要約:

電極活性物質、リチウムイオン電池、電極活性物質の放電状態の検出方法及び電極活性物質の製造方法

Abstract:

Provided are an electrode active material, a lithium-ion battery, and a method for detecting a discharge state of the electrode active material with which it is possible to achieve high load characteristics, high cycle characteristics, and a high energy density, to ensure high levels of safety and stability, and to allow the final state of discharge to be easily detected. For this Kind of electrode active material (1), the surface of a particle (2) made of Li$_x$A$_{1-x}$D$_4$ (wherein A represents one or two kinds selected from a group comprising Mn and Co; R represents one or more kinds selected from a group comprising P, Si, and S; and $0 < x \leq 1$) is coated with a coating layer (3) containing Li$_x$E$_{5-x}$ (wherein E represents either Fe or F and Ni; G represents one or more kinds selected from a group comprising P, Si, and S; and $0 < y \leq 1$) and a second region which exhibits a drop in the discharge potential in a discharge curve, that follows a first region which exhibits a substantially fixed discharge potential, includes a third region that exhibits a discharge potential fluctuation rate lower than an average discharge potential fluctuation rate of a second region.
高荷負特性、高サイクル特性及び高エネルギー密度を実現し、かつ高い安全性、安定性を有すると共に、放電末期の状態を容易に検出することが可能な電極活性物質及びリチウムイオン電池並びに電極活性物質の放電状態の検出方法が提供される。そのような電極活性物質（1）は、Li_{m} A_{n} D_{0}（但し、A は Mn, Co の群から選択される 1 種または 2 種、D は P, Si, S の群から選択される 1 種または 2 種以上、0 < w ≤ 4, 0 < x ≤ 1.5) からなる粒子（2）の表面を、Li_{y} E_{z} G_{0}（但し、E は、Fe, Fe 及び Ni, のいずれか、G は P, Si, S の群から選択される 1 種または 2 種以上、0 < y ≤ 2, 0 < z ≤ 1.5) を含む被覆層（3）により被覆しており、放電曲線の放電電位が略一定の第 1 の領域の後の放電電位が低下する第 2 の領域中に、この第 2 の領域の放電電位の平均変化率より放電電位の変化率が小さい第 3 の領域が存在する。
明細書

発明の名称:
電極活物質、リチウムイオン電池、電極活物質の放電状態の検出方法及び、
電極活物質の製造方法

技術分野

[0001] 本発明は、電極活物質、リチウムイオン電池、電極活物質の放電状態の検出方法、及び電極活物質の製造方法に関し、特に詳しくは、オリビン構造を有するリン酸塩系電極活物質の1種であり、負荷特性、サイクル特性及びエネルギー密度に優れたリチウムイオン電池の電極材料として用いる好適な電極活物質、この電極活物質を用いた電極を備えているリチウムイオン電池、この電極活物質の放電状態の検出方法、及び電極活物質の製造方法に関するものである。

本願は、2012年3月30日に、日本に出願された特願2012-078859号及び特願2012-078861号に基づき優先権を主張し、それらの内容をここに援用する。

背景技術

[0002] 近年、小型化、軽量化、高容量化が期待される電池として、リチウムイオン電池等の非水電解液系の二次電池が提案され、実用に供されている。

リチウムイオン電池は、リチウムイオンを可逆的に脱挿入可能な性質を有する正電極及び負極と、非水系の電解質により構成されている。

リチウムイオン電池は、従来の鉛電池、ニッケルカドミウム電池、ニッケル水素電池等の二次電池と比較して、軽量かつ小型で高エネルギーを有しており、携帯用電話機、ノート型パーソナルコンピュータ等の携帯用電子機器の電源として用いられているが、近年、電気自動車、ハイブリッド自動車、電動工具等の高出力電源としても検討されている。これらの高出力電源として用いられる電池の電極活物質には、高速の充放電特性が求められている。また、発電負荷の平滑化、定置用電源、バックアップ電源等の大型電池への応
用も検討されており、長期の安全性、信頼性と共に、資源的に豊富で安価であること（資源量の問題が無いこと）も重要視されている。

リチウムイオン電池の正電極は、正電極活性物質と称されるリチウムイオンを可逆的に脱抑制可能な性質を有するリチウム含有金属酸化物、導電助剤及びバインダーを含む電極材料により構成されており、この電極材料を集電体と称される金属箔の表面に塗布することにより正電極とされている。

