
DE69636599T220070823
(19)
Bundesrepublik Deutschland
Deutsches Patent- und Markenamt
(10) DE 696 36 599 T2 2007.08.23

(12) Übersetzung der europäischen Patentschrift

(97) EP 0 850 462 B1
(21) Deutsches Aktenzeichen: 696 36 599.5
(86) PCT-Aktenzeichen: PCT/US96/12780
(96) Europäisches Aktenzeichen: 96 928 062.7
(87) PCT-Veröffentlichungs-Nr.: WO 1997/006512
(86) PCT-Anmeldetag: 02.08.1996
(87) Veröffentlichungstag

der PCT-Anmeldung: 20.02.1997
(97) Erstveröffentlichung durch das EPA: 01.07.1998
(97) Veröffentlichungstag

der Patenterteilung beim EPA: 04.10.2006
(47) Veröffentlichungstag im Patentblatt: 23.08.2007

(51) Int Cl.8: G06T 15/00 (2006.01)

(54) Bezeichnung: VERFAHREN UND SYSTEM ZUR WIEDERGABE VON GRAFISCHEN OBJEKTEN DURCH TEI-
LUNG IN BILDSTÜCKE UND ZUSAMMENSETZEN VON BILDLAGEN ZU EINEM WIEDERGABEBILD

(30) Unionspriorität:
511553 04.08.1995 US
560114 17.11.1995 US
671412 27.06.1996 US
671506 27.06.1996 US
672347 27.06.1996 US
672425 27.06.1996 US
672694 27.06.1996 US

(73) Patentinhaber:
Microsoft Corp., Redmond, Wash., US

(74) Vertreter:
BOEHMERT & BOEHMERT, 28209 Bremen

(84) Benannte Vertragsstaaten:
DE, FR, GB, IE

(72) Erfinder:
MYHRVOLD, P., Nathan, Bellevue, WA 98005, US;
KAJIYA, T., James, Duvall, WS 98019, US;
TORBORG, G., John, Redmond, WA 98052, US;
KENWORTHY, L., Mark, Duvall, WA 98019-7806,
US; TOELLE, Allen, Michael, Bellevue, WA 98008,
US; GRIFFIN, E., Kent, Bellevue, WA 98008, US;
LENGYEL, Edward, Jerome, Seattle, WA 98108,
US; GABRIEL, A., Steven, Redmond, WA
98052-3256, US; VERES, E., James, Woodinville,
WA 98072, US; CHAUVIN, W., Joseph, Issaquah,
WA 98029, US; GOOD, Howard, Seattle, WA 98105,
US; POWELL, Chambers, William, Seattle, WA
98122, US

Anmerkung: Innerhalb von neun Monaten nach der Bekanntmachung des Hinweises auf die Erteilung des europä-
ischen Patents kann jedermann beim Europäischen Patentamt gegen das erteilte europäische Patent Einspruch
einlegen. Der Einspruch ist schriftlich einzureichen und zu begründen. Er gilt erst als eingelegt, wenn die Ein-
spruchsgebühr entrichtet worden ist (Art. 99 (1) Europäisches Patentübereinkommen).

Die Übersetzung ist gemäß Artikel II § 3 Abs. 1 IntPatÜG 1991 vom Patentinhaber eingereicht worden. Sie wurde
vom Deutschen Patent- und Markenamt inhaltlich nicht geprüft.
1/147

DE 696 36 599 T2 2007.08.23
Beschreibung

TECHNISCHES GEBIET DER ERFINDUNG

[0001] Die Erfindung betrifft allgemein die Wiedergabe von Grafiken und betrifft besonders verbesserte Ver-
fahren und Systeme zur Wiedergabe von grafischen Objekten.

ALLGEMEINER STAND DER TECHNIK

[0002] Bei der umfangreichen Anwendung von Computern in allen Bereichen des modernen Lebens besteht
ein verstärktes Bedürfnis, die Mensch-Maschine-Schnittstelle durch die Verwendung von optischen Informati-
onen zu verbessern. Bei grafischer Software und Handware sind durch Fortschritte bereits drastische Verbes-
serungen der Mensch-Maschine-Schnittstelle erreicht worden. Interaktive Grafiken, wie zum Beispiel Fenste-
rumgebungen für Desktop-Computer, haben zum Beispiel die leichte Anwendung und Interaktivität von Com-
putern deutlich verbessert und sind heutzutage allgemein üblich. Da das Preis-Leistungs-Verhältnis von Hard-
ware fällt, greift die Verwendung von computererzeugten Grafiken und von Animation immer mehr um sich. Lei-
der haben die Kosten der Herstellung von echt interaktiven und realistischen Effekten ihre Anwendung einge-
schränkt. Es gibt daher ein Bedürfnis nach neuen Grafik verarbeitenden Verfahren und Architekturen, die in-
teraktivere und realistischere Effekte zu niedrigeren Kosten liefern.

[0003] Obwohl es zahlreiche Wege gibt, die Grafikverarbeitung zu klassifizieren, besteht ein häufiger Ansatz
darin, ein Bild im Hinblick auf die Dimensionen des Objektes zu beschreiben, die es repräsentieren soll. Ein
Grafiksystem kann zum Beispiel Objekte in zwei Dimensionen (z.B. mit x- und y-Koordinaten) repräsentieren,
in welchem Fall man sagt, dass die Grafik „zweidimensional" ist, oder drei Dimensionen (z.B. mit x-, y- und
z-Koordinaten), in welchem Fall man sagt, dass die Grafik „dreidimensional" („3D") ist.

[0004] Da Anzeigegeräte, wie zum Beispiel Bildschirmröhren (CRTs) zweidimensional sind („2D"), sind Bilder,
die von Computergrafiksystemen angezeigt werden, im allgemeinen 2D. Wie unten detaillierter diskutiert wird,
kann jedoch der Computer das angezeigte Bild ändern, um eine andere Perspektive des Objektes im 3D-Raum
zu zeigen, wenn der Computer ein grafisches Modell bewahrt, das das abgebildete Objekt im dreidimensiona-
len Raum repräsentiert. Obwohl ein 2D-Grafikbild vor der Anzeige transformiert werden kann (z.B. skaliert, ver-
schoben oder gedreht), kann im Gegensatz dazu der Computer nicht ohne weiteres das Aussehen des Objek-
tes aus einer anderen Perspektive im 3D-Raum abbilden.

[0005] Die wachsenden Fähigkeiten moderner Computer, mit 2D- und besonders 3D-Grafiken effizient umzu-
gehen, haben zu einer wachsenden Vielfalt von Anwendungen für Computer sowie zu grundlegenden Ände-
rungen in der Schnittstelle (UI) zwischen Computern und ihren Nutzern geführt. Die Verfügbarkeit von 3D-Gra-
fiken gewinnt zunehmend an Bedeutung für das Wachstum von Anwendungen im Unterhaltungsbereich, ein-
schließlich der Herstellung von Qualitätsfilmanimationswerkzeugen sowie Spielen und Multimediaprodukten
mit geringerer Auflösung für den Heimbereich. Zu den vielen anderen Bereichen, die in Verbindung mit 3D-Gra-
fiken stehen, gehören Bildung, Videokonferenzen, Videobearbeitung, interaktive Nutzerschnittstellen, comput-
ergestütztes Konstruieren und computergestützte Produktion (CAD/CAM), wissenschaftliche und medizini-
sche Bildgebung, Geschäftsanwendungen und das elektronische Publizieren.

[0006] Man kann sich vorstellen, dass ein Grafikverarbeitungssystem ein Anwendungsmodell, Anwendungs-
programm, Grafiksubsystem sowie die konventionellen Hardware- und Softwarekomponenten eines Compu-
ters und seine Peripheriegeräte umfasst.

[0007] Das Anwendungsmodell repräsentiert die Daten oder Objekte, die angezeigt werden sollen, wobei
man natürlich annimmt, dass die Bildverarbeitung auf einem Modell beruht. Das Modell umfasst Informationen,
die die Grundelemente betreffen, wie zum Beispiel Punkte, Linien und Polygone, die die Formen der Objekte
sowie die Attribute der Objekte (z.B. Farbe) definieren.

[0008] Das Anwendungsprogramm steuert die Eingaben in und die Ausgaben aus dem Anwendungsmodell,
wobei es effektiv als Übersetzer zwischen dem Anwendungsmodell und dem Grafiksubsystem fungiert. Und
schließlich ist das Grafiksubsystem für die Weiterleitung der Nutzereingaben an das Anwendungsmodell ver-
antwortlich und ist für die Erzeugung des Bildes aus den detaillierten Beschreibungen verantwortlich, die vom
Anwendungsmodell gespeichert werden.

[0009] Das typische Grafikverarbeitungssystem umfasst ein physisches Ausgabegerät, das für die Ausgabe
2/147

DE 696 36 599 T2 2007.08.23
oder Anzeige der Bilder verantwortlich ist. Obwohl andere Formen von Anzeigegeräten entwickelt wurden, wird
die heute vorherrschende Technologie als Rastergrafik bezeichnet. Ein Rasterbildschirm umfasst ein Feld von
einzelnen Punkten oder Bildelementen (d.h. Pixeln), die in Zeilen und Spalten angeordnet sind, um das Bild zu
erzeugen. In einer Bildschirmröhre entsprechen diese Pixel einem Leuchtstoffpunktfeld, das auf dem Schirm-
träger der Bildschirmröhre bereitgestellt wird. Die Emission von Licht aus jedem Leuchtstoffpunkt im Feld wird
unabhängig von einem Elektronenstrahl gesteuert, der das Feld nacheinander, jeweils eine Zeile zu einem
Zeitpunkt, als Reaktion auf gespeicherte Informationen abtastet, die repräsentativ für jedes Pixel im Bild sind.
Die verschachtelte Abtastung alternierender Zeilen des Feldes ist auch ein häufiges Verfahren, zum Beispiel
im Fernsehbereich. Das Feld der Pixelwerte, die auf den Bildschirm abgebildet werden, wird oft als Bitmap oder
Pixmap bezeichnet.

[0010] Ein Problem, das mit Rastergrafikgeräten verbunden ist, ist der Speicher, der zum Speichern der
Bitmap benötigt wird, selbst für ein einziges Bild. Das System kann zum Beispiel 3,75 MByte (MB) des RAM
benötigen, um eine Anzeigeauflösung von 1280 × 1024 (d.h. Zahl Pixelspalten und -reihen) und 24 Bit Farbin-
formationen pro Pixel zu unterstützen. Diese Informationen, die wieder das Bild eines einzigen Bildschirms re-
präsentieren, werden in einem Abschnitt des Anzeigespeichers des Computers gespeichert, der als Bildpuffer-
speicher bekannt ist.

[0011] Ein weiteres Problem bei konventionellen Rastergrafikgeräten, wie zum Beispiel Bildschirmröhren, ist
das relativ schnelle Abklingen des Lichts, das von dem Gerät abgegeben wird. In Folge dessen muss die An-
zeige normalerweise mit einer Rate, die bei etwa 60 Hz oder mehr liegt, wiederholt werden (d.h. das Raster
neu abgetastet werden), um ein „Flackern" des Bildes zu vermeiden. Dies stellt eine strenge Forderung für das
Bilderzeugungssystem dar, um Bilddaten mit einer festen Rate zu liefern. Einige Systeme gehen dieses Pro-
blem durch Einsatz von zwei Bildpufferspeichern an, wobei einer der Pufferspeicher mit Pixmap-Informationen
aktualisiert wird, die dem nachfolgenden Bild entsprechen, während der andere Pufferspeicher zum Wieder-
anzeigen (refresh) des Bildschirms mit dem Pixmap für das aktuelle Bild verwendet wird.

[0012] Die Forderungen, die an das System gestellt werden, werden weiter durch die Komplexität der Infor-
mationen verschärft, die oft verarbeitet werden müssen, um ein Bild des Objektes, das vom Anwendungsmo-
dell gespeichert wird, wiederzugeben. Zum Beispiel ist das Modellieren einer dreidimensionalen Oberfläche an
sich schon eine komplexe Aufgabe. Die Oberflächenmodellierung wird durch das Anwendungsmodell ausge-
führt und kann die Verwendung von Polygongittern, parametrischen Oberflächen oder quadratischen Oberflä-
chen beinhalten. Während eine gekrümmte Fläche durch ein Gitter von ebenen Polygonen repräsentiert wer-
den kann, hängt die „Glattheit" ihres Aussehens im wiedergegebenen Bild sowohl von der Auflösung der An-
zeige als auch von der Zahl der einzelnen Polygone ab, die zum Modellieren der Fläche verwendet werden.
Die Berechnungen, die mit der hochauflösenden Modellierung von komplexen Oberflächen auf der Basis von
Polygongittern verknüpft sind, können äußerst ressourcenintensiv sein.

[0013] Wie oben angedeutet, gibt es ein Bedürfnis, realistischere und interaktivere Bilder zu erzeugen. Der
Begriff „Echtzeit" wird häufig dazu verwendet, interaktive und realistische Bildverarbeitungssysteme zu be-
schreiben. In einem „Echtzeit"-System sollte der Nutzer eine kontinuierliche Bewegung von Objekten in einer
Szene wahrnehmen. In einem Videospiel, das Echtzeitfähigkeiten besitzt, sollten die handelnden Personen
und der Blickpunkt mit minimaler Verzögerung auf die Eingaben eines Nutzers reagieren und sollten sich flüs-
sig bewegen.

[0014] Um solche Echtzeiteffekte zu erzeugen, muss ein Bildwiedergabesystem ein neues Bild mit einer aus-
reichend hohen Rate generieren, so dass der Nutzer eine kontinuierliche Bewegung von Objekten in einer Sze-
ne wahrnimmt. Die Rate, mit der ein neues Bild für die Anzeige berechnet wird, wird als „rechnerische" Rate
oder als „rechnerische Bildrate" bezeichnet. Die rechnerische Rate, die benötigt wird, realistische Effekte zu
erreichen, variiert je nachdem, wie schnell sich Objekte durch die Szene bewegen und wie schnell sich die
Sichtperspektive ändert. Für eine typische Anwendung berechnet ein Echtzeit-Grafiksystem ein neues Bild
mindestens zwölf mal pro Sekunde neu, um eine Reihe von Bildern zu erzeugen, die eine kontinuierliche Be-
wegung simulieren. Für hochwertige Animationsanwendungen muss jedoch die rechnerische Rate beträchtlich
höher sein.

[0015] Ein weiteres kritisches Problem für Echtzeitsysteme ist die Transportverzögerung. Die Transportver-
zögerung ist die Zeit, die zum Berechnen und Anzeigen eines Bildes als Reaktion auf die Eingabe vom Nutzer,
d.h. Bewegung eines Joysticks, um eine Person in einer Szene zu bewegen, benötigt wird. In dem Maße, in
dem die Transportverzögerungszeit für einen Nutzer merklich ist, gibt es eine Beeinträchtigung der „Echt-
zeit"-Interaktivität. Im idealen Fall sollte der Nutzer keine Transportverzögerung wahrnehmen. In der Praxis je-
3/147

DE 696 36 599 T2 2007.08.23
doch gibt es immer eine gewisse Verzögerung, die auf die Wiedergabe von Objekten in einer Szene als Reak-
tion auf neue Eingaben und die Erzeugung eines Anzeigebildes zurückzuführen ist. Verbesserungen der Echt-
zeitinteraktivität, ohne Daten zu verwerfen, was die Bildqualität stören kann, sind sehr erwünscht.

[0016] Wie oben angeführt, umfassen konventionelle Grafiksysteme normalerweise einen Bildpufferspeicher.
Zum Erzeugen eines Bildes gibt das Grafiksystem alle Objekte einer Szene wieder und speichert das resultie-
rende Bild in diesem Bildpufferspeicher. Das System überträgt dann die wiedergegebenen Bilddaten auf eine
Anzeige. In einer konventionellen Grafikarchitektur wird der gesamte Bildpufferspeicher gelöscht und die Sze-
ne wird neu wiedergegeben, um ein nächstes Bild zu erzeugen. Bei dieser Art von System muss jedes Objekt
für jedes Bild neu gezeichnet werden, weil der Bildpufferspeicher zwischen den Bildern gelöscht wird. Daher
wird jedes Objekt mit derselben Rate aktualisiert, ungeachtet seiner tatsächlichen Bewegung in der Szene
oder seiner Bedeutung für die spezielle Anwendung.

[0017] Diese konventionelle Architektur stellt mehrere Hürden für die Erzeugung sehr realistischer und inter-
aktiver Grafiken auf. Erstens wird jedes Objekt in einer Szene für ein bestimmtes Bild mit derselben Priorität
bei derselben Aktualisierungsrate wiedergegeben. Objekte im Hintergrund, die als solche wenige Details ha-
ben und sich nicht bewegen, werden mit derselben Rate wiedergegeben wie Objekt im Vordergrund, die sich
schnell bewegen und mehr Oberflächendetails aufweisen. Im Ergebnis dessen werden Verarbeitungs- und
Speicherressourcen beim erneuten Wiedergeben von Hintergrundobjekten verbraucht, selbst wenn diese Hin-
tergrundobjekte sich nicht wesentlich von Bild zu Bild unterscheiden.

[0018] Ein weiterer Nachteil bei dieser konventionellen Architektur ist, dass jedes Objekt in der Szene mit der-
selben Auflösung wiedergegeben wird. Effektiv stehen die Wiedergaberessourcen, die bei dieser Art von An-
satz verbraucht werden, in Beziehung zur Größe des Bildschirmfläche, die das Objekt belegt, und nicht mit der
Bedeutung des Objektes für die Gesamtszene. Mit einem Beispiel lässt sich dieses Problem besser illustrieren.
In einem typischen Videospiel gibt es handelnde Personen im Vordergrund, die sich bei jedem Bild ändern kön-
nen, und einen Hintergrund, der sich selten von Bild zu Bild ändert. Die Kosten für das Erzeugen des Hinter-
grundes in Form von Speichernutzung sind viel größer als für das Erzeugen der handelnden Personen, weil
der Hintergrund viel mehr Fläche auf dem Bildschirm einnimmt. Bilddaten müssen für jede Pixelstelle gespei-
chert werden, die Hintergrundobjekte belegen. Für die kleineren handelnden Personen jedoch werden Pixel-
daten nur für die Pixel erzeugt und gespeichert, die von den kleineren Personen belegt werden. In Folge des-
sen belegt der Hintergrund mehr Speicher, obwohl er eine geringere Bedeutung in der Szene besitzt. Außer-
dem muss in einer konventionellen Architektur der gesamte Hintergrund neu für jedes Teilbild wiedergegeben
werden, was wertvolle Verarbeitungsressourcen verbraucht.

[0019] Eine wesentliche Stärke des Ansatzes mit dem Bildpufferspeichers ist, dass er zum Aufbau eines be-
liebigen Bildes auf einem Ausgabegerät mit einer beliebigen Zahl von Grundobjekten verwendet werden kann,
die nur der Begrenzung durch räumliche und Intensitätsauflösung des Ausgabegerätes unterliegt. Es gibt je-
doch mehrere Schwachpunkte bei einem Grafiksystem, das einen Bildpufferspeicher verwendet.

[0020] Ein Bildpufferspeicher verwendet eine große Menge von teurem Speicher (z.B. 64-128 MB). Normaler
Direktzugriffsspeicher (RAM) ist für Bildpufferspeicher wegen seiner niedrigen Zugriffsgeschwindigkeit nicht
geeignet. Zum Beispiel dauert das Löschen der Millionen Pixel auf einem 1024 × 1024 großen Bildschirm etwa
¼ Sekunde, wenn man annimmt, dass jeder Speicherzyklus 250 Nanosekunden dauert. Daher wird normaler-
weise schnellerer und teurerer Video-RAM (VRAM) oder dynamischer RAM (DRAM) für Bildpufferspeicher ver-
wendet. Hochleistungssysteme enthalten oft zwei teure Bildpufferspeicher: Ein Bildpufferspeicher wird zur An-
zeige des aktuellen Teilbildes verwendet, während der andere zum Wiedergeben des nächsten Teilbildes ver-
wendet wird. Diese große Menge an speziellem Speicher erhöht die Kosten des Grafiksystems dramatisch.

[0021] Speicherbandbreite für Bildpufferspeicher ist ebenfalls ein Problem. Die Unterstützung der Verarbei-
tung eine Grafikbildes mit Strukturierungs-, Farb- und Tiefeninformationen, die für jedes Pixel gespeichert sind,
erfordert eine Bandbreite von etwa 1,7 Gigabyte pro Sekunde für die Verarbeitung eines Bildes bei 30 Hz. Da
ein typischer DRAM nur eine Bandbreite von 50 MB/s hat, muss ein Bildpufferspeicher aus einer großen Zahl
von DRAMs aufgebaut werden, die mit Parallelverarbeitungsverfahren verarbeitet werden, um die gewünschte
Bandbreite zu erreichen.

[0022] Um interaktive Echtzeiteffekte zu erreichen, verwenden High-End-Grafiksysteme parallele Rende-
ring-Engines. Es sind drei grundlegende Parallelstrategien entwickelt worden, um die Probleme mit großem
Bildpufferspeicher zu lösen: (1) Pipelineverarbeitung des Wiedergabeprozesses über mehrere Prozessoren;
(2) Aufteilen des Bildpufferspeichers in Gruppen von Speicherchips, jede mit ihrem eigenen Prozessor, und (3)
4/147

DE 696 36 599 T2 2007.08.23
Kombinieren der Verarbeitungsschaltkreise auf den Bildpufferspeicherchips mit dichten Speicherschaltkreisen.
Diese Verfahren haben die Verarbeitung von Grafiksystemen unter Verwendung von großen Bildpufferspei-
chern verbessert, haben aber auch die Kosten dieser Systeme dramatisch ansteigen lassen.

[0023] Selbst mit teuren Parallelverarbeitungsverfahren ist es sehr schwierig, das ausgeklügelte Anti-Ali-
asing-Verfahren zu unterstützen. Anti-Aliasing betrifft Prozesse zum Reduzieren von Artefakten in einem wie-
dergegebenen Bild, das durch die Darstellung kontinuierlicher Flächen mit diskreten Pixeln verursacht wird. In
typischen Bildpufferspeicherarchitekturen werden Pixelwerte für ein ganzes Teilbild in beliebiger Reihenfolge
berechnet. Zur Ausführung des ausgeklügelten Anti-Aliasing müssen daher Pixeldaten für das ganze Teilbild
erzeugt werden, bevor das Anti-Aliasing beginnen kann. In einem Echtzeitsystem gibt es nicht ausreichend
Zeit, das Anti-Aliasing auf die Pixeldaten anzuwenden, ohne eine zusätzliche Transportverzögerung zu erhal-
ten. Außerdem erfordert das Anti-Aliasing zusätzlichen Speicher zur Speicherung von Pixelfragmenten. Da ein
Bildpufferspeicher eine große Menge an teurem Speicher umfasst, wird durch den zusätzlichen Spezialspei-
cher, der zur Unterstützung des Anti-Aliasing benötigt wird, das Bildpufferspeichersystem noch teurer.

[0024] Bildkomprimierungsverfahren können ebenfalls nicht ohne weiteres in einem Grafiksystem unter Ver-
wendung eines Bildpufferspeichers während der Bildverarbeitung eingesetzt werden. Durch die Verwendung
von Parallelverarbeitungsverfahren zur Beschleunigung der Verarbeitung in einem Grafiksystem mit einem
Bildpufferspeicher werden Hürden für den Einsatz von Komprimierungsverfahren aufgebaut. Während der Pa-
rallelverarbeitung kann auf jeden Teil des Bildpufferspeichers direkt zu jeder Zeit zugegriffen werden. Die meis-
ten Bildkomprimierungsverfahren erfordern, dass Bilddaten sich während der Komprimierungsverarbeitung
nicht ändern, so dass die Bilddaten später dekomprimiert werden können.

[0025] In Bildpufferspeicherarchitekturen wird der teure Speicher und die Parallelverarbeitungshardware im-
mer zu wenig ausgenutzt, weil nur ein kleiner Bruchteil des Bildpufferspeichers oder der Parallelverarbeitungs-
einheiten zu einem beliebigen Zeitpunkt aktiv eingesetzt wird. Daher wird, obwohl eine Bildpufferspeicherar-
chitektur eine große Menge an teurem Speicher und Verarbeitungshandware umfasst, diese Hardware nicht
vollständig ausgenutzt.

KURZDARSTELLUNG DER ERFINDUNG

[0026] Die Erfindung stellt ein Verfahren und System zur Wiedergabe von grafischen Daten bereit, wie zum
Beispiel geometrische Grundelemente zur Erzeugung von Anzeigebildern. Die Erfindung ist besonders gut für
die Wiedergabe von 3D-Grafiken in Echtzeit geeignet, kann aber auch auf andere Grafik- und Bildverarbei-
tungsanwendungen angewendet werden.

[0027] In einer Implementierung des Grafikwiedergabesystems gibt das System getrennt grafische Objekte
in Bildschichten, die Gsprites genannt werden, wieder und setzt dann die Gsprites zu einem Anzeigebild zu-
sammen. Genauer gesagt, weist das System Gsprites Objekten zu und rendert dann jedes Objekt oder Objekte
in ein entsprechendes Gsprite. Um ein Gsprite zu rendern, gibt das System Bildregionen oder Chunks des
Gsprites nacheinander wieder. Das System unterteilt Gsprites in Chunks, sortiert die Objektgeometrie in die-
sen Chunks und gibt dann diese Chunks nacheinander wieder. Das System setzt die Gsprites zu einem An-
zeigebild zusammen.

[0028] Ein Aspekt der Erfindung ist die Art, wie Gsprites transformiert werden können, um die Bewegung ei-
nes 3D-Objekts zu simulieren und den zusätzlichen Aufwand für die Wiedergabe zu reduzieren. In einer Imp-
lementierung rendert das System Objekte in einer Szene in separate Gsprites. Nach dem Rendern eines Ob-
jektes in ein Gsprite kann das System den Gsprite für nachfolgende Teilbilder wieder verwenden, statt das Ob-
jekt neu zu rendern. Um dies zu erreichen, berechnet das System eine affine Transformation, die die Bewe-
gung des 3D-Objektes simuliert, das der Gsprite repräsentiert. Das System führt eine affine Transformation am
Gsprite aus und setzt diesen Gsprite mit anderen Gsprites zusammen, um ein Anzeigebild zu erzeugen.

[0029] Ein weiterer Aspekt der Erfindung ist die Art, wie das System Pixelfragmente für Chunks von Bilddaten
verarbeitet. Das System rastert Grundelemente für einen Chunk, um Pixeldaten für Pixelorte zu erzeugen, die
von einem Grundelement entweder vollständig oder teilweise bedeckt werden. In Fällen, in denen ein Grund-
element einen Pixelort teilweise bedeckt oder Lichtdurchlässigkeit besitzt, erzeugt das System ein Pixelfrag-
ment und speichert das Fragment in einem Fragmentpuffer. In Fällen, in denen ein Grundelement einen Pi-
xelort vollständig bedeckt und lichtundurchlässig ist, speichert das System seine Farbdaten in einem Pixelpuf-
fer. Das System rastert Grundelemente für einen Chunk und löst dann die Pixeldaten für den Chunk in einem
Nachverarbeitungsschritt auf. Die Architektur zum Rendern von Chunks ermöglicht die Ausführung eines aus-
5/147

DE 696 36 599 T2 2007.08.23
geklügelten Anti-Aliasing an den Pixeldaten, während gleichzeitig Anzeigebilder in Echtzeitraten erzeugt wer-
den.

[0030] Ein weiterer Aspekt der Erfindung ist die Art, wie das Rasterprogramm im System Fragmentspeicher
dadurch sparen kann, dass versucht wird, ein erzeugtes Pixelfragment mit einem Fragment zu vereinen, das
im Fragmentpuffer gespeichert ist. Wenn ein gespeichertes Fragment innerhalb einer vorgegebenen Tiefen-
und Farbtoleranz des erzeugten Fragmentes liegt, vereint eine Pixelengine im System die Fragmente. Die Pi-
xelengine vereint die Fragmente zum Teil durch Kombinieren der Bedeckungsdaten (z.B. eine Bedeckungs-
maske) des erzeugten und des gespeicherten Fragments. Wenn das vereinte Pixelfragment voll abgedeckt
und lichtundurchlässig ist, kann die Pixelengine es zu einem entsprechenden Pixelpuffereintrag verschieben
und den Fragmentsatz aus dem Fragmentspeicher lösen.

[0031] Noch ein weiterer Aspekt der Erfindung ist die Art, wie das Fragmentauflösungssubsystem Listen von
Fragmentsätzen auflöst. Bei einem Ansatz hat ein Fragmentauflösungssubsystem separate Farb- und Alpha-
zwischenspeicher für jeden einzelnen Subpixelort eines Pixels, und es speichert die Farbe an jedem Subpi-
xelort separat. Das Subsystem umfasst die Logik zum Kombinieren der zwischengespeicherten Farbe von je-
dem Subpixelort, um ein endgültiges Ausgabepixel zu berechnen. Bei einem anderen Ansatz hält sich das
Fragmentauflösungssubsystem über die Subpixelregionen auf dem laufenden, die einen gemeinsamen zwi-
schengespeicherten Alphawert haben, wenn jeder Fragmentsatz in einer nach der Tiefe sortierten Liste der
Fragmente aufgelöst wird. Dieses Fragmentauflösungssubsystem berechnet die zwischengespeicherte Farbe
für die Regionen innerhalb eines Pixels (Pixelregionen), die ein gemeinsames zwischengespeichertes Alpha
besitzen. Nach dem Auflösen jedes Fragmentes in einer Liste ist die Ausgabe beider Ansätze eine Ausgabe-
pixel, das einen einzelnen Satz von Farbwerten (RGB) und möglicherweise einen Alphawert besitzt. Für jeden
Pixelort kombiniert das Fragmentauflösungssubsystem die Farbwerte im Pixelpuffer mit allen Fragmentsätzen
in einer zugehörigen Fragmentliste, um einen aufgelösten Pixelwert, einschließlich zum Beispiel von
RGB-Farbwerten und einem Alphawert, zu berechnen.

[0032] Ein weiterer Aspekt der Erfindung ist ein Verfahren zur Ausführung einer anisotropen Filterung. Bei der
Texturabbildung im allgemeinen bildet ein grafisches Renderingsystem eine Texturabbildung auf die Fläche ei-
nes geometrischen Grundelementes ab. Bei diesem speziellen Verfahren beginnt das System damit festzustel-
len, wie ein Punkt an einem Pixelort im Betrachtungsraum sich auf die Texturkarte abbildet. Konzeptionell be-
stimmt das System, wie sich ein Filterabdruck auf die Texturkarte abbildet. Für eine perspektivische Abbildung
hat ein isotroper Filterabdruck, der in die Texturkarte abgebildet ist, eine verformte Gestalt in Richtung der An-
isotropie. Daher ist das Filtern der Textur mit einem anisotropen Filter nicht ausreichend, um hochwertige Er-
gebnisse zu erhalten. In einer speziellen Ausführungsform bestimmt das System, wie ein Filterabdruck sich in
die Textur abbildet, indem die inverse Jacobi-Matrix für einen Pixelort in Betrachtungsraumkoordinaten (z.B.
Bildschirmkoordinaten), die auf Texturkoordinaten abgebildet sind, berechnet wird.

[0033] Das System bestimmt dann eine Anisotropielinie von dem abgebildeten Filterabdruck und bestimmt
speziell in dieser einen Ausführungsform die Anisotropielinie von der inversen Jacobi-Matrix. Die Anisotropie-
linie ist begrifflich eine Linie, die durch die Koordinaten des Punktes läuft, der aus dem Betrachtungsraum in
den Texturraum abgebildet wird und in Richtung der maximalen Ausdehnung des abgebildeten Filterabdrucks
ausgerichtet ist. Das System wendet den Filter wiederholt entlang der Anisotropielinie an, um Werte aus der
Texturkarte zu prüfen. Die Ausgabewerte dieses wiederholten Filtrationsschritts werden gefiltert und gesam-
melt, um endgültige Texturwerte zu berechnen. Es gibt eine Reihe von Variationen zu dieser Vorgehensweise.
In einer speziellen Implementierung führt das System eine trilineare Interpolation entlang der Anisotropielinie
aus. Die Ausgabe des trilinearen Filters wird dann kombiniert, um einen einzelnen Satz von Farbwerten für ei-
nen Pixelort zu berechnen. Bei dieser Implementierung wendet eine Texturfilter-Engine einen eindimensiona-
len Filter, zum Beispiel in Form eines Dreiecks oder Trapezoids, auf die Ausgabewerte der dreilinigen Interpo-
lation entlang der Anisotropielinie an. Bei Verwendung dieses Verfahrens ist jedoch eine Reihe von Variationen
an den Filtern, die entlang der Anisotropielinie angewendet werden, möglich.

[0034] Ein weiterer Aspekt der Erfindung ist die Art, wie das System kleine Teile eines Bildes rendern kann,
falls der Fragmentspeicher überläuft. In einer Implementierung verfolgt das System die Verwendung des
Fragmentspeichers und kann eine Bildregion in kleinere Teile aufteilen, wenn die Zahl der verwendeten Frag-
menteinträge einen vorgegebenen Wert erreicht. Wenn das System Pixelfragmente erzeugt, verfolgt es die
Zahl der Einträge in den Fragmentpuffer. Wenn die Zahl der Einträge einen vorgegebenen Wert erreicht, wird
die Bildregion in kleinere Regionen unterteilt und rendert die kleineren Regionen jeweils eine mit einem Mal,
so dass ausreichend Fragmentspeicher zur Verfügung steht, um jede Teilregion zu rendern. Das System kann
eine Teilregion in noch kleinere Bildregionen aufteilen, wenn die Zahl der Fragmenteinträge den vorgegebenen
6/147

DE 696 36 599 T2 2007.08.23
Wert erreicht. Im Ergebnis dessen kann das System die Bildregion, die gerade gerendert wird, unterteilen, um
sicherzustellen, dass der Fragmentspeicher nicht überschritten wird. Dies ermöglicht dem System, einen klei-
neren Fragmentspeicher einzusetzen, ohne Fragmente zu verwerfen, wo anderenfalls der Fragmentspeicher
überlaufen würde.

[0035] Ein weiterer Aspekt der Erfindung ist die Art, wie das System Texturabrufoperationen in Umgebungen
mit hoher Latenz ausführt. Zum Beispiel gibt es bei Texturabbildung, Schattenbildung (shadowing) oder Mehr-
fachdurchlauf-Renderingoperationen oft eine hohe Verzögerungszeit bzw. Latenz beim Abrufen der Texturda-
ten, um die Operation auszuführen. Diese Verzögerungszeit kann wegen der Verzögerung, die beim Lesen von
Daten aus dem Speicher auftritt, der Verzögerung, die beim Dekomprimieren von Texturdaten auftritt, oder we-
gen beidem entstehen.

[0036] In einer Implementierung werden geometrische Grundelemente in einem Eingabedatenstrom in einer
Grundelementeschlange gespeichert, die ausreichend lang ist, um die Verzögerungszeit des Abrufens eines
Blocks von Texturdaten aus dem Speicher aufzufangen. Eine Vorrastervorrichtung wandelt die geometrischen
Grundelemente in der Grundelementewarteschlange in Texturblockreferenzen um, die in einer zweiten Schlan-
ge gespeichert werden. Die Texturblöcke, auf die in dieser zweiten Schlange verwiesen wird, werden aus dem
Speicher abgerufen und in einen Texturcache gebracht. Nacheinander rastert eine Postrastervorrichtung jedes
Grundelement in der Schlange. Wenn jedes Grundelement gerastert ist, werden Texturdaten aus dem Tex-
turcache nach Bedarf abgerufen, um die Ausgabepixel für das aktuelle Grundelement zu berechnen. Die Grun-
delemente werden aus der Schlange entfernt, nachdem sie gerastert sind.

[0037] In einer zweiten Implementierung werden Grundelemente gerastert und die resultierenden Pixeldaten
werden in eine Schlange gebracht, die ausreichend lang ist, um die Verzögerungszeit des Abrufens eines Tex-
turblocks aufzufangen. In einer speziellen Implementierung umfassen die Einträge in der Schlange eine Pixe-
ladresse, Farbdaten für diese Adresse und eine Texturanforderung, die aus dem Mittelpunkt einer Texturprobe
in den Koordinaten einer Texturkarte besteht. Die Texturanforderungen werden in Texturblockadressen umge-
wandelt und die Texturblöcke werden abgerufen und in einen Texturcache gebracht. Die Einträge in der
Schlange werden aus der Schlange abgerufen und zugehörige Texturdaten, die sich nun im Texturcache be-
finden, werden dazu verwendet, Ausgabepixel zu berechnen. Beide Vorgehensweisen erzeugen zwei Sätze
von Textanforderungen, wobei jeder Satz gegenüber dem anderen verzögert ist. Der erste Satz wird dazu ver-
wendet, die Texturdaten tatsächlich abzurufen und möglicherweise zu dekomprimieren, und der zweite Satz
wird dazu verwendet, Texturdaten aus einem Texturcache zu holen.

[0038] Weitere Merkmale und Vorteile der Erfindung werden bei Bezugnahme auf die folgende ausführliche
Beschreibung und die begleitenden Zeichnungen erkennbar.

KURZBESCHREIBUNG DER ZEICHNUNGEN

[0039] Fig. 1 ist ein Schema eines Bildverarbeitungssystems.

[0040] Fig. 2 ist ein Schema der Systemumgebung für eine Ausführungsform der Erfindung.

[0041] Fig. 3 ist ein Schema der Systemarchitektur für eine Ausführungsform.

[0042] Fig. 4A ist ein Schema der Bildverarbeitungshardware für eine Ausführungsform.

[0043] Fig. 4B ist ein Schema, das Teile eines Bildprozessors zum Rendern der geometrischen Grundele-
mente in einer Ausführungsform zeigt.

[0044] Die Fig. 5A und Fig. 5B sind Flussdiagramme, die einen Überblick über den Renderingprozess in ei-
ner Ausführungsform illustrieren.

[0045] Fig. 6 ist ein Flussdiagramm, das einen Überblick über den Anzeigeerzeugungsprozess einer Ausfüh-
rungsform illustriert.

[0046] Fig. 7 ist ein Diagramm, das einen Aspekt der Anzeigeerzeugung bezüglich der Teilbildperioden in ei-
ner Ausführungsform illustriert.

[0047] Fig. 8 ist ein Schema eines Digitalen Signalprozessors (DSP) in einer Ausführungsform.
7/147

DE 696 36 599 T2 2007.08.23
[0048] Die Fig. 9A-C sind Schemata, die alternative Ausführungsformen eines Tilers illustrieren.

[0049] Fig. 10 ist ein Schema, das ein System für den Zugriff auf Texturdaten aus dem Speicher illustriert.

[0050] Fig. 11 ist ein Schema, das ein System für den Zugriff auf Texturdaten aus dem Speicher illustriert.

[0051] Die Fig. 12A-B sind Schemata alternativer Implementierungen einer Gsprite-Engine.

[0052] Fig. 13 ist ein Schema eines Zusammensetzungspuffers in einer Ausführungsform.

[0053] Fig. 14 ist ein Schema eines Digital-Analog-Converters (DAC) in einer Ausführungsform.

[0054] Die Fig. 15A-C sind Diagramme eines Beispiels, das einen Aspekt des Chunking illustriert.

[0055] Die Fig. 16A-B sind Schemata, die Aspekte des Chunking in einer Ausführungsform illustrieren.

[0056] Die Fig. 17A-B sind Flussdiagramme, die Aspekte des Chunking in einer Ausführungsform illustrieren.

[0057] Die Fig. 18A-B sind Schemata, die Aspekte des Chunking in einer Ausführungsform illustrieren.

[0058] Die Fig. 19A-B sind Schemata, die Aspekte des Chunking in einer Ausführungsform illustrieren.

[0059] Fig. 20 ist ein Schema, das die Bildkompression in einer Ausführungsform illustriert.

[0060] Die Fig. 21A-B sind Flussdiagramme, die die Verarbeitung von Gsprites in einer Ausführungsform il-
lustrieren.

[0061] Fig. 22 ist ein Flussdiagramm, das einen Aspekt eines Verfahrens zur Ausführung von Gsprite-Trans-
formationen in einer Ausführungsform illustriert.

[0062] Fig. 23 ist ein Diagramm, das illustriert, wie Gsprite-Transformationen die Transportverzögerung in ei-
ner Ausführungsform reduzieren können.

[0063] Fig. 24 ist ein Schema von Gsprite-Datenstrukturen in einer Ausführungsform.

[0064] Fig. 25 ist ein Diagramm, das ein Beispiel eines Gsprites, der auf Ausgabegerätekoordinaten abgebil-
det wird, in einer Ausführungsform illustriert.

[0065] Fig. 26 ist ein Flussdiagramm, das einen Aspekt der Anzeigeerzeugung in einer Ausführungsform il-
lustriert.

[0066] Fig. 27 ist ein Flussdiagramm, das die Anzeigeerzeugung von Fig. 26 in Bezug auf die Bandperioden
illustriert.

[0067] Die Fig. 28A-F sind Flussdiagramme, die Aspekte der Pixel- und Fragmenterzeugung in drei alterna-
tiven Ausführungsformen illustrieren.

[0068] Fig. 29 ist ein Flussdiagramm eines Verfahrens zum Verschmelzen von Fragmenten in einer Ausfüh-
rungsform der Erfindung.

[0069] Fig. 30 ist ein Schema, das eine Implementierung von Fragmentverschmelzungsschaltkreisen in einer
Ausführungsform der Erfindung illustriert.

[0070] Fig. 31 ist ein Schema, das eine Implementierung eines Verschmelzungstestmoduls in den Fragment-
verschmelzungsschaltkreisen illustriert, die in Fig. 30 gezeigt werden.

[0071] Fig. 32 ist ein Diagramm, das einen Teil des Pixel- und Fragmentpuffers illustriert.

[0072] Fig. 33 ist ein Diagramm, das diese hierarchische Zerlegung abbildet.
8/147

DE 696 36 599 T2 2007.08.23
[0073] Die Fig. 34A-B ist ein Flussdiagramm, das ein Verfahren zur Pufferzerlegung im Tiler illustriert.

[0074] Fig. 35 ist ein Schema, das eine Implementierung eines Fragmentauflösungs-Teilsystems illustriert.

[0075] Fig. 36 ist ein Schema, das eine weitere Implementierung eines Fragmentauflösungs-Teilsystems il-
lustriert.

[0076] Fig. 37 ist ein Diagramm, das die Texturabbildung illustriert.

[0077] Die Fig. 38A-D sind Schemata, die ein Verfahren zur anisotropen Filterung in einer Ausführungsform
illustrieren.

[0078] Fig. 39 ist ein Schema, das eine Implementierung eines Textur- und Schattenfilters illustriert.

[0079] Fig. 40 ist ein Schema, das eine Implementierung des Keygenerators in Fig. 39 illustriert.

[0080] Fig. 41 ist ein Schema, das eine Implementierung des Farbinterpolators in Fig. 39 illustriert.

[0081] Fig. 42 ist ein Schema, das eine Implementierung des Schattenfilterakkumulators in Fig. 39 illustriert.

[0082] Fig. 43 ist ein Schema, das eine Implementierung des Akkumulators und Postprozessors in Fig. 39
illustriert.

AUSFÜHRLICHE BESCHREIBUNG

Systemübersicht

[0083] In der folgenden detaillierten Beschreibung beschreiben wir mehrere Ausführungsformen unter Bezug-
nahme auf ein Bildverarbeitungssystem.

[0084] Das Bildverarbeitungssystem unterstützt Echtzeit-Bild-Rendering und -Erzeugung sowohl für Grafik-
als auch Videoverarbeitung. Auf Grund der neuartigen Architektur und Bildverarbeitungsverfahren, die im Sys-
tem eingesetzt werden, kann es hoch entwickelte Echtzeit-3D-Animationen bei beträchtlichen Kosteneinspa-
rungen gegenüber derzeitigen Grafiksystemen erzeugen. Neben der Grafikverarbeitung unterstützt das Sys-
tem die Videoverarbeitung, wie zum Beispiel Videoeditieranwendungen, und kann auch Video und Grafik kom-
binieren. Das System kann zum Beispiel dazu benutzt werden, Video auf grafische Objekte anzuwenden, oder
umgekehrt kann es eingesetzt werden, um grafische Objekte zu Videodaten hinzuzufügen.

[0085] Das System unterstützt eine breite Palette von interaktiven Anwendungen. Mit seiner Fähigkeit, fort-
geschrittene Echtzeitanimation zu unterstützen, ist es gut für Spiele, Erziehungsanwendungen und viele inter-
aktive Anwendungen geeignet. Das System unterstützt hochentwickelte Nutzerschnittstellen, einschließlich
3D-Grafik oder eine Kombination von Grafik und Video.

[0086] Durch Verbesserung der begrenzten Grafikfähigkeiten der heutigen Fensterdarstellungsumgebungen
für Personal Computer kann das System verbesserte grafische 3D-Nutzerschnittstellen für Anwendungen un-
terstützen, die von der Büroinformationsverarbeitung auf Desktop-Computern bis zu interaktiven Fernsehan-
wendungen in einer Set-Top-Box reichen. Das System nutzt Speicher- und Prozessorzeit sehr effizient und
kann daher eine beeindruckende Bildverarbeitung und -anzeige liefern, ohne die Ausführung der Anwendung
oder die Reaktionsfähigkeit der Nutzerschnittstelle auf Nutzeraktionen ungebührlich zu behindern.

[0087] Fig. 1 ist ein Schema des Bildverarbeitungssystems 100. Das Bildverarbeitungssystem umfasst eine
Bilddatenquelle und -speicher 102, einen Bildpräprozessor 104, einen Bildprozessor 106 und eine Anzeigevor-
richtung 108, wenn eine sofortige Anzeige von gerenderten Bildern gewünscht wird. Die Elemente im System
kommunizieren durch eine Systemschnittstelle 110. Die Bilddatenquelle und -speicher 102 liefert Bilddaten an
das System und speichert Bilddaten und Befehle. Der Bildpräprozessor 104 ist für die Handhabung der Bild-
daten verantwortlich, durch die sie auf das Rendern vorbereitet werden. Beispiele für Präprozessorfunktionen
sind u.a.: Definieren von Objekten im Hinblick auf geometrische Modelle, Definieren von Beleuchtungs- und
Schattenbildungsmodelle, Bestimmen von Objektorten, Bestimmen des Orts eines Betrachtungspunktes und
von Lichtquellen und Geometrieverarbeitung.
9/147

DE 696 36 599 T2 2007.08.23
[0088] Der Bildprozessor 106 rendert die Bilder und erzeugt ein Anzeigebild, das auf der Anzeigevorrichtung
108 angezeigt werden soll. Rendern bezieht sich auf den Prozess der Erzeugung von Bildern aus Modellen
und umfasst solche Funktionen wie Geometrieverarbeitung (man beachte, dass die Geometrieverarbeitung
auch eine Vorverarbeitungsfunktion sein kann), Bestimmung sichtbarer Flächen, Scankonversion und Be-
leuchtung, um nur ein paar zu nennen. Nach dem Rendern eines Bildes oder von Teilen eines Bildes überträgt
der Bildprozessor 106 die gerenderten Bilddaten auf die Anzeigevorrichtung zur Anzeige.

[0089] Unten beschreiben wir mehrere Merkmale des Bildverarbeitungssystems 100 im Detail unter Bezug-
nahme auf spezielle Hardware- und Software-Architektur. Es ist jedoch wichtig zu bemerken, dass die Bildver-
arbeitung, die unten beschrieben wird, in einer Reihe von alternativen Architekturen implementiert werden
kann.

[0090] Das Bildverarbeitungssystem 100 erreicht eine riesige Verbesserung des Preis-Leistungsverhältnis-
ses gegenüber hochwertigen 3D-Grafiksystemen, die den Erfindern bekannt sind. Eine Reihe von Fortschritten
in der Computergrafik trägt zu dieser Verbesserung bei. Zu diesen Fortschritten gehören: zusammengesetzte
Bildschichten, Bildkompression, Chunking und Mehrfachrendering. Wir stellen diese Fortschritte hier vor und
beschreiben detaillierter diese und andere Fortschritte unten.

Zusammengesetzte Bildschichten (Gsprites)

[0091] In unserem System können mehrere unabhängige Bildschichten bei Videoraten zusammengesetzt
werden, um das Ausgabevideosignal zu erzeugen. In diese Bildschichten, die wir verallgemeinerte Sprites
oder Gsprites nennen, kann gerendert werden, und sie können unabhängig voneinander manipuliert werden.
Das System verwendet im allgemeinen einen unabhängigen Gsprite für jedes andere nicht durchdringende
Objekt in der Szene. Dies ermöglicht es, jedes Objekt unabhängig zu aktualisieren, so dass die Objektaktuali-
sierungsrate auf der Basis von Prioritäten in der Szene optimiert werden kann. Ein Objekt, zum Beispiel, das
sich im fernen Hintergrund bewegt, braucht nicht so oft oder mit solcher Genauigkeit wie ein Objekt im Vorder-
grund aktualisiert zu werden.

[0092] Gsprites können eine beliebige Größe und Form besitzen. In einer Ausführungsform verwenden wir
rechteckige Gsprites. Pixel im Gsprite haben Farb- und Alpha-Informationen, die mit ihnen verbunden sind, so
dass mehrere Gsprites zusammengesetzt werden können, um die Gesamtszene zu erzeugen.

[0093] An Gsprites können mehrere verschiedene Operationen bei Videoraten ausgeführt werden, ein-
schließlich Skalieren, Rotation, Subpixelpositionierung und Transformationen zur Imitation von Bewegung, wie
zum Beispiel affine Warps. Während also Gsprite-Aktualisierungsraten variabel sind, können Gsprite-Transfor-
mationen (Bewegung usw.) bei vollen Videoraten auftreten, was zu einer viel flüssigeren Dynamik führt, als
durch ein konventionelles 3D-Grafiksystem erreicht werden könnte, das keine Aktualisierungsratengarantien
besitzt.

[0094] Viele 3D-Transformationen können durch 2D-Bildoperationen simuliert werden. Ein sich zurückziehen-
des Objekt kann durch Skalieren der Größe des Gsprites simuliert werden. Durch die Nutzung von 2D-Trans-
formationen für vorher gerenderte Bilder für intermediäre Teilbilder werden die Gesamtverarbeitungsanforde-
rungen beträchtlich reduziert, und die 3D-Renderingleistung kann dort angewendet werden, wo sie benötigt
wird, um Ergebnisse mit höchster Qualität zu erreichen. Dies ist eine Form von zeitlicher Ebene des Detailma-
nagements.

[0095] Durch die Anwendung der Gsprite-Skalierung kann das Niveau der räumlichen Detailliertheit ebenfalls
so angepasst werden, dass es den Prioritäten der Szene entspricht. Hintergrundobjekte, bewölkter Himmel
usw. können zum Beispiel in einen kleinen Gsprite (niedrige Auflösung) gerendert werden, der dann auf die
richtige Größe für die Anzeige skaliert wird. Durch die Nutzung von hochwertiger Filterung sind die typischen
Artefakte bei niedriger Auflösung nicht wahrnehmbar.

[0096] Eine typische 3D-Grafikanwendung (besonders ein interaktives Spiel) verzichtet auf ein hohes Niveau
an geometrischen Details, um höhere Animationsraten zu erreichen. Gsprites ermöglichen dem System, zwei
zusätzliche Szenenparameter zu nutzen – das zeitliche Detailniveau und das räumliche Detailniveau – um die
effektive Ausführung zu optimieren, wie sie vom Nutzer gesehen wird. Die räumliche Auflösung, bei der das
Bild eines Objektes gerendert wird, braucht nicht mit der Bildschirmauflösung übereinzustimmen, mit der es
gerendert wird. Ferner kann das System diese Abstriche automatisch handhaben, ohne Unterstützung durch
die Anwendung zu erfordern.
10/147

DE 696 36 599 T2 2007.08.23
Bildkompression

[0097] Der vielleicht wichtigste Faktor bei der Bestimmung von Systemkosten und -leistung ist der Speicher.
Ein traditionelles Highend-3D-Grafiksystem zum Beispiel hat über 30 MByte Speicher, einschließlich Bildpuf-
ferspeicher (doppelt gepuffert), eines Tiefenpuffers, eines Texturpuffers und eines Anti-Aliasing-Puffers. Und
der größte Teil davon ist spezieller Speicher, der deutlich teurer ist als DRAM. Die Speicherbandbreite ist im-
mer ein kritischer Flaschenhals. Die Kosten für Hochleistungssysteme werden oft durch die Notwendigkeit an-
getrieben, zahlreiche Bänke von verschachteltem Speicher bereitzustellen, um so für eine angemessene
Bandbreite für Zugriffe auf Pixel und Texturdaten zu sorgen.

[0098] Das System wendet weitgehend Bildkompressionstechnologie an, um diese Probleme zu lösen. Tra-
ditionell ist die Bildkompression wegen der rechnerischen Komplexität, die für eine hohe Qualität erforderlich
ist, und weil sie sich nicht leicht in eine konventionelle Grafikarchitektur einfügen lässt, nicht in Grafiksystemen
verwendet worden. Durch die Verwendung eines Konzepts, das wir Chunking nennen (wird unten beschrie-
ben), sind wir in der Lage, die Kompression wirksam auf Bilder und Texturen anzuwenden, wodurch wir eine
beträchtliche Verbesserung des Preis-Leistungsverhältnisses erreichen.

[0099] In einer Hinsicht haben Grafiksysteme die Kompression auf Bildpufferspeicher doch angewendet. Spit-
zensysteme verwenden acht Bits für jede der drei Farbkomponenten und enthalten oft auch einen Achtbit-Al-
phawert. Preiswerte Systeme komprimieren diese 32 Bit pro Pixel in nur vier Bit, wobei Informationen verwor-
fen werden und/oder eine Farbpalette verwendet wird, um die Zahl gleichzeitig anzeigbarer Farben zu redu-
zieren. Diese Kompression führt zu stark sichtbaren Artefakten, erreicht keine deutliche Reduzierung in den
Datenanforderungen und zwingt Anwendungen und/oder Treiber dazu, sich mit einer breiten Palette von Pixel-
formaten abzugeben.

[0100] Die Kompression, die in unserem System verwendet wird, kann eine sehr hohe Bildqualität erreichen
und doch Kompressionsverhältnisse von 10:1 oder besser bereitstellen. Ein weiterer Vorteil unserer Herange-
hensweise ist, dass ein einziges hochqualitatives Bildformat für alle Anwendungen verwendet werden kann,
das sich von der Standard-PC-Grafikarchitektur unterscheidet, welche Kompromisse zwischen räumlicher Auf-
lösung und Farbtiefe erfordert.

Chunking

[0101] Ein weiterer wichtiger Fortschritt in unserem System wird als Chunking bezeichnet. Auf ein traditionel-
les 3D-Grafiksystem (oder eigentlich jeden Bildpufferspeicher) kann direkt zugegriffen werden (und wird zuge-
griffen). Auf beliebige Pixel auf dem Bildschirm kann direkt zugegriffen werden. Da Kompressionsalgorithmen
sich darauf verlassen, dass sie Zugriff auf eine recht große Zahl von benachbarten Pixeln haben (um Nutzen
aus der räumlichen Kohärenz zu ziehen), kann die Kompression erst angewendet werden, nachdem alle Pixe-
laktualisierungen vorgenommen wurden, was auf die Direktzugriffsmuster zurückzuführen ist, die von den Gra-
fikalgorithmen verwendet werden. Dadurch wird die Anwendung der Kompressionstechnologie auf Anzeige-
puffer undurchführbar.

[0102] Dieses Direktzugriffsmuster bedeutet auch, dass die pixelweise Entfernung von verborgenen Flächen
und die Anti-Aliasing-Algorithmen zusätzliche Informationen für jedes Pixel auf dem Bildschirm enthalten müs-
sen. Dadurch erhöhen sich die Speichergrößenanforderungen drastisch, und es entsteht ein weiterer Leis-
tungsflaschenhals.

[0103] Unser System zeigt eine andere Herangehensweise. Eine Szene, oder Teile einer Szene, kann in Pi-
xelbereiche (32×32 Pixel in einer speziellen Ausführungsform) unterteilt werden, die Chunks genannt werden.
In einer Ausführungsform unterteilt das System die Geometrie, die den Gsprites zugewiesen wird, in Chunks,
eine andere Ausführungsform könnte das Chunking ohne Gsprites ausführen. Die Geometrie wird in Bins vor-
sortiert, die darauf beruhen, in welchen Chunk die Geometrie gerendert wird. Dieser Prozess wird als Chunking
bezeichnet. Geometrie, die eine Chunkgrenze überlappt, wird vorzugsweise in jedem Chunk referenziert, in
dem sie sichtbar ist. Wenn die Szene animiert ist, wird die Datenstruktur zur Anpassung an die Geometrie mo-
difiziert, die sich von einem Chunk zum anderen bewegt.

[0104] Chunking bietet mehrere große Vorteile. Die Verwendung von Chunking sorgt für eine effektive Form
der Kompression. Da die ganze Geometrie in einem Chunk gerendert wird, bevor zum nächsten Schritt fortge-
schritten wird, braucht der Tiefenpuffer nur so groß wie ein einzelner Chunk zu sein. Durch die Verwendung
einer relativ geringen Chunkgröße, wie zum Beispiel 32×32 Pixel, kann der Tiefenpuffer direkt auf dem Gafik-
11/147

DE 696 36 599 T2 2007.08.23
renderingchip implementiert werden. Dadurch wird eine beträchtliche Speichermenge eliminiert und ermöglicht
auch, dass der Tiefenpuffer unter Verwendung einer speziellen Speicherarchitektur implementiert werden
kann, auf die mit sehr hoher Bandbreite zugegriffen werden kann und der während der Doppelpufferoperatio-
nen gelöscht werden kann, was den zusätzlichen Aufwand bei der traditionellen Bildpufferspeicherlöschung
zwischen den Teilbildern beseitigt.

