minimiert werden, jedoch erfordern fortgeschrittene
Anti-Aliasing- und Lichtdurchlassigkeitsmerkmale mehr Speicher. Es ist sogar noch schwieriger, diese fortge-
schrittenen Merkmale in einem Echtzeitsystem bei gleichzeitiger Minimierung der Speicheranforderungen zu
unterstutzen.

[0553] In einer Ausfliihrungsform rendert unser System Grundelemente, jeweils einen Chunk auf einmal, was
den Speicher reduziert und mehr Fragmentauflésung in einem Nachverarbeitungsschritt erméglicht. Wahrend
Pixeldaten fur einen Chunk erzeugt werden, kdnnen Pixeldaten eines weiteren Chunks aufgeldst werden. Eine
Reihe von Vorteilen, die sich auf die Fragmentsortierung und die Pixelauflésung auswirken, folgen aus dem
Chunkingkonzept. Speicheranforderungen werden wesentlich reduziert, weil ein groRer Teil der Daten, die
wahrend des Rasterungsprozesses erzeugt wurden, nicht behalten werden muss, nachdem der Bildprozessor
die Pixel in einem Chunk aufgeldst hat. Der Bildprozessor braucht nur den aufgelésten Farbanteil nach dem
Auflésen eines Chunks zu behalten.

[0554] Ein weiterer Vorteil des Renderns von Chunks in Serie ist, dass der Pixel- und Fragmentspeicher im-
plementiert werden kann, um den Zusatzaufwand fir Speicherzugriffe zu reduzieren. Typische Grafiksysteme
verwenden externe Speicher zum Implementieren von Farb-, Tiefen- und Fragmentpuffern. Es ist sehr schwie-
rig, diesen externen Speicher zu organisieren, so dass die rigorosen Bandbreitenanforderungen der Echt-
zeit-Bildverarbeitung erflllt werden. Der Pixel- und Fragmentspeicher, der zur Unterstiitzung des Renderns ei-

67/147

DE 696 36 599 T2 2007.08.23

nes Chunks, wie zum Beispiel einer 32x32-Pixelregion, bendtigt wird, muss sich nicht im externen Speicher
befinden. Er kann statt dessen auf derselben Hardware implementiert werden, die die Raster- und Anti-Ali-
asing-Funktionen ausflihrt. In der Implementierung, die oben beschrieben wird, kann zum Beispiel der Frag-
ment- und Pixelpuffer auf einem einzelnen integrierten Schaltkreischip implementiert werden.

[0555] Die Verwendung von chipintegrierten Speichern vereinfacht die Bandbreitenprobleme, die mit exter-
nem Speicher verbunden sind. Chipintegrierte Speicher ermdglichen eine effiziente Nutzung mehrerer
Speicherbanke. Eine Bank kann zum Beispiel fir den Pixelpuffer verwendet werden, und eine weitere Bank
kann fur Fragmentdatensatze verwendet werden.

[0556] Ein weiterer Vorteil des chipintegrierten Speichers ist, dass er weniger teuer und leichter zu implemen-
tieren ist als Mehr-Port-Speicher. Die Leistungsfahigkeit der Pixel- und Fragmentpuffer kann durch die Verwen-
dung von Mehr-Port-Speichern verstarkt werden, die gleichzeitiges Lesen und/oder Schreiben ermdglichen,
um eine Verarbeitungsrate von einem Takt pro Pixel zu erreichen. Da der Fragmentpuffer viel kleiner ist, wenn
Chunks separat gerendert werden, kann er auf dem Chip implementiert werden. Sowohl die geringere GroRRe
des Speichers als auch sein Vorhandensein auf dem Chip machen die Verwendung von Mehr-Port-Speicher
technisch anwendbar und kostengtinstig. Externe Mehr-Port-Speicher sind andererseits auf Grund der hohe-
ren Kosten pro Bit und Verbindungen zwischen den Chips teuer.

[0557] Ein weiterer wichtiger Vorteil in Bezug auf das Chunking ist, dass Pixel fur einen Teil eines Teilbildes
(Frame) erzeugt werden kénnen, wahrend Pixel fir einen anderen Teil aufgeldst werden. Statt Pixel fur ein gan-
zes Teilbild zu erzeugen und dann diese Pixel aufzulésen, kann unser Ansatz die Prozesse der Erzeugung des
Auflésens von Pixeln Uiberlappen lassen, was die Systemtransportverzégerung reduziert.

[0558] In einer Ausfiihrungsform unseres Systems I6st der Bildprozessor Fragmente in einem Nachverarbei-
tungsschritt auf. Wahrend die Pixelengine Pixeldaten fur einen Teil eines Bildes erzeugt, 16st die Anti-Ali-
asing-Engine Fragmente fir einen anderen Teil eines Bildes auf. Wie oben bemerkt, sind die Pixeldaten dop-
pelgepuffert: Die Pixelengine kann auf einen Puffer zugreifen, wahrend die Anti-Aliasing-Engine auf den ande-
ren zugreift. Nachdem die Pixelengine Pixel fur einen Chunk erzeugt hat, fihrt der Tiler einen Puffertausch aus.
Die Pixelengine erzeugt dann Pixel fir den nachsten Chunk, und die Anti-Aliasing-Engine 16st die Pixel fir den
vorherigen Chunk auf.

[0559] Obwohl er in der bevorzugten Ausfiihrungsform auch doppelgepuffert sein kdnnte, hat der Fragment-
puffer zwei Ports, so dass die Pixelengine und die Anti-Aliasing-Engine darauf gleichzeitig zugreifen kénnen.
Die Pixelengine kann dann Fragmentdaten in den Fragmentpuffer durch einen Port schreiben, wahrend die An-
ti-Aliasing-Engine auf Fragmentdaten durch einen anderen Port zugreift.

[0560] In dieser Ausfliihrungsform ermdglichen es die doppelgepufferten und zwei Ports umfassende Spei-
chersysteme dem Bildprozessor, Pixeldatenerzeugung und Pixelauflésung zu tberlappen. Es gibt eine Reihe
von alternativen Mdglichkeiten, um eine Doppelpufferungsmethode zu implementieren.

[0561] Der Bildprozessor sortiert die Fragmentdaten nach der Tiefe, bevor er den Aufldsungsprozess ab-
schlief3t. Der Bildprozessor kann im allgemeinen Pixeldaten sortieren, wahrend er Pixel erzeugt, und nachdem
er Pixel fur einen Teil eines Bildes, das gerendert werden soll, erzeugt hat. Die Pixelengine kann zum Beispiel
eine Einflgesortierung ausfiihren, wahrend sie Fragmentdaten in den Fragmentpuffer schreibt. AuRerdem
kann die Pixelengine Fragmentdaten sortieren, nachdem sie das Erzeugen von Pixeldaten fur das ganze Bild
oder einen Teil eines Bildes abgeschlossen hat. Die Pixelengine kann auch Fragmente in Fallen sortieren, in
denen sie einlaufende Pixeldaten zuriickweist. Da die Pixelengine nicht in den Fragmentpuffer schreiben
muss, wenn die einlaufenden Pixeldaten zuriickgewiesen werden, kann sie eine Sortierung von Fragmenten
vornehmen, bevor das nachste hereinkommende Pixel ankommt. Wir bezeichnen diesen letzteren Ansatz als
~Hintergrundsortieren" von Fragmenten.

[0562] Eine Einfligesortierung bezieht sich auf die Tiefensortierung eines ankommenden Fragmentes mit an-
deren Fragmenten im Fragmentpuffer. In einem Echtzeitsystem wird méglicherweise eine Einfliigesortierung
nicht bevorzugt, weil sie potenziell den Prozess der Erzeugung von Pixeldaten verlangsamen kann. Das
Durchsuchen des Fragmentpuffers, um den richtigen EinflUgungspunkt fir ein ankommendes Fragment zu fin-
den, kann einen unerwiinschten Zusatzaufwand verursachen. Zusatzlich erfordert sie bei Hardware-Imple-
mentierungen zusatzliche Hardware und verkompliziert die Konstruktion der Pixelengine.

[0563] Als Alternative zur Einfligesortierung kdnnen Fragmente sortiert werden, nachdem der Bildprozessor

68/147

DE 696 36 599 T2 2007.08.23

die Pixelerzeugung fur einen Teil eines Bildes abgeschlossen hat. Einige Systeme rendern einen ganzen Rah-
men von Bilddaten auf einmal. In solchen Systemen kann das Sortieren von Fragmenten flr jeden Pixelort im
Betrachtungsraum zuséatzliche Verarbeitungszeit erfordern und eine unerwinschte Verzégerung hinzufiigen,
besonders fur ein Echtzeitsystem. Die Zeitdauer, die zur Ausfuihrung der Sortierung benétigt wird, kann je nach
der Zahl der Fragmente pro Pixel und je nach dem Grad, bis zu dem die Einflgesortierung bereits ausgefiihrt
ist, variieren. Die Sortieroperation kann daher andere Pixeloperationen am Ablaufen hindern, was die Leis-
tungsfahigkeit verringert.

[0564] Durch Rendern jeweils eines Teils des Betrachtungsraums auf einmal kann die Fragmentsortierung fir
einen Teil eines Bildes ablaufen, wahrend ein nachster Teil gerade gerastert wird. Die Anti-Aliasing-Engine
kann im wesentlichen eine Fragmentsortierung in einem Nachverarbeitungsschritt ausflihren. In einer Ausflih-
rungsform sortiert die Anti-Aliasing-Engine Fragmente fiir einen Chunk, wahrend Fragmente fur den nachsten
Chunk gerade erzeugt werden.

[0565] Selbstin Fallen, in denen die Pixelerzeugung und -auflésung auf diese Weise Uberlappt sind, kann es
trotzdem vorteilhaft sein, eine Sortierung von Fragmenten fiir einen Teil eines Bildes vorzunehmen, wahrend
die Pixelengine Pixel fur diesen Teil des Bildes erzeugt. Die Hintergrundsortierung von Pixelfragmenten redu-
ziert den Zusatzaufwand des Sortierens von Fragmenten, nachdem die Pixelengine die Erzeugung von Pixeln
fur einen Satz von Grundelementen beendet hat.

[0566] In einer Ausfuhrungsform wird die Hintergrundsortierung gleichzeitig mit Pixeloperationen ausgefuhrt,
die an Pixeln vorgenommen werden, um die Verzégerung, die flir das Sortieren von Fragmenten erforderlich
ist, zu reduzieren und in einigen Fallen zu beseitigen. Die Konstruktion nutzt die Tatsache aus, dass viele der
Pixel teilweise nicht bedeckt sind, und macht daher keinen Gebrauch vom Fragmentpuffer. Die Hintergrund-
sortierung nutzt diese Reservebandbreite, um eine Sortierung eines Satzes von Fragmenten im Fragmentpuf-
fer auszufihren.

[0567] Nach dem Sortieren 16st der Bildprozessor die Fragmente firr einen Pixelort auf, um die Farbe fiir die-
sen Pixelort festzustellen. Wenn Alpha nicht beriicksichtigt wird, berechnet der Bildprozessor die Farbakkumu-
lation auf der Grundlage der Farb- und Bedeckungsdaten fir Fragmente in einer nach der Tiefe sortierten Liste
fur einen Pixelort. Wenn Alpha zusatzlich zu den Bedeckungsdaten berticksichtigt wird, berechnet der Bildpro-
zessor die Farbakkumulation auf der Grundlage von Farbe, Bedeckung und Alpha der Fragmente in einer nach
der Tiefe sortierten Liste fiir einen Pixelort.

[0568] Der Bildprozessor kann im allgemeinen jeweils Fragmente fiir Pixelorte auflésen, die dem gesamten
Betrachtungsraum entsprechen, oder nur fiir einen Teil des Betrachtungsraums. In der Ausflihrungsform, die
oben beschrieben wird, 16st der Bildprozessor Pixelorte in einem Teil des Betrachtungsraums auf, der Chunk
genannt wird. Die Fragmentauflésung lauft ab, nachdem die Fragmente erzeugt und sortiert wurden.

[0569] Die Fragmentaufldsung ist der Prozess, wahrend dem alle Fragmente fiir ein Pixel kombiniert werden,
um einen einzelnen Farb- und Alphawert zu berechnen. Dieser einzelne Farb- und Alphawert wird in den Farb-
puffer geschrieben (und dann komprimiert und in einen Gsprite abgelegt).

[0570] Das Berechnen der aufgeldsten Farbe umfasst das Akkumulieren eines korrekt skalierten Farbbei-
trags von jeder Schicht, wahrend gleichzeitig die Bedeckungsinformationen berechnet und bewahrt werden,
mit denen die nachfolgenden Schichten skaliert werden sollen. Diese Akkumulation kann in der Tiefenreihen-
folge von vorn nach hinten oder von hinten nach vorn ausgefiihrt werden. Bei einem Ansatz von vorn nach hin-
ten, als Gegensatz zu von hinten nach vorn, kénnen raumliche Bedeckungsdaten zur Bestimmung der Bede-
ckung fur aufeinander folgende Schichten verwendet werden. Anders als die Bedeckung, gelten Alphadaten
gleichermalden fiir den gesamten Pixelbereich.

[0571] Fur die Reihenfolge vorn nach hinten sind die Gleichungen zum Berechnen von Farbe und Alpha fir
sortierte Fragmentdatensatze:

Alpha initialisiert auf Maximalwert (inverses Alpha).

Farbe initialisiert auf 0.

Anew = Aold — (Aold-Ain);

Cnew = Cold + (Cin-(Aold-Ain));

69/147

DE 696 36 599 T2 2007.08.23

[0572] Fur die Reihenfolge hinten nach vorn sind die Gleichungen zum Berechnen von Farbe und Alpha fir
sortierte Fragmentdatensatze:
Alpha und Farbe initialisiert auf 0.

Anew = Ain + ((1 - Ain)-Aold);
Cnew = (Cin-Ain) + ((1 - Ain)-Cold);

[0573] Fureine Hardware-Implementierung ist vorn nach hinten vorzuziehen, weil der Auflésungsprozess we-
niger hardwareintensiv ist.

[0574] Ein Pseudocode-Beispiel fur die Akkumulation von Fragmenten nur mit Tiefe, Farbe und Bedeckung
(kein Alpha) wird unten dargelegt:

NUM_CVG BITS ist die Zahl der Bits in der Bedeckungsmaske
MAX ALPHA ist der maximale Alphawert
for (jeden fragmentierten Pixelort) {
ColorAccum = 0;
CoverageAccum = 0;
while (Fragmentliste ist nicht leer) {
scanne Fragmentliste und extrahiere néchstgelegenes Fragment(Bedeckung,
Farbe);
ColorScale = CountSetBits(coverage & ~(CoveragcAccum))/NUM_CVG_BITS;
ColorAccum += ColorScale * color;
CoverageAccum (= coverage

}

ColorAccum ist die Pixelfarbe

}

[0575] Das Akkumulieren von Fragmenten mit Tiefe, Farbe, Bedeckung und Alpha erfordert, dass ein Alpha-
wert fUr jedes Subsample berechnet und aufbewahrt wird. Dies ist auf die Kombination von Bedeckungsmas-
ken und Alphawerten fiir jedes Fragment zuriickzufihren. Es trifft im allgemeinen zu, dass das akkumulierte
Alpha in jeder Schicht wahrend der Akkumulation eine Funktion aller Alphawerte der vorherigen Schichten ist.
Mit Bedeckungsmasken kann jedes Subsample potenziell einen unterschiedlichen Satz von ,vorherigen' Al-
phawerten haben, da eine Schicht, fir die das Bedeckungsbit nicht gesetzt ist, nicht zu diesem Subsample bei-
tragt.

[0576] Ein Ansatz zur Aufldsung von Fragmenten sowohl mit Alpha als auch Bedeckung besteht darin, Farbe
fur jedes Teilpixel in einer Schicht separat zu berechnen und dann den Beitrag von jedem Teilpixelort zu addie-
ren, um dem gesamten Farbbeitrag zu bestimmen. Der Alphamafstabsfaktor fir jedes Teilpixel wird aus dem
Alpha in dieser Schicht zusatzlich zu dem Alpha bestimmt, das sich aus anderen Schichten angesammelt hat.
Dieser Alphamalstabsfaktor wird dann mit der Farbe fiir das Teilpixel multipliziert, um den Farbbeitrag des Teil-
pixels zu bestimmen. Die Farbe fiir eine Schicht wird dann durch Summieren der Farbbeitrage aus den Teilpi-
xeln bestimmt.

[0577] Ein Beispiel fiir die getrennte Akkumulation von Farbe und Alpha fir Teilpixel ist:

70/147

DE 696 36 599 T2 2007.08.23

for (jeden fragmentierten Pixelort) {

Farbe);

//

/1

/

/"

1
/"

ColorAccum = 0;
AlphaAccum[NUM CVG BITS] = {MAX ALPHA, MAX ALPHA,..., MAX ALPHA };
while (Fragmentliste ist nicht leer) {

scanne Fragmentliste und extrahiere néchstgelegenes Fragment(Bedeckung,

for (1=0; iI<NUM_CVG BITS; i++) {
wenn dieses Bit in der Bedeckungsmaske gesetzt ist
if (Bedeckung >> 1) & 0x1 {

berechne Alphamafistabswert - Beitrag fiir diese Farbe

AlphaScale = (alpha * AlphaAccum[i]);
fige Farbe hinzu, die die Alpha skaliert ist

ColorAccum += (color*AlphaScale) * (1/NUM_CVG_BITS));
berechne akkumuliertes Alpha fiir den Teilabfragewert
AlphaAccum = AlphaAccum*(MAX ALPHA-alpha)=
AlphaAccum - AlphaAccum*alpha

AlphaAccum(i] = AlphaScale;

}
}
}

ColorAccum ist die Pixelfarbe

}

[0578] Ein Beispiel, das 4 Teilpixelorte verwendet, hilft, die Fragmentauflosung zu illustrieren. Bei diesem Bei-
spiel betrachten wir drei Fragmente, wobei jedes eine Bedeckungsmaske, Alpha- und Farbwert hat. Der An-
fangszustand wird unten in der Tabelle illustriert. In diesem Beispiel akkumulieren wir Farbe und Alpha unter
Verwendung des Ansatzes vorn nach hinten. Das anfangliche Alpha wird auf 1 gesetzt, was volle Transparenz
bedeutet. Die Daten fiir jede Schicht sind folgende: Fragment 0, Alpha = 0,5, Bedeckungsmaske (BM) = 0011,
und Farbe = C,; Fragment 1, Alpha = 0,3, BM = 1000, Farbe = C,; Fragment 2, Alpha = 0,8, BM = 0101, Farbe

= C,. Die Daten fur jedes Fragment werden in Tabellen unten bereitgestellt.

[0579] Mit den Alphawerten auf eins initialisiert, wird das Alpha-Bedeckungsfeld unten gezeigt.

[0580] Um die Farbe zu berechnen, werden die Farbwerte flr jeden Teilpixelort mit dem neuen Alpha und dem
Alpha aus dem Bedeckungsfeld multipliziert. Das Ergebnis fir die Teilpixelorte wird dann durch vier dividiert
(eins dividiert durch die Zahl der Teilpixelorte). Zum Schluss wird der Beitrag von allen Teilpixelorten summiert,

um die akkumulierte Farbe festzustellen.