このリチウムイオン電池の正電極活性物質としては、通常、コバルト酸リチウム（LiCoO₂）が用いられているが、その他、ニッケル酸リチウム（LiNiO₂）、マンガン酸リチウム（LiMn₂O₄）、リン酸鉄リチウム（LiFePO₄）等のリチウム（Li）化合物が用いられている。

これらのリチウム化合物のうち、コバルト酸リチウムやニッケル酸リチウムは、人体や環境に対する毒性、資源量、充電状態の不安定性等の種々の問題点を有している。また、マンガン酸リチウムは、高温下で電解液中へ溶解するという問題点が指摘されている。

そこで、近年では、長期の安全性、信頼性に優れた、リン酸鉄リチウムに代表されるオリビン構造を有するリノ酸塩系電極活性物質が注目を集めている。

このリノ酸塩系電極活性物質は電子伝導性が十分ではないために、大電流の充放電を行うためには、粒子の微細化、導電性物質との複合化等さまざまな工夫が必要であり、多くの努力がなされている。

しかしながら、粒子の微細化や導電性物質を多量に用いた複合化を行った場合、電極密度の低下を招き、引いては電池の密度低下、即ち単位容積当たりの容量低下を引き起こしてしまうという問題点がある。そこで、この問題点を解決する方法として、電子導電性物質である炭素前駆体として有機物溶液を用い、この有機物溶液と電極活性物質粒子とを混合した後、乾燥し、得られた乾燥物を非酸化性雰囲気下にて熱処理し、有機物を炭化させることにより、電極活性物質粒子の表面を炭素で被覆する炭素被覆法が示出された。

この炭素被覆法は、電極活性物質粒子の表面に、必要最少限の量の炭素を極
めを効率良く被覆させることが可能で、電極密度を大きく低下させること無
く、導電性の向上を図ることができるという優れた特徴を有することから、
様々な提案がなされている。
一方、オリビン構造を有するリン酸マンガンリチウム (LiMnP0₄) や
リン酸コバルトトリチウム (LiCoPO₄) 等のリン酸塩系電極活物質では、
これらの元素 (Mn, Co) が有機物の炭化に対して負触媒作用を有するた
めに、良好な導電性膜を被覆させることは容易ではなかった。

そこで、このような問題点を解決するための手段の一つとして、負触媒性
活物質であるリン酸マンガンリチウム (LiMnP0₄) の表面を炭化触媒活
性の高い活物質であるリン酸鉄リチウム (LiFePO₄) で被覆する方法が
提案されている（特許文献 1）。この方法は、リン酸マンガンリチウム (Li
MnP0₄) やリン酸コバルトトリチウム (LiCoPO₄) 等の炭化負触媒作
用を有する電極活物質の表面に導電性被覆を形成するための有効な手段であ
る。

一方、本願の発明者等も同様の手法を独自に見出しており、同時に、より
効果的な手段として、炭化触媒活性を有する元素を有機物と混合した上で負
触媒性活物質を被覆し、加熱炭化する方法を提案している（特許文献 2）。

この方法によれば、炭化触媒活性元素は有機物を介して負触媒性活物質と
複合化しているので、有機物の加熱炭化過程においても、元素同士の拡散を
防止することができ、より少ない触媒量でも十分な炭化活性を有するものと
なる。よって、より高電位で反応するリン酸マンガンリチウム (LiMnP0₄)
やリン酸コバルトトリチウム (LiCoPO₄) 等の分率の低下を最小限
に抑えることが可能である。

先行技術文献

特許文献

特許文献 1 :国際公開第 2011/032264 号
特許文献 2 :特開 2011_181375 号公報
発明が解決しようとする課題

ところで、従来のリン酸マンガンリチウム（LiMnPO₄）の表面をリン酸鉄リチウム（LiFePO₄）で被覆する方法では、粒子の表面で負触媒性の元素からなる活物質と炭化触媒性の元素からなる活物質が直接接しているので、有機物を分解・炭化させる加熱条件下にて、これらの元素が容易に拡散してしまい、その結果、活物質の表面における炭化活性性元素濃度が低下してしまうこととなり、必ずしも十分ではない。そこで、この炭化活性性元素濃度の低下を防止するには、炭化活性性活物質の層厚のある程度厚くする必要があり、結果として、より高電位で反応するリン酸マンガンリチウム（LiMnPO₄）やリン酸コバルトリチウム（LiCoPO₄）等の分率が低下ししまい、十分な容量を発揮することができないという問題点がある。