[0105] Das Anti-Aliasing ist auch wesentlich einfacher, da jeder Chunk unabhängig behandelt werden kann.
Die meisten Z-gepufferten Spitzengrafiksysteme, die das Anti-Aliasing implementieren, nutzen einen großen
Teil von zusätzlichem Speicher und führen immer noch eine relativ einfache Filterung aus. Beim Chunking wird
jedoch die Menge der benötigten Daten beträchtlich reduziert (um einen Faktor 1000), was die praktische Um-
setzung eines viel höher entwickelten Anti-Aliasing-Algorithmus ermöglicht.

[0106] Zusätzlich zur Z-Pufferung und zum Anti-Aliasing kann das System gleichzeitig auch die Lichtdurch-
lässigkeit korrekt und nahtlos unterstützen. Während ein Chunk gerade aufgebaut wird, kann das System so-
wohl Anti-Aliasing- als auch Lichtdurchlässigkeitsberechnungen an einem weiteren Chunk ausführen. Mit an-
deren Worten, während der Zeit, die zum Aufbauen eines Chunks benötigt wird, kann das System Anti-Aliasing
und Lichtdurchlässigkeit an einem weiteren Chunk verarbeiten. Das System kann zwischen Chunks hin- und
herpendeln und so hoch entwickelte Verarbeitungsvorgänge ohne Verzögerung bei der Verarbeitung eines Bil-
des für Echtzeitanwendungen ausführen.

[0107] Ein weiterer Vorteil ist, dass das Chunking die blockorientierte Bildkompression ermöglicht. Sobald ein
Chunk gerendert (und mit Anti-Aliasing behandelt) wurde, kann er mit einem auf Blocktransformation beruhen-
den Kompressionsalgorithmus komprimiert werden. Daher unterstützt das Chunking zusätzlich zur Kompres-
sion, die aus dem separaten Rendering der Chunks erreicht wird, höher entwickelte und besser anpassbare
Kompressionsmethoden.

Mehrfachrendering

[0108] Ein weiterer Vorteil der Architektur unseres Systems ist die Möglichkeit, dass interaktive 3D-Anwen-
dungen den Look der späten 70er Jahre von CAD-Grafiksystemen verlassen können: langweilige lambertsche
Gouraud-schattierte Polygone mit Phong-Beleuchtung. Die Texturabbildung von Farbe verbessert das Ausse-
hen, erzeugt aber ein weiteres charakteristisches Aussehen bei Anwendungen. In den 1980er Jahren eröffnete
die Idee von programmierbaren Schattierern (Shader) und prozeduralen Texturabbildungen eine neue Flexibi-
lität für den Renderingprozess. Diese Ideen gingen durch die Offline-Rendering-Welt und erzeugten die hoch-
wertigen Bilder, die wir heute in Spezialeffekten von Filmen sehen.

[0109] Die starren Rendering-Pipelines und festen Renderingarten der heutigen typischen 3D-Spitzengrafik-
rechner machen es unmöglich, solche Effekte ohne drastische Abstriche bei der Echtzeitleistung zu implemen-
tieren. Im Ergebnis dessen müssen Nutzer, die eine Echtzeitanzeige fordern, sich mit der begrenzten Rende-
ringflexibilität abfinden.

[0110] Durch Reduzieren der Bandbreitenanforderungen unter Verwendung der Verfahren, die oben umris-
sen wurden, kann das System der vorliegenden Erfindung ein einziges gemeinsam genutztes Speichersystem
für alle Speicheranforderungen, einschließlich der Speicherung von komprimierter Textur und der Speicherung
von komprimierten Gsprites, verwenden. Diese Architektur ermöglicht es, Daten, die durch den Renderingpro-
zess erzeugt wurden, zurück durch den Texturprozessor zu führen, um sie als Daten beim Rendering eines
neuen Gsprites zu verwenden. Wegen dieser Unterstützung der Rückführung kann das System ein effizientes
Mehrfachrendering ausführen.

[0111] Durch Kopplung des effizienten Mehrfachrendering mit einer Reihe von Zusammensetzungsmodi und
einer flexiblen Schattierungssprache kann das System eine Vielzahl von Renderingeffekten in Echtzeit bereit-
stellen, die vorher die Domäne der Offline-Software-Renderer waren. Dazu gehört die Unterstützung von Funk-
tionen, wie zum Beispiel Schatten (einschließlich Schatten von mehreren Lichtquellen), umgebungsabgebilde-
te reflektierende Objekte, Punktleuchtquellen, Bodennebel, realistische Unterwassersimulation usw.

[0112] In einer Ausführungsform umfasst das Bildverarbeitungssystem (100) eine Kombination von Hardware
und Software. Im folgenden Abschnitt beschreiben wir die Systemumgebung unten unter Bezugnahme auf
eine Hardware- und Software-Architektur. Wo möglich, beschreiben wir alternative Architekturen. Jedoch kön-
nen die Hardware- und Software-Architekturen variieren und sind daher nicht auf die speziellen Beispiel be-
grenzt, die unten angeführt werden.
12/147

DE 696 36 599 T2 2007.08.23
[0113] Das Bildverarbeitungssystem, oder Teile davon, kann auf einer Reihe von unterschiedlichen Plattfor-
men implementiert werden, einschließlich Desktop-Computern, Set-Top-Boxen und Spielesystemen.

[0114] Fig. 2 ist ein Schema eines Computersystems 130, in dem das Bildverarbeitungssystem implementiert
werden kann. Das Computersystem 130 umfasst einen Prozessor 132, Hauptspeicher 134, Speichersteuerung
136, Sekundärspeicher 138, Eingabevorrichtung(en) 140, Anzeigevorrichtung 142 und Bildverarbeitungshard-
ware 144. Die Speichersteuerung 136 dient als Schnittstelle zwischen dem Prozessor 132 und dem Hauptspei-
cher 134; sie fungiert auch als Schnittstelle für Prozessor 132 und Hauptspeicher mit dem Bus 146.

[0115] Eine Reihe von Computersystemen hat dieselbe oder eine ähnliche Architektur wie die in Fig. 2 illus-
trierte. In solchen Systemen können verschiedene Prozessoren verwendet werden. Außerdem umfassen eini-
ge Computersysteme mehr als eine Verarbeitungseinheit. Um ein paar zu benennen, kann der Prozessor ein
Pentium- oder Pentium Pro-Prozessor von der Intel Corporation, ein Mikroprozessor aus der MIPS-Familie von
Silicon Graphics, Inc., oder der PowerPC von Motorola sein.

[0116] Der Hauptspeicher 134 ist ein Hochgeschwindigkeitsspeicher und wird in den meisten herkömmlichen
Computersystemen mit Direktzugriffsspeicher (RAM) implementiert. Der Hauptspeicher lässt sich mit dem Pro-
zessor und Bus mit einer Reihe von bekannten Verfahren verbinden. Hauptspeicher 134 speichert Programme,
wie zum Beispiel das Betriebssystem eines Computers und aktuell laufende Anwendungsprogramme. Unten
beschreiben wir Erscheinungsformen einer Ausführungsform mit Bezug auf die symbolischen Repräsentatio-
nen von Anweisungen, die durch das Computersystem ausgeführt werden. Diese Anweisungen werden
manchmal als computer-ausgeführt bezeichnet. Diese Aspekte der Ausführungsform können in einem Pro-
gramm oder Programmen implementiert werden, die eine Reihe von Anweisungen umfassen, welche auf ei-
nem computer-lesbaren Medium gespeichert sind. Das computer-lesbare Medium kann eine der Vorrichtungen
oder eine Kombination der Vorrichtungen, die hierin beschrieben werden, in Verbindung mit einem Hauptspei-
cher oder einem Ergänzungsspeicher sein.

[0117] Der Bus 146 verbindet die Speichersteuerung 136, den Ergänzungsspeicher 138 und die Bildverarbei-
tungshardware 144 miteinander. In einer Ausführungsform ist der Bus zum Beispiel ein PCI-Bus. Der PCI-Stan-
dard ist gut bekannt, und mehrere Computersystemplatinen unterstützen diesen Standard. Computersysteme,
die andere Busarchitekturen besitzen, können ebenfalls das Bildverarbeitungssystem unterstützen. Beispiele
sind u.a. ISA-Bus, EISA-Bus, lokaler VESA-Bus und der NuBus.

[0118] Die Anzeigevorrichtung 142 ist eine Farbanzeige mit kontinuierlicher Auffrischung zur Anzeige eines
Bildes. Die Anzeigevorrichtung ist in einer Ausführungsform eine Bildröhre (CRT), sie kann aber auch eine
Flüssigkeitsanzeige (LCD) oder eine andere Form von Anzeigevorrichtung sein.

[0119] Die Ergänzungsspeichervorrichtung 138 kann eine Reihe von Speichermedien umfassen. Die Ergän-
zungsspeichervorrichtung kann zum Beispiel Disketten, Festplatten, Band, CD-ROM usw. und andere Vorrich-
tungen umfassen, die elektrisches, magnetisches, optisches oder anderes Aufzeichnungsmaterial verwenden.

[0120] Die Eingabevorrichtung(en) 140 kann eine Tastatur, Cursorpositioniervorrichtung, wie zum Beispiel
eine Maus, Joysticks, sowie eine Reihe von handelsüblichen Eingabevorrichtungen umfassen.

[0121] In einer Ausführungsform, die unten detailliert beschrieben wird, wird die Bildverarbeitungshardware
144 auf der Leiterplatte implementiert, die sich mit dem Computersystem über den PCI-Bus verbindet. In einer
alternativen Implementierung kann die Bildverarbeitungshardware auf einer Systemplatine zusammen mit ei-
nem Prozessor oder anderer Bildverarbeitungshardware und Speicher angeordnet sein. In einem Spielesys-
tem zum Beispiel ist die Bildverarbeitungshardware normalerweise auf der Hauptplatine angeordnet. Analog
kann die Bildverarbeitungshardware in einer Set-Top-Box ebenfalls auf der Hauptplatine angeordnet sein.

[0122] Obwohl wir die Architektur eines Computersystems umrissen haben, ist nicht beabsichtigt, unsere Er-
findung auf die Systemarchitektur, die in Fig. 2 illustriert ist, zu begrenzen. Unser Bildverarbeitungssystem
kann in Spielesystemen, Set-Top-Boxen, Videoeditiervorrichtungen usw. implementiert werden. Wir beschrei-
ben unten eine Ausführungsform eines Bildverarbeitungssystems in der Umgebung der Systemarchitektur, die
in Fig. 2 gezeigt wird. Wir beschreiben alternative Implementierungen in der ganzen folgenden Beschreibung,
es ist jedoch nicht beabsichtigt, mit der Beschreibung von Alternativen eine vollständige Auflistung anderer
möglicher Implementierungen zu liefern. Auf der Basis unserer detaillierten Beschreibung unten kann der
Fachmann auf diesem Gebiet unser Bildverarbeitungssystem oder Erscheinungsformen desselben auf ande-
ren Plattformen implementieren.
13/147

DE 696 36 599 T2 2007.08.23
[0123] Fig. 3 ist ein Schema, das die Beziehung zwischen der Software und der Hardware in einer Ausfüh-
rungsform illustriert. In dieser Ausführungsform wird das Bildverarbeitungssystem unter Verwendung von Ver-
arbeitungsressourcen des Prozessors des Hostcomputers und der Bildverarbeitungshardware 144 implemen-
tiert. Die Bildverarbeitungshardware 144 wird auf einer Erweiterungsplatine 164 implementiert, die einen Pro-
zessor (z.B. einen Digitalen Signalprozessor) 166 und Bildverarbeitungsschaltkreise 168 umfasst. Die Prozes-
soren des Hostcomputers 130 und der Bildverarbeitungsplatine 164 teilen sich die Bildverarbeitungsaufgaben.
Unten umreißen wir allgemein die Funktionen, die vom Hostcomputer 130 und der Bildverarbeitungsplatine
174 ausgeführt werden.

[0124] Grafikunterstützungssoftware 160 wird auf dem Hostcomputersystem 130 ausgeführt und kommuni-
ziert mit der Bildverarbeitungsplatine 164 über die Hardwareabstraktionsschicht (HAL) 162. Die Bildverarbei-
tungsplatine 164 umfasst einen programmierbaren digitalen Signalprozessor 166, der DSP genannt wird, und
zusätzliche Bildverarbeitungshardware 168, die unten im Detail beschrieben wird.

[0125] Die Grafikunterstützungssoftware 160 kann Funktionen zur Unterstützung des Speichermanage-
ments, Betrachtungsvolumen-Culling, Tiefensortierung, Chunking sowie Gsprite-Zuweisung, Transformation
und Detailgrad umfassen. Die Grafikunterstützungssoftware kann eine Bibliothek von Grafikfunktionen umfas-
sen, die durch Grafikanwendungen zugänglich sind, um die Funktionen, die hier aufgelistet sind, auszuführen.

[0126] Die Grafikunterstützungssoftware 160 umfasst Funktionen, die das Gsprite-Paradigma, das oben ein-
geführt wird, unterstützen. Wie oben angegeben, werden Gsprites unabhängig gerendert und brauchen nicht
auf jedem Teilbild gerendert zu werden. Statt dessen können Änderungen in der Position eines Gsprites mit
affinen oder anderen Transformationen angenähert werden. Die Grafikunterstützungssoftware 160 stellt Funk-
tionen bereit, die helfen, ein Objekt oder Objekte einem Gsprite zuzuweisen und die Bewegungsdaten zu ver-
folgen, die die Position und Bewegung des Gsprites beschreiben. Die Grafikunterstützungssoftware stellt auch
Funktionen bereit, um festzustellen, wann ein gerenderter Gsprite aktualisiert werden muss. Die Notwendig-
keit, einen Gsprite zu aktualisieren, kann je nach der Objektbewegung, Bewegung des Betrachtungspunktes,
Beleuchtungsänderungen und Objektkollisionen variieren.

[0127] Wir stellen weitere Details bezüglich der Funktionen der Grafikunterstützungssoftware unten bereit.
Die Bildverarbeitungsplatine 164 führt eine Geometrieverarbeitung auf niedriger Ebene aus, einschließlich Be-
leuchtung und Schattierung, Texturierung, Anti-Aliasing, Lichtdurchlässigkeit usw. In einer Ausführungsform ist
der DSP 166 verantwortlich für die Front-End-Geometrieverarbeitungs- und Beleuchtungsberechnungen. Eine
Reihe von diesen Funktionen kann auch durch den Prozessor 132 des Hosts ausgeführt werden.

Überblick über die Bildverarbeitungsplatine

[0128] Fig. 4A ist ein Schema, das die Bildverarbeitungsplatine 174 illustriert. Die Bildverarbeitungsplatine
174 kommuniziert mit dem Hostcomputer über den Bus 146. Sie umfasst einen DSP 176, Tiler 200, gemeinsam
genutzten Speicher 216, die Gsprite-Engine 204, Zusammensetzungspuffer 210 und einen Digital-Ana-
log-Konverter (DAC) 212. Der Bus 146 (Fig. 2) überträgt Befehle und Daten zwischen dem Wirt und dem DSP
176. Als Reaktion auf Befehle vom Wirt rendert die Bildverarbeitungsplatine 174 Bilder und überträgt Anzeige-
bilder auf eine Anzeigevorrichtung 142 (Fig. 2) durch den DAC 212.

[0129] In der Ausführungsform, die in den Fig. 2-Fig. 4A illustriert ist, teilen sich der Hostprozessor und der
DSP die Funktionen des Bild-Präprozessors von Fig. 1. Der Bildprozessor umfasst Tiler 200, Gsprite-Engine
204, Zusammensetzungspuffer 210 und DAC 212. Unten stellen wir mehr Details zu diesen Elementen bereit.
Es sollte jedoch nicht vergessen werden, dass die Implementierung des Bildverarbeitungssystems variieren
kann.

[0130] Der gemeinsam genutzte Speicher 202 speichert Bilddaten und Bildverarbeitungsbefehle auf der Bild-
verarbeitungsplatine 174. In einer Ausführungsform wird der gemeinsam genutzte Speicher dazu verwendet,
Gsprite- und Texturdaten in komprimierter Form, DSP-Code und -Daten zu speichern, und verschiedene Puffer
dienen zur Übertragung von Daten zwischen verschiedenen Verarbeitungsteilsystemen.

[0131] Der DSP 176 ist für die Videokompression/-dekompression und die Grafikvorverarbeitung (Transfor-
mationen, Beleuchtung usw.) verantwortlich. Der DSP sollte vorzugsweise Gleitpunkt- und Ganzzahlrechnun-
gen mit mehr als 1000 MFLOPS/MOPS unterstützen.

[0132] Der Tiler 200 ist ein VLSI-Chip, der die Scan-Conversion, Schattierung, Texturierung, das Entfernen
14/147

DE 696 36 599 T2 2007.08.23
verborgener Flächen, Anti-Aliasing, Lichtdurchlässigkeit, Schattenabbildung und Mischung für das Mehrfach-
rendering ausführt. Die resultierenden gerenderten Gsprite-Chunks werden dann komprimiert und in kompri-
mierter Form im gemeinsam genutzten Speicher abgelegt. Der Tiler führt zusätzlich die Dekompression und
die Wiederkompression von Gsprite-Daten als Unterstützung der Video- und Fensteroperationen aus.

[0133] Die Gsprite-Engine 204 arbeitet bei Videoraten, um die Gsprite-Chunkdaten zu adressieren und zu de-
komprimieren und die notwendige Bildverarbeitung für allgemeine affine Transformationen (die das Skalieren,
Translation mit Subpixelgenauigkeit, Rotation, Reflektion und Shearing) auszuführen. Nach dem Filtern wer-
den die resultierenden Pixel (mit Alpha) an die Zusammensetzungspuffer geschickt, wo die Anzeigepixeldaten
berechnet werden.

[0134] Gsprite-Chunkdaten werden mit einer Geschwindigkeit von ein paar Scanreihen auf einmal zur Anzei-
ge verarbeitet. In einer Ausführungsform werden die Chunkdaten mit jeweils 32 Scanreihen auf einmal verar-
beitet. Der Zusammensetzungspuffer (210) umfasst zwei 32-Scanreihen-Farbpuffer, die zwischen Anzeige und
Zusammensetzungsaktivität umgeschaltet werden. Der Zusammensetzungspuffer umfasst auch einen 32 Sc-
anreihen-Alphapuffer, der zum Akkumulieren von Alpha für jedes Pixel verwendet wird.

[0135] Der DAC 212 umfasst einen RGB-Video-DAC und den entsprechenden Videoport 214 zu Videoeditier-
geräten. Einzelne Komponenten können zum Implementieren der DAC-Funktionalität verwendet werden.

Systembetrieb

[0136] Die Fig. 5A und Fig. 5B sind Flussdiagramme, die Schritte beim Rendern eines Bildes im Bildverar-
beitungssystem illustrieren. Bevor der Bildverarbeitungsprozessor 106 mit dem Rendern eines Bildes für den
Betrachtungsraum beginnt, bestimmt der Bildpräprozessor 104 Objekt- und Betrachtungspunktorte (240). In
der Ausführungsform, die in den Fig. 2 und Fig. 3 gezeigt wird, stellt die Grafikunterstützungssoftware 160, die
im Hostcomputersystem läuft, die Objekt- und Betrachtungspunktorte von Daten fest, die von einer Grafikan-
wendung bereitgestellt werden. Die Grafikanwendung, die auf dem Hostprozessor läuft, definiert Modelle, die
die relevanten Objekte repräsentieren, und liefert eine Modelliertransformation, die zum Platzieren des Objek-
tes mit den anderen Objekten in „Weltkoordinaten" verwendet wird.

[0137] Als Nächstes wählt der Bildpräprozessor 104 möglicherweise sichtbare Objekte (242) aus. Er stellt
möglicherweise sichtbare Objekte auf der Basis des Betrachtungsvolumens fest. Das Betrachtungsvolumen ist
ein dreidimensionaler Raum in Weltkoordinaten, der die Grenzen für eine Szene bereitstellt. Der Präprozessor
wählt möglicherweise sichtbare Objekte durch Verschieben von Objekten und Bestimmen, ob ihre Grenzen
das Betrachtungsvolumen schneiden. Objekte, die das Betrachtungsvolumen schneiden, sind im geometri-
schen oder räumlichen Sinn möglicherweise sichtbar.

[0138] In einigen Fällen ist es nützlich, „temporär" möglicherweise sichtbare Objekte außerhalb des aktuellen
Betrachtungsvolumens festzustellen, um zukünftige Änderungen in der Szene zu berücksichtigen. Dies ermög-
licht dem System, sich auf schnelle Änderungen im Betrachtungsvolumen einzustellen. In typischen 3D-Gra-
fiksystemen besteht die einzige Möglichkeit, auf diese schnellen Änderungen zu reagieren, darin, eine vollkom-
men neue Szene zu erzeugen, die auf der geänderten Eingabe beruht, wobei eine beträchtliche Transportver-
zögerung dazwischengeschaltet ist. Solch eine lange Verzögerung hat negative Auswirkungen auf den Nutzer,
was Probleme verursacht, wie zum Beispiel Überziehen und Übelkeit. Zur Verringerung dieser Verzögerung
kann der Bildpräprozessor der vorliegenden Erfindung den Ort on Objekten berechnen, die in einem erweiter-
ten Bereich außerhalb des sichtbaren Bereichs gelegen sind, und der Bildprozessor kann Bilder innerhalb die-
ses erweiterten Bereichs rendern und speichern. Unter Verwendung der Fähigkeit des Systems zur affinen
Transformation kann die Eingabe des Betrachtungspunktes für ein nachfolgendes Teilbild dazu verwendet wer-
den, die Gsprites aus diesem erweiterten Bereich neu zu anzuordnen und so die Systemtransportverzögerung
auf weniger als 2 rechnerische Teilbilder zu reduzieren. Solch eine kurze Transportverzögerung ist mit aktuel-
len 3D-Grafikhardwaresystemen, die den Erfindern bekannt sind, nicht zu erreichen und ermöglicht Simulatio-
nen viel höherer Qualität mit viel stärkerem Vertieftsein des Nutzers.

[0139] Der Bildpräprozessor bestimmt die Konfiguration der Gsprites für das Bild (244). Dieser Schritt bein-
haltet das Feststellen, wie man möglicherweise sichtbare Objekte auf Gsprites abbildet. Als Teil dieses Pro-
zesses ordnet der Bildpräprozessor 104 Gsprites zu, was das Erzeugen einer Gspritedatenstruktur zum Spei-
chern von Bilddaten umfasst, die einem oder mehreren möglicherweise sichtbaren Objekten entsprechen.
Wenn es die Verarbeitungsressourcen ermöglichen, wird jedes nicht völlig durchdringende Objekt in der Szene
einem unabhängigen Gsprite zugewiesen. Völlig durchdringende oder selbst verdeckende Objekte können als
15/147

DE 696 36 599 T2 2007.08.23
einzelner Gsprite verarbeitet werden.

[0140] Der Bildpräprozessor 104 kann Gsprites aggregieren, wenn der Bildprozessor nicht die Leistungsfä-
higkeit besitzt, die Gsprites bei der gewünschten rechnerischen Teilbildrate zusammenzusetzen oder wenn der
Systemspeicher unzureichend ist, um die Gsprites zu speichern. Das Rendern in getrennte Gsprites ist rech-
nerisch immer effizienter; wenn also das System den Speicher und die Leistungsfähigkeit zum Zusammenset-
zen besitzt, sollten sich nicht überschneidende Objekte in getrennte Gsprites gerendert werden. Wenn das
System nicht in der Lage ist, zu speichern oder ein Anzeigebild basierend auf einer aktuellen Zuweisung von
Gsprites zu erzeugen, können einige Gsprites aggregiert werden, um dieses Problem abzuschwächen.

[0141] Nachdem ein Objekt oder Objekte Gsprites zugewiesen wurden, unterteilt der Bildprozessor die Gspri-
tes in Bildregionen, die „Chunks" (248) genannt werden. Der Bildpräprozessor durchläuft die Gsprites zyklisch
und unterteilt die Gsprites in Chunks (246, 248). In einer Ausführungsform umfasst dieser Prozess das Trans-
formieren der Grenzvolumina von Objekten in den Betrachtungsraum und das Finden rechteckiger Bildregio-
nen, die die transformierten Grenzvolumina einschließen. Diese Bildregionen definieren die Dimensionen des
Gsprites hinsichtlich des zweidimensionalen Raums, in den das Objekt oder die Objekte des Gsprites geren-
dert werden. Der Gsprite wird in Chunks unterteilt, indem die rechteckige Bildregion in Chunks geteilt und diese
Chunks mit der Gsprite-Datenstruktur verknüpft werden.

[0142] Als Optimierung kann das transformierte Grenzvolumen skaliert und/oder gedreht werden, so dass die
Zahl der Chunks, die zum Rendern des Gsprites benötigt werden, minimiert wird. Wegen dieser zusätzlichen
Transformation (Skalierung oder Drehung) ist der Raum, in den die Objekte, welche den Gsprites zugewiesen
werden, gerendert werden, nicht unbedingt der Bildschirmraum. Dieser Raum wird als Gsprite-Raum bezeich-
net. Beim Prozess der Erzeugung eines Anzeigebildes muss der Gsprite auf den Bildschirmraum zurücktrans-
formiert werden.

[0143] Der nächste Schritt besteht darin festzustellen, wie man die Objektgeometrie unter den Chunks (250)
aufteilt. Der Bildpräprozessor bestimmt, wie die geometrischen Grundelemente (z.B. Polygone) unter den
Chunks aufgeteilt werden müssen, indem er die Polygone auf den 2D-Raum (252) transformiert und feststellt,
in welchen Chunk oder Chunks sich die Polygone projizieren. Auf Grund der Kosten der Beschneidung von
Polygonen ist der bevorzugte Ansatz, die Polygone, die am Rand eines Chunks liegen, nicht zu beschneiden.
Statt dessen umfasst ein Chunk Polygone, die seine Kante überlappen. Wenn sich ein Polygon über die Gren-
ze von zwei Chunks erstreckt, werden zum Beispiel bei diesem Ansatz die Eckpunkte in jedem Chunk einge-
schlossen.

[0144] Der Bildpräprozessor stellt dann die Chunkdaten zum Tiling in die Schlange. Tiling bezeichnet den Pro-
zess der Bestimmung von Pixelwerten, wie zum Beispiel Farbe und Alpha für Pixelorte, die von einem oder
mehreren Polygonen bedeckt oder teilweise bedeckt werden.

[0145] Der Entscheidungsschritt (254) (Fig. 5B) und der Schritt (256), der darauf folgt, repräsentieren den
Prozess des Tiling der Polygone innerhalb des Chunks. Während der Bildprozessor die Polygone eingeschlos-
sen hat, die die Grenzen des aktuellen Chunks überlappen, erzeugt er nur Pixel, die innerhalb des Chunks lie-
gen. Die erzeugten Pixel umfassen Informationen für das Anti-Aliasing (Fragmentdatensätzen), die gespei-
chert werden, bis alle Pixel erzeugt sind.

[0146] Nach der Beendigung des Tiling von Polygonen in einem Chunk löst der Bildprozessor die Anti-Ali-
asing-Daten (wie zum Beispiel Fragmentdatensätze) für die Pixel (258) auf. In einer Ausführungsform verwen-
det der Tiler 200 die Doppelpufferung, um einen vorherigen Chunk aufzulösen, während der nächste getilet
wird. Alternativ kann der Tiler einen gewöhnlichen Puffer mit einer freien Liste verwenden. Die freie Liste stellt
den freien Speicher im gewöhnlichen Puffer dar, der zugewiesen wird, wenn neue Fragmentdatensätze er-
zeugt werden, und hinzugefügt wird, wenn Fragmentdatensätze aufgelöst werden. Eine Kombination von Dop-
pelpufferung und gemeinsamem Speicher kann ebenfalls verwendet werden.

[0147] Der Bildprozessor komprimiert den aufgelösten Chunk unter Verwendung einer Kompressionsmetho-
de, die weiter unten beschrieben wird (260). Während der Bildprozessor einen Block von Pixeln auflöst, kann
er einen anderen Block komprimieren. Der Bildprozessor speichert den komprimierten Chunk im gemeinsam
genutzten Speicher (262).

[0148] Fig. 6 ist ein Flussdiagramm, das die Schritte illustriert, die zur Anzeige eines Bildes ausgeführt wer-
den. Auf der Bildverarbeitungsplatine 174, die oben beschrieben wird, werden Bilder aus dem gemeinsam ge-
16/147

DE 696 36 599 T2 2007.08.23
nutzten Speicher 216 gelesen, in physische Ausgabevorrichtungskoordinaten durch die Gsprite-Engine 204
transformiert, im Zusammensetzungspuffer 210 zusammengesetzt, in den DAC 212 übertragen und dann auf
eine Ausgabevorrichtung übertragen.

[0149] Während des Anzeigeprozesses greift der Bildprozessor auf eine Liste von Gsprites, die angezeigt
werden sollen, für das aktuelle Teilbild zu. Im Prozess der Bestimmung der Gsprite-Konfiguration bestimmt der
Bildpräprozessor die Tiefenordnung von Gsprites (280). Wie oben bemerkt, wird ein Objekt vorzugsweise ei-
nem Gsprite zugeordnet. Der Bildpräprozessor kann jedoch mehr als ein Objekt einem Gsprite zuordnen, um
zum Beispiel Verarbeitungsbegrenzungen eines bestimmten Bildprozessors, der im System verwendet wird,
zu berücksichtigen. Der Bildpräprozessor sortiert Objekte in Z-Reihenfolge, d.h. nach dem Abstand vom Be-
trachtungspunkt. Neben dem Sortieren der Objekte sortiert er auch Gsprites nach Tiefenordnung und speichert
diese Tiefendaten in den Gsprite-Datenstrukturen.

[0150] Der Entscheidungsschritt (282) in Fig. 6 stellt einen zyklischen Durchlauf durch die Gsprites im Anzei-
geprozess dar. Die Schritte innerhalb dieses zyklischen Durchlaufs können 1) das Berechnen einer Transfor-
mation für einen gerenderten Gsprite und 2) das Aufstellen einer Gsprite-Anzeigeliste umfassen, um zu steu-
ern, wie die Gsprite angezeigt werden. Diese Schritte werden unten beschrieben.

[0151] Der Bildprozessor berechnet die Gsprite-Transformationen für Gsprites im möglicherweise sichtbaren
Bereich. Eine Gsprite-Transformation bezeichnet eine Transformation an einem gerenderten 2D-Gsprite. In ei-
ner Ausführungsform kann der Bildprozessor eine Transformation an einem Gsprite ausführen, um den Ren-
dering-Zusatzaufwand zu reduzieren. Statt jedes Objekt für jedes Teilbild zu rendern, reduziert der Bildprozes-
sor den Rendering-Zusatzaufwand durch Wiederverwendung eines gerenderten Gsprites.

[0152] Es ist nicht notwendig, eine Gsprite-Transformation für jedes Teilbild der Bilddaten zu berechnen.
Wenn zum Beispiel ein Gsprite für das aktuelle Teilbild der Bilddaten gerendert wird, braucht er möglicherweise
nicht transformiert zu werden, es sei denn, dass zum Beispiel der Gsprite transformiert wurde, um besser zum
begrenzenden Kasten für das Objekt zu passen.

[0153] Außerdem brauchen möglicherweise einige Gsprites nicht neu gerendert oder transformiert zu wer-
den, weil das Objekt oder die Objekte, die ihnen zugeordnet wurden, sich nicht geändert haben oder sich nicht
bewegen. Dementsprechend ist der Schritt zum Transformieren eines Gsprites optional.

[0154] Der Gsprite kann mit der Einheitsmatrix in Fällen multipliziert werden, wo sich die Position des Gsprites
nicht geändert hat. Dies kann zum Beispiel in Fällen gelten, wo der Bildprozessor den Gsprite für das aktuelle
Teilbild gerendert hat oder wo die Gsprite-Position sich nicht geändert hat, seit er ursprünglich gerendert wur-
de.

[0155] Um festzulegen, wie Gsprites angezeigt werden sollen, erzeugt der Bildprozessor eine Gsprite-Anzei-
geliste. Die Anzeigeliste bezeichnet eine Liste oder Listen, die bestimmen, welche Gsprites auf dem Anzeige-
bildschirm angezeigt werden sollen. Dieses Konzept der Anzeigeliste kann auch für andere Ausgabevorrich-
tungen zum Präsentieren eines Teilbildes von Bilddaten gelten. Der Bildprozessor verwendet die Anzeigeliste
beim Abbilden und Zusammensetzen gerenderter Gsprites auf die physischen Gerätekoordinaten. Obwohl der
Schritt des Ausbauens einer Anzeigeliste als Teil eines zyklischen Durchlaufs durch Gsprites illustriert wird, ist
es nicht notwendig, dass die Liste oder Listen speziell innerhalb dieses zyklischen Durchlaufs erzeugt wird.

[0156] Die Anzeigeliste kann eine Liste oder Listen oder eine Liste von Gsprites pro Band bezeichnen. Ein
„Band" ist ein horizontaler Scanzeilenbereich eines Anzeigebildschirms. In einer Ausführungsform ist zum Bei-
spiel ein Band 32 Scanzeilen hoch mal 1344 Pixel breit. Die Anzeigeliste kann eine getrennte Liste von Gspri-
tes für jedes Band umfassen, in diesem Fall beschreiben die Bandlisten die Gsprites, die auf die jeweiligen
Bänder entfallen. Alternativ kann die Anzeigeliste aus einer einzigen Liste bestehen, die durch Kennzeichnen
der Gsprites implementiert wird, um festzustellen, auf welche Bänder die Gsprites fallen.

[0157] Die Anzeigeliste in der erläuterten Ausführungsform ist doppelgepuffert. Doppelpufferung ermöglicht
es dem System, eine Anzeigeliste zu erzeugen, während es eine weitere liest. Während das System die Gspri-
te-Transformationen berechnet und die Anzeigeliste für ein Teilbild aufbaut, liest es die Anzeigeliste für ein an-
deres Teilbild und zeigt die Bilddaten in dieser Liste an.

[0158] Wegen der Doppelpufferung überlappen sich die Schritte, die in Fig. 6 gezeigt sind: Der Bildpräpro-
zessor führt Schritte (280-286) für ein Teilbild aus, während der Bildprozessor Schritte (290-298) für ein ande-
17/147

DE 696 36 599 T2 2007.08.23
res Teilbild ausführt.

[0159] Fig. 7 ist ein Schema, das den Zeitablauf dieser Schritte illustriert. Nachdem das System die Schritte
(280-286) (Fig. 6) für ein Teilbild 310 vollendet hat, wartet es auf ein Teilbildsynchronisierungssignal (vertikaler
Rücklauf) und führt dann den Puffertausch aus. Die Anzeigeliste, die es gerade erzeugt hat, wird dann zur Be-
stimmung der Gsprites verwendet, die im aktuellen Teilbild 312 angezeigt werden sollen. Während diese An-
zeigeliste verarbeitet wird 312, werden Gsprite-Transformationen berechnet und eine Anzeigeliste wird für das
nächste Teilbild aufgebaut 314. Im nächsten Teilbild werden dann die Gsprite-Transformationen und die Anzei-
geliste, die im vorherigen Teilbild 314 erzeugt wurden, dazu verwendet, das Anzeigebild 316 zu erzeugen.

[0160] Der Bildprozessor konvertiert Gsprites auf Ausgabegerätekoordinaten auf der Basis der Liste der
Gsprites in der Anzeigeliste. Der Bildprozessor liest Gsprite-Daten aus dem gemeinsamen Speicher, ein-
schließlich Farbe, Alpha und Daten, die die Position des Gsprites kennzeichnen. Auf der Basis dieser Daten
bestimmt der Bildprozessor die Farbe und Alpha für Pixel, die vom Gsprite bedeckt werden.

[0161] In einer Ausführungsform durchläuft der Bildprozessor zyklisch jedes Band, wobei er Gsprites trans-
formiert, die gemäß der Gsprite-Anzeigeliste auf dieses Band fallen. Wir werden diesen Anzeigeprozess de-
taillierter unten beschreiben.

[0162] Nach dem Transformieren der Gsprite-Daten setzt der Bildprozessor die resultierenden Pixeldaten zu-
sammen. Dies umfasst das Berechnen von Farbe und Alpha für Pixel in Ausgabegerätekoordinaten auf der
Basis der Gsprite-Transformationen. Der Bildprozessor transformiert die Pixeldaten für Gsprites in der Anzei-
geliste und setzt dann die transformierten Pixeldaten zusammen. Der Prozess beinhaltet das Bestimmen von
Farbe und Alpha an einer Pixelstelle auf der Basis eines Beitrags von einem oder mehreren Pixelwerten von
Gsprites, die diese Pixelstelle bedecken.

[0163] In einer Ausführungsform durchläuft der Bildprozessor zyklisch die Bänder und setzt Pixeldaten für je-
des Band zusammen. Der Bildprozessor puffert Pixeldaten doppelt: Er transformiert und setzt Gsprite-Daten
für ein Band in einem Puffer zusammen, während er zusammengesetzte Pixeldaten für ein anderes Band an-
zeigt.

[0164] Nach dem Zusammensetzen der Pixeldaten überträgt der Bildprozessor dann die zusammengesetz-
ten Pixeldaten an eine Ausgabevorrichtung. Die typischste Ausgabevorrichtung, die in Verbindung mit diesem
System verwendet wird, ist natürlich eine Anzeige. Zur Anzeige der Pixeldaten werden sie in ein Format um-
gewandelt, das mit der Anzeige verträglich ist.

[0165] Nachdem wir den Systembetrieb einer Ausführungsform beschrieben haben, stellen wir nun mehr De-
tails bezüglich der Bildverarbeitungsplatine bereit.

Bildverarbeitungsplatine

[0166] In der einen Ausführungsform umfasst der gemeinsam genutzte Speicher 216 4 MB RAM. Er wird un-
ter Verwendung von zwei 8-Bit-RAM-Buskanälen implementiert. Die Menge und Art des Speichers kann jedoch
variieren.

[0167] Fig. 8 ist ein Schema, das den DSP 336 auf der Bildverarbeitungsplatine 174 illustriert. Der DSP 336
ist für das Parsen des Befehlsstroms aus dem Hostprozessor und die Ausführung eines Teils der Videoverar-
beitung und der Front-End-Geometrieverarbeitung verantwortlich Der DSP führt die Front-End-Geometriever-
arbeitung und die Beleuchtungsberechnungen aus, die für die 3D-Grafik verwendet werden. Dies umfasst Mo-
dell- und Betrachtungstransformationen, Beschneiden und Beleuchtung. Teile des Gsprite-Animationsma-
nagement werden ebenfalls im DSP gehandhabt, wie zum Beispiel die Gsprite-Bewegungsextrapolation.

[0168] Rendering-Befehle werden in Hauptspeicherpuffern gespeichert und über den PCI-Bus und durch den
PCI-Buscontroller 342 auf die Bildverarbeitungsplatine 174 geDMAt. Diese Befehle werden dann im gemein-
sam genutzten Speicher 216 auf der Platine gepuffert, bis sie vom DSP 336 benötigt werden (Fig. 8).

[0169] Der DSP-Kern 338 umfasst einen Prozessor zur Ausführung der Bildverarbeitungsberechnungen, die
oben beschrieben werden. Außerdem führt der DSP-Kern die Zeitplanung und das Ressourcenmanagement
aus.
18/147

DE 696 36 599 T2 2007.08.23
[0170] Die Speicherschnittstelle 340 unterstützt Hochgeschwindigkeitsdatenübertragungen, z.B. 64 Bit bei 80
MHz. Sie ist so gestaltet, dass sie eine Schnittstelle zu konventionellen DRAM- und SDRAM-Einrichtungen bil-
det. Der Tiler 200 ist so ausgelegt, dass er direkt an diesen Bus angeschlossen werden kann, womit die für
den DSP erforderliche Speicherzeitsteuerung simuliert wird.

[0171] Der Datenformatierer und -konverter 346 im DSP formatiert die Rendering-Befehle für den Tiler. Dieser
Block konvertiert Gleitkommafarbkomponenten in ganze Zahlen und packt sie in die Tiler-spezifischen Daten-
strukturen. Er puffert auch einen kompletten Befehl und DMAt ihn direkt in einem Speicherpuffer in einem ge-
meinsam genutzten Speicher. Diese Rendering-Befehle werden später vom Tiler gelesen, wenn er zur Ausfüh-
rung der Operationen bereit ist.

[0172] Unter seinen Formatierungsaufgaben formatiert der Datenformatierer und -konverter 346 Dreiecksbe-
fehlsdaten für den Tiler. R G B α (Alpha)-Daten, die vom DSP (336) in Gleitpunkt berechnet werden, werden
in 8-Bit-Ganzzahlen umgewandelt. Koordinateninformationen werden vom Gleitkomma in 12.4-Festkomma-
zahlen umgewandelt. Die Daten werden in 64-Bit-Worte gepackt und in einem zusammenhängenden Block in
den gemeinsamen Speicher übertragen, um die Bandbreite zu optimieren.

[0173] Die Anzeigespeichermanagementeinheit (MMU) 344 wird für den Desktop-Anzeigespeicher verwen-
det. Sie fängt PCI-Zugriffe in einem linearen Adressbereich ab, der als Desktop-Anzeigespeicher zugewiesen
wird. Sie bildet dann diese Zugriffe auf Bildblöcke ab, die im gemeinsamen Speicher gespeichert sind.

[0174] Die Architektur der Bildverarbeitungsplatine (Fig. 4A, 174) ist relativ unabhängig vom speziellen DSP.
Jedoch sollte der DSP vorzugsweise eine beträchtliche Gleitkomma-Rechenleistung besitzen. Geeignete
DSPs umfassen den MSP-1 von Samsung Semiconductor und TriMedia von Philips Semiconductor. Diese
speziellen DSPs sind zwei Beispiele für DSPs, die eine ausreichende Gleitkomma-Rechenleistung bieten.

[0175] Fig. 9A ist ein Schema des Tilers 200 auf der Bildverarbeitungsplatine 174. Der Tiler ist für 2D- und
3D-Grafikbeschleunigung und für die Steuerung des gemeinsamen Speichers verantwortlich. Wie im Schema
der Bildverarbeitungsplatine gezeigt, schließt sich der Tiler direkt an den DSP (176, Fig. 4), die Gsprite-Engine
204 und das gemeinsame Speichersystem 216 an.

[0176] Die Funktionsblöcke, die im Schema oben gezeigt werden, werden in diesem Abschnitt beschrieben.

[0177] Der Tiler 378 umfasst eine Reihe von Komponenten zum Rendern von Grundelementen. Die Befehls-
und Speichersteuerung 380 umfasst eine Schnittstelle zum gemeinsamen Speicher 216, der Gsprite-Engine
204 und dem DSP 176. Zugriffe auf den Speicher vom Tiler, DSP und der Gsprite-Engine wurden durch diesen
Block arbitriert. Eine Schlange wird zum Puffern von Lesezugriffen bereitgestellt.

[0178] Der Setup-Block 382 berechnet die linearen Gleichungen, die die Kanten-, Farb- und Texturkoordina-
teninterpolation über die Fläche des Dreiecks bestimmen. Diese Gleichungen werden ebenfalls dazu verwen-
det, um festzustellen, welche Texturblöcke benötigt werden, um das Dreieck zu rendern. Die Kantengleichun-
gen werden auch in den Scanumwandlungsblock 394 geschoben und in den Grundelementeregistern 396 ge-
speichert, bis sie von der Scanumwandlungs-Engine 398 benötigt werden.

[0179] Der Setup-Block 382 umfasst drei Komponenten: den Eckeneingabeprozessor 384, die Ecken- und
Kontrollregister 386 und die Setup-Engine 388. Der Eckeneingabeprozessor 384 parst den Befehlsstrom vom
DSP. Die Ecken- und Kontrollregister 386 speichern Informationen, die für die Verarbeitung von Polygonen und
anderen geometrischen Grundelementen notwendig sind. Die Dreiecksverarbeitung wird in dieser speziellen
Ausführungsform verwendet, und der Tiler 200 umfasst Register für sechs Ecken (drei für jedes Dreieck), was
die Doppelpufferung der Dreiecksverarbeitung ermöglicht. Die Setup-Engine 388 berechnet die Differenzen für
die Farb-, Tiefen-, Kanten- und Texturkoordinateninterpolation über die Fläche des Dreiecks. Diese Gleichun-
gen werden ebenfalls dazu verwendet, festzustellen, welche Texturblöcke zum Rendern des Dreiecks verwen-
det werden. Die Setup-Engine ruft auch Texturchunks im voraus ab, so dass sie verfügbar sind, wenn sie von
der Scanumwandlungs-Engine 398 benötigt werden.

[0180] Die Setup-Engine 388 kommuniziert auch mit der Texturleseschlange 390 und einem Texturadressge-
nerator 392. Die Texturleseschlange 390 puffert Leseanforderungen für Texturblöcke aus gemeinsamem Spei-
cher. Obwohl wir den Begriff „Textur" bei der Bezugnahme auf die Abschnitte des Tilers verwenden, die zum
Abrufen von Bilddatenblöcken aus dem Speicher verwendet werden, versteht es sich, dass dieser Begriff sich
auf Texturabbildungen, Schattenabbildungen und andere Bilddaten beziehen kann, die bei Mehrfachrendering-
19/147

DE 696 36 599 T2 2007.08.23
operationen verwendet werden. Der Texturadressgenerator 392 bestimmt die Adresse im Speicher der ange-
forderten Chunks und sendet Texturleseanforderungen an die Befehls- und Speichersteuerung 380. Der Tex-
turadressgenerator 392 umfasst eine Speichermanagementeinheit, die das Schreiben von Bilddaten in den
Texturcache steuert.

[0181] Der Scanumwandlungsblock 394 empfängt Differenzen und andere Eckpunktdaten vom Setup-Block
und erzeugt Pixel-Daten. Der Scanumwandlungsblock 394 umfasst Grundelementeregister 396 und die Scan-
umwandlungs-Engine 398. Die Grundelementeregister 396 speichern die Gleichungsparameter für jeden Drei-
ecksparameter. Die Grundelementeregister umfassen Register zum Speichern mehrerer Sätze von Gleichun-
gen, so dass die Scanumwandlungs-Engine beim Warten auf Texturdaten nicht stecken bleibt.

[0182] Die Scanumwandlungs-Engine 398 scannt und wandelt Polygone um, die in diesem Fall Dreiecke
sind. Der Scanumwandlungsblock 394 umfasst die Interpolatoren für sich bewegende Kanten und die Bewer-
tung von Farben, Tiefen usw. Die Pixeladresse, zusammen mit Farbe und Tiefe, und Anti-Aliasing-Bede-
ckungsinformationen werden an die Pixelengine zur Verarbeitung geschickt.

[0183] Die Scanumwandlungs-Engine 398 sendet Texturadressen an die Texturfilter-Engine 400, die die Tex-
turdaten berechnet. Die Texturfilter-Engine 400 berechnet Pixelfarbe und Alphadaten für Polygone, die gerade
gerendert werden. Die illustrierte Texturfilter-Engine berechnet einen Filterkern, der auf der Z-Neigung und
-Orientierung des Dreiecks, das gerendert wird, und auf der Mitte der Texturanforderung beruht (S- und T-Ko-
ordinaten eines Punktes, der in die Textur abgebildet wird). Das Filtern wird in zwei Durchläufen in einer Pipe-
line-Weise ausgeführt, so dass in jedem Zyklus ein neues Pixel erzeugt wird. Der Filterkern kann ein anisotro-
pes Filter oder ein isotropes Filter sein. Wenn keine Anisotropie benötigt wird, kann der Filterkern negative
Keulen verwenden, was viel schärfere Texturen ermöglicht, als mit dreiliniger Interpolation möglich ist. Die Tex-
turfilter-Engine 400 handhabt auch Z-Vergleichsoperationen zum Berechnen der Effekte bei Schatten.

[0184] Der Texturcache 402 speichert Blöcke von dekomprimierten Bilddaten. In einer Implementierung spei-
chert der Texturcache 402 Texturdaten für sechzehn 8×8-Pixelblöcke. Die Daten sind so organisiert, dass bei
jedem Taktzyklus auf 16 Texturelemente zugegriffen werden kann.

[0185] Die Dekompressionsengine 404 dekomprimiert Texturdaten und überträgt sie zum Texturcache 402.
In dieser Ausführungsform umfasst die Dekompressionsengine zwei Dekompressoren, einen, der eine diskrete
Kosinustransformation (DCT) implementiert, die auf dem Algorithmus für kontinuierliche Halbtonbilder, wie
zum Beispiel Texturen, beruht, und den anderen, der einen verlustlosen Algorithmus für Desktop-Pixeldaten
implementiert. Der DCT-basierende Algorithmus wird durch zwei parallele Dekompressionsblöcke implemen-
tiert, die jeweils acht Pixelelemente (d.h. zwei Pixel) pro Taktzyklus erzeugen können.

[0186] Der komprimierte Cache 416 kann zum Puffern von komprimierten Daten verwendet werden, bevor
die Dekompressionsengine 404 sie dekomprimiert und sie in den Texturcache 402 überträgt.

[0187] Die Scanumwandlungs-Engine 398 überträgt Pixeldaten in die Pixelengine 406. Die Pixelengine 406
führt Berechnungen auf Pixelniveau aus, einschließlich Mischen und Tiefenpufferung. Die Pixelengine hand-
habt auch die Z-Vergleichsoperationen, die für Schatten benötigt werden. Um eine optimale Leistung zu erhal-
ten, sollte die Pixelengine vorzugsweise bei einem Pixel pro Takt arbeiten.

[0188] Die Pixelengine 406 steuert die Übertragungen von Pixeldaten an einen Rasterungspuffer. Der Raste-
rungspuffer umfasst in der erläuterten Ausführungsform Pixelpuffer 408 und Fragmentpuffer 410. Die Pixelpuf-
fer 408 umfassen zwei Puffer zur Unterstützung der Doppelpufferung. Bei dieser Implementierung der Pixel-
puffer speichert jeder Pixeleintrag acht Bit pro Farbkomponente (R G B), acht Bit für die Alpha-Komponente,
24 Bit für den Z-Puffer, 8 Bit für den Schablonenpuffer und einen Neun-Bit-Zeiger im Fragmentpuffer. Das
macht insgesamt 73 Bit pro Pixel. Ein Pixelpuffer wird von der Pixelengine 406 verwendet, während der andere
durch die Anti-Aliasing-Engine 412 verwendet wird. Dann werden die Puffer getauscht.

[0189] Die Fragmentpuffer 410 speichern Fragmente für teilweise bedeckte Pixel, Pixelfragmente genannt,
die aus Pixeln von Polygonen resultieren, deren Kanten ein gegebenes Pixel schneiden oder die lichtdurchläs-
sig sind. Der Fragmentpuffer ist ein einzelner Puffer in der Implementierung, die in Fig. 9A gezeigt wird. Eine
freie Liste von Fragmenten wird unterhalten, so dass beim Auflösen von Fragmenten diese zur freien Liste hin-
zugefügt werden und beim Erzeugen von Fragmenten diese Einträge aus der freien Liste verwenden. Alterna-
tiv könnte der Fragmentpuffer doppelt gepuffert sein, so dass ein Fragmentpuffer von der Anti-Aliasing-Engine
aufgelöst werden könnte, während der andere parallel dazu von der Pixelengine gefüllt wird.
20/147

DE 696 36 599 T2 2007.08.23
[0190] In einer Ausführungsform umfasst ein Fragmentdatensatz dieselben Daten wie in den Pixelpufferein-
trägen plus eine 4×4-Maske. Der Neun-Bit-Zeiger wird dazu verwendet, eine verlinkte Liste von Einträgen mit
einem reservierten Wert zu bilden, der das Ende der Liste anzeigt. In dieser Ausführungsform umfassen die
Fragmentpuffer 410 insgesamt 512 Einträge, die Größe kann aber variieren.

[0191] Die Anti-Aliasing-Engine 412 berechnet die Farb- und Alphakomponente für Pixel, die von mehr als
einem Polygon betroffen sind, was passiert, wenn Polygone nur teilweise die Pixelfläche abdecken (d.h. die
Polygonkanten schneiden die Pixel) oder wenn Polygone Lichtdurchlässigkeit besitzen. Die Anti-Aliasing-En-
gine 412 überträgt aufgelöste Pixeldaten zur Kompressions-Engine 414. In dieser Ausführungsform umfasst
die Kompressions-Engine 414 zwei Kompressoren, einen DCT-basierten für Halbtonbilder und einen verlust-
losen für Desktop-Pixeldaten. Der DCT-basierte Algorithmus wird unter Verwendung eines Kompressors imp-
lementiert, der acht Pixelelemente pro Taktzyklus komprimieren kann. Die Kompressions-Engine 414 kompri-
miert die sich ergebenden gerenderten Gsprites und sendet die komprimierten Daten an den Befehlsspeicher
und -steuerung 380 zur Speicherung im gemeinsamen Speicher 216 (Fig. 4). Der Tiler besitzt ebenfalls einen
komprimierten Cache 416 zum Cachen von komprimierten Daten.

[0192] Die Fig. 10 und Fig. 11 illustrieren zwei alternative Implementierungen für den Zugriff auf Bilddaten
aus dem Speicher während des Pixelerzeugungsprozesses. Es gibt eine Reihe von Fällen, bei denen auf Bild-
daten aus dem Speicher während der Pixelerzeugung zugegriffen werden muss. Dazu gehört zum Beispiel der
Zugriff auf eine Texturabbildung während einer Texturabbildungsoperation, Zugriff auf eine Schattenabbildung
während einer Schattierungsoperation und Zugriff auf Farb- und/oder Alphadaten während Mehrfachmi-
schungsoperationen Der Einfachheit halber bezeichnen wir die Bilddaten im Speicher als „Texturen" oder „Tex-
turdaten". Es sollte sich jedoch verstehen, dass die Verfahren und Systeme, die hier beschrieben werden, auch
auf andere Arten von Bilddaten angewendet werden können, auf die vom Speicher während der Pixelerzeu-
gung zugegriffen wird.

[0193] Die Implementierungen, die in den Fig. 10 und Fig. 11 illustriert werden, bieten alternative Herange-
hensweisen, um einen Texturcache auf dem Tiler effizient zu laden und zu nutzen. Ein wesentlicher Vorteil die-
ser Ansätze ist, dass Texturdaten in Speichern mit hoher Verzögerungszeit und selbst in einem komprimierten
Format gespeichert werden können, ohne die Leistungsfähigkeit übermäßig zu beeinträchtigen. Im Ergebnis
dessen kann weniger spezieller und preiswerterer Speicher verwendet werden, um Hochleistungs-Rende-
ring-Hardware zu implementieren.

[0194] Auf Texturdaten aus dem Speicher wird zugegriffen, und diese werden in Einheiten gespeichert, die
"Blöcke" genannt werden, welche normalerweise eine kleine rechteckige Region darstellen, die sich zum effi-
zienten Abrufen und Cachen eignen. Eine typische Blockgröße hat eine Größe von etwa 8×8 Abfragewerten.
Für Texturabbildungen ist ein typischer Block zum Beispiel 8×8 Texel groß.

[0195] Fig. 10 ist ein Funktionsschema, das eine Ausführungsform zum Zugriff auf diese Blöcke von Textur-
daten illustriert. Diese Ausführungsform löst das Verzögerungszeitproblem durch Puffern von Pixeldaten aus
dem Rastergenerator 417, einschließlich der Texturdatenanforderungen, in einer Texturreferenzdatenschlange
418. Die Schlange umfasst genügend Einträge, um die Verzögerungszeit aufzunehmen, die anderenfalls beim
Zugriff (und möglicherweise Dekomprimieren) eines Texturblocks auftreten würde, so dass der Renderingpro-
zess mit voller Geschwindigkeit ablaufen kann. Wenn zum Beispiel 100 Zyklen erforderlich sind, um einen Tex-
turblock abzurufen, und der Tiler in der Lage ist, ein Pixel pro Takt zu erzeugen, dann umfasst die Texturrefe-
renzdatenschlange mindestens 100 Einträge.

[0196] Der Datenfluss im System, der in Fig. 10 illustriert wird, läuft folgendermaßen ab. Zuerst werden die
geometrischen Grundelemente zum Rastern eingerichtet, wie in Block 416 gezeigt. Die Einrichtungsverarbei-
tung umfasst zum Beispiel das Lesen der Eckpunkte für ein geometrisches Grundelement, wie zum Beispiel
ein Dreieck, und die Berechnung von Differenzen für Farbe, Tiefe und Kanten über die Fläche des Dreiecks.
Die Parameter, die sich aus diesen Berechnungen ergeben, werden dann in den Rastergenerator 417 einge-
speist.

[0197] Der Rastergenerator 417 liest die Gleichungsparameterdaten für jedes Grundelement und erzeugt Pi-
xeldaten. Der Rastergenerator erzeugt Pixeldaten, einschließlich Texturkoordinaten und Filterdaten, und puf-
fert diese Daten in der Texturreferenzdatenschlange 418. Der Texturabrufblock 420 liest die Texturreferenzda-
ten, die in der Schlange 418 gespeichert sind, und ruft die entsprechenden Texturblöcke aus dem Speicher
419 ab.
21/147

DE 696 36 599 T2 2007.08.23
[0198] Die Pixeldaten, die in der Texturreferenzdatenschlange 418 in dieser Ausführungsform gespeichert
sind, umfassen: eine Zieladresse für das Pixel (X, Y), das gerade berechnet wird; Tiefendaten (Z); eine Bede-
ckungsmaske; Farb- und Lichtdurchlässigkeitsdaten; die Koordinaten der Mitte für die Texturanforderung (S,
T), und Texturfilterdaten. Die Tiefen- und Bedeckungsdaten werden in der Texturreferenzdatenschlange nur
benötigt, wenn ein hochwertiges Anti-Aliasing von Pixeln gewünscht wird. Alternativ kann das Entfernen ver-
borgener Flächen und das Anti-Aliasing im Rastergenerator 417 ausgeführt werden. Wenn das Entfernen ver-
borgener Flächen und das Anti-Aliasing im Rastergenerator ausgeführt wird, brauchen Tiefendaten und Bede-
ckungsdaten nicht in der Datenschlange 418 gespeichert zu werden. Die Texturfilterdaten können zum Beispiel
einen Parameter für die Detailliertheit für die MIP-Abbildung umfassen oder können anisotrope Filterdaten für
eine höherwertige Texturfilterung umfassen.