71147

DE 696 36 599 T2 2007.08.23

Bedeckungs- Farbe | Alpha fiir neues | Alpha aus Bedeckungsfeld | Teilpixelbeitrag
maske Frag. Alpha

1 Co 0,5 1 Va

1 Co 0,5 1 A

0 Co 0,5 1 Ya

0 Co 0,5 1 Va

[0581] Unter Verwendung der Formel, Alpha' = Alpha-(Max_alpha — new_alpha), berechnet der Bildprozessor
das neue Alpha separat fur jeden Pixelort und speichert ihn im Alpha-Bedeckungsfeld in der Tabelle unten.

0,510,5
1 1

[0582] Der Beitrag von Fragment 1 wird in der Tabelle unten dargestellt.

Bedeckungs- Farbe | Alpha fiir neues | Alpha aus Bedeckungsfeld Teilpixelbeitrag
maske Frag. Alpha

0 Ci 0,3 0,5 Va

0 Ci 0,3 0,5 Ya

0 Ci 0,3 1 Va

1 C 0,3 1 Ya

[0583] Das neue Alphabedeckungsfeld ist folgendes:

0,510,5
0,71

[0584] Der Beitrag von Fragment 2 wird in der Tabelle unten dargestellt.

721147

DE 696 36 599 T2 2007.08.23

Bedeckungs- Farbe | Alpha fir neues | Alpha aus Bedeckungsfeld Teilpixelbeitrag
maske Frag. Alpha

1 C 0,8 0,5 Ya

0 G 0,8 0,5 Va

1 G 0,8 1 Ya

0 C; 0,8 0,7 Va

[0585] Das Alpha-Bedeckungsfeld fiir die Fragmente nach Fragment 2 ist folgendes:

0501
0,7 0,2

[0586] Dieses Verfahren erfordert 2:NUM_CVG_BITS Multiplikationen (2:16 = 48 im 4x4-Fall) pro Fragment
fur die Berechnung von Alpha und des Farbbeitrags. Man beachte, dass die (1/NUM_CVG_BITS)-Skalierung
mit einer Verschiebung erfolgen kann, wenn die Zahl der Bits in der Bedeckungsmaske von der Gré3e 2**n ist
(was normalerweise der Fall ist).

[0587] Fig. 35 ist ein Schema, das eine Hardware-Implementierung des Ansatzes illustriert, der oben fir ein
Pixel beschrieben wird, das in 4 x 4 Teilpixelregionen aufteilt ist (1224). Die Auflosungshardware umfasst einen
Satz von 16 identischen Verarbeitungs- und Speichereinheiten, die Alpha- und Farbakkumulatoren genannt
werden (ACA) (1226), wobei jeder ACA einer Teilpixelregion des Pixels zugewiesen ist. Wahrend der Verar-
beitung der Fragmentliste fiir jeden Pixelort werden die Bedeckungsmasken fiir jedes Fragment als Verarbei-
tungsmaske fur die Auflésungshardware verwendet. Der ACA flhrt eine Multiplikation fir den Alpha-Mafstab,
Farbakkumulation und Alpha-Akkumulation aus. Die (1/NUM_CVG_BITS)-Skalierung wird mit einer Verschie-
bung ausgefihrt, wie oben dargelegt. Nachdem alle Fragmente flr einen gegebenen Pixelort verarbeitet wur-
den, kombiniert der Ausgabeabschnitt die Farb- und Alphawerte fiir alle 16 Teilpixel in einer hierarchischen
Weise (1228). Die Prozessoren in der Ausgabe kombinieren die zwei eingehenden Werte und teilen durch 2.
Bei Hardware-Pipelineverarbeitung verwendet der Pixelauflésungsprozess nur einen einzigen Hardware-Zeit-
takt pro Fragmenteintrag.

[0588] Ein alternatives Verfahren reduziert die Hardware-Anforderungen, indem Teilpixel, die denselben ak-
kumulierten Alphawert haben, in jeder Schicht ahnlich behandelt werden. Dieses Verfahren beruht auf der Be-
obachtung, dass der Zustand, in dem Subsamples eindeutige akkumulierte Alphawerte haben, allmahlich ein-
tritt. Zu Anfang werden alle Subsample-Alphawerte auf null gesetzt (transparent). Die erste Fragmentakkumu-
lation kann hochstens einen eindeutigen Alphawert hinzufiigen, was zu einer Gruppe von Subsamples fiihrt,
die den anfanglichen Alphawert behalten, und der anderen Gruppe fiihrt, die denselben neuen Alphawert hat.
Die zweite Fragmentakkumulation kann zu nicht mehr als vier eindeutigen Alphawerten flihren. Insgesamt ge-
sehen, betragt die Zahl der eindeutigen Teilabfrage-Alphawerte, die nach ,n' Fragmentakkumulationen mdglich
ist, 2**n (oder genauer MIN(2**n, NUM_CVG_BITS).

[0589] Dieses alternative Verfahren verwendet dieses Merkmal, um die Zahl der Akkumulationen zu verrin-
gern, die zur Ausfuihrung nur der Farbskalierung und der Akkumulation fur jeden eindeutigen Alphawert inner-
halb der Subsamples erforderlich sind, statt flir jedes Subsample. Bei diesem Verfahren braucht héchstens nur
ein Akkumulat fir das erste Fragment aufzutreten, zwei fiir des zweite Fragment, vier fir das dritte Fragment
und so weiter, bis zu der Zahl der Subsamples im Pixel (z.B. bei einem 4x4-Subsample-Feld ist der schlimmste
Fall 16 Akkumulationen pro Fragment).

[0590] Die Grundlage fir dieses Verfahren besteht darin, den Satz von eindeutigen Alphawerten und ihren
zugehorigen Bedeckungsmasken wahrend der Fragmentakkumulation beizubehalten, wobei die Absicht ist,
eine minimale Zahl von Farbakkumulationen auszufihren.

[0591] Das Alpha und die Bedeckungsmasken werden in NUM_CVG_BITS-Elementfeldern gespeichert, von

731147

DE 696 36 599 T2 2007.08.23

denen eine gewisse Teilmenge dieser Eintrage zu einer beliebigen Zeit tatsachlich giiltig (oder ,in Gebrauch')
ist. Die ,in Gebrauch befindlichen' Eintrage sind diejenigen, die den aktuellen Satz von eindeutigen Alphawer-
ten enthalten. Die in Gebrauch befindlichen Eintrage werden durch eine NUM_CVG_BITS-Bitmaske identifi-
ziert, wobei ein gesetztes Bit anzeigt, dass das Feldelement an diesem Bitindex in Gebrauch ist. Es wird eine
Konvention verwendet, bei der das erste gesetzte Bit in der Bedeckungsmaske eines Paares (eindeutiges Al-
pha, Bedeckungsmaske) definiert, in welchem Feldelement dieses Paar gespeichert ist. Man betrachte das fol-
gende Beispiel dafur, wie das Feld initialisiert und bei der Akkumulation von drei Fragmenten (unter Verwen-
dung von 4 Teilabfragewerten) aktualisiert wird:

Anfangszustand (X weist auf einen Wert hin, der nicht von Interesse ist):

0b0001 // in Gebrauch befindliche Maske

{1.,0b1111 } I/ Paar Alpha, Bedeckung
{ X, 0bXXXX }
{ X, 0bXXXX }
{ X, 0bXXXX }

Akkumuliere Fragment { 0,5 /* Alpha */. 0b0011 /* Bedeckungsmaske */}
0b0101 // in Gebrauch befindliche Maske

{.5,0b001 I } // Alpha, Bedeckungspaare
{ X, 0bXXXX }

{1.,0b1100 }

{ X, ObxxXX }

Fragment akkumulieren {0.3, 0b1000 }

0b1101 /1 in Gebrauch befindliche Maske
{0.5. 0b0011 } // Paare Alpha, Bedeckung

{ X, 0bXXXX }

{ 1.0, 0b0100 }

{0.7, 0b 1000 }

Fragment akkumulieren {0.8, 0b0101 }
Ob11ll // in Gebrauch befindliche Maske
{0.1, 0b0001 } // Paare Alpha, Bedeckung
{0.5, 0b0010 }

{0.2, 0b0100 }

{0.7, 0b1000 }

[0592] Das anfangliche Alphabedeckungsfeld wird unten dargelegt:

74/147

DE 696 36 599 T2 2007.08.23

[0593] Die in Gebrauch befindliche Maske ist 0001, was den Ort festlegt, wo die Feldmaske gespeichert ist.
Die entsprechende Feldmaske ist folgende:

xxxx | 1111

XXXX | XXXX

[0594] Nach Fragment 0 erscheint die Alpha-Bedeckungsmaske wie folgt.

x |05

x |1

[0595] Die in Gebrauch befindliche Maske ist 0101, die Feldmaske ist folgende:

xxxx | 0011
xxxx | 1100

[0596] Fur Elemente in der in-Gebrauch-Maske, die gesetzt sind, wird die Feldmaske durch AND mit der Be-
deckungsmaske fir das neue Fragment verkniipft, um festzustellen, ob es eine Anderung im Alphawert gibt.
Wenn es ein neues Alpha gibt, wird der neue Wert fiir die Feldmaske folgendermafien berechnet: Feldmaske
AND NOT Bedeckungsmaske. Wenn es einen neuen Wert fiir die Feldmaske gibt, wird er am entsprechenden
Ort gespeichert.

[0597] Nach Fragment 1 erscheint die Alpha-Bedeckungsmaske wie folgt.

x |05
0,71

[0598] Die in-Gebrauch-Maske ist 0101, und die Feldmaske ist folgende:

xxxx | 0011
1000 | 0100

[0599] Nach Fragment 2 erscheint die Alpha-Bedeckungsmaske wie folgt.

05 | 0,1
0,702

[0600] Die in-Gebrauch-Maske ist 1111, und die Feldmaske ist folgende:

751147

DE 696 36 599 T2 2007.08.23

0010 | 0001
1000 | 0100

[0601] Die Zahl von eindeutigen Alphawerten zu einem beliebigen Zeitpunkt ist gleich der Zahl der gesetzten
Bits in der in-Gebrauch-Maske. Die vollstdndige Losung umfasst zwei Schritte. Der erste Schritt ist die Ausfiih-
rung der notwendigen Farbakkumulationen, wobei eine Akkumulation pro ,in-Gebrauch'-Eintrag im Bede-
ckungs-/Alpha-Feld erforderlich ist. Der zweite Schritt besteht darin, das Bedeckungs-/Alpha-Feld mit den Wer-
ten des neuen Fragments zu aktualisieren.

[0602] Eine vollstandige Implementierung dieses Verfahrens (fiir 4x4-Teilabfragewerte) folgt.

76/147

DE 696 36 599 T2 2007.08.23

for (jeden fragmentierten Pixelort) {

1 Anfangszustand (pro Pixel)

InUseMask = 0x0001;

CoverageArrayMask([16]= { Oxfff, 0, ..., 0);

CoverageArrayAlpha[16] = { MAX.ALPHA . MAX_ALPHA, ..., MAX-ALPHA

ColorAccum = 0;

while (Fragmentliste ist nicht leer) {
scanne Fragmentliste und extrahiere néchstgelegenes Fragment(Bedeckung, Farbe, Alpha);

// akkumuliere die Farbe dieses Fragments in ColorAccum fiir jedes In-Gebrauch-Element
InUseMaskScratch = InUseMask;

while (InUseMaskScratch != 0x0000) {

/1 finde erstes gesetztes Bit in scratch in-use Mask

Index FindFirstSetBit(InUseMaskScratch);

InUseMaskScratch &=~(0x1<<Index);

/I lies altes (oder aktuelles) Alpha fiir diesen Eintrag - dies wird verwendet
/" bei Aktualisieren der nicht bedeckten Flache (die neu ,in Gebrauch’ sein kann)

AlphaOld = CoverageArrayAlpha[Index];

/" Alphaskalierungsfaktor - verwendet zum Skalieren von Farbe fiir Akkumulation und
/! zum Berechnen von Alpha fiir nachfolgende Schichten
AlphaScale = AlphaOld * alpha;

/ berechne Alpha fiir nichste Schicht - verwende dies zum Aktualisieren des Alphafeldes
i AlphaNext = AlphaOld*(MAX_ALPHA-alpha) = AlphaOld-AlphaOld*alpha
AlphaNext = AlphaOld - AlphaScale;

771147

DE 696 36 599 T2 2007.08.23

/1 berechne Maske fiir iberlappte Bedeckung - dies ist der Anteil von diesem
1 Feldeintrag, der von einem neuen Fragment bedeckt wird, also akkumulieren Sie die
// Farbe und aktualisieren Sie das Feld mit dem neuen Alphawert

AccumCvgMask = Coverage & CoverageArrayMask[Index];
if (AccumCvgMask != 0x0000) (

// Farbe akkumulieren

nCoverageBits = CountSetBits(AccumCvgMask);
ColorAccum += color*(AlphaScale * nCoverageBits/NUM CVG_BITS));
// Alpha fiir abgedeckten Teil aktualisieren (dies kann zu einem ‘neuen’
/! in-Gebrauch-Element fiihren oder einfach den alten {iberschreiben)
Index2 = FindFirstSetBit(AccumCvgMask);
InUseMask |= (0x1 << Index2);
CoverageArrayMask[Index2] = AccumCvgMask;
CoverageArrayAlpha[Index2] = AlphaNext;
}
/1 Berechne die Maske fiir den nicht abgedeckten Bereich - das ist der Abschnitt
1 dieses Feldeintrags, der vom neuen Fragment verdeckt wird, also
/" aktualisieren Sie nur die Bedeckung (das Alpha bleibt dasselbe)
UpdateCvgMask = ~Coverage & CoverageArrayMask[Index];
if (UpdateCvgMask!= 0X0000) {

Index2 = FindFirstSetBit(UpdateCvgMask);

InUseMask - (0x 1 << Index2);
/ Aktualisieren fiir den nicht abgedeckten Bereich - dies kann zu einem 'neuen’
" in-Gebrauch-Element fithren oder nur das alte {iberschreiben (daher den
/" Alpha-Wert kopieren, falls er neu ist ...)
CoverageArrayMask[Index2] = UpdateCvgMask;
CoverageArrayAlpha[Index2] = AlphaOld,

}
}
}

ColorAccum ist die Pixelfarbe

[0603] Die Kernarithmetikoperation ist die Farbakkumulation, die insgesamt drei Multiplikationen pro eindeu-
tigem Alphawert erfordert.

78/147

DE 696 36 599 T2 2007.08.23

[0604] ColorAccum += color-(alpha-AlphaOld-(nCoverageBits/NUM_CVG_BITS)); Man beachte, dass die
dritte Multiplikation durch die Zahl der Subsamples etwas vereinfacht werden kann. Fur 16 Subsamples bein-
haltet die dritte Multiplikation den Festpunktwert 0,4, der Multiplikator kann also 8 x 4 sein (wo die anderen
Multiplikatoren wahrscheinlich 8 x 8 sind). Man beachte auch, dass fir 2**n grolRe Bedeckungsmasken die Di-
vision, die oben gezeigt wird, nur eine Verschiebung ist.

[0605] Dieses Verfahren erfordert im schlimmsten Fall insgesamt:

NumFrags
MIN(2",16)

n=1

Akkumulationen. Der Normalfall kann kleiner als dies sein, weil der schlimmste Fall nur auftritt, wenn die Be-
deckung eines neuen Fragments sowohl gesetzte als auch ungesetzte Werte in jedem ,in-Gebrauch'-Feldele-
ment hat.

[0606] Eine niitzliche Optimierung besteht darin, die Bedeckungsmaskenorte zu verfolgen, die einen vollstan-
dig lichtundurchlassigen Alphawert haben. Dies ist nitzlich in dem Fall, dass Fragmente gerade auf Grund der
teilweisen geometrischen Bedeckung und nicht auf Grund von nicht lichtundurchlassigen Transparenzwerten
erzeugt werden. Diese Fragmente haben normalerweise einen vollstandig lichtundurchlassigen Transparenz-
wert. Die Implementierung dieser Optimierung erfolgt durch Bewahren eines zusatzlichen Maskenwertes, der
OpaqueAlphaMask. Die OpaqueAlphaMask wird durch einen O-Ring in Bedeckungsmasken von Fragmenten
gesetzt, fir die der Alpha vollstandig lichtundurchlassig ist (dies wird nach dem Akkumulieren des Beitrags des
Fragments ausgefiihrt). Diese Maske wird dann dazu verwendet, Bits in den Masken nachfolgender Fragmen-
te zu ignorieren, da es keinen weiteren Farbbeitrag zu den entsprechenden Subsamples gibt.

[0607] Eine weitere mogliche Optimierung besteht darin, Orte mit identischen Alphawerten zu konsolidieren,
dies ist aber betrachtlich aufwandiger zu implementieren, und das Vorhandensein von identischen Alphawer-
ten, die weder 0 noch MAX_ALPHA sind, ist nicht wahrscheinlich.

[0608] Das Beispiel und der Pseudocode, der oben angegeben wird, verwenden eine Tiefensortierung vorn
nach hinten. Es ist gleichermaRen mdglich, dieselben Berechnungen mit einer Tiefensortierung von hinten
nach vorn auszufiihren. Die Berechnungen, die oben angefiihrt werden, verwenden auch Farbkomponenten,
die nicht vorher mit der Alphakomponente multipliziert wurden. Dasselbe Verfahren gilt fiir vormultiplizierte
Farbkomponenten, mit leicht unterschiedlichen arithmetischen Berechnungen (und identischem Kontrollfluss).

[0609] Fig. 36 ist ein Schema, das eine Implementierung des hardwareoptimierten Fragmentaufldsungsteil-
systems in der Anti-Aliasing-Engine illustriert. Die Eingabe in das Teilsystem ist ein Strom von tiefensortierten
Fragmentdatensatzen. Wie gezeigt, umfasst ein Fragmentdatensatz RGB-Farbwerte, einen Alphawert A und
eine Bedeckungsmaske (Cov Mask). Dieses besondere Fragmentauflésungsteilsystem verarbeitet Fragment-
datensatze in der Reihenfolge vorn nach hinten und akkumuliert Farbwerte fir den Pixelort, wahrend es jede
Fragmentschicht verarbeitet. Dieses Teilsystem minimiert die Hardware, die zum Akkumulieren der Farbwerte
notwendig ist, weil es eindeutige Pixelregionen, die ein gemeinsames Alpha besitzen, verfolgt. Dies ermdglicht
dem Fragmentauflosungsteilsystem, Farbe einmal fiir jede eindeutige Pixelregion zu skalieren und zu akkumu-
lieren, anstatt separat fur jede Teilpixelregion.

[0610] Wie im Pseudocode oben dargelegt, initialisiert das Fragmentauflosungssystem eine in-Ge-
brauch-Maske 1236, ein Feld von Bedeckungsmasken 1230 und ein Feld von akkumulierten Alphawerten
1230 vor dem Aufldsen einer Liste von Fragmentdatensatzen. Die Elemente in der in-Gebrauch-Maske 1236
reprasentieren Pixelregionen, wobei jedes ein oder mehrere Teilpixelregionen umfasst, die ein gemeinsames
akkumuliertes Alpha haben. Die Bedeckungsmasken ergeben die Teilpixelorte, die durch eine Pixelregion be-
deckt werden. Das Feld von akkumulierten Alphawerten speichert die eindeutigen akkumulierten Alphawerte
fur entsprechende Pixelregionen, die ein gemeinsames Alpha haben. Dieses besondere Bedeckungsfeld 1236
speichert die akkumulierten Alphawerte und Bedeckungsmasken.