また、リン酸マンガンリチウム（LiMnPO₄）やリン酸コバルトリチウム（LiCoPO₄）に代表されるオリビン構造の高電位の正極極材料は、高いエネルギー密度が期待できる一方で、その充放電応答が酸化相と還元相の二相反応で進行することが知られており、反応電位は放電の終端部までほぼ平坦である。このことは、高いエネルギーを取り出すためには有利であるが、一方、放電終了の直前まで電圧があまり低下しないので、実際に電池としてデバイスの電源に利用した場合、放電未期に急速に電圧が低下し、デバイスの作動不良を引き起こす危険性がある。

一方、リン酸塩系電極活物質の中でも、高い安全性及び安定性を有するリン酸マンガンリチウム（LiMnPO₄）やリン酸コバルトリチウム（LiCoPO₄）の利点を損なうことなく、容量検出に利用できる活物質としては、リン酸鉄リチウム（LiFePO₄）が最も優れている。しかしながら、このリン酸鉄リチウム（LiFePO₄）は、容量検出に用いる場合には少量でもよいが、少量の添加では、上述した理由により導電性を付与するための炭素質導電塩被覆を得るのには困難である。そこで、大量に添加すると、炭素質導電性被覆を得ることもできるが、高電圧を有する活物質の分率が低下し、放電容量が低下してしまうという問題点がある。
本発明は、上記の課題を解決するためになされたものであって、高負荷特性、高サイクル特性及び高エネルギーダイテュを実現し、かつ高い安全性、安定性を有すると共に、放電末期の状態を容易に検出することが可能な電極活性物質、リチウムイオン電池、電極活性物質の放電状態の検出方法、及び電極活性物質の製造方法を提供することを目的とする。

課題を解決するための手段

本発明者等は、上記課題を解決するために前記検討を行った結果、$Li_xA_{1-D}O_{4}$（但し、AはMn、Coの群から選択される1種または2種、DはP、Si、Sの群から選択される1種または2種以上、$0 < w \leq 4$、$0 < x \leq 1.5$）からなる粒子の表面を、Li_yEZG_{04}（但し、Eは、Fe、Fe及びNiのいずれかからなり、GはP、Si、Sの群から選択される1種または2種以上、$0 < y \leq 2$、$0 < z \leq 1.5$）を含む被覆層により被覆してなる電極活性物質の放電曲線の放電電位が略一定の第1の領域の後の放電電位が低下する第2の領域中に、この第2の領域の放電電位の平均変化率より放電電位の変化率が小さい第3の領域が存在し、この第3の領域を検出することにより、放電末期の状態を容易に検出することが可能であることを見出し、本発明を完成するに至った。

すなわち、本発明の電極活性物質は、$Li_xA_{1-D}O_{4}$（但し、AはMn、Coの群から選択される1種または2種、DはP、Si、Sの群から選択される1種または2種以上、$0 < w \leq 4$、$0 < x \leq 1.5$）からなる粒子の表面を、Li_yEZG_{04}（但し、Eは、Fe、Fe及びNiのいずれかからなり、GはP、Si、Sの群から選択される1種または2種以上、$0 < y \leq 2$、$0 < z \leq 1.5$）を含む被覆層により被覆してなる電極活性物質であって、放電曲線の放電電位が略一定の第1の領域の後の放電電位が低下する第2の領域中に、この第2の領域の放電電位の平均変化率より放電電位の変化率が小さい第3の領域が存在することを特徴とする。

前記第3の領域の60℃における容量は、放電容量の最大値の1/20以上かつ1/3以下であることが好ましい。
この場合、前記第3の領域の60°Cにおける反応電位は、3.0V以上かつ3.8V以下であることが好ましい。

[0016] 本発明のリチウムイオン電池は、本発明の電極活物質を正電極に含有してなることを特徴とする。

[0017] 本発明の電極活物質の放電状態の検出方法は、Li₃₅AX₄D₀₄（但し、AはMn、Coの群から選択される1種または2種、DはP、Si、Sの群から選択される1種または2種以上、0<w≤4、0<x≤1.5）からなる粒子の表面を、Li₃₅E₂G₀₄（但し、Eは、Fe、「6及びN」のいずれかからなり、GはP、Si、Sの群から選択される1種または2種以上、0<y≤2、0<z≤1.5）を含む被覆層により被覆してなる電極活物質の放電状態の検出方法であって、前記電極活物質の放電曲線の放電電位が略一定の第1の領域の後の放電電位が低下する第2の領域中に、この第2の領域の放電電位の平均変化率より放電電位の変化率が小さい第3の領域を検出すすることを特徴とする。