[0199] Die Texturblockabrufung 420 liest die Texturreferenzdaten, die in der Datenschlange gespeichert sind,
und ruft die entsprechenden Texturdaten aus dem Speicher 419 ab. Im Fall von Texturabbildungzugriffen kon-
vertiert die Texturblockabrufeinheit die (S,T)-Mitte der Texturanforderung und die Texturfilterdaten in die Adres-
sen der Blöcke, die benötigt werden, um die Texturfilteroperation ausführen zu können. Die Blöcke, die bei die-
sem Prozess festgestellt werden, werden dann in den Cache geholt, wobei sie andere Blöcke bei Bedarf er-
setzen. Bilddatenblöcke können unter Verwendung eines Algorithmus zum Ersetzen eines zuletzt verwendeten
(LRU) oder eines anderen geeigneten Cache-Ersetzungsalgorithmus abgerufen werden. Um Speicherzugriffe
zu reduzieren, verfolgt die Texturblockabrufeinheit die Texturblöcke, die bereits im Texturcache 421 gespei-
chert sind, und vermeidet das mehr als einmalige Abrufen desselben Blocks. Diese Fähigkeit reduziert be-
trächtlich die Speicherbandbreite, die zur hochqualitativen Texturfilterung benötigt wird, weil die Verzögerungs-
zeit beim Abrufen eines Texturblocks nur einmal beim Berechnen eines Bildes auftritt.

[0200] Die Texturblockabrufeinheit umfasst einen Sperrmechanismus, um das Überschreiben von Texturblö-
cken zu verhüten, die noch in der Texturfiltereinheit im Tiler benötigt werden. Eine Möglichkeit, einen solchen
Sperrmechanismus zu implementieren, besteht darin, einen Referenzzählwert mit jedem Texturblock zu ver-
knüpfen, um zu verfolgen, ob der Texturfilter einen bestimmten Texturblock verwendet hat. Dieser Referenz-
zählwert wird beim Erhalt einer Texturanforderung für einen Block durch die Texturabrufeinheit erhöht und als
Reaktion auf seine Verwendung durch die Texturfiltereinheit verringert. Die Texturblockabrufeinheit ersetzt
dann nur Blöcke, die einen entsprechenden Referenzzählwert von null besitzen.

[0201] Eine andere Möglichkeit, den Sperrmechanismus zu implementieren, ist das Zuweisen eines Puffers
für die zeitweilige Speicherung der Texturblockausgabe durch die Texturabrufeinheit. Bei diesem Ansatz wird
der Bildblock zuerst in den temporären Speicherpuffer geschrieben. Nachdem die Texturabrufeinheit das
Schreiben des Bildblocks in den temporären Speicherpuffer beendet hat, kann er dann in den Texturcache
übertragen werden. Bildblöcke werden in den Texturcache geswappt, wenn sie zum ersten Mal von der Tex-
turfiltereinheit 422 benötigt werden.

[0202] Im Fall von Texturabbildungsoperationen liest der Texturfilterblock 422 Texturproben aus dem Tex-
turcache 421 und die Pixeldaten, die in der Texturreferenzdatenschlange 418 gespeichert sind, und berechnet
Pixelfarb- und möglicherweise Alphawerte aus den Texturprobedaten.

[0203] Zusätzlich zu den Texturabbildungsoperationen kann dieser Ansatz auch auf das Schattierungs- und
Mehrfachmischoperationen angewendet werden. Zum Beispiel kann die Texturreferenzdatenschlange dazu
verwendet werden, eine Schattentiefenabbildung abzurufen, die im Speicher liegt. Alternativ kann die Textur-
referenzdatenschlange dazu genutzt werden, Farb- und/oder Alphadaten abzurufen, die in Mehrfachbeleuch-
tungs- und Schattierungsoperationen verwendet werden. Weitere Details bezüglich Texturabbildungs-, Schat-
tierungs- und Mehrfachoperationen werden unten angeführt.

[0204] Es gibt eine Reihe von Vorteilen für das Puffern von Pixeldaten in der oben beschriebenen Weise. Ein
wesentlicher Vorteil ist, dass Bilddaten in weniger speziellem Speicher (mit höherer Zugriffszeit) gespeichert
werden können, was die Kosten für das Gesamtsystem reduziert. Außerdem können Bilddaten, die Texturen
enthalten, in komprimiertem Format gespeichert werden, und es kann darauf immer noch mit ausreichend
schnellen Raten zugegriffen werden, um anspruchsvolle Pixeloperationen, wie die Texturfilterung, auszufüh-
ren. Im Ergebnis ist das System in der Lage, eine verbesserte Leistungsfähigkeit bei niedrigeren Kosten im
Vergleich zu bekannten Verfahren für den Zugriff auf Texturdaten zu erreichen.

[0205] Ein weiterer Vorteil für diesen Ansatz ist, dass die Texturreferenzdatenschlange genau vorhersagen
kann, auf welche Bildblöcke aus dem Speicher zugegriffen werden muss. Im Ergebnis dessen erfährt das Sys-
tem eine Verzögerungszeit für Speicherzugriffe, die nicht größer als notwendig ist. Sobald die Bilddatenblöcke
22/147

DE 696 36 599 T2 2007.08.23
im Texturcache sind, kann die Texturfiltereinheit mit der vollen Geschwindigkeit des Rastergenerators laufen,
solange es ausreichend Speicherbandbreite und Texturabrufdurchsatz gibt, um die angeforderten Bildblöcke
in den Texturcache zu schreiben.

[0206] Mit dem Einstellen von Texturreferenzen in die Schlange mit der Texturanforderungsmitte und dem Fil-
tern der Daten kann die Schlange viel kleiner sein, als wenn die Texel mit ihren entsprechenden Texturfilterge-
wichten in die Schlange gestellt werden.

[0207] Fig. 11 ist ein Funktionsschema, das eine alternative Ausführungsform für den Zugriff auf Bilddaten
aus dem Speicher illustriert. Bei diesem Ansatz werden geometrische Grundelemente in die Schlange gestellt
und dann in einem Vorrastergenerator verarbeitet, um die Verzögerungszeit des Texturblockabrufs während
des Pixelerzeugungsprozesses zu verbergen. Mit einem Beispiel lässt sich das Konzept besser illustrieren.
Wenn ein durchschnittliches Grundelement 25 Zyklen zum Rastern benötigt und es 100 Zyklen dauert, einen
Texturblock aus dem Speicher abzurufen, sollte die Grundelementeschlange mindestens vier Grundelemente
lang sein. Eine vereinfachte Version des Postrastergenerators, des Vorrastergenerators umfasst Schaltkreise
zur Bestimmung der Bilddatenblöcke, auf die im Speicher zugegriffen werden muss. Sobald die Texturdaten
abgerufen sind, kann der Nachrastergenerator Pixeldaten unter Verwendung von Texturdaten erzeugen, ohne
der Verzögerungszeit ausgesetzt zu sein, die beim Abruf von Blöcken aus dem Speicher auftritt.

[0208] Der Datenfluss durch diese Implementierung verläuft folgendermaßen. Wie bei der Implementierung,
die oben beschrieben wird, werden geometrische Grundelemente in einem Setup-Block 425 zur Rasterung
verarbeitet. Bei dieser speziellen Implementierung umfasst der Setup-Block 425 jedoch eine größere Grunde-
lementeschlange, um mehr Grundelemente zu puffern. Der Vorrastergenerator 426 konvertiert die Grundele-
ment schnell in der Reihenfolge, wie die Blöcke vom Nachrastergenerator 427 benötigt werden, in eine Liste
von Texturblöcken, die benötigt werden, um die Texturfilterungsbedürfnisse für alle Pixel zu erfüllen, die vom
Grundelement abgedeckt werden. Der Vorrastergenerator ist eine vereinfachte Version des Nachrastergene-
rator 427 oder des Rastergenerators 417 in der alternativen Implementierung. Bei diesem Ansatz braucht der
Vorrastergenerator nur Texturdatenadressen zu berechnen und Texturanforderungen zu bestimmen.

[0209] Der Vorrastergenerator enthält auch ein Modell des Texturblockcaches und führt den Cacheerset-
zungsalgorithmus, wie zum Beispiel zuletzt verwendet (LRU) aus, um das Überschreiten der Größe des Tex-
turblockcaches zu vermeiden. Als Teil des Cacheersetzungsalgorithmus komprimiert der Vorrastergenerator
wiederholte Anforderungen an einen einzelnen Texturblock auf nur eine Anforderung an die Texturblockab-
rufeinheit 429.

[0210] Die Texturblockabrufschlange 428 umfasst Einträge zum Speichern von Texturblockanforderungen.
Die Texturblockabrufeinheit 429 liest die Texturabrufe aus der Texturblockabrufschlange und ruft die entspre-
chenden Blöcke aus dem Speicher 430 ab.

[0211] Der Nachrastergenerator rastert Grundelemente, die sich im Setup-Block 425 in der Schlange befin-
den, um Pixeldaten für einen Pixelort zu erzeugen. Wenn auf Bilddaten aus dem Speicher während des Pixel-
erzeugungsprozesses zugegriffen werden muss, rastert der Nachrastergenerator die Grundelemente so
schnell wie die notwendigen Texturblöcke in den Texturblockcache 431 übertragen werden können. Wenn der
Nachrastergenerator das Rastern eines Grundelementes, das sich im Setup-Block in der Schlange befindet,
abschließt, wird das Grundelement entfernt und durch eine weiteres Grundelement aus dem Eingabedaten-
strom ersetzt. Der Setup-Block ist dafür verantwortlich, dass die Schlange mit Grundelementen gefüllt gehalten
wird, so dass der Vorrastergenerator und der Nachrastergenerator nicht im Pixelerzeugungsprozess stehen
bleiben.

[0212] Wie die alternative Ausführungsform, die oben beschrieben wird, sollte die Texturblockabrufung vor-
zugsweise einen Sperrmechanismus umfassen, um das Überschreiben der Texturblöcke zu verhüten, die noch
vom Nachrastergenerator benötigt werden. Die zwei Sperrmechanismen, die oben beschrieben sind, können
auch in dieser Implementierung verwendet werden. Speziell kann ein Referenzzählwert dazu verwendet wer-
den zu verfolgen, wann ein Bildblock angefordert und dann verwendet wurde. In diesem Fall würde ein Refe-
renzkonto beim Erhalt einer Texturanforderung für einen Block durch den Vorrastergenerator erhöht und bei
Verwendung durch den Nachrastergenerator verringert werden. Die Texturblockabrufeinheit ersetzt dann nur
Blöcke im Texturcache, wenn ihr entsprechender Referenzzählwert null ist.

[0213] Alternativ kann ein Puffer zur temporären Speicherung von Texturblockausgaben durch den Texturab-
rufblock zugewiesen werden. Wenn der Texturabrufblock das Schreiben eines Blocks in diesen temporären
23/147

DE 696 36 599 T2 2007.08.23
Puffer abgeschlossen hat, kann er dann in den Texturblockcache 431 übertragen werden, wenn er vom Nach-
rastergenerator 427 angefordert wird. Wenn der Nachrastergenerator 427 zuerst Daten in einem Texturblock
im temporären Puffer anfordert, wird der Block dann in den Texturblockcache 431 übertragen.

[0214] Es gibt eine Reihe von Vorteilen für diese Vorgehensweise. Erstens können Texturdaten in weniger
speziellem Speicher gespeichert werden, und darauf kann trotzdem mit Raten zugegriffen werden, die benötigt
werden, um eine anspruchsvolle Texturfilterung zu unterstützen. Ein wichtiger, damit verwandter Vorteil ist,
dass Texturdaten in einem komprimierten Format gespeichert und dann zur Verwendung im Pixelerzeugungs-
prozess dekomprimiert werden können.

[0215] Ein weiterer Vorteil dieses Ansatzes ist, dass Anforderungen an Speicher vorhergesagt werden kön-
nen, so dass die Verzögerungszeit für den Speicherzugriff nur einmal für jeden Texturblock zum Rendern einer
Szene auftritt. Sobald die ersten Texturblöcke im Texturcache sind, kann der Nachrastergenerator mit voller
Geschwindigkeit laufen, solange es ausreichend Speicherbandbreite und Texturabrufdurchsatz gibt, um den
Cache aktuell zu halten.

[0216] Fig. 9B illustriert eine detailliertere Implementierung des Systems, das in Fig. 10 illustriert wird. Der
Setup-Block 381 in Fig. 9B entspricht dem Setup-Block 416 in Fig. 10. Im Gegensatz zum Setup-Block 382
von Fig. 9A, erzeugt der Setup-Block 381 in dieser alternativen Implementierung keine Texturleseanforderun-
gen. Statt dessen erzeugt der Scanumwandlungsblock 395 Pixeldaten, einschließlich Texturreferenzdaten, die
in der Texturreferenzdatenschlange 399 gespeichert werden.

[0217] Der Scanumwandlungsblock 395 von Fig. 9B ist eine spezielle Implementierung des Rastergenera-
tors 417 in Fig. 10. Er berechnet einen Z-Wert, eine Bedeckungsmaske, Farb- und Lichtdurchlässigkeitswerte
und die Mitte der Texturanforderung in Texturkoordinaten. Für einige Texturabbildungoperationen berechnet er
auch Detailliertheitsdaten oder anisotrope Filterdaten. Die Texturfilter-Engine 401 liest die Texturanforderung
und möglicherweise Texturfilterdaten, die in der Texturreferenzdatenschlange 399 gepuffert sind, und greift auf
die entsprechenden Texturproben im Texturcache zu. Aus diesen Texturdaten berechnet die Texturfilter-Engine
den Beitrag der Textur zu den Pixelfarb- und -Alphawerten. Die Texturfilter-Engine kombiniert Farbe und Alpha
in der Texturreferenzdatenschlange 399 mit dem Beitrag aus der Textur, um Pixelwerte zu erzeugen, die an die
Pixelengine 406 gesendet werden.

[0218] Die Texturcachesteuerung 391, Texturleseschlange 393, Befehls- und Speichersteuerung 380 sind
spezielle Implementierungen des Texturblockabrufs 420 in Fig. 10. Außerdem sind für komprimierte Texturblö-
cke der komprimierte Cache 416 und die Dekompressionsengine 404 auch Teil des Texturblockabrufs 420.

[0219] Fig. 9C illustriert eine detailliertere Implementierung des Systems, das in Fig. 11 illustriert wird. In die-
ser Implementierung wird die Funktionalität, die in Verbindung mit den Blöcken 425 und 426 von Fig. 11 be-
schrieben wird, innerhalb des Setup-Blocks 383 implementiert. Speziell umfasst der Setup-Block 383 den Vor-
rastergenerator 426. Der Setup-Block 383 umfasst auch zusätzliche Eckpunktkontrollregister 387 zum Puffern
zusätzlicher Grundelemente, so dass der Vorrastergenerator die Grundelemente schnell konvertieren kann,
um Texturdatenanforderungen in Gang zu setzen. Die Setup-Engine und der Vorrastergenerator 383 senden
Anforderungen für Texturblöcke an die Texturcachesteuerung 391, die in Fig. 9C gezeigt wird.

[0220] Die Texturcachesteuerung 391 stellt sicher, dass die benötigten Texturblöcke sich im Texturcache 402
befinden, wenn sie benötigt werden. Die Texturleseschlange puffert Leseanforderungen für Texturdatenblöcke
im gemeinsamen Speichersystem. Die Befehls- und Speichersteuerung 380 arbitriert den Zugriff auf das ge-
meinsame Speichersystem, und sie umfasst einen Puffer zur Pufferung von Daten aus dem Speicher. Die Tex-
turcachesteuerung 391, Texturleseschlange 393 und die Befehls- und Speichersteuerung 380 sind spezielle
Implementierungen des Texturblockabrufs 429 in Fig. 11. Für komprimierte Texturblöcke sind der komprimierte
Cache 416 und die Dekompressionsengine 404 auch Teil des Texturblockabrufs 429. Die Texturcachesteue-
rung 391 leitet den Strom von Texturblöcken aus dem komprimierten Cache 416 durch die Dekompressions-
engine 404 in den Texturcache 402.

[0221] Der Scanumwandlungsblock 397 und die Texturfilter-Engine 403 sind eine spezielle Implementierung
des Nachrastergenerators 427 in Fig. 11. Der Scanumwandlungsblock 397 und die Texturfilter-Engine 403 ar-
beiten ähnlich wie ihre Gegenstücke, die in Fig. 9A illustriert und oben beschrieben werden.
24/147

DE 696 36 599 T2 2007.08.23
Texturcachesteuerung

[0222] Oben haben wir zwei Ansätze zum Rastern in Umgebungen mit hoher Verzögerungszeit für Texturab-
rufoperationen beschrieben. Wir geben nun Erscheinungsformen der Texturcachesteuerung detaillierter an.

[0223] Die Texturcachesteuerungsmethode ermöglicht es dem Rastergenerator, während der Texturabbil-
dung trotz einer hohen Verzögerungszeit für Texturabbildungsabrufoperationen mit voller Geschwindigkeit zu
arbeiten. Im Tiler ist diese Verzögerungszeit das Ergebnis der Zeit, die zum Lesen nicht komprimierter Textur-
daten aus dem gemeinsamen Speicher (z.B. RAMBUS) benötigt wird, plus der Zeit, die zum Dekomprimieren
von Blöcken der Texturabbildung benötigt wird. Das Verfahren gilt auch für die Gsprite-Engine, die Gsprite-Blö-
cke aus dem gemeinsamen Speicher abruft, sie möglicherweise dekomprimiert und Pixeldaten im Gspri-
te-Raum in den Betrachtungsraum (oder spezieller in Bildschirmkoordinaten) konvertiert.

[0224] Die Grundvoraussetzung für das Texturcachesteuerungsverfahren ist die Erzeugung zweier identi-
scher Ströme von Texel-(oder Gsprite-Pixel)-Anforderungen, die zeitlich versetzt sind. Der erste (frühere)
Strom ist eine Vorabrufanforderung, für die keine Texturdaten zurückgegeben werden, während der zweite
(spätere) Strom eine tatsächliche Anforderung ist, die wirklich Texeldaten zurückliefert. Die Zeitdifferenz zwi-
schen diesen zwei Strömen wird dazu verwendet, die Verzögerungszeit des Lesens und Dekomprimierens der
Texturdaten zu verbergen.

[0225] Zwei Ansätze zum Erzeugen dieser zeitlich getrennten Anforderungen, die oben beschrieben werden,
sind: (1) Doppelte Rastergeneratoren, die beide von einem einzigen Grundelemente-FIFO (Fig. 11 und
Fig. 9C) lesen, und (2) ein einziger Rastergenerator, gefolgt von einem Pixel-FIFO (Fig. 10 und Fig. 9B).

[0226] Bei Ansatz (1) schaut der erste Rastergenerator sich die Grundelemente aus Positionen an der oder
in der Nähe der Eingabeseite des Grundelemente-FIFOs an und rastert die Grundelemente, wobei Texturan-
forderungen gemacht werden, aber keine Texel zurückgeliefert werden und keine Pixel erzeugt werden. Der
zweite Rastergenerator entfernt Grundelemente aus dem FIFO-Ausgang und erstellt zu einem späteren Zeit-
punkt identische Anforderungen, empfängt die Texel aus der Texturcachesteuerung und erzeugt die Pixel. Die
Tiefe der Grundelementeschlange, kombiniert mit der Zahl der Pixel pro Grundelement, bestimmt die potenzi-
elle zeitliche Differenz zwischen den zwei Anforderungsströmen.

[0227] Bei Ansatz (2) verarbeitet der einzige Rastergenerator Grundelemente und erstellt Texturanforderun-
gen und gibt teilweise vollständige Pixeldaten in einen Pixel-FIFO aus. Diese Teilpixeldaten umfassen alle Da-
ten, die notwendig sind, um die Berechnung des Pixels abzuschließen, sobald die Texturanforderungen erfüllt
wurden. Auf der Ausgabeseite des Pixel-FIFO wird das Teilpixel abgeschlossen, was den identischen Strom
von Texturanforderungen erzeugt, die Texel empfängt und fertig gestellte Pixel erzeugt. Die Tiefe der Pixel-
schlange bestimmt die potenzielle zeitliche Differenz zwischen den zwei Anforderungsströmen.

Texturcachesteuerung

[0228] Die Texturcachesteuerung umfaßt zwei konzeptionelle Caches: den virtuellen Cache und den physi-
schen Cache. Der virtuelle Cache ist mit dem ersten (Vorabruf-)-Anforderungsstrom verknüpft und umfaßt kei-
ne Daten, die direkt die Cache-Einträge begleiten (Anforderungen an diesen Cache geben keine Daten zu-
rück). Der physische Cache ist mit dem zweiten (tatsächlichen) Anforderungsstrom verknüpft und umfaßt echte
Texturdaten, die jeden Cache-Eintrag begleiten (und gibt daher Daten an den Anfordernden zurück). Diese Ca-
ches haben dieselbe Zahl von Einträgen.

[0229] Der virtuelle Cache steuert und verfolgt den zukünftigen Inhalt des physischen Caches; daher hat er
an einer beliebigen Position in seinem Anforderungsstrom einen Satz von Cache-Key- und Eintragsverknüp-
fungen, die der physische Cache an derselben relativen Position in seinem Anforderungsstrom (zu einem zu-
künftigen Zeitpunkt) haben wird.

[0230] Beim Erhalt einer Anforderung (eines neuen ,Keys') führt der virtuelle Cache den Vergleich mit seinem
aktuellen Satz von Keys aus. Wenn der angeforderte Key nicht im virtuellen Cache ist, dann wird eine Ca-
che-Ersetzungsoperation ausgeführt. Die virtuelle Cache-Ersetzung umfasst 1) Auswählen eines Eintrags zum
Auswechseln (über LRU oder einen anderen Algorithmus), 2) Ersetzen des Keys für diesen Eintrag und 3) Auf-
rufen des (Speicher- und) Dekompressionsteilsystems, um mit dem Prozess des Abrufens und Dekomprimie-
rens der Daten zu beginnen, die mit diesem Key verbunden sind. In den speziellen Implementierungen, die in
den Fig. 9B und Fig. 9C gezeigt werden, umfasst das Dekompressionsteilsystem die Befehls- und Speicher-
25/147

DE 696 36 599 T2 2007.08.23
steuerung 380, den komprimierten Cache 416 und die Dekompressionsengine 404.

[0231] Die Ausgabe des Dekompressionsteilsystems ist ein Block von Texturdaten, der dann in einen Eintrag
im physischen Cache (den Texturcache 402 zum Beispiel) gebracht wird. Im Tiler, der in den Fig. 9B und C
gezeigt wird, wird die Verarbeitung, die vom Dekompressionsteilsystem ausgeführt wird, in einer Mehrein-
trags-Pipeline realisiert, in der eine Reihenanordnung eingehalten wird.

[0232] Man beachte, dass bei Vorhandensein des angeforderten Keys im virtuellen Cache keine Aktion erfor-
derlich ist, weil sich die damit verknüpften Daten zu dem Zeitpunkt, zudem sie vom zweiten Anforderungsstrom
angefordert werden, im physischen Cache befinden.

[0233] Anforderungen an den physischen Cache führen zu einem ähnlichen Key-Vergleich, um festzustellen,
ob die angeforderten Daten bereits im Cache sind. Wenn ein passender Key gefunden wird, werden die damit
verknüpften Daten zurückgegeben. Wenn nichts Passendes gefunden wird, dann ist garantiert, dass die
nächste Datenausgabe durch das Dekompressionsteilsystem die gewünschten Daten enthält. Man beachte,
dass der physische Cache keine Auswahlverarbeitung von Ersetzungseinträgen ausführt – der Eintrag im phy-
sischen Cache, der durch die neuen Daten ersetzt wird, wird durch den virtuellen Cache über einen Cache-Ein-
tragszielindex diktiert, der durch den virtuellen Cachecontroller berechnet wird und durch das Dekompressi-
onsteilsystem mit den gewünschten Daten geschickt wird.

[0234] Das korrekte Funktionieren des Verfahrens erfordert, dass die Strömungskontrolle auf die Schnittstelle
zwischen dem Dekompressionsteilsystem und dem physischen Cache angewendet wird. Wenn dekomprimier-
te Daten ihren Zieleintrag im physischen Cache überschreiben dürfen, sobald sie verfügbar sind, ist es mög-
lich, dass möglicherweise nicht alle Referenzen auf den vorherigen Inhalt dieses Cache-Eintrags vervollstän-
digt sind. (Man beachte, dass der Controller des physischen Cashes möglicherweise ebenfalls auf Daten war-
ten muss, die vom Dekompressionsteilsystem auszugeben sind.) Diese Flusssteuerung wird durch Warten er-
reicht, bis der neue Eintrag angefordert wird, bevor der Inhalt des vorherigen Eintrags überschrieben wird. Das
Eintragen neuer Daten in den Texturcache wird also immer bis zum letzten Moment, wenn sie benötigt werden,
verzögert.

[0235] Da diese Ersetzung verzögert wird, bis sie erforderlich ist, kann jede Zeit, die benötigt wird, um die Da-
ten in den physischen Cache zu bringen, eine Verzögerungszeit in den Prozess einführen, der den zweiten
Anforderungsstrom antreibt. Die zwei Verfahren zur Abschwächung dieser Verzögerungszeit sind folgende.

[0236] Das erste Verfahren besteht darin, die Daten im physischen Cache doppelt zu puffern. Das ermöglicht
es dem Dekompressionsteilsystem, die Daten jedes Eintrags sofort auf seine Seite des Doppelpuffers zu
schreiben, und der Controller des physischen Caches kann einen (vermutlich schnellen) Puffertausch vorneh-
men, um die Daten auf seiner Seite des Caches abzubilden. Das Dekompressionsteilsystem braucht nur zu
warten, ob der zu füllende Eintrag bereits voll ist und noch nicht getauscht wurde. Man beachte, dass der Ca-
che-Ersetzungsalgorithmus, der vom Controller des virtuellen Caches verwendet wird, nicht die Neigung be-
sitzt, denselben Eintrag wiederholt zu überschreiben und so das Schreiben auf die Cache-Einträge auszudeh-
nen.

[0237] Das zweite Verfahren bestehet darin, für den physischen Cache ein oder mehrere ,Extra'-Einträge zu-
sätzlich zu der Zahl der „keyed" bzw. verschlüsselten Einträge vorzusehen. Die Zahl der ,keyed'-Einträge ist
die Zahl, für die Cache-Keys existieren, und entspricht der Zahl der Einträge im virtuellen Cache. Die Zahl der
Extraeinträge stellt die Zahl der Einträge dar, die nicht abgebildet sind (d.h. die aktuell nicht verschlüsselt sind).
Die Summe dieser ist die Gesamtzahl von Dateneinträgen im physischen Cache.

[0238] Im zweiten Verfahren können alle Cache-Einträge zwischen nicht abgebildet und abgebildet (mit ei-
nem Key verknüpft) wechseln. Die Menge der nicht abgebildeten Einträge bildet einen FIFO von Einträgen, in
den das Dekompressionsteilsystem fertig gestellte Blöcke von Daten schreibt. Eine separate FIFO-Struktur
wird für die Hauptzielindizes geführt, die mit diesen nicht abgebildeten Einträgen verknüpft sind. Wenn eine
Anforderung an den physischen Cache erstellt wird, für die kein passender Key vorhanden ist, wird der erste
Eintrag in der Schlange der nicht abgebildeten Einträge in den Zielindex abgebildet und mit diesem Key ver-
knüpft. Der ersetzte Eintrag wird nicht abgebildet und (leer) an das Ende der nicht abgebildeten Schlange ge-
setzt.
26/147

DE 696 36 599 T2 2007.08.23
Cache-Key-Erzeugung

[0239] Die Grundvoraussetzung des Verfahrens ist, dass zwei identische Ströme von Anforderungen erzeugt
werden. Es ist jedoch nicht erforderlich, dass die speziellen Keys, die mit diesen Anforderungen verknüpft wer-
den, identisch sind.

[0240] Die Cache-Keys, die den ersten (frühen) Strom von Anforderungen bilden, werden zur Steuerung des
Lesens und der nachfolgenden Dekompression der Texturdaten verwendet. Diese Keys müssen eine gewisse
direkte Relevanz für die angeforderten Daten besitzen (wie zum Beispiel eine Speicheradresse).

[0241] Die Cache-Keys, die den zweiten (späteren) Strom von Anforderungen bilden, brauchen nicht genau
dem Inhalt des ersten Stroms zu entsprechen – es ist nur eine Forderung, dass es eine eindeutige 1:1-Abbil-
dung zwischen den beiden gibt. Dies ist auf die Tatsache zurückzuführen, dass die Keys für den zweiten Strom
nur zum Abstimmen vorhandener Cache-Einträge verwendet werden, nicht für Datenabrufoperationen. Der kri-
tische Fakt ist hier, dass die Verknüpfung zwischen dem Key des physischen Caches und einem Cache-Eintrag
hergestellt wird, wenn die neuen Daten auf den physischen Cache abgebildet werden und der Index des zu-
gehörigen Eintrags vom virtuellen Cache berechnet und durch das Dekompressionsteilsystem geschickt wird.

[0242] Diese Tatsache kann ausgenutzt werden, um die Steuerelemente für den Prozess zu vereinfachen,
der gerade die Keys für den zweiten Anforderungsstrom erzeugt, da die Keys für den Strom nur eindeutig und
nicht ganz ,korrekt' sein müssen.

[0243] Fig. 12A ist ein Schema, das die Gsprite-Engine 436 auf der Bildverarbeitungsplatine 174 illustriert.
Die Gsprite-Engine 436 ist für das Erzeugen der Grafikausgabe aus einer Sammlung von Gsprites verantwort-
lich. Sie hat eine Schnittstelle zur Tiler-Speicherschnittstelleneinheit für den Zugriff auf die Gsprite-Datenstruk-
turen im gemeinsamen Speicher. Gsprites werden von der Gsprite-Engine transformiert (gedreht, skaliert usw.)
und zum Zusammensetzungspuffer weitergeleitet, wo sie mit Pixeln zusammengesetzt werden, die von ande-
ren Gsprites bedeckt werden.

[0244] Die Schnittstellensteuerung 438 wird zum Verbinden der Gsprite-Engine mit dem gemeinsamen Spei-
chersystem über den Tiler verwendet. Dieser Block umfasst einen FIFO, um Zugriffe vom Speicher zu puffern,
bevor sie durch die Gsprite-Engine verteilt werden.

[0245] Der Anzeigesteuerprozessor 440 wird zur Steuerung der Videoanzeigeaktualisierungen verwendet. Er
umfasst einen Videotaktgenerator, der die Videoanzeigeauffrischung steuert und die Taktsignale erzeugt, die
zur Steuerung der Gsprite-Zugriffe notwendig sind. Dieser Block durchläuft auch die Gsprite-Anzeigedaten-
strukturen zur Feststellung, welche Gsprites für ein gegebenes 32-Scanzeilen-Band gelesen werden sollen.

[0246] Die Gsprite-Header 442-Register speichern Gsprite-Headerdaten, die vom Bildprozessoradressgene-
rator 454 und der Gsprite-Filterengine 456 dazu verwendet werden, die Transformationen an jedem Gsprite
festzustellen. Sie werden auch vom Gsprite-Headerdecoder 444 zur Bestimmung der Blöcke (in diesem Fall
der 8×8-Kompressionsblöcke) verwendet, die benötigt werden, um den Gsprite in jedem Band zu rendern.

[0247] Der Gsprite-Headerdecoder 444 bestimmt, welche Blöcke aus jedem Gsprite im 32-Scanzeilen-Band
sichtbar sind, und erzeugt Blockleseanforderungen, die zur Gsprite-Leseschlange 446 übertragen werden.
Dieser Block beschneidet auch den Gsprite unter Verwendung der Gsprite-Kantengleichungsparameter auf
das aktuelle Band. Dieser Prozess wird detaillierter unten beschrieben.

[0248] Die Gsprite-Leseschlange 446 puffert Leseanforderungen für Gsprite-Blöcke. Diese Schlange spei-
chert in dieser Ausführungsform Anforderungen für sechzehn Blöcke

[0249] Der Gspritedaten-Adressgenerator bestimmt die Adresse im Speicher der angeforderten Gsprite-Blö-
cke und sendet Gsprite-Leseanforderungen an den Schnittstellensteuerungsblock. Der Gspritedaten-Adress-
generator 448 umfasst eine Speichermanagementeinheit.

[0250] Komprimierte Daten, die aus dem gemeinsamen Speicher 216 (Fig. 4A) abgerufen werden, können
temporär im komprimierten Cache 458 gespeichert werden.

[0251] Die Dekompressionsengine 450 umfasst zwei Dekompressoren, einen, der einen DCT-basierten Al-
gorithmus für Halbtonbilder, wie zum Beispiel 3D-Gsprites, implementiert, und den anderen, der einen verlust-
27/147

DE 696 36 599 T2 2007.08.23
losen Algorithmus für Desktop-Pixeldaten implementiert. Der DCT-basierte Algorithmus wird durch zwei paral-
lele Dekompressionsblöcke implementiert, die jeweils acht Pixelelemente (d.h. zwei Pixel) pro Taktzyklus er-
zeugen können.

[0252] Der Gsprite-Cache 452 speichert dekomprimierte Gsprite-Daten (R G B α) für sechzehn 8×8-Blöcke.
Die Daten sind so organisiert, dass bei jedem Taktzyklus auf 16 Gspritepixel zugegriffen werden kann.

[0253] Der Bildprozessoradressgenerator 454 wird dazu verwendet, jeden Gsprite auf der Basis der festge-
legten affinen Transformation abzuscannen und die Filterparameter für jedes Pixel zu berechnen. Gsprite-Ca-
cheadressen werden erzeugt, um auf Gsprite-Daten im Gsprite-Cache 452 zuzugreifen und sie in die Gspri-
te-Filterengine zuzuführen. Der Bildprozessoradressgenerator 454 steuert auch den Zusammensetzungspuf-
fer.

[0254] Die Gsprite-Filterengine 456 berechnet die Pixelfarbe und Alphadaten für Pixelorte auf der Basis der
Filterparameter. Diese Daten werden in die Zusammensetzungspuffer zum Zusammensetzen übertragen. Die-
ser Block 456 berechnet einen 4- oder 16-Pixel-Filterkern auf der Basis der Gsprite-s- und -t-Koordinaten an
einem Pixelort. Das Filter kann zum Beispiel entweder bilinear oder eine anspruchsvollere Kosinussummen-
funktion sein. Der 16-Pixel-Filterkern kann negative Keulen haben, was eine viel schärfere Filterung ermög-
licht, als mit bilinearer Interpolation möglich ist. Die Gsprite-Filterengine 456 erzeugt vier neue Pixel, die bei
jedem Taktzyklus zusammengesetzt werden. Diese Pixel sind in einem Muster von zwei mal zwei ausgerichtet.

[0255] Die Gsprite-Engine 436 ist mit dem Tiler 200 und dem Zusammensetzungspuffer 210 verbunden.
Steuersignale steuern die Videozeitabläufe und den Datentransfer zum DAC 212.

[0256] Fig. 12B ist ein Schema einer alternativen Implementierung der Gsprite-Engine 437. Diese spezielle
Implementierung umfasst sowohl einen Vorrastergenerator 449 als auch den Rastergenerator 454, so dass die
Gsprite-Engine Gsprite-Pixeldaten aus dem Gsprite-Raum in den Bildschirmraum konvertieren kann, ohne
eine Verzögerungszeit beim Abrufen und Dekomprimieren von Blöcken der Gsprite-Pixeldaten zu erfahren.
Der Ansatz mit zwei Rastergeneratoren, der in dieser Implementierung verwendet wird, wird oben in Verbin-
dung mit Fig. 11 und Fig. 9C beschrieben.

[0257] Der Betrieb der Blöcke in der Gsprite-Engine 437 ist im allgemeinen so wie oben für Fig. 12A beschrie-
ben, außer dass diese Implementierung das Doppel-Rastergenerator-Verfahren zum Abrufen von Blöcken von
Texturdaten verwendet. Bei dieser Implementierung (Fig. 12B) liest der Gsprite-Headerdecoder 444 das
Gsprite-Headerregister 442, beschneidet den Gsprite auf das aktuelle Anzeigeband und setzt den Gsprite zum
Rastern in die Gsprite-Schlange 447. Der Datenadressgenerator oder „Vorrastergenerator" 449 scannt jeden
Gsprite auf der Basis der festgelegten affinen Transformation im Gsprite-Header und erzeugt Leseanforderun-
gen für die Gsprite-Cachesteuerung 451. Unter Verwendung eines Verfahrens, das oben in Verbindung mit der
Texturcachesteuerung beschrieben wird, stellt die Gsprite-Cachesteuerung 451 sicher, dass die erforderlichen
Gsprite-Datenblöcke in der Gsprite-Engine 437 und speziell im Gsprite-Cache 452 sind, wenn der Bildprozes-
sorblock 455 sie benötigt. Sie steuert den Strom von Gspritedatenblöcken aus dem komprimierten Cache 458
durch die Dekompressions-Engine 450 in den Gspritecache 452. Die Leseschlange 453 puffert Anforderungen
für Gsprite-Datenblöcke zum gemeinsamen Speichersystem, und die Schnittstellensteuerung 438 liest die An-
forderungen in der Leseschlange 453, steuert Zugriffe auf den gemeinsamen Speicher und setzt Blöcke von
Gsprite-Daten in den komprimierten Cache 458.

[0258] Das Dekompressionsteilsystem in der Gsprite-Engine umfasst den komprimierten Cache 458 und die
Dekompressions-Engine 450. Die Cachesteuerung 451 steuert den Strom von Gsprite-Blöcken durch das De-
kompressionsteilsystem, wie oben in Verbindung mit der Texturcachesteuerung beschrieben.

[0259] Der Bildprozessoradressgenerator (Rastergenerator) 454 scannt jeden Gsprite auf der Basis der fest-
gelegten affinen Transformation im Gsprite-Header und berechnet die Filterparameter für jedes Pixel. Er er-
zeugt auch Gsprite-Cacheadressen von Gsprite-Daten, die er an eine Cache-Adressenkarte im Gsprite-Cache
zur Verwendung durch die Gsprite-Filterengine 456 sendet. In einer speziellen Implementierung des Caches
wählt die Cache-Adressenkarte aus, welche 14 Pixelblöcke aktiv sind und welche zwei Blöcke aus der Dekom-
pressions-Engine gefüllt werden.

[0260] Die Gsprite-Filterengine 456 bildet Farb- und Alphawerte an Pixelorten im Gsprite-Raum auf den Bild-
schirmraum ab. Bei dieser Implementierung wendet sie entweder einen 2×2- oder einen 4×4-Filterkern an, um
Pixelwerte (Farbe oder Farbe und Alpha) an Pixelorten im Bildschirmraum zu berechnen. Die Steuerung 457
28/147

DE 696 36 599 T2 2007.08.23
des Zusammensetzungspuffers sendet Pixelwerte, in diesem Fall vier Pixel pro Taktzyklus, an den Zusammen-
setzungspuffer. Die Steuerung 457 des Zusammensetzungspuffers überwacht die Bereitschaftsleitung vom
Zusammensetzungspuffer, um sicherzustellen, dass die Gsprite-Engine 437 nicht den Zusammensetzungspuf-
fer überlaufen lässt. Der Rastergenerator 454 steuert die Steuerung des Zusammensetzungspuffers.

[0261] Fig. 13 ist ein Schema, das den Zusammensetzungspuffer 480 auf der Bildverarbeitungsplatine 174
illustriert. Der Zusammensetzungspuffer 480 ist eine spezielle Speichervorrichtung, die zum Zusammensetzen
der Gsprite-Daten aus der Gsprite-Engine und zur Erzeugung digitaler Videodaten zur Übertragung zum DAC
212 verwendet wird. Der Zusammensetzungspuffer arbeitet jeweils mit 32 Scanzeilen auf einmal – wobei er
Gsprites für ein 32-Scanzeilenband zusammensetzt, während gleichzeitig die vorherigen 32 Scanzeilen ange-
zeigt werden.

[0262] Die Zusammensetzungslogik 482 ist für die Berechnung der Pixelwerte verantwortlich, wenn sie in den
Scanzeilenpuffer geschrieben werden. Dies wird durch Ausführen einer Mischoperation zwischen dem Pixel-
wert, der aktuell im Scanzeilenpuffer gespeichert ist, und dem, der gerade in den Zusammensetzungspuffer
geschrieben wird, erreicht. Diese Operation wird detaillierter unten beschrieben. In einer Implementierung führt
die Zusammensetzungslogik vier parallele Pixeloperationen pro Taktzyklus aus.

[0263] Die Speichersteuerung 484 wird zur Steuerung der Adresse und des zyklischen Durchlaufens der
Speicherbänke verwendet. Adresseninformationen werden in einem Zeilenspaltenformat wie bei normalen
DRAMS weitergeleitet.

[0264] Die Alphapuffer 486 umfassen einen Achtbitwert für jedes von 1344×32 Pixel. Der Speicher ist so or-
ganisiert, dass bei jedem Taktzyklus vier zusammenhängende Pixel gelesen und geschrieben werden können.
Der Alphapuffer besitzt auch einen schnellen Löschmechanismus, um den Puffer schnell beim Umschalten
zwischen den 32-Scanzeilenbändern zu löschen.

[0265] Es werden zwei unabhängige Scanzeilenpuffer 488 bereitgestellt. Die Scanzeilenpuffer umfassen drei
Achtbitfarbwerte für jedes von 1344×32 Pixeln. Der Speicher ist so organisiert, dass bei jedem Taktzyklus vier
zusammenhängende Pixel gelesen und geschrieben werden können. Ein Puffer wird dazu verwendet, die Pi-
xeldaten für ein Band zum DAC zu übertragen, während der andere zum Zusammensetzen der Pixel für das
nächste Band dient. Sobald das Band abgeschlossen ist, wechseln ihre Funktionen.

[0266] Ein Multiplexer dient dazu, Daten aus einem der zwei Scanzeilenpuffer 488 auszuwählen und die Pi-
xelanzeigedaten an den DAC zu senden. Der Multiplexer schaltet nach jeweils 32 Scanzeilen zwischen den
Puffern um.

[0267] Der Zusammensetzungspuffer 480 ist mit der Gsprite-Engine 204 verbunden und überträgt Bilddaten
zum DAC 212.

[0268] Fig. 14 ist ein Schema, das den DAC 514 auf der Bildverarbeitungsplatine 174 illustriert. Der DAC 514
implementiert die Grundfunktionen, die bei den meisten RAMDACs, die heute auf dem Markt sind, vorhanden
sind. Der DAC umfasst Logik zum Lesen und Schreiben interner Steuerbefehlsregister und zur Pipelineverar-
beitung der Videosteuersignale. Weitere Funktionsblöcke werden unten beschrieben.

[0269] Der Pixeldatenroutingblock 516 wird zur Steuerung der Weiterleitung von Pixeldaten aus den Zusam-
mensetzungspuffern verwendet. Im normalen Betriebsmodus werden diese Daten mit Pixelraten zu den
Farb-LUTs 518 für jeden der drei Kanäle weitergeleitet. Dieser Block ermöglicht auch, dass die Daten für dia-
gnostische Zwecke zum DSP zurückgelesen werden.

[0270] Der Stereobildsplitter 520 unterstützt zwei getrennte Videosignale für die stereoskopische Anzeige un-
ter Verwendung eines kopfmontierten Anzeigesystems. Bei diesem Modus werden zwei Videokanäle (522,
524) vom Zusammensetzungspuffer verschachtelt und müssen vom DAC 514 getrennt werden. Der Stereo-
bildsplitter 520 führt diese Funktion am DAC 514 aus. Im normalen Einkanalmodus werden die LUT-Daten di-
rekt zu den Primären DACs weitergeleitet.

[0271] Alternativ kann der DAC 514 so ausgelegt werden, dass er eine einzelne Videoausgabe erzeugt. Bei
einer einzelnen Videoausgabe kann der DAC eine stereoskopische Anzeige unter Verwendung eines linien-
verschachtelten Formats erzeugen, wo auf eine Scanzeile für ein Auge die Scanzeile für das andere Auge
folgt. Der resultierende Videostrom hat ein Format, wie zum Beispiel 640×960, das zwei Bildern von 640×480
29/147

DE 696 36 599 T2 2007.08.23
entspricht.

[0272] Der Taktimpulsgenerator 526 wird zum Erzeugen der Video- und Audiotaktimpulse verwendet. Diese
Taktimpulse werden durch zwei phasensynchronisierte Taktimpulsgeneratoren erzeugt, um die Synchronisati-
onsdrift zu beseitigen. Der Taktimpulsgenerator kann auch mit einem Steuersignal aus dem Medienkanal
fremdsynchronisiert werden, was ermöglicht, die Bildverarbeitungsplatine mit einer externen Synchronisati-
onsquelle zu synchronisieren.

[0273] Nachdem wir die Struktur und den Betrieb des Bildverarbeitungssystems oben beschrieben haben, be-
schreiben wir nun verschiedene Komponenten und Merkmale des Systems mit mehr Details. Wir beginnen mit
einer Einführung in die Datenstrukturen, die im System zur Implementierung der Konzepte, die oben vorgestellt
wurden, verwendet werden können.

Chunking

[0274] Im Gegensatz zu herkömmlichen Grafiksystemen, die einen großen Bildpufferspeicher und Z-Puffer in
RAM verwenden, um Farb-, Tiefen- und andere Informationen für jedes Pixel zu speichern, unterteilt unser
System Objekte in einer Szene in Bildregionen, die „Chunks" genannt werden, und rendert Objektgeometrien
getrennt in diese Chunks. In einer Ausführungsform werden die Objekte in Gsprites gerendert. Die Gsprites
werden in Chunks unterteilt, und die Chunks werden getrennt gerendert. Obwohl unsere Beschreibung sich
auf mehrere spezielle Ausführungsformen bezieht, versteht es sich, dass das Chunking auf vielerlei Weise an-
gewendet werden kann, ohne den Geltungsbereich der Erfindung zu verlassen.

[0275] Mit ein paar Beispielen lässt sich das Konzept des Chunking besser illustrieren. Wie in Fig. 15A ge-
zeigt, wird ein Objekt 546 in einer Grafikszene von einem Kasten umschlossen, der als Begrenzungskasten
548 bezeichnet wird. Wendet man sich Fig. 15H zu, so kann ein Objekt 550 in der Grafikszene, das durch ei-
nen Begrenzungskasten eingeschlossen ist, in eine Bildregion gerendert werden, die ein Gsprite 552 genannt
wird. Der Begrenzungskasten kann gedreht, skaliert, gedehnt oder auf andere Weise transformiert (z.B. affin
transformiert) werden, um einen Gsprite im Bildschirmraum zu erzeugen. Nachdem der Begrenzungskasten
erzeugt wurde, wird der Begrenzungskasten sowohl in X- als auch in Y-Richtung um das Objekt herum ge-
dehnt, so dass er ein ganzzahliges Vielfaches der 32-Pixel-Chunkgröße wird, wenn der Begrenzungskasten
nicht auf eine 32-Pixel-Grenze (d.h. die Chunkgrenze) 554 fällt. Wie aus dem Objekt 550 in Fig. 15B zu erken-
nen ist, wird ein Begrenzungskasten, der um das Objekt 546, in Fig. 15A gezeigt, gezeichnet wurde, auf die
32×32-Pixelgrenzen in Fig. 15B erweitert. Der Gsprite wird dann vor dem Rendern in 32×32-Pixel"chunks" 556
unterteilt. Es könnten jedoch auch andere kleinere oder größere Chunkgrößen und alternativ geformte Chunks
verwendet werden. Rechteckige und die bevorzugten quadratischen Chunks werden jedoch erläutert.

[0276] Wie in Fig. 15C gezeigt, enthält eine Grafikszene 558 eine Reihe von überlappenden Objekten (560,
562). Diese Objekte sind in Begrenzungskästen eingeschlossen und werden Gsprites (564, 566) zugewiesen.
Die Begrenzungskästen, die in Fig. 15C gezeigt werden, sind bereits auf das Mehrfache von 32 Pixeln gedehnt
(und gedreht, skaliert und anderweitig transformiert) worden, so dass 32×32-Chunks 568 erzeugt werden kön-
nen. Wie man jedoch aus Fig. 15C erkennen kann, richten sich die Gsprites und ihre entsprechenden
32×32-Pixel-Chunkgrenzen 570 normalerweise nicht exakt auf die 32-Pixel-Bildschirmgrenzen 572 aus. Daher
sind zusätzliche Gsprite-Manipulationen während des Chunkings erforderlich, so dass der Gsprite in den Bild-
schirmraum verschoben werden kann.

[0277] Ein Ansatz zum Erzeugen von Gsprites, die unter Verwendung des Chunking gerendert werden, be-
steht darin, eine Reihe von Objekten zu kombinieren, um einen größeren zusammengesetzten Gsprite zu er-
zeugen, statt eine Reihe von kleineren individuellen Gsprites zu erzeugen und zu rendern, die die geometri-
sche Elemente der einzelnen Objekte enthalten. Diese Kombination von Gsprites erspart Verarbeitungszeit
während des Renderns und ist oft erwünscht, wenn die kombinierten Objekte sich nicht sehr oft innerhalb einer
Grafikszene ändern. Ein weiterer Ansatz zur Erzeugung von Gsprites ist, sich Komponenten eines Objekts mit
komplexen Geometrien vorzunehmen und dann diese komplexen Geometriekomponenten in eine Reihe von
Gsprites aufzuteilen. Diese Aufteilung kann zusätzliche Verarbeitungszeit erfordern, wird aber verwendet, um
die Ausgabeauflösung eines bestimmten komplexen Objekts, das sich häufig ändert, zu verbessern. An eini-
gen Objekten kann auch eine Kombination dieser Verfahren verwendet werden.

[0278] Man betrachte zum Beispiel eine Person in einem Videospiel, deren Arme mit einer Reihe von Sta-
cheln unterschiedlicher Größe bedeckt ist und deren Arme sich häufig bewegen. Der Körper und Kopf und an-
dere Teile der Person können kombiniert werden und einen größeren zusammengesetzten Gsprite bilden, da
30/147

DE 696 36 599 T2 2007.08.23
diese Teile des Objektes sich nicht häufig ändern. Die Arme der Person jedoch, die mit Stacheln besetzt sind
und komplexe Geometrien darstellen und sich häufig ändern, werden in eine Reihe von Gsprites unterteilt, um
die Ausgabeauflösung zu verbessern. In diesem Fall wird sowohl die Kombination als auch die Unterteilung
verwendet. Da es nicht einfach oder praktisch ist, solch eine Person zu zeichnen, wird zum Zweck der Erläu-
terung ein viel einfacheres Objekt, eine „Kaffeetasse" statt dessen verwendet, um die Kombination und die Un-
terteilung zu illustrieren.

[0279] Fig. 16A zeigt eine „Kaffeetasse". Diese „Kaffeetasse" ist tatsächlich aus eine Reihe von separaten
Objekten zusammengesetzt. Man kann zum Beispiel die „Kaffeetasse" als aus einem Tassenbehälter, einem
Tassengriff, einer Untertasse und Dämpfen, die aus der Tasse kommen, bestehend betrachten. Ein Ansatz wä-
re, diese einzelnen Objekte zu einem großen Gsprite (d.h. zu einer „Kaffeetasse") zu kombinieren, wie in
Fig. 16A gezeigt. Ein weiterer Ansatz wäre, die „Kaffeetasse" in eine Reihe von kleineren Objekten (z.B. Tas-
senbehälter, Tassengriff, Untertasse und Dämpfe) zu unterteilen und kleinere einzelne Gsprites zu erzeugen,
wie in Fig. 16B gezeigt. Fig. 16B erläutert auch, wie ein Objekt mit komplexen Geometrien unterteilt werden
kann.

[0280] Wenn man die „Kaffeetasse" 574 als ein einfaches Objekt behandelt, wie in Fig. 16A gezeigt, können
die einzelnen Komponenten (z.B. Tassenbehälter, Tassengriff, Untertasse, Dämpfe) des Objekts kombiniert
werden, um einen großen Gsprite zu erzeugen. In diesem Fall würde ein Begrenzungskasten 576 um das Ob-
jekt gezeichnet werden, um das Objekt in den Bildschirmraum zu transformieren und einen großen Gsprite zu
erzeugen. Der Begrenzungskasten kann gedreht, skaliert, gedehnt oder auf andere Weise manipuliert werden,
um einen Gsprite zu erzeugen, der auf die 32×32-Pixelgrenzen im Bildschirmraum fällt. Der Gsprite wird dann
in eine Reihe von 32×32-Pixelchunks 578 unterteilt.

[0281] Eine Möglichkeit, einen Gsprite in Chunks zu teilen, ist, durch die ganze Geometrie, die in den Objek-
ten vorhanden ist, zu laufen und die geometrischen Elemente in Chunks zu legen. Ein weiterer Ansatz durch-
läuft die Chunks und zeichnet dabei alle Geometrien auf, die den betreffenden Chunk berühren. Die illustrierte
Ausführungsform verwendet den zweiten Ansatz, jedoch kann der erste Ansatz und können weitere Ansätze
ebenfalls verwendet werden. Wie aus Fig. 16A zu ersehen ist, sind einige Chunks leer (d.h. werden nicht von
Objektgeometrien berührt). Diese Chunks können beim Rendern ignoriert werden, wie unten erklärt wird.

[0282] Wenn man nun die „Kaffeetasse" als komplexes Objekt behandelt, so wird das Objekt in kleinere Ob-
jektkomponenten unterteilt, die verarbeitet werden, um eine Reihe von kleineren Gsprites zu erzeugen, wie in
Fig. 16B gezeigt. Zum Beispiel umfasst das Objekt „Kaffeetasse" die Teilobjekte Tassenbehälter ohne den Griff
579, den Tassengriff 580, die Untertasse 581 und die Dämpfe 582. Jedes dieser Teilobjekte wird von Begren-
zungskästen, die durch 583-586 gezeigt werden, eingeschlossen, um vier einzelne Gsprites zu erzeugen. Die
„Kaffeetasse", die die vier einzelnen Gsprites umfasst, wird ebenfalls von einem einschließenden Begren-
zungskasten eingeschlossen, wie durch 587 gezeigt. Jeder der Begrenzungskästen kann gedreht, skaliert, ge-
dehnt oder auf andere Weise transformiert (z.B. affin transformiert) werden, um einen Gsprite zu erzeugen, der
auf die 32×32-Pixelgrenzen im Bildschirmraum fällt. Jeder einzelne Gsprite wird dann in eine Reihe von
32×32-Pixelchunks unterteilt. Der umschließende Begrenzungskasten 587 wird dann in Chunks geteilt und
enthält Bereiche von leeren Chunks 588, die beim Rendern ignoriert werden. Die Chunks des umschließenden
Begrenzungskastens werden jedoch in Fig. 16B nicht gezeigt.

[0283] Als Ergebnis des Chunkings wird das Grafikbild nicht als einzelnes Teilbild gerendert, sondern wird als
Folge von Chunks gerendert, die später zu einem Teilbild oder Betrachtungsraum zusammengeführt werden.
Nur Objekte innerhalb eines einzelnen Gsprites, die den 32×32-Pixelchunk des Bildes, das gerade gezeichnet
wird, schneiden, werden gerendert. Das Chunking ermöglicht es, dass der Bildpufferspeicher und der Z-Puffer
von geringer physischer Größe im Speicher sind (d.h. deutlich weniger Speicher als in den traditionellen Gra-
fiksystemen belegen, die oben beschrieben werden) und einen hohen Ausnutzungsgrad des Speichers, der
belegt ist, sowie eine steigende Speicherbandbreite erreichen. Die geringe Chunkgröße ermöglicht auch die
Verwendung anspruchsvollerer Renderingverfahren, Verfahren, die bei großen Bildpufferspeichern und Z-Puf-
fern nicht effektiv angewendet werden könnten.

[0284] Das Rendern von Chunks wird im Tiler ausgeführt. Das Rendern könnte jedoch auch in anderen Hard-
warekomponenten oder unter Verwendung von Software ausgeführt werden. VLSI-Speicher auf dem Ti-
ler-Chip wird zum Speichern der kleinen Chunks (32×32 Pixel) des Teilbildes, das gerade gerendert wird, ver-
wendet. Der chipintegrierte VLSI-Speicher ist viel schneller und hat eine viel größere Speicherbandbreite als
ein externer RAM. Wegen des Chunkingprozesses wird jedoch eine große Menge an Speicher zum Speichern
des gesamten Bildpufferspeichers und des Z-Puffers für den Renderingprozess nicht mehr benötigt. Der inter-
31/147

DE 696 36 599 T2 2007.08.23
ne Speicher innerhalb des Tilers wird nur zur Verarbeitung des aktuellen Chunks verwendet und wird dann für
jeden nachfolgenden Chunk, der verarbeitet wird, immer wieder neu verwendet. Im Ergebnis dessen wird der
verfügbare interne Speicher während des Grafikrenderns gut ausgenutzt.