[0611] Nach dem Initialisieren der in-Gebrauch-Maske, Bedeckungsfeldmaske und Bedeckungsfeldalpha be-
ginnt das Teilsystem mit der Verarbeitung eines Fragmentdatensatzes, mit dem Fragmentdatensatz, der dem
Betrachtungspunkt am nachsten liegt, beginnend. In einer Implementierung der Anti-Aliasing-Engine 412 im
Tiler sortiert die Anti-Aliasing-Engine die Fragmentliste in einer Nachverarbeitungsstufe, nachdem der Scan-

791147

DE 696 36 599 T2 2007.08.23

umwandlungsblock 395 und die Texturfilterengine 401 das Rastern eines Chunks beendet haben. Die Anti-Ali-
asing-Engine liest jedes Fragment in einer Fragmentliste, mit dem Kopf beginnend, und legt dabei Eintrage in
ein sortiertes Feld von Indizes und Tiefen. Jeder Index in diesem Feld zeigt auf einen Fragmentpufferort, der
die RGB-, Alpha- und Bedeckungsdaten fiir ein Pixelfragment in der Liste speichert. Wahrend die Anti-Ali-
asing-Engine Pixelfragmente liest, flihrt sie eine Einflgesortierung derart aus, dass die Feldeintrage ein tiefen-
sortiertes Feld von Indizes auf Pixelfragmente und entsprechende Tiefenwerte umfassen. Sobald die Liste sor-
tiert ist, ruft das Fragmentauflosungsteilsystem tiefensortierte Fragmente durch Lesen jedes Eintrags im sor-
tierten Feld in der Reihenfolge ab, in der diese Eintrage im Feld gespeichert sind. Dies ermdglicht dem Frag-
mentauflésungssystem, die RGB-Farbwerte, Alpha und Bedeckungsmasken fiir die Pixelfragmente in einer
Liste nach der Tiefe sortiert abzurufen.

[0612] Wahrend es jeden Fragmentdatensatz in der Liste verarbeitet, verfolgt das Teilsystem die Pixelregio-
nen, die ein gemeinsames Alpha haben. Das Teilsystem bestimmt, ob jeder Fragmentdatensatz in der Liste
jede Pixelregion Uberlappt, die ein gemeinsames Alpha hat. Wenn ja, berechnet das Teilsystem die akkumu-
lierte Farbe fur den Abschnitt der aktuellen Pixelregion, die sich mit dem aktuellen Fragment tGberlappt. Wenn
es eine Uberlappung mit der aktuellen Pixelregion gibt, bestimmt das Teilsystem auch die neue Pixelregion
oder -regionen, die durch diese Uberlappung hervorgerufen werden, und verfolgt diese.

[0613] Furein aktuelles Fragment (1232) durchlauft das Teilsystem jedes Element in der In-Gebrauch-Maske.
Die Bedeckungsfeldschleifenkontrolle 1234 fiihrt die In-Gebrauch-Maske (1236) und aktualisiert sie nach Not-
wendigkeit, wahrend sie jeden Fragmentdatensatz verarbeitet. Wahrend sie durch die Eintrage in der In-Ge-
brauch-Maske schleift, kommuniziert die Bedeckungsfeldschleifenkontrolle mit der neuen Bedeckungskontrol-
le 1238 und steuert ihren Betrieb. Die neue Bedeckungskontrolle 1238 aktualisiert die Bedeckungsfeldmaske
und Alpha 1230 nach Notwendigkeit, wenn das aktuelle Fragmente die aktuelle Pixelregion tberlappt.

[0614] Die neue Bedeckungskontrolle 1238 liest das gespeicherte akkumulierte Alpha (Aold) aus dem Bede-
ckungsfeld-Alpha, das mit dem aktuellen Eintrag in der In-Gebrauch-Maske verkntipft ist, und berechnet den
Alpha-Skalenfaktor (A-Aold), der zum Skalieren der Farbe und zum Berechnen von Alpha fir nachfolgende
Fragmentschichten verwendet wird Anext (1 — A-Aold). Die neue Bedeckungskontrolle 1238 (bertragt den Al-
pha-Skalenfaktor (A-Aold) auf die Skalen- und Akkumulationskontrolle 1246 zur Verwendung beim Skalieren
der Farbdaten des aktuellen Fragments. Die neue Bedeckungskontrolle 1238 berechnet auch das Alpha fur
nachfolgende Schichten, Anext (1 — A-Aold), und berechnet es zusammen mit seiner entsprechenden Bede-
ckungsfeldmaske im Bedeckungsfeld 1230.

[0615] Fur jede Pixelregion mit einem gemeinsamen akkumulierten Alpha bestimmt das Fragmentauflo-
sungsteilsystem, ob das aktuelle Fragment die aktuelle Pixelregion Uberlappt, indem der Schnitt der Bede-
ckungsmasken des Fragments und der Pixelregion gesucht wird.

[0616] Wenn das aktuelle Fragment die aktuelle Pixelregion Giberlappt, 1) berechnet das Teilsystem die akku-
mulierte Farbe fir den Uberlappten Abschnitt der Pixelregion, 2) aktualisiert das Teilsystem das In-Ge-
brauch-Element und die entsprechende Bedeckungsfeldmaske und Alpha (Bededeckungsfeld-Alpha) fiir die-
ses In-Gebrauch-Element.

[0617] Die Skalen- und Akkumulationskontrolle 1246 berechnet die akkumulierte Farbe fur jede eindeutige
Pixelregion, die vom aktuellen Fragment bedeckt wird. Die Skalen- und Akkumulationskontrolle umfasst einen
Bedeckungsskalierer 1240, einen Farbskalierer 1242 und einen Farbakkumulator 1244. Der Bedeckungsska-
lierer 1240 berechnet einen Bedeckungsskalenfaktor (Zahl der Teilpixelorte in der aktuellen Pixelregion, die
vom aktuellen Fragment bedeckt wird/Gesamtzahl der Teilpixelorte-A-Aold). Der Farbskalierer 1242 liest dann
die Farbwerte (RGB) fiir das aktuelle Fragment (1232) und multipliziert sie mit dem Bedeckungsskalenfaktor
aus dem Bedeckungsskalierer 1240. Zum Schluss addiert der Farbakkumulator 1244 die skalierten Farben zu
den akkumulierten Farben, um die aktualisierten akkumulierten Farbwerte zu berechnen.

[0618] Wenn das aktuelle Fragment die aktuelle Pixelregion Gberlappt, aktualisiert die Bedeckungsfeldschlei-
fenkontrolle 1234 die In-Gebrauch-Maske 1236, so dass sie einen Eintrag umfasst, der der neuen Pixelregion
entspricht. Damit kann nur das existierende In-Gebrauch-Element tUberschrieben oder ein neues erzeugt wer-
den. Die Bedeckungsfeldschleifenkontrolle weist auch die neue Bedeckungskontrolle 1238 an, die Bede-
ckungsfeldmaske 1230 auf die Bedeckung der neuen Pixelregion zu aktualisieren und das akkumulierte Alpha
fur diese neue Pixelregion einzustellen. Die neue Bedeckungskontrolle 1238 stellt einen neuen Alpha-Bede-
ckungsfeldeintrag, der der neuen Pixelregion entspricht, auf Anext ein.

80/147

DE 696 36 599 T2 2007.08.23

[0619] Wenn das aktuelle Fragment nur einen Abschnitt einer Pixelregion bedeckt (statt sie ganz zu Uberlap-
pen), dann erzeugt die neue Bedeckungskontrolle 1238 zwei neue Pixelregionen: 1) einen Abschnitt der Pixel-
region, die das aktuelle Fragment Uberlappt, und 2) einen Abschnitt der Pixelregion, die vom aktuellen Frag-
ment nicht bedeckt wird. In diesem Fall berechnet das Teilsystem die Bedeckung fiir den nicht bedeckten Ab-
schnitt und stellt das Alpha dafir ein, welches dasselbe wie die urspriingliche Pixelregion bleibt. Um dies zu
erreichen, aktualisiert die Bedeckungsfeldschleifenkontrolle 1234 die In-Gebrauch-Maske 1236 und weist die
neue Bedeckungskontrolle 1238 an, die Bedeckungsfeldmaske 1230 zu aktualisieren. Der Bedeckungsfeld-Al-
phaeintrag, der dieser zweiten Pixelregion entspricht, bleibt derselbe wie bei der aktuellen Pixelregion (Aold),
weil sie durch das aktuelle Fragment nicht verandert wird.

[0620] Wenn der Ansatz, der oben beschrieben wird, wiederholt wird, durchschleift das Teilsystem jeden
In-Gebrauch-Eintrag fir das aktuelle Fragment und berechnet den Effekt, falls vorhanden, des aktuellen Frag-
ments auf jede Pixelregion. Es wiederholt dann den Prozess flr nachfolgende Fragmente in der Liste, bis die
Liste leer ist.

[0621] Der Klemm- und Einstellblock 1248 fuhrt das Festhalten der akkumulierten Farbe auf dem richtigen
Bereich (dies wird auf Grund des Rundens, das zu Farben oder Alphawerten fihren kann, die den 8-Bitbereich
verlassen, im Bedeckungsskalierblock benétigt) und eine Anpassung fir Fehler aus, die durch das Skalieren
eines Wertes durch eine 8-Bit-Binarzahl, die 1 reprasentiert, eingefiihrt werden. Eine Anpassung fiir diese Art
von Fehler kann unter einigen Umstanden notwendig sein, weil ein Wert von 1 tatsachlich durch den Hexwert
,FF" reprasentiert wird. Mit anderen Worten, ein Alphabereich von 0 bis 1 wird durch einen Bereich von 8 Bit-
zahlen von 00 bis FF reprasentiert. Wenn man eine Zahl x mit FF multipliziert, muss das Ergebnis also x sein.
Die Anpassung stellt sicher, dass das Ergebnis der Multiplikation mit FF ordentlich auf x gerundet wird.

[0622] Der Ruckkopplungsweg 1250 zu den Pixelpuffern besteht, um einen Modus zu unterstitzen, bei dem
aufgelOste Pixelwerte in die Pixelpuffer zurlick gespeichert werden. Das erméglicht das Mehrfachrendern an
aufgeldsten Pixeldaten, ohne einen Chunk von aufgelésten Daten zum gemeinsamen Speicher aul3erhalb des
Tilers zu Ubertragen.

[0623] Wenn das Fragmentauflosungsteilsystem nicht im Rickkopplungsmodus ist, dann Ubertragt der
Klemm- und Einstellblock 1248 die aufgelésten Pixeldaten in die Blockeinspeicherungspuffer Giber den Daten-
weg 1252, der in Fig. 36 gezeigt wird. Diese Blockeinspeicherungspuffer werden dazu verwendet, aufgeldste
Pixeldaten zu puffern, bevor sie in 8x8-Pixelblécke komprimiert werden.

Texturabbildung

[0624] Das Bildverarbeitungssystem umfasst eine Reihe von fortgeschrittenen Texturabbildungsmerkmalen.
Seine Unterstiitzung fur die Texturabbildung umfasst die anisotrope Filterung von Texturdaten. Das System
kann die anisotrope Filterung von Texturdaten in Echtzeit ausfiihren.

[0625] Wir beginnen mit der Beschreibung einiger Begriffe, die die Grundlage fiir unseren Ansatz zur aniso-
tropen Filterung bilden, und beschreiben dann eine Implementierung mit mehr Details.

[0626] Texturabbildung bezeichnet die Abbildung eines Bildes auf eine Flache. Schwierige Details auf der
Oberflache eines Objektes sind unter Verwendung von Polygonen oder anderen geometrischen Grundelemen-
ten sehr schwierig zu modellieren, und dies vergrofiert sehr den Rechenaufwand fiir das Objekt. Texturabbil-
dung ermdglicht einem Bildverarbeitungssystem, feine Details effizient auf der Oberflache eines Objektes dar-
zustellen. Eine Texturabbildung ist eine digitale Abbildung, die wir auch als das ,Quellbild" bezeichnen. Die
Textabbildung ist normalerweise rechteckig geformt und hat ihren eigenen (u, v)-Koordinatenraum. Einzelne
Elemente der Texturabbildung werden als ,Texel" bezeichnet. Bei der Texturabbildung wird eine Textur oder
ein "Quellbild" auf ein Zielbild abgebildet.

[0627] Bei digitalen Bildern werden die Quell- und Zielbilder an diskreten Punkten abgetastet, normalerweise
auf einem Punktgitter mit ganzzahligen Koordinaten. Im Quellbild befinden sich die Texel an ganzzahligen Ko-
ordinaten im (u, v)-Koordinatensystem. Im Zielbild befinden sich die Pixel in &hnlicher Weise an ganzen Koor-
dinaten im (X, y)-Koordinatensystem.

[0628] Eine geometrische Transformation beschreibt, wie ein Punkt aus dem Quellbild auf das Zielbild abge-

bildet wird. Die Inverse dieser Transformation beschreibt, wie ein Punkt im Zielbild zurlick auf das Quellbild
abgebildet wird. Der Bildprozessor kann diese inverse Transformation verwenden, um festzustellen, wo im

81/147

DE 696 36 599 T2 2007.08.23

Quellbildfeld der Texel eine Pixelintensitat herkommen sollte. Die Intensitat an diesem Punkt im Quellbild kann
dann auf der Basis der benachbarten Texeldaten bestimmt werden. Ein Punkt im Ziel, der zuriick in das Quell-
bild abgebildet wird, fallt nicht notwendigerweise exakt auf ganzzahlige Koordinaten eines Texels. Um die In-
tensitat an diesem Punkt festzustellen, werden die Bilddaten aus benachbarten Texeln berechnet.

[0629] Da die Quellbildintensitaten nur an diskreten Werten bekannt sind, werden Werte aus benachbarten
Texeln interpoliert und die resultierenden Daten werden dann durch ein Tiefpassfilter geschickt. Im allgemeinen
ist die Vorgehensweise folgendermafRen. Zuerst wird ein Punkt aus dem Zielbild in das Quellbild abgebildet.
Dann werden Texeldaten interpoliert, um die Intensitat an dem Punkt, der in das Quellbild abgebildet wird, zu
rekonstruieren. Zum Schluss wird ein Tiefpassfilter angewendet, um Raumfrequenzen im Quellbild zu entfer-
nen, die in einen zu hohen Bereich transformiert werden, um ordentlich im diskreten Zielbild neu abgetastet zu
werden. Dieses Tiefpassfilter wird manchmal als Anti-Aliasing-Filter bezeichnet, weil es hohe Frequenzen ent-
fernt, die sich wegen der erneuten Abtastung als Wellen von niedrigerer Frequenz maskieren oder ausgeben.
Dieses Konzept wird detaillierter unten beschrieben.

[0630] Fig. 37 ist ein Beispiel, das illustriert, wie ein Pixel 1300 auf der Flache 1302 des Zielbildes auf die
Flache der Texturabbildung 1304 abgebildet wird. In diesem Beispiel wird das Pixel aus dem Zielbild als Qua-
drat 1306 dargestellt. Die Rickwartsabbildung dieses Pixels 1300 auf die Texturabbildung 1304 ist ein Viereck
1308, das die komplexere Form annahert, in die das Pixel sich auf Grund der Krimmung der Zielflache 1302
abbildet. Nach dem Abbilden des Pixels 1300 auf die Textur wird ein Intensitatswert aus Texelsamples inner-
halb des Vierecks berechnet. In einer Ausfihrungsform zum Beispiel wird der Intensitatswert eines Pixels
durch Bilden einer gewichteten Summe von Texeln im Viereck berechnet.

[0631] Sowohl die Interpolation als auch die Tiefpassfilterfunktionen kdnnen zu einem einzigen Filter kombi-
niert werden, das durch Bilden eines gewichteten Durchschnitts der Punkte implementiert wird, die jeden in-
versen Transformationspunkt in der Quelle umgeben, der auf einen diskreten Punkt im Ziel abgebildet wird.
Wir bezeichnen die Region von Punkten, die zu diesem gewichteten Mittel beitragen, als Fullspur des Filters.
Die Ful3spur hat im allgemeinen eine andere Form in der Quelle fiir jeden Zielpunkt. Da die Fuspur fir jeden
einzelnen Punkt variieren kann, ist es schwierig, die richtige Form der FuRspur und die Gewichtungsfaktoren
zu finden, um sie auf die Punkte im Innern der Fu3spur anzuwenden. Einige konventionelle Systeme nehmen
die Naherung der Verwendung derselben Form fir das Filter in jedem Punkt vor, obwohl die GréRRe des Filters
variiert werden darf. Diese Vorgehensweise kann jedoch zu Verzerrungen im Endbild fuhren.

[0632] Wir bezeichnen Filter, die entweder quadratische oder kreisférmige FuRspuren von variabler Grofie
erzeugen, als isotrope Filter. Ein Kreis ist wirklich isotrop, da er in allen Richtungen dieselbe Lange hat. Wir
betrachten auch das Quadrat als im wesentlichen isotrop, da es horizontal und vertikal dieselben Abmessun-
gen hat.

[0633] Die isotrope Filterung kann Verzerrungen bewirken, weil sie ziemlich grobe Naherungen verwendet. In
Bereichen des Quellbildes, wo die tatsachliche Fullspur sehr langlich ist, ist eine im wesentlichen isotrope
Form, wie zum Beispiel ein Quadrat oder ein Kreis, ein armseliger Ersatz fur die FuRspur, selbst wenn die Gro-
Re einstellbar ist. Da ein isotropes Filter nur eine Form hat, kann es Texel in einer langlichen FuRspur nicht
genau erfassen. Ein quadratisches Filter zum Beispiel kann Texelwerte aus einer vierseitigen Fu3spur, die in
einer Richtung gestreckt ist, nicht genau abtasten. Das Abtasten von Texeln auRRerhalb der tatsachlichen Ful3-
spur kann zu Unscharfe fuhren. Werden Texel in der Fullspur andererseits nicht abgetastet, so kann dies be-
wirken, dass das Endbild auf Grund des Aliasing funkelt.

[0634] In einem Ansatz, der MIP-(multum in parvo — vieles an einer kleinen Stelle) Abbildung genannt wird,
wird eine Reihe von Texturabbildungen bei verschiedenen Auflésungen gespeichert. Wenn zum Beispiel die
eine Textur bei 512 x 512 Texeln liegt, kann das System auch Texturen bei 256 x 256, 128 x 128, 64 x 64 usw.
speichern. Ein Bildverarbeitungssystem kann diese Texturabbildungen bei variierender Auflésung verwenden,
um die beste Anpassung flr ein isotropes Filter an die FuRspur des Pixels zu finden, das in die Textur abge-
bildet wird. Der Bildprozessor findet zuerst die zwei Texturen, bei denen die Fu3spur in der GréRRe der Grolle
des Filters am nachsten kommt. Er fihrt dann eine Interpolation fur die zwei Texturen aus, die am besten zur
Fulspur passen, um zwei Zwischenwerte zu berechnen. Zum Schluss interpoliert er zwischen den zwei Zwi-
schenwerten, um einen Wert fiir das Pixel zu finden.

[0635] Wahrend die MIP-Abbildung einige verbesserte Ergebnisse fur isotrope Filter liefern kann, verursacht

sie immer noch Verzerrungen, besonders wo die Fuldspur in einer Richtung gestreckt ist. Ein genaueres Filter
fur die tatsachliche FuRRspur in jedem einzelnen Punkt kann durch die Kaskade eines im wesentlichen isotropen

82/147

DE 696 36 599 T2 2007.08.23

Rekonstruktionsfilters erzeugt werden, das mit einem im wesentlichen isotropen Resamplingfilter gefaltet ist,
dessen Form durch die Inverse der geometrischen Transformation verzerrt wurde. Diese Verzerrung kann ei-
nen hohen Grad von Anisotropie eines Filters erzeugen. Wenn die Transformation das Bild in einer Richtung
viel starker als in einer anderen Richtung kontrahiert, dann dehnt oder streckt die inverse Transformation die
FuRspur in der Quelle in Richtung der maximalen Kontraktion im Ziel. Dies kann auftreten, wenn man eine ebe-
ne Flache aus einer Perspektive in der Nahe des Randes betrachtet. Beim isotropen Filtern wiirde das Endbild
in diesem Beispiel verzerrt erscheinen, weil das Filter die Texelwerte in der gestreckten Fulspur nicht richtig
abtasten kann.

[0636] Eine Ausflihrungsform unseres anisotropen Filterverfahrens umfasst die folgenden zwei Schritte: 1)
Finden einer ungefahren Richtung der maximalen Ausdehnung der Filterfullspur, und 2) Anwenden eines
Resamplindfilters in dieser Richtung auf die Ausgabe eines Rekonstruktionsfilters, um ein zusammengesetztes
Filter zu erzeugen, das der tatsachlichen FuRspur starker angepaldt ist.

[0637] Die Richtung der maximalen Ausdehnung kann aus der Riickwartsabbildung eines Filters vom Zielbild
auf die Texturabbildung abgeleitet werden. In der perspektivischen Abbildung zum Beispiel (wo ein Objekt in
Richtung des Fluchtpunktes abklingt), ist die Abbildung einer n x n-Pixel-FuRspur vom Zielbild auf die Textur
ein Viereck. Die Linie der Anisotropie wird als Linie definiert, die die Richtung der maximalen Ausdehnung hat
und durch einen Punkt vom Ziel geht, der in das Quellbild zuriick abgebildet wird.

[0638] In dieser Ausflihrungsform bildet der Bildprozessor die FilterfuRspur zurtick auf die Textur ab, um die
Richtung der maximalen Ausdehnung zu finden. Er lasst dann ein interpolierendes Filter (das Rekonstruktions-
filter, das oben angefuhrt wird) entlang der Richtung der maximalen Ausdehnung durchlaufen. Um einen Pixel-
wert flr das Zielbild zu berechnen, wendet er ein Resamplingfilter auf die Ausgabe des interpolierenden Filters
an.

[0639] In einer Implementierung ist das Resamplindfilter ein eindimensionales digitales Filter, das entlang der
Linie der Anisotropie angewendet wird. Fir dieses Filter kann eine Reihe von eindimensionalen Filtern ver-
wandt werden. Daher beabsichtigen wir nicht, den Geltungsbereich unserer Erfindung auf ein spezielles eindi-
mensionales Filter zu beschranken.

[0640] In dieser Implementierung ist das interpolierende Filter ein zweidimensionales isotropes Filter. Wie
beim Resamplingfilter beabsichtigen wir nicht, den Geltungsbereich unserer Erfindung auf eine spezielle Art
von interpolierendem Filter zu beschranken. Das zweidimensionale isotrope Filter ist nur eine moégliche Imple-
mentierung. Das interpolierende Filter liefert Werte an Positionen entlang der Linie der Anisotropie durch Inter-
polieren dieser Werte aus benachbarten Texeldaten. Die einzelnen Positionen, an denen das interpolierende
Filter auf das Quellbild angewendet wird, kbnnen durch vertikales oder horizontales schrittweises Fortschreiten
in Inkrementen und Interpolieren eines Wertes auf der Linie der Anisotropie an jeder Position bestimmt werden.
Wenn zum Beispiel die Linie der Anisotropie mehr vertikal als horizontal ist, ware eine Vorgehensweise, schritt-
weise in vertikaler oder V-Richtung im (u, v)-Koordinatensystem der Textur fortzuschreiten. Wenn analog zum
Beispiel die Linie der Anisotropie mehr horizontal als vertikal ist, ware eine andere Vorgehensweise, schrittwei-
se in horizontaler oder U-Richtung im (u, v)-Koordinatensystem der Textur fortzuschreiten.

[0641] Ein mogliches Verfahren zum Fortschreiten entlang der Linie der Anisotropie ist, das interpolierende
Filter an diskreten Orten entlang dieser Linie, mit konstanten, ungefahr der Lange der minimalen Ausdehnung
entsprechenden Abstanden, anzuwenden. Speziell kdnnen die Abtastwerte entlang der Linie der Anisotropie
mit konstanten Intervallen bei einem Abstand angeordnet sein, der etwa gleich der Lange der minimalen Aus-
dehnung ist, wobei die Mittelabtastung sich an dem Punkt befindet, wo die Pixelmitte in die Texturabbildung
abbildet wird. Sobald diese Abtastorte berechnet sind, kann ein isotropes Filter wiederholt an jeder Stelle an-
gewendet werden. Ein isotropes Filter kann zum Beispiel an den Abtastorten angewendet werden, um die In-
terpolation mit benachbarten Textursamples fiir jedes Sample auszufiihren, wobei die GroRRe des Filters von
der Lange der minimalen Ausdehnung abhéangt. Eine spezielle Méglichkeit, dieses Verfahren zu implementie-
ren, besteht darin, eine dreilinige Interpolation an jedem diskreten Ort entlang der Linie der Anisotropie vorzu-
nehmen.

[0642] Nach der Anwendung der Ausgabewerte des interpolierenden Filters auf das digitale Filter ist der re-
sultierende Pixelwert ein gewichtetes Mittel der Ausgabewerte des interpolierenden Filters entlang der Linie
der Anisotropie. Obwohl wir spezielle Arten hier beschreiben, kbnnen die Arten von Filtern, die zur Annaherung
der Rekonstruktions- und Resamplingfunktionen verwendet werden, variieren.

83/147

DE 696 36 599 T2 2007.08.23

[0643] Die Fig. 38A-D illustrieren ein Beispiel flir den Prozess der anisotropen Filterung. Die Fig. 38A-D illus-
trieren die Texel in einer Texturabbildung (1400A-D) und zeigen, wie ein anisotropes Filter erzeugt werden
kann. Der erste Schritt besteht darin, eine FilterfuRspur im Quellbild zu berechnen, indem eine inverse Trans-
formation an der FilterfuRspur fur einen Pixelort im Zielbild ausgefihrt wird. In diesem Beispiel wird die Filter-
fuBspur in der Textur 1400A als Viereck 1402 illustriert.

[0644] Im nachsten Schritt wird die inverse Transformationsmatrix an einem Punkt angenahert, der in das
Quellbild abgebildet wird. In diesem Beispiel, das in Fig. 38B gezeigt wird, wird diese Anndherung durch ein
Parallelogramm 1404 dargestellt. Dieses Parallelogramm nahert die viereckige FuRspur an. Diese Annahe-
rung kann im allgemeinen durch Berechnen der Jacobi-Matrix fur die inverse geometriche Transformation ge-
funden werden. Obwohl wir das Beispiel fir Zwecke der Erlduterung vereinfacht haben, kann dasselbe Kon-
zept auf Falle erweitert werden, wo die inverse Transformation komplexer ist. Dies wird aus zusatzlichen De-
tails ersichtlich, die unten bereitgestellt werden.

[0645] Wieder mit Bezug auf das Beispiel in Fig. 38, kann die GréRRe der Rekonstruktions- und Resampling-
filter aus der Jacobi-Matrix abgeleitet werden. In Fig. 38B reprasentieren wir die Jacobi-Matrix als Parallelo-
gramm 1404.

[0646] Die Lange des Parallelogramms kann dazu verwendet werden, die Grol3e des Resamplindfilters zu be-
stimmen. In diesem Beispiel wird die Lange entlang der Richtung der maximalen Ausdehnung 1406 gemessen,
die wir als Richtung der Anisotropie bezeichnen. Die Hohe des Parallelogramms kann analog dazu verwendet
werden, um die GroRRe des Rekonstruktionsfilters zu bestimmen. Die Hohe ist die Richtung der minimalen Aus-
dehnung 1408.

[0647] Fig. 38C zeigt ein Rechteck 1406, das das Parallelogramm annahert. Die Abmessungen dieses
Rechtecks entsprechen der Hohe und Lange des Parallelogramms. Das Rechteck reprasentiert das ,balken-
formige" Filter, das zum Annahern der Anisotropie der tatsachlichen Filterfuspur verwendet wird.

[0648] Fig. 38D illustriert, wie dieses ,balkenférmige" Filter berechnet werden kann. Die FuRspur des Rekon-
struktionsfilters wird durch das Quadrat 1408 reprasentiert. In diesem Beispiel hat das Rekonstruktionsfilter
eine quadratische FuRRspur und ist daher ein im wesentlichen isotropes Filter. Um Werte entlang der Linie der
Anisotropie zu berechnen, die durch die Linie 1410 in Fig. 38D reprasentiert wird, werden Werte aus Texeln
(1400D) interpoliert, die die Linie der Anisotropie 1410 umgeben. Das Rekonstruktionsfilter ist daher ein inter-
polierendes Filter, wie oben bemerkt. Die Ausgabe dieses Filters wird dann auf ein eindimensionales Filter an-
gewendet, das das Resamplindfilter darstellt. Die Linie der Anisotropie 1410 reprasentiert die Orientierung des
Resamplingsfilters. Die Werte, die berechnet werden, wahrend das Rekonstruktionsfilter entlang der Linie der
Anisotropie bewegt wird, werden summiert, um den Pixelwert fir das Zielbild zu berechnen.

[0649] Die oben beschriebene Vorgehensweise kann in einer Reihe von Weisen implementiert werden. Sie
kann in Hardware und Software implementiert werden. Um die anisotrope Echtzeitfilterung zu unterstitzen,
wird das Verfahren vorzugsweise in Hardware implementiert. Eine Ausfiihrungsform dieses Ansatzes wird auf
dem Tiler-Chip implementiert.

[0650] Im Tiler, der in den Fig. 9A-C illustriert wird, wird die anisotrope Filterung im Scanumwandlungsblock
und in der Texturfilterengine unterstitzt. Der Scanumwandlungsblock berechnet Kontrollparameter fir die
Resampling- und Rekonstruktionsfilter, indem die Jacobi-Matrix der partiellen Ableitungen der inversen geo-
metrischen Transformation an einem Punkt im Quellbild gebildet wird. Die Jacobi-Matrix reprasentiert den line-
aren Teil der besten, lokal affinen Approximation an die inverse Transformation. Spezieller gesagt, ist sie der
Abschnitt erster Ordnung der Taylor-Reihe in zwei Dimensionen der inversen Transformation, die um den ge-
wiinschten Quellpunkt zentriert ist.

[0651] Der lineare Teil der affinen Transformation von Texturkoordinaten auf Bildschirmkoordinaten hat eine
2x2-Jacobi-Matrix J; die inverse Transformation von Bildschirmkoordinaten auf Texturkoordinaten hat eine Ja-
cobi-Matrix J™'. Die Lédngen der zwei Spaltenvektoren der Matrix J' sind die Langen der zwei Seiten des Par-
allelogramms fur ein Pixel der EinheitsgréRe. Die Komponenten der zwei Spaltenvektoren in der inversen Ja-
cobi-Matrix bestimmen die Langen der zwei Seiten des Parallelogramms.

[0652] Die Transformationen nehmen die Form von Attributkantengleichungen an, die der Scanumwand-
lungsblock bewertet, wahrend er jedes Grundelement scannt. Die folgende Gleichung ist typisch:

84/147

DE 696 36 599 T2 2007.08.23

Fs/w = As/wX + Bs/wy

wobei am Pixelort (x, y) gilt:
1) F,,, ist der Wert der Texturkoordinate (s), dividiert durch die homogene Koordinate (w).
2) A, ist der Wert des Gradienten der Texturkoordinate (s), dividiert durch die homogene Koordinate (w) in
Bezug auf die x-Koordinate.
3) B, ist der Wert des Gradienten der Texturkoordinate (s), dividiert durch die homogene Koordinate (w) in
Bezug auf die y-Koordinate. F, A und B sind alle relativ zum Scanstartpunkt des Grundelementes normali-
siert. Der Scanumwandlungsblock bewertet die Kantengleichungen fir 1/w, s/w und t/w.

s/w

[0653] Die Elemente der inversen Jacobi-Matrix ergeben die Langen der Seite und die Flache des Parallelo-
gramms. Die Flache des annahernden Rechtecks und die lange Seite des Rechtecks sind dasselbe: die kurze
Seite des Rechtecks ist die kurze Seite des Parallelogramms, multipliziert mit dem Sinus des Winkels zwischen
der x- und der y-Achse im (s, t)-Koordinatensystem.

[0654] Die Ableitungen fiir die inverse Jacobi-Matrix leiten sich direkt aus dem Fs, As und Bs der Kantenglei-
chungen an jeder Texturkoordinate (s, t) ab.

1 1
We—— —
l/W ‘F;/w
s = w(s/w) = wFy,, t=wt/w) = wFy,
a_szw(a(s/w)_s(a(l/w))) _ai:w(a(s/w)_s(a(l/w)n
ox Ox Ox Oy oy oy
=w(A,{w—tA,‘w) :W(Buw_th/w)

asY (oY
LéngeXQuadriert = (—) +(._..)
Ox Ox

oy

Fldche = Abs [(@j[z]—(éxgn =LxSsin@
ox J\ Oy oy \ ox

[0655] Nachdem die Jacobi-Matrix gefunden ist, sucht der Scanumwandlungsblock den langeren der zwei
Spaltenvektoren. Die Richtung dieses Vektors stellt die Richtung der Linie der maximalen Ausdehnung oder
Linie der Anisotropie dar. Das Verhaltnis der Lange dieses Spaltenvektors zur Lange des anderen wird als An-
isotropieverhaltnis bezeichnet. Die Lange des eindimensionalen anisotropen Filters wird aus diesem Verhaltnis
bestimmt. Die Lange des langeren Vektors dividiert durch das Anisotropieverhaltnis steuert die Breite des Re-
konstruktionsfilters.

2 2
LdangeYQuadriert = (—Zi) + (—a—t]

85/147

DE 696 36 599 T2 2007.08.23

[0656] Die langere Seite wird zur Hauptachse und kann dazu verwendet werden, die zu inkrementierende
Bildschirmkoordinate zu bestimmen, wenn man schrittweise (Takt) in Texturkoordinaten fortschreitet. Sie kann
auch dazu verwendet werden, die Grofie der Inkremente zu bestimmen.

// DsDx ist die partielle Ableitung von s nach x usw.

/1 (DsDc, DtDc) sind Schritte in (s, t) entlang der Anisotropieachse.

if (LengthXSquared >= LengthY Squared) {
MajorSquared = LengthXSquared
InverseMajor = 1./sgrt(MajorSquared)

DsDc = DsDx * InverseMajor
DtDc = DtDx * InverseMajor I

else {

MajorSquared = LengthY Squared
InverseMajor = 1./sqrt(Majorsquared)
DsDc = DsDy * InverseMajor

DtDc = DtDy * InverseMajor

}

[0657] Die Schrittgdfien DsDc und DtDc sind Grundeingaben in die Texturfilterengine, die das Abtasten und
Filtern ausfuhrt. Diese Schritte erzeugen eine Orientierung, die um (héchstens) sieben Grad ungenau ist, was
im Fall eines gleichseitigen Parallelogramms auftritt.

[0658] In dieser Implementierung ndhert die Lange des kirzeren Vektors normalerweise die Breite des Re-
konstruktionsfilters an, wenn nicht das Anisotropieverhaltnis eine vorgegebene Schranke Ubersteigt. Wenn die
Schranke Uberstiegen wird, dann wird das Anisotropieverhéaltnis in der Rechnung durch diese vorgegebene
Schranke ersetzt. Durch das Begenzen des Verhaltnisses in dieser Weise wird verhindert, dass das Filter mehr
als eine vorgegebene Zahl von Texelpunkten zur Berechnung eines Wertes verwendet. Damit setzt die Schran-
ke fur das Verhaltnis eine Grenze daflr, wie lange das Rekonstruktionsfilter bendtigt, um einen Ausgabewert
zu berechnen.

[0659] Ein weiterer einschrankender Fall tritt auf, wenn die Lange eines der Vektoren kleiner als eins ist. In
diesem Fall wird die tatsachliche Lange des Vektors durch die Lange von eins ersetzt. Dies stellt sicher, dass
die Filterlangen niemals fur die Ausfihrung der Interpolation zu kurz sind.

[0660] Nachdem der Scanumwandlungsblock die Kontrollparameter fir die Filter berechnet hat, berechnet er
dann einen Pixelwert. Das eindimensionale digitale Filter berechnet ein gewichtetes Mittel der Ausgabe aus
dem interpolierenden Filter. Das interpolierende Filter berechnet diese Ausgabe durch Interpolieren der Texel-
daten aus dem Quellbild, das neben der Linie der Anisotropie liegt.

[0661] Die Grole des interpolierenden Filters kann so eingestellt werden, dass sie die wahre Fu3spurbreite
annahert, die in einer Richtung senkrecht zu der der maximalen Ausdehnung gemessen wird. Wenn die Ful3-
spur grof} ist, was in Bereichen des Bildes auftritt, die die Transformation schrumpft, missen viele Punkte des
Quellbildes mit den Gewichtungskoeffizienten des Filters multipliziert werden, um einen einzelnen Ausgabe-
punkt zu erzeugen, was zu einer sehr langsamen oder kostspieligen Implementierung fuhrt.

86/147

DE 696 36 599 T2 2007.08.23

[0662] Wie oben vorgestellt, reduzieren existierende isotrope Filtersysteme die Berechnungszeit unter Ver-
wendung der MIP-Abbildung. MIP-Abbildung bezeichnet das Bilden einer Bildpyramide, die auf dem Quellbild
beruht, und die anschlieRende Verwendung der Bilder in dieser Pyramide, um die beste Anpassung flr ein iso-
tropes Filter in einem Quellbild zu finden. Jede Ebene der Pyramide ist in der Abtastdichte im Vergleich zu der
darunterliegenden um einen Faktor von zwei in jeder Dimension reduziert. Der Boden der Pyramide ist das
originale Quellbild. Durch das Interpolieren eines Bildes mit reduzierter Abtastdichte wird ein ahnlicher Effekt
wie das Filtern des Originalbildes mit einem isotropen Filter erzeugt, dessen Ful3spur relativ zu der des Inter-
polators um das Verhaltnis der urspriinglichen Abtastdichte zur reduzierten Dichte vergrofiert ist. Daher kann
die Potenz von zwei VergréRerungen der Fulspur durch Auswahlen der richtigen Ebene der Pyramide zum
Interpolieren erreicht werden. Jedes VergréRerungsverhaltnis kann durch Mischen der Ergebnisse von Inter-
polationen der zwei Pyramidenebenen erhalten werden, die das gewtinschte Verhaltnis einschlief3en.