[0285] Die Verwendung von internem VLSI-Speicher beseitigt auch Pinansteuerungsverzögerungen, die nor-
malerweise auf Grund der chipexternen Kommunikation sowie des zusätzlichen Aufwandes, der mit der Aus-
führung von LESE- und SCHREIB-Operationen auf großem externem Speicher verbunden ist, welcher für kon-
ventionellen Bildpufferspeicher und Z-Puffer benötigt wird, auftreten. Außerdem ermöglicht die kleine Chunk-
größe anspruchsvollere Anti-Aliasing- (z.B. Fragmentpuffer) und Texturierungsmethoden, die am Chunk aus-
zuführen sind, als an einem großen Bildpufferspeicher und Z-Puffer, der in einer großen Menge an externem
Speicher untergebracht ist, ausgeführt werden könnte, weil ein ganzer 32×32-Pixelchunk vollständig in der er-
läuterten Ausführungsform gerendert werden kann, bevor der nächste Chunk berechnet wird. Die geringe
Chunkgröße bietet sich auch für Bildkompressionsverfahren an, die detailliert unten beschrieben werden.

[0286] Nachdem alle sich schneidenden Polygone in den Chunk gezeichnet wurden und die Fragmente auf-
gelöst sind, werden die Pixeldaten, einschließlich Farbe und Opazität, im Tiler-Chip komprimiert und dann zum
externen Speicher bewegt.

[0287] Das Flussdiagramm in den Fig. 17A und Fig. 17B zeigt einen Überblick auf hoher Ebene, wie man
eine Grafikszene in Chunks aufteilt. Zuerst wird eine oder werden mehrere Begrenzungskästen für jedes Ob-
jekt erzeugt. (592) (Fig. 17A). Wenn das Objekt eine komplexe Geometrie besitzt (z.B. mosaikartig fein unter-
teilt usw.), dann wird eine Reihe von Begrenzungskästen erzeugt, um jede komplexe Komponente des Objekts
einzuschließen (mehrere Gsprites zu erzeugen) (596). Wenn die Objektgeometrie nicht komplex ist, dann kann
ein einziger Begrenzungskasten zum Einschließen des Objektes und Erzeugen eines Gsprites (598) verwen-
det werden. Wenn das Objekt jedoch komplex ist, dann umschließt ein einzelner Begrenzungskasten auch die
mehreren Begrenzungskästen, die zum Umschließen der komplexen Komponenten des Objekts erzeugt wur-
den. Wenn der Begrenzungskasten oder die -kästen kein ganzzahliges Vielfaches von 32 Pixeln (600) sind,
wird/werden der Begrenzungskasten oder die -kästen symmetrisch in X- oder Y-Richtung (oder in beiden Rich-
tungen) gedehnt, so dass sich ein ganzzahliges Vielfaches von 32 Pixeln ergibt. Das Objekt (oder die Objekt-
komponenten, wenn die Geometrie komplex ist) wird werden dann im Begrenzungskasten (602) zentriert. Dies
wird durch die Gsprites illustriert, die in den Fig. 15B und Fig. 15C gezeigt werden. Die symmetrische Ausdeh-
nung ist vorzuziehen, obwohl nicht erforderlich, da sie das beste Gleichgewicht für die Verarbeitung zwischen
Chunks in einem einzelnen Gsprite bietet.

[0288] Wieder mit Bezugnahme auf Fig. 17, werden die Gsprites dann in 32×32-Pixelchunks (604) (Fig. 17B)
unterteilt. Wie erkennbar ist, befinden sich diese Chunks nicht an festen Orten im Betrachtungsraum, sondern
sind an adressierbaren und variablen Orten je nach dem Ort des gechunkten Objektes. Nach dem Teilen der
Gsprites in Chunks, werden die Chunks verarbeitet. Wenn das Rendern der Chunks abgeschlossen ist (606),
endet der Prozess. Wenn das Rendern der Chunks nicht abgeschlossen ist, wird die Verarbeitung des nächs-
ten Chunks gestartet, nachdem zuerst untersucht wurde, ob er leer ist (608). Wenn der Chunk leer ist, wird er
nicht verarbeitet, und der nächste Chunk wird untersucht. Wenn der Chunk nicht leer ist, dann setzt sich das
Rendern (610) des Chunks im Tiler fort, bis alle Objekte, die auf dem Chunk liegen, verarbeitet sind. Dieser
Prozess setzt sich fort, bis alle Chunks in jedem Gsprite und alle Gsprites verarbeitet sind.

[0289] Die Größe der Gsprites kann als Prozentsatz der Gesamtbildschirmfläche ausgedrückt werden. Hin-
tergrund-Gsprites sind ziemlich groß, jedoch andere Komponenten der Szene sind normalerweise ziemlich
klein im Vergleich zur Gesamtbildschirmfläche. Die Leistungsfähigkeit jeder Chunkingmethode, die verwendet
wird, schwankt mit der Bildschirmraumgröße der Grundelemente in den Gsprites. Im Ergebnis dessen ist es
notwendig, den Objektdateneingabestrom, der zur Erzeugung der Gsprites verwendet wird, richtig zu regulie-
ren (z.B. in eine Schlange zu setzen). Die richtige Regulierung des Objektdateneingabestroms ermöglicht es,
die Objektverarbeitung mit einer größeren Bandbreite abzuschließen und den Systemdurchsatz zu erhöhen.

[0290] Unser System verwendet einen Befehlsstromcache, um den Objektdateneingabestrom zu cachen. Der
Befehlsstromcache kann zum Cachen des gesamten Inhalts eines Gsprites und dann zum Iterieren über jeden
Chunk und seine zugehörigen Geometrien im Gsprite, die im Cache gespeichert sind, verwendet werden.

[0291] Der Cache kann auch zum selektiven Cachen verwendet werden. Zum Beispiel wenn man einen
Schwellwert definiert, so dass geometrische Grundelemente automatisch gecacht werden, wenn sie eine be-
stimmte Zahl von Chunks berühren. Wenn ein Cache verfügbar ist, kann das virtuelle Chunking ausgeführt
werden. Beim virtuellen Chunking wird ein Chunk-Speicherbereich erzeugt, der den Regionen von N × M
32/147

DE 696 36 599 T2 2007.08.23
Chunks entspricht, wobei jede Region ein virtueller Chunk ist. Das virtuelle Chunking ermöglicht es, die virtu-
ellen Chunks dem Inhalt und der Größe der Geometrie, die bearbeitet wird, entsprechend adaptiv in der Größe
zu bemessen.

[0292] Eine weitere Verwendung für den Cache ist das modifizierte Cachen von Szenengraphen. Statt zu ca-
chen und sich auf statische Abschnitte der Szene zu beziehen, wird gecacht, und auf dynamische Abschnitte
wird durch Anspielung verwiesen. Nehmen wir zum Beispiel einen Gsprite an, der in einer Kuckucksuhr mit
recht komplexen Geometrien enthalten ist. Die Uhr selbst ist recht komplex, aber die einzigen sich bewegen-
den Teile sind ein Vogel, zwei Türen und zwei Uhrzeiger. Ferner ist jede dieser Geometrien starr und ändert
sich nicht. Daher beinhaltet das Rendern der Uhr sechs statische Bäume und sechs Transformationen (d.h.
einen für Uhr, Vogel, 2 Türen und 2 Uhrzeiger). Wenn der Cache groß genug ist, wird der ganze Szenengraph
in einen Befehlsstrom transformiert. Beim Rendern werden die aktuellen Transformationen über den gecach-
ten Befehlsstrom gepatcht, und der resultierende Befehlsstrom wird für alle Chunks im Gsprite eingeleitet. Die
gepatchten Teile des Befehlsstroms haben dann über alle Renderingoperationen hinweg dieselbe Größe. Ein
flexiblerer Ansatz besteht darin, einen Aufrufbefehl in den gecachten statischen Szenengraphen einzuführen.
Beim Rendern werden die dynamischen Teile in Speicher veränderlicher Größe geschrieben und gecacht.
Adressen dieser dynamischen Abschnitte werden dann in den zugehörigen Aufrufbefehl im statischen Befehls-
strom gepatcht. Dieser Ansatz ist flexibler, da die Größe des dynamischen Befehls von Rendering zu Rende-
ring variieren kann. Dieser Ansatz ist also vom Effekt her ein speicher-gecachter Rückrufansatz. Im Fall der
Kuckucksuhr würde dies das Schreiben von sechs Transformationen und möglicherweise einen Rückruf für die
Vogelgeometrie bedeuten, so dass er leer sein könnte, wenn die Türen geschlossen sind. Dieser Ansatz ist
äußerst kompakt in Bezug auf Busbandbreite und bietet sich für den schnellen, gerichteten Durchlauf des Sze-
nengraphen an.

[0293] Auch wenn der Cachespeicher begrenzt ist, können einige geometrische Strukturen oder Attribute
über mehrere Renderings im Cache bleiben. Zum Beispiel würde bei einem Autorennspiel das Cachen einer
Autokarosseriegeometrie zu einer beträchtlichen Gesamteinsparung über die Renderings führen. In gleicher
Weise könnten häufige Attributzustände (oder Teilzustände) über viele Gsprites oder das Rendering eines ein-
zelnen Gsprites wieder verwendet werden. Wie gerade beschrieben, kann das Verwenden eines Caches in ei-
ner Chunkingmethode zu beträchtlichen Zeiteinsparungen führen. Jedoch könnte eine angemessene Chun-
kingleistungsfähigkeit auch ohne den Befehlsstromcache dadurch erreicht werden, dass ein Befehlsstrom flie-
gend für jeden berührten Chunk im Gsprite erzeugt wird.

[0294] Bei der Implementierung des Tilers, die in den Fig. 9A-Fig. 9C gezeigt wird, werden Chunks sequen-
ziell verwendet, um ein ganzes Teilbild auf einem Prozessor zu rendern, statt mehrere gleichzeitige Chunks
auf parallelen Prozessoren zu verwenden, um die rechnerische Last zu teilen. Obwohl dies in geringerem
Maße bevorzugt wird, könnte auch eine Kombination von serieller und paralleler Verarbeitung von Chunks ver-
wendet werden. Bei einer vollständig parallelen Verarbeitungsimplementierung von Chunks würde ein Objekt,
das sich über den Bildschirm bewegt, notwendigerweise konstante Chunkingoperationen erfordert, wenn es
über den Bildschirm bewegt wird. In der erläuterten Ausführungsform der Erfindung kann jedoch ein Objekt
wegen der seriellen Verarbeitung von Chunks an den Chunkgrenzen in einem Gsprite festgemacht werden und
daher KEIN Chunking erfordern, wenn das Objekt über den Bildschirm bewegt wird. Das Rendern von Chunks
bei Parallelverarbeitung ermöglicht auch keine Anwendung von anspruchsvollen Anti-Aliasing- und Texturie-
rungsmethoden auf einzelne Chunks, wie dies für das serielle Rendern von Chunks der Fall ist. Die Chunkgrö-
ße und das sequenzielle Rendern sind für Bildkomprimierungsverfahren sehr wertvoll, da ein ganzer 32×32-Pi-
xelchunk vor dem Berechnen des nächsten Chunks gerendert wird und daher sofort komprimiert werden kann.

[0295] Der Zweck der Bildkomprimierung besteht darin, Bilder mit weniger Daten darzustellen, um Speicher-
kosten und/oder Übertragungszeit und -kosten zu sparen. Je weniger Daten zum Darstellen eines Bildes er-
forderlich sind, desto besser, vorausgesetzt, das Bild kann angemessen wiederhergestellt werden. Die effek-
tivste Kompression wird durch Annähern des Originalbildes anstelle von einer exakten Reproduktion erreicht.
Je größer die Kompression, umsomehr wird das Endbild eine Näherung („verlustbehaftete Kompression") sein.

[0296] Der Prozess des Chunkings ist selbst ein Komprimierungsverfahren. Objekte werden mit einem oder
mehreren Gsprites angenähert, die wiederum aus einer Reihe von 32×32-Pixelchunks erzeugt werden. Das
tatsächliche Objekt wird mit Gsprites angenähert und aus gerenderten Gsprites rekonstruiert. Die Rekonstruk-
tion des Originalobjekts hängt davon ab, wie effektiv das Objekt durch seine Aufteilung in Gsprites und an-
schließendes Chunking angenähert wurde (z.B. unter Verwendung komplexer Objektgeometrieteilungsverfah-
ren, die oben beschrieben werden).
33/147

DE 696 36 599 T2 2007.08.23
[0297] Die einzelnen 32×32-Chunks werden ebenfalls unter Verwendung von Bildkomprimierungsverfahren
komprimiert. Ein komprimierter 32×32-Pixelchunk nimmt weniger Raum in dem verfügbaren kleinen Umfang
an internem Speicher ein. Die 32×32-Pixelchunks können in sechzehn 8×8-Pixelchunks aufgeteilt werden, wel-
ches die Größe ist, die häufig in Bildkomprimierungsverfahren, die diskrete Kosinustransformationen (DCT)
einsetzen, verwendet wird.

[0298] In einer Implementierung unterstützen die Kompressions- und Dekompressionsengines im Tiler und
die Dekompressionsengine in der Gsprite-Engine sowohl verlustbehaftete als auch verlustfreie Formen der
Kompression/Dekompression. Die verlustbehaftete Form umfasst eine verlustfreie Farbtransformation von
RGB nach YUV, eine DCT, gleichförmige oder wahrnehmbare Quantisierung und Entropiecodierung (Lauflän-
gen- und Huffman-Codierung). Die verlustfreie Form umfasst eine Farbtransformation von RGB nach YUV,
eine Vorhersagestufe und Entropiecodierung, wie sie in der verlustbehafteten Form ausgeführt wird.

[0299] Um die Speicheranforderungen zur Verarbeitung von Grafikbildern unter Verwendung des Chunkings
drastisch zu reduzieren, wird in der erläuterten Ausführungsform ein kleiner Z-Puffer (z.B. etwa 4 Kilobyte (kB))
verwendet. Speziell ist der Z-Puffer in dieser Implementierung etwas kleiner als 4 kB (1024×26), jedoch kann
die Zahl der Präzisionsbits variieren. Es könnten jedoch auch ein kleinerer oder größerer Z-Puffer verwendet
werden. Durch die Verwendung eines kleinen 4-kB-Z-Puffers können jeweils nur 1024 Pixel Z-Puffer-gerendert
werden. Um Szenen (z.B. Szenen, die aus Gsprites bestehen) mit beliebiger Größe unter Verwendung eines
4-kB-Z-Puffers zu rendern, wird die Szene in Chunks mit der Größe von 32×32 Pixeln aufgeteilt (es gibt nor-
malerweise mehrere Gsprites in einer Szene, jedoch wird jeder Gsprite in Chunks aufgeteilt). Bei dieser Me-
thode sendet der Bildpräprozessor die entsprechende Geometrie an jeden Chunk in einem Gsprite zum Z-Puf-
fer-Rendern.

[0300] Als Beispiel dafür, wie das Chunking arbeitet, betrachte man die acht Objekte und ihre zugehörigen
geometrischen Strukturen, die in Fig. 18A gezeigt werden. Der Einfachheit halber werden die acht Objekte
612-619 durch ein einziges Attribut 620 (z.B. Farbe) definiert, das einen von vier Werten A-D haben kann. Die
acht Objekte werden dann in einer Grafikszene überlagert, wie in Fig. 18B gezeigt. Wenn man individuelle
Gsprites und ihre Erzeugung ignoriert, sich aber statt dessen für Zwecke der Erläuterung auf vier isolierte
Chunks konzentriert, werden die vier isolierten Chunks 621-624 in Fig. 18B gezeigt. Die vier isolierten Chunks
621-624 (Fig. 18B) werden von den geometrischen Strukturen 1-8 und den Attributen A-D berührt, wie in
Fig. 19A gezeigt. Chunk 1 630 (Fig. 19A) wird von den geometrischen Strukturen 1, 2 und 5 und dem Attribut
B, Chunk 2 639 wird von keinen geometrischen Strukturen und den Attributen A-D berührt, Chunk 3 632 wird
von den geometrischen Strukturen 2, 4, 7 und 8 und den Attributen A, B, D berührt, und Chunk 4 634 wird von
den geometrischen Strukturen 4 und 6 und den Attributen A, C berührt. Ein Beispiel für einen Teilszenengra-
phen, der von der Bildvorverarbeitung (unter Verwendung der Chunks, die in den Fig. 18B und Fig. 19A ge-
zeigt werden) aufgebaut wird, wird in Fig. 19B gezeigt. Die Attribute jedes Chunks (z.B. Farbe usw., die durch
A-D, X gezeigt werden) werden als Kreise 638 und die geometrischen Strukturen (z.B. die verschiedenen For-
men, gezeigt durch 1-8) werden als Quadrate 640 gezeigt. Der Buchstabe X bezeichnet einen Vorgabewert für
ein Attribut. Die Zwischenknoten enthalten Attributoperationen zur Anwendung auf die geometrischen Struktu-
ren der Grundelemente. Die Blattknoten im Szenengraphen enthalten Grundelementestrukturen, die auf die
Chunks angewendet werden sollen, und können auch Begrenzungsvolumina um die Strukturen herum enthal-
ten, die die Chunks beschreiben (Blattknoten mit Begrenzungsvolumina werden unten beschrieben).

[0301] Ein Ansatz für eine Chunkingmethode besteht darin, über jeden Chunk zu iterieren und jedes Mal die
volle geometrische Struktur zu senden. Ein anderer, besserer Ansatz besteht darin, nur geometrische Struktu-
ren zu senden, die im aktuellen Chunk sichtbar sind (Man beachte, dass im optimalen Fall geometrische Struk-
turen übersprungen werden, die verdeckt oder anderweitig unsichtbar sind). Das Verfahren zum Chunken ei-
nes Gsprites in einem 32×32-Pixelblock, das tatsächlich in unserem System verwendet wird, liegt zwischen
den zwei Extremen und wird Bucket Chunking genannt. Jedoch können auch andere Methoden, die auf oder
zwischen die zwei Extreme fallen, verwendet werden, um Chunks für eine Chunkingmethode zu erzeugen.

[0302] Die Bucket Chunking-Methode besteht aus zwei Durchläufen. Der erste Durchlauf durchläuft den Sze-
nengraphen, während gleichzeitig die aktuelle Transformation in den Betrachtungsraum mit dem Ziel aufrecht-
erhalten wird, einen beschreibenden Befehlsstrom für jeden Chunk im Betrachtungsraum aufzubauen. Der Be-
trachtungsraum wird in N × M Chunk Buckets (Speicherbereiche) aufgeteilt, die am Ende jeweils eine Liste der
geometrischen Strukturen enthalten, die auf den entsprechenden Chunk fallen. Wenn ein Geometrie-Grunde-
lement-Knoten auftritt, wird die aktuelle Transformation auf das Begrenzungsvolumen angewendet, um eine
2D-„Fußspur" im Betrachtungsraum zu erhalten. Für jeden Chunk, der von der Fußspur berührt wird, wird die
geometrische Struktur (und der akkumulierte Attributzustand) zum entsprechenden Bucket hinzugefügt. Am
34/147

DE 696 36 599 T2 2007.08.23
Abschluss dieses ersten Durchlaufs enthält jeder Bucket die notwendigen Daten, um den entsprechenden
Chunk zu rendern. Man beachte, dass diese Chunkingmethode empfindlich auf die Qualität der berechneten
Fußspur reagiert – eine lose Grenze am Objekt ergibt eine größere Fußspur und trifft Chunks, die nicht von der
umschlossenen geometrischen Struktur berührt werden. Eine enge Grenze am Objekt ergibt eine kleinere
Fußspur und trifft die meisten Chunks, die von den umschlossenen geometrischen Strukturen berührt werden.

[0303] Als Beispiel für den ersten Durchlauf betrachte man eine Teilmenge von vier Chunks, die sich überla-
gernde Objekte enthalten, die von den geometrischen Strukturen 1-8 und den Attributen A-D, X, in Fig. 19A
gezeigt, beschrieben werden. Ein Ansatz für das Durchlaufen des Szenegraphen in Durchlauf eins besteht da-
rin, den aktuellen Zustand für jeden Chunk beizubehalten und dann die geometrische Struktur zu übersprin-
gen, die nicht in einen gegebenen Chunk fällt. Damit wird sichergestellt, dass der Attributkontext für jede geo-
metrische Struktur in jedem Chunk aktuell ist. Die Anwendung dieses Ansatzes auf den Szenegraphen in
Fig. 19B ergibt den folgenden Befehlsstrom in den Chunk Buckets nach Durchlauf eins:
Chunk 1 Bucket: X, A, B, 1, 2, 5, A, X, C, D, C, X
Chunk 2 Bucket: X, A, B, A, X, C, D, C, X
Chunk 3 Bucket: X, A, B, 2, 7, 8, A, 4, X, D, 3, C, X
Chunk 4 Bucket: X, A, B, A, 4, X, C, 6, D, C, X

[0304] Ein weiterer Ansatz besteht im Beibehalten des aktuellen Attributzustandes und Senden des vorheri-
gen Zustandes vor dem Senden jeder akzeptierten geometrischen Struktur. Dies führt zu den folgenden Be-
fehlsströmen in den Chunk Buckets:
Chunk 1 Bucket: B, 1, B, 2, B, 5
Chunk 2 Bucket: <leer>
Chunk 3 Bucket: B, 2, B, 7, B, 8, A, 4, D, 3
Chunk 4 Bucket: A, 4, C, 6

[0305] Der zweite Ansatz ist eine Verbesserung gegenüber dem ersten Ansatz. Man beachte, dass das Attri-
but B vor den geometrischen Strukturen 2 und 5 ein zweites und ein unnötiges drittes Mal angegeben wird.
Dieses Verhalten zeigt sich auch in Chunk 3 für B für die geometrischen Strukturen 7 und 8. In der Realität ist
die Situation schlimmer als hier dargestellt, weil ein Speicherauszug des aktuellen Attributzustandes bedeutet,
dass jedes einzelne Attribut für jede geometrische Struktur neu angegeben wird. Mit anderen Worten: Selbst
wenn die Texturtransformationsmatrix invariant für den ganzen Szenegraphen ist, wird sie immer noch vor je-
der einzelnen geometrischen Struktur in jedem Chunk gesendet.

[0306] Daher widmet sich dieser spezielle Ansatz der Attributbeibehaltung für vorrangige Attribute und statt
dessen dem für das Zusammensetzen der Attribute. Diffuse Farbe ist ein vorrangiges Attribut. Wie durch den
Bildpräprozessor definiert (z.B. Bildvorverarbeitungssoftware, die zum Beispiel auf dem Bildpräprozessor 24
usw. läuft), der den Szenegraphen erzeugt, führen Attribute, die auf rot(blau(Würfel)) angewendet werden, zu
einem roten Würfel. Dies steht im Gegensatz zu anderen Bildpräprozessorgrafikschnittstellen, die das nächst-
gelegene Attribut an das Objekt binden. Binden des nahegelegensten Attributes an das Objekt für
rot(blau(Würfel)) würde zu einem blauen Würfel führen.

[0307] Die Verwendung des am weitesten außen gelegenen Attributs als vorrangiges Attribut vereinfacht die
Attributbeibehaltung für Attribute in großem Maße. Während des Durchlaufs durch den Szenegraphen kann
man beim Treffen eines Attributknotens alle Knoten dieser Attributart unterhalb desselben im Szenegraphen
ignorieren, da das am weitesten oben gelegene Attribut alle anderen nichtig macht.

[0308] Eine lokale Transformation ist ein Zusammensetzungsattribut. Der aktuelle Wert wird also durch den
vorherigen Wert und den neuen Wert bestimmt. Das Zusammensetzungsattribut erfordert eine gewisse Art von
Stack, während der Szenegraph durchlaufen wird, um vorherige Werte zu speichern.

[0309] Die Bucket Chunking-Methode verwendet die folgenden Strukturen:
• Den Attributknoten, der den aktuellen Wert enthält,
• Den Durchlaufkontext. Das ist eine Struktur, die für jedes vorrangige Attribut einen Zeiger auf den aktuel-
len Attributwert enthält.
• Ein Gitter von Buckets, wovon jeder einen Befehlsstrompuffer und eine Bucketkontextstruktur derselben
Art wie der globale Durchlaufkontext enthält.
• Eine Liste von Vorgabeattributwerten, wobei auf jeden von ihnen vom Durchlaufkontext verwiesen werden
kann.
35/147

DE 696 36 599 T2 2007.08.23
[0310] Zur Initialisierung wird der Kontext in den Vorgabezustand versetzt, so dass alle Attribute sich auf den
Vorgabekontext beziehen. Vorgabewerte werden langsam geladen und nicht en masse vor dem Senden der
Renderingbefehle abgeladen.

[0311] Das Folgende diktiert, wie ein gegebener Attributknoten zu verarbeiten ist:

[0312] Der Prozess zur Handhabung von Geometrieknoten synchronisiert den aktuellen Durchlaufstatus mit
den Attributzuständen jedes Buckets:

[0313] Zusammensetzungsattribute fungieren in einer ähnlichen Weise gegenüber vorrangigen Attributen,
mit der Ausnahme, dass ein Stack während des Durchlaufs beibehalten wird. Dies wird durch die Verwendung
von Knoten für die Speicherung der Stackwerte erreicht. Dieses Verfahren erfordert die folgenden Strukturen:
• Der aktuelle Attributknoten, der die Zusammensetzung der vorherigen Werte mit dem neuen Wert enthält.
• Den Durchlaufkontext. Das ist eine Struktur, die für jedes Zusammensetzungsattribut einen Zeiger auf den
aktuellen Attributknoten enthält.

Attributerhaltung Initialisieren:

Attribut verarbeiten:

Geometrie verarbeiten:
36/147

DE 696 36 599 T2 2007.08.23
• Eine Liste von Vorgabeattributwerten, wobei auf jeden von ihnen vom Durchlaufkontext verwiesen werden
kann.
• Ein Gitter von Buckets, wovon jeder einen Befehlsstrompuffer und eine Bucketkontextstruktur derselben
Art wie der globale Durchlaufkontext enthält.

[0314] Die Initialisierung zur Zusammensetzung von Attributen sieht so wie für vorrangige Attribute aus:

[0315] Das Verarbeiten eines zusammensetzenden Attributknotens beinhaltet die Zusammensetzung des
neuen Wertes mit allen Werten vor dem aktuellen Knoten im Durchlauf. Man beachte, dass der vorherige Wert
gespeichert und wieder abgerufen werden muss, um einen Stack von Werten zu implementieren.

[0316] Das Geometrie-Handhabungsprogramm ist identisch mit dem Fall der vorrangigen Attribute:

[0317] Der zweite Durchlauf der Bucket Chunking-Methode iteriert über das Gitter von Buckets und gibt den
entsprechenden Befehlsstrom aus. Für jeden nicht leeren Bucket wird der entsprechende Chunk aus den In-
formationen, die in diesem Bucket gespeichert sind, gerendert. Man beachte, dass es leere Buckets in der Sze-
ne geben kann, was bedeutet, dass nicht jeder Chunk im Gsprite gerendert werden muss. Für die aktivsten

Attributerhaltung Initialisieren:

Attribut verarbeiten:

Process Geometrie:
37/147

DE 696 36 599 T2 2007.08.23
Gsprites, die aus einem lichtundurchlässigen Objekt auf einem transparenten Hintergrund bestehen, sollte ein
guter Teil der Chunks leer sein.

[0318] Der Ansatz zur Aufrechterhaltung des Attributzustandes, der oben beschrieben wird, ist zum Rendern
von Geometrie in einer gechunkten Weise besonders geeignet. Das Chunking bewirkt, dass Sätze von geo-
metrischen Strukturen in anderer Reihenfolge, als ursprünglich angegeben, gerendert werden. Beim Rendern
eines Chunks, zum Beispiel, überspringt das Renderingsystem Gruppen von geometrischen Strukturen, die
den Chunk nicht schneiden. Daher sollten auf dem unteren Niveau des gechunkten Geometrierenderns höchs-
tens zwei Zustandsniveaus aufrechterhalten werden: 1) ein globaler Zustand in einem Format, das mit dem
Tiler oder alternativer Rendering-Hardware kompatibel ist, um das Rendern der geometrischen Strukturen zu
ermöglichen; und 2) kleine Statusüberlagerungen innerhalb eines Satzes von geometrischen Strukturen, die
nur für diesen Satz von geometrischen Strukturen gelten. Mit dieser Herangehensweise kann jeder Satz von
geometrischen Strukturen unabhängig voneinander gerendert werden, und das Rendern eines Satzes von ge-
ometrischen Strukturen kann als frei von Nebeneffekten angesehen werden.

Bildkompression

[0319] Wie oben beschrieben wurde, ist die Chunkgröße und das sequenzielle Rendern für Bildkomprimie-
rungsverfahren sehr wertvoll, da ein ganzer 32×32-Pixelchunk vor dem Berechnen des nächsten Chunks ge-
rendert wird und daher sofort komprimiert werden kann. Der Tiler unterstützt verlustbehaftete und verlustfreie
Formen von Kompression, um Chunks zu komprimieren. Sowohl die verlustbehaftete als auch verlustfreie
Kompressionsform komprimiert Chunks in unabhängigen Blöcken von 8×8 Pixeln. Also würde jeder 32×32-Pi-
xelchunk aus 16 solcher komprimierter Blöcke bestehen.

[0320] Die Kompression von Bildern ermöglicht einen kleineren Speichergrößenbedarf und einen ungemein
reduzierten Speicherbandbreitenbedarf. Die Konstruktion verwendet eine Kombination von Caching, Strategi-
en zum vorherigen Abrufen sowie Chunking, um die Verzögerungszeiten und den zusätzlichen Aufwand auf
Grund der Kompression des Blockzugriffs zu reduzieren. Da das gesamte Bild in einem 32×32-Pixelpuffer be-
rechnet wird, wird die Gsprite-Bildkompression mit minimalem zusätzlichem Aufwand erreicht. Der Gesamtent-
wurf der Kompressionsarchitektur wird in Fig. 20 gezeigt.

[0321] Die Transformationsengine 660 (Fig. 20) berechnet Modell- und Betrachtungstransformationen, Be-
schneiden (Clipping), Beleuchtung usw. und leitet diese Informationen an den Tiler 662 weiter. Während der
Tiler Transformationsinformationen verarbeitet, liest er Texturdaten aus dem Texturspeicher 664. Die Textur-
daten werden in einem komprimierten Format gespeichert, daher werden die Texturblöcke, wenn sie benötigt
werden, von der Tiler-Dekompressionsengine 666 dekomprimiert und in einem chipinternen Texturcache im Ti-
ler gecacht. Wenn der Tiler Pixeldaten auflöst, transferiert er die aufgelösten Daten zur Tiler-Kompressionsen-
gine 668, die die aufgelösten Daten komprimiert und die komprimierten Daten im Gsprite-Speicher 670 spei-
chert. Wenn die Gsprite-Engine 672 die komprimierten Gsprite-Daten benötigt, verwendet sie die Gsprite-De-
kompressionsengine 674, um die Gsprite-Daten aus dem Gsprite-Speicher 667 zu dekomprimieren und die
Daten in einem chipinternen Gsprite-Cache zu cachen. In der tatsächlichen Hardware sind der Texturspeicher
664 und der Gsprite-Speicher 670 identisch (d.h. die komprimierten Daten werden in einem Speicher gespei-
chert, der von den verschiedenen Engines gemeinsam genutzt wird). Gemeinsam genutzter Speicher wird
nicht benötigt, solange die verwendeten Kompressions- und Dekompressionsverfahren kompatibel sind. Die
Gsprite-Daten können auch aus einer Datenbank oder einer anderen Bildquelle 676 genommen und im Tex-
turspeicher 664 oder dem Gsprite-Speicher 670 gespeichert werden.

[0322] Eine Implementierung der Erfindung unterstützt die verlustbehaftete und die verlustfreie Kompression
und Dekompression von Pixelblöcken

[0323] Die verlustbehaftete Form der Bildkompression besitzt zwei Stufen: eine verlustbehaftete erste Stufe
und eine verlustfreie zweite Stufe. Die verlustbehaftete Form der Kompression beginnt mit einer optionalen
Farbraumumwandlung von roten, grünen, blauen (R, G, B) Intensitätswerten in Leuchtdichte-(Y) und Chromi-
nanz-(U und V, auch als Cr und Cb bezeichnet) Werte. Die verlustbehaftete Stufe umfasst eine direkte Kosi-
nustransformation (DCT) und eine Quantisierung, die die Genauigkeit bestimmter Frequenzkomponenten re-
duziert.

[0324] Die zweite Stufe ist eine verlustfreie Form der Kompression, die die Huffman-Codierung und die Lauf-
längencodierung (RLE) umfasst. Alternative Codierverfahren, wie zum Beispiel das arithmetische Codieren,
können an Stelle der Huffman-Codierung verwendet werden.
38/147

DE 696 36 599 T2 2007.08.23
[0325] Die Dekompression für das verlustbehaftete Verfahren umfasst eine Decodierstufe, eine Dequantisie-
rung der komprimierten Daten, eine inverse DCT und eine optionale Farbraum-Konversion von YUV nach
RGB.

[0326] Die verlustfreie Form der Kompression umfasst eine optionale Farbraum-Konversion von RGB nach
YUV, eine Vorhersagestufe und eine verlustfreie Codierungsstufe. Diese Codierungsstufe kann identisch mit
der Entropiecodierungsstufe in der verlustbehafteten Form der Kompression sein. Die Dekompression für die-
ses verlustfreie Verfahren umfasst eine Decodierstufe, eine inverse Vorhersagestufe für jede Farbkomponente
und eine optionale Farbraum-Konversion von YUV nach RGB.

Verlustbehaftete Kompression/Dekompression

[0327] Eine spezielle Implementierung des verlustbehafteten Kompressionsverfahrens in der Kompressi-
ons-Engine 414 (Fig. 9A-C) des Tilers geschieht in vier oder fünf Schritten:

1. Konvertiere die RGB-Dateneingabe in ein YUV-ähnliches Leuchtdichte-Chrominanz-System (optional).
2. Führe eine vorwärts gerichtete zweidimensionale diskrete Kosinustransformation (DCT) individuell an je-
der Farbkomponente aus.
3. Ordne die zweidimensionalen DCT-Koeffizienten annähernd in einer monoton steigenden Frequenzord-
nung an.
4. Quantisiere die DCT-Koeffizienten: Teile entweder durch einen einheitlichen Teiler oder einen frequenz-
abhängigen Teiler.
5. Codiere die sich ergebenden Koeffizienten unter Verwendung der Huffman-Codierung mit festen Code-
tabellen.

[0328] Die verlustbehaftete Dekompression läuft in vier oder fünf Schritten ab:
1. Decodiere die komprimierte Dateneingabe unter Verwendung der Huffman-Decodierung mit festen Co-
detabellen.
2. Dequantisiere die komprimierten Daten: Multipliziere mit einem einheitlichen Multiplikator oder mit dem
frequenzabhängigen Multiplikator, der beim Quantisierungsschritt der Kompression verwendet wurde.
3. Ordne das lineare Feld von Daten in die richtige zweidimensionale Ordnung für die DCT-Koeffizienten
um.
4. Führe eine inverse zweidimensionale DCT individuell an jeder einzelnen Farbkomponente aus.
5. Konvertiere die Farben in dem YUV-ähnlichen Leuchtdichte-Chrominanz-System in RGB-Farben, wenn
der Kompressionsschritt den entsprechenden optionalen Schritt umfasste.

Farbraumumwandlung

[0329] Die Farbraumumwandlung transformiert die RGB-Farben in ein Helligkeits-Farbsystem mit der Hellig-
keitskoordinate Y und den Farbkoordinaten U und V. Dieses Leuchtdichte-Chrominanz-System ist kein Stan-
dardfarbraum. Die Verwendung dieses Systems verbessert den Grad der Kompression, weil die Farbkoordi-
naten nur einen kleinen Bruchteil der Bits benötigen, die zum Komprimieren der Helligkeit benötigt werden. Die
verlustlose, reversible Umwandlung wird auf jedes Pixel unabhängig angewandt und verändert den Wert von
Alpha nicht.

RGB nach YUV (zur Kompression

[0330] Die Umwandlung von ganzzahligen RGB-Werten in ganzzahlige YUV-Werte verwendet die folgende
Transformation:

Y = (4R + 4G + 4B)/3 – 512

U = R – G

V = 14B – 2R – 2G)/3

YUV nach RGB (zur Dekompression)

[0331] Die Umwandlung von ganzzahligen YUV-Werten in ganzzahlige RGB-Werte verwendet die folgende
Transformation:
39/147

DE 696 36 599 T2 2007.08.23
R = (((Y + 512) – V)/2 + U + 1)/2

G = (((Y + 512) – V)/2 – U + 1)/2

B = ((Y + 512)/2 + V + 1)/2

Diskrete Kosinustransformation

[0332] Bilder und Texturen sind Pixel, die die Amplituden für drei Farben und die Amplitude für Lichtundurch-
lässigkeit (Opazität) enthalten. Die Pixelpositionen entsprechen einem räumlichen Ort in einem Bild oder einer
Texturabbildung. Ein Bild oder eine Textur in dieser Form liegt in der räumlichen Domäne. Für Bilder und Tex-
turen berechnet die diskrete Kosinustransformation (DCT) Koeffizienten, die mit den Basisfunktionen des DCT
multipliziert werden. Die Anwendung der DCT auf ein Bild oder eine Textur ergibt einen Satz von Koeffizienten,
die das Bild oder die Textur äquivalent repräsentieren. Ein Bild oder eine Textur in dieser Form liegt in der Fre-
quenzdomäne.

[0333] Die DCT bildet die Amplitude der Farben und Opazität eines 8×8-Pixelblocks zwischen der räumlichen
Domäne und der Frequenzdomäne ab. In der Frequenzdomäne sind benachbarte Koeffizienten weniger stark
korreliert, und der Kompressionsprozess kann jeden Koeffizienten unabhängig behandeln, ohne die Kompres-
sionseffizienz zu reduzieren.

[0334] Die Vorwärts-DCT bildet die räumliche Domäne auf die Frequenzdomäne ab, und umgekehrt bildet die
inverse DCT die Frequenzdomäne auf die räumliche Domäne ab. Ein geeigneter Ansatz für die Vorwärts- und
die inverse DCT ist der Ansatz, der in den Fig. A.1.1 und A.1.2 in Discrete Cosine Transform Rao, K. R, und
P. Yip. San Diego: Academic Press, Inc., 1990, beschrieben wird.

[0335] Die zweidimensionale DCT erzeugt ein zweidimensionales Feld von Koeffizienten für die Frequenzdo-
mänendarstellung jeder Farbkomponente. Die Zickzackordnung ordnet die Koeffizienten so neu an, dass die
niedrigen DCT-Frequenzen hauptsächlich an niedrigen Positionen eines linearen Feldes auftreten. Bei dieser
Ordnung ist die Wahrscheinlichkeit, dass ein Koeffizient null ist, annähernd eine monoton steigende Funktion
der Position im linearen Feld (wie sie durch den linearen Index gegeben ist). Dieses Ordnen vereinfacht die
Wahrnehmungsquantisierung und LOD-Filterung und verbessert auch beträchtlich die Leistungsfähigkeit der
Lauflängencodierung (RLE).

Quantisierung

[0336] Quantisierung verringert durch Teilen der Koeffizienten durch eine ganze Zahl die Zahl unterschiedli-
cher Werte, die die zickzackgeordneten DCT-Koeffizienten haben können. Je nach dem Wert des Parameters
der Kompressionsart kann die Quantisierung entweder gleichförmig oder perzeptiv bzw. wahrnehmend erfol-
gen. Keiner der beiden Fälle modifiziert den DC-Frequenzkoeffizienten (Index = 0), sondern leitet ihn unverän-
dert weiter.

[0337] Der Quantisierungsprozess beginnt mit der Festlegung des Quantisierungsfaktors für ein Bild oder ei-
nen Teil eines Bildes. Bei dieser Implementierung wird ein Quantisierungsfaktor für einen 32×32-Pixelchunk
festgelegt. Ein Quantisierungsindex (QIndex) gibt einen entsprechenden Quantisierungsfaktor (QFaktor) zur
Verwendung für den Chunk an. Die folgende Tabelle zeigt die Beziehung zwischen QIndex und QFaktor.
40/147

DE 696 36 599 T2 2007.08.23
[0338] Jede Farbebene hat einen anderen Wert für den Chunk-QIndex. Ein QIndex von 15 wählt einen QFak-
tor von 4096, was bei der Quantisierung und inversen Quantisierung Nullen produziert. Der Quantisierungs-
prozess teilt jeden Koeffizienten in einem Block durch einen QFaktor und rundet ihn auf eine ganze Zahl. Der
inverse Quantisierungsprozess multipliziert jeden Koeffizienten mit einem QFaktor. Quantisierung und inverse
Quantisierung ändern die DC-Frequenzkomponente nicht.

Blockquantisierungsfaktor

[0339] Der QIndex, und damit der QFaktor, kann von Block zu Block (8×8 Pixel) variieren. Der QIndex für ei-
nen Block ergibt sich aus der Inkrementierung des QIndex für den Chunk mit einem Wert, der in die Blockkom-
pressionsart eingebettet ist:

Block-QIndex = Chunk-QIndex + (Blockkompressionsart – 3)

[0340] Dadurch wird der Chunk-QIndex um eins, zwei, drei oder vier inkrementiert. Weil der größtmögliche
QIndexwert 15 ist, wird jeder inkrementierte Wert größer als 15 auf 15 gesetzt.

[0341] Der QIndex, und damit der QFaktor, kann auch von Koeffizient zu Koeffizient (von Feldindex zu Feld-
index) variieren, wenn die Quantisierungsart perzeptiv ist.

[0342] Für eine gleichförmige Quantisierung ist der Koeffizient QIndex gleich dem Block-QIndex, daher mul-
tipliziert (inverse Quantisierung) oder dividiert (Quantisierung) der entsprechende QFaktor jeden Koeffizienten
im Block.

[0343] Für die perzeptive Quantisierung hängt der Koeffizient QIndex vom Wert (0...63) des Index im linearen
Feld ab. Die folgende Tabelle führt den resultierenden Koeffizienten QIndex als Funktion des Feldindexwertes
an.
Koeffizient QIndex Feldindex
Block-QIndex Index < 12
Block-QIndex +1 12 ≤ Index < 28
Block-QIndex + 2 28 ≤ Index < 52
Block-QIndex + 3 52 ≤ Index

Entropiecodierung

[0344] Die Huffman/RLE-Codierung verarbeitet das lineare Feld quantisierter DCT-Koeffizienten durch:
1. Unabhängiges Codieren von nichtverschwindenden Koeffizienten mit möglichst wenigen Bits (weil die
DCT-Koeffizienten nicht korreliert sind).
2. Optimales Codieren kontinuierlicher „Durchgänge" von Koeffizienten mit Nullwerten – besonders am
Ende des linearen Feldes (wegen der Zickzackordnung).

[0345] Ein geeigneter Ansatz für den Huffrnan/RLE-Codierungsprozess ist der Huffman/RLE-Codierungspro-
zess, der für die AC-Koeffizienten im wohlbekannten JPEG-Standbildkompressionsstandard verwendet wird.

Quantisierungsfaktor
41/147

DE 696 36 599 T2 2007.08.23
[0346] Um einen direkten Zugriff auf Blöcke zu ermöglichen, codiert dieser spezielle Ansatz den DC-Fre-
quenzkoeffizienten (Index = 0) nicht, sondern leitet ihn unverändert weiter.

[0347] Der Algorithmus berechnet eine Reihe von Codewörtern mit variabler Länge, von denen jedes be-
schreibt:

1. Die Länge, von null bis 15, einer Folge von Nullen, die dem nächsten nichtverschwindenden Koeffizienten
vorangehen.
2. Die Zahl zusätzlicher Bits, die zum Angeben des Vorzeichens und der Mantisse des nächsten nichtver-
schwindenden Koeffizienten erforderlich ist.

[0348] Das Vorzeichen und die Mantisse des nichtverschwindenden Koeffizienten folgen dem Codewort. Ein
reserviertes Codewort gibt an, dass die restlichen Koeffizienten in einem Block alles Nullen sind.

Codierung

[0349] Die Codierung aller Blöcke verwendet die typischen Huffman-Tabellen für AC-Koeffizienten aus An-
hang K Abschnitt K.3.2 des Internationalen ISO-Standards 10918. Dies umfasst die Tabelle K.5 für die Lumi-
nanz (Y)-AC-Koeffizienten und Tabelle K.6 für die Chrominanz (U und V)-AC-Koeffizienten.

Decodierung

[0350] Die Decodierung aller Blöcke verwendet dieselben festen Tabellen wie der Codierungsprozess. Daher
ist es niemals notwendig, die Huffmnan-Tabellen mit den Daten zu speichern oder weiterzugeben.

Verlustfreie Kompression/Dekompression

[0351] Die verlustfreie Kompression läuft in der Kompressions-Engine 414 im Tiler in zwei oder drei Schritten
ab:

1. Konvertiere die einlaufenden RGB-Daten in ein YUV-ähnliches Luminanz-Chrominanz-System (optio-
nal).
2. Führe eine Differenzenvorhersageberechnung an jeder Farbkomponente aus. Codiere die sich ergeben-
den Koeffizienten unter Verwendung der Huffman-Codierung mit festen Codetabellen.

[0352] Die verlustfreie Dekompression läuft in den Dekompressionsengines 404, 450 im Tiler und der Gspri-
te-Engine in zwei oder drei Schritten ab:

1. Decodiere die einlaufenden komprimierten Daten unter Verwendung der Huffman-Decodierung mit fes-
ten Codetabellen.
2. Führe eine inverse Differenzenvorhersage (Rekonstruktion) an jeder Farbkomponente aus.
3. Konvertiere die Farben im YUV-ähnlichen Luminanz-Chrominanz-System in RGB-Farben, wenn der
Kompressionsschritt diesen entsprechenden optionalen Schritt umfasste.

Farbraumumwandlung

[0353] Die Farbraumumwandlung transformiert die RGB-Farben reversibel in ein Helligkeits-Farbsystem mit
der Helligkeitskoordinate Y und den Farbkoordinaten U und V. Dies ist ein eindeutiger Farbraum, der den Grad
der Kompression stärker selbst als das YUV-System verbessert, da die Zahlen, die in den Huffman/RLE-Ko-
dierer einlaufen, kleiner und damit kompressibler sind. Die Farbraumumwandlung wird auf jedes Pixel unab-
hängig angewandt und verändert den Wert von Alpha nicht.

RGB nach YUV (zur Kompression)

[0354] Die Umwandlung von ganzzahligen RGB-Werten in ganzzahlige YUV-Werte verwendet die folgende
Transformation:

Y = G

U = R – G

V = B – G
42/147

DE 696 36 599 T2 2007.08.23
YUV nach RGB (zur Dekompression)

[0355] Die Umwandlung von ganzzahligen YUV-Werten in ganzzahlige RGB-Werte verwendet die folgende
Transformation:

R = Y + U

G = Y

B = Y + V

[0356] Die Alphainformationen werden während der Farbraumumwandlung nicht geändert.

[0357] Die Farbraumumwandlung kann umgangen werden. Die Dekompressionshardware wird in den Fällen,
in denen die Farbtransformation umgangen wird, durch ein Kennzeichen (Flag) in der Gsprite-Steuerdaten-
struktur informiert.

[0358] Die Vorhersagestufe tritt nach der Farbraumtransformation auf. Die Vorhersage ist ein verlustfrei um-
kehrbarer Schritt, der die Entropie der meisten Quellbilder reduziert, insbesondere Bilder mit viel leerem Raum
und horizontalen und vertikalen Linien.

[0359] In der Vorhersagestufe der Kompression und der inversen Vorhersagestufe der Dekompression:
1. sind p(x, y) die Pixelwerteingabe in die Kompressions- und die Ausgabe aus der Dekompressionsengine;
und
2. sind d(x, y) die Differenzwerteingabe in den Codierer in der nächsten Stufe der Kompressions-Engine
und Ausgabe aus der Umkehrung des Codierers in der Dekompressionsengine.

[0360] Die Vorhersage wird folgendermaßen berechnet:

d(x, y) = p(x, y) für x = 0, y = 0

d(x, y) = p(x, y) – p(x, y – 1) für x = 0, y > 0

d(x, y) = p(x, y) – p(x – 1, y) für x > 0

[0361] Die umgekehrte Vorhersage in der Dekompressionsengine wird folgendermaßen berechnet:

p(x, y) = d(x, y) für x = 0, y = 0

p(x, y) = p(x, y – 1) + d(x, y) für x = 0, y > 0

p(x, y) = p(x – 1, y) + d(x, y) für x > 0

[0362] Die Huffman/RLE-Codierung und -Decodierung ist in dieser Implementierung dieselbe wie für die ver-
lustbehaftete Form der Kompression/Dekompression.

[0363] Die Kompressionsverfahren, die oben beschrieben werden, komprimieren Bilder in unabhängigen Blö-
cken von 8×8 Pixeln. Daher besteht bei der Chunking-Architektur, die oben beschrieben wird, jeder kompri-
mierte 32×32-Pixelchunk aus 16 solcher Blöcke. Um die Kompression eines 32×32-Pixelchunks zu erleichtern,
löst die Anti-Aliasing-Engine 412 Pixeldaten in 8×8-Pixelblöcke auf. Die 8×8-Pixelblöcke werden gepuffert, so
dass ein erster Puffer gefüllt wird, während ein zweiter Puffer komprimiert wird.

Steuerungselemente und Parameter

[0364] Wie oben eingeführt, rendert der Tiler (Fig. 9A-Fig. 9C) Gsprites mit immer einem Chunk auf einmal.
Diese Chunks bestehen aus Pixelblöcken (in diesem Fall 16 8×8-Pixelblöcke). Zur Texturabbildung, Schattie-
rung und für einige Mehrfach-Renderingoperationen ruft der Tiler Gsprite- oder Texturblöcke aus dem Speicher
ab. Um ein Teilbild zusammenzusetzen, ruft die Gsprite-Engine (Fig. 12A-B) Gsprite-Blöcke ab, transformiert
Pixel in den Bildschirmraum und setzt Pixel in einem Zusammensetzungspuffer zusammen.
43/147

DE 696 36 599 T2 2007.08.23
[0365] Es gibt eine Reihe von Steuerungsparametern, die die Verarbeitung von Gsprites, Chunks und Blö-
cken bestimmen. Eine Gsprite-Anzeigeliste speichert eine Liste von Gsprites, die ein Anzeigebild beinhalten.
Diese Anzeigeliste umfasst Zeiger auf Gsprites, und spezieller, Gsprite-Headerblöcke. Wie weiter unten be-
schrieben wird, speichern Gsprite-Headerblöcke eine Reihe von Attributen eines Gsprites, einschließlich
Gsprite-Breite, -Höhe und eine affine Transformation, die in Form eines Bildschirmraumparallelogramms defi-
niert ist. Der Gsprite-Headerblock umfasst auch eine Liste seiner zugehörigen Chunks. In einer Implementie-
rung ist diese Liste in der Form von Zeigern oder Handles zum Chunken der Steuerungsblöcke.

[0366] Chunksteuerungsblöcke umfassen Parameter pro Chunk und pro Block. Die Parameter pro Chunk
umfassen eine YUV-Farbconverterumgehung, Vorgabe-Q-Faktoren, ein perzeptives Quantisierungs-Flag, Pi-
xelformat und ob die Pixeldaten im Speicher liegen, der in den Speicherzuweisungseinheiten (MAU) in linea-
rem Speicher gemanagt wird. Eine MAU ist ein Stück gemeinsamer Speicher, der zum Zuweisen von Chunk-
speicher verwendet wird. MAU-gemanagter Speicher umfasst eine Liste von MAUs (124 Byte, zum Beispiel),
wobei jede MAU einen Zeiger auf die nächste MAU hat. In einer speziellen Implementierung zum Beispiel wer-
den die Chunksteuerungsblöcke in sequenziellen MAUs für jeden Gsprite gespeichert.

[0367] Die Parameter pro Block umfassen die Kompressionsart, Zahl der MAUs, die der Block überspannt,
und einen Blockzeiger, der auf das erste Byte der Pixeldaten für den Block zeigt. Das spezielle Blockformat ist
ein 8×8×4-Feld von Pixeln, die 32-Bit-Pixel codieren (8 Bit für RGB und Alpha).

[0368] Die Schritte zum Abrufen eines Pixels mit (X, Y)-Koordinaten in einem Gsprite unter Verwendung der
obigen Steuerungsparameter umfassen:

1) Dividiere Y und X durch 32, um die Chunk-Zeile bzw. -Spalte abzuleiten.
2) Bilde die Chunknummer durch: (Chunkzeile)·(Spritebreite in Chunks) + Chunkspalte.
3) Bilde den Chunksteuerungsblockversatz durch: (Chunknummer)·(Größe des Chunkheaderblocks))
4) Bilde den Blockversatz innerhalb des Chunksteuerungsblocks durch: (Y<4:3>·4 + X<4:3>)·3.
5) Sende den Blockzeiger an die Logik des dekomprimierten Caches, empfange einen Block.
6) Bilde den Pixelversatz innerhalb des Blocks durch (Y<2:0>·8) + X<2:0>

[0369] Hier wird ein Chunkversatz zum Auswählen eines Chunks verwendet. Dann wird ein Blockversatz zum
Auswählen eines Blockzeigers verwendet. Der Blockzeiger wählt einen Block, der das Pixel enthält, und der
Pixelversatz wählt das Pixel.

[0370] Um auf den Block für ein gegebenes Pixel unter komprimierten Blöcken von Pixeldaten zuzugreifen,
führen die Cache-Steuerelemente im Tiler und der Gsprite-Engine die folgenden Schritte aus:

1) Bilden der MAU-Adresse durch Aufsuchen des Blockzeigerwerts im Chunksteuerungsblock und durch
Teilen durch die Größe des MAU.
2) Suchen der Zahl der MAUs, die im Chunksteuerungsblock für diesen Block zugewiesen ist.
3) Suchen der nächsten Blockzeigeradresse im Chunksteuerungsblock.
4) Bilden der Länge des komprimierten Blocks durch: MAUS, zugewiesen·MAU-Größe + Zweierkomple-
ment von ((Blockzeiger) mod MAU-Größe) + (nächster Blockzeiger) mod (MAU-Größe)
5) Senden der Blockadresse und der Länge des komprimierten Blocks an die Logik des Komprimierten Ca-
ches.

[0371] Der komprimierte Cache liest die erste MAU, und wenn die Länge der Übertragung nicht erfüllt wurde,
dann wird der Zeiger, der in der MAU enthalten ist, für den Zugriff auf den Beginn der nächsten MAU verwen-
det. Dieser Prozess setzt sich fort, bis die Übertragungslänge erreicht ist.

[0372] Zur Unterstützung von MIP-Abbildungstexturoperationen unterstützt der Tiler ein weiteres Indexie-
rungsniveau. Ein Verfahren zum Indexieren eines MIP-Abbildungsniveaus umfasst die folgenden Schritte:

1) Bilde für einen gegebenen Sprite eine Tabelle von Versatzwerten auf MIP-Chunkniveau durch:
mipChunkOffset[0] = 0 \\Versatz für Niveau von Detail 0
Für jedes Niveau der MIP-Abbildung:
mipChunkOffset[level + 1] = Breite von Sprite/(2^Niveau)·Höhe von Sprite/(2^Niveau) + mipChunkOffset[Ni-
veau]
2) Verwenden Sie den LOD-Parameter, um den MIP-Chunkversatz zu erhalten.

[0373] An diesem Punkt kann mit MIP-Chunkversatz, Breite des Sprites/(2^Niveau) und Höhe des Spri-
tes/(2^Niveau) jeder gewünschte Chunk innerhalb des gewählten Detailniveaus für den aktuellen Gsprite ge-
funden werden.
44/147

DE 696 36 599 T2 2007.08.23
Gsprites

[0374] Oben haben wir das Konzept eines Gsprites vorgestellt. Um es kurz zu wiederholen, können ein oder
mehrere Objekte im Betrachtungsvolumen einem Gsprite zugeordnet werden. Gsprites können unabhängig
gerendert werden, was ermöglicht, sie bei unterschiedlichen Auflösungen zu rendern und mit variierender Häu-
figkeit zu aktualisieren. Um den Zusatzaufwand beim Rendern zu reduzieren, kann das System Bewegung ei-
nes Objektes durch Ausführen einer affinen Transformation am Gsprite angenähert werden, statt das Objekt
neu zu rendern. Um die Gsprites, die eine Szene umfassen, anzuzeigen, setzt das System die Gsprites, die
die Objekte in der Szene repräsentieren, zusammen. Wir werden diese und andere Merkmale detaillierter un-
ten beschreiben.

[0375] Wie oben beschrieben, beginnt das System damit, geometrische Strukturen einem Gsprite zuzuord-
nen. Ein Gsprite ist eine zweidimensionale Region, die in den Koordinaten des physischen Ausgabegerätes
gemessen wird. In der Implementierung, die unten im Detail dargestellt wird, ist die Gsprite-Form ein Rechteck,
er kann aber auch andere Formen haben. Gsprites können affin durch die Gsprite-Engine transformiert werden
(d.h. sie können skaliert, verschoben, gedreht, reflektiert und/oder geschert werden – es ist jede Transforma-
tion mit einer 2×2-Matrix plus Translation möglich). Eine Anwendung der 2D-Transformation besteht darin, eine
3D-Bewegung zu simulieren. Gsprites können derart instanziert werden, dass dasselbe Gsprite-Bild mehrmals
auf dem Bildschirm mit unterschiedlichen Transformationen erscheinen kann. Das Instanzieren kann für recht-
eckige Teilmengen eines Gsprite-Bildes wie für das gesamte Bild gelten. Es kann auch auf eine Farbkompo-
nentenbasis angewendet werden, z.B. könnte Alpha von einem Gsprite kommen, während die Farbe von ei-
nem anderen kommt.

[0376] Im allgemeinen ordnet der Bildpräprozessor ein Objekt einem Gsprite zu, jedoch kann auch mehr als
ein Objekt einem Gsprite zugeordnet werden. Der Bildpräprozessor kombiniert sich durchdringende oder
selbst verdeckende Objekte in einem einzelnen Gsprite. Er vereint auch Objekte auf der Basis von Speicher-
und Verarbeitungsnebenbedingungen. Der Bildprozessor ist zum Beispiel möglicherweise nicht in der Lage,
mehrere unabhängige, aber sich überlappende Gsprites in der Zeit zusammenzusetzen, die von der Auffri-
schungsrate des Ausgabegerätes benötigt wird. In diesem Fall kann das System diese überlappenden Objekte
zu einem einzigen Gsprite vereinen.