[0663] In einer Ausfihrungsform kann die GréRRe des isotropen Filters durch Verwendung eines MIP-Abbil-
dungsansatzes modifiziert werden, um sie besser an die Lange der minimalen Ausdehnung anzupassen. Die
Grole des isotropen Filters, die aus der Analyse der Jacobi-Matrix bestimmt wird, kann zum Auswahlen der
begrenzenden Pyramidenebenen und des Mischungsfaktors verwendet werden. In einer Implementierung ist
die Basispyramidenebene der ganzzahlige Teil von log Basis 2 der FiltergréRe, und der Mischungsfaktor ist der
Bruchteil.

[0664] Ein spezifisches Beispiel hilft bei der Erlauterung der Operation der speziellen Implementierung, die
oben beschrieben wird. Wenn die gewiinschte isotrope Grofie 3 ist, dann ist log, 3 gleich 1,585. Der ganzzah-
lige Teil des Ergebnisses ist 1, was die Ebene 1 und 2 mit Dichte Reduzierungen von 2 bzw. 4 auswahlt. Ebene
0 ist das originale Quellbild ohne Reduzierung. Der Mischungsfaktor ist 0,585.

[0665] In einer Implementierung verzdgert die Texturfilterengine das Mischen. Zuerst wendet die Texturfilter-
engine 1D-Filter mit einer Lange an, die proportional zum Anisotropieverhaltnis, auf den gewlinschten Punkt
in jeder Ebene zentriert, ist. Sie mischt dann die Ausgabe von jeder Ebene.

[0666] In einer alternativen Implementierung schreitet die Texturfilterengine entlang der Linie der Anisotropie
fort und fihrt eine dreilineare Interpolation an diskreten Samples entlang dieser Linie aus. Die Texturfilterengi-
ne wendet dann das eindimensionale Filter auf das Ergebnis der dreilinearen Interpolation bei jedem Sample
an.

[0667] Zusatzlich zur Steuerung der GréRRe des interpolierenden Filters kann auch die Grofle des Resamp-
lingfilters gesteuert werden. In einer Implementierung verwendet die Texturfilterengine Tabellen von Koeffizi-
enten fur 1D-Resamplindfilter verschiedener GréRen und Mischungen zwischen ihnen, um ein Filter einer Gro-
Re zwischen den in der Tabelle angegebenen zu erzeugen. Eine besonders nutzliche Implementierung fir
Hochgeschwindigkeits-Hardware besteht darin, die Filterlangen als Potenzen von zwei zu wahlen und den Fil-
terimpulsprofilen eine dreieckige oder trapezférmige Form zu geben. Die individuellen Filter haben dann sehr
einfache Koeffizienten und der Aufwand fiir die Multiplikation wird auf ein paar Additionen und Verschiebungen
in der Hardware reduziert.

[0668] Das Folgende ist eine Tabelle von Koeffizienten fir diese Filter fir die ersten vier Potenzen von 2:

0 1 /1
1 1 2 1 /4
2 1 3 4 3 2 i /16
3 1 2 3 4 5 6 7 8 7 6 5 4 3 2 1 /64
4 1 1 i 1 1 1 1 1 1 1 1 1 1 1 1 /15

[0669] In diesem Beispiel wird der log Basis 2 des Anisotropieverhaltnisses verwendet, um eine Ebene und
einen Mischungsfaktor auszuwahlen. Wenn die Ebene Uber 4 hinausgeht, dann verwendet die Texturfilteren-
gine das letzte Filter und nimmt keine Mischung vor. In diesem Beispiel haben alle Filter den Einheitsgain, was
bedeutet, dass sich alle ihre Koeffizienten zu eins addieren. Multiplikationen mit 1, 2, 4 und 8 kénnen durch
Verschiebungsoperationen ausgefihrt werden.

[0670] Multiplikationen mit 3, 5 und 6 kdnnen durch eine einfache Addition plus einer Verschiebungsoperation

87/147

DE 696 36 599 T2 2007.08.23

ausgefihrt werden. Und schlieRlich kdnnen Multiplikationen mit 7 durch eine einzelne Subtraktion und Ver-
schiebungsoperationen ausgeflihrt werden. Die Divisionen durch die Potenzen von zwei sind nur Verschiebun-
gen. Die Division durch 15 kann sehr gut durch die Multiplikation mit 1,00010001 Basis 2, gefolgt von einer
Verschiebung um 4 Stellen (Division durch 16) angenahert werden. Die Multiplikation sind nur zwei Additionen.

[0671] Der Ansatz, der oben beschrieben wird, ermdglich zwei Freiheitsgrade in der Steuerung des zusam-
mengesetzten Filters. In der Ausflihrungsform, die oben beschrieben wird, sind die Freiheitsgrade die Grofien
der Filter in der Richtung minimaler und maximaler Ausdehnung. Dieser Ansatz erzeugt ein Bild mit viel weni-
ger Aliasing und Unscharfe ohne den Aufwand der Berechnung der wahren Fuflispur an jedem Punkt, die das
Ergebnis einer stark nichtlinearen Abbildung sein kann. Dieser Ansatz nahert ein kontinuierliches Filter an, das
das tatsachliche FuRspurfilter entlang der Linie der Anisotropie abtastet. Es erreicht eine viel bessere Anpas-
sung an die tatsachliche Fulispur als ein Kreis oder Quadrat, weil es einen ,balkenférmigen” Filter entlang der
Linie der Anisotropie ergibt. Wir haben dieses Verfahren in einem Echtzeit-Grafikrenderingsystem implemen-
tiert. Dieses Verfahren unterstitzt also die qualitativ hochwertige Texturabbildung mit anisotroper Filterung,
wahrend trotzdem gleichzeitig Echtzeitraten erreicht werden, d.h. Berechnung eines neuen Teilbildes von Bild-
daten bei einer Rate grofier als 10 Hz und speziell bei Auffrischungsraten des Anzeigegerates (z.B. 75 Hz).

[0672] Fig. 39 ist ein Schema, das eine Implementierung der Texturfilterengine (401, Fig. 9B) illustriert. Die
Texturfilterengine liest Gruppen von Texturreferenzdaten aus einer Pixelschlange (Texturreferenzdatenschlan-
ge 399 in Fig. 9B) und berechnet Alpha- und Farbwerte (Alpha und RGB-Farbfaktoren) oder Schattenkoeffizi-
enten fir diese Gruppen. Diese Implementierung unterstiitzt sowohl Textur- als auch Schattenfilterung. Fur
Texturabbildungsoperationen berechnet die Texturfilterengine Texturfarben und Alpha und filtert die Texturfar-
ben, um Alpha- und Farbfaktoren zu berechnen. Fir Schattierungsoperationen fiihrt die Texturfilterengine Tie-
fenvergleiche aus und filtert die resultierenden Werte, um Schattendampfungskoeffizienten (s) zu berechnen.

[0673] Die Pixelschlange empfangt Texturreferenzdaten von einem Rastergenerator (wie zum Beispiel dem
Scanumwandlungsblock 395 in Fig. 9B) und fungiert als FIFO-Puffer fir die Texturfilterengine 401. Die ,Abtas-
tung gultig" Daten geben an, welche Samples oder Abtastungen in einem Satz von Textur- oder Schattenab-
bildungselementen, die aus dem Texturcache abgerufen wurden, fur die aktuelle Filteroperation glltig sind.

[0674] Fur eine Texturabbildungsoperation umfassen die Texturreferenzdaten die Koordinaten eines Pixelor-
tes, derin die Textur (s, t) abgebildet wird. Zur Unterstiitzung der dreilinearen MIP-Abbildung umfassen die Ein-
gaben die (s, t)-Koordinaten fir die nachstliegenden MIP-Abbildungsebenen (hi, lo) und die Detailebene
(LOD). Die ,Akkumulationskala"-Daten werden verwendet, um die Gewichtungsfaktoren zu steuern, die auf die
Ausgabe der Farbkomponenteninterpolatoren angewendet werden. Die ,Erweiterungskontroll"-Daten sind Da-
tenbits, die die Texturerweiterungsmodi steuern. Die Texturerweiterungsmodi weisen die Texturfilterengine an,
entweder eine Klemm-, Wickel- oder Reflektionsoperation auszufiihren, wenn eine Texturanforderung sich au-
Rerhalb des Texturabbildungsbereichs befindet.

[0675] Fur Schattierungsoperationen umfassen die Eingaben einen Abtastindex, (s, t)-Koordinaten eines Pi-
xelortes, der in die Schattenabbildung abgebildet wird, und ein Beta, das die Tiefe des geometrischen Grund-
elementes von der Lichtquelle fiir einen gegebenen Pixelort reprasentiert. Der Abtastindex betrifft die spezielle
Weise, in der das Schattenfilter auf Schattenabbildungselemente oder ,Abtastungen” einwirkt. In dieser spezi-
ellen Implementierung arbeitet die Texturfilterengine mit 8 Abtastungen pro Taktzyklus. Im Fall der Schattenfil-
terung entsprechen diese Abtastungen einem 4x2-Gitter. Das Schattenfilter arbeitet zum Beispiel mit insge-
samt 2 Satzen von Abtastungen flir den 4x4-Modus (4x2 + 4x2 = 4x4) und 8 Satzen fir den 8x8-Modus. Im
Fall des 4x4-Modus wendet das Schattenfilter ein 3x3-Filter vier Mal an, jeweils auf die oberen linken, oberen
rechten, unteren linken und unteren rechten 3x3-Blécke in der insgesamt 4x4-Fuflspur. Im ersten Taktzyklus
verarbeitet es das obere 4x2-Gitter, und im zweiten Takt verarbeitet es das untere 4x2-Gitter im 4x4-Block.
Der Abtastindex ist ein Index, der zum Identifizieren des Satzes von 8 Abtastungen verwendet wird, die gerade
verarbeitet werden. Der Abtastindex durchlauft 2 Taktzyklen fur den 4x4-Fall und 8 Taktzyklen fir den 8x8-Fall
und stellt fest, welche 4x2-Teilmenge gerade verarbeitet wird.

[0676] Wie in Fig. 41 gezeigt, umfasst die Texturfilterengine einen Keygenerator 1310, Bruchteilkontrolle
1312, Farbkomponenteninterpolator 1314, Schattenfilterakkumulator 1316 und Akkumulator und Postprozes-
sor 1318.

[0677] Bei einer Texturabbildungsoperation liest der Keygenerator 1310 die (s, t)-Koordinaten und LOD und

erzeugt die Cache-Keys, um die entsprechenden Texturdaten aus dem Texturcache abzurufen. Der Texturca-
che gibt Alpha und die RGB-Komponenten als Reaktion auf die Texturanforderungen zurtick. Die Bruchteilkon-

88/147

DE 696 36 599 T2 2007.08.23

trolle 1312 empfangt die (s, t)-Koordinaten als Eingabe und steuert die Operation der bilinearen und trilinearen
Interpolatoren im Farbkomponenteninterpolator 1314. Der Farbkomponenteninterpolator 1314 interpoliert die
Texelabtastwerte, um interpoliertes Alpha und RGB-Komponenten zu berechnen. Der Akkumulator und Post-
prozessor 1318 skaliert dann die Alpha- und RGB-Komponenten, akkumuliert die skalierten Komponenten und
gibt Alpha- und Farbfaktoren aus, die einem Pixelort entsprechen, der gerade verarbeitet wird. Diese Alpha-
und Farbfaktoren sind Farb- und Alphawerte, die in die Pixelengine als Eingabe fiir den Texturmodulationspro-
zess eingegeben werden.

[0678] Beider anisotropen Texturabbildunglaufen die Farbkomponenteninterpolatoren 1314 entlang der Linie
der Anisotropie und fihren eine dreilineare Interpolation bei jedem Schritt aus. Der Akkumulator 1318 fungiert
als eindimensionales Filter, das Alpha und die Farbkomponenten skaliert und dann die skalierten Komponen-
ten akkumuliert. In einer speziellen Implementierung skaliert der Akkumulator 1318 Alpha und die Farbkompo-
nenten unter Verwendung der trapezférmigen oder Dreiecksfilterung auf der Basis des Anisotropieverhaltnis-
ses. In jedem Fall skaliert der Akkumulator Komponenten an den entfernten Randern des Resamplindfilters,
um eine Dampfung (roll off) an den Filterkanten anzunahern. Um eine trapezférmige Filterung zu erreichen,
entspricht der Skalenfaktor einer linearen Dampfung an den Filterkanten und ist bei Schritten zwischen den
Filterkanten konstant.

[0679] In einer speziellen Implementierung werden die Skalenfaktoren fur Schritte entlang der Linie der Ani-
sotropie folgendermalfien berechnet. Fir ein Anisotropieverhaltnis von 1:1 bis 2:1 wendet der Akkumulator ei-
nen Gewichtungsfaktor von 0,5 bei jedem Schritt das anisotropen Walkers an. Fir ein Anisotropieverhaltnis
von 2:1 und dartiber gewichtet der Akkumulator Komponenten mit 1,0/Anisotropie fiir Schritte n < (Anisotropie
—1)/2, und gewichtet Komponenten mit 0,5(Anisotropie — 2n)/Anisotropie fir n grof3er als oder gleich (Aniso-
tropie — 1)/2. Das Anisotropieverhaltnis in diesem speziellen Beispiel ist das Verhaltnis der langen zur kurzen
Seite des bestmoglich angepassten Rechtecks fiur eine inverse Jacobi-Matrix. Die inverse Jacobi-Matrix ist
eine Matrix von partiellen Ableitungen der geometrischen Transformation aus Betrachtungsraumkoordinaten
in Texturkoordinaten (d.h. von (x, y)- in (s, t)-Koordinaten). Die Linie der Anisotropie ist eine Linie durch die (s,
t)-Koordinaten in Richtung des langeren Spaltenvektors der inversen Jacobi-Matrix.

[0680] Fur Schattierungsoperationen liest der Keygenerator 1310 die (s, t)-Koordinaten des Pixelorts, der in
die Schattenabbildung abgebildet wird, und erzeugt Cache-Keys. Der Texturcache gibt die Schattenabbil-
dungselemente (Shadels) an den Schattenfilterakkumulator 1316 zuriick. Das Schattenfilter empfangt den
Schattenindex und Beta als Eingabe und vergleicht die Tiefe der aktuellen Gruppe der Pixeldaten im hellen
Raum mit den Tiefenwerten in der FilterfulRspur, um eine Schattenmaske zu erzeugen. Der Schattenfilterakku-
mulator summiert Elemente in der Schattenmaske und teilt die Summe durch die Zahl der Abtastwerte. Bei
dieser Implementierung erreicht die Texturfilterengine das glatte Abfallen an den Kanten der FilterfuRspur
durch Anwenden eines trapezférmigen Filters auf das Ergebnis des Tiefenvergheichsschritts. Um das trapez-
formige Filter zu implementieren, berechnet das Schattenakkumulationsfilter vier vorlaufige Schattenkoeffizi-
enten durch viermaliges Anwenden eines 3x3- oder 7x7-Kastenfilters auf eine 4x4- bzw. 8x8-FilterfuRspur und
leitet die vier vorlaufigen Koeffzienten an einen der Farbinterpolatoren 1314 weiter. Dieser Farbinterpolator
1314 flhrt eine bilineare Interpolation an den vorlaufigen Koeffizienten aus, um einen endgiiltigen Schattenko-
effizienten zu berechnen.

[0681] Wie oben vorgestellt, liest der Keygenerator 1310 (s, t)-Koordinaten aus der Pixelschlange und er-
zeugt Cache-Keys, um Texturdaten aus dem Texturcache abzurufen. Fig. 40 ist ein Schema, das den Keyge-
nerator detaillierter illustriert. Auf der Grundlage der (s, t)-Koordinaten in den Hi- und Lo-MIP-Abbildungen (den
zwei nachsten MIP-Traps) berechnet der Keygenerator die Texturabtastorte in den Hi- und Lo-MIP-Abbildun-
gen (1340). Der Keygenerator berechnet dann die Cache-Keys aus diesen Abtastwerten (1342). Der Keyge-
nerator Ubertragt die Cache-Keys, (s, t)-Koordinaten und LOD fir die Hi- und Lo-MIP-Abbildungsebenen auf
den Texturcache, der die angeforderten Texturabtastwerte zuriickgibt. Wenn natirlich nur eine Texturabbil-
dungsebene der Details verwendet wird, erzeugt der Keygenerator Keys nur fir eine Texturabbildung.

[0682] Die Bruchteilkontrolle 1312 in Fig. 39 steuert die Interpolation zwischen den Abtastungen in einer Tex-
tur- oder Schattenabbildung und zwischen MIP-Abbildungsebenen fir die trilineare Interpolation. Zur Unter-
stutzung der bilinearen Interpolation steuert die Bruchteilkontrolle das Gewichten zwischen den Abtastungen
in einer Textur- oder Schattenabbildung. Zur Unterstlitzung der trilinearen Interpolation weist die Bruchteilkon-
trolle die Interpolatoren an, zwischen den vier nachsten Abtastwerten auf einen Punkt zu interpolieren, der in
die zwei nachstgelegenen MIP-Abbildungsebenen (bilineare Interpolation) abgebildet wird, und weist dann ei-
nen linearen Interpolator an, das Ergebnis aus den zwei MIP-Abbildungsebenen zu mischen. Die Bruchteilkon-
trolle empfangt die LOD und (s, t)-Koordinaten fir die Hi- und Lo-MIP-Abbildungsebenen als Eingabe und steu-

89/147

DE 696 36 599 T2 2007.08.23

ert die Interpolation zwischen Abtastwerten auf jeder MIP-Ebene und zwischen MIP-Abbildungsebenen.

[0683] Der Farbkomponenteninterpolator 1314 umfasst Interpolatoren fiir Alpha und RGB-Farbkomponenten.
Fig. 41 ist ein Schema, das einen der vier Interpolatoren detaillierter illustriert. Dieser Interpolator handhabt die
Farbkomponenteninterpolation fiir eine Komponente und fiihrt eine bilineare Interpolation an den Schattenko-
effizienten aus. Die anderen Farbkomponenteninterpolatoren handhaben nur eine Farbkomponente.

[0684] Der Farbkomponenteninterpolator empfangt Texel oder Schattenabbildungselemente aus dem Tex-
turcache und wendet sie auf eine Bank von Multiplexern 1350 an. Wenn sie in die Bank der Multiplexer 1350
eingegeben werden, geben die Abtastwert-gtiltigen Daten an, welche der Abtastwerte giiltig sind, d.h. diejeni-
gen, die fir die aktuelle Textur- oder Schattierungsoperation verwendet werden sollten. Auf der Basis der Ab-
tastwert-glltigen Steuersignale wahlen die Multiplexer entweder den eingehenden Abtastwert oder eine Tex-
turhintergrundfarbe 1352 aus. Fir Schattierungsarbeiten leitet der Farbkomponenteninterpolator 1314 Schat-
tenelemente an den Schattenfilterakkumulator 1316 weiter. Die drei Farbkanale werden dazu verwendet, ein
einzelnes 24-Bit breites Schattenabbildungselement zu bilden, und der Alphakanal wird bei Schattierungsope-
rationen ignoriert. Fir Texturabbildungsoperationen Ubertragt der Farbkomponenteninterpolator Textabtast-
werte in die Stufen der linearen Interpolatoren 1354, 1365 und 1358.

[0685] Bei der trilinearen Interpolation verwendet der Farbkomponenteninterpolator drei Stufen von linearen
Interpolatoren, zwei zum Interpolieren zwischen Abtastwerten auf jeder MIP-Abbildungsebene (1354 und
1356) und eine weitere zum Mischen der Ergebnisse aus jeder MIP-Ebene (1358). Der Farbkomponentenin-
terpolator flihrt eine bilineare Interpolation aus, um Schattenkoeffizienten zu kombinieren, die aus 4 Filterful3-
spuren berechnet wurden. Wie in Fig. 43 gezeigt, verwendet er die letzten zwei Stufen (1356 und 1358), um
diese bilineare Interpolation auszufiihren. Eine zweite Bank von Multiplexern 1360 wahlt zwischen vier Schat-
tenkoeffizienten und der Ausgabe der ersten Stufe von linearen Interpolatoren 1354 aus. Sowohl bei der Tex-
turabbildung als auch bei Schattierungsoperationen ibertragt der Farbkomponenteninterpolator die Ausgabe
der Interpolatorstufen auf den Akkumulator und Postprozessor 1318.

[0686] Der Schattenfilterakkumulator 1316 empfangt einen Abtastwerteindex und Lichttiefenwert (Beta) aus
der Pixelschlange, vergleicht den Lichttiefenwert mit den Schattenabbildungselementen, die vom Texturcache
zurickgegeben werden, um Schattenmasken zu erzeugen, und filtert die Schattenmasken, um vorlaufige
Schattenkoeffizienten zu berechnen. Fig. 44 ist ein Schema, das den Schattenfilterakkumulator detaillierter il-
lustriert. Tiefenkomparatoren im Schattenfilterakkumulator vergleichen die Tiefe der Schattenelemente in der
FilterfuBspur und erzeugen eine Schattenmaske. In diesem speziellen Fall betragt die Schattenmaske 8 Bit mit
booleschen Werten, was einem 4x2-Abschnitt der Filterfuspur entspricht.

[0687] Die FuRspurkontrolle 1372 wahlt den aktuellen 4x2-Abschnitt der gesamten FulRspur auf der Basis des
Abtastindexwertes aus der Pixelschlange aus. Die FuRspurkontrolle Ubertragt eine Fulspurmaske auf jeden
der vier Schattenbeitragsblocke auf der Basis des Taktzyklus und des Filtermodus (2x2, 4x4 oder 8x8). Die
FuRspurmaske zeigt an, welche der 8 Schattenmaskenelemente bei dem aktuellen Taktzyklus fur jedes der
vier Kastenfilter in den Modi 4x4 und 8x8 giiltig sind. Im Modus 2x2 gibt der Schattenfilterakkumulator vier boo-
lesche Werte aus, die anzeigen, ob jeder der vier nachstgelegenen Abtastwerte im Schatten ist oder nicht.

[0688] Der Schattenfilterakkumulator wendet vier Kastenfilter (z.B. 3x3 oder 7x7) auf die Abtastwerte in der
FilterfuBspur an. Jeder der Schattenbeitragsblécke kombiniert die FuRspurmaske und die Schattenmaske, um
festzustellen, welche Elemente der Schattenmaske fur den aktuellen Taktzyklus gultig sind, und summiert dann
die gultigen Elemente. Nach dem Akkumulieren der gultigen Elemente in der Schattenmaske fir die ganze Fil-
terfulRspur teilen die Schattenbeitragsblocke die Summe durch die Zahl der Abtastwerte, um vorlaufige Schat-
tenkoeffizienten zu berechnen, die in eine bilineare Interpolationsstufe im Farbinterpolator Gibertragen werden.
Dieser Farbinterpolator interpoliert dann zwischen den vorlaufigen Koeffizienten, um einen endgiiltigen Schat-
tenkoeffizienten zu berechnen.

[0689] Der Akkumulator und Postprozessor 1318 empfangt Alpha- und Farbkomponenten aus dem Farbkom-
ponenteninterpolator 1314 und berechnet Farb- und Alphafaktoren fiir jede Gruppe der Texturreferenzdaten.
Fir Schattierungsoperationen verwendet die Texturfilterengine einen Kanal (Alpha oder RGB), um einen
Schattendampfungskoeffizienten zu berechnen. Die Schattenfilterungslogik kann auch separat implementiert
werden. Fig. 43 ist ein Schema, das den Akkumulator und Postprozessor detaillierter illustriert. Wie gezeigt,
hat jede Farbkomponente (Alpha und RGB) einen Skalierer und Akkumulator. Der Skalierer und Akkumulator
1380 fir jede Komponente empfangt die Akkumulationsskala und eine Farbkomponente als Eingabe und ska-
liert als Reaktion die Farbkomponente und addiert sie zu einem akkumulierten Komponentenwert im Kompo-

90/147

DE 696 36 599 T2 2007.08.23

nentensummenblock 1382. Bei der Anisotropiefilterung zum Beispiel wichten die Skalier- und Akkumulations-
blécke 1380 die Ausgabe des Rekonstruktionsfilters (trilinearer Interpolator), wahrend die Texturfilterengine die
Linie der Anisotropie ablauft. Nach dem letzten Schritt geben die Skalierer und Akkumulatoren fir Alpha und
RGB-Komponenten die endgultigen Farbkomponentenfaktoren aus.

[0690] Fur Schattierungsarbeiten umgeht der Skalier- und Akkumulationsblock die Multiplikationsoperation,
addiert aber einen Umgebungsversatz hinzu. Der Umgebungsversatz stellt sicher, dass selbst Objekte, die
vollkommen im Schatten liegen, sichtbar sind. Ein Schattenkoeffizient von zum Beispiel 1 bedeutet vollstandig
beleuchtet, ein Schattenkoeffizient von 0 bedeutet vollstandig im Schatten. Wenn Farben mit einem Koeffizi-
enten von null multipliziert werden wirden, ware das Objekt an diesem Pixelort nicht sichtbar. Daher wird ein
Versatz addiert und die Schattenkoeffizienten werden auf 1 festgehalten, so dass die versetzten Schattenko-
effizienten vom Versatzwert bis 1 reichen.

[0691] Der Schattenpostprozessor 1384 erledigt die Vervielfaltigung der skalaren Schattendampfung ,s' fir
alle drei Farbkanale und (bedingungsweise) fur den Alphakanal. Es gibt auch eine bedingte Erganzung (s = 1
— s) der Schattendampfung, um ein Schattenbild zu berechnen. Ein Schattenbild ist ein Feld von Schattenko-
effizienten oder ein Feld der Komplemente von Schattenkoeffizienten, die zum Schattieren eines Gsprites ver-
wendet werden kénnen.

[0692] Zum Schluss wahlt die Multiplexerstufe 1386 entweder die Schattenkoeffizienten flr Schattierungso-
perationen oder RGB- und Alphakomponenten fir Texturabbildungsoperationen aus. Zusammengefasst, die
Texturfilterengine 401 fiihrt sowohl Schattierungs- als auch Texturierungsoperationen aus. Sie leitet das Ergeb-
nis der Texturabbildungsoperationen an eine Texturmodulationsstufe. Texturmodulation umfasst normalerwei-
se das Multiplizieren der RGB-Farbwerte aus dem Texturfilter mit einer interpolierten Farbe oder Farbwerten,
die im Scanumwandlungsblock berechnet wurden. Neben grafischen Objekten mit Lichtdurchlassigkeit kann
die Texturmodulation auch das Multiplizieren des Alphawerts aus dem Texturfilter mit einem interpolierten Al-
phawert aus dem Scanumwandlungsblock umfassen. Je nach der Implementierung kann die Texturmodulation
in der Texturfilterengine (Element 401 in Eig. 9B) oder der Pixelengine (Element 406 in Eig. 9b) implementiert
werden. Sie kann auch im Scanumwandlungsblock (Element 394 in Fig. 9A oder Element 397 in Fig. 9C) im-
plementiert werden. In einer Implementierung kombiniert die Texturfilterengine 401 einen interpolierten Wert
mit dem gefilterten Wert, um einen zusammengesetzten Wert zu berechnen. Die Pixelengine 406 stellt dann
fest, ob ein zusammengesetzter Wert gespeichert oder mit einer entsprechenden RGB-Komponente oder ei-
ner Alphakomponente, die in den Pixel- oder Fragmentpuffern gespeichert ist, fir einen entsprechenden Pi-
xelort kombiniert werden soll.

[0693] Im Fall von Schattierungsoperationen kénnen die Schattenkoeffizienten auf die RGB- und Alphawerte
an entsprechenden Pixelorten in den Pixel- oder Fragmentpuffern angewendet oder auf interpolierte RGB-
oder Alphawerte, die wahrend des aktuellen Durchlaufs erzeugt und in einer Schlange gepuffert werden, an-
gewendet werden. Wenn zum Beispiel ein Objekt keine Textur hat, die mit ihm verknupft ist, kann der Textur-
modulator in der Texturfilterengine 401 interpolierte und unaufgeléste RGB- und Alphawerte, die das beleuch-
tete Bild reprasentieren und in der Texturreferenzdatenschlange 391 (Eig. 9B) gespeichert sind, mit den Schat-
tendampfungskoeffizienten aus dem Akkumulator und Postprozessor multiplizieren.

[0694] Wir haben verschiedene Aspekte eines Bildverarbeitungssystems, seine Architektur und damit ver-
bundene Verfahren mit Bezug auf mehrere Ausfiihrungsformen beschrieben. Obwohl wir mehrere Ausflih-
rungsformen detailliert beschrieben haben, ist es nicht unsere Absicht, unsere Erfindung auf diese speziellen
Ausfuhrungsformen zu beschranken. Unsere neuartige Architektur kann zum Beispiel auf eine Reihe von
Hardware-Implementierungen angewendet werden, einschlieRlich von und ohne Einschrankung auf Compu-
tersysteme, die von tragbaren Geraten bis zu Arbeitsplatzrechnern reichen, Spielestationen, Settopboxen,
Grafikverarbeitungshardware, Grafikverarbeitungssoftware und Videobearbeitungsgerate. Abwandlungen un-
serer Systeme und Verfahren kdnnen in Hardware oder Software oder einer Kombination beider implementiert
werden.

[0695] In Anbetracht der vielen moglichen Ausfihrungsformen, in die die Prinzipien unserer Erfindung umge-
setzt werden kdnnen, betonen wir, dass die detailliert dargestellten Ausfiihrungsformen, die oben beschrieben
werden, nur einen erlauternden Charakter besitzen und nicht als Einschrankung fir den Geltungsbereich un-
serer Erfindung angesehen werden durfen. Vielmehr beanspruchen wir, dass alle solche Ausfilihrungsformen,
die kommen moégen, innerhalb des Geltungsbereichs der folgenden Anspriche unserer Erfindung liegen.

91/147

DE 696 36 599 T2 2007.08.23

Patentanspriiche

1. Verfahren zum Erzeugen von Bildern zur Anzeige in einem Vollbild oder einem anderen Betrachtungs-
raum einer physikalischen Ausgabevorrichtung, wobei das Verfahren die Schritte umfaft:
Identifizieren eines oder mehrerer potentiell sichtbarer Objekte in einer Szene, wobei jedes von dem einen oder
den mehreren potentiell sichtbaren Objekten mehrere geometrische Grundelemente aufweist und entspre-
chende zweidimensionale Bereiche des Betrachtungsraums umfaf3t, um das eine oder die mehreren potentiell
sichtbaren Bilder darin zu rendern;
Aufteilen jedes zweidimensionalen Bereichs unter mehreren Bildabschnitten oder Stlicken;
Aufteilen der geometrischen Grundelemente des einen oder der mehreren potentiell sichtbaren Objekte unter
den mehreren Bildabschnitten oder Stiicken durch Zuweisen geometrischer Grundelemente des Objektes zu
Stlicken des entsprechenden zweidimensionalen Bereichs;
Serielles Rendern des einen oder der mehreren Objekte durch serielles Rendern der Stiicke des entsprechen-
den zweidimensionalen Bereichs, wobei jedes entsprechende Stiick durch Rendern der dem Stlick zugeord-
neten geometrischen Grundelemente gerendert wird;
Speichern der gerenderten Stlicke fiir Objekte in der Szene in einem wahlfrei zuganglichen Stick-Format;
Abrufen der gerenderten Stlicke fiir die Objekte im Stlick-Format;
Zusammensetzen von Pixeln aus den gerenderten Stlicken der Objekte, um ein Anzeigebild zu berechnen,
das die Objekte in der Szene wiedergibt; und
Wiederholen der obigen Schritte zur Verarbeitung und Anzeige nachfolgender Anzeigebilder.

2. Verfahren nach Anspruch 1, wobei die Objektgeometrie fir jedes Stiick der Szene seriell gerendert wird,
um das gerenderte Bild zu produzieren.

3. Verfahren nach Anspruch 1, wobei die Objektgeometrie fir die zumindest zwei Stlicke in einen gemein-
samen Tiefenpuffer gerendert wird.

4. Verfahren nach einem der Anspriche 1 bis 3, wobei die Szene mehrere Objekte umfal3t und der Schritt
des Sortierens die Objektgeometrie unter mehreren Bildabschnitten oder Stiicken den Schritt eines Zuweisens
von geometrischen Grundelementen jedes der mehreren Objekte zu Stiicken entsprechender zweidimensio-
naler Bildbereiche umfalt.

5. Verfahren nach Anspruch 4, wobei der Schritt des seriellen Renderns der zumindest zwei Stlicke um-
falt: serielles Rendern der mehreren Objekte, wobei das serielle Rendern jedes der mehreren Objekte ein se-
rielles Rendern der geometrischen Grundelemente der mehreren Objekte in die Stiicke der entsprechenden
zweidimensionalen Bildbereiche umfal’t, um getrennte Bildschichten fiir jeden der zweidimensionalen Bildbe-
reiche zu erzeugen.

6. Verfahren nach Anspruch 1, wobei die Stlicke sich an variablen und adressierbaren Abschnitten des Be-
trachtungsraums befinden.

7. Verfahren nach Anspruch 1, wobei der Aufteilungsschritt den Schritt eines Aufteilens des zweidimensi-
onalen Bildbereichs unter Stlicken an nicht festgelegten Orten des Betrachtungsraums umfaf3t.

8. Verfahren nach Anspruch 1, wobei die Stiicke rechteckige Bereiche des Betrachtungsraums sind.

9. Verfahren nach Anspruch 1, wobei der Schritt des seriellen Renderns der Objektgeometrie fiir die zu-
mindest zwei Stlicke die Schritte umfalit:
Rastern geometrischer Grundelemente fir ein Stuck, um Pixeldaten zu erzeugen, und dann Aufldsen der Pi-
xeldaten fur das eine Stuck; und
Wiederholen der Rasterungs- und Auflésungsschritte fiir nachfolgende Stlicke.

10. Verfahren nach Anspruch 9, wobei der Rasterungsschritt fir ein erstes Stiick ausgefiihrt wird, wahrend
der Aufldsungsschritt fir ein zweites Stiick ausgefiuhrt wird.

11. Graphik-Rendersystem zum seriellen Rendern einer Objektgeometrie in einer Szene in einen Betrach-
tungsraum, wobei das System umfafdt:
einen Speicher zum Speichern gerendeter Bilddaten;
einen Bildvorprozessor, der zur Transformation der Objektgeometrie zum Betrachtungsraum betrieben werden
kann und zur Aufteilung der transformierten Objektgeometrie unter mehreren Abschnitten oder Stiicken des

92/147

DE 696 36 599 T2 2007.08.23

Betrachtungsraums betrieben werden kann, wobei das Objekt mehrere geometrische Grundelemente umfafit,
die unter den mehreren Bildabschnitten oder Stiicken aufgeteilt sind durch Zuweisen der geometrischen Grun-
delemente zu den mehreren Bildabschnitten oder Stiicken; und

einen Bildprozessor, der mit dem Bildvorprozessor zum Empfang der transformierten Objektgeometrie fiir die
mehreren Stucke kommuniziert, der zum seriellen Rendern der transformierten Objektgeometrie fir die meh-
reren Stiicke betreibbar ist, um Pixelwerte flir Pixelorte im Betrachtungsraum durch serielles Rendern der Sti-
cke des Betrachtungsraums zu berechnen, wobei jedes entsprechende Stick durch Rendern der diesem
Stlick zugeordneten geometrischen Grundelemente gerendert wird; und mit dem Speicher kommuniziert, um
die Pixelwerte fir die mehreren Stlicke im Speicher zu speichern; und

wobei gerenderte Stlicke fur Objekte in der Szene in einem wabhlfrei zuganglichen Stiick-Format gespeichert
werden, im Stlick-Format abgerufen und zusammengesetzt werden, um ein Anzeigebild zu berechnen, das die
Objekte in der Szene wiedergibt.

12. System nach Anspruch 11, wobei der Bildprozessor eine Rasterungsvorrichtung und einen Raste-
rungspuffer umfaldt, wobei die Rasterungsvorrichtung zum Rastern der transformierten Objektgeometrie fiir die
mehreren Stiicke und zur Erzeugung von Pixeldaten fir die mehreren Stlicke, mit jeweils einem Stiick zu ei-
nem Zeitpunkt, betrieben werden kann, und zur Speicherung der Pixeldaten fiir das eine Stlick im Rasterungs-
puffer betrieben werden kann.

13. System nach Anspruch 12, wobei der Bildprozessor eine Pixelmaschine umfafdt, die mit der Raste-
rungsvorrichtung zum Empfangen der Pixeldaten kommuniziert und mit dem Rasterungspuffer zur Speiche-
rung ausgewabhlter Pixeldaten im Rasterungspuffer kommuniziert und zur Durchfliihrung von Tiefenvergleichs-
operationen zwischen den von der Rasterungsvorrichtung erzeugten Pixeldaten und den gewahlten, im Ras-
terungspuffer gespeicherten Pixeldaten betrieben werden kann.

14. System nach Anspruch 13, wobei die gewahlten Pixeldaten Pixelfragmentaufzeichnungen fur Pixelorte
fur die Stlicke umfassen, die verarbeitet wurden, wobei die Pixelfragmentaufzeichnungen Farb-, Tiefen- und
Bedeckungsdaten umfassen und das System des weiteren eine Antialiasing-Engine in Kommunikation mit
dem Rasterungspuffer zur Auflésung von Pixelfragmenten fur Pixelorte im Stick, das bearbeitet wurde, und
zum Berechnen der Pixelwerte umfal3t.

15. System nach Anspruch 14, wobei der Rasterungspuffer doppelt gepuffert ist, und in dem die Antiali-
asing-Engine zur Auflésung von Pixelfragmentaufzeichnungen fur ein erstes Stlick betreibbar ist, wahrend die
Rasterungsvorrichtung Pixeldaten fir ein zweites Stlick erzeugt.

16. System nach Anspruch 11, wobei der Bildvorprozessor ein programmierter Datenprozessor ist, der zur
Sortierung der Geometrie von Objekten in einer Szene unter mehreren Stlicken betrieben werden kann.