[0377] Nach der Zuordnung von Objekten zu Gsprites rendert der Bildprozessor die Gsprites für das Teilbild
(Frame). Das unabhängige Rendern der Objekte ermöglicht es dem System, den Rendering-Zusatzaufwand
zu reduzieren, da es nicht jedes Objekt in einer Szene in jedem Teilbild zu rendern braucht. Wir werden dieses
Merkmal ausführlich unten behandeln.

[0378] Um die Objekte in einer Szene anzuzeigen, setzt der Bildprozessor die Gsprites, die die Objekte in der
Szene umfassen, zusammen. Das Zusammensetzen bezieht sich auf den Prozess des Kombinierens von
Farbdaten aus Gsprite-Schichten. Zur Unterstützung der Lichtdurchlässigkeit berücksichtigt der Bildprozessor
auch die Alphawerte von transformierten Gsprite-Pixeln, wenn er sie zum Anzeigen zusammensetzt.

[0379] Die Fig. 21a und Fig. 21B sind Flussdiagramme, die illustrieren, wie Gsprites in einer Ausführungs-
form verarbeitet werden. In der erläuterten Ausführungsform überspannt die Verarbeitung von Gsprites zwei
Teilbildperioden. Objekte in einer Szene werden Gsprites zugeordnet und in der ersten Teilbildperiode geren-
dert; Gsprite in der Szene werden dann transformiert und in einer nächsten Teilbildperiode zusammengesetzt.

[0380] Zuerst bestimmt der Bildpräprozessor möglicherweise sichtbare Objekte. In Fig. 21A illustrieren wir
diesen Prozess als Folge von Schritten. Für ein Teilbild bestimmt der Bildprozessor möglicherweise sichtbare
Objekte durch das Durchlaufen einer Liste von Objekten (696, 698) und Bestimmen, welche Objekte mögli-
cherweise in einer Szene, d.h. in einem Betrachtungsraum, sichtbar sind.

[0381] Der Bildpräprozessor ordnet dann Gsprites zu, ordnet sie neu zu oder hebt die Zuordnung auf. Zuord-
nen eines Gsprites bezieht sich im allgemeinen auf das Erzeugen einer Datenstruktur, um den Gsprite im Sys-
tem zu repräsentieren. Wenn ein Objekt potentiell nicht sichtbar ist (700) und das System keinen Gsprite dafür
zugewiesen hat (702), ist keine weitere Verarbeitung notwendig. Wenn ein Objekt möglicherweise nicht sicht-
bar ist (702) und das System bereits einen Gsprite dafür zugewiesen hat (702), dann hebt der Bildpräprozessor
die Zuordnung des Gsprites für dieses Objekt auf (704).

[0382] Der Bildpräprozessor ordnet eine neue Gsprite-Datenstruktur möglicherweise sichtbaren Objekten zu,
denen das System keinen Gsprite zugeordnet hat (706, 708). In diesem Fall erzeugt der Bildpräprozessor eine
45/147

DE 696 36 599 T2 2007.08.23
Gsprite-Datenstruktur und stellt Bilddaten, die dem Objekt entsprechen, zum Rendern in die Schlange (710).
Dieses „Einreihen in die Schlange" zum Rendern wird als Hinzufügen zu einer Liste von Objekten zum 3D-Ren-
dern dargestellt (710). Der Bildpräprozessor berechnet auch eine affine Transformation für den Gsprite (714).
Die affine Transformation dient in dieser Ausführungsform zwei Zwecken. Erstens kann sie zum Annähern von
Bewegung des Objektes verwendet werden, der sie in der Szene entspricht. Zweitens kann sie verwendet wer-
den, um einen Gsprite aus dem Gsprite-Raum in die Ausgabegerätekoordinaten zu transformieren. Gspri-
te-Raum bezieht sich auf ein Koordinatensystem, das beim Unterteilen des Objektes in Chunks verwendet
wird. Das Koordinatensystem, das zum Unterteilen des Objektes in Chunks verwendet wird, kann so optimiert
werden, dass Chunkregionen das Objekt, das in den 2D-Raum transformiert wurde, sehr effizient abdecken.

[0383] Wenn ein Objekt möglicherweise sichtbar ist (700) und das System bereits einen Gsprite dafür zuge-
wiesen hat (706), dann berechnet der erläuterte Bildpräprozessor eine affine Transformation (714). Wie wir un-
ten detaillierter erklären, kann die affine Transformation zum Annähern der Bewegung des Objektes verwendet
werden. Der Bildpräprozessor bewertet die Genauigkeit dieser Näherung, und wenn sie eine zu starke Verzer-
rung erzeugt (716), ordnet der Bildpräprozessor dem Objekt einen Gsprite neu zu (708). In diesem Fall bringt
der Bildpräprozessor die geometrische Struktur, die in den Gsprite gerendert werden soll, zum Rendern in die
Schlange (d.h. Orte in der 3D-Liste) (710) und fügt auch den Gsprite zur Anzeigeliste hinzu (718).

[0384] Wenn jedoch die affine Transformation zur genauen Näherung der Bewegung des Objektes verwendet
werden kann (716, Verzerrung liegt innerhalb der vorgegebenen Toleranz), dann gibt es keine Notwendigkeit,
das Objekt neu zu rendern, und der Bildpräprozessor stellt den Gsprite, der mit dem Objekt verknüpft ist, in die
Anzeigeliste (718).

[0385] In der nächsten Teilbildperiode erzeugt der Bildprozessor das Anzeigebild. Die Teilbildperiode wird
durch die gestrichelte Linie illustriert, die die Schritte (718) und (720) trennt. Der Bildprozessor durchläuft die
Anzeigeliste und transformiert die Gsprites in der Liste auf die physischen Ausgabegerätekoordinaten (720).
Die Transformation auf die Ausgabekoordinaten umfasst im allgemeinen das Scannen von Pixeldaten aus ei-
nem verdrehten, gedrehten oder skalierten Gsprite in die Pixelorte des Ausgabegerätes. Der Bildprozessor
setzt dann diese transformierten oder „gescannten" Gsprite-Daten zusammen. Zum Schluss konvertiert der
Bildprozessor die Pixeldaten in analoge Werte und zeigt das Bild an (724).

[0386] Die Fig. 5A und Fig. 5B sind Flussdiagramme, die den Prozess des Renderns von geometrischen
Strukturen in einer Chunking-Architektur illustrieren. Es ist wichtig zu beachten, dass die Gspritekonzepte, die
oben beschrieben werden, nicht auf eine Chunking-Architektur begrenzt sind. Die Fig. 5A und der begleitende
Text oben liefern mehr Beschreibung bezüglich dessen, wie der Bildpräprozessor die Gsprite-Konfiguration
aus der Geometrie in einer Szene bestimmt. Siehe Schritte (240-244) und den begleitenden Text. Speziell kön-
nen Objekte auf Grund von Verarbeitungsbeschränkungen des Bildprozessors vereinigt und in einen einzigen
Gsprite oder eine kleine Zahl von Gsprites gerendert werden, falls notwendig. Wenn zum Beispiel der Tiler, die
Gsprite-Engine und der Zusammensetzungspuffer die aktuelle Zuordnung von Objekten zu Gsprites für ein
Teilbild mit der erforderlichen Teilbildauffrischungsrate nicht verarbeiten können, dann können die Daten zu-
rück zum DSP oder Wirtsprozessor geleitet werden, um Objekte zu vereinigen und mehrere Objekte in einen
Gsprite zu rendern.

[0387] Fig. 6 liefert zusätzliche Informationen bezüglich der Verarbeitung von Gsprites in einer Ausführungs-
form. Wie in Fig. 6 gezeigt und oben beschrieben, bestimmt der Bildpräprozessor auch die Tiefenordnung von
Gsprites (280).

[0388] Wenn der Bildpräprozessor einen Gsprite zuordnet, erzeugt er eine Datenstruktur, um den Gsprite zu
repräsentieren. Die Gsprite-Datenstruktur umfasst einen Header zum Speichern verschiedener Attribute des
Gsprites und um zu verfolgen, wo die zugehörigen Bilddaten im Speicher gespeichert werden. Die Datenstruk-
tur umfasst Felder zum Speichern der Größe des Gsprites, zum Darstellen der Kantengleichungen für die Kan-
ten des Gsprites, zum Führen der 2D-Transformationsdaten und anderer Bildattribute.

[0389] Nach dem Bestimmen der Gsprite-Konfiguration für den Betrachtungsraum bestimmt der Bildpräpro-
zessor, welche Gsprites gerendert werden sollen. Statt alle Objekte in einer Szene zu rendern, kann das Sys-
tem Gsprites, die für ein anderes Teilbild gerendert wurden, wieder verwenden. Die Änderung in der Position
eines Objektes von Teilbild zu Teilbild kann durch Ausführen einer affinen Transformation an einem gerender-
ten Gsprite genähert werden. Wie in Fig. 6 gezeigt, durchläuft der Bildpräprozessor zyklisch Gsprites
(282-286) und berechnet Gsprite-Transformationen (284). Im folgenden Abschnitt behandeln wir weiter aus-
führlich die Gsprite-Aktualisierung und das Verzerren von Gsprites.
46/147

DE 696 36 599 T2 2007.08.23
[0390] Das Bildverarbeitungssystem kann Bewegung eines 3D-Objektes durch Ausführen einer affinen
Transformation an einem gerenderten 2D-Gsprite, der das Objekt repräsentiert, nähern. Wir bezeichnen den
Prozess des Ausführens einer affinen Transformation an einem gerenderten Bild als „Verzerren" (warping) und
einen Gsprite, der sich aus diesem Prozess ergibt, als „verzerrten Gsprite" (warped gsprite). In einer Imple-
mentierung umfasst der Prozess des Simulierens des 3D-Rendering eines Objektes die folgenden Schritte: 1)
Berechnen einer affinen Transformationsmatrix, um die geometrische Bewegung von charakteristischen Punk-
ten zu nähern; 2) Messen der Genauigkeit der Näherung in Schritt 1; und 3) Wenn die Genauigkeit ausreichend
ist, dann Ausführen einer affinen Transformation am Gsprite zur Zeit t0, um seine Position zu einer späteren
Zeit t zu nähern.

[0391] Fig. 22 ist ein Flussdiagramm, das den Prozess der Ausführung einer affinen Transformation zur Si-
mulierung der 3D-Bewegung illustriert. Zur Vervollständigung zeigt Fig. 22 „Wähle charakteristische Punkte"
als ersten Schritt (744). Wie aus der Diskussion unten ersichtlich wird, werden charakteristische Punkte nor-
malerweise nicht während der Bildverarbeitung gewählt, sondern werden vielmehr vom Autor der geometri-
schen Modells festgelegt.

[0392] Die affine Transformation, die zum Simulieren der Bewegung eines Objektes verwendet wird, wird un-
ter Verwendung charakteristischer Punkte berechnet. Charakteristische Punkte sind Punkte, die für ein Objekt
gewählt werden, damit sie seine Position oder andere wichtige Bildmerkmale repräsentieren, wie sie sich mit
der Zeit ändern. Da wir uns auf die charakteristischen Punkte in Weltkoordinaten eines 3D-Modells und die
Bildschirmkoordinaten des Models beziehen, die in den Bildschirmraum transformiert sind, ist es hilfreich, Be-
griffe zu klären, die wir verwenden, um diese Punkte zu beschreiben. Wir bezeichnen charakteristische Punkte
im Bildschirmraum als „charakteristische Betrachtungspunkte", und wir bezeichnen charakteristische Punkte
in Weltkoordinaten als „charakteristische Modellierungspunkte".

[0393] Durch Wählen eines repräsentativen Satzes von charakteristischen Punkten, statt die gesamte Menge
der Objektpunkte zu berücksichtigen, vereinfachen wir die Berechnung der affinen Transformation beträchtlich.
Die Zahl der charakteristischen Punkte, die benötigt werden, um eine genaue Näherung der 3D-Bewegung ei-
nes Objektes zu erhalten, variiert je nach dem Modell. Wenn das Objekt ein starrer Körper ist, können charak-
teristische Punkte aus einem Begrenzungskasten gewählt werden, der das ganze Objekt umschließt. Wenn
die Punkte, die den Begrenzungskasten definieren, mit derselben Transformation transformiert werden, dann
folgen die Punkte des Begrenzungskastens der Transformation der Objektgeometrie.

[0394] Für Objekte mit einer komplexeren Bewegung, können mehr charakteristische Punkte erforderlich
sein, um eine zutreffende Näherung zu erhalten. Zum Beispiel kann ein Objekt in eine Reihe von starren Kör-
pern unterteilt werden, jeder mit einem Begrenzungskasten, der seine Position nähert. Wenn das Objekt aus
einer Hierarchie von starren Körpern mit individuellen Bewegungstransformationen besteht, dann können die
charakteristischen Punkte aus der Vereinigung der Ecken der sich bewegenden Teilobjekt-Begrenzungskästen
abgeleitet werden.

[0395] Als weitere Alternative kann der Autor des Modells charakteristische Punkte für das Modell festlegen.
Dies ermöglicht es dem Autor des Modells, speziell charakteristische Punkte festzustellen, die zum Nähern der
3D-Bewegung des Objekts verwendet werden. Wie ferner unten beschrieben, kann die Genauigkeit der affinen
Transformation gemäß einer Reihe von Metriken überprüft werden. Dadurch, dass der Autor die charakteristi-
schen Punkte festlegen kann, kann er Punkte festlegen, die die größte Relevanz für die Metrik oder die Metri-
ken besitzt, die zum Bewerten der Genauigkeit der affinen Transformation verwendet werden.

[0396] Wenn ein Satz von charakteristischen Punkten gegeben ist, kann eine affine Transformation berechnet
werden, um die Änderung der Position eines Gsprites von der Zeit t0 zur Zeit t zu nähern. Dieser Schritt wird
als Schritt (746) in Fig. 22 illustriert.

[0397] Die affine Transformation wird aus den charakteristischen Betrachtungspunkten zur Zeit t0 und t be-
rechnet. Je nachdem, wie die charakteristischen Punkte gewählt werden, repräsentieren die charakteristischen
Modellierungspunkte Punkte auf einem Objekt oder seinem Begrenzungskasten. Die Position der charakteris-
tischen Modellierungspunkte ändert sich mit der Zeit gemäß der Modellierungstransformation. Um die charak-
teristischen Betrachtungspunkte zu finden, werden die charakteristischen Modellierungspunkte mit der Be-
trachtungstransformation multipliziert. Die folgende Diskussion wird bei der Klärung des Prozesses der Be-
rechnung der affinen Transformationsmatrix helfen, die zum Transformieren eines 2D-Gsprites verwendet
wird.
47/147

DE 696 36 599 T2 2007.08.23
[0398] Das Format der affinen Transformationsmatrix ist folgendermaßen:

[0399] Ein Maß zum Kontrollieren der Näherung ist die Positionsmetrik. Die Positionsmetrik bezieht sich auf
die Differenz in der Position zwischen den charakteristischen Punkten zur Zeit t und der Position der charak-
teristischen Punkte zur Zeit t0, multipliziert mit der affinen Transformationsmatrix. Die allgemeine Formel der
Positionsmetrik ist folgendermaßen:

Σi∥
i(t) – S(t) i(t0)∥

2

[0400] Im Fall der Positionsmetrik ist die Position der charakteristischen Punkte im Bildschirmraum am rele-
vantesten, weil der Unterschied in der Position auf dem Bildschirm angibt, wie genau der transformierte Gsprite
die Bewegung seines entsprechenden 3D-Modells nähert. Für andere Metriken jedoch kann die Genauigkeit
der Näherung in Form der charakteristischen Modellierungspunkte berechnet werden. Für das Beispiel der Po-
sitionsmetrik betrachten wir die Bildschirmraumpunkte direkt. Es seien

i(t) = V(t)T(t)xi(t)

die Bildschirmraumpunkte, wobei V(t) die Betrachtungstransformation und T(t) die Modellierungstransformati-
on ist. Um die affine Transformationsmatrix zu berechnen, kann ein Standardverfahren der kleinsten Quadrate
verwendet werden. Löst man das lineare System:

['(t0)]S(t) = i(t)

erzeugen die Standardverfahren der kleinsten Quadrate ein Ergebnis, das die Positionsmetrik minimiert.

[0401] Für den Fall, daß es drei charakteristische Punkte gibt, kann die affine Transformationsmatrix direkt
gelöst werden. Wenn zum Beispiel drei Punkte auf den Achsen eines Begrenzungskastens verwendet werden,
ist das Ergebnis eine geschlossene Lösung für die zeitabhängige affine Transformationsmatrix, wie unten ge-
zeigt.

wo D = x1y2 – x2y1 + x2y0 – x0y2 + x0y1 – x1y0
ist.

[0402] Im allgemeinen Fall kann ein Verfahren der kleinsten Quadrate, wie zum Beispiel Normalgleichungen
oder Einzelwertzerlegung, zum Lösen der affine Transformationsmatrix verwendet werden. Das verallgemei-
nerte Problem wird unten illustriert:

x
_

x
_

x
_

x
_

x
_

48/147

DE 696 36 599 T2 2007.08.23
[0403] Um eine Lösung für die affine Transformationsmatrix zu erhalten, muss die Pseudoinverse einer N ×
3-Matrix berechnet werden. Für eine beliebige Zahl von charakteristischen Punkten verwenden wir ein Verfah-
ren der kleinsten Quadrate zum Auflösen nach der Pseudoinversen. In einer Ausführungsform wird das Nor-
malgleichungsverfahren verwendet.

[0404] sei die transponierte Matrix der charakteristischen Punkte zur Zeit t0, und X sei die transponierte Ma-
trix der charakteristischen Punkte zur Zeit t.

[0405] Für eine Lösung mit dem Verfahren der Normalgleichungen werden beide Seiten der Gleichung mit
der Transponierten der geeigneten Matrix multipliziert, und dann wird die sich ergebende hermitesche inver-
tiert. Die typische Schwäche der Normalgleichungen ist, dass die resultierende Matrix singulär ist oder zur In-
stabilität auf Grund des Rundungsfehlers neigt. Die Matrix ist singulär, wenn die charakteristischen Punkte ent-
artet sind. In der speziellen Form der Matrix kann der Rundungsfehler durch Normalisieren der Terme be-
herrscht werden.

[1]T[1]S = [1]TX

[0406] Es gibt nur 5 Terme in der resultierenden Matrix. Die 3×3-Matrix wird dann invertiert, um die affine
Transformation zu erhalten. Da andererseits die Summe der Terme der x-Koordinaten und die Summe der
y-Koordinaten dem Schwerpunkt der charakteristischen Punkte entspricht, können diese Terme durch eine Än-
derung des Koordinatensystems eliminiert werden, um den Schwerpunkt auf 0,0 zu verschieben. Die resultie-
rende Matrix ist vom Typ 2 × 2 und leicht zu invertieren.

[0407] Nach dem Berechnen der affinen Transformationsmatrix wird die Genauigkeit der Näherung unter Ver-
wendung von einer oder mehreren Metriken kontrolliert. Der Entscheidungsschritt (748) von Fig. 18 illustriert
den Schritt der Kontrolle von einer oder mehreren Metriken und zeigt im allgemeinen, wie die Logik sich auf
der Basis der Metrik/Metriken verzweigt. Wie oben beschrieben, ist die Positionsmetrik ein Beispiel dafür, wie
die Genauigkeit der affinen Transformation kontrolliert werden kann. Um zu messen, ob die affine Transforma-
tion die Positionsmetrik erfüllt, werden die charakteristischen Betrachtungspunkte zur Zeit t0, die unter Verwen-
dung der berechneten affinen Transformation transformiert wurden, mit den charakteristischen Betrachtungs-
punkten zur Zeit t verglichen.

X
~

X
~

X
~

X
~

49/147

DE 696 36 599 T2 2007.08.23
[0408] Ein weiterer Ansatz besteht darin, die innere Drehung des 3D-Modells als Metrik zu verwenden. In die-
sem Fall werden die charakteristischen Modellierungspunkte zur Zeit t0, die unter Verwendung der berechne-
ten affinen Transformation transformiert wurden, mit den charakteristischen Modellierungspunkten zur Zeit t
verglichen.

[0409] Noch ein weiterer Ansatz besteht darin, eine Beleuchtungsmetrik zu verwenden. Wie bei der Metrik für
die innere Drehung, werden die charakteristischen Modellierungspunkte dazu verwendet, die Genauigkeit der
Näherung zu kontrollieren.

[0410] Neben den Metriken, die oben beschrieben werden, gibt es eine Vielzahl anderer Alternativen. Um die-
se Metriken zu berechnen, können relevante charakteristische Daten zusammen mit den charakteristischen
Punkten geführt werden. Je nach der gewünschten Genauigkeit kann eine einzelne Metrik, oder eine Kombi-
nation von Metriken verwendet werden.

[0411] Wenn die charakteristischen Punkte, die den transformierten Gsprite repräsentieren, ausreichend ge-
nau sind, dann kann der transformierte Gsprite an Stelle eines neu gerenderten Gsprites verwendet werden.
Um die 2D-Transformation zu berechnen, wird der Gsprite für die Zeit t0 mit der affinen Transformationsmatrix
multipliziert (750). Im Gegensatz zum Rendern des Gsprites braucht diese Berechnung beträchtlich weniger
Verarbeitungszeit. Das Simulieren der 3D-Bewegung mit einer 2D-Transformation kann daher den Verarbei-
tungsaufwand, der zum Rendern eines Bildes erforderlich ist, beträchtlich reduzieren.

[0412] Auf der Basis der Näherungsgenauigkeit kann das System den Zusatzaufwand beim Rendern nach
Bedarf reduzieren, um innerhalb der Grenzen seiner Renderingkapazität für ein Teilbild der Bilddaten zu blei-
ben. Um das Konzept allgemein zu illustrieren, zeigt Fig. 22, dass ein Gsprite neu gerendert wird, wenn die
2D-Transformation nicht ausreichend genau ist (754). Wie in weiteren Details unten beschrieben wird, ist es
jedoch nicht notwendigerweise vorzuziehen, einen Gsprite auf der Basis einer Metrik zu akzeptieren oder ab-
zulehnen. Es ist vielmehr oft nützlich zu bestimmen, wie genau die Näherung für eine Reihe von Gsprites in
einer Szene ist und so viele Gsprites wie möglich neu zu rendern.

Farbverzerrung von Gsprites

[0413] Als weitere Optimierung kann das Renderingsystem die Beleuchtungsänderungen von Teilbild zu Teil-
bild abfragen und die Farbwerte des Gsprite modifizieren, um diese Änderungen zu nähern. Dieser Ansatz um-
fasst drei Grundschritte: 1) Abfragen der Beleuchtungsänderung zwischen den Teilbildern; 2) Bestimmen, wie
die Farbwerte im Gsprite zu ändern sind, um die Beleuchtungsänderung zu nähern (d.h. eine Farbverzerrung
zu berechnen); und 3) falls ausreichend genau, Ausführen einer Farbverzerrung am Gsprite, um die Beleuch-
tungsänderung zu nähern. Wenn nach der Bewertung der Beleuchtungsgleichung der Bildpräprozessor fest-
stellt, dass sich die Beleuchtung um mehr als einen vorgegebenen Betrag verändert hat, dann weist er den
Tiler an, das Objekt neu zu rendern.

[0414] Im ersten Schritt testet das Renderingsystem die Beleuchtungsänderung für ein Objekt, das mit dem
Gsprite verknüpft ist. Es testet die Beleuchtungsänderung zwischen einem ersten Teilbild, in dem ein Objekt in
einen Gsprite gerendert wird, und einem nachfolgenden Teilbild, in dem das Renderingsystem versucht, den
Gsprite Farb-zu-verzerren, um die Beleuchtungsänderung zu nähern. Eine Möglichkeit zum Testen der Be-
leuchtungsänderung besteht darin, die Beleuchtungsgleichung an charakteristischen Punkten mit Normalen
für das erste Teilbild und das nachfolgende Teilbild zu testen und die Ergebnisse des Tests bei jedem der Teil-
bilder zu vergleichen. Die charakteristischen Punkte sollten vorzugsweise auf dem Objekt verteilt sein, um ei-
nen genauen Test der Beleuchtungsänderung über den Gsprite zu liefern. Die spezielle Zahl und der Ort von
charakteristischen Punkten kann variieren und ist im allgemeinen modellspezifisch.

[0415] Ein Beispiel für die Beleuchtungsgleichung ist:

Iλ = IaλkθOdλ + fattIpλ[kdOdλ(N·L) + kSOdλ(R·V)n]

wo:
Iaλ das Umgebungslicht ist,
kθ der Umgebungsreflexionskoeffizient ist,
Odλ die diffuse Farbe des Objekts ist,
fatt der Lichtquellenabschwächungsfaktor ist, der beschreibt, wie sich die Lichtenergie verringert, wenn es sich
von der Lichtquelle weiter wegbewegt.
50/147

DE 696 36 599 T2 2007.08.23
Ipλ das Licht von einer Punktlichtquelle ist,
kd der diffuse Reflektionskoeffizient, eine Konstante zwischen 0 und 1, die von Material zu Material variiert, ist,
Odλ die Spiegelreflektionsfarbe des Objekts ist,
kS der Spiegelreflektionskoeffizient des Materials ist, der im Bereich zwischen 0 und 1 liegt.

[0416] (N·L) ist das Skalarprodukt der Oberflächennormale N und der Richtung der Lichtquelle L.

[0417] (R·V) ist das Skalarprodukt zwischen der Richtung der Reflektion R und der Richtung zum Betrach-
tungspunkt V, der Exponent n ist der Spiegelreflektionsexponent des Materials, der normalerweise zwischen 1
und mehreren hundert variiert.

[0418] λ zeigt an, dass ein Term, der diesen Index aufweist, wellenlängenabhängig ist. Eine Annahme zum
Vereinfachen der Beleuchtungsgleichung besteht darin anzunehmen, dass das RGB-Farbmodell die Wechsel-
wirkung des Lichts mit Objekten ausreichend modellieren kann. Unter Verwendung dieser Annahme kann das
Beleuchtungsmodell auf jede R-, G- und B-Farbkomponente angewendet werden.

[0419] Die Beleuchtungsgleichung oben ist nur ein Beispiel, das ein Verfahren zum Berechnen der Beleuch-
tung an Punkten auf der Oberfläche eines Objektes illustriert. Die Beleuchtungsgleichung kann zum Beispiel
durch Nichtbeachten des Lichtabschwächungsfaktors oder der Spiegelreflektion vereinfacht werden. Auf dem
Gebiet des 3D-Grafikrenderns gibt es eine Reihe von anderen konventionellen Beleuchtungsgleichungen, die
zum Modellieren der Beleuchtung auf der Oberfläche eines grafischen Objektes verwendet werden. Daher
kann jede beliebige Zahl von unterschiedlichen Beleuchtungsgleichungen verwendet werden, um die Beleuch-
tung an charakteristischen Punkten zu testen, die mit einem grafischen Objekt verknüpft sind. Im allgemeinen
berechnet der Bildpräprozessor die Beleuchtungsgleichung und bestimmt, wie der resultierende Beleuch-
tungswert I (möglicherweise für jede RGB-Komponente) sich in der Größe von Teilbild zu Teilbild ändert.

[0420] Um die Änderung in der Beleuchtung von Teilbild zu Teilbild einzuschätzen, berechnet der Bildpräpro-
zessor die Beleuchtungsgleichung für charakteristische Punkte in einem ersten Teilbild und einem nachfolgen-
den Teilbild unter Verwendung der Flächennormale am charakteristischen Punkt, der Richtung der Lichtquelle
für jedes Teilbild und möglicherweise anderen Daten, die mit der speziellen Beleuchtungsgleichung verbunden
sind.

[0421] Das System kann die Beleuchtungsänderung an charakteristischen Punkten auf einem Objekt, das
durch den Gsprite repräsentiert wird, oder an charakteristischen Punkten auf einem Begrenzungsvolumen des
Objektes testen. Ein Ansatz für das Testen der Beleuchtungsänderung besteht darin, die Beleuchtungsände-
rung auf der Oberfläche eines Begrenzungsvolumens des Objektes zu testen. Das System kann zum Beispiel
Beleuchtungsänderungen an den Normalen auf der Oberfläche einer Begrenzungskugel des Objektes oder
Teilen des Objektes testen. Eine Begrenzungskugel ermöglicht dem Bildpräprozessor, die wesentlichen Ver-
änderungen zu verfolgen, die auf Grund dessen, dass eine lokale Lichtquelle innerhalb des „Raums" eines Ob-
jektes bewegt wird, auftreten können. Wenn der Bildpräprozessor einfach einen Satz von Vektoren verwende-
te, die sich am Schwerpunkt eines Objektes befinden, könnte die Bewegung einer lokalen Lichtquelle keine
wesentlichen Beleuchtungsänderungen bewirken, sondern könnte einen Einfluss auf die Beleuchtung des Ob-
jektes als Ganzes haben. Unter diesen Umständen kann das Testen von Beleuchtungsänderungen auf der
Oberfläche einer Begenzungskugel die Beleuchtungsänderungen für das Objekt genauer erfassen, die an-
sonsten durch selektives Betrachten von charakteristischen Punkten auf der Oberfläche des Objektes verlo-
rengehen würden.

[0422] Als weitere Alternative kann eine Kombination von Normalen an den charakteristischen Punkten auf
dem Objekt oder auf der Oberfläche einer Begrenzungskugel verwendet werden, um die Beleuchtungsände-
rungen abzufragen. Dieser Ansatz kann Beleuchtungsänderungen effektiver verfolgen, weil er die Beleuch-
tungsänderungen an charakteristischen Punkten auf dem Objekt und auf der Oberfläche eines Begrenzungs-
volumens für das Objekt verfolgt.

[0423] Auf der Basis der Beleuchtungsänderungen kann das System bestimmen, wie die Gsprite-Farbwerte
zu ändern sind, um diese Beleuchtungsänderungen zu nähern. Ähnlich wie bei der Geometrietransformation,
die an einem Gsprite ausgeführt wird, berechnet das System, wie die Farbwerte des Gsprites zu ändern sind,
um die Beleuchtungsänderung näherungsweise zu berücksichtigen. Eine Möglichkeit zur Berechnung der
Farbverzerrung besteht darin, einen Anpassungsansatz nach der Fehlerquadratmethode zu verwenden, wie
oben beschrieben. Das Ergebnis dieses Schritts ist eine konstante, lineare Änderung oder eine Änderung hö-
herer Ordnung, mit der die Farbwerte an den Pixelorten über den Gsprite modifiziert (z.B. mit einem Skalie-
51/147

DE 696 36 599 T2 2007.08.23
rungsfaktor multipliziert und/oder einem Versatz versehen) werden.

[0424] Die Farverzerrung umfasst einen Multiplikator oder ein Feld von Multiplikatoren, die über den Gsprite
hinweg angewendet werden. Im einfachsten Fall kann die Farbverzerrung einfach ein konstanter Maßstabs-
faktor sein, der auf alle Pixel im Gsprite angewendet wird. Ein genauerer Ansatz ist, eine Verzerrung mit line-
arer Änderung oder einer höheren Ordnung zu verwenden, um die Beleuchtungsänderungen anzunähern. Der
Multiplikator ist vorzugsweise ein Vektorwert, so dass die Farbkomponenten unabhängig skaliert werden kön-
nen. Um die Änderungen durch farbige Lichtquellen genau zu modellieren, sollte jede Farbkomponente unab-
hängig skaliert werden.

[0425] Zusätzlich zum Multiplikator kann auch ein Versatzwert, der zu einem Farbwert im Gsprite addiert wird,
auf der Basis der Beleuchtungsänderungen an den charakteristischen Punkten berechnet werden.

[0426] Eine Möglichkeit, den Multiplikator und die Versatzwerte zu berechnen, ist nach einem Multiplikator
und dem Versatzwert aufzulösen, der die Änderung in der Beleuchtungsgleichung an jedem charakteristischen
Punkt repräsentiert, um festzustellen, ob die charakteristischen Punkte sich an der Oberfläche des Objektes,
an der Oberfläche eines Begrenzungsvolumens oder von beiden befinden. Der Bildpräprozessor kann einen
Multiplikator, einen Versatzwert oder beide durch Wählen eines Multiplikators oder Versatzwerts oder einer
Kombination aus einem Multiplikator und einem Versatzwert berechnen, die dieselbe oder im wesentlichen die-
selbe Änderung der Beleuchtungsgleichung an jedem charakteristischen Punkt bewirkt, wie während des Test-
stadiums beobachtet wurde. Sobald diese Multiplikatoren und/oder Versatzwerte berechnet sind, gibt es eine
Reihe von Möglichkeiten, den Multiplikator und die Versatzwerte zu berechnen, die auf die Farbwerte im Gspri-
te angewendet werden. Eine Möglichkeit besteht darin, die Multiplikatoren zu mitteln, um einen einzigen Ska-
lierungsfaktor für den Gsprite abzuleiten. Eine andere Möglichkeit besteht darin, die Versatzwerte zu mitteln,
um einen einzigen Versatzwert für den Gsprite abzuleiten. Noch eine weitere Möglichkeit ist, eine Anpassung
nach der Fehlerquadratmethode auf den Multiplikator und die Versatzwerte unabhängig anzuwenden, um Aus-
drücke abzuleiten, die darstellen, wie sich die Multiplikatoren und die Versatzwerte mit dem Ort auf der Ober-
fläche des Objekts ändern. Dieser Ausdruck kann in Hardware unter Verwendung von Interpolatoren imple-
mentiert werden, um unabhängige Multiplikatoren und/oder Versatzwerte für Pixelorte im Gsprite zu berech-
nen. Die Gsprite-Engine kann zum Beispiel einen Rastergenerator mit Interpolatoren zum Interpolieren der
Multiplikatoren und/oder Versatzwerte für jeden Pixelort umfassen, bevor ein Farbwert mit dem Multiplikator
multipliziert wird oder bevor ein Versatzwert zu einem Farbwert oder einem skalierten (d.h. skaliert durch den
entsprechenden Multiplikator, der für den Pixelort berechnet wurde) Farbwert addiert wird.

[0427] Gerade so wie das System die Genauigkeit der geometrischen Änderung bewertet, kann das System
auch die Genauigkeit der Farbverzerrung durch Vergleichen der Farbwerte, die durch Farbänderung berechnet
wurden, mit entsprechenden Farbwerten, die für das aktuelle Teilbild unter Verwendung des normalen Rende-
ringprozesses berechnet wurden, bewerten. Wenn die Farbwerte sich um mehr als eine vorgegebene Toleranz
unterscheiden, sollte der Gsprite neu gerendert werden.

[0428] Neben der Verringerung des zusätzlichen Renderingaufwandes kann das Verzerren der Gsprites die
Transportverzögerung reduzieren. In Anwendungen, in denen sich die Betrachtungsperspektive schnell än-
dert, ist es auf Grund der Transportverzögerung schwierig, die sich schnell ändernde Perspektive anzuzeigen.
Transportverzögerung bezieht sich auf die Verzögerung, die zwischen dem Erhalt der Eingabe, welche eine
Änderung des Betrachtungspunktes bewirkt, und dem schließlichen Anzeigen des entsprechenden Bildes für
diesen neuen Betrachtungspunkt auftritt. Fig. 23 illustriert ein Beispiel dafür, wie die Transportverzögerung re-
duziert werden kann. Die Abschnitte entlang der horizontalen Achse repräsentieren Zeitschritte entsprechend
der Teilbildverzögerung.

[0429] In diesem Beispiel gibt es eine Verzögerung von drei Teilbildperioden zwischen der Abfrage der Ein-
gabe und der Anzeige der Ausgabe auf einem Anzeigegerät. Zuerst wird die Eingabe in einem ersten Teilbild
774 abgefragt. Als Nächstes berechnet der Computer die affinen Transformationen und rendert Objekte in den
Gsprites 776. Zum Schluss werden die gerenderten Bilddaten für das Teilbild zusammengesetzt und auf das
Anzeigegerät ausgegeben 778. Obwohl die Zeit, die zum Ausführen jedes dieser Schritte nicht notwendiger-
weise eine ganze Teilbildverzögerung ist, die durch eine Teilbildperiode gemessen wird, verwenden wir den
Zuwachs einer Teilbildperiode, um das Konzept zu illustrieren. Wie illustriert, liegen drei Teilbildperioden der
Verzögerung zwischen Eingabe und Anzeige der entsprechenden Bilddaten.

[0430] Um die Transportverzögerung zu reduzieren, können Betrachtungspunktdaten aus einem nachfolgen-
den Bild auf die Renderingphase des aktuellen Bildes angewendet werden 782. Dies wird durch den Pfeil von
52/147

DE 696 36 599 T2 2007.08.23
der Eingabephase für ein nachfolgendes Bild 782 auf die Gsprite-Transformation und die Renderingphase 776
des aktuellen Bildes illustriert. Die Verarbeitungsschritte (782, 784, 780) für das nächste Teilbild der Bilddaten
werden neben den Schritten (776, 778) gezeigt, wie in Fig. 23 zu sehen ist. Wie illustriert, läuft die Verarbeitung
in Pipelineart ab. Eingaben werden nach einem nachfolgenden Teilbild abgefragt, während die Gsprite-Trans-
formationen berechnet und das Rendern für das aktuelle Teilbild ausgeführt wird.

[0431] Die Modellierungstransformation für das aktuelle Bild kann in Verbindung mit der Betrachtungstrans-
formation für das nachfolgende Bild verwendet werden, um eine Gsprite-Transformation zu berechnen, die nor-
malerweise in der Form einer affinen Transformationsmatrix ist. Ein gerenderter Gsprite kann dann verzerrt
werden, um so seine Position relativ zum Betrachtungspunkt des nachfolgenden Bildes zu simulieren. Dieser
Ansatz verringert den Effekt der Transportverzögerung auf den Nutzer, weil er dem System ermöglicht, sich
schneller auf schnelle Änderungen in der Betrachtungspunktperspektive einzustellen.

[0432] Neben der Reduzierung der Transportverzögerung in diesem Kontext, können nachfolgende Bilddaten
dazu verwendet werden, die Transportverzögerung auch in anderen Zusammenhängen zu reduzieren.

[0433] Wie oben angedeutet wurde, gibt es eine Reihe von Vorteilen für das unabhängige Rendern der Gspri-
tes. Gsprites können unterschiedliche Aktualisierungsraten haben und daher variiert die Zahl der Gsprites, die
in einem bestimmten Teilbild aktualisiert wird. Einige Gsprites müssen vielleicht bei jedem Teilbild aktualisiert
werden, während andere Gsprites möglicherweise weniger häufig aktualisiert werden. Wenn eine Reihe von
Gsprites in einem bestimmten Teilbild aktualisiert werden muss, kann sich der Rendering-Zusatzaufwand dra-
matisch erhöhen und das System belasten. Um dieses Problem anzugehen, führt das System ein Prioritäts-
rendering aus, was ihm ermöglicht, das Rendern über eine Reihe von Teilbildern zu verteilen und Gsprites ef-
fizienter zu verarbeiten.

[0434] Ohne Prioritätsrendering kann die Zahl der Gsprites, die für das Rendern in einem bestimmten Teilbild
eingeteilt sind, variieren. Einige Gsprites können zum Beispiel vorgegebene Aktualisierungsraten haben. Die
Aktualisierungsrate für einen Gsprite kann je nachdem variieren, ob er im Vordergrund oder Hintergrund einer
Szene ist. Mit der Unterstützung für affine Verzerrungen, die oben beschrieben sind, kann das System mit einer
affinen Transformation das erneute Rendern eines Gsprites durch Simulieren einer Positionsänderung vermei-
den. Im Fall von affinen Verzerrungen kann die Notwendigkeit, einen Gsprite neu zu rendern, variieren, je nach-
dem, ob sich die Szene ändert.

[0435] Um das Prioritätsrendern zu implementieren, priorisiert das System das Rendern nach dem Grad der
Verzerrung, die sich durch Wiederverwenden eines gerenderten Gsprites ergeben würde. Die Verzerrung wird
auf der Basis von einer oder mehreren Fehlerschwellen berechnet. Um die Verzerrung eines Gsprites zu quan-
tifizieren, misst das System, wie nahe, oder umgekehrt, wie weit ein Gsprite von seiner Fehlerschwelle entfernt
ist. Die Fehlerschwelle kann für jeden Gsprite variieren und kann auf einem oder mehreren Faktoren beruhen.
Ein nach Verzerrung geordnete Liste von Gsprites wird geführt, die die relative Qualität der Gsprites vor dem
erneuten Rendern darstellt. Dann werden so viele Gsprites in einem Teilbild wie möglich unter Berücksichti-
gung der Systemressourcen neu gerendert. Gsprites werden neu gerendert, beginnend bei dem am stärksten
verzerrten Gsprite, und dann weiter in absteigender Reihe zu den weniger verzerrten Gsprites. Das Verarbei-
ten in dieser Weise beseitigt die Möglichkeit einer Teilbildüberladung durch das Rendern der Gsprites, während
statt dessen ein effizienter Mechanismus zum Ausbalancieren von Szenenkomplexität und Bewegung mit der
Gsprite-Genauigkeit bereitgestellt wird.

[0436] Neben den Merkmalen, die oben beschrieben werden, ermöglicht das Rendern in Gsprites dem Sys-
tem, die Auflösung von Objekten in einer Szene zu variieren. Dies gibt dem System die Möglichkeit, Gsprites
Verarbeitungs- und Speicherressourcen auf der Basis ihrer Bedeutung in einer Szene zuzuweisen.

[0437] Die Kosten eines Gsprites können in Form von Speicher, den er belegt, und der Verarbeitung, die zu
seinem Rendern erforderlich ist, gemessen werden. Beide Kosten hängen stark von der Zahl der Pixel im
Gsprite-Bild ab. Wenn Gsprite-Bilder bei einer festen Auflösung, der Bildschirmauflösung, gespeichert und ge-
rendert werden, werden die Kosten, die für ein Gsprite anfallen, von seinen Bildschirmabmessungen bestimmt.

[0438] Es ist wichtig, Verarbeitungs- und Speicherressourcen auf der Basis der Art und des Ortes eines Ob-
jektes, statt lediglich seiner Größe, die es auf dem Bildschirm einnimmt, zuzuordnen. Aktive Objekte im Vor-
dergrund einer Szene sind normalerweise wichtiger für die Szene als die im Hintergrund. Wenn jedoch dem
Gsprite Ressourcen auf der Basis der Größe zugeordnet werden, dann sind die Verarbeitungs- und Speicher-
kosten für den Hintergrund auf Grund seiner größeren Bildschirmabmessungen viel größer.
53/147

DE 696 36 599 T2 2007.08.23
[0439] Das System kann die Bildschirmauflösung von der Auflösung des Gsprites entkoppeln, so dass die
Kosten eines Gsprites unabhängig von seiner endgültigen Bildschirmauflösung festgelegt werden können. Das
System erreicht dies durch Wählen der geeigneten Auflösung des Gsprites und dann durch Skalieren des
Gsprites auf die entsprechende Größe.

[0440] Der Vergrößerungs- oder Skalierungsfaktor kann aus den Bildschirmabmessungen des Bildes und der
Gsprite-Auflösung abgeleitet werden. Normalerweise liefert die Grafikanwendung die Bildschirmabmessun-
gen. Die Grafikanwendung kann auch die Auflösung angeben. Alternativ kann der Bildpräprozessor die Gspri-
te-Auflösung auf der Basis der verfügbaren Ressourcen und der relativen Bedeutung des Gsprites in der Sze-
ne bestimmen.

[0441] Beim Betrieb rendert der Bildprozessor den Gsprite in einen kleineren Bereich in Ausgabegerätekoor-
dinaten, als er tatsächlich im Betrachtungsraum einnimmt. Die Größe des Bereichs, in den der Gsprite geren-
dert wird, leitet sich aus der Auflösung und den Bildschirmabmessungen ab. Der gerenderte Gsprite kann dann
auf seine tatsächliche Größe, wie durch seine Bildschirmabmessungen definiert sind, skaliert werden. Da der
Gsprite einen kleineren Bereich hat, verbraucht er weniger Speicher und weniger Verarbeitungsressourcen
zum Rendern. Außerdem können in der erläuterten Ausführungsform Gsprites mit wechselnden Auflösungen
immer noch in einer gewöhnlichen Grafikpipeline verarbeitet werden.

[0442] Eine Möglichkeit, diesen Ansatz zu unterstützen, besteht darin, den Vergrößerungs- oder Skalierungs-
faktor in der Gsprite-Datenstruktur zu speichern. Der Skalierungsfaktor kann dann dazu verwendet werden,
den Gsprite zu skalieren, bevor er mit anderen Gsprites zusammengesetzt wird, um das Anzeigebild zu erzeu-
gen. Der Bildpräprozessor kann die Skalierung des Gsprites ausführen. Spezieller gesagt, skaliert in der Imp-
lementierung, die oben beschrieben wird, der DSP den Gsprite.

[0443] So wie ein Gsprite skaliert werden kann, um die Auflösung zu reduzieren, kann er auch auf eine Größe
gerendert und dann auf eine kleinere Anzeigefläche skaliert werden. Dieses Verfahren kann auf Objekte in ei-
ner Szene angewendet werden, die in der Größe schwinden. Statt das Objekt für jedes Teilbild neu zu rendern,
kann das System den Gsprite skalieren, der das Objekt repräsentiert. Dieser Ansatz kann auch durch Spei-
chern des Skalierungsfaktors in der Gsprite-Datenstruktur implementiert werden.

[0444] Oben haben wir die Gsprite-Verarbeitung durch ein Bildverarbeitungssystem beschrieben, und wir ha-
ben auch beschrieben, wie eine Gsprite-Transformation berechnet und in einem Bildverarbeitungssystem an-
gewendet werden kann. Wir beschreiben jetzt detaillierter, wie man Pixeldaten transformieren, zusammenset-
zen und anzeigen kann.

[0445] In dieser Ausführungsform richtet der DSP 176 die Gsprite-Datenstrukturen ein und speichert sie im
gemeinsamen Speicher 216 auf der Bildverarbeitungsplatine 174. Der DSP liest und schreibt in die Gsprite-En-
gineregister durch den Tiler über eine speicherabgebildete Schnittstelle. Die Register in der Gsprite-Engine
umfassen einen Zeiger auf die aktuelle Anzeigeliste. Weitere Details zur Gsprite-Engine 436 werden oben un-
ter Bezugnahme auf Fig. 12 bereitgestellt.

[0446] Die primäre Eingabe in die Gsprite-Engine 204 erfolgt über die Gsprite-Anzeigeliste. Fig. 24 illustriert
ein Beispiel für eine Anzeigeliste 800 und Gsprite-Datenstrukturen. In dieser Implementierung umfasst die An-
zeigeliste 800 ein Feld von Gsprite-Steuerblockadressen, die SCB (Sprite-Kontrollblock)-Handles 840 genannt
werden, wobei auf jeden eine Bandmaske 802 folgt. Das erste Wort in der Liste 800 umfasst die Anzahl von
Gsprites in der Liste. Ein gesetztes Bit in der Bandmaske zeigt an, dass der Gsprite im Band vorhanden ist.
Obwohl wir hier ein spezielles Beispiel bereitstellen, kann die Anzeigeliste auf andere Weise implementiert
werden. Die Liste kann zum Beispiel aus separaten Listen für jedes einzelne Band bestehen, wobei jede Band-
liste die Gsprites aufzählt, die auf dieses Band fallen. Wie oben bemerkt, sind die Gsprites in der Anzeigeliste
nach Tiefe geordnet und in diesem Fall sind sie von vorn nach hinten geordnet.

[0447] Der Gsprite-Kontrollblock (SCB) 806 umfasst Informationen zum Scannen des Gsprites in Ausgabe-
gerätekoordinaten. Rechteckige Gsprites bilden sich auf ein Parallelogramm im Bildschirmraum unter einer af-
finen Transformation ab. Die Kantengleichungen des Gsprites haben die Form: A0x + B0y + C0 = F0; A1x + B1y
+ C1 = F1; –A0x – B0y + C2 = F2; –A1x – B1y + C3 = F3. Die rechte Seite dieser Gleichungen ist an den entspre-
chenden Kanten gleich null. Der DSP 176 bestimmt den Wert der Koeffizienten aus der affinen Transformation
für den Gsprite. Nach der affinen Transformation ist die Form des Gsprites ein Parallelogramm, und daher
brauchen nur 2 Sätze von A- und B-Koeffizienten gespeichert zu werden. Die C-Terme werden überhaupt nicht
gebraucht, da die Gsprite-Engine nur die F-Werte am Startpunkt benötigt, und sie braucht auch eine Beschrei-
54/147

DE 696 36 599 T2 2007.08.23
bung, wie sich die F-Werte mit Schritten im Bildschirmraum X und Y ändern, was durch die A- und B-Koeffizi-
enten angegeben wird. Zur Unterstützung der Abbildung von gespeicherten Gsprite-Daten in Ausgabegeräte-
koordinaten wird das Vorzeichen des Koeffizienten so gesetzt, dass das Ergebnis eine positive Zahl ist, wenn
die Koordinaten eines Punktes im Parallelogramm in der Kantengleichung ermittelt werden.

[0448] Speziell umfasst der SCB A0, B0; A1, B1; F0, F1, F2, F3; den am weitesten links liegenden Punkt xs, ys;
den am weitesten rechts liegenden Punkt xf, yf; die Neigung des am weitesten links liegenden Punktes gegen-
über der Oberseite des Gsprites und die Neigung des am weitesten links liegenden Punktes gegenüber dem
Boden und die Breite und Höhe des Parallelogramms.

[0449] Der Startpunkt für den Scan ist der am weitesten links liegende Punkt des Parallelogramms, und der
Scan bewegt sich Spalte für Spalte von links nach rechts im Bildschirmraum. Um den Gsprite auf jedes
32-Scanzeilenband zu beschneiden, umfasst der SCB auch die Neigungen dx/dy vom Startpunkt (dem am wei-
testen links liegenden Punkt) zu den oberseitigen und bodenseitigen Punkten des Gsprites, so dass der am
weitesten links liegende Punkt in einem bestimmten Bildschirmband bestimmt werden kann.

[0450] Die Kantengleichungen des Parallelogramms sind im DSP 176 derart normalisiert worden, dass F = 0
an einer Kante des Parallelogramms und F = Gsprite-Breite oder -Höhe an der gegenüberliegenden Kante gilt.
Die F-Werte für die Kanten 0 und 1 des Parallelogramms können daher direkt verwendet werden, um ein
Sample S, T eines bestimmten Gsprite-Bildes an einem bestimmten Bildschirmort X, Y nachzusehen. Da die
Abbildung von einem Bildschirm X, Y auf einen Gsprite S, T selten direkt auf einer Gsprite-Bildabfrage landen
wird, interpoliert die Gsprite-Engine die nächstgelegenen 4-(oder 16-) Gsprite-Bildabfragen, um das Ausga-
besample zu finden.

[0451] Der SCB 806 umfasst die Größe des ursprünglichen Gsprites (horizontale und vertikale Schrittweite)
und die Größe und den Ort des Teil-Gsprites, der gescannt werden soll (Breite, Höhe, Start S und T). Er kann
auch Kennzeichen (Flags) umfassen, die beschreiben, wie die Bildchunks komprimiert wurden und welches
Pixelformat in den Chunks verwendet wird.

[0452] Bei dieser Chunking-Architektur wird der Gsprite in 32×32-Pixelchunks unterteilt. Es ist nicht notwen-
dig, Gsprites zum Rendern in Chunks zu teilen. Eine Chunking-Architektur besitzt aber eine Reihe von Vortei-
len, wie oben dargelegt. Zur Unterstützung der Chunking-Architektur umfasst der SCB ein zweidimensionales
Feld von Zeigern (Chunk-Handles), das die Adresse für das erste Wort des komprimierten Chunks im gemein-
samen Speicher repräsentiert. Der Chunkspeicher wird in 512-Bit-Blöcken gehandhabt. Jeder Zeiger oder
Chunk-Handle hat 18 Bit, was einen Gesamtwert von 16 MB addressierbarer Speicher ermöglicht. Da die Men-
ge an Speicher, die zum Komprimieren jedes Chunks benötigt wird, variabel ist, enthält jeder 512-Bit-Block ei-
nen 18-Bit-Zeiger auf den nächsten Block. Blöcke, die nicht mehr benötigt werden, werden einer verlinkten Lis-
te von freien Blöcken hinzugefügt, so dass sie für andere Chunks verwendet werden können.

[0453] Wenn Objekte, die einem Gsprite zugeordnet sind, in Chunks geteilt werden, wird die Gsprite-Daten-
struktur aktualisiert, so dass sie einen Verweis auf die Chunks enthält, die Bilddaten für den Gsprite umfassen.

[0454] Gsprite-Daten können aus einem anderen Gsprite instanziert werden. In dem Beispiel, das in Fig. 20
gezeigt wird, instanziert ein Gsprite Bilddaten von einem anderen. Hier zeigt der erste Chunk-Handle (808) für
den SCB auf den SCB 810 eines anderen Gsprites. In einer alternativen Implementierung zeigen Chunk-Hand-
les nur auf Orte im Speicher, an denen Chunks gespeichert sind.

[0455] Fig. 25 ist ein Beispiel, das illustriert, wie ein Gsprite von 6 Chunks mal 2 Chunks sich auf horizontale
Bänder in der Anzeige abbilden könnte. Fig. 25 zeigt den Startpunkt 836 und den Endpunkt 834, die beim
Scannen von Bilddaten aus dem Gsprite-Raum auf den physischen Ausgabegerätraum verwendet werden.
Wir erklären unten mit mehr Details, wie Gsprite-Bilddaten auf den Ausgabegeräteraum abgebildet werden.

[0456] Nach dem Rendern und der Berechnung der affinen Transformationen für Gsprite in einem Teilbild
führt der Bildprozessor dann die Erzeugung der Anzeige aus. Wie in Fig. 21B gezeigt, transformiert der Bild-
prozessor Gsprites in physische Ausgabekoordinaten und setzt die Gsprites zusammen. Nach dem Zusam-
mensetzen der Pixeldaten transferiert der Bildprozessor diese zur Anzeige.

[0457] In dieser Ausführungsform liest die Gsprite-Engine in der Anzeigeliste und bildet das Gsprite-Bild auf
die Ausgabegerätekoordinaten ab. Während die Gsprite-Engine die Gsprite-Daten transformiert, sendet sie Pi-
xeldaten an einen Zusammensetzungspuffer zur Anzeige. Der Zusammensetzungspuffer ist vorzugsweise
55/147

DE 696 36 599 T2 2007.08.23
doppelt gepuffert, so dass zusammengesetzte Pixeldaten von einem Puffer übertragen werden können, wäh-
rend Pixeldaten im anderen Puffer zusammengesetzt werden.

[0458] Spezieller gesagt, liest die Gsprite-Engine Gsprite-Bilddaten im AYUV-Format aus dem gemeinsamen
Speicher, dekomprimiert, transformiert und filtert sie, konvertiert sie ins ARGB-Format und sendet sie an den
Zusammensetzungspuffer mit Videoraten (z.B. 75 Hz). Der Zusammensetzungspuffer setzt die dekomprimier-
ten ARGB-Pixel in einem 1344 × 32-Puffer zur Anzeige zusammen.

[0459] Fig. 26 ist ein Flussdiagramm, das illustriert, wie die Gsprite-Engine Bilddaten verarbeitet. Beim Erhalt
eines Bildsynchronisierungssignals (858) durchläuft die Gsprite-Engine jedes Band (860) für ein Teilbild und
scannt jeden Gsprite in einem Band (862). Nach dem Scannen der Gsprites für ein Band fährt sie dann mit
dem nächsten Band (860) fort. Die Gsprite-Engine wiederholt den Scanprozess für jedes Band im Betrach-
tungsraum.

[0460] Da in einer Echtzeitanwendung die Gsprite-Engine den Scan innerhalb einer Zeit abschließen muss,
die von der Bildwiederholrate vorgegeben wird, ist es möglich, dass die Gsprite-Engine nicht in der Lage ist,
jeden Gsprite in jedem Band zu verarbeiten. Um diesen Fall verhüten zu helfen, meldet die Gsprite-Engine für
jedes Teilbild die freie Verarbeitungszeit für jedes Band an den Host-Rechner. Unter Verwendung dieser Infor-
mationen kann der Bildpräprozessor Objekte nach Notwendigkeit vereinigen, um eine Überladung eines be-
stimmten Bandes zu verhindern.

[0461] Beim Scannen der Pixel aus dem Gsprite-Raum konvertiert die Gsprite-Engine die Pixeldaten in die
Ausgabegerätekoordinaten (866). Es kann eine beliebige Zahl von herkömmlichen Scanverfahren verwendet
werden, um den Gsprite in Ausgabegerätekoordinaten zu scannen. Es kann entweder ein Backward Mapping
oder ein Forward Mapping verwendet werden. Die Gsprite-Engine verwendet in dieser Ausführungsform einen
Backward Mapping-Ansatz.

[0462] Die Gsprite-Engine bestimmt unter Verwendung der Kantengleichungsdaten im SCB den Ort für den
Start des Scans in jedem Band durch Zuschneiden des Gsprites auf das Band. Fig. 25 zeigt zum Beispiel, wie
die Kanten des Gsprites in das dritte Band hineinragen (830, 832). Die Schnittpunkte sind der Start- und Stopp-
punkt für den Scan des Gsprites in diesem speziellen Band. Ein Ansatz für das Scannen besteht darin, das
Scannen zickzackartig vom Startpunkt aus durchzuführen. Der Startpunkt in einem Band kann gefunden wer-
den, indem die zum Schnittpunkt nächstgelegenen Pixel in Ausgabegerätekoordinaten herangezogen werden.
Sobald der Startpunkt berechnet ist, schreitet die Gsprite-Engine schrittweise in Inkrementen weiter, bis sie aus
dem Gsprite oder aus dem Band heraustritt. Sie schreitet dann eine Spalte nach rechts und dann nach unten,
bis sie entweder aus dem Gsprite oder aus dem Band heraustritt. Bei jedem Schritt interpoliert sie aus den Pi-
xeldaten im Gsprite-Raum, um einen Pixelwert für einen Pixelort zu finden. Wenn sie diesen Pixelwert an je-
dem Ort berechnet, sendet sie die Pixeldaten zum Zusammensetzen an den Zusammensetzungspuffer.