17. System nach Anspruch 16, wobei der programmierte Datenprozessor zur Transformation von Umgren-
zungsfeldern der Objekte in Betrachtungsraumkoordinaten betreibbar ist, zur Unterteilung der transformierten
Umgrenzungsfelder in zwei oder mehrere Stiicke betreibbar ist und zur Zuordnung von geometrischen Grun-
delementen der Objekte zu den zwei oder mehreren, den Objekten entsprechenden Stlicken betreibbar ist.

Es folgen 54 Blatt Zeichnungen

93/147

100

DE 696 36 599 T2 2007.08.23

Anhangende Zeichnungen

FIG. 1

\ s 106

BILD-

BILD-
PRAPROZESSOR [PROZESSOR ___1}
104

< SYSTEMSCHNITTSTELLE >

BILD-
DATEN-
QUELLE u.
SPEICHER

108
110

L~
102

—

94/147

DE 696 36 599 T2 2007.08.23

FIG. 2

130

PROZESSOR \
132 /

I /.134

SPEICHER- HAUPT-
STEUERUNG SPEICHER
136
145\
BUS
&
144 ~ !
i BILD-
ERGANZUNGS- - EINGABE- VERARBEITUNGS-
SPEICHER GERAT(E) ARDWARE

w 8

142

95/147

DE 696 36 599 T2 2007.08.23

FIG. 3

160

L

GRAFIKUNTERSTUTZUNGSSOFTWARE

1L

HARDWARE-ABSTRAKTIONSSCHICHT

1r

ANDERE
PROZESSOR BILD-
(DSP) VERARBEITUNGS _
HARDWARE

186 ho

96/147

162

164

DE 696 36 599 T2 2007.08.23

FIG. 4A

174

BUS

]
| GEMEINS. SPEICHER |

: RDRAM | [RDRAM | |
|

R e

Hl 2mxs 2Mx8 | 216

PCiI

DSP e+ TILER je

GSPRITE
ENGINE

PUFFER

200

RS Y

204

FARB-
PUFFER

212

} 3

“~— | ’~_ RGB VIDEC

214

97/147

DE 696 36 599 T2 2007.08.23

4562
.
464
RASTER-
GENERATOR 470
466
468 / § g
ANTI-ALIASING FRAGMENT- PIXEL ENGINE
ENGINE PUFFER
PIXEL-
PUFFER

K 472

98/147

DE 696 36 599 T2 2007.08.23

OBJEKT_
UND BETRACHT.-
PUNKTORTE M
BESTIMMEN | 240

4

FIG. SA POTENZIELL

SICHTBARE ’_\
OBJEKTE
AUSWAHLEN

h

SPRITE-
KONFIGURATION
BESTIMMEN 244

246
NOCH EIN
SPRITE ZU
RENDERN?

IN CHUNKS rm NEIN
TEILEN

250

NOCH EIN
CHUNK?

JA
—

CHUNK
52
TRANSFOR- }"2

MIEREN
!

)

99/147

DE 696 36 599 T2 2007.08.23

FIG. 5B

254

NOCH EIN
POLYGON IN

AKTUELLEN NEIN
CHUNK ZU
‘ 258
A PIXEL 4
4 AUFLOSEN
256
~ POLYGON a
TILEN Y
260
T CHUNK Y
KOMPRIMIEREN
L 4
- 262
CHUNK
SPEICHERN

)

100/147

DE 696 36 599 T2 2007.08.23

GSPRITE-

TIEFENORDNUNG
BESTIMMEN]

GSPRITE ZU
VERARBEITEN?,

NEIN

FIG. 6

AUF TEILDBILD-
JA SYNCHRONIS. r/‘ 290
i 4 WARTEN ,
SPRITE-
TRANSFORMATIONEN] -
BERECHNEN 284
292
NOCH EI
i SPRITE ZU NEIN
VERARBEITEN?
SPRITE-
ANZEIGELISTE
ERSTELLEN
A
286 SPRITE " 294
TRANSFORMIEREN
4 yai 29§
PIXEL . / 298
ZUSAMMEN-
SETZEN
PIXEL
__] ANZEIGEN
ENDE

101/147

DE 696 36 599 T2 2007.08.23

— T — e — My e e A T — S ——

NIDIIZNV ANN
‘Z1ISNIWIWVSNZ

$3114dSsO

w._.zm:_zxou_mzé.L

134 (\

anaiai

— e Srem S . e P e e e O] Gmn S S g

ananitL

N3INHD3IY38
N3INOLLYW
“HOd4SNVYL
-11RdSO

pe

N3OI3ZNV ANN
*Z1ISNIWWVYSNZ

4

SILIYdSOD
LYIINYOASNVY L]

tit I\

L0

— vt e . — — A T G—r W S G S

angials

uauyd313q
uluojjewiojsues)
-ayudso

ne -/

. - — e G W e — e — — A Ak S e =

angial

102/147

DE 696 36 599 T2 2007.08.23

FIG. 8

pcigus —3 zumTier i

336
DSP /
SPEICHER-
SCHNITTSTELLE|
}
342 : [
(— I DSP-KERN |
|
““——~7—m _______ |
PCI BUS
CONTROLLER|" 338
y
344 346
, /[v
DATEN-
ANZEIGE- KONVERTER
MMU UND
FORMATIERER

103/147

DE 696 36 599 T2 2007.08.23

FIG. %A

104/147

TILER A -7
r*_“_*__—‘—— ----- L L
: ! M o e .E—TIF.—Cﬁé]— i "
|| ECKPUNKT- ECKPUNKT- X
| ol EINGABE- STEUER- setup |
> ™ ENGIN |
: 'l PROZESSOR REGISTER E |y
|2 4 _ Wi
: g.'.-. s. E-AIONI-E :
TEXTUR- ! JuMwaNDLUNG !
|| ADRESSEN- ”'“LESITE?((:E:?\;“GE : —
il | GENERATOR |GRUNDELEMENTE] ; |
| 7 N \ : REGISTER !
392 __55___1 390 | :|
| s y 298 |
| BEFEHLS- 5 :
f— »| UND SPEICHER- H ' o
X STEUERUNG ; SCAN- v
< 380 : UMWANDLUNGS- | !
}T| : ENGINE i
™ N ,: i |
| > KOMPRIMIERTER |) 111 |
l Fot CACHE 416 !
| s 304 I
z m% TEXTUR- I
w ! o 6 _’l TEXTUR- FILTER- l
L ‘ n-z CACHE ENGINE
2 £ |
g | 9 1
o | w 2 T ’
2] | 402 400 !
1| L7 :
w o
z IXEL | |
S | 12 FRAGMENT- P
% | r purrer. [€7| ENGINE | |
o ANTI- A {
Z | ALIASING 410 R)s
@ | ENGINE |
- il |
a
@ PIXEL- |
s | PUFFER 1
R)\ ‘
| 408 |
| [
| KOMPRESSIONS- !
l ENGINE 414 |

382

394

ZU DSP, GSPRITE-ENGINE, RAMBUS-KANALEN

378
TILER “ /
rr.—.“'—-—.—.uE-T_.—‘--aasa r'
Il eckpunkTE , |
') ECKPUNKTE- |
| EINGABE- KONTROLL- | SETUP ‘1
.| PROZESSOR REGISTER ENGINE by
I '
- 384 \-386 I»'If
e 4
) UMWANDLUNG)
TEXTUR- R J v
3934 LESE- : ' |
SCHLANGE ! GRUNDELEMENTE-|
\ 391 : REGISTER | |
: b
BEFEHLS- TEXTUR- : 396 11398 b j
u. SPEICHER- CACHE- v
STEUERUNG |} SCAN- :
STEUERUNG .}8' ¢ | UMWANDLUNGS- | ! '
j : ENGINE |
: L
\Lé“ 300 Lo o |
o g:‘ . U TEXTUR- |
20 | 2 REFERENZ- |
8 S o DATENSCHLANGE |
v w U
8 2 S 4 Y '
pd €2 ML Y] TEXTURFILTER- |
416 % w Wy ENGINE |
¥ (l
w
o 402 404 EE |
/ |
412, FRAGMENT- L__, PIXEL |
PUFFER ENGINE I
ANTI-ALIASING R — |
ENGINE 406 !
- l
PIXEL-
PUFFER |
. |
408
4 |
KOMPRESSIONS- :
ENGINE 14 |
|

DE 696 36 599 T2 2007.08.23

FIG.9B

— e —— e G G GG SV WIS CE A D SIS S S S

105/147

395

TILER V4
s "'""'éé"r'ub""’:’sii ''''''''' :
: ' EckpunkTE- ECKPUNKTE- SET:P;Z’:S'NE
| b EINGABE- hp KONTROLL- [pagyep.
| i PROZESSOR X REGISTER GENERATOR
. T !
t e o o ¢ S & s o e = 3—1‘4--—--——§8—7-—- e wy ® Emy 5 —— - -—ly
: 393 TEXTUR- WL SCAN-
~1 LESESCHLANGE i g UMIWANDLUNG;
| 3 39 / :
| Y 4] Rty
I BEFEHLS- TEXTUR- y
_’____,‘ u. SPEICHER- CACHE- ! 396 , 898 !
| STEUERUNG STEUERUNG |: :
; l ‘ : SCAN- :
" \ JUMWANDLUNGS-| !
: , ,-L » ; ENGINE :
404 ‘ '
[o W NL<' Soow! O SR
| |EEL e T
w Oaq
| 00 o
< | 0w o w TEXTUR-
z| D= 2 Ty FILTER-
5,‘ 416/ «gr E < ENGINE
& £5| |
al g N T
zl y w2 |
|
gl PIXEL
=1 412 FRAGMENT-
% } £ PUFFER ENGINE
= : ANTI-ALIASING oo —
e | ENGINE : 406
N
O | [
o PIXEL-
a | PUFFER
2 \
N } 408
|
|
|

DE 696 36 599 T2 2007.08.23

KOMPRESSIONS-
ENGINE 414

e B e SR G e CmE SR G G T ATED GEER e SRS G G S tm— NS

106/147

FIG. 10

SETUP

DE 696 36 599 T2 2007.08.23

ELEMENTE GENERATOR 417
416
| ~ 418
TEXTUR-
REFERENZ-
DATEN-
SCHLANGE
422
r \ y
TEXTUR- TEXTUR- TEXTUR-
SPEICHER BLOCK- CACHE FILTER
_" ABRUF —’1 -ﬂ
419 420 421
h 4
GEFILTERTE
TEXTURIERTE
AUSGABE-
PIXEL
423

107/147

FIG. 11

DE 696 36 599 T2 2007.08.23

SETUP
GRUND-
ELEMENTE

425

SPEICHER

430

426 427
[L/
VOR- NACH-
RASTER- RASTER-
GENERATOR GENERATOR
4
y
TEXTUR-
BLOCK- GEFILTERTE
ABRUF- TEXTURIERTE
SCHLANGE AUSGABE-
PIXEL
432
y
TEXTUR- TEXTUR-
BLOCK- BLOCK-~
ABRUF CACHE
429 431

108/147

DE 696 36 599 T2 2007.08.23

/440

FIG. 12A

GSPRITE ENGINE

[442

436

o/

———f-—---—-¢%

—v v SR e e W e

— =1

I
)
|
I
|
|
I

|

VOM TILER

|
ANZEIGE- GSPRITE GSPRITE |
STEUER- HEADER HEADER
PROZESSPR REGISTER DECODER |
|
GSPRITE-ZUSAMMENSETZUNGS-SETUP I
r“ﬁ
GSPRITE-
SCHNITTSTELLEN- DATENADRESS- GSPRITE-
STEUERUNG GENERATOR LESESCHLANGE
~g et
438 |
BILD-
4 & r4so 443 Il PpROZESSOR- |
« z 1 ADRESS-
E g N \ 2 | GENERATOR |
wuwl| 2 I GSPRITE y I
ZUM 2| CACHE |
z < < |
sV 8" | I
g w 2 4| osprre |!
. ————% FILTER H-+
L i{ enemne ||
458 456 __

| BILDPROZESSOR

L—-v.—*—---—

109/147

ZUM ZUSAMMENSETZUNGSPUFFER

VOM TILER

DE 696 36 599 T2 2007.08.23

FIG. 12B

GSPRITE ENGINE 436
/- 440 ['442 /- 444 Z
I- - emmy Al CEER EEE AR S VR VEENP ERES i e e e G S G o *l
j |
|| ANZEIGE- GSPRITE GSPRITE |
(| STEUER- —»| HEADER HEADER !
| PROZESSOR REGISTER _ DECODER |
| |
| GSPRITE-ZUSAMMENSETZUNGS-SETUP]
L o e e e e e —— ——— —— ——— —— —d
{-447
SCHNITT- DATENADRESS-
STELLEN- LESE- GENERATOR " GSPRITE-
STEUERUNG F‘SCHLANGEP\ (VORRASTER- SCHLANGE
GENERATOR)
| i - w
438 453 I 449 | !
| | BILDPROZESSOR- | |
CACHE- ADRESS- | &
451 STEUERUNG : GENERATOR E
| (RASTER- | |2
GENERATOR) @ o
- V182
| | 3=
A | ﬁ w
M 450 ' bojua
x &) I 126
b 5 | oserve |! |3
£ 4w GSPRITE b FILTER [o
£3[" B3 [CACHE | enane | IR
b3 s W)J
o e 452/ 456 | |
: L suormoztsson | qar
\458 / 455

110/147

DE 696 36 599 T2 2007.08.23

FIG. 13

—

VON DER GSPRITE-ENGINE

480
ZUSAMMENSETZUNGSPUFFER /
1484
.| SPEICHER-
STEUERUNG
482 l
AN 488

ZUSAMMEN-
SETZUNGS-
LOGIK

SCANZEILEN-

j———D] PUFFER
1344x32x24

T

ALPHA-
PUFFER
1344x32x8

486

111/147

ZUM DAC /l

DE 696 36 599 T2 2007.08.23

PIXELDATEN VOM

ZUSAMMENSETZUNGSPUFFER[

PIXELDATEN-
WEGLEITUNG

1

DSP

vom[3

516

TAKTIMPULS-
GENERATOR.

STEREO-
BILD-
SPLITTER

112/147

DE 696 36 599 T2 2007.08.23

FIG. 15A

FI1G. 15B

.

1

AN

548 552 OBJEKT 33233
BEGRENZUNGS- OBJEKT EL-
KASTEN GSPRITE 554 CHUNK
32-PIXEL-
CHUNK-
GRENZE
32x32- FIG. 15C
PIXEL-CHUNK
568
(558
|
560 -
OBJEKT -.aIERIBEG
| 4] e
570 1
32-PIXEL- -
CHUNK- 1
GRENZE 1 C
564
GSPRITE
/ 562 566
T
572 OBJEKT GSPRITE
32x32-PIXEL_BILDSCHIRM-
GRENZE

113/147

DE 696 36 599 T2 2007.08.23

FIG. 16A

I

574

576

578

| IO

|

"FIG. 16B so7
588 82 /
\

| N| 586

— 584
579 -
583 [——— 580
585

581

114/147

DE 696 36 599 T2 2007.08.23

(=)

F1G. 17A

592
./
BEGINN
ERZEUGUNG
BEGRENZUNGS-
KASTEN FUR
OBJEKT
/- 596
594 ERZEUGEN
ZUSKTZLICHER
OBJEKT- BEGRENZUNGS-
GEOMETRIE A = _KASTEN
KOMPLEX? FOR OBJEKT-
KOMPONENTEN

ZUR ERSTELLUNG
VON GSPRITES

NEIN
A
ERZEUGEN VON
BEGRENZUNGS- 598
KASTEN ZUM -
EINSCHLIESSEN VON
OBJEKT ZUM
ERSTELLEN VON
GSPRITE
602
600 ya
/- BEGR.KASTEN/
BEGR.KASTEN/ KASTEN AUF
KASTEN MEHRFACHES MEHRFACHES VON
VON 32 NEIN-—% 32 PIXELN
PIXELN? ERWEITERN UND
OBJEKT(E)
ZENTRIEREN

JA

115/147

DE 696 36 599 T2 2007.08.23

F1G.17B

604
GSPRITE(S) IN
32x32-PIXEL- /

CHUNKS
AUFTEILEN

f“ 606

VERARBEIT.
DER CHUNKS
BEENDET?

i (e

NEIN
503
CHUNK
LEER? A
NEIN 610
Y r
CHUNK

VERARBEITEN

116/147

DE 696 36 599 T2 2007.08.23

FIG. 18A

614

- 612

- B13

618

117/147

DE 696 36 599 T2 2007.08.23

FIG. 19A
630 ~ /5%
CHUNK 1 1’3'5 2’7?:'84' CHUNK 3
ABD
chunka | 28 I = | cHuNk2
638 — N
FIG. 19B

638

i
il

118/147

DE 696 36 599 T2 2007.08.23

/ 660

F1G. 20

662
yai

TRANSFORMATIONS-
ENGINE

P 668

TILER

672

-

666

[

TILER-
KOMPRESSIONS-
ENGINE

I-—-.-—.——

TILER-
DEKOMPRESSIONS-
ENGINE

ANZEIGE-

CONTROLLER -

GSPRITE-
DEKOMPRESSIONS-
ENGINE

119/147

664
/

TEXTUR-
SPEICHER

b
v /' 670

GESPRITE-
SPEICHER

BILD-

DATEN-
QUELLE

676

—— — — >y

o e S — A S G — Pt et — i —

DE 696 36 599 T2 2007.08.23

FIG. 21A

OBJEKTLISTE
LESEN

POTENZIELL
SICHTBAR?

JA

704
yd

GSPRITE-
ZUGGES(';:S-I‘JEET" A | ZuoRDNUNG
; AUFHEBEN

o7

GSPRITE
ZUR 3D-
GSPRITE Eine| ZYORDNEN | | | isre
ZUGEORDNET? o. WIEDER- HINZUFOGEN
ZUORDNEN
712
714 708 X
JA
v [~ 3D-
P TRANSFOR-
TRANSFOR_ | MATION u.
MATION RENDERN
BERECHNEN

120/147

DE 696 36 599 T2 2007.08.23

FIG. 21B

K-‘ 716

UBERMASSIGE
VERZERRUNG

NACH B

A FIG. 21A

NEIN

¥

ZUR ANZE!GE-
LISTE
HINZUFUGEN

TEILBILD

— o — T~ - E e —— S = e e — T —

20_ / 120
TRANSFOR-
MATION

h 4

722
ZUSAMMEN- /
SETZUNG

724
ANZEIGE

121/147

DE 696 36 599 T2 2007.08.23

FIG. 22

CHARAKTERISTISCHE
PUNKTE
AUSWAHLEN

4

AFFINE
TRANSFORMATIONS-
MATRIX
BERECHNEN

746

748

NEIN——"'-T

GSPRITE
RENDERN

-

750 TN

AFFINE
TRANSFORMATION
AUSFUHREN

ANZEIGE

122/147

752

754

~c~|/

DE 696 36 599 T2 2007.08.23

| 1 \
| i |
ﬂ " |
|
NY3aN3Y } ! _
3DIAZNY < AaNN NINHD3Y3g {* 1 NTIWNWVS | |
| | NOLLYWHOASNWHL | | N3gvONI3 i _
8L | ¥8L jDINNASONNLHOVEIZE _
w ! _ !
| “ NY3IAN3IY ;L_ 1
3913ZNY * anNn NINHO3Y3g |+ Ni1awwvs Nagvonia| |
! I} NowvwyodsnvuL | | i
| o:\ | 8L S | v - '
| | 1 |
aneiiaL ananas alelas auemn3ir

€C 'O

123/147

DE 696 36 599 T2 2007.08.23

1 _— 800
ZAHL DER
] GspriTES 0
|| scB-HanDLE sCB 806 ya
| 808
BAND-MASK | SCB
CHUNK-
| sceHANDLE . HANDLE
/ CHUNK-
BAND-MASK
- 804 HANDLE
/ CHUNK-
] SCB-HANDLE HANDLE
CHUNK
| | BAND mASK
: CHUNK
L ‘
CHUNK-
SCB HANDLE HANDLE
BAND MASK

CHUNK

124/147

DE 696 36 599 T2 2007.08.23

FIG. 25

832

N A

836

125/147

834

DE 696 36 599 T2 2007.08.23

FIG. 26

WARTEN AUF
TEILBILD- L 858

4

SYNCHRO

NEIN
84
al 8
AUF BAND-
NOCH EIN SYNCHRO
BAND? WARTEN

JA

862

NOCH EIN
SPRITE IN LISTE
FUR AKTUELLES
BAND?