[0463] Fig. 27 ist ein Schema, das illustriert, wie die Gsprite-Engine und die Zusammensetzungspuffer Bän-
der von Bilddaten verarbeiten. In diesem Schema bezieht sich der Begriff „Band" auf die Zeitdauer (Bandperi-
ode), die zur Verarbeitung eines Bandes von Pixeldaten zugewiesen ist. Diese Zeit kann zum Teil aus der Bild-
wiederholrate und der Zahl der Bänder im Anzeigegerät abgeleitet werden. Wie in Fig. 27 gezeigt, füllt die
Gsprite-Engine 204 die Zusammensetzungspuffer 210 für ein Band 888, und diese zusammengesetzten Bild-
daten werden zur Anzeige 892 herausgescannt. Diese Schritte können unter Verwendung der Doppelpuffe-
rung für aufeinander folgende Bänder überlappt werden. Während die Gsprite-Engine 204 einen Zusammen-
setzungspuffer für ein Band füllt 890, überträgt der Zusammensetzungspuffer die zusammengesetzten Bildda-
ten für ein weiteres Band an den DAC 212, 892. In der nächsten Bandperiode wird das Band, das gerade zu-
sammengesetzt wurde, dann angezeigt 894. Dieser Prozess wiederholt sich für Bänder in der Anzeige. Wegen
dieser Doppelpufferung kann der Prozess des Transformierens und des Zusammensetzens von Pixeln gleich-
zeitig mit dem Prozess des Anzeigens eines Bandes ablaufen.

[0464] Gsprites können in Echtzeit zusammengesetzt werden, um das Bild zu erzeugen, das auf dem Aus-
gabegerät angezeigt wird. Die Gsprite-Pixeldaten, die aus der Gsprite-Adressierungs- und Bildverarbeitungs-
engine erzeugt wurden, werden an einen Zusammensetzungspuffer weitergeleitet. Der Zusammensetzungs-
puffer hat zwei 32-Scanline-Puffer, einen, der zum Zusammensetzen zu Videodaten zur Anzeige verwendet
wird, und einen, der zum Erzeugen der Videodaten zur Anzeige verwendet wird. Die zwei Puffer schalten vor
und zurück, so dass während des Anzeigens einer Scanline-Region die nächste zusammengesetzt wird.

[0465] Die Gsprite-Engine leitet die primären Farbdaten und Alphadaten an den Zusammensetzungspuffer
56/147

DE 696 36 599 T2 2007.08.23
für jedes Pixel, das zusammengesetzt werden soll, weiter. Ein 32-Scanline-Alphapuffer ist mit dem Scanline-
puffer verbunden, der gerade zum Zusammensetzen verwendet wird. Da die Gsprites in der Reihenfolge vorn
nach hinten verarbeitet werden, kann der Alphapuffer zum Ansammeln von Opazität für jedes Pixel verwendet
werden, was ordnungsgemäßes Anti-Aliasing und Transparenz ermöglicht.

[0466] Der Scanline-Farbpuffer wird mit 0,0 initialisiert. (alle Bits zurückgesetzt), während der Alphapuffer auf
1,0 (alle Bits gesetzt) initialisiert wird. Für jedes Pixel berechnet sich die Farbe, die in den Scanlinepuffer ge-
laden wird, zu Farbe(neu) = Farbe(dst) + Farbe(src)·Alpha(src)·Alpha(dst). Der Alphawert, der im Alphapuffer
gespeichert wird, berechnet sich zu Alpha neu) = Alpha(dst)·(1 minus Alpha(sic)). Die Farbverweistabelle
(LUT) ist vorzugsweise 256 × 10 Bit: die Extrabits (10 gegenüber 8) können dazu verwendet werden, für eine
genauere Gammakorrektur zu sorgen.

Tiling

[0467] Wie oben angeführt, führt der Bildprozessor (Fig. 1) eine Scan-Konvertierung aus, entfernt verborgene
Flächen, führt Anti-Aliasing, Lichtdurchlässigkeitsberechnungen, Texturierung und Schattierung aus. In diesem
Abschnitt beschreiben wir detailliert Scan-Konvertierung, Anti-Aliasing und Lichtdurchlässigkeitsberechnung.

[0468] Fig. 4B ist ein Schema, das Teile des Bildprozessors 462 zum Erzeugen von gerenderten Bilddaten
aus geometrischen Grundelementen illustriert. Der Bildprozessor umfasst einen Rastergenerator 464, eine Pi-
xelengine 466, eine Anti-Aliasing-Engine 468 und einen Rastererzeugungspuffer, der die Pixelpuffer 470 und
einen Fragmentpuffer 472 in dieser Ausführungsform umfasst. Der „Rastergenerator" bezieht sich auf den Teil
des Bildprozessors, der Pixelwerte aus den geometrischen Grundelementen, d.h. Polygonen, bestimmt. Der
Rastergenerator 464 liest die Daten für jedes Grundelement und erzeugt Pixeldaten, die mit dem Pixelort ver-
knüpft sind. Diese Pixeldaten umfassen Farbe, Alpha und Tiefe (Abstand vom Betrachtungspunkt). Wenn ein
Pixel nicht vollständig von einem Polygon bedeckt ist, erzeugt der Rastergenerator Pixelfragmentdaten.

[0469] Während er ein Polygon scannt, leitet der Rastergenerator Pixeldaten an die Pixelengine zur Verarbei-
tung weiter. Die Pixelengine 468 liest Pixeldaten aus dem Rastergenerator und bestimmt, welche Pixeldaten
in Pixel- und Fragmentpuffern zu speichern sind. Die Pixelpuffer 472 sind zweidimensionale Felder, wobei die
Elemente in den Feldern Pixelorten entsprechen, und umfassen Speicher zum Speichern von Farb-, Alpha-
und Tiefendaten. Der Fragmentpuffer 470 speichert Fragmentdaten, die das teilweise Abdecken eines Pixels
repräsentieren.

[0470] Die Pixelengine 466 führt eine Entfernung verborgener Flächen unter Verwendung der Tiefenwerte
aus, die durch den Rastergenerator erzeugt wurden, und hält auch die Pixelfragmente und lichtdurchlässigen
Pixel für das Anti-Aliasing und die Lichtdurchlässigkeitsverarbeitung aufrecht. Für einen gegebenen Pixelort
bewahrt die Pixelengine das nächstgelegene voll abgedeckte lichtundurchlässige Pixel, falls vorhanden. In die-
sem Kontext bedeutet „voll abgedeckt", dass das Pixel vollständig von einem Polygon bedeckt wird, das gera-
de im Rastergenerator scan-konvertiert wird. Die Pixelengine bewahrt auch Pixel mit Lichtdurchlässigkeit (Al-
pha kleiner als 1) und Pixelfragmente vor dem nächstgelegenen lichtundurchlässigen Pixel. Die Pixelengine
speichert das nächstgelegene lichtundurchlässige Pixel für einen Pixelort im Pixelpuffer und speichert im Frag-
mentpuffer alle Fragmente oder lichtdurchlässigen Pixel an diesem Pixelort, die sich vor dem nächstgelegenen
lichtundurchlässigen Pixel befinden.

[0471] Nachdem die Pixelengine Pixeldaten erzeugt hat, löst die Anti-Aliasing-Engine 468 die Pixeldaten in
Pixel- und Fragmentpuffer auf. Die Konstruktion des Bildprozessors, der in Fig. 4B illustriert wird, unterstützt
die Doppelpufferung von Pixeldaten und die einfache Pufferung von Fragmentdaten. Die Pixelengine erzeugt
Pixeldaten in einem der Pixelpuffer und fügt Fragmentinformationen zum Fragmentpuffer hinzu, während die
Anti-Aliasing-Engine die Pixeldaten aus dem anderen Pixelpuffer und Fragmentdaten aus dem Fragmentpuffer
auflöst. Wenn jedes Fragment aufgelöst ist, wird der Fragmenteintrag zur Liste der freien Fragmente zur Ver-
wendung durch neue Pixeldaten hinzugefügt.

[0472] Nachdem wir einen Überblick über den Prozess der Erzeugung und Auflösung von Pixeldaten gege-
ben haben, beschreiben wir nun detaillierter eine Ausführungsform.

[0473] Die Komponenten von Fig. 4B können im Tiler implementiert werden. Der Tiler liest Grundelemente-
daten und Renderinganweisungen aus dem gemeinsamen Speichersystem 216 (Fig. 4A), erzeugt gerenderte
Bilddaten und speichert komprimierte Bilddaten im gemeinsamen Speicher. Wie oben beschrieben, sind die
grundlegenden 3D-Grafikgrundelemente im System Dreiecke. Das Rendern von Dreiecken sorgt für zahlreiche
57/147

DE 696 36 599 T2 2007.08.23
Vereinfachungen in der Hardware, die zur Grafikerzeugung verwendet wird, da das Dreieck immer planar und
konvex ist. Alternativ können jedoch auch n-seitige Polygone verwendet werden.

[0474] Oben haben wird die Komponenten des Tilers 200 erklärt. Hier beschreiben wir detaillierter den Da-
tenfluss durch den Tiler.

[0475] Da der Tiler Eingaben aus dem DSP erhält, beginnen wir mit einer kurzen Wiederholung von Funktio-
nen des DSP 176 (Fig. 4). Wie oben beschrieben, kann der DSP 176 die Geometrievorverarbeitung und die
Beleuchtungsberechnungen ausführen, die für die 3D-Grafik benötigt werden. Der DSP 176 berechnet Modell-
und Betrachtungstransformationen, Beschneiden, und Beleuchtung usw. Renderbefehle werden in Hauptspei-
cherpuffern gespeichert und zur Bildverarbeitungsplatine über einen PCI-Bus geDMAt (durch direkten Spei-
cherzugriff erfasst). Die Renderbefehle werden dann im gemeinsamen Speicher 216 (Fig. 4A) gepuffert, bis
sie vom DSP benötigt werden. Die Renderingbefehle werden vom Tiler 200 (Fig. 4A) gelesen, wenn er zur
Ausführung von Bildverarbeitungsoperationen bereit ist.

[0476] Wie im Flussdiagramm in den Fig. 28A und Fig. 28B gezeigt, verarbeitet der Setup-Block Anweisun-
gen zum Rendern von Grundelementen, die aus dem gemeinsamen Speicher gelesen wurden. Der Eckpunk-
teingabeprozessor parst den Eingabestrom (914) (Fig. 28A) und speichert die Informationen, die für die Grun-
delemente-Dreiecksverarbeitung in den Eckpunktsteuerregistern (916) benötigt werden.

[0477] Die zwei Eckpunktsteuerregister speichern sechs Eckpunkte, drei für jedes Dreieck, in jedem Register.
Die zwei Eckpunktsteuerregister ermöglichen das Doppelpuffern der Dreiecksinformationen, um sicherzustel-
len, dass die Setup-Engine immer über Dreiecksinformationen zum Verarbeiten verfügt.

[0478] Die Setup-Engine berechnet dann die linearen Gleichungen (918), die die Kanten-, Farb- und Textur-
koordinateninterpolation über die Fläche des Dreiecks bestimmen. Diese linearen Gleichungen werden dazu
verwendet festzustellen, welche Texturblöcke benötigt werden, um das Dreieck zu rendern. Die Kantenglei-
chungen werden auch in den Scanumwandlungsblock (920) geschoben und in den Grundelementeregistern
innerhalb des Scanumwandlungsblocks gespeichert, bis sie von der Scanumwandlungs-Engine benötigt wer-
den. Die Grundelementeregister sind in der Lage, mehrere Sätze von Kantengleichungen zu speichern.

[0479] Die Setup-Engine sendet Texturadressen an die Texturlese-Schlange (922), die Anforderungen für
Texturchunks puffert. Der Texturadressgenerator bestimmt dann die Adresse im Speicher der angeforderten
Texturchunks (924) und sendet Texturleseanforderungen an den Befehls- und Speichersteuerungsblock (926)
(Fig. 28B), der die Texturdaten (928), die vom Scanumwandlungsblock verwendet werden, abruft.

[0480] Texturdaten werden im gemeinsamen Speicher (216) (Fig. 4A) in einem komprimierten Bildformat ge-
speichert, das mit dem Format der Bilddaten übereinstimmen kann. Das Kompressionsformat wird auf indivi-
duelle 8×8-Pixelblöcke angewendet. Die 8×8-Blöcke werden für Zwecke des Speichermanagements zu
32×32-Blöcken zusammengestellt, um den Zusatzaufwand für das Speichermanagement zu reduzieren.

[0481] Wenn Texturblöcke benötigt werden, werden sie in den Tiler abgerufen, von der Dekompressionsen-
gine (930) dekomprimiert und in einem chipintegrierten Texturcache gecacht (932). Es können insgesamt
32×32-Pixelblöcke gecacht werden, obwohl jeder einzelne Block nur eine Farbkomponente speichert. Die Tex-
turdaten werden im RGB- und Alpha-Format gecacht.

[0482] Die Scanumwandlungs-Engine liest dann die Kantengleichungen aus den Grundelementeregistern
(934), um die Dreieckskanteninformationen zu scan-konvertieren. Die Scanumwandlungs-Engine umfasst die
Interpolatoren für das Bewegen der Kanten der Dreiecke, das Interpolieren von Farben, Tiefen, Lichtdurchläs-
sigkeit usw.

[0483] Die Scanumwandlungs-Engine sendet Texturadressen an die Texturfilter-Engine (936). Die Texturfil-
ter-Engine berechnet Texturdaten für die Polygone, die gerade gerendert werden. Die Texturfilterengine be-
rechnet einen Filterkern, der auf der Z-Neigung und Orientierung des Dreiecks und auf den s- und t-Koordina-
ten beruht. Der Texturcache, der an der Texturfilterengine hängt, speichert Texturdaten für sechzehn 8×8-Pi-
xelblöcke. Der Texturcache steht auch mit der Dekompressionsengine in Verbindung, die die Texturdaten (wel-
che in einem komprimierten Format gespeichert sind) zur Verwendung durch die Texturfilterengine dekompri-
miert.

[0484] Wenn die Texturfilterung abgeschlossen ist, leitet die Texturfilterengine die Informationen zur Scanum-
58/147

DE 696 36 599 T2 2007.08.23
wandlungs-Engine (938) zurück, so daß sie von der Scanumwandlungs-Engine zur weiteren Verarbeitung ver-
wendet werden können. Neben der Texturverarbeitung scankonvertiert die Scanumwandlungs-Engine die
Dreieckskantendaten (940), und die individuellen Pixeladressen werden zusammen mit Farb- und Tiefeninfor-
mationen an die Pixelengine zur Verarbeitung geleitet (942).

[0485] Das Verfahren, das in den Fig. 28A und Fig. 28B illustriert wird, variiert für die alternativen Verfahren,
die in Verbindung mit den Fig. 10 und Fig. 11 beschrieben werden. Die Fig. 28C und Fig. 28D illustrieren ein
Verfahren für den Zugriff auf Bilddaten entsprechend Fig. 10 und Fig. 9B. In ähnlicher Weise illustrieren die
Fig. 28E und Fig. 28F ein Verfahren für den Zugriff auf Bilddaten entsprechend Fig. 11 und Fig. 9C.

[0486] Bezieht man sich zuerst auf die Fig. 28C und Fig. 28D, so beginnt diese Implementierung des Verfah-
rens im Setup-Block 381 von Fig. 9B. Der Eckeneingabeprozessor 384 verarbeitet den Eingabedatenstrom
(947). Als Nächstes puffern die Eckpunktsteuerregister 386 Dreiecksdaten aus dem Eingabedatenstrom (948).
Die Setup-Engine 388 berechnet dann die Kantengleichungen (949) und leitet sie an den Scanumwandlungs-
block 395 weiter (950).

[0487] Der Scanumwandlungsblock 395 liest die Kantengleichungen, die in den Grundelementeregistern
(951) gespeichert sind, und scan-konvertiert die Dreiecksdaten (952). Die Scanumwandlungs-Engine 398
schreibt dann Pixeldaten, einschließlich Pixeladresse, Farb- und Alphadaten und Bedeckungsdaten, in einen
Eintrag in die Texturreferenzdatenschlange 399 (953) (Fig. 28D). Im Fall der Texturabbildungsoperationen um-
fasst dieser Eintrag auch Texturreferenzdaten, nämlich die Koordinaten des Texturmittelpunkts. Der Eintrag
kann auch Texturfilterdaten umfassen, wie zum Beispiel Ebenendetails oder anisotrope Filtersteuerungsdaten.

[0488] Aus den Texturreferenzdaten bestimmt die Texturcachesteuerung 391, welche Texturblöcke abzurufen
sind, und bewirkt, dass der/die entsprechende(n) Textblock/-blöcke aus dem Speicher (954) abgerufen wer-
den.

[0489] Die Texturadresscachesteuerung 391 sendet Texturleseanforderungen an den Befehls- und Speicher-
steuerungsblock 380 (955). Die Texturleseschlange 393 puffert Leseanforderungen für Texturblöcke an das
gemeinsame Speichersystem. Die Speichersteuerung 380 ruft die Texturdaten aus dem gemeinsamen Spei-
cher ab, und wenn sie komprimiert sind, stellt sie den komprimierten Block oder Blöcke in den komprimierten
Cache 416 (956). Die Dekompressionsengine 404 dekomprimiert komprimierte Bilddaten und setzt sie in den
Texturcache 402 (957, 958). Wie oben in Verbindung mit Fig. 10 beschrieben, setzt sich das Ersetzen von Blö-
cken im Texturcache gemäß einem Cacheersetzungsalgorithmus fort.

[0490] Um eine Texturabbildung oder andere Pixeloperationen auszuführen, die Bilddaten im Texturcache er-
fordern, liest die Texturfilterengine 401 Texturadressen aus der Texturreferenzdatenschlange 399 (959). Die
Texturfilter-Engine 401 greift auf die Bilddaten im Texturcache 402 zu, berechnet den Beitrag aus der Textur
und kombiniert diesen Beitrag mit den Farb- und möglicherweise Alphadaten aus der Texturreferenzdaten-
schlange 399.

[0491] Die Texturfilterengine 401 leitet Pixeldaten an die Pixelengine 406, die das Entfernen verborgener Flä-
chen ausführt und die Speicherung der Pixeldaten in einem Rastererzeugungspuffer steuert.

[0492] Die Fig. 28E und Fig. 28F illustrieren ein Verfahren für den Zugriff auf Bilddatenblöcke aus dem Spei-
cher entsprechend dem Ansatz in Fig. 11. In dieser alternativen Implementierung beginnt das Verfahren durch
Einreihen von Grundelementen in die Schlange im Setup-Block 383. Der Eckpunkteingabeprozessor 384 parst
den Eingabedatenstrom und reiht Dreiecksdaten in die Schlange in Eckpunktsteuerregistern 387 ein (961,
962). Wenn auf Bilddatenblöcke aus dem Speicher zugegriffen werden muss, wie dies im Fall einer Texturab-
bildungsoperation ist, scankonvertiert der Vorrastergenerator 389 die Grundelemente, die sich in der Schlange
in den Eckpunktsteuerregistern 386 befinden, um Leseanforderungen für Texturdatenblöcke im gemeinsamen
Speicher zu erzeugen (963).

[0493] Wenn der Vorrastergenerator ein Grundelement scannt, das sich in der Schlange im Setup-Block be-
findet, leitet er Texturleseanforderungen an die Texturcachesteuerung 391 (964). Die Texturcachesteuerung
391 bestimmt die geeigneten Texturblöcke (965) und überträgt Leseanforderungen über die Texturleseschlan-
ge 393 an den Befehls- und Speichersteuerungsblock 380 (989) (Fig. 28F). Der Speichersteuerungsblock ruft
die angeforderten Texturdaten ab, und wenn sie komprimiert sind, stellt er sie in den komprimierten Block 416
(990). Die Dekompressionsengine dekomprimiert Texturblöcke im komprimierten Cache 416 und schreibt die
dekomprimierten Bilddaten in den Texturcache 402 (991, 992). Die Texturcachesteuerung leitet den Strom von
59/147

DE 696 36 599 T2 2007.08.23
Texturblöcken aus dem komprimierten Cache 416 durch die Dekompressions-Engine 404 in den Texturcache
402.

[0494] Der Scanumwandlungsblock 397 liest die geometrischen Grundelemente, die sich in der Schlange im
Setup-Block befinden. Der Scanumwandlungsblock 397 führt Pixelerzeugungsoperationen aus, sobald ange-
forderte Texturdaten im Texturcache 402 verfügbar sind. Beim Prozess der Ausführung dieser Pixeloperatio-
nen liest die Scanumwandlungs-Engine 398 Kantengleichungen aus dem Grundelementeregistern (393) und
leitet Texturadressen an die Texturfilterengine 403 (994). Die Texturfilterengine greift auf die entsprechenden
Bilddaten zu, die im Texturcache 402 gespeichert sind, und gibt dann gefilterte Daten an den Scanumwand-
lungsblock 397 zurück (995). Der Scanumwandlungsblock 397 konvertiert die Dreiecksdaten und berechnet
aus den konvertierten Dreiecksdaten und den gefilterten Daten Ausgabepixeldaten (996). Er leitet dann diese
Ausgabepixeldaten an die Pixelengine 406 weiter.

[0495] Die Pixelengine 406 führt Berechnungen auf Pixelniveau aus, einschließlich Entfernen von verborge-
nen Flächen und Mischoperationen. Um verborgene Flächen zu entfernen, vergleicht die Pixelengine 406 die
Tiefenwerte für einlaufende Pixel (vollständig bedeckte Pixel oder Pixelfragmente) mit Pixeln an entsprechen-
den Orten in den Pixel- oder Fragmentpuffern. Bei Schattierungsoperationen führt die Pixelengine 406 Tiefen-
vergleichsoperationen aus, um das erste und zweite nächstgelegene Grundelement zur Lichtquelle an Orten
in einer Schattenabbildung festzustellen, und aktualisiert den ersten und zweiten nächstgelegenen Tiefenwert,
wo notwendig. Nach der Ausführung der Berechnungen auf Pixelebene speichert die Pixelengine die entspre-
chenden Daten im Pixel- oder Fragmentpuffer.

[0496] Der Tiler implementiert einen hochwertigen Anti-Aliasing-Algorithmus zur Behandlung nicht lichtun-
durchlässiger Pixel. Der Pixelpuffer speichert die Pixeldaten für das am weitesten vorn gelegene nichttranspa-
rente Pixel für Pixelorte in einem Chunk. Der Fragmentpuffer speichert Pixelfragmente für lichtdurchlässige Pi-
xel und für teilweise bedeckte Pixel, die näher am Betrachtungspunkt liegen als die Pixel im Pixelpuffer für ent-
sprechende Pixelorte. Unter Verwendung einer Fragmentlistenstruktur kann mehr als ein Fragment für einen
Pixelort gespeichert werden. In einem Prozess, der als Auflösen bezeichnet wird, verarbeitet die Anti-Ali-
asing-Engine die Fragmentlisten, um Farb- und Alphawerte für Pixelorte zu berechnen.

[0497] Um die Zahl der Fragmente zu reduzieren, die erzeugt werden, implementiert die Pixelengine ein Ver-
fahren zum Vereinigen von Pixelfragmenten, das das Fragment, das gerade erzeugt wird, mit Fragment(en),
die aktuell im Fragmentpuffer gespeichert sind, vergleicht. Wenn die neuen und vorherigen Attribute eines
Fragments (Farbe und Tiefe) sich innerhalb einer vorgegebenen Toleranz ähnlich sind, werden die Fragmente
im Vorbeigehen kombiniert, und es wird kein zusätzliche Fragment erzeugt.

[0498] Wenn bei einem kombinierten Fragment festgestellt wird, dass es vollständig bedeckt ist (mit einer Be-
deckungsmaske und lichtundurchlässigem Alpha), dann wird das Fragment in den Farbpuffer geschrieben und
der Fragmentort wird freigegeben, so dass er für nachfolgende Polygone innerhalb des aktuellen Chunks ver-
wendet werden kann.

[0499] Sobald alle Polygone für den Chunk gerendert sind, werden die Pixelpuffer getauscht. Während die
Anti-Aliasing-Engine die Pixeldaten im Fragmentpuffer und einem der Pixelpuffer auflöst, schreibt die Pixelen-
gine Pixeldaten für den nächsten Chunk in den anderen Pixelpuffer und die restlichen freien Stellen im Frag-
mentpuffer. Das Pixelauflösen umfasst im allgemeinen das Berechnen eines einzelnen Farbwerts (und mögli-
cherweise Alphawerts) für einen Pixelort auf der Grundlage der Pixeldaten im Pixel- und Fragmentpuffer ent-
sprechend dem Ort. Wir stellen zusätzliche Details unten bereit, die diese Fragen betreffen.

[0500] In den Implementierungen des Tilers, die in den Fig. 9A-Fig. 9C gezeigt werden, haben die Pixelen-
gine und die Anti-Aliasing-Engine Zugriff auf einen einzelnen Fragmentpuffer und ein Paar Pixelpuffer. Die zwei
32×32-Pixelpuffer werden zur Doppelpufferung zwischen der Pixelengine und der Anti-Aliasing-Engine bereit-
gestellt. Der Pixelpuffereintrag umfasst die folgenden Daten:

wo R, G, B die roten, grünen bzw. blauen Farbkomponenten sind, α die Alphakomponente ist, die die Licht-
durchlässigkeit des Pixels repräsentiert, und Z die Tiefenkomponente ist, die die Tiefe des Pixels vom Betrach-
tungspunkt repräsentiert. Die x, y-Adresse ist fest und implizit in der Pixelpufferadressierung. Es werden acht
60/147

DE 696 36 599 T2 2007.08.23
Bit pro Farbkomponente verwendet (d.h. Rot, Grün und Blau), acht Bit werden für die α-Komponente verwen-
det, und sechsundzwanzig Bit werden verwendet, um den Z-Wert, Schablonenwert und einen Prioritätswert zu
speichern. Von diesen 26 Bit können bis zu 24 Bit als Z-Werte verwendet werden, bis zu 3 können als Schab-
lonenebenen verwendet werden, und bis zu drei können als Prioritätswerte verwendet werden. Wie oben mit
Bezug auf Fig. 9 beschrieben, umfasst der Puffer auch einen 9-Bit-Fragmentpufferzeiger.

[0501] Der Prioritätswert ist pro Grundelement fixiert und wird verwendet, um bei der Auflösung von Objekten
zu helfen, die coplanar sind, wie zum Beispiel Straßen auf einem Gelände, indem während der Z-Vergleichs-
operation Prioritätsbeziehungen verwendet werden, die von der Tiler-Engine genutzt werden, um die einge-
henden Pixel-Z-Werte im Vergleich zu dem gespeicherten Z-Wert abzugrenzen.

[0502] Der Fragmentpuffer wird zum Speichern von Informationen über Pixelfragmente für Polygone, deren
Kanten ein gegebenes Pixel überschneiden, oder für Polygone mit Lichtdurchlässigkeit verwendet. Jeder Ein-
trag im Fragmentpuffer liefert Farb-, α-, Z- und Bedeckungsdaten, die mit der Oberfläche verbunden sind.

[0503] Mehrere Fragmentpuffereinträge können mit einem einzigen Pixel (über einen verlinkten Listenmecha-
nismus) für Fälle verknüpft sein, in denen mehrere Polygone eine Teilbedeckung für denselben Pixelort auf-
weisen. Der Fragmentpuffer hat zwei Ports, so dass er parallel von der Anti-Aliasing-Engine und der Pixelen-
gine betrieben werden kann. In einer Implementierung ist der Fragmentpuffer ein eindimensionales Feld von
Fragmentdatensätzen und umfasst insgesamt 512 Fragmentdatensatzeinträge. Das Speichermanagement
des Fragmentpuffers erfolgt unter Verwendung einer verlinkten Listenstruktur. Jeder Fragmentpuffereintrag
umfasst die folgenden Daten:

wo R, G, B die roten, grünen bzw. blauen Farbkomponenten sind, α die Alphakomponente ist, die die Licht-
durchlässigkeit des Pixels repräsentiert, und Z die Tiefenkomponente ist, die die Tiefe des Pixels vom Betrach-
tungspunkt repräsentiert. M ist eine 4×4-Pixelbedeckungsmaske für jedes Pixel, das teilweise bedeckt ist. P ist
ein Zeiger auf den nächsten Fragmentpuffereintrag, und S wird zur Darstellung einer Fragmentschablone ver-
wendet. Es werden acht Bit pro Farbkomponente (d.h. Rot, Grün und Blau) und acht Bit für die α-Komponente
verwendet. Sechsundzwanzig Bit werden verwendet, um den Z-Wert plus Schablone und Priorität zu spei-
chern, und neun Bit werden für den Fragmentzeiger P verwendet.

[0504] Die Pixelbedeckungsmaske wird durch Festlegen eines Bedeckungsmaskenwertes für jede Kante und
ihre bitweise AND-Verknüpfung berechnet. Die Berechnung der Bedeckungsmaske ist ein zweistufiger Pro-
zess. Die erste Stufe besteht darin zu bestimmen, wie viele von den Subpixelbits in der Bedeckungsmaske
auszuschalten sind, und die zweite Stufe besteht darin zu bestimmen, welche speziellen Bits aktiviert werden
sollen.

[0505] Die erste Stufe verwendet die Fläche des Pixels, die von der Kante verdeckt wird, um festzustellen,
wie viele von den Bedeckungsmaskenbits eingeschaltet werden sollen. Diese Fläche wird durch eine Daten-
entnahme aus der Tabelle berechnet, die durch die Kantenneigung und den Abstand von der Pixelmitte inde-
xiert ist. Die zweite Stufe verwendet die Kantenneigung, um die Reihenfolge festzustellen, in der die Abfrage-
bits eingeschaltet werden sollen. Der Satz der Bitreihenfolgen wird in einer vorherberechneten Tabelle gespei-
chert, die ,Bedeckungsordnungstabelle' genannt wird. Jeder Eintrag in der Bedeckungsordnungstabelle be-
steht aus einer speziellen Ordnung der Abtastbits, die für einen Bereich von Neigungswerten korrekt ist. Die
Kantenneigung wird gegenüber einem Satz von Neigungsbereichen geprüft, und der Index, der mit dem Be-
reich verknüpft ist, welcher diesen Neigungswert umfasst, wird als Index in die Bedeckungsordnungstabelle
verwendet.

[0506] Ein Verfahren zum Berechnen der Bedeckungsmaske wird in Schilling, A, "A New Simple and Efficient
Anti Aliasing with Subpixel Masks [Ein neues und effizientes Anti-Aliasingverfahren mit Subpixelmasken]",
Computer Graphics, Bd. 25, Nr. 4, Juli 1991, S. 133-141, beschrieben.

Entfernen verborgener Flächen und Vereinen von Fragmenten

[0507] Oben haben wir angegeben, dass die Pixelengine das Entfernen verborgener Flächen vornimmt, in-
dem sie Tiefenvergleichsoperationen an einlaufenden Pixeldaten vornimmt. Wir haben auch bemerkt, dass Pi-
xelfragmente vereinigt werden können, um Fragmentspeicher freizusetzen. Verschmelzen von Fragmenten re-
61/147

DE 696 36 599 T2 2007.08.23
duziert die Speicheranforderungen, um eine gegebene Szene dem Anti-Aliasing zu unterwerfen, und be-
schleunigt das Auflösen der Fragmente, um ein Endbild zu erzeugen. Wir beschreiben nun eine Implementie-
rung für das Entfernen verborgener Flächen, die das Verschmelzen eines einlaufenden Pixelfragments mit ei-
nem gespeicherten Pixelfragment umfasst, wenn das einlaufende Fragment innerhalb vorgegebener Farb- und
Tiefentoleranzen des gespeicherten Fragments liegt.

[0508] Fig. 4B ist ein Schema, das die Komponenten im Tiler 462, einschließlich Rastergenerator 464, Pixe-
lengine 466, Pixel- und Fragmentpuffern 470 und 472, illustriert. Die Pixel- und Fragmentpuffer dienen als Ras-
tergenerierungspuffer zum Speichern gewählter Pixeldaten. Wenn der Rastergenerator ein geometrisches
Grundelement scannt, erzeugt er Beispiele von Pixeldaten. Die Pixelengine steuert die Z-Pufferung und stellt
auch fest, ob ein eingehendes Pixelfragment mit einem Pixelfragment verschmolzen werden kann, das im
Fragmentpuffer an einem entsprechenden Pixelort gespeichert ist. Die Illustrationen von Tilern, die in den
Fig. 9A-Fig. 9C gezeigt werden, und der begleitende Text oben liefern weitere Details bezüglich spezieller Im-
plementierungen des Tilers. Das Verfahren und die Hardware zum Verschmelzen von Pixelfragmenten, die un-
ten beschrieben werden, können in diesen Tiler-Konstruktionen und auch in alternativen Konstruktionen imp-
lementiert werden.

[0509] Wie oben beschrieben, erzeugt der Scanumwandlungsblock (Rastergenerator) im Tiler Beispiele von
Pixeldaten, die repräsentieren: 1) voll abgedeckte, lichtundurchlässige Pixel; 2) voll abgedeckte lichtdurchläs-
sige Pixel; 3) teilweise abgedeckte, lichtundurchlässige Pixel; oder 4) teilweise abgedeckte, lichtdurchlässige
Pixel.

[0510] Der Pixelpuffer speichert Farbe und Tiefe (Z) der am weitesten vorn gelegenen, voll abgedeckten licht-
undurchlässigen Pixel. Der Pixelpuffer speichert auch einen Zeiger auf eine Fragmentliste, einschließlich der
Fragmente, die eine Bedeckungsmaske haben, die nicht voll abgedeckt ist oder die ein Alpha haben, das nicht
vollständig lichtundurchlässig ist. Der Kopf oder das erste Fragment in der Fragmentliste ist das neueste Pixel-
fragment, das verarbeitet wird. In dieser speziellen Implementierung versucht die Pixelengine, einlaufende Pi-
xelfragmente mit dem neuesten Pixelfragment zu verschmelzen. Da es einen bestimmten Betrag an räumlicher
Kohärenz beim Rendern von Polygonen gibt, erhöht der Versuch, mit dem neuesten Fragment zu verschmel-
zen, das für einen gegebenen Pixelort erzeugt wurde, die Wahrscheinlichkeit, dass die Verschmelzung erfolg-
reich sein wird.

[0511] Die Fragmentlisten für jeden Pixelort werden in unsortierter Form geführt, wobei das oberste Fragment
das neueste Fragment ist, das für einen bestimmten Pixelort erzeugt wurde. Die Pixelfragmente hinter dem
obersten Fragment bleiben unsortiert, können aber auch sortiert werden, wenn zusätzliche Rechenzeit verfüg-
bar ist, um bei der Optimierung der Fragmentauflösungsphase zu helfen.

[0512] In einer alternativen Implementierung umfasst die Pixelengine eine zusätzliche Logik, um Fragment-
listen nach einem Pixelfragment abzusuchen, das die Fragmentverschmelzungskriterien erfüllt. Dieser Ansatz
wird nicht bevorzugt, weil der zusätzliche Aufwand für die Suchlogik nicht die kleine Verbesserung bei der Iden-
tifizierung von mehr Verschmelzungskandidaten rechtfertigt. Dies gilt besonders in einem Echtzeitsystem, wo
zusätzliche Taktzyklen, die im Verschmelzungsprozess verbraucht werden, die Zeit erhöhen, die zum Rendern
eines Animationsteilbildes benötigt wird.

[0513] In einer anderen Implementierung führt die Pixelengine eine nach Tiefe sortierte Liste von Pixelfrag-
menten und versucht, mit dem Fragment zu verschmelzen, das dem Betrachtungspunkt für einen gegebenen
Pixelort am nächsten liegt. Dieser letztere Ansatz wird jedoch nicht bevorzugt, weil er weniger wahrscheinlich
erfolgreiche Verschmelzungskandidaten findet, d.h. Fragmente mit Z- und Farbwerten innerhalb der Toleranz
zum einlaufenden Fragment. Er hat jedoch den potenziellen Vorteil, das Freisetzen von zusätzlichem
Fragmentspeicher zu vereinfachen. Wenn ein verschmolzenes Pixel vollständig abgedeckt wird und lichtun-
durchlässig ist, können alle Pixelfragmente an diesem Pixelort freigesetzt werden, da das verschmolzene Pixel
näher am Betrachtungspunkt als die anderen Pixelfragmente ist, die für diesen Pixelort gespeichert werden.

[0514] Fig. 29 ist ein Schema, das eine Implementierung des Entfernens von verborgenen Flächen und der
Fragmentverschmelzung im Tiler illustriert. Die Verarbeitung beginnt mit der Erzeugung einer neuen Gruppe
von Pixeldaten, die Farbe, Z und Bedeckungsmaske für einen Pixelort haben (968). Wenn das Pixelpuffer-Z
für diesen Pixelort näher als das Z einer neuen Gruppe der Pixeldaten ist (ein vollständig oder teilweise abge-
decktes Pixel) (970), dann wird die neue Gruppe von Pixeldaten vollkommen verdunkelt und wird verworfen
(972). Die Verarbeitung setzt sich dann mit der nächsten Gruppe von Pixeldaten fort, solange der Rastergene-
rator nicht alle Pixel für den aktuellen Satz von Grundelementen, die gerendert werden, erzeugt hat.
62/147

DE 696 36 599 T2 2007.08.23
[0515] Wenn das Pixelpuffer-Z nicht näher als das Z der neuen Gruppe von Pixeldaten ist (d.h. das Z der neu-
en Gruppe von Pixeldaten ist näher am Betrachtungspunkt), dann kontrolliert die Pixelengine die Bedeckungs-
maske der einlaufenden Pixel (974). In Fällen, wo die Bedeckungsmaske für die einlaufenden Pixel voll ist, er-
setzt die Pixelengine die Pixelpuffer Farbe und Z durch die neue Farbe und das neue Z (976). Es werden in
diesem Fall keine neuen Daten zur Fragmentliste hinzugefügt, und mit dem Speicher wird sparsam umgegan-
gen.

[0516] Wenn die Bedeckungsmaske der neuen Gruppe von Pixeldaten nicht voll ist, dann führt die Pixelengi-
ne einen Verschmelzungstest aus, um festzustellen, ob die neue Farbe und das neue Z innerhalb der vorge-
gebenen Toleranzen der Farbe und des Z des obersten Fragmentes ist (978). Dieser Verschmelzungstest kann
auch die Feststellung umfassen, ob das Alpha (Lichtdurchlässigkeit) der einlaufenden Pixel innerhalb einer
vorgegebenen Toleranz des Alpha im obersten Fragment liegt. Wenn die neue Fragmentfarbe und Z nicht in-
nerhalb der vorgegebenen Toleranzen liegen, dann wird ein neues Pixelfragment zum Fragmentpuffer am Kopf
der Fragmentliste hinzugefügt (980).

[0517] Wenn die neue Fragmentfarbe und Z innerhalb der vorgegebenen Toleranzen liegen und die neue Be-
deckungsmaske nicht voll ist, dann wird das einlaufende Pixelfragment dem oberen Fragment in der Fragment-
liste hinzugefügt (982). Die Pixelengine verschmilzt die Pixelfragmente durch Ausführen einer OR-Operation
auf die obere Bedeckungsmaske und die neue Bedeckungsmaske, wobei das Ergebnis in der oberen Bede-
ckungsmaske gelassen wird.

[0518] Nach dem Kombinieren der Bedeckungsmasken wird die verschmolzene obere Bedeckungsmaske
kontrolliert, um festzustellen, ob sie ein vollständig bedecktes Pixel repräsentiert (984). Wenn die verschmol-
zene obere Bedeckungsmaske nicht voll ist, dann setzt sich die Verarbeitung mit der nächsten Gruppe der Pi-
xeldaten fort (966). Wenn die verschmolzene obere Bedeckungsmaske voll ist, hat die verschmolzene obere
Bedeckungsmaske zur vollständigen Pixelbedeckung geführt. Daher wird der Speicher, der für das oberste
Fragment verwendet wird, freigesetzt und die oberste Fragment-Farbe, -Z und -Bedeckungsmaske werden
durch die neue Fragment-Farbe, -Z und -Bedeckungsmaske ersetzt.

[0519] In Fällen, in denen die Pixelengine einen Eintrag im Pixelpuffer durch ein neues, vollständig bedecktes
Pixel ersetzt, setzt die Pixelengine auch alle Pixelfragmente in der entsprechenden Fragmentliste mit Tiefen-
werten frei, die größer als dieses vollständig bedeckte Pixel sind (988).

[0520] Dies tritt auf, wenn ein einlaufendes vollständig bedecktes, lichtundurchlässiges Pixel einen niedrige-
ren Z-Wert als der Pixelpuffereintrag am selben Pixelort hat. Dies tritt auch auf, wenn ein verschmolzenes Frag-
ment vollständig bedeckt, lichtundurchlässig ist und einen niedrigeren Z-Wert als der Pixelpuffereintrag am sel-
ben Pixelort hat. Unter diesen Umständen läuft die Pixelengine durch die Fragmentliste, vergleicht den Z-Wert
des neuen vollständig bedeckten Pixels mit dem Z-Wert der Fragmente in der Liste und setzt jedes Fragment
mit einem größeren Z als das Z des neuen, vollständig bedeckten Pixels frei. Alternativ könnte der Z-Puffer für
den Packungsprozess gespeichert werden, was die Notwendigkeit beseitigt, die Fragmentliste zu durchsu-
chen, und die Echtzeitleistung verbessert.

[0521] Der Ansatz, der in Fig. 29 gezeigt ist, reduziert die Speicheranforderungen, um eine gegebene Szene
dem Anti-Aliasing zu unterwerfen, und beschleunigt das Auflösen der Fragmente, um ein Endbild durch Ver-
werfen der Pixelfragmente, die nicht verwendet werden, zu erzeugen. Das Einstellen von Farb- und Z-Toleranz
ermöglicht es, die Zahl der erzeugten Fragmente, die verworfen werden, mit der Anti-Aliasing-Genauigkeit zu
verrechnen, je nach den Bedürfnissen des Nutzers. Wenn Farbe und Z an der Kante des Polygons bewertet
werden, die zur Pixelmitte am nächsten gelegen ist, können engere Farbtoleranzen und Z-Toleranzen verwen-
det und trotzdem Speicher gespart werden.

[0522] Fig. 30 ist ein Schema, das eine Implementierung der Fragmentverschmelzungsschaltkreise illustriert,
die zur Ausführung eines Verschmelzungstests an einlaufenden Pixelfragmenten verwendet werden. In dieser
Implementierung vergleicht die Pixelengine die einlaufenden Farb-(RGB), Alpha- und Tiefenwerte mit den
Farb-, Alpha- und Tiefenwerten des neuesten Pixelfragments für den Pixelort der einlaufenden Pixel. Die Farb-,
Tiefen- und Alphakomponenten, die als „neu" dargestellt werden, beziehen sich auf eine einlaufende oder
„neu" erzeugte Gruppe von Pixeldaten, während die Komponenten, die als „prev. [vorherig]" dargestellt wer-
den, sich auf das neueste Pixelfragment für einen Pixelort beziehen.

[0523] In einer alternativen Ausführungsform, bei der die Pixelengine die Fragmentliste durchläuft, um ein Pi-
xelfragment innerhalb der Farb- und Tiefentoleranzen zu finden, beziehen sich die Komponenten, die als „prev.
63/147

DE 696 36 599 T2 2007.08.23
[vorherig]" dargestellt werden, auf jedes der Pixelfragmente in der Fragmentliste für den Pixelort, die unter Ver-
wendung des Verschmelzungstests analysiert werden.

[0524] Die Verschmelzungstestblöcke 1000-1008 vergleichen die Tiefen-, Farb- und Alphakomponenten für
neue und vorherige Pixelfragmente, und wenn die neuen und vorherigen Werte innerhalb einer vorgegebenen
Toleranz liegen, geben sie ein Bit aus, das anzeigt, dass das neue Pixelfragment ein Verschmelzungskandidat
ist. Die Pixelengine führt dann eine bitweise AND-Operation aus (1010), um festzustellen, ob jeder der Ver-
schmelzungstests bestanden wurde. Wenn ja, verschmilzt die Pixelengine die neuen und vorherigen Pixelfrag-
mente. Die Pixelengine berechnet durch OR-Verknüpfung der neuen und vorherigen Bedeckungsmaske eine
neue Bedeckungsmaske für das vorherige Fragment. Wenn einer der Verschmelzungstests versagt, fügt die
Pixelengine das neue Pixelfragment an oberster Stelle in die Fragmentliste ein. Dieses neue Pixelfragment
wird Teil der verlinkten Liste und weist auf den vorherigen Kopf der Fragmentliste.

[0525] Fig. 31 ist ein Schema, das ein Verschmelzungstestmodul 1012 detailliert illustriert. Das Verschmel-
zungstestmodul berechnet den absoluten Wert des Unterschieds zwischen einem neuen und einem vorheri-
gen Wert 1014. Ein Komparator 1016 im Verschmelzungstestmodul vergleicht den Unterschied mit einem Re-
ferenzwert, der in einem Tiler-Register 1018 gespeichert ist, und liefert einen booleschen Wert, der anzeigt, ob
der neue und der vorherige Wert innerhalb der vorgegebenen Toleranz liegen. Die Ausgabe des booleschen
Werts aus den Verschmelzungstestmodulen sind Eingabe in den bitweisen AND-Block 1010, wie in Fig. 30 ge-
zeigt. Die Ausgabe des bitweisen AND zeigt an, ob jede der Farben, das Alpha und der Tiefenwert innerhalb
der vorgegebenen Toleranzen liegen. Wenn ja, verschmilzt die Pixelengine die einlaufenden und die obersten
Pixelfragmente, wie oben beschrieben.

[0526] Wie oben bemerkt, gibt es eine Reihe von möglichen Variationen zu dem Verfahren zum Verschmelzen
von Pixelfragmenten. In einer alternativen Implementierung kann die Pixelengine eine Fragmentliste durchsu-
chen und einen Verschmelzungstest an jedem Pixelfragment ausführen, bis:1) sie das Ende der Liste erreicht,
oder 2) ein gespeichertes Pixelfragment findet, das den Verschmelzungstest besteht. In einer anderen Imple-
mentierung kann die Pixelengine die Pixelfragmente in sortierter Form bewahren, indem sie zum Beispiel eine
Einfügesortierung mit jedem einlaufenden Fragment ausführt. Die Pixelengine kann versuchen, ein einlaufen-
des Pixelfragment nur mit dem Pixelfragment zu verschmelzen, das dem Betrachtungspunkt (mit dem niedrigs-
ten Z-Wert) am nächsten ist, oder kann versuchen, es mit mehreren Pixelfragmenten zu verschmelzen, die für
einen Pixelort gespeichert sind.

Unterteilen von Bildregionen, um Pixelspeicherüberlauf zu verhindern

[0527] Wenn der Tiler geometrische Grundelemente rastert, speichert er Pixeldaten in Pixel- und Fragment-
puffern. Der Tiler löst dann diese Pixeldaten in einem Nachverarbeitungsschritt auf. Weil der Tiler einen Spei-
cher fester Größe zum Speichern dieser Pixeldaten verwendet, ist es möglich, dass er die Speicherkapazität
überschreitet. Um dieses Problem anzugehen, überwacht der Tiler die Speicherkapazität und, falls notwendig,
reduziert er die Größe des Bildbereichs, der aktuell gerade gerendert wird, um ein Überlaufen des Fragment-
speichers zu verhindern.

[0528] In einer Ausführungsform baut der Tiler das Grafikausgabebild durch Verarbeiten einer Reihe von
32×32-Pixelchunks auf. Fig. 32 ist ein Diagramm, das einen Teil des Pixel- und Fragmentpuffers illustriert. Wie
in diesem Beispiel gezeigt, löst der Tiler den 32×32-Pixelpuffer (1118) unter Verwendung eines zugehörigen
512-Eintrags-Fragmentpuffers auf (1120). In dieser Implementierung kann der Fragmentpuffer bis zu 512 Pi-
xelfragmenten speichern, die in einem späteren Verarbeitungsschritt kombiniert werden, um den 32×32-Pixe-
lausgabepuffer zu bilden. Bei der Verwendung eines Fragmentpuffers mit 512 Einträgen, um einen 32×32-Aus-
gabepixelpuffer zu erzeugen, gibt es eine eindeutige Möglichkeit, dass der Fragmentspeicher knapp wird,
wenn fein mosaikartig gemusterte grafische Objekte oder Objekte, die eine beträchtliche Lichtdurchlässigkeit
aufweisen, gerastert werden. In diesen Fällen ist mehr Fragmentspeicher erforderlich, um Pixelfragmentdaten
für teilweise bedeckte oder lichtdurchlässige Pixel zu speichern. Ein Fragmentpuffer mit 512 Pixeleinträgen
speichert nur halb so viele Pixel wie der 32×32-Ausgabepuffer, der 1024 (32 × 32 = 1024) Pixel speichert.

[0529] Zur Abmilderung der Auswirkungen dieser Speicherbegrenzung ist das Pixelspeicherformat im Tiler so
strukturiert, dass es 2 Ebenen von hierarchischer Zerlegung unterstützt. Fig. 33 ist ein Diagramm, das diese
hierarchische Zerlegung abbildet. Wenn der Fragmentspeicher bei der Verarbeitung eines 32×32-Pixelpuffers
erschöpft ist, löscht der Tiler die Pixel- und Fragmentpuffer und verarbeitet den Eingabestrom von geometri-
schen Grundelementen für einen Satz von vier 16×16-Pixelteilpuffern neu (1122). Das Verarbeiten eines
16×16-Pixelpuffers mit dem 512-Eintrag-Speichersystem ergibt doppelt so viele Fragment-Einträge wie ge-
64/147

DE 696 36 599 T2 2007.08.23
wünschte Ausgabepixel, womit eine sehr große Mehrheit von Fällen mit zahlreichen teilweise bedeckten oder
lichtdurchlässigen Pixeln erfasst wird.

[0530] Wenn der Fragmentspeicher bei der Verarbeitung eines der 16×16-Pixelteilpuffers erschöpft ist, löscht
der Tiler die Pixel- und Fragmentpuffer und verarbeitet den Eingabestrom von Grundelementen für einen Satz
von vier 8×8-Pixelteilpuffern neu (1124). Jeder 16×16-Pixelteilpuffer kann in vier 8×8-Pixelteilpuffer für insge-
samt sechzehn 8×8-Teilpuffer aufgeteilt werden. Das Verarbeiten eines 8×8-Pixelpuffers mit dem 512-Ein-
trag-Speichersystem ergibt acht mal so viele Einträge wie gewünschte Ausgabepixel, womit die meisten denk-
baren komplexen Grafikobjekte erfasst werden. Ein zusätzlicher Vorteil der 8×8-Teilpuffer ist, dass sie im For-
mat sind, das von der Kompressions-Engine gefordert wird, die zum Komprimieren der Pixeldaten verwendet
wird. Also ist keine weitere Pixelpufferzerlegung vor der Kompression erforderlich.

[0531] Wenn jeder Pixelteilpuffer (d.h. entweder der 16×16 oder der 8×8) erfolgreich verarbeitet ist, werden
die Pixel aufgelöst und an die Kompressions-Engine gesandt. Da der Tiler die 16×16- und 8×8-Teilpuffer in der
Reihenfolge der Auflösung und Kompression eines vollständigen 32×32-Pixelpuffers verarbeitet, führt der Ab-
schluss der gesamten Verarbeitung aller Teilpuffer zu einem vollständigen 32×32-Pixelpuffer, der im System-
speicher in einem komprimierten Format, ohne zusätzliche Verarbeitungsanforderungen, gespeichert wird.

[0532] Der Pufferzerlegungsprozess wird rekursiv im Vorübergehen angewendet, um mit anspruchsvollen
Fällen (z.B. überlappende fein mosaikartig strukturierte Objekte mit beträchtlicher Lichtdurchlässigkeit, Schat-
ten und Beleuchtung mit mehr als einer Lichtquelle) umzugehen. Die folgende Beschreibung illustriert das Ver-
fahren.

[0533] Die Fig. 34A-B ist ein Flussdiagramm, das ein Verfahren zur Pufferzerlegung im Tiler illustriert. In einer
Vorverarbeitungsphase erzeugt der DSP den Eingabedatenstrom einschließlich der Renderbefehle und der
Polygone, die unter Bildregionen, Chunks genannt, sortiert sind. Der DSP leitet dann einen Eingabedatenstrom
an den Tiler zur Verarbeitung. Als Reaktion auf die Renderbefehle im Eingabedatenstrom rastert ein Raster-
generator im Tiler Polygone im Eingabedatenstrom, um Pixeldaten zu erzeugen (1130, 1132, 1136).

[0534] In diesem speziellen Beispiel illustriert das Flussdiagramm, dass Polygone seriell verarbeitet werden.
Es gibt jedoch eine Reihe von Möglichkeiten, Grundelemente zu rendern. Die Art und Weise, wie die Grunde-
lemente gerastert werden, ist für den Zerlegungsprozess nicht kritisch.

[0535] Wenn der Rastergenerator Pixeldaten erzeugt, überwacht er die Kapazität des Fragmentpuffers. In
dieser Implementierung erhöht der Rastergenerator schrittweise einen Pufferzähler für jeden Eintrag, der dem
Fragmentspeicher hinzugefügt wird, und kontrolliert den Wert des Zählers, während er Pixeldaten erzeugt
(1138, 1142). Wenn der Wert des Pufferzählers 512 erreicht, dann ist der Fragmentspeicher voll. An diesem
Punkt kontrolliert der Tiler die aktuelle Chunkgröße, um festzulegen, wie man ihn unterteilt (1144, 1150).

[0536] In der speziellen Implementierung, die hier beschrieben und illustriert wird, wird die Speicherzerlegung
ausgelöst, wenn der Fragmentspeicher seine Kapazität, 512 Pixelfragmente, erreicht. Es ist jedoch möglich,
die Zerlegung in Gang zu setzen, bevor der Fragmentspeicher seine volle Kapazität erreicht.

[0537] Wenn die Chunkgröße 32×32 Pixel ist (1144), dann teilt der Tiler die Chunkgröße in vier 16×16-Pi-
xelchunks (1146). Der Tiler leert dann die Pixel- und Fragmentpuffer (1146) und beginnt mit dem Rastern des
Eingabestroms für den aktuellen Chunk in die vier 16×16-Teilchunks (1158). Bei dieser Implementierung sen-
det der DSP den Eingabedatenstrom für den Chunk erneut. Statt die Polygone unter den Teilchunks neu zu
sortieren, verarbeitet der Tiler den Eingabestrom von Polygonen wiederholt für jeden Teilchunk und weist Po-
lygone ab, die außerhalb der jeweiligen Teilchunks fallen. Als Alternative kann der DSP den Eingabedaten-
strom erneut verarbeiten, wobei die Polygone im Strom unter den jeweiligen Teilchunkregionen sortiert werden.
Diese Alternative reduziert die Zahl der Polygone für jeden Teilchunk, erhöht aber den Zusatzaufwand für die
Verarbeitung im DSP.

[0538] Der Tiler verarbeitet 16×16-Teilchunks in ähnlicher Weise (1150, 1152). Wenn die aktuelle Chunkgröße
16×16 Pixel ist, dann teilt der Tiler den Chunk in vier 8×8 Pixel und leert die Pixel- und Fragmentpuffer (1152).
Bei dieser Implementierung unterteilt der Tiler die Chunks nicht in kleinere als 8×8-Blöcke. Die Kapazität des
Fragmentspeichers, in diesem Fall 512 Elemente, sollte ausreichend sein, selbst fein mosaikartig strukturierte
und/oder lichtdurchlässige Objekte durch Unterteilen von Bildchunks in 8×8-Blöcke zu handhaben. Jedoch ist
der Tiler, der hier beschrieben wird, nur eine mögliche Implementierung: Die Notwendigkeit, die Größe des Bil-
des aufzuteilen, kann je nach solchen Faktoren, wie Komplexität der Szene, Form des Anti-Aliasing und der
65/147

DE 696 36 599 T2 2007.08.23
Lichtdurchlässigkeit, die unterstützt wird, und Speicherkapazität des Fragmentpuffers, variieren.

[0539] Wenn der Pufferzähler 512 für einen 8×8-Pixelblock erreicht, löst der Tiler die Pixelfragmente auf, die
mit dem 8×8-Pixelchunk verbunden sind, und führt einen Puffertausch aus (1154). Nachdem der 8×8-Chunk
aufgelöst ist, kontrolliert der Tiler, ob es mehr 8×8-Pixelchunks gibt (1156). Wenn es weitere 8×8-Pixelchunks
gibt, dann setzt sich die Verarbeitung durch Neustart der Polygonverarbeitung für den nächsten 8×8-Teilchunk
fort (1158).

[0540] Wenn es keine 8×8-Chunks mehr gibt, dann kontrolliert der Tiler, ob es weitere 16×16-Pixelchunks gibt
(1148). Wenn zusätzliche 16×16-Pixelchunks bleiben, dann startet der Tiler die Polygonverarbeitung für alle
restlichen 16×16-Teilchunks neu (1158). Wenn es keine zusätzlichen 16×16-Pixelchunks mehr gibt, dann er-
hält der Tiler den Eingabedatenstrom für den nächsten Chunk (1160) und fährt mit der Verarbeitung der Poly-
gone darin fort (1158).

[0541] Wenn die Kapazität des Fragmentpuffers während der Verarbeitung des Eingabedatenstroms für ei-
nen Chunk oder Teilchunk nicht überschritten wird, dann fährt der Tiler mit der Auflösung der Pixeldaten in den
Pixel- und Fragmentpuffern fort (1132, 1134). Wenn der Tiler die Verarbeitung des Eingabedatenstroms für den
aktuellen Chunk abschließt, dann setzt er die Auflösephase für den Chunk oder Teilchunk in Gang. Wenn zum
Beispiel die Chunkgröße 32×32 Pixel ist (1162), dann wird der 32×32-Pixelchunk aufgelöst, und die Puffer wer-
den getauscht (1164). Die Verarbeitung setzt sich dann mit dem Erhalt des nächsten Chunks fort (1160)
(Fig. 34A).

[0542] Wenn die Chunkgröße 16×16 Pixel ist (1166), dann wird der 16×16-Pixelchunk aufgelöst, und die Puf-
fer werden getauscht (1168). Der Tiler fährt dann mit der Kontrolle fort, ob weitere 16×16-Chunks übrig sind
(1148). Wenn ja, startet die Polygonverarbeitung neu durch erneutes Senden der Polygone für den nächsten
Teilchunk (1158). Wenn nicht, dann ruft er den Eingabestrom für den nächsten Chunk ab und startet die Ver-
arbeitung der Polygone für diesen Chunk (1160).

[0543] Wenn die Chunkgröße nicht 16×16 Pixel ist, dann beträgt sie als Vorgabe 8×8 Pixel. Der Tiler fährt mit
dem Auflösen des 8×8-Pixelchunks und dem Tauschen der Puffer fort (1154). Der Tiler verarbeitet dann alle
restlichen 8×8-Teilchunks und dann alle restlichen 16×16-Teilchunks. Nach dem Abschluss der Verarbeitung
aller restlichen Teilchunks fährt der Tiler mit dem nächsten Chunk fort. Die Verarbeitung endet schließlich,
wenn es keine weiteren Chunks im Eingabedatenstrom mehr gibt.

[0544] Während der Chunkverarbeitung werden Daten gesammelt, um die Maximalzahl der Pixelfragmente
festzustellen, die jeder Chunk erzeugt. Die Zahl der Einträge, die im 512-Fragmentpuffer nach der Verarbeitung
jedes Chunks frei ist, wird ebenfalls gesammelt. Diese Daten werden als Hilfe bei der Feststellung verwendet,
wann die Pufferzerlegung automatisch beim Wiederverarbeiten eines Objektes ausgeführt werden sollte.
Wenn zum Beispiel ein komplexes Objekt eine Reihe von Malen im Verlauf eines Spiels neu gezeichnet wird,
würde die Verarbeitung des komplexen Objektes automatisch die Pufferzerlegung auf der Basis der Pixelpuf-
ferdaten einschalten, die gesammelt wurden, um das kontinuierliche Wiederverarbeiten des Eingabestroms
von Pixelinformationen zu verhindern.

[0545] Die Pufferzerlegung in 16×16- oder 8×8-Teilpuffer kann auch angefordert werden, wenn ein bekannter
komplexer (d.h. fein mosaikartig strukturierter) Pixelchunk an den Tiler gesendet wird. Dadurch wird die Be-
stimmung einer Notwendigkeit der Pufferzerlegung, Leeren der Pixel- und Fragmentpuffer und Wiederverar-
beitung des Eingabestroms beseitigt, wenn ein Pixelchunks bekanntermaßen komplex ist und eine intensive
Verarbeitung erfordert.

[0546] Es gibt mindestens zwei alternative Verfahren zum Neustarten des Scanumwandlungsprozesses,
wenn ein Uberlauf entdeckt wird. Bei einem Verfahren kann die Pixelengine den Scanumwandlungsblock an-
weisen, anzuhalten, wenn ein Überlauf festgestellt wird, und dann alle Fragmentlisten im Pixelspeicher für Pi-
xelorte außerhalb des Teilchunks, der verarbeitet werden soll, zu leeren. Um dies zu erreichen, findet die Pi-
xelengine Fragmentlisten außerhalb des Teilchunks durch Lesen der Fragmentlistenzeiger im Pixelpuffer an
den Pixelorten außerhalb des Teilchunks, und durch Freisetzen der Fragmente im Fragmentpuffer, der mit die-
sen Pixelorten verbunden ist. Der Scanumwandlungsblock fährt dann mit dem Rastern des aktuellen Satzes
von geometrischen Grundelementen für den Chunk fort, wo er aufgehört hat.

[0547] In einem zweiten Verfahren startet der Scanumwandlungsblock nach dem Löschen des gesamten
Fragmentspeichers neu. In diesem Fall startet der Scanumwandlungsblock neu und beginnt mit dem Rastern
66/147

DE 696 36 599 T2 2007.08.23
der geometrischen Grundelemente am Beginn des Satzes von Grundelementen für einen Chunk.

[0548] Pufferzerlegung im Vorübergehen (On-the-fly) sorgt für eine Möglichkeit, einen kleinen Pixelausgabe-
puffer, einen kleinen Umfang an Fragmentpufferspeicher zu verwenden und den Fragmentdatenspeicherüber-
lauf während der Verarbeitung von grafischen Objekten zu reduzieren, selbst beim Verarbeiten von grafischen
Objekten, die sehr komplexe Kennwerte besitzen (z.B. mehrere Lichtquellen, fein mosaikartige Struktur, Licht-
durchlässigkeit usw.).

[0549] Obwohl wir die Zerlegung in Form von speziellen Ausführungsformen beschrieben haben, versteht es
sich, dass die Erfindung in einer Reihe von anderen Arten und Weisen implementiert werden kann. Es ist nicht
notwendig, Bildregionen in der speziellen Weise, die beschrieben wurde, aufzuteilen. Vielmehr können Bildre-
gionen in Teilregionen unterschiedlicher Größe aufgeteilt werden. Obwohl die Chunking-Architektur für die
Bildaufteilung besonders geeignet ist, kann auch ein vollständiger Bildpuffer in kleinere Regionen zerlegt wer-
den, um die Fragmentspeicheranforderungen zu reduzieren. Die speziellen Arten von Logik oder Software, die
zum Verfolgen des Speicherverbrauchs verwendet werden, können ebenfalls variieren. Kurz gesagt, es gibt
eine Reihe von möglichen alternativen Implementierungen innerhalb des Geltungsbereichs der Erfindung.

Pixelnachverarbeitung

[0550] Nachdem der Bildprozessor Fragmentdaten für einen Pixelort erzeugt hat, sortiert er dann diese Frag-
mentdaten und löst sie auf, um die Farbe an diesem Ort zu berechnen. Wie oben beschrieben, erzeugt der
Bildprozessor Fragmente für teilweise bedeckte Pixel und bewahrt sie auf. Ein Pixel wird von einem Polygon
teilweise bedeckt, wenn eine oder mehrere Kanten des Polygons das Pixel schneiden oder wenn das Polygon
Lichtdurchlässigkeit besitzt. Das Aufbewahren der Fragmentdaten zum Ausführen von Anti-Aliasing- und Licht-
durchlässigkeitsberechnungen kann eine beträchtliche Speicherplatzmenge erfordern. Wenn sich die Zahl der
gerenderten Polygone erhöht, erhöht sich auch die Speicherplatzmenge zum Speichern der Pixeldaten und
Fragmente.

[0551] Neben den erhöhten Speicheranforderungen kann auch der Verarbeitungsumfang, der zum Auflösen
der Fragmente erforderlich ist, beträchtlich sein. Bei einem Z-Puffer-Ansatz werden Fragmentdaten nach Tiefe
sortiert. Die Grundelementedaten werden im allgemeinen nicht nach der Tiefenreihenfolge sortiert, wenn sie
zum Rendern ankommen. Da die Grundelementedaten in beliebiger Tiefenreihenfolge ankommen, muss der
Bildprozessor die Fragmentdaten nach ihrer Erzeugung sortieren. Die sortierten Daten werden dann verarbei-
tet, um die Farbe und möglicherweise das Alpha an einem Pixelort zu bestimmen. An jedem Pixelort können
mehrere Fragmente zur Farbe beitragen. Wenn Alpha ebenfalls berechnet wird, steigt auch die Zahl der Frag-
mente und die Komplexität der Verarbeitung.

[0552] Aus den Gründen, die oben hervorgehoben wurden, können die Speicher- und Verarbeitungsanforde-
rungen zur Unterstützung des fortgeschrittenen Anti-Aliasing und der Lichtdurchlässigkeit beträchtlich sein. Es
gibt einen Konflikt zwischen der Unterstützung der anspruchsvollen Anti-Aliasing- und Lichtdurchlässigkeits-
berechnungen einerseits und Verringerung der Speicheranforderungen andererseits. Um die Kosten des Sys-
tems zu reduzieren, sollte die Verwendung von Speicher minimiert werden, jedoch erfordern fortgeschrittene
Anti-Aliasing- und Lichtdurchlässigkeitsmerkmale mehr Speicher. Es ist sogar noch schwieriger, diese fortge-
schrittenen Merkmale in einem Echtzeitsystem bei gleichzeitiger Minimierung der Speicheranforderungen zu
unterstützen.

[0553] In einer Ausführungsform rendert unser System Grundelemente, jeweils einen Chunk auf einmal, was
den Speicher reduziert und mehr Fragmentauflösung in einem Nachverarbeitungsschritt ermöglicht. Während
Pixeldaten für einen Chunk erzeugt werden, können Pixeldaten eines weiteren Chunks aufgelöst werden. Eine
Reihe von Vorteilen, die sich auf die Fragmentsortierung und die Pixelauflösung auswirken, folgen aus dem
Chunkingkonzept. Speicheranforderungen werden wesentlich reduziert, weil ein großer Teil der Daten, die
während des Rasterungsprozesses erzeugt wurden, nicht behalten werden muss, nachdem der Bildprozessor
die Pixel in einem Chunk aufgelöst hat. Der Bildprozessor braucht nur den aufgelösten Farbanteil nach dem
Auflösen eines Chunks zu behalten.

[0554] Ein weiterer Vorteil des Renderns von Chunks in Serie ist, dass der Pixel- und Fragmentspeicher im-
plementiert werden kann, um den Zusatzaufwand für Speicherzugriffe zu reduzieren. Typische Grafiksysteme
verwenden externe Speicher zum Implementieren von Farb-, Tiefen- und Fragmentpuffern. Es ist sehr schwie-
rig, diesen externen Speicher zu organisieren, so dass die rigorosen Bandbreitenanforderungen der Echt-
zeit-Bildverarbeitung erfüllt werden. Der Pixel- und Fragmentspeicher, der zur Unterstützung des Renderns ei-
67/147

DE 696 36 599 T2 2007.08.23
nes Chunks, wie zum Beispiel einer 32×32-Pixelregion, benötigt wird, muss sich nicht im externen Speicher
befinden. Er kann statt dessen auf derselben Hardware implementiert werden, die die Raster- und Anti-Ali-
asing-Funktionen ausführt. In der Implementierung, die oben beschrieben wird, kann zum Beispiel der Frag-
ment- und Pixelpuffer auf einem einzelnen integrierten Schaltkreischip implementiert werden.

[0555] Die Verwendung von chipintegrierten Speichern vereinfacht die Bandbreitenprobleme, die mit exter-
nem Speicher verbunden sind. Chipintegrierte Speicher ermöglichen eine effiziente Nutzung mehrerer
Speicherbänke. Eine Bank kann zum Beispiel für den Pixelpuffer verwendet werden, und eine weitere Bank
kann für Fragmentdatensätze verwendet werden.

[0556] Ein weiterer Vorteil des chipintegrierten Speichers ist, dass er weniger teuer und leichter zu implemen-
tieren ist als Mehr-Port-Speicher. Die Leistungsfähigkeit der Pixel- und Fragmentpuffer kann durch die Verwen-
dung von Mehr-Port-Speichern verstärkt werden, die gleichzeitiges Lesen und/oder Schreiben ermöglichen,
um eine Verarbeitungsrate von einem Takt pro Pixel zu erreichen. Da der Fragmentpuffer viel kleiner ist, wenn
Chunks separat gerendert werden, kann er auf dem Chip implementiert werden. Sowohl die geringere Größe
des Speichers als auch sein Vorhandensein auf dem Chip machen die Verwendung von Mehr-Port-Speicher
technisch anwendbar und kostengünstig. Externe Mehr-Port-Speicher sind andererseits auf Grund der höhe-
ren Kosten pro Bit und Verbindungen zwischen den Chips teuer.

[0557] Ein weiterer wichtiger Vorteil in Bezug auf das Chunking ist, dass Pixel für einen Teil eines Teilbildes
(Frame) erzeugt werden können, während Pixel für einen anderen Teil aufgelöst werden. Statt Pixel für ein gan-
zes Teilbild zu erzeugen und dann diese Pixel aufzulösen, kann unser Ansatz die Prozesse der Erzeugung des
Auflösens von Pixeln überlappen lassen, was die Systemtransportverzögerung reduziert.

[0558] In einer Ausführungsform unseres Systems löst der Bildprozessor Fragmente in einem Nachverarbei-
tungsschritt auf. Während die Pixelengine Pixeldaten für einen Teil eines Bildes erzeugt, löst die Anti-Ali-
asing-Engine Fragmente für einen anderen Teil eines Bildes auf. Wie oben bemerkt, sind die Pixeldaten dop-
pelgepuffert: Die Pixelengine kann auf einen Puffer zugreifen, während die Anti-Aliasing-Engine auf den ande-
ren zugreift. Nachdem die Pixelengine Pixel für einen Chunk erzeugt hat, führt der Tiler einen Puffertausch aus.
Die Pixelengine erzeugt dann Pixel für den nächsten Chunk, und die Anti-Aliasing-Engine löst die Pixel für den
vorherigen Chunk auf.

[0559] Obwohl er in der bevorzugten Ausführungsform auch doppelgepuffert sein könnte, hat der Fragment-
puffer zwei Ports, so dass die Pixelengine und die Anti-Aliasing-Engine darauf gleichzeitig zugreifen können.
Die Pixelengine kann dann Fragmentdaten in den Fragmentpuffer durch einen Port schreiben, während die An-
ti-Aliasing-Engine auf Fragmentdaten durch einen anderen Port zugreift.

[0560] In dieser Ausführungsform ermöglichen es die doppelgepufferten und zwei Ports umfassende Spei-
chersysteme dem Bildprozessor, Pixeldatenerzeugung und Pixelauflösung zu überlappen. Es gibt eine Reihe
von alternativen Möglichkeiten, um eine Doppelpufferungsmethode zu implementieren.

[0561] Der Bildprozessor sortiert die Fragmentdaten nach der Tiefe, bevor er den Auflösungsprozess ab-
schließt. Der Bildprozessor kann im allgemeinen Pixeldaten sortieren, während er Pixel erzeugt, und nachdem
er Pixel für einen Teil eines Bildes, das gerendert werden soll, erzeugt hat. Die Pixelengine kann zum Beispiel
eine Einfügesortierung ausführen, während sie Fragmentdaten in den Fragmentpuffer schreibt. Außerdem
kann die Pixelengine Fragmentdaten sortieren, nachdem sie das Erzeugen von Pixeldaten für das ganze Bild
oder einen Teil eines Bildes abgeschlossen hat. Die Pixelengine kann auch Fragmente in Fällen sortieren, in
denen sie einlaufende Pixeldaten zurückweist. Da die Pixelengine nicht in den Fragmentpuffer schreiben
muss, wenn die einlaufenden Pixeldaten zurückgewiesen werden, kann sie eine Sortierung von Fragmenten
vornehmen, bevor das nächste hereinkommende Pixel ankommt. Wir bezeichnen diesen letzteren Ansatz als
„Hintergrundsortieren" von Fragmenten.

[0562] Eine Einfügesortierung bezieht sich auf die Tiefensortierung eines ankommenden Fragmentes mit an-
deren Fragmenten im Fragmentpuffer. In einem Echtzeitsystem wird möglicherweise eine Einfügesortierung
nicht bevorzugt, weil sie potenziell den Prozess der Erzeugung von Pixeldaten verlangsamen kann. Das
Durchsuchen des Fragmentpuffers, um den richtigen Einfügungspunkt für ein ankommendes Fragment zu fin-
den, kann einen unerwünschten Zusatzaufwand verursachen. Zusätzlich erfordert sie bei Hardware-Imple-
mentierungen zusätzliche Hardware und verkompliziert die Konstruktion der Pixelengine.

[0563] Als Alternative zur Einfügesortierung können Fragmente sortiert werden, nachdem der Bildprozessor
68/147

DE 696 36 599 T2 2007.08.23
die Pixelerzeugung für einen Teil eines Bildes abgeschlossen hat. Einige Systeme rendern einen ganzen Rah-
men von Bilddaten auf einmal. In solchen Systemen kann das Sortieren von Fragmenten für jeden Pixelort im
Betrachtungsraum zusätzliche Verarbeitungszeit erfordern und eine unerwünschte Verzögerung hinzufügen,
besonders für ein Echtzeitsystem. Die Zeitdauer, die zur Ausführung der Sortierung benötigt wird, kann je nach
der Zahl der Fragmente pro Pixel und je nach dem Grad, bis zu dem die Einfügesortierung bereits ausgeführt
ist, variieren. Die Sortieroperation kann daher andere Pixeloperationen am Ablaufen hindern, was die Leis-
tungsfähigkeit verringert.

[0564] Durch Rendern jeweils eines Teils des Betrachtungsraums auf einmal kann die Fragmentsortierung für
einen Teil eines Bildes ablaufen, während ein nächster Teil gerade gerastert wird. Die Anti-Aliasing-Engine
kann im wesentlichen eine Fragmentsortierung in einem Nachverarbeitungsschritt ausführen. In einer Ausfüh-
rungsform sortiert die Anti-Aliasing-Engine Fragmente für einen Chunk, während Fragmente für den nächsten
Chunk gerade erzeugt werden.

[0565] Selbst in Fällen, in denen die Pixelerzeugung und -auflösung auf diese Weise überlappt sind, kann es
trotzdem vorteilhaft sein, eine Sortierung von Fragmenten für einen Teil eines Bildes vorzunehmen, während
die Pixelengine Pixel für diesen Teil des Bildes erzeugt. Die Hintergrundsortierung von Pixelfragmenten redu-
ziert den Zusatzaufwand des Sortierens von Fragmenten, nachdem die Pixelengine die Erzeugung von Pixeln
für einen Satz von Grundelementen beendet hat.

[0566] In einer Ausführungsform wird die Hintergrundsortierung gleichzeitig mit Pixeloperationen ausgeführt,
die an Pixeln vorgenommen werden, um die Verzögerung, die für das Sortieren von Fragmenten erforderlich
ist, zu reduzieren und in einigen Fällen zu beseitigen. Die Konstruktion nutzt die Tatsache aus, dass viele der
Pixel teilweise nicht bedeckt sind, und macht daher keinen Gebrauch vom Fragmentpuffer. Die Hintergrund-
sortierung nutzt diese Reservebandbreite, um eine Sortierung eines Satzes von Fragmenten im Fragmentpuf-
fer auszuführen.

[0567] Nach dem Sortieren löst der Bildprozessor die Fragmente für einen Pixelort auf, um die Farbe für die-
sen Pixelort festzustellen. Wenn Alpha nicht berücksichtigt wird, berechnet der Bildprozessor die Farbakkumu-
lation auf der Grundlage der Farb- und Bedeckungsdaten für Fragmente in einer nach der Tiefe sortierten Liste
für einen Pixelort. Wenn Alpha zusätzlich zu den Bedeckungsdaten berücksichtigt wird, berechnet der Bildpro-
zessor die Farbakkumulation auf der Grundlage von Farbe, Bedeckung und Alpha der Fragmente in einer nach
der Tiefe sortierten Liste für einen Pixelort.

[0568] Der Bildprozessor kann im allgemeinen jeweils Fragmente für Pixelorte auflösen, die dem gesamten
Betrachtungsraum entsprechen, oder nur für einen Teil des Betrachtungsraums. In der Ausführungsform, die
oben beschrieben wird, löst der Bildprozessor Pixelorte in einem Teil des Betrachtungsraums auf, der Chunk
genannt wird. Die Fragmentauflösung läuft ab, nachdem die Fragmente erzeugt und sortiert wurden.

[0569] Die Fragmentauflösung ist der Prozess, während dem alle Fragmente für ein Pixel kombiniert werden,
um einen einzelnen Farb- und Alphawert zu berechnen. Dieser einzelne Farb- und Alphawert wird in den Farb-
puffer geschrieben (und dann komprimiert und in einen Gsprite abgelegt).

[0570] Das Berechnen der aufgelösten Farbe umfasst das Akkumulieren eines korrekt skalierten Farbbei-
trags von jeder Schicht, während gleichzeitig die Bedeckungsinformationen berechnet und bewahrt werden,
mit denen die nachfolgenden Schichten skaliert werden sollen. Diese Akkumulation kann in der Tiefenreihen-
folge von vorn nach hinten oder von hinten nach vorn ausgeführt werden. Bei einem Ansatz von vorn nach hin-
ten, als Gegensatz zu von hinten nach vorn, können räumliche Bedeckungsdaten zur Bestimmung der Bede-
ckung für aufeinander folgende Schichten verwendet werden. Anders als die Bedeckung, gelten Alphadaten
gleichermaßen für den gesamten Pixelbereich.

[0571] Für die Reihenfolge vorn nach hinten sind die Gleichungen zum Berechnen von Farbe und Alpha für
sortierte Fragmentdatensätze:
Alpha initialisiert auf Maximalwert (inverses Alpha).
Farbe initialisiert auf 0.

Anew = Aold – (Aold·Ain);

Cnew = Cold + (Cin·(Aold·Ain));
69/147

DE 696 36 599 T2 2007.08.23
[0572] Für die Reihenfolge hinten nach vorn sind die Gleichungen zum Berechnen von Farbe und Alpha für
sortierte Fragmentdatensätze:
Alpha und Farbe initialisiert auf 0.

Anew = Ain + ((1 – Ain)·Aold);

Cnew = (Cin·Ain) + ((1 – Ain)·Cold);

[0573] Für eine Hardware-Implementierung ist vorn nach hinten vorzuziehen, weil der Auflösungsprozess we-
niger hardwareintensiv ist.

[0574] Ein Pseudocode-Beispiel für die Akkumulation von Fragmenten nur mit Tiefe, Farbe und Bedeckung
(kein Alpha) wird unten dargelegt:

[0575] Das Akkumulieren von Fragmenten mit Tiefe, Farbe, Bedeckung und Alpha erfordert, dass ein Alpha-
wert für jedes Subsample berechnet und aufbewahrt wird. Dies ist auf die Kombination von Bedeckungsmas-
ken und Alphawerten für jedes Fragment zurückzuführen. Es trifft im allgemeinen zu, dass das akkumulierte
Alpha in jeder Schicht während der Akkumulation eine Funktion aller Alphawerte der vorherigen Schichten ist.
Mit Bedeckungsmasken kann jedes Subsample potenziell einen unterschiedlichen Satz von ,vorherigen' Al-
phawerten haben, da eine Schicht, für die das Bedeckungsbit nicht gesetzt ist, nicht zu diesem Subsample bei-
trägt.

[0576] Ein Ansatz zur Auflösung von Fragmenten sowohl mit Alpha als auch Bedeckung besteht darin, Farbe
für jedes Teilpixel in einer Schicht separat zu berechnen und dann den Beitrag von jedem Teilpixelort zu addie-
ren, um dem gesamten Farbbeitrag zu bestimmen. Der Alphamaßstabsfaktor für jedes Teilpixel wird aus dem
Alpha in dieser Schicht zusätzlich zu dem Alpha bestimmt, das sich aus anderen Schichten angesammelt hat.
Dieser Alphamaßstabsfaktor wird dann mit der Farbe für das Teilpixel multipliziert, um den Farbbeitrag des Teil-
pixels zu bestimmen. Die Farbe für eine Schicht wird dann durch Summieren der Farbbeiträge aus den Teilpi-
xeln bestimmt.

[0577] Ein Beispiel für die getrennte Akkumulation von Farbe und Alpha für Teilpixel ist:
70/147

DE 696 36 599 T2 2007.08.23
[0578] Ein Beispiel, das 4 Teilpixelorte verwendet, hilft, die Fragmentauflösung zu illustrieren. Bei diesem Bei-
spiel betrachten wir drei Fragmente, wobei jedes eine Bedeckungsmaske, Alpha- und Farbwert hat. Der An-
fangszustand wird unten in der Tabelle illustriert. In diesem Beispiel akkumulieren wir Farbe und Alpha unter
Verwendung des Ansatzes vorn nach hinten. Das anfängliche Alpha wird auf 1 gesetzt, was volle Transparenz
bedeutet. Die Daten für jede Schicht sind folgende: Fragment 0, Alpha = 0,5, Bedeckungsmaske (BM) = 0011,
und Farbe = C0; Fragment 1, Alpha = 0,3, BM = 1000, Farbe = C1; Fragment 2, Alpha = 0,8, BM = 0101, Farbe
= C2. Die Daten für jedes Fragment werden in Tabellen unten bereitgestellt.

[0579] Mit den Alphawerten auf eins initialisiert, wird das Alpha-Bedeckungsfeld unten gezeigt.

[0580] Um die Farbe zu berechnen, werden die Farbwerte für jeden Teilpixelort mit dem neuen Alpha und dem
Alpha aus dem Bedeckungsfeld multipliziert. Das Ergebnis für die Teilpixelorte wird dann durch vier dividiert
(eins dividiert durch die Zahl der Teilpixelorte). Zum Schluss wird der Beitrag von allen Teilpixelorten summiert,
um die akkumulierte Farbe festzustellen.
71/147

DE 696 36 599 T2 2007.08.23
[0581] Unter Verwendung der Formel, Alpha' = Alpha·(Max_alpha – new_alpha), berechnet der Bildprozessor
das neue Alpha separat für jeden Pixelort und speichert ihn im Alpha-Bedeckungsfeld in der Tabelle unten.

[0582] Der Beitrag von Fragment 1 wird in der Tabelle unten dargestellt.

[0583] Das neue Alphabedeckungsfeld ist folgendes:

[0584] Der Beitrag von Fragment 2 wird in der Tabelle unten dargestellt.
72/147

DE 696 36 599 T2 2007.08.23
[0585] Das Alpha-Bedeckungsfeld für die Fragmente nach Fragment 2 ist folgendes:

[0586] Dieses Verfahren erfordert 2·NUM_CVG_BITS Multiplikationen (2·16 = 48 im 4×4-Fall) pro Fragment
für die Berechnung von Alpha und des Farbbeitrags. Man beachte, dass die (1/NUM_CVG_BITS)-Skalierung
mit einer Verschiebung erfolgen kann, wenn die Zahl der Bits in der Bedeckungsmaske von der Größe 2**n ist
(was normalerweise der Fall ist).

[0587] Fig. 35 ist ein Schema, das eine Hardware-Implementierung des Ansatzes illustriert, der oben für ein
Pixel beschrieben wird, das in 4 × 4 Teilpixelregionen aufteilt ist (1224). Die Auflösungshardware umfasst einen
Satz von 16 identischen Verarbeitungs- und Speichereinheiten, die Alpha- und Farbakkumulatoren genannt
werden (ACA) (1226), wobei jeder ACA einer Teilpixelregion des Pixels zugewiesen ist. Während der Verar-
beitung der Fragmentliste für jeden Pixelort werden die Bedeckungsmasken für jedes Fragment als Verarbei-
tungsmaske für die Auflösungshardware verwendet. Der ACA führt eine Multiplikation für den Alpha-Maßstab,
Farbakkumulation und Alpha-Akkumulation aus. Die (1/NUM_CVG_BITS)-Skalierung wird mit einer Verschie-
bung ausgeführt, wie oben dargelegt. Nachdem alle Fragmente für einen gegebenen Pixelort verarbeitet wur-
den, kombiniert der Ausgabeabschnitt die Farb- und Alphawerte für alle 16 Teilpixel in einer hierarchischen
Weise (1228). Die Prozessoren in der Ausgabe kombinieren die zwei eingehenden Werte und teilen durch 2.
Bei Hardware-Pipelineverarbeitung verwendet der Pixelauflösungsprozess nur einen einzigen Hardware-Zeit-
takt pro Fragmenteintrag.

[0588] Ein alternatives Verfahren reduziert die Hardware-Anforderungen, indem Teilpixel, die denselben ak-
kumulierten Alphawert haben, in jeder Schicht ähnlich behandelt werden. Dieses Verfahren beruht auf der Be-
obachtung, dass der Zustand, in dem Subsamples eindeutige akkumulierte Alphawerte haben, allmählich ein-
tritt. Zu Anfang werden alle Subsample-Alphawerte auf null gesetzt (transparent). Die erste Fragmentakkumu-
lation kann höchstens einen eindeutigen Alphawert hinzufügen, was zu einer Gruppe von Subsamples führt,
die den anfänglichen Alphawert behalten, und der anderen Gruppe führt, die denselben neuen Alphawert hat.
Die zweite Fragmentakkumulation kann zu nicht mehr als vier eindeutigen Alphawerten führen. Insgesamt ge-
sehen, beträgt die Zahl der eindeutigen Teilabfrage-Alphawerte, die nach ,n' Fragmentakkumulationen möglich
ist, 2**n (oder genauer MIN(2**n, NUM_CVG_BITS).

[0589] Dieses alternative Verfahren verwendet dieses Merkmal, um die Zahl der Akkumulationen zu verrin-
gern, die zur Ausführung nur der Farbskalierung und der Akkumulation für jeden eindeutigen Alphawert inner-
halb der Subsamples erforderlich sind, statt für jedes Subsample. Bei diesem Verfahren braucht höchstens nur
ein Akkumulat für das erste Fragment aufzutreten, zwei für des zweite Fragment, vier für das dritte Fragment
und so weiter, bis zu der Zahl der Subsamples im Pixel (z.B. bei einem 4×4-Subsample-Feld ist der schlimmste
Fall 16 Akkumulationen pro Fragment).

[0590] Die Grundlage für dieses Verfahren besteht darin, den Satz von eindeutigen Alphawerten und ihren
zugehörigen Bedeckungsmasken während der Fragmentakkumulation beizubehalten, wobei die Absicht ist,
eine minimale Zahl von Farbakkumulationen auszuführen.

[0591] Das Alpha und die Bedeckungsmasken werden in NUM_CVG_BITS-Elementfeldern gespeichert, von
73/147

DE 696 36 599 T2 2007.08.23
denen eine gewisse Teilmenge dieser Einträge zu einer beliebigen Zeit tatsächlich gültig (oder ,in Gebrauch')
ist. Die ,in Gebrauch befindlichen' Einträge sind diejenigen, die den aktuellen Satz von eindeutigen Alphawer-
ten enthalten. Die in Gebrauch befindlichen Einträge werden durch eine NUM_CVG_BITS-Bitmaske identifi-
ziert, wobei ein gesetztes Bit anzeigt, dass das Feldelement an diesem Bitindex in Gebrauch ist. Es wird eine
Konvention verwendet, bei der das erste gesetzte Bit in der Bedeckungsmaske eines Paares (eindeutiges Al-
pha, Bedeckungsmaske) definiert, in welchem Feldelement dieses Paar gespeichert ist. Man betrachte das fol-
gende Beispiel dafür, wie das Feld initialisiert und bei der Akkumulation von drei Fragmenten (unter Verwen-
dung von 4 Teilabfragewerten) aktualisiert wird:
Anfangszustand (X weist auf einen Wert hin, der nicht von Interesse ist):

[0592] Das anfängliche Alphabedeckungsfeld wird unten dargelegt:
74/147

DE 696 36 599 T2 2007.08.23
[0593] Die in Gebrauch befindliche Maske ist 0001, was den Ort festlegt, wo die Feldmaske gespeichert ist.
Die entsprechende Feldmaske ist folgende:

[0594] Nach Fragment 0 erscheint die Alpha-Bedeckungsmaske wie folgt.

[0595] Die in Gebrauch befindliche Maske ist 0101, die Feldmaske ist folgende:

[0596] Für Elemente in der in-Gebrauch-Maske, die gesetzt sind, wird die Feldmaske durch AND mit der Be-
deckungsmaske für das neue Fragment verknüpft, um festzustellen, ob es eine Änderung im Alphawert gibt.
Wenn es ein neues Alpha gibt, wird der neue Wert für die Feldmaske folgendermaßen berechnet: Feldmaske
AND NOT Bedeckungsmaske. Wenn es einen neuen Wert für die Feldmaske gibt, wird er am entsprechenden
Ort gespeichert.

[0597] Nach Fragment 1 erscheint die Alpha-Bedeckungsmaske wie folgt.

[0598] Die in-Gebrauch-Maske ist 0101, und die Feldmaske ist folgende:

[0599] Nach Fragment 2 erscheint die Alpha-Bedeckungsmaske wie folgt.

[0600] Die in-Gebrauch-Maske ist 1111, und die Feldmaske ist folgende:
75/147

DE 696 36 599 T2 2007.08.23
[0601] Die Zahl von eindeutigen Alphawerten zu einem beliebigen Zeitpunkt ist gleich der Zahl der gesetzten
Bits in der in-Gebrauch-Maske. Die vollständige Lösung umfasst zwei Schritte. Der erste Schritt ist die Ausfüh-
rung der notwendigen Farbakkumulationen, wobei eine Akkumulation pro ,in-Gebrauch'-Eintrag im Bede-
ckungs-/Alpha-Feld erforderlich ist. Der zweite Schritt besteht darin, das Bedeckungs-/Alpha-Feld mit den Wer-
ten des neuen Fragments zu aktualisieren.

[0602] Eine vollständige Implementierung dieses Verfahrens (für 4×4-Teilabfragewerte) folgt.
76/147

DE 696 36 599 T2 2007.08.23
77/147

DE 696 36 599 T2 2007.08.23
[0603] Die Kernarithmetikoperation ist die Farbakkumulation, die insgesamt drei Multiplikationen pro eindeu-
tigem Alphawert erfordert.
78/147

DE 696 36 599 T2 2007.08.23
[0604] ColorAccum += color·(alpha·AlphaOld·(nCoverageBits/NUM_CVG_BITS)); Man beachte, dass die
dritte Multiplikation durch die Zahl der Subsamples etwas vereinfacht werden kann. Für 16 Subsamples bein-
haltet die dritte Multiplikation den Festpunktwert 0,4, der Multiplikator kann also 8 × 4 sein (wo die anderen
Multiplikatoren wahrscheinlich 8 × 8 sind). Man beachte auch, dass für 2**n große Bedeckungsmasken die Di-
vision, die oben gezeigt wird, nur eine Verschiebung ist.

[0605] Dieses Verfahren erfordert im schlimmsten Fall insgesamt:

Akkumulationen. Der Normalfall kann kleiner als dies sein, weil der schlimmste Fall nur auftritt, wenn die Be-
deckung eines neuen Fragments sowohl gesetzte als auch ungesetzte Werte in jedem ,in-Gebrauch'-Feldele-
ment hat.

[0606] Eine nützliche Optimierung besteht darin, die Bedeckungsmaskenorte zu verfolgen, die einen vollstän-
dig lichtundurchlässigen Alphawert haben. Dies ist nützlich in dem Fall, dass Fragmente gerade auf Grund der
teilweisen geometrischen Bedeckung und nicht auf Grund von nicht lichtundurchlässigen Transparenzwerten
erzeugt werden. Diese Fragmente haben normalerweise einen vollständig lichtundurchlässigen Transparenz-
wert. Die Implementierung dieser Optimierung erfolgt durch Bewahren eines zusätzlichen Maskenwertes, der
OpaqueAlphaMask. Die OpaqueAlphaMask wird durch einen O-Ring in Bedeckungsmasken von Fragmenten
gesetzt, für die der Alpha vollständig lichtundurchlässig ist (dies wird nach dem Akkumulieren des Beitrags des
Fragments ausgeführt). Diese Maske wird dann dazu verwendet, Bits in den Masken nachfolgender Fragmen-
te zu ignorieren, da es keinen weiteren Farbbeitrag zu den entsprechenden Subsamples gibt.

[0607] Eine weitere mögliche Optimierung besteht darin, Orte mit identischen Alphawerten zu konsolidieren,
dies ist aber beträchtlich aufwändiger zu implementieren, und das Vorhandensein von identischen Alphawer-
ten, die weder 0 noch MAX_ALPHA sind, ist nicht wahrscheinlich.

[0608] Das Beispiel und der Pseudocode, der oben angegeben wird, verwenden eine Tiefensortierung vorn
nach hinten. Es ist gleichermaßen möglich, dieselben Berechnungen mit einer Tiefensortierung von hinten
nach vorn auszuführen. Die Berechnungen, die oben angeführt werden, verwenden auch Farbkomponenten,
die nicht vorher mit der Alphakomponente multipliziert wurden. Dasselbe Verfahren gilt für vormultiplizierte
Farbkomponenten, mit leicht unterschiedlichen arithmetischen Berechnungen (und identischem Kontrollfluss).

[0609] Fig. 36 ist ein Schema, das eine Implementierung des hardwareoptimierten Fragmentauflösungsteil-
systems in der Anti-Aliasing-Engine illustriert. Die Eingabe in das Teilsystem ist ein Strom von tiefensortierten
Fragmentdatensätzen. Wie gezeigt, umfasst ein Fragmentdatensatz RGB-Farbwerte, einen Alphawert A und
eine Bedeckungsmaske (Cov Mask). Dieses besondere Fragmentauflösungsteilsystem verarbeitet Fragment-
datensätze in der Reihenfolge vorn nach hinten und akkumuliert Farbwerte für den Pixelort, während es jede
Fragmentschicht verarbeitet. Dieses Teilsystem minimiert die Hardware, die zum Akkumulieren der Farbwerte
notwendig ist, weil es eindeutige Pixelregionen, die ein gemeinsames Alpha besitzen, verfolgt. Dies ermöglicht
dem Fragmentauflösungsteilsystem, Farbe einmal für jede eindeutige Pixelregion zu skalieren und zu akkumu-
lieren, anstatt separat für jede Teilpixelregion.

[0610] Wie im Pseudocode oben dargelegt, initialisiert das Fragmentauflösungssystem eine in-Ge-
brauch-Maske 1236, ein Feld von Bedeckungsmasken 1230 und ein Feld von akkumulierten Alphawerten
1230 vor dem Auflösen einer Liste von Fragmentdatensätzen. Die Elemente in der in-Gebrauch-Maske 1236
repräsentieren Pixelregionen, wobei jedes ein oder mehrere Teilpixelregionen umfasst, die ein gemeinsames
akkumuliertes Alpha haben. Die Bedeckungsmasken ergeben die Teilpixelorte, die durch eine Pixelregion be-
deckt werden. Das Feld von akkumulierten Alphawerten speichert die eindeutigen akkumulierten Alphawerte
für entsprechende Pixelregionen, die ein gemeinsames Alpha haben. Dieses besondere Bedeckungsfeld 1236
speichert die akkumulierten Alphawerte und Bedeckungsmasken.

[0611] Nach dem Initialisieren der in-Gebrauch-Maske, Bedeckungsfeldmaske und Bedeckungsfeldalpha be-
ginnt das Teilsystem mit der Verarbeitung eines Fragmentdatensatzes, mit dem Fragmentdatensatz, der dem
Betrachtungspunkt am nächsten liegt, beginnend. In einer Implementierung der Anti-Aliasing-Engine 412 im
Tiler sortiert die Anti-Aliasing-Engine die Fragmentliste in einer Nachverarbeitungsstufe, nachdem der Scan-
79/147

DE 696 36 599 T2 2007.08.23
umwandlungsblock 395 und die Texturfilterengine 401 das Rastern eines Chunks beendet haben. Die Anti-Ali-
asing-Engine liest jedes Fragment in einer Fragmentliste, mit dem Kopf beginnend, und legt dabei Einträge in
ein sortiertes Feld von Indizes und Tiefen. Jeder Index in diesem Feld zeigt auf einen Fragmentpufferort, der
die RGB-, Alpha- und Bedeckungsdaten für ein Pixelfragment in der Liste speichert. Während die Anti-Ali-
asing-Engine Pixelfragmente liest, führt sie eine Einfügesortierung derart aus, dass die Feldeinträge ein tiefen-
sortiertes Feld von Indizes auf Pixelfragmente und entsprechende Tiefenwerte umfassen. Sobald die Liste sor-
tiert ist, ruft das Fragmentauflösungsteilsystem tiefensortierte Fragmente durch Lesen jedes Eintrags im sor-
tierten Feld in der Reihenfolge ab, in der diese Einträge im Feld gespeichert sind. Dies ermöglicht dem Frag-
mentauflösungssystem, die RGB-Farbwerte, Alpha und Bedeckungsmasken für die Pixelfragmente in einer
Liste nach der Tiefe sortiert abzurufen.

[0612] Während es jeden Fragmentdatensatz in der Liste verarbeitet, verfolgt das Teilsystem die Pixelregio-
nen, die ein gemeinsames Alpha haben. Das Teilsystem bestimmt, ob jeder Fragmentdatensatz in der Liste
jede Pixelregion überlappt, die ein gemeinsames Alpha hat. Wenn ja, berechnet das Teilsystem die akkumu-
lierte Farbe für den Abschnitt der aktuellen Pixelregion, die sich mit dem aktuellen Fragment überlappt. Wenn
es eine Überlappung mit der aktuellen Pixelregion gibt, bestimmt das Teilsystem auch die neue Pixelregion
oder -regionen, die durch diese Überlappung hervorgerufen werden, und verfolgt diese.

[0613] Für ein aktuelles Fragment (1232) durchläuft das Teilsystem jedes Element in der In-Gebrauch-Maske.
Die Bedeckungsfeldschleifenkontrolle 1234 führt die In-Gebrauch-Maske (1236) und aktualisiert sie nach Not-
wendigkeit, während sie jeden Fragmentdatensatz verarbeitet. Während sie durch die Einträge in der In-Ge-
brauch-Maske schleift, kommuniziert die Bedeckungsfeldschleifenkontrolle mit der neuen Bedeckungskontrol-
le 1238 und steuert ihren Betrieb. Die neue Bedeckungskontrolle 1238 aktualisiert die Bedeckungsfeldmaske
und Alpha 1230 nach Notwendigkeit, wenn das aktuelle Fragmente die aktuelle Pixelregion überlappt.

[0614] Die neue Bedeckungskontrolle 1238 liest das gespeicherte akkumulierte Alpha (Aold) aus dem Bede-
ckungsfeld-Alpha, das mit dem aktuellen Eintrag in der In-Gebrauch-Maske verknüpft ist, und berechnet den
Alpha-Skalenfaktor (A·Aold), der zum Skalieren der Farbe und zum Berechnen von Alpha für nachfolgende
Fragmentschichten verwendet wird Anext (1 – A·Aold). Die neue Bedeckungskontrolle 1238 überträgt den Al-
pha-Skalenfaktor (A·Aold) auf die Skalen- und Akkumulationskontrolle 1246 zur Verwendung beim Skalieren
der Farbdaten des aktuellen Fragments. Die neue Bedeckungskontrolle 1238 berechnet auch das Alpha für
nachfolgende Schichten, Anext (1 – A·Aold), und berechnet es zusammen mit seiner entsprechenden Bede-
ckungsfeldmaske im Bedeckungsfeld 1230.

[0615] Für jede Pixelregion mit einem gemeinsamen akkumulierten Alpha bestimmt das Fragmentauflö-
sungsteilsystem, ob das aktuelle Fragment die aktuelle Pixelregion überlappt, indem der Schnitt der Bede-
ckungsmasken des Fragments und der Pixelregion gesucht wird.

[0616] Wenn das aktuelle Fragment die aktuelle Pixelregion überlappt, 1) berechnet das Teilsystem die akku-
mulierte Farbe für den überlappten Abschnitt der Pixelregion, 2) aktualisiert das Teilsystem das In-Ge-
brauch-Element und die entsprechende Bedeckungsfeldmaske und Alpha (Bededeckungsfeld-Alpha) für die-
ses In-Gebrauch-Element.

[0617] Die Skalen- und Akkumulationskontrolle 1246 berechnet die akkumulierte Farbe für jede eindeutige
Pixelregion, die vom aktuellen Fragment bedeckt wird. Die Skalen- und Akkumulationskontrolle umfasst einen
Bedeckungsskalierer 1240, einen Farbskalierer 1242 und einen Farbakkumulator 1244. Der Bedeckungsska-
lierer 1240 berechnet einen Bedeckungsskalenfaktor (Zahl der Teilpixelorte in der aktuellen Pixelregion, die
vom aktuellen Fragment bedeckt wird/Gesamtzahl der Teilpixelorte·A·Aold). Der Farbskalierer 1242 liest dann
die Farbwerte (RGB) für das aktuelle Fragment (1232) und multipliziert sie mit dem Bedeckungsskalenfaktor
aus dem Bedeckungsskalierer 1240. Zum Schluss addiert der Farbakkumulator 1244 die skalierten Farben zu
den akkumulierten Farben, um die aktualisierten akkumulierten Farbwerte zu berechnen.

[0618] Wenn das aktuelle Fragment die aktuelle Pixelregion überlappt, aktualisiert die Bedeckungsfeldschlei-
fenkontrolle 1234 die In-Gebrauch-Maske 1236, so dass sie einen Eintrag umfasst, der der neuen Pixelregion
entspricht. Damit kann nur das existierende In-Gebrauch-Element überschrieben oder ein neues erzeugt wer-
den. Die Bedeckungsfeldschleifenkontrolle weist auch die neue Bedeckungskontrolle 1238 an, die Bede-
ckungsfeldmaske 1230 auf die Bedeckung der neuen Pixelregion zu aktualisieren und das akkumulierte Alpha
für diese neue Pixelregion einzustellen. Die neue Bedeckungskontrolle 1238 stellt einen neuen Alpha-Bede-
ckungsfeldeintrag, der der neuen Pixelregion entspricht, auf Anext ein.
80/147

DE 696 36 599 T2 2007.08.23
[0619] Wenn das aktuelle Fragment nur einen Abschnitt einer Pixelregion bedeckt (statt sie ganz zu überlap-
pen), dann erzeugt die neue Bedeckungskontrolle 1238 zwei neue Pixelregionen: 1) einen Abschnitt der Pixel-
region, die das aktuelle Fragment überlappt, und 2) einen Abschnitt der Pixelregion, die vom aktuellen Frag-
ment nicht bedeckt wird. In diesem Fall berechnet das Teilsystem die Bedeckung für den nicht bedeckten Ab-
schnitt und stellt das Alpha dafür ein, welches dasselbe wie die ursprüngliche Pixelregion bleibt. Um dies zu
erreichen, aktualisiert die Bedeckungsfeldschleifenkontrolle 1234 die In-Gebrauch-Maske 1236 und weist die
neue Bedeckungskontrolle 1238 an, die Bedeckungsfeldmaske 1230 zu aktualisieren. Der Bedeckungsfeld-Al-
phaeintrag, der dieser zweiten Pixelregion entspricht, bleibt derselbe wie bei der aktuellen Pixelregion (Aold),
weil sie durch das aktuelle Fragment nicht verändert wird.

[0620] Wenn der Ansatz, der oben beschrieben wird, wiederholt wird, durchschleift das Teilsystem jeden
In-Gebrauch-Eintrag für das aktuelle Fragment und berechnet den Effekt, falls vorhanden, des aktuellen Frag-
ments auf jede Pixelregion. Es wiederholt dann den Prozess für nachfolgende Fragmente in der Liste, bis die
Liste leer ist.

[0621] Der Klemm- und Einstellblock 1248 führt das Festhalten der akkumulierten Farbe auf dem richtigen
Bereich (dies wird auf Grund des Rundens, das zu Farben oder Alphawerten führen kann, die den 8-Bitbereich
verlassen, im Bedeckungsskalierblock benötigt) und eine Anpassung für Fehler aus, die durch das Skalieren
eines Wertes durch eine 8-Bit-Binärzahl, die 1 repräsentiert, eingeführt werden. Eine Anpassung für diese Art
von Fehler kann unter einigen Umständen notwendig sein, weil ein Wert von 1 tatsächlich durch den Hexwert
„FF" repräsentiert wird. Mit anderen Worten, ein Alphabereich von 0 bis 1 wird durch einen Bereich von 8 Bit-
zahlen von 00 bis FF repräsentiert. Wenn man eine Zahl x mit FF multipliziert, muss das Ergebnis also x sein.
Die Anpassung stellt sicher, dass das Ergebnis der Multiplikation mit FF ordentlich auf x gerundet wird.

[0622] Der Rückkopplungsweg 1250 zu den Pixelpuffern besteht, um einen Modus zu unterstützen, bei dem
aufgelöste Pixelwerte in die Pixelpuffer zurück gespeichert werden. Das ermöglicht das Mehrfachrendern an
aufgelösten Pixeldaten, ohne einen Chunk von aufgelösten Daten zum gemeinsamen Speicher außerhalb des
Tilers zu übertragen.

[0623] Wenn das Fragmentauflösungsteilsystem nicht im Rückkopplungsmodus ist, dann überträgt der
Klemm- und Einstellblock 1248 die aufgelösten Pixeldaten in die Blockeinspeicherungspuffer über den Daten-
weg 1252, der in Fig. 36 gezeigt wird. Diese Blockeinspeicherungspuffer werden dazu verwendet, aufgelöste
Pixeldaten zu puffern, bevor sie in 8×8-Pixelblöcke komprimiert werden.

Texturabbildung

[0624] Das Bildverarbeitungssystem umfasst eine Reihe von fortgeschrittenen Texturabbildungsmerkmalen.
Seine Unterstützung für die Texturabbildung umfasst die anisotrope Filterung von Texturdaten. Das System
kann die anisotrope Filterung von Texturdaten in Echtzeit ausführen.

[0625] Wir beginnen mit der Beschreibung einiger Begriffe, die die Grundlage für unseren Ansatz zur aniso-
tropen Filterung bilden, und beschreiben dann eine Implementierung mit mehr Details.

[0626] Texturabbildung bezeichnet die Abbildung eines Bildes auf eine Fläche. Schwierige Details auf der
Oberfläche eines Objektes sind unter Verwendung von Polygonen oder anderen geometrischen Grundelemen-
ten sehr schwierig zu modellieren, und dies vergrößert sehr den Rechenaufwand für das Objekt. Texturabbil-
dung ermöglicht einem Bildverarbeitungssystem, feine Details effizient auf der Oberfläche eines Objektes dar-
zustellen. Eine Texturabbildung ist eine digitale Abbildung, die wir auch als das „Quellbild" bezeichnen. Die
Textabbildung ist normalerweise rechteckig geformt und hat ihren eigenen (u, v)-Koordinatenraum. Einzelne
Elemente der Texturabbildung werden als „Texel" bezeichnet. Bei der Texturabbildung wird eine Textur oder
ein "Quellbild" auf ein Zielbild abgebildet.

[0627] Bei digitalen Bildern werden die Quell- und Zielbilder an diskreten Punkten abgetastet, normalerweise
auf einem Punktgitter mit ganzzahligen Koordinaten. Im Quellbild befinden sich die Texel an ganzzahligen Ko-
ordinaten im (u, v)-Koordinatensystem. Im Zielbild befinden sich die Pixel in ähnlicher Weise an ganzen Koor-
dinaten im (x, y)-Koordinatensystem.

[0628] Eine geometrische Transformation beschreibt, wie ein Punkt aus dem Quellbild auf das Zielbild abge-
bildet wird. Die Inverse dieser Transformation beschreibt, wie ein Punkt im Zielbild zurück auf das Quellbild
abgebildet wird. Der Bildprozessor kann diese inverse Transformation verwenden, um festzustellen, wo im
81/147

DE 696 36 599 T2 2007.08.23
Quellbildfeld der Texel eine Pixelintensität herkommen sollte. Die Intensität an diesem Punkt im Quellbild kann
dann auf der Basis der benachbarten Texeldaten bestimmt werden. Ein Punkt im Ziel, der zurück in das Quell-
bild abgebildet wird, fällt nicht notwendigerweise exakt auf ganzzahlige Koordinaten eines Texels. Um die In-
tensität an diesem Punkt festzustellen, werden die Bilddaten aus benachbarten Texeln berechnet.

[0629] Da die Quellbildintensitäten nur an diskreten Werten bekannt sind, werden Werte aus benachbarten
Texeln interpoliert und die resultierenden Daten werden dann durch ein Tiefpassfilter geschickt. Im allgemeinen
ist die Vorgehensweise folgendermaßen. Zuerst wird ein Punkt aus dem Zielbild in das Quellbild abgebildet.
Dann werden Texeldaten interpoliert, um die Intensität an dem Punkt, der in das Quellbild abgebildet wird, zu
rekonstruieren. Zum Schluss wird ein Tiefpassfilter angewendet, um Raumfrequenzen im Quellbild zu entfer-
nen, die in einen zu hohen Bereich transformiert werden, um ordentlich im diskreten Zielbild neu abgetastet zu
werden. Dieses Tiefpassfilter wird manchmal als Anti-Aliasing-Filter bezeichnet, weil es hohe Frequenzen ent-
fernt, die sich wegen der erneuten Abtastung als Wellen von niedrigerer Frequenz maskieren oder ausgeben.
Dieses Konzept wird detaillierter unten beschrieben.

[0630] Fig. 37 ist ein Beispiel, das illustriert, wie ein Pixel 1300 auf der Fläche 1302 des Zielbildes auf die
Fläche der Texturabbildung 1304 abgebildet wird. In diesem Beispiel wird das Pixel aus dem Zielbild als Qua-
drat 1306 dargestellt. Die Rückwärtsabbildung dieses Pixels 1300 auf die Texturabbildung 1304 ist ein Viereck
1308, das die komplexere Form annähert, in die das Pixel sich auf Grund der Krümmung der Zielfläche 1302
abbildet. Nach dem Abbilden des Pixels 1300 auf die Textur wird ein Intensitätswert aus Texelsamples inner-
halb des Vierecks berechnet. In einer Ausführungsform zum Beispiel wird der Intensitätswert eines Pixels
durch Bilden einer gewichteten Summe von Texeln im Viereck berechnet.

[0631] Sowohl die Interpolation als auch die Tiefpassfilterfunktionen können zu einem einzigen Filter kombi-
niert werden, das durch Bilden eines gewichteten Durchschnitts der Punkte implementiert wird, die jeden in-
versen Transformationspunkt in der Quelle umgeben, der auf einen diskreten Punkt im Ziel abgebildet wird.
Wir bezeichnen die Region von Punkten, die zu diesem gewichteten Mittel beitragen, als Fußspur des Filters.
Die Fußspur hat im allgemeinen eine andere Form in der Quelle für jeden Zielpunkt. Da die Fußspur für jeden
einzelnen Punkt variieren kann, ist es schwierig, die richtige Form der Fußspur und die Gewichtungsfaktoren
zu finden, um sie auf die Punkte im Innern der Fußspur anzuwenden. Einige konventionelle Systeme nehmen
die Näherung der Verwendung derselben Form für das Filter in jedem Punkt vor, obwohl die Größe des Filters
variiert werden darf. Diese Vorgehensweise kann jedoch zu Verzerrungen im Endbild führen.

[0632] Wir bezeichnen Filter, die entweder quadratische oder kreisförmige Fußspuren von variabler Größe
erzeugen, als isotrope Filter. Ein Kreis ist wirklich isotrop, da er in allen Richtungen dieselbe Länge hat. Wir
betrachten auch das Quadrat als im wesentlichen isotrop, da es horizontal und vertikal dieselben Abmessun-
gen hat.

[0633] Die isotrope Filterung kann Verzerrungen bewirken, weil sie ziemlich grobe Näherungen verwendet. In
Bereichen des Quellbildes, wo die tatsächliche Fußspur sehr länglich ist, ist eine im wesentlichen isotrope
Form, wie zum Beispiel ein Quadrat oder ein Kreis, ein armseliger Ersatz für die Fußspur, selbst wenn die Grö-
ße einstellbar ist. Da ein isotropes Filter nur eine Form hat, kann es Texel in einer länglichen Fußspur nicht
genau erfassen. Ein quadratisches Filter zum Beispiel kann Texelwerte aus einer vierseitigen Fußspur, die in
einer Richtung gestreckt ist, nicht genau abtasten. Das Abtasten von Texeln außerhalb der tatsächlichen Fuß-
spur kann zu Unschärfe führen. Werden Texel in der Fußspur andererseits nicht abgetastet, so kann dies be-
wirken, dass das Endbild auf Grund des Aliasing funkelt.

[0634] In einem Ansatz, der MIP-(multum in parvo – vieles an einer kleinen Stelle) Abbildung genannt wird,
wird eine Reihe von Texturabbildungen bei verschiedenen Auflösungen gespeichert. Wenn zum Beispiel die
eine Textur bei 512 × 512 Texeln liegt, kann das System auch Texturen bei 256 × 256, 128 × 128, 64 × 64 usw.
speichern. Ein Bildverarbeitungssystem kann diese Texturabbildungen bei variierender Auflösung verwenden,
um die beste Anpassung für ein isotropes Filter an die Fußspur des Pixels zu finden, das in die Textur abge-
bildet wird. Der Bildprozessor findet zuerst die zwei Texturen, bei denen die Fußspur in der Größe der Größe
des Filters am nächsten kommt. Er führt dann eine Interpolation für die zwei Texturen aus, die am besten zur
Fußspur passen, um zwei Zwischenwerte zu berechnen. Zum Schluss interpoliert er zwischen den zwei Zwi-
schenwerten, um einen Wert für das Pixel zu finden.