PIXEL (855
SCANNEN

A

AN ZUSAMMEN-
SETZUNGS- |~ 868
PROGRAMM

SENDEN

126/147

DE 696 36 599 T2 2007.08.23

\\ p6o

068

[

N3IDIAZNV ANVE

- — Gt Ghe G W — S — — W — N — -~

anva

N3IZLIS'WWVYSNZ *h
N3Y3INHO4SNYHL
aNvea Ni
13AXId-3L1Hd SO

268

(

N3IDIIZNVY ANVS

898

\

— v — vy W —— — - — — — —— — o————

aNvg

LT "OId

N3Z13IS'WWVSNZ 'n
NIHIIWHOJISNVYL
GNvE NI
13XId-31L14d SO

— G i —— —— —— — — — — — " — —

anved

127/147

DE 696 36 599 T2 2007.08.23

(START I

y
ECKPUNKTE-
EINGABE-PRO-
ZESSOR PARST
DEN EINGABE-
STROM

4

DREIECKSINFO IN
ECKPUNKTE-
KONTROLL-
REGISTERN
SPEICHERN

y

SETUP-ENGINE
BERECHNET
KANTEN-
GLEICHUNGEN

y

SETUP-ENGINE
SCHICKT KANTEN-
GLEICHUNGEN AN

914

916

918

920

FIG. 28A

NACH
FIG.
288,

TEXTURADRESS-
GENERATOR
BESTIMMT
ADRESSE VON
TEXTUR-
CHUNKS

SCAN-UMWAND-
LUNGSBLOCK

128/147

SETUP-ENGINE
SCHICKT TEXTUR-
ADRESSEN AN
TEXTUR-
LESESCHLANGE

924

922

DE 696 36 599 T2 2007.08.23

VON
FIG.
28A

FIG. 28B

TEXTURLESE-
ANFORDERUNGEN
WERDEN AN DEN

BEFEHLS- UND
SPEICHERBLOCK

GESANDT

926

4

SPEICHER-
STEUERBLOCK
RUFT
TEXTUR-
DATEN AB

928

TEXTUR-
BLOCKE
DEKOMPRIMIERT

- 936 - 938
SCAN-UMWANDL. TEXTURFILTER
SCHICKT SCHICKT INFO
TEXTUR- AN SCAN-
ADRESSEN UMWANDLUNGS-
AN DIE TEXTUR- ENGINE
FILTERENGINE
»
940
P 934 »
SCAN-UNWANDL. SCAN-UMWAND-
zfgrc:ﬁ"z‘é" LUNGSENGINE
e GR:ND" KONVERTIERT
EliEMENTE] DREIECKS-
N TEN
REGISTERN DA
&
93 942
z 2 s
DEKOMPRIMIER- SCAN-UMWAND-
TER TEXTUR- LUNGSENGINE
+ BLOEKIN SCHICKT INFO
TEXTURCACHE AN PIXEL-
GECACHET ENGINE
944
946 >
PIXEL-ENGINE
ZUR FOHRT
ANTI- BERECHNUNGEN
ALIASING- AUS
ENGINE

129/147

DE 696 36 599 T2 2007.08.23

START

Y

ECKPUNKTE-
EINGABE-
PROZESSOR PARST
DEN EINGABE-
STROM

DREIECKSINFO IN
ECKPUNKTE-
KONTROLLREGISTERN
SPEICHERN

SETUP-ENGINE
BERECHNET
KANTEN-
GLEICHUNGEN

SETUP-ENGINE
SCHICKT KANTEN-
GLEICHUNGEN AN

SCAN-
UMWANDLUNGS-
BLOCK

947

948

949

950

FIG. 28C

SCAN-UWANDLUNG

KONVERTIERT
DREIECKS-
DATEN

SCAN-UWANDLUNG

LIEST KANTEN-
GLEICHUNGEN
AUS DEN
GRUNDELEMENTE-
REGISTERN

130/147

952

951

FIG. 28D

PIXELDATEN UND
TEXTURINFO
IN
SCHLANGE
STELLEN

953

TEXTURCACHE-
STEUERUNG
RUFT
DER TEXTUR-
BLOCKE AB

954

y

TEXTURLESE-
ANFORDERUNGEN
WERDEN AN DEN
BEFEHLS- UND
SPEICHER-
STEUERUNGS-
BLOCK GESCHICKT

L~ 955

P 958

DEKOMPRIMIERTER
TEXTURBLOCK
IN TEXTUR-

DE 696 36 599 T2 2007.08.23

- 958

CACHE
GECACHET

- 957

TEXTUR-
BLOCKE
DEKOMPRIMIERT

SCAN-UMWANDL.
SCHICKT TEXTUR-
ADRESSEN AN
DIE TEXTUR-
FILTERENGINE

956

/

SPEICHER-
STEUERUNGS-
BLOCK
RUFT
TEXTUR-
DATEN AB

131/147

ZUR

ANTI-
ALIASING-
ENGINE

960

DE 696 36 599 T2 2007.08.23

FIG. 28E

{ START)

y

ECKPUNKTE-
EINGABE-
PROZESSOR PARST [~
DEN EINGABE- 961
STROM
v
GRUNDELEMENTE
IN SCHLANGE IN
ECKPUNKTE-
KONTROLL- ™~
REGISTER - 962
BRINGEN
TEXTURCACHE-
STEUERUNG
RUFT TEXTUR- 965
BLOCKE AB
A
y
™~ VORRASTER-
VORRASTER- 963 GENERATOR [~
GENERATOR SCHICKT LESE- 964
KONVERTIERT —»| ANFORDERUNGEN
GRUND- AN DIE TEXTUR-
ELEMENTE CACHE-
STEVERUNG

132/147

DE 696 36 599 T2 2007.08.23

FIG. 28F

_— 994 - 995
TEXTURLESE-
ANFORDERUNGEN SCAN-UMWANDL. TEXTURFILTER
WERDEN AN DEN SCHICKT TEXTUR- SCHICKT INFO
BEFEHLS- UND | ADRESSEN AN AN SCAN-
SPEICHERKON- 989 DIE TEXTUR- | UMWANDLUNGS-
TROLLBLOCK FILTERENGINE ENGINE
GESANDT
A
996
y 993 »
SCAN-UMWANDL.
SPEICHERKON- LIEST KANTEN- SCAN-UMWANDL.-
TROLLBLOCK GLEICHUNGEN AUS ENGINE
RUFT TEXTUR- [~ DEM GRUND- KONVERTIERT
DATEN AB 99D ELEMENTE- DREIECKS-
) REGISTER DATEN
1
992 997
y 9 / v /
L~ 91
DEKOMPRIMIERTER
TEXTURBLOCKE TEXTURBLOCK SCAN-UMWANDL.-
PRIMIERT > CACHE INFO AN
GECACHET PIXEL-ENGINE
998
999 e
PIXEL-ENGINE
UR
AZNT'_ FUHRT
BERECHNUNGEN
ALIASING AUS

ENGINE

133/147

DE 696 36 599 T2 2007.08.23

FIG. 29

START

.l

NEUE PIXEL-
FARBE, Z UND
BEDECKUNGS- f¢——nNEIN

ALLE

PIXEL
MASKE ER- ERZEUGT?
ZEUGEN JA

* (=

PIXEL VOLLSTAND.
VERDECKT,

I ALSO PIXEL

VERWERFEN =

PIXEL-
PUFFER NAHER
ALS NEUES

v

870 872

NEUE FARBE
UND Z INNERHALB VON
HEAD-FRAGMENT-
FARBE UND 2?

NEIN

NEUES PIXEL-
JA FRAGMENT ALS
| HEAD-FRAGMENT >
IN FRAGMENT-
[LISTE EINFUGEN
JA FRAGMENT-HEAD
MIT HEAD-FRAGMENT ‘
VERSCHMELZEN: 980

(HEAD-MASKE) =
(HEAD-MASKE) ODER
(NEUE MASKE)

' N\

VERSCHMOLZ.
HEAD-
BEDECKUNGS-
MASKE VOLL?

PIXELPUFFER 982 A
DURCH PIXELFARBE, I~ ‘_— s
PIXELPUFFER Z 976

DURCH PIXEL Z ER-

86
- 9
SETZEN. ES WIRD P“l FREIE SPEI / C 88
KEIN NEUES FRAG- CHERUNG

MENT ERZEUGT FUR HEAD- ALLE FRAG-
FRAGMENT MENTE HINTER
NEUEM VOLLSTAND.
L BEDECKTEM PIXEL
> FREISETZEN fupl

134/147

DE 696 36 599 T2 2007.08.23

FI1G. 30

NEUES VORHER. NEUES VORH. NEUES VORH. NEUES VORH.

ALPHA ALPHA ROT ROT GRUN GRON BLAU BLAU

BRI

NEW PREV.

Il

VERSCHMEL- VERSCHMEL- VERSCHMEL- VERSCHMEL-
ZUNGS- ZUNGS- ZUNGS- ZUNGS-
TEST TEST TEST TEST

ZUNGS-
TEST

1000 1002 i 1004

b | o | e | ok

BITWEISES AND

v

VERSCHMELZUNG FEHL-
GESCHLAGEN/ ERFOLGREICH

1010
r ——————————————————— — ﬁ
| NEUER VORHERIGER |
' WERT WERT |
| |
| VERSCHMELZUNGS- |

TESTMODUL
: 1014 :
SUBTRAHIEREN
! UND ABSOLUT- J
i WERT |
| /1018 T |
| L |
| | VERSCHMELZUNGS- 016 |
| KRITERIEN- Y VERGLEICHEN |
REFERENZWERT ———/

| (VARIABLE) |
i]
| !
| VERGLEICHSERGEBNIS i
e __(BOOLESCH) |

135/147

verscHMeL-| 1008

1010

FIG. 31

32

DE 696 36 599 T2 2007.08.23

136/147

1120
32 1118
1
2
511
512
32x32-PIXEL- 512-EINTRAGS-
AUSGABEPUFFER FRAGMENTPUFFER
16 W —q922 8
1 2 16 L 6
3lal7 |8
9 |10 13| 14
3 4 16
1111215 16
16x16-PIXEL- 8x8-PIXEL-
TEILPUFFER TEILPUFFER

1124

o o oo

DE 696 36 599 T2 2007.08.23

FIG. 34A

- A

START
1(1140
1130 r~ 1158
NACHSTES START NEUSTART <
POLYGON VERARBEITUNG VERARBEITUNG
VERARBEITEN POLYGONE POLYGONE F_
1132
VER- ZUA >
ARBEITUNG JA FIG. I - 1160
FERTIG? 18B NACHSTER
JA R
CHUNK A
NEIN [1136 T
X 1456
PIXELFRAGMENT B
ERZEUGEN iy NEIN
1138 NEIN 1148
VER-
ARBHTU?G 16x6- JA d
FERTIG? CHUNKS?

NEIN

PUFFER-
ZAHLER
=512?

JA

14

NEIN

JA

1146
x 4

/r1154

8x8-PIXELCHUNK
AUFLOSEN UND PUFFER
TAUSCHEN

NEIN

IN 16x6-CHUNKS AUFTEILEN
UND PUFFER LEEREN

IN 8x8-CHUNKS AUFTEILEN
UND PUFFER LEEREN

137/147

4

DE 696 36 599 T2 2007.08.23

FIG. 34B

ALLES
ERLEDIGT?

NEIN
1166

/ 1160 NEIN

16x6-
PIXEL-
CHUNK?

1168
IA 1164 A
r [v [
32x32-PIXEL-

CHUNK AUFLOSEN 16x6-PIXELCHUNK
UND PUFFER AUFLOSEN UND

TAUSCHEN PUFFER TAUSCHEN

ZU

FIG.
18A

138/147

DE 696 36 599 T2 2007.08.23

FIG. 35
1224
1/0}0]0
1{1|0}]0
T TEILPIXELMASKE
11111 1226

>0>

+] [+] [+
J o LT o
+ + + +
+ +
T
1228

139/147

1236

DE 696 36 599 T2 2007.08.23

1232

1234

BEDECKUNGS-
FELD
IN-GEBRAUCH-

MASKE
(1x16)

BEDECKUNGS-
FELDDURCH-
LAUF-

FRAGMENT-
SORTIERUNG

RGBA
BEDECK.MASKE

AKTUELLES FRAGMENT

J",r

Fig. 36

EINMAL PRO
FRAGMENT

NEUE

STEUERUNG

PIXEL-
PUFFER

1234

e e e vew

e .-

RGBA

1250

BEDECKUNGSMASKE

BEDECKUNG k Aoro BEDECKUNGS-
FELD

{Bx8-MULTIPLI-

KATION UND -
1-A
ﬂ SUBTRAKTION) | Ao

(24x16)

©
<

a

* RGB

1240

BEDECKUNGS-
SKALIERER
(8x4-MULTIPLIK.)

-

FARBSKALIERER
(4*8x8-MULTIPLIK.)

FARB-
AKKUMULATOR
(4 ADDITIONEN)

FESTHALTEN UND
EINSTELLEN

1252

RGBA |

BLOCKEINSPEICHERUNGS-

PUFFER

140/147

q| 1242
*
(-

..........

! 1...16 PRO
FRAGMENT

EINMAL
PRO
PIXELORT

l

FIG. 37

DE 696 36 599 T2 2007.08.23

0w
&
- >
l “
(=]
o
~
-
* -+
N
o
o]
-
< =}
o @© 4
Lar o
 ad ©
-—
\
!
T
N dEA
A

141/147

DE 696 36 599 T2 2007.08.23

1400b
/ 1400a
1402 1404
) '\'<1 408
FIG. 38A FIG. 38B
1400d
. 1406 D . . - - - 1410
1408
FIG. 38C FIG. 38D

142/147

DE 696 36 599 T2 2007.08.23

FIG. 39

PIXELSCHLANGE

F

CARCAD]|
To6)

1310

Abtastindex I
Abtastwert giiltig l

Akkumul. skalieren

Integer! Key Y

ey Generator Keys)

A
Abtastwerl gultlg)}
—/

4 !Bruch)
A l
{Bruch) .
i

13124

antrole i Textur-

JU cache
SL - 'i_) > ’ \‘——-———]
ot

[1 [} Texels
oder
— Farb- R

Shadels
Schatten- | ¥l komponenten- [*

< > <X >

filter- fjw—eShades __1 [nterpolator :}_r
.

akkumulator Schattenkoeff.
——
§ [53 1314
>

j@
1318

>

X

V¥rcomy]

1316 ==
A Akkumulator und v

akkumul. skalieren)

4 Postprozessor

LLE

Texturmodulation

aclor

<§EIC!OI |

143/147

DE 696 36 599 T2 2007.08.23

el

dew 4w o1
ao's
{s1q 21) shayy

ayoed
-1nIxal

deur i 1y
Qotl’s
st1q 23} shayn p

usuydauaq
sAoy
-ayoed
-yseiqe
-sbunpjiqqv
-dIN
-07 pun -1H

0y "OIA

orel
\ (suay) (363l o7 |
\ \.
‘nn:.l&io? m (sna zi) GaBaw) * |
SUg 2} i's
\ Sied y :m-wﬂww_..wn , (sugq z1) {s2bajuy) ..L
-ayoed
-jsejqe 4 {suq 21} (eBag) ™) u
-sbunpjiqqy v
dew g 1y -dIN \r (uaz)) tabaw s |
tsuarz) ¥s{ _o7 pun -IH
sied y :
ZJ A__ (s119 ¥)_tosju0g puajx3 |

abuejyds
-19Xid

144/147

DE 696 36 599 T2 2007.08.23

Zse
oseL | |[— _kﬂl i ¢
aque f.— 52\‘_ xnw u-li_t_ _32\“
e P P p it O]
ayoed |repeus
-nyxay | R0
8

ssazoldisod pun -suoReNWMPRY

I¥ "Ol

103ejodiaju)
usuje Jnu an4

i

ﬁ 8sel
> k
9%¢t
NS \» 30 =) 201 I07)
aieaujlig o~ lmv_ 2 183y,]
J < - M% < >
09¢
"o [nn | [Cvow xow | xnw
1T 3 1‘ﬂ J\ﬂ 3
(119 8 syeme)
1ZUjooNUBEYIS b
2jims xﬂh JOY 0] _[20)tedau) Joisi0dinn 018 Ty m
! aseauy vﬁ _ m.w»mﬁ“ 1y o _
> e < ~ < >
)

(319 8 siema)
sjopeys
8

h]
AN xnn xon A_ Xnw

T

-joxid

abuejyss 3jj013uoy

-yonug

3
'
»

uopewnpie #
-..mu__h:wtm:um\.

!

h
2
i

’
!

145/147

DE 696 36 599 T2 2007.08.23

FIG.

42

Pixelschlange
-
= "
z 2
T
x
2
£)
a ©
3 1370
2 W,
8
Teten (g
vergleiche \r“"“’i_'_
Schatten- Farb-
maske komponenten-
(8 Bit) interpolator
~ 1"[>l \
0 £ Schattenkoeff, (8 BIY) _)
Abtast- [A
FuBspur- Schattenkoeff, (B Bit))
fuBspur- maske Schatten- | I
steuerung (8 Bit) beitrag Schattenkoeff. (8 em.v)
berechnen [A
Schattenkoeff. (8 Bit)
1372 1374

146/147

DE 696 36 599 T2 2007.08.23

FIG. 43

Farbkomponenten-
interpolator

{1d bas)

AComp {8 bltg) |
omp
’g omp {8 blls]

Pixel- Akkumul, =—— Y o A
skalleren C— ; 3 Komponenten-
schlange | g A N summe
::‘R skalieren und 13 bits))
—| akkumulieren N

1380/ E gﬂg 1382

Me
L

{1 17 ‘F_'l

< Y

Schatten-
post- 1384

prozess

ouit JHUL

Textur/Schatten-
MUX TN\
1386

Textur-
modulation

147/147

	Titelseite
	Beschreibung
	Patentansprüche
	Anhängende Zeichnungen