[0635] Während die MIP-Abbildung einige verbesserte Ergebnisse für isotrope Filter liefern kann, verursacht
sie immer noch Verzerrungen, besonders wo die Fußspur in einer Richtung gestreckt ist. Ein genaueres Filter
für die tatsächliche Fußspur in jedem einzelnen Punkt kann durch die Kaskade eines im wesentlichen isotropen
82/147

DE 696 36 599 T2 2007.08.23
Rekonstruktionsfilters erzeugt werden, das mit einem im wesentlichen isotropen Resamplingfilter gefaltet ist,
dessen Form durch die Inverse der geometrischen Transformation verzerrt wurde. Diese Verzerrung kann ei-
nen hohen Grad von Anisotropie eines Filters erzeugen. Wenn die Transformation das Bild in einer Richtung
viel stärker als in einer anderen Richtung kontrahiert, dann dehnt oder streckt die inverse Transformation die
Fußspur in der Quelle in Richtung der maximalen Kontraktion im Ziel. Dies kann auftreten, wenn man eine ebe-
ne Fläche aus einer Perspektive in der Nähe des Randes betrachtet. Beim isotropen Filtern würde das Endbild
in diesem Beispiel verzerrt erscheinen, weil das Filter die Texelwerte in der gestreckten Fußspur nicht richtig
abtasten kann.

[0636] Eine Ausführungsform unseres anisotropen Filterverfahrens umfasst die folgenden zwei Schritte: 1)
Finden einer ungefähren Richtung der maximalen Ausdehnung der Filterfußspur, und 2) Anwenden eines
Resamplingfilters in dieser Richtung auf die Ausgabe eines Rekonstruktionsfilters, um ein zusammengesetztes
Filter zu erzeugen, das der tatsächlichen Fußspur stärker angepaßt ist.

[0637] Die Richtung der maximalen Ausdehnung kann aus der Rückwärtsabbildung eines Filters vom Zielbild
auf die Texturabbildung abgeleitet werden. In der perspektivischen Abbildung zum Beispiel (wo ein Objekt in
Richtung des Fluchtpunktes abklingt), ist die Abbildung einer n × n-Pixel-Fußspur vom Zielbild auf die Textur
ein Viereck. Die Linie der Anisotropie wird als Linie definiert, die die Richtung der maximalen Ausdehnung hat
und durch einen Punkt vom Ziel geht, der in das Quellbild zurück abgebildet wird.

[0638] In dieser Ausführungsform bildet der Bildprozessor die Filterfußspur zurück auf die Textur ab, um die
Richtung der maximalen Ausdehnung zu finden. Er lässt dann ein interpolierendes Filter (das Rekonstruktions-
filter, das oben angeführt wird) entlang der Richtung der maximalen Ausdehnung durchlaufen. Um einen Pixel-
wert für das Zielbild zu berechnen, wendet er ein Resamplingfilter auf die Ausgabe des interpolierenden Filters
an.

[0639] In einer Implementierung ist das Resamplingfilter ein eindimensionales digitales Filter, das entlang der
Linie der Anisotropie angewendet wird. Für dieses Filter kann eine Reihe von eindimensionalen Filtern ver-
wandt werden. Daher beabsichtigen wir nicht, den Geltungsbereich unserer Erfindung auf ein spezielles eindi-
mensionales Filter zu beschränken.

[0640] In dieser Implementierung ist das interpolierende Filter ein zweidimensionales isotropes Filter. Wie
beim Resamplingfilter beabsichtigen wir nicht, den Geltungsbereich unserer Erfindung auf eine spezielle Art
von interpolierendem Filter zu beschränken. Das zweidimensionale isotrope Filter ist nur eine mögliche Imple-
mentierung. Das interpolierende Filter liefert Werte an Positionen entlang der Linie der Anisotropie durch Inter-
polieren dieser Werte aus benachbarten Texeldaten. Die einzelnen Positionen, an denen das interpolierende
Filter auf das Quellbild angewendet wird, können durch vertikales oder horizontales schrittweises Fortschreiten
in Inkrementen und Interpolieren eines Wertes auf der Linie der Anisotropie an jeder Position bestimmt werden.
Wenn zum Beispiel die Linie der Anisotropie mehr vertikal als horizontal ist, wäre eine Vorgehensweise, schritt-
weise in vertikaler oder V-Richtung im (u, v)-Koordinatensystem der Textur fortzuschreiten. Wenn analog zum
Beispiel die Linie der Anisotropie mehr horizontal als vertikal ist, wäre eine andere Vorgehensweise, schrittwei-
se in horizontaler oder U-Richtung im (u, v)-Koordinatensystem der Textur fortzuschreiten.

[0641] Ein mögliches Verfahren zum Fortschreiten entlang der Linie der Anisotropie ist, das interpolierende
Filter an diskreten Orten entlang dieser Linie, mit konstanten, ungefähr der Länge der minimalen Ausdehnung
entsprechenden Abständen, anzuwenden. Speziell können die Abtastwerte entlang der Linie der Anisotropie
mit konstanten Intervallen bei einem Abstand angeordnet sein, der etwa gleich der Länge der minimalen Aus-
dehnung ist, wobei die Mittelabtastung sich an dem Punkt befindet, wo die Pixelmitte in die Texturabbildung
abbildet wird. Sobald diese Abtastorte berechnet sind, kann ein isotropes Filter wiederholt an jeder Stelle an-
gewendet werden. Ein isotropes Filter kann zum Beispiel an den Abtastorten angewendet werden, um die In-
terpolation mit benachbarten Textursamples für jedes Sample auszuführen, wobei die Größe des Filters von
der Länge der minimalen Ausdehnung abhängt. Eine spezielle Möglichkeit, dieses Verfahren zu implementie-
ren, besteht darin, eine dreilinige Interpolation an jedem diskreten Ort entlang der Linie der Anisotropie vorzu-
nehmen.

[0642] Nach der Anwendung der Ausgabewerte des interpolierenden Filters auf das digitale Filter ist der re-
sultierende Pixelwert ein gewichtetes Mittel der Ausgabewerte des interpolierenden Filters entlang der Linie
der Anisotropie. Obwohl wir spezielle Arten hier beschreiben, können die Arten von Filtern, die zur Annäherung
der Rekonstruktions- und Resamplingfunktionen verwendet werden, variieren.
83/147

DE 696 36 599 T2 2007.08.23
[0643] Die Fig. 38A-D illustrieren ein Beispiel für den Prozess der anisotropen Filterung. Die Fig. 38A-D illus-
trieren die Texel in einer Texturabbildung (1400A-D) und zeigen, wie ein anisotropes Filter erzeugt werden
kann. Der erste Schritt besteht darin, eine Filterfußspur im Quellbild zu berechnen, indem eine inverse Trans-
formation an der Filterfußspur für einen Pixelort im Zielbild ausgeführt wird. In diesem Beispiel wird die Filter-
fußspur in der Textur 1400A als Viereck 1402 illustriert.

[0644] Im nächsten Schritt wird die inverse Transformationsmatrix an einem Punkt angenähert, der in das
Quellbild abgebildet wird. In diesem Beispiel, das in Fig. 38B gezeigt wird, wird diese Annäherung durch ein
Parallelogramm 1404 dargestellt. Dieses Parallelogramm nähert die viereckige Fußspur an. Diese Annähe-
rung kann im allgemeinen durch Berechnen der Jacobi-Matrix für die inverse geometriche Transformation ge-
funden werden. Obwohl wir das Beispiel für Zwecke der Erläuterung vereinfacht haben, kann dasselbe Kon-
zept auf Fälle erweitert werden, wo die inverse Transformation komplexer ist. Dies wird aus zusätzlichen De-
tails ersichtlich, die unten bereitgestellt werden.

[0645] Wieder mit Bezug auf das Beispiel in Fig. 38, kann die Größe der Rekonstruktions- und Resampling-
filter aus der Jacobi-Matrix abgeleitet werden. In Fig. 38B repräsentieren wir die Jacobi-Matrix als Parallelo-
gramm 1404.

[0646] Die Länge des Parallelogramms kann dazu verwendet werden, die Größe des Resamplingfilters zu be-
stimmen. In diesem Beispiel wird die Länge entlang der Richtung der maximalen Ausdehnung 1406 gemessen,
die wir als Richtung der Anisotropie bezeichnen. Die Höhe des Parallelogramms kann analog dazu verwendet
werden, um die Größe des Rekonstruktionsfilters zu bestimmen. Die Höhe ist die Richtung der minimalen Aus-
dehnung 1408.

[0647] Fig. 38C zeigt ein Rechteck 1406, das das Parallelogramm annähert. Die Abmessungen dieses
Rechtecks entsprechen der Höhe und Länge des Parallelogramms. Das Rechteck repräsentiert das „balken-
förmige" Filter, das zum Annähern der Anisotropie der tatsächlichen Filterfußspur verwendet wird.

[0648] Fig. 38D illustriert, wie dieses „balkenförmige" Filter berechnet werden kann. Die Fußspur des Rekon-
struktionsfilters wird durch das Quadrat 1408 repräsentiert. In diesem Beispiel hat das Rekonstruktionsfilter
eine quadratische Fußspur und ist daher ein im wesentlichen isotropes Filter. Um Werte entlang der Linie der
Anisotropie zu berechnen, die durch die Linie 1410 in Fig. 38D repräsentiert wird, werden Werte aus Texeln
(1400D) interpoliert, die die Linie der Anisotropie 1410 umgeben. Das Rekonstruktionsfilter ist daher ein inter-
polierendes Filter, wie oben bemerkt. Die Ausgabe dieses Filters wird dann auf ein eindimensionales Filter an-
gewendet, das das Resamplingfilter darstellt. Die Linie der Anisotropie 1410 repräsentiert die Orientierung des
Resamplingsfilters. Die Werte, die berechnet werden, während das Rekonstruktionsfilter entlang der Linie der
Anisotropie bewegt wird, werden summiert, um den Pixelwert für das Zielbild zu berechnen.

[0649] Die oben beschriebene Vorgehensweise kann in einer Reihe von Weisen implementiert werden. Sie
kann in Hardware und Software implementiert werden. Um die anisotrope Echtzeitfilterung zu unterstützen,
wird das Verfahren vorzugsweise in Hardware implementiert. Eine Ausführungsform dieses Ansatzes wird auf
dem Tiler-Chip implementiert.

[0650] Im Tiler, der in den Fig. 9A-C illustriert wird, wird die anisotrope Filterung im Scanumwandlungsblock
und in der Texturfilterengine unterstützt. Der Scanumwandlungsblock berechnet Kontrollparameter für die
Resampling- und Rekonstruktionsfilter, indem die Jacobi-Matrix der partiellen Ableitungen der inversen geo-
metrischen Transformation an einem Punkt im Quellbild gebildet wird. Die Jacobi-Matrix repräsentiert den line-
aren Teil der besten, lokal affinen Approximation an die inverse Transformation. Spezieller gesagt, ist sie der
Abschnitt erster Ordnung der Taylor-Reihe in zwei Dimensionen der inversen Transformation, die um den ge-
wünschten Quellpunkt zentriert ist.

[0651] Der lineare Teil der affinen Transformation von Texturkoordinaten auf Bildschirmkoordinaten hat eine
2×2-Jacobi-Matrix J; die inverse Transformation von Bildschirmkoordinaten auf Texturkoordinaten hat eine Ja-
cobi-Matrix J–1. Die Längen der zwei Spaltenvektoren der Matrix J–1 sind die Längen der zwei Seiten des Par-
allelogramms für ein Pixel der Einheitsgröße. Die Komponenten der zwei Spaltenvektoren in der inversen Ja-
cobi-Matrix bestimmen die Längen der zwei Seiten des Parallelogramms.

[0652] Die Transformationen nehmen die Form von Attributkantengleichungen an, die der Scanumwand-
lungsblock bewertet, während er jedes Grundelement scannt. Die folgende Gleichung ist typisch:
84/147

DE 696 36 599 T2 2007.08.23
Fs/w = As/wx + Bs/wy

wobei am Pixelort (x, y) gilt:
1) Fs/w ist der Wert der Texturkoordinate (s), dividiert durch die homogene Koordinate (w).
2) As/w ist der Wert des Gradienten der Texturkoordinate (s), dividiert durch die homogene Koordinate (w) in
Bezug auf die x-Koordinate.
3) Bs/w ist der Wert des Gradienten der Texturkoordinate (s), dividiert durch die homogene Koordinate (w) in
Bezug auf die y-Koordinate. F, A und B sind alle relativ zum Scanstartpunkt des Grundelementes normali-
siert. Der Scanumwandlungsblock bewertet die Kantengleichungen für 1/w, s/w und t/w.

[0653] Die Elemente der inversen Jacobi-Matrix ergeben die Längen der Seite und die Fläche des Parallelo-
gramms. Die Fläche des annähernden Rechtecks und die lange Seite des Rechtecks sind dasselbe: die kurze
Seite des Rechtecks ist die kurze Seite des Parallelogramms, multipliziert mit dem Sinus des Winkels zwischen
der x- und der y-Achse im (s, t)-Koordinatensystem.

[0654] Die Ableitungen für die inverse Jacobi-Matrix leiten sich direkt aus dem Fs, As und Bs der Kantenglei-
chungen an jeder Texturkoordinate (s, t) ab.

[0655] Nachdem die Jacobi-Matrix gefunden ist, sucht der Scanumwandlungsblock den längeren der zwei
Spaltenvektoren. Die Richtung dieses Vektors stellt die Richtung der Linie der maximalen Ausdehnung oder
Linie der Anisotropie dar. Das Verhältnis der Länge dieses Spaltenvektors zur Länge des anderen wird als An-
isotropieverhältnis bezeichnet. Die Länge des eindimensionalen anisotropen Filters wird aus diesem Verhältnis
bestimmt. Die Länge des längeren Vektors dividiert durch das Anisotropieverhältnis steuert die Breite des Re-
konstruktionsfilters.
85/147

DE 696 36 599 T2 2007.08.23
[0656] Die längere Seite wird zur Hauptachse und kann dazu verwendet werden, die zu inkrementierende
Bildschirmkoordinate zu bestimmen, wenn man schrittweise (Takt) in Texturkoordinaten fortschreitet. Sie kann
auch dazu verwendet werden, die Größe der Inkremente zu bestimmen.

[0657] Die Schrittgößen DsDc und DtDc sind Grundeingaben in die Texturfilterengine, die das Abtasten und
Filtern ausführt. Diese Schritte erzeugen eine Orientierung, die um (höchstens) sieben Grad ungenau ist, was
im Fall eines gleichseitigen Parallelogramms auftritt.

[0658] In dieser Implementierung nähert die Länge des kürzeren Vektors normalerweise die Breite des Re-
konstruktionsfilters an, wenn nicht das Anisotropieverhältnis eine vorgegebene Schranke übersteigt. Wenn die
Schranke überstiegen wird, dann wird das Anisotropieverhältnis in der Rechnung durch diese vorgegebene
Schranke ersetzt. Durch das Begenzen des Verhältnisses in dieser Weise wird verhindert, dass das Filter mehr
als eine vorgegebene Zahl von Texelpunkten zur Berechnung eines Wertes verwendet. Damit setzt die Schran-
ke für das Verhältnis eine Grenze dafür, wie lange das Rekonstruktionsfilter benötigt, um einen Ausgabewert
zu berechnen.

[0659] Ein weiterer einschränkender Fall tritt auf, wenn die Länge eines der Vektoren kleiner als eins ist. In
diesem Fall wird die tatsächliche Länge des Vektors durch die Länge von eins ersetzt. Dies stellt sicher, dass
die Filterlängen niemals für die Ausführung der Interpolation zu kurz sind.

[0660] Nachdem der Scanumwandlungsblock die Kontrollparameter für die Filter berechnet hat, berechnet er
dann einen Pixelwert. Das eindimensionale digitale Filter berechnet ein gewichtetes Mittel der Ausgabe aus
dem interpolierenden Filter. Das interpolierende Filter berechnet diese Ausgabe durch Interpolieren der Texel-
daten aus dem Quellbild, das neben der Linie der Anisotropie liegt.

[0661] Die Größe des interpolierenden Filters kann so eingestellt werden, dass sie die wahre Fußspurbreite
annähert, die in einer Richtung senkrecht zu der der maximalen Ausdehnung gemessen wird. Wenn die Fuß-
spur groß ist, was in Bereichen des Bildes auftritt, die die Transformation schrumpft, müssen viele Punkte des
Quellbildes mit den Gewichtungskoeffizienten des Filters multipliziert werden, um einen einzelnen Ausgabe-
punkt zu erzeugen, was zu einer sehr langsamen oder kostspieligen Implementierung führt.
86/147

DE 696 36 599 T2 2007.08.23
[0662] Wie oben vorgestellt, reduzieren existierende isotrope Filtersysteme die Berechnungszeit unter Ver-
wendung der MIP-Abbildung. MIP-Abbildung bezeichnet das Bilden einer Bildpyramide, die auf dem Quellbild
beruht, und die anschließende Verwendung der Bilder in dieser Pyramide, um die beste Anpassung für ein iso-
tropes Filter in einem Quellbild zu finden. Jede Ebene der Pyramide ist in der Abtastdichte im Vergleich zu der
darunterliegenden um einen Faktor von zwei in jeder Dimension reduziert. Der Boden der Pyramide ist das
originale Quellbild. Durch das Interpolieren eines Bildes mit reduzierter Abtastdichte wird ein ähnlicher Effekt
wie das Filtern des Originalbildes mit einem isotropen Filter erzeugt, dessen Fußspur relativ zu der des Inter-
polators um das Verhältnis der ursprünglichen Abtastdichte zur reduzierten Dichte vergrößert ist. Daher kann
die Potenz von zwei Vergrößerungen der Fußspur durch Auswählen der richtigen Ebene der Pyramide zum
Interpolieren erreicht werden. Jedes Vergrößerungsverhältnis kann durch Mischen der Ergebnisse von Inter-
polationen der zwei Pyramidenebenen erhalten werden, die das gewünschte Verhältnis einschließen.

[0663] In einer Ausführungsform kann die Größe des isotropen Filters durch Verwendung eines MIP-Abbil-
dungsansatzes modifiziert werden, um sie besser an die Länge der minimalen Ausdehnung anzupassen. Die
Größe des isotropen Filters, die aus der Analyse der Jacobi-Matrix bestimmt wird, kann zum Auswählen der
begrenzenden Pyramidenebenen und des Mischungsfaktors verwendet werden. In einer Implementierung ist
die Basispyramidenebene der ganzzahlige Teil von log Basis 2 der Filtergröße, und der Mischungsfaktor ist der
Bruchteil.

[0664] Ein spezifisches Beispiel hilft bei der Erläuterung der Operation der speziellen Implementierung, die
oben beschrieben wird. Wenn die gewünschte isotrope Größe 3 ist, dann ist log2 3 gleich 1,585. Der ganzzah-
lige Teil des Ergebnisses ist 1, was die Ebene 1 und 2 mit Dichte Reduzierungen von 2 bzw. 4 auswählt. Ebene
0 ist das originale Quellbild ohne Reduzierung. Der Mischungsfaktor ist 0,585.

[0665] In einer Implementierung verzögert die Texturfilterengine das Mischen. Zuerst wendet die Texturfilter-
engine 1D-Filter mit einer Länge an, die proportional zum Anisotropieverhältnis, auf den gewünschten Punkt
in jeder Ebene zentriert, ist. Sie mischt dann die Ausgabe von jeder Ebene.

[0666] In einer alternativen Implementierung schreitet die Texturfilterengine entlang der Linie der Anisotropie
fort und führt eine dreilineare Interpolation an diskreten Samples entlang dieser Linie aus. Die Texturfilterengi-
ne wendet dann das eindimensionale Filter auf das Ergebnis der dreilinearen Interpolation bei jedem Sample
an.

[0667] Zusätzlich zur Steuerung der Größe des interpolierenden Filters kann auch die Größe des Resamp-
lingfilters gesteuert werden. In einer Implementierung verwendet die Texturfilterengine Tabellen von Koeffizi-
enten für 1D-Resamplingfilter verschiedener Größen und Mischungen zwischen ihnen, um ein Filter einer Grö-
ße zwischen den in der Tabelle angegebenen zu erzeugen. Eine besonders nützliche Implementierung für
Hochgeschwindigkeits-Hardware besteht darin, die Filterlängen als Potenzen von zwei zu wählen und den Fil-
terimpulsprofilen eine dreieckige oder trapezförmige Form zu geben. Die individuellen Filter haben dann sehr
einfache Koeffizienten und der Aufwand für die Multiplikation wird auf ein paar Additionen und Verschiebungen
in der Hardware reduziert.

[0668] Das Folgende ist eine Tabelle von Koeffizienten für diese Filter für die ersten vier Potenzen von 2:

[0669] In diesem Beispiel wird der log Basis 2 des Anisotropieverhältnisses verwendet, um eine Ebene und
einen Mischungsfaktor auszuwählen. Wenn die Ebene über 4 hinausgeht, dann verwendet die Texturfilteren-
gine das letzte Filter und nimmt keine Mischung vor. In diesem Beispiel haben alle Filter den Einheitsgain, was
bedeutet, dass sich alle ihre Koeffizienten zu eins addieren. Multiplikationen mit 1, 2, 4 und 8 können durch
Verschiebungsoperationen ausgeführt werden.

[0670] Multiplikationen mit 3, 5 und 6 können durch eine einfache Addition plus einer Verschiebungsoperation
87/147

DE 696 36 599 T2 2007.08.23
ausgeführt werden. Und schließlich können Multiplikationen mit 7 durch eine einzelne Subtraktion und Ver-
schiebungsoperationen ausgeführt werden. Die Divisionen durch die Potenzen von zwei sind nur Verschiebun-
gen. Die Division durch 15 kann sehr gut durch die Multiplikation mit 1,00010001 Basis 2, gefolgt von einer
Verschiebung um 4 Stellen (Division durch 16) angenähert werden. Die Multiplikation sind nur zwei Additionen.

[0671] Der Ansatz, der oben beschrieben wird, ermöglich zwei Freiheitsgrade in der Steuerung des zusam-
mengesetzten Filters. In der Ausführungsform, die oben beschrieben wird, sind die Freiheitsgrade die Größen
der Filter in der Richtung minimaler und maximaler Ausdehnung. Dieser Ansatz erzeugt ein Bild mit viel weni-
ger Aliasing und Unschärfe ohne den Aufwand der Berechnung der wahren Fußspur an jedem Punkt, die das
Ergebnis einer stark nichtlinearen Abbildung sein kann. Dieser Ansatz nähert ein kontinuierliches Filter an, das
das tatsächliche Fußspurfilter entlang der Linie der Anisotropie abtastet. Es erreicht eine viel bessere Anpas-
sung an die tatsächliche Fußspur als ein Kreis oder Quadrat, weil es einen „balkenförmigen" Filter entlang der
Linie der Anisotropie ergibt. Wir haben dieses Verfahren in einem Echtzeit-Grafikrenderingsystem implemen-
tiert. Dieses Verfahren unterstützt also die qualitativ hochwertige Texturabbildung mit anisotroper Filterung,
während trotzdem gleichzeitig Echtzeitraten erreicht werden, d.h. Berechnung eines neuen Teilbildes von Bild-
daten bei einer Rate größer als 10 Hz und speziell bei Auffrischungsraten des Anzeigegerätes (z.B. 75 Hz).

[0672] Fig. 39 ist ein Schema, das eine Implementierung der Texturfilterengine (401, Fig. 9B) illustriert. Die
Texturfilterengine liest Gruppen von Texturreferenzdaten aus einer Pixelschlange (Texturreferenzdatenschlan-
ge 399 in Fig. 9B) und berechnet Alpha- und Farbwerte (Alpha und RGB-Farbfaktoren) oder Schattenkoeffizi-
enten für diese Gruppen. Diese Implementierung unterstützt sowohl Textur- als auch Schattenfilterung. Für
Texturabbildungsoperationen berechnet die Texturfilterengine Texturfarben und Alpha und filtert die Texturfar-
ben, um Alpha- und Farbfaktoren zu berechnen. Für Schattierungsoperationen führt die Texturfilterengine Tie-
fenvergleiche aus und filtert die resultierenden Werte, um Schattendämpfungskoeffizienten (s) zu berechnen.

[0673] Die Pixelschlange empfängt Texturreferenzdaten von einem Rastergenerator (wie zum Beispiel dem
Scanumwandlungsblock 395 in Fig. 9B) und fungiert als FIFO-Puffer für die Texturfilterengine 401. Die „Abtas-
tung gültig" Daten geben an, welche Samples oder Abtastungen in einem Satz von Textur- oder Schattenab-
bildungselementen, die aus dem Texturcache abgerufen wurden, für die aktuelle Filteroperation gültig sind.

[0674] Für eine Texturabbildungsoperation umfassen die Texturreferenzdaten die Koordinaten eines Pixelor-
tes, der in die Textur (s, t) abgebildet wird. Zur Unterstützung der dreilinearen MIP-Abbildung umfassen die Ein-
gaben die (s, t)-Koordinaten für die nächstliegenden MIP-Abbildungsebenen (hi, lo) und die Detailebene
(LOD). Die „Akkumulationskala"-Daten werden verwendet, um die Gewichtungsfaktoren zu steuern, die auf die
Ausgabe der Farbkomponenteninterpolatoren angewendet werden. Die „Erweiterungskontroll"-Daten sind Da-
tenbits, die die Texturerweiterungsmodi steuern. Die Texturerweiterungsmodi weisen die Texturfilterengine an,
entweder eine Klemm-, Wickel- oder Reflektionsoperation auszuführen, wenn eine Texturanforderung sich au-
ßerhalb des Texturabbildungsbereichs befindet.

[0675] Für Schattierungsoperationen umfassen die Eingaben einen Abtastindex, (s, t)-Koordinaten eines Pi-
xelortes, der in die Schattenabbildung abgebildet wird, und ein Beta, das die Tiefe des geometrischen Grund-
elementes von der Lichtquelle für einen gegebenen Pixelort repräsentiert. Der Abtastindex betrifft die spezielle
Weise, in der das Schattenfilter auf Schattenabbildungselemente oder „Abtastungen" einwirkt. In dieser spezi-
ellen Implementierung arbeitet die Texturfilterengine mit 8 Abtastungen pro Taktzyklus. Im Fall der Schattenfil-
terung entsprechen diese Abtastungen einem 4×2-Gitter. Das Schattenfilter arbeitet zum Beispiel mit insge-
samt 2 Sätzen von Abtastungen für den 4×4-Modus (4×2 + 4×2 = 4×4) und 8 Sätzen für den 8×8-Modus. Im
Fall des 4×4-Modus wendet das Schattenfilter ein 3×3-Filter vier Mal an, jeweils auf die oberen linken, oberen
rechten, unteren linken und unteren rechten 3×3-Blöcke in der insgesamt 4×4-Fußspur. Im ersten Taktzyklus
verarbeitet es das obere 4×2-Gitter, und im zweiten Takt verarbeitet es das untere 4×2-Gitter im 4×4-Block.
Der Abtastindex ist ein Index, der zum Identifizieren des Satzes von 8 Abtastungen verwendet wird, die gerade
verarbeitet werden. Der Abtastindex durchläuft 2 Taktzyklen für den 4×4-Fall und 8 Taktzyklen für den 8×8-Fall
und stellt fest, welche 4×2-Teilmenge gerade verarbeitet wird.

[0676] Wie in Fig. 41 gezeigt, umfasst die Texturfilterengine einen Keygenerator 1310, Bruchteilkontrolle
1312, Farbkomponenteninterpolator 1314, Schattenfilterakkumulator 1316 und Akkumulator und Postprozes-
sor 1318.

[0677] Bei einer Texturabbildungsoperation liest der Keygenerator 1310 die (s, t)-Koordinaten und LOD und
erzeugt die Cache-Keys, um die entsprechenden Texturdaten aus dem Texturcache abzurufen. Der Texturca-
che gibt Alpha und die RGB-Komponenten als Reaktion auf die Texturanforderungen zurück. Die Bruchteilkon-
88/147

DE 696 36 599 T2 2007.08.23
trolle 1312 empfängt die (s, t)-Koordinaten als Eingabe und steuert die Operation der bilinearen und trilinearen
Interpolatoren im Farbkomponenteninterpolator 1314. Der Farbkomponenteninterpolator 1314 interpoliert die
Texelabtastwerte, um interpoliertes Alpha und RGB-Komponenten zu berechnen. Der Akkumulator und Post-
prozessor 1318 skaliert dann die Alpha- und RGB-Komponenten, akkumuliert die skalierten Komponenten und
gibt Alpha- und Farbfaktoren aus, die einem Pixelort entsprechen, der gerade verarbeitet wird. Diese Alpha-
und Farbfaktoren sind Farb- und Alphawerte, die in die Pixelengine als Eingabe für den Texturmodulationspro-
zess eingegeben werden.

[0678] Bei der anisotropen Texturabbildunglaufen die Farbkomponenteninterpolatoren 1314 entlang der Linie
der Anisotropie und führen eine dreilineare Interpolation bei jedem Schritt aus. Der Akkumulator 1318 fungiert
als eindimensionales Filter, das Alpha und die Farbkomponenten skaliert und dann die skalierten Komponen-
ten akkumuliert. In einer speziellen Implementierung skaliert der Akkumulator 1318 Alpha und die Farbkompo-
nenten unter Verwendung der trapezförmigen oder Dreiecksfilterung auf der Basis des Anisotropieverhältnis-
ses. In jedem Fall skaliert der Akkumulator Komponenten an den entfernten Rändern des Resamplingfilters,
um eine Dämpfung (roll off) an den Filterkanten anzunähern. Um eine trapezförmige Filterung zu erreichen,
entspricht der Skalenfaktor einer linearen Dämpfung an den Filterkanten und ist bei Schritten zwischen den
Filterkanten konstant.

[0679] In einer speziellen Implementierung werden die Skalenfaktoren für Schritte entlang der Linie der Ani-
sotropie folgendermaßen berechnet. Für ein Anisotropieverhältnis von 1:1 bis 2:1 wendet der Akkumulator ei-
nen Gewichtungsfaktor von 0,5 bei jedem Schritt das anisotropen Walkers an. Für ein Anisotropieverhältnis
von 2:1 und darüber gewichtet der Akkumulator Komponenten mit 1,0/Anisotropie für Schritte n < (Anisotropie
– 1)/2, und gewichtet Komponenten mit 0,5(Anisotropie – 2n)/Anisotropie für n größer als oder gleich (Aniso-
tropie – 1)/2. Das Anisotropieverhältnis in diesem speziellen Beispiel ist das Verhältnis der langen zur kurzen
Seite des bestmöglich angepassten Rechtecks für eine inverse Jacobi-Matrix. Die inverse Jacobi-Matrix ist
eine Matrix von partiellen Ableitungen der geometrischen Transformation aus Betrachtungsraumkoordinaten
in Texturkoordinaten (d.h. von (x, y)- in (s, t)-Koordinaten). Die Linie der Anisotropie ist eine Linie durch die (s,
t)-Koordinaten in Richtung des längeren Spaltenvektors der inversen Jacobi-Matrix.

[0680] Für Schattierungsoperationen liest der Keygenerator 1310 die (s, t)-Koordinaten des Pixelorts, der in
die Schattenabbildung abgebildet wird, und erzeugt Cache-Keys. Der Texturcache gibt die Schattenabbil-
dungselemente (Shadels) an den Schattenfilterakkumulator 1316 zurück. Das Schattenfilter empfängt den
Schattenindex und Beta als Eingabe und vergleicht die Tiefe der aktuellen Gruppe der Pixeldaten im hellen
Raum mit den Tiefenwerten in der Filterfußspur, um eine Schattenmaske zu erzeugen. Der Schattenfilterakku-
mulator summiert Elemente in der Schattenmaske und teilt die Summe durch die Zahl der Abtastwerte. Bei
dieser Implementierung erreicht die Texturfilterengine das glatte Abfallen an den Kanten der Filterfußspur
durch Anwenden eines trapezförmigen Filters auf das Ergebnis des Tiefenvergheichsschritts. Um das trapez-
förmige Filter zu implementieren, berechnet das Schattenakkumulationsfilter vier vorläufige Schattenkoeffizi-
enten durch viermaliges Anwenden eines 3×3- oder 7×7-Kastenfilters auf eine 4×4- bzw. 8×8-Filterfußspur und
leitet die vier vorläufigen Koeffzienten an einen der Farbinterpolatoren 1314 weiter. Dieser Farbinterpolator
1314 führt eine bilineare Interpolation an den vorläufigen Koeffizienten aus, um einen endgültigen Schattenko-
effizienten zu berechnen.

[0681] Wie oben vorgestellt, liest der Keygenerator 1310 (s, t)-Koordinaten aus der Pixelschlange und er-
zeugt Cache-Keys, um Texturdaten aus dem Texturcache abzurufen. Fig. 40 ist ein Schema, das den Keyge-
nerator detaillierter illustriert. Auf der Grundlage der (s, t)-Koordinaten in den Hi- und Lo-MIP-Abbildungen (den
zwei nächsten MIP-Traps) berechnet der Keygenerator die Texturabtastorte in den Hi- und Lo-MIP-Abbildun-
gen (1340). Der Keygenerator berechnet dann die Cache-Keys aus diesen Abtastwerten (1342). Der Keyge-
nerator überträgt die Cache-Keys, (s, t)-Koordinaten und LOD für die Hi- und Lo-MIP-Abbildungsebenen auf
den Texturcache, der die angeforderten Texturabtastwerte zurückgibt. Wenn natürlich nur eine Texturabbil-
dungsebene der Details verwendet wird, erzeugt der Keygenerator Keys nur für eine Texturabbildung.

[0682] Die Bruchteilkontrolle 1312 in Fig. 39 steuert die Interpolation zwischen den Abtastungen in einer Tex-
tur- oder Schattenabbildung und zwischen MIP-Abbildungsebenen für die trilineare Interpolation. Zur Unter-
stützung der bilinearen Interpolation steuert die Bruchteilkontrolle das Gewichten zwischen den Abtastungen
in einer Textur- oder Schattenabbildung. Zur Unterstützung der trilinearen Interpolation weist die Bruchteilkon-
trolle die Interpolatoren an, zwischen den vier nächsten Abtastwerten auf einen Punkt zu interpolieren, der in
die zwei nächstgelegenen MIP-Abbildungsebenen (bilineare Interpolation) abgebildet wird, und weist dann ei-
nen linearen Interpolator an, das Ergebnis aus den zwei MIP-Abbildungsebenen zu mischen. Die Bruchteilkon-
trolle empfängt die LOD und (s, t)-Koordinaten für die Hi- und Lo-MIP-Abbildungsebenen als Eingabe und steu-
89/147

DE 696 36 599 T2 2007.08.23
ert die Interpolation zwischen Abtastwerten auf jeder MIP-Ebene und zwischen MIP-Abbildungsebenen.

[0683] Der Farbkomponenteninterpolator 1314 umfasst Interpolatoren für Alpha und RGB-Farbkomponenten.
Fig. 41 ist ein Schema, das einen der vier Interpolatoren detaillierter illustriert. Dieser Interpolator handhabt die
Farbkomponenteninterpolation für eine Komponente und führt eine bilineare Interpolation an den Schattenko-
effizienten aus. Die anderen Farbkomponenteninterpolatoren handhaben nur eine Farbkomponente.

[0684] Der Farbkomponenteninterpolator empfängt Texel oder Schattenabbildungselemente aus dem Tex-
turcache und wendet sie auf eine Bank von Multiplexern 1350 an. Wenn sie in die Bank der Multiplexer 1350
eingegeben werden, geben die Abtastwert-gültigen Daten an, welche der Abtastwerte gültig sind, d.h. diejeni-
gen, die für die aktuelle Textur- oder Schattierungsoperation verwendet werden sollten. Auf der Basis der Ab-
tastwert-gültigen Steuersignale wählen die Multiplexer entweder den eingehenden Abtastwert oder eine Tex-
turhintergrundfarbe 1352 aus. Für Schattierungsarbeiten leitet der Farbkomponenteninterpolator 1314 Schat-
tenelemente an den Schattenfilterakkumulator 1316 weiter. Die drei Farbkanäle werden dazu verwendet, ein
einzelnes 24-Bit breites Schattenabbildungselement zu bilden, und der Alphakanal wird bei Schattierungsope-
rationen ignoriert. Für Texturabbildungsoperationen überträgt der Farbkomponenteninterpolator Textabtast-
werte in die Stufen der linearen Interpolatoren 1354, 1365 und 1358.

[0685] Bei der trilinearen Interpolation verwendet der Farbkomponenteninterpolator drei Stufen von linearen
Interpolatoren, zwei zum Interpolieren zwischen Abtastwerten auf jeder MIP-Abbildungsebene (1354 und
1356) und eine weitere zum Mischen der Ergebnisse aus jeder MIP-Ebene (1358). Der Farbkomponentenin-
terpolator führt eine bilineare Interpolation aus, um Schattenkoeffizienten zu kombinieren, die aus 4 Filterfuß-
spuren berechnet wurden. Wie in Fig. 43 gezeigt, verwendet er die letzten zwei Stufen (1356 und 1358), um
diese bilineare Interpolation auszuführen. Eine zweite Bank von Multiplexern 1360 wählt zwischen vier Schat-
tenkoeffizienten und der Ausgabe der ersten Stufe von linearen Interpolatoren 1354 aus. Sowohl bei der Tex-
turabbildung als auch bei Schattierungsoperationen überträgt der Farbkomponenteninterpolator die Ausgabe
der Interpolatorstufen auf den Akkumulator und Postprozessor 1318.

[0686] Der Schattenfilterakkumulator 1316 empfängt einen Abtastwerteindex und Lichttiefenwert (Beta) aus
der Pixelschlange, vergleicht den Lichttiefenwert mit den Schattenabbildungselementen, die vom Texturcache
zurückgegeben werden, um Schattenmasken zu erzeugen, und filtert die Schattenmasken, um vorläufige
Schattenkoeffizienten zu berechnen. Fig. 44 ist ein Schema, das den Schattenfilterakkumulator detaillierter il-
lustriert. Tiefenkomparatoren im Schattenfilterakkumulator vergleichen die Tiefe der Schattenelemente in der
Filterfußspur und erzeugen eine Schattenmaske. In diesem speziellen Fall beträgt die Schattenmaske 8 Bit mit
booleschen Werten, was einem 4×2-Abschnitt der Filterfußspur entspricht.

[0687] Die Fußspurkontrolle 1372 wählt den aktuellen 4×2-Abschnitt der gesamten Fußspur auf der Basis des
Abtastindexwertes aus der Pixelschlange aus. Die Fußspurkontrolle überträgt eine Fußspurmaske auf jeden
der vier Schattenbeitragsblöcke auf der Basis des Taktzyklus und des Filtermodus (2×2, 4×4 oder 8×8). Die
Fußspurmaske zeigt an, welche der 8 Schattenmaskenelemente bei dem aktuellen Taktzyklus für jedes der
vier Kastenfilter in den Modi 4×4 und 8×8 gültig sind. Im Modus 2×2 gibt der Schattenfilterakkumulator vier boo-
lesche Werte aus, die anzeigen, ob jeder der vier nächstgelegenen Abtastwerte im Schatten ist oder nicht.

[0688] Der Schattenfilterakkumulator wendet vier Kastenfilter (z.B. 3×3 oder 7×7) auf die Abtastwerte in der
Filterfußspur an. Jeder der Schattenbeitragsblöcke kombiniert die Fußspurmaske und die Schattenmaske, um
festzustellen, welche Elemente der Schattenmaske für den aktuellen Taktzyklus gültig sind, und summiert dann
die gültigen Elemente. Nach dem Akkumulieren der gültigen Elemente in der Schattenmaske für die ganze Fil-
terfußspur teilen die Schattenbeitragsblöcke die Summe durch die Zahl der Abtastwerte, um vorläufige Schat-
tenkoeffizienten zu berechnen, die in eine bilineare Interpolationsstufe im Farbinterpolator übertragen werden.
Dieser Farbinterpolator interpoliert dann zwischen den vorläufigen Koeffizienten, um einen endgültigen Schat-
tenkoeffizienten zu berechnen.

[0689] Der Akkumulator und Postprozessor 1318 empfängt Alpha- und Farbkomponenten aus dem Farbkom-
ponenteninterpolator 1314 und berechnet Farb- und Alphafaktoren für jede Gruppe der Texturreferenzdaten.
Für Schattierungsoperationen verwendet die Texturfilterengine einen Kanal (Alpha oder RGB), um einen
Schattendämpfungskoeffizienten zu berechnen. Die Schattenfilterungslogik kann auch separat implementiert
werden. Fig. 43 ist ein Schema, das den Akkumulator und Postprozessor detaillierter illustriert. Wie gezeigt,
hat jede Farbkomponente (Alpha und RGB) einen Skalierer und Akkumulator. Der Skalierer und Akkumulator
1380 für jede Komponente empfängt die Akkumulationsskala und eine Farbkomponente als Eingabe und ska-
liert als Reaktion die Farbkomponente und addiert sie zu einem akkumulierten Komponentenwert im Kompo-
90/147

DE 696 36 599 T2 2007.08.23
nentensummenblock 1382. Bei der Anisotropiefilterung zum Beispiel wichten die Skalier- und Akkumulations-
blöcke 1380 die Ausgabe des Rekonstruktionsfilters (trilinearer Interpolator), während die Texturfilterengine die
Linie der Anisotropie abläuft. Nach dem letzten Schritt geben die Skalierer und Akkumulatoren für Alpha und
RGB-Komponenten die endgültigen Farbkomponentenfaktoren aus.

[0690] Für Schattierungsarbeiten umgeht der Skalier- und Akkumulationsblock die Multiplikationsoperation,
addiert aber einen Umgebungsversatz hinzu. Der Umgebungsversatz stellt sicher, dass selbst Objekte, die
vollkommen im Schatten liegen, sichtbar sind. Ein Schattenkoeffizient von zum Beispiel 1 bedeutet vollständig
beleuchtet, ein Schattenkoeffizient von 0 bedeutet vollständig im Schatten. Wenn Farben mit einem Koeffizi-
enten von null multipliziert werden würden, wäre das Objekt an diesem Pixelort nicht sichtbar. Daher wird ein
Versatz addiert und die Schattenkoeffizienten werden auf 1 festgehalten, so dass die versetzten Schattenko-
effizienten vom Versatzwert bis 1 reichen.

[0691] Der Schattenpostprozessor 1384 erledigt die Vervielfältigung der skalaren Schattendämpfung ,s' für
alle drei Farbkanäle und (bedingungsweise) für den Alphakanal. Es gibt auch eine bedingte Ergänzung (s = 1
– s) der Schattendämpfung, um ein Schattenbild zu berechnen. Ein Schattenbild ist ein Feld von Schattenko-
effizienten oder ein Feld der Komplemente von Schattenkoeffizienten, die zum Schattieren eines Gsprites ver-
wendet werden können.

[0692] Zum Schluss wählt die Multiplexerstufe 1386 entweder die Schattenkoeffizienten für Schattierungso-
perationen oder RGB- und Alphakomponenten für Texturabbildungsoperationen aus. Zusammengefasst, die
Texturfilterengine 401 führt sowohl Schattierungs- als auch Texturierungsoperationen aus. Sie leitet das Ergeb-
nis der Texturabbildungsoperationen an eine Texturmodulationsstufe. Texturmodulation umfasst normalerwei-
se das Multiplizieren der RGB-Farbwerte aus dem Texturfilter mit einer interpolierten Farbe oder Farbwerten,
die im Scanumwandlungsblock berechnet wurden. Neben grafischen Objekten mit Lichtdurchlässigkeit kann
die Texturmodulation auch das Multiplizieren des Alphawerts aus dem Texturfilter mit einem interpolierten Al-
phawert aus dem Scanumwandlungsblock umfassen. Je nach der Implementierung kann die Texturmodulation
in der Texturfilterengine (Element 401 in Fig. 9B) oder der Pixelengine (Element 406 in Fig. 9b) implementiert
werden. Sie kann auch im Scanumwandlungsblock (Element 394 in Fig. 9A oder Element 397 in Fig. 9C) im-
plementiert werden. In einer Implementierung kombiniert die Texturfilterengine 401 einen interpolierten Wert
mit dem gefilterten Wert, um einen zusammengesetzten Wert zu berechnen. Die Pixelengine 406 stellt dann
fest, ob ein zusammengesetzter Wert gespeichert oder mit einer entsprechenden RGB-Komponente oder ei-
ner Alphakomponente, die in den Pixel- oder Fragmentpuffern gespeichert ist, für einen entsprechenden Pi-
xelort kombiniert werden soll.

[0693] Im Fall von Schattierungsoperationen können die Schattenkoeffizienten auf die RGB- und Alphawerte
an entsprechenden Pixelorten in den Pixel- oder Fragmentpuffern angewendet oder auf interpolierte RGB-
oder Alphawerte, die während des aktuellen Durchlaufs erzeugt und in einer Schlange gepuffert werden, an-
gewendet werden. Wenn zum Beispiel ein Objekt keine Textur hat, die mit ihm verknüpft ist, kann der Textur-
modulator in der Texturfilterengine 401 interpolierte und unaufgelöste RGB- und Alphawerte, die das beleuch-
tete Bild repräsentieren und in der Texturreferenzdatenschlange 391 (Fig. 9B) gespeichert sind, mit den Schat-
tendämpfungskoeffizienten aus dem Akkumulator und Postprozessor multiplizieren.

[0694] Wir haben verschiedene Aspekte eines Bildverarbeitungssystems, seine Architektur und damit ver-
bundene Verfahren mit Bezug auf mehrere Ausführungsformen beschrieben. Obwohl wir mehrere Ausfüh-
rungsformen detailliert beschrieben haben, ist es nicht unsere Absicht, unsere Erfindung auf diese speziellen
Ausführungsformen zu beschränken. Unsere neuartige Architektur kann zum Beispiel auf eine Reihe von
Hardware-Implementierungen angewendet werden, einschließlich von und ohne Einschränkung auf Compu-
tersysteme, die von tragbaren Geräten bis zu Arbeitsplatzrechnern reichen, Spielestationen, Settopboxen,
Grafikverarbeitungshardware, Grafikverarbeitungssoftware und Videobearbeitungsgeräte. Abwandlungen un-
serer Systeme und Verfahren können in Hardware oder Software oder einer Kombination beider implementiert
werden.

[0695] In Anbetracht der vielen möglichen Ausführungsformen, in die die Prinzipien unserer Erfindung umge-
setzt werden können, betonen wir, dass die detailliert dargestellten Ausführungsformen, die oben beschrieben
werden, nur einen erläuternden Charakter besitzen und nicht als Einschränkung für den Geltungsbereich un-
serer Erfindung angesehen werden dürfen. Vielmehr beanspruchen wir, dass alle solche Ausführungsformen,
die kommen mögen, innerhalb des Geltungsbereichs der folgenden Ansprüche unserer Erfindung liegen.
91/147

DE 696 36 599 T2 2007.08.23
Patentansprüche

1. Verfahren zum Erzeugen von Bildern zur Anzeige in einem Vollbild oder einem anderen Betrachtungs-
raum einer physikalischen Ausgabevorrichtung, wobei das Verfahren die Schritte umfaßt:
Identifizieren eines oder mehrerer potentiell sichtbarer Objekte in einer Szene, wobei jedes von dem einen oder
den mehreren potentiell sichtbaren Objekten mehrere geometrische Grundelemente aufweist und entspre-
chende zweidimensionale Bereiche des Betrachtungsraums umfaßt, um das eine oder die mehreren potentiell
sichtbaren Bilder darin zu rendern;
Aufteilen jedes zweidimensionalen Bereichs unter mehreren Bildabschnitten oder Stücken;
Aufteilen der geometrischen Grundelemente des einen oder der mehreren potentiell sichtbaren Objekte unter
den mehreren Bildabschnitten oder Stücken durch Zuweisen geometrischer Grundelemente des Objektes zu
Stücken des entsprechenden zweidimensionalen Bereichs;
Serielles Rendern des einen oder der mehreren Objekte durch serielles Rendern der Stücke des entsprechen-
den zweidimensionalen Bereichs, wobei jedes entsprechende Stück durch Rendern der dem Stück zugeord-
neten geometrischen Grundelemente gerendert wird;
Speichern der gerenderten Stücke für Objekte in der Szene in einem wahlfrei zugänglichen Stück-Format;
Abrufen der gerenderten Stücke für die Objekte im Stück-Format;
Zusammensetzen von Pixeln aus den gerenderten Stücken der Objekte, um ein Anzeigebild zu berechnen,
das die Objekte in der Szene wiedergibt; und
Wiederholen der obigen Schritte zur Verarbeitung und Anzeige nachfolgender Anzeigebilder.

2. Verfahren nach Anspruch 1, wobei die Objektgeometrie für jedes Stück der Szene seriell gerendert wird,
um das gerenderte Bild zu produzieren.

3. Verfahren nach Anspruch 1, wobei die Objektgeometrie für die zumindest zwei Stücke in einen gemein-
samen Tiefenpuffer gerendert wird.

4. Verfahren nach einem der Ansprüche 1 bis 3, wobei die Szene mehrere Objekte umfaßt und der Schritt
des Sortierens die Objektgeometrie unter mehreren Bildabschnitten oder Stücken den Schritt eines Zuweisens
von geometrischen Grundelementen jedes der mehreren Objekte zu Stücken entsprechender zweidimensio-
naler Bildbereiche umfaßt.

5. Verfahren nach Anspruch 4, wobei der Schritt des seriellen Renderns der zumindest zwei Stücke um-
faßt: serielles Rendern der mehreren Objekte, wobei das serielle Rendern jedes der mehreren Objekte ein se-
rielles Rendern der geometrischen Grundelemente der mehreren Objekte in die Stücke der entsprechenden
zweidimensionalen Bildbereiche umfaßt, um getrennte Bildschichten für jeden der zweidimensionalen Bildbe-
reiche zu erzeugen.

6. Verfahren nach Anspruch 1, wobei die Stücke sich an variablen und adressierbaren Abschnitten des Be-
trachtungsraums befinden.

7. Verfahren nach Anspruch 1, wobei der Aufteilungsschritt den Schritt eines Aufteilens des zweidimensi-
onalen Bildbereichs unter Stücken an nicht festgelegten Orten des Betrachtungsraums umfaßt.

8. Verfahren nach Anspruch 1, wobei die Stücke rechteckige Bereiche des Betrachtungsraums sind.

9. Verfahren nach Anspruch 1, wobei der Schritt des seriellen Renderns der Objektgeometrie für die zu-
mindest zwei Stücke die Schritte umfaßt:
Rastern geometrischer Grundelemente für ein Stück, um Pixeldaten zu erzeugen, und dann Auflösen der Pi-
xeldaten für das eine Stück; und
Wiederholen der Rasterungs- und Auflösungsschritte für nachfolgende Stücke.

10. Verfahren nach Anspruch 9, wobei der Rasterungsschritt für ein erstes Stück ausgeführt wird, während
der Auflösungsschritt für ein zweites Stück ausgeführt wird.

11. Graphik-Rendersystem zum seriellen Rendern einer Objektgeometrie in einer Szene in einen Betrach-
tungsraum, wobei das System umfaßt:
einen Speicher zum Speichern gerendeter Bilddaten;
einen Bildvorprozessor, der zur Transformation der Objektgeometrie zum Betrachtungsraum betrieben werden
kann und zur Aufteilung der transformierten Objektgeometrie unter mehreren Abschnitten oder Stücken des
92/147

DE 696 36 599 T2 2007.08.23
Betrachtungsraums betrieben werden kann, wobei das Objekt mehrere geometrische Grundelemente umfaßt,
die unter den mehreren Bildabschnitten oder Stücken aufgeteilt sind durch Zuweisen der geometrischen Grun-
delemente zu den mehreren Bildabschnitten oder Stücken; und
einen Bildprozessor, der mit dem Bildvorprozessor zum Empfang der transformierten Objektgeometrie für die
mehreren Stücke kommuniziert, der zum seriellen Rendern der transformierten Objektgeometrie für die meh-
reren Stücke betreibbar ist, um Pixelwerte für Pixelorte im Betrachtungsraum durch serielles Rendern der Stü-
cke des Betrachtungsraums zu berechnen, wobei jedes entsprechende Stück durch Rendern der diesem
Stück zugeordneten geometrischen Grundelemente gerendert wird; und mit dem Speicher kommuniziert, um
die Pixelwerte für die mehreren Stücke im Speicher zu speichern; und
wobei gerenderte Stücke für Objekte in der Szene in einem wahlfrei zugänglichen Stück-Format gespeichert
werden, im Stück-Format abgerufen und zusammengesetzt werden, um ein Anzeigebild zu berechnen, das die
Objekte in der Szene wiedergibt.

12. System nach Anspruch 11, wobei der Bildprozessor eine Rasterungsvorrichtung und einen Raste-
rungspuffer umfaßt, wobei die Rasterungsvorrichtung zum Rastern der transformierten Objektgeometrie für die
mehreren Stücke und zur Erzeugung von Pixeldaten für die mehreren Stücke, mit jeweils einem Stück zu ei-
nem Zeitpunkt, betrieben werden kann, und zur Speicherung der Pixeldaten für das eine Stück im Rasterungs-
puffer betrieben werden kann.

13. System nach Anspruch 12, wobei der Bildprozessor eine Pixelmaschine umfaßt, die mit der Raste-
rungsvorrichtung zum Empfangen der Pixeldaten kommuniziert und mit dem Rasterungspuffer zur Speiche-
rung ausgewählter Pixeldaten im Rasterungspuffer kommuniziert und zur Durchführung von Tiefenvergleichs-
operationen zwischen den von der Rasterungsvorrichtung erzeugten Pixeldaten und den gewählten, im Ras-
terungspuffer gespeicherten Pixeldaten betrieben werden kann.

14. System nach Anspruch 13, wobei die gewählten Pixeldaten Pixelfragmentaufzeichnungen für Pixelorte
für die Stücke umfassen, die verarbeitet wurden, wobei die Pixelfragmentaufzeichnungen Farb-, Tiefen- und
Bedeckungsdaten umfassen und das System des weiteren eine Antialiasing-Engine in Kommunikation mit
dem Rasterungspuffer zur Auflösung von Pixelfragmenten für Pixelorte im Stück, das bearbeitet wurde, und
zum Berechnen der Pixelwerte umfaßt.

15. System nach Anspruch 14, wobei der Rasterungspuffer doppelt gepuffert ist, und in dem die Antiali-
asing-Engine zur Auflösung von Pixelfragmentaufzeichnungen für ein erstes Stück betreibbar ist, während die
Rasterungsvorrichtung Pixeldaten für ein zweites Stück erzeugt.

16. System nach Anspruch 11, wobei der Bildvorprozessor ein programmierter Datenprozessor ist, der zur
Sortierung der Geometrie von Objekten in einer Szene unter mehreren Stücken betrieben werden kann.

17. System nach Anspruch 16, wobei der programmierte Datenprozessor zur Transformation von Umgren-
zungsfeldern der Objekte in Betrachtungsraumkoordinaten betreibbar ist, zur Unterteilung der transformierten
Umgrenzungsfelder in zwei oder mehrere Stücke betreibbar ist und zur Zuordnung von geometrischen Grun-
delementen der Objekte zu den zwei oder mehreren, den Objekten entsprechenden Stücken betreibbar ist.

Es folgen 54 Blatt Zeichnungen
93/147

DE 696 36 599 T2 2007.08.23
Anhängende Zeichnungen
94/147

DE 696 36 599 T2 2007.08.23
95/147

DE 696 36 599 T2 2007.08.23
96/147

DE 696 36 599 T2 2007.08.23
97/147

DE 696 36 599 T2 2007.08.23
98/147

DE 696 36 599 T2 2007.08.23
99/147

DE 696 36 599 T2 2007.08.23
100/147

DE 696 36 599 T2 2007.08.23
101/147

DE 696 36 599 T2 2007.08.23
102/147

DE 696 36 599 T2 2007.08.23
103/147

DE 696 36 599 T2 2007.08.23
104/147

DE 696 36 599 T2 2007.08.23
105/147

DE 696 36 599 T2 2007.08.23
106/147

DE 696 36 599 T2 2007.08.23
107/147

DE 696 36 599 T2 2007.08.23
108/147

DE 696 36 599 T2 2007.08.23
109/147

DE 696 36 599 T2 2007.08.23
110/147

DE 696 36 599 T2 2007.08.23
111/147

DE 696 36 599 T2 2007.08.23
112/147

DE 696 36 599 T2 2007.08.23
113/147

DE 696 36 599 T2 2007.08.23
114/147

DE 696 36 599 T2 2007.08.23
115/147

DE 696 36 599 T2 2007.08.23
116/147

DE 696 36 599 T2 2007.08.23
117/147

DE 696 36 599 T2 2007.08.23
118/147

DE 696 36 599 T2 2007.08.23
119/147

DE 696 36 599 T2 2007.08.23
120/147

DE 696 36 599 T2 2007.08.23
121/147

DE 696 36 599 T2 2007.08.23
122/147

DE 696 36 599 T2 2007.08.23
123/147

DE 696 36 599 T2 2007.08.23
124/147

DE 696 36 599 T2 2007.08.23
125/147

DE 696 36 599 T2 2007.08.23
126/147

DE 696 36 599 T2 2007.08.23
127/147

DE 696 36 599 T2 2007.08.23
128/147

DE 696 36 599 T2 2007.08.23
129/147

DE 696 36 599 T2 2007.08.23
130/147

DE 696 36 599 T2 2007.08.23
131/147

DE 696 36 599 T2 2007.08.23
132/147

DE 696 36 599 T2 2007.08.23
133/147

DE 696 36 599 T2 2007.08.23
134/147

DE 696 36 599 T2 2007.08.23
135/147

DE 696 36 599 T2 2007.08.23
136/147

DE 696 36 599 T2 2007.08.23
137/147

DE 696 36 599 T2 2007.08.23
138/147

DE 696 36 599 T2 2007.08.23
139/147

DE 696 36 599 T2 2007.08.23
140/147

DE 696 36 599 T2 2007.08.23
141/147

DE 696 36 599 T2 2007.08.23
142/147

DE 696 36 599 T2 2007.08.23
143/147

DE 696 36 599 T2 2007.08.23
144/147

DE 696 36 599 T2 2007.08.23
145/147

DE 696 36 599 T2 2007.08.23
146/147

DE 696 36 599 T2 2007.08.23
147/147

	Titelseite
	Beschreibung
	Patentansprüche
	Anhängende Zeichnungen