[0018] また、本発明者等は、上記課題を解決するために銘意検討を行った結果、Li₃₅AX₄D₀₄（但し、AはMn、Coの群から選択される1種または2種、DはP、Si、Sの群から選択される1種または2種以上、0<w≤4、0<x≤1.5）からなる粒子の表面を、Li₃₅E₂G₀₄（但し、Eは、Fe、「6及びN」のいずれかからなり、GはP、Si、Sの群から選択される1種または2種以上、0<y≤2、0<z≤1.5）と炭素質の電子伝導性物質との複合体からなる被覆層により被覆してなる電極活物質の放電曲線の放電電位が略一定の第1の領域の後の放電電位が低下する第2の領域中に、この第2の領域の放電電位の平均変化率より放電電位の変化率が小さい第3の領域が存在し、この第3の領域を検出することにより、放電末期の状態を容易に検出することが可能であることを見出し、本発明を完成するに至った。

[0019] すなわち、本発明の電極活物質は、Li₃₅AX₄D₀₄（但し、AはMn、Coの群から選択される1種または2種、DはP、Si、Sの群から選択される
1種または2種以上、0 < w ≤ 4 、0 < x ≤ 1.5）からなる粒子の表面を、
\(L_i y E_z G o_4\)（但し、\(E\)は、\(F e\)、\(F e\)及び\(N i\)、のいずれかからなり、
\(G\)は\(P\)、\(S i\)、\(S\)の群から選択される1種または2種以上、0 < y ≤ 2 、0
< z ≤ 1.5）と炭素質の電子伝導性物質との複合体からなる被覆層により
被覆してなる電極物質であって、放電曲線の放電電位が略一定の第1の領
域の後の放電電位が低下する第2の領域中に、この第2の領域の放電電位の
平均変化率より放電電位の変化率が小さい第3の領域が存在することを特徴
とする。

前記第3の領域の60℃における容量は、放電容量の最大値の1/20以
上かつ1/3以下であることが好ましい。
この場合、前記第3の領域の60℃における反応電位は、3.0V以上か
つ3.8V以下であることが好ましい。

本発明のリチウムイオン電池は、本発明の電極物質を正電極に含有して
なることを特徴とする。

本発明の電極物質の製造方法は、\(L_i w A_x D o_4\)（但し、\(A\)は\(M n\)、\(C o\)
の群から選択される1種または2種、\(D\)は\(P\)、\(S i\)、\(S\)の群から選択される
1種または2種以上、0 < w ≤ 4 、0 < x ≤ 1.5）からなる粒子と、\(L_i\)
源と、\(E\)源（但し、\(E\)は、\(F e\)、\(F e\)及び\(N i\)、のいずれかである）と、\(G\)
源（但し、\(G\)は\(P\)、\(S i\)、\(S\)の群から選択される1種または2種以上）と、
有機化合物とを混合して混合物とし、次いで、この混合物を乾燥して乾燥物
とし、次いで、この乾燥物を非酸化性雰囲気にて熟処理することにより前記
有機化合物を炭化させて炭素質の電子伝導性物質を生成させ、前記\(L_i w A_x
D o_4\)からなる粒子の表面に、\(L_i y E_z G o_4\）（但し、\(E\)は、\(F e\)、\(F e\)及び
\(N i\)、のいずれかからなり、\(G\)は\(P\)、\(S i\)、\(S\)の群から選択される1種また
は2種以上、0 < y ≤ 2 、0 < z ≤ 1.5）と前記炭素質の電子伝導性物質
との複合体からなる被覆層を生成させることを特徴とする。

前記\(L_i\)源と、前記\(E\)源と、前記\(G\)源と、前記有機化合物とを、均一な液
相となるように混合することが好ましい。
発明の効果

本発明の電極活物質によれば、Li\textsubscript{w}A\textsubscript{x}D\textsubscript{0}4（但し、AはMn、Coの群から選択される1種または2種、DはP、Si、Sの群から選択される1種または2種以上、0 < w < 4、0 < x ≤ 1.5）からなる粒子の表面を、Li\textsubscript{y}E\textsubscript{2}G\textsubscript{0}4（但し、Eは、Fe、Fes及びNi、のいずれかからなり、GはP、Si、Sの群から選択される1種または2種以上、0 < y ≤ 2、0 < z ≤ 1.5）を含む被覆層により被覆した電極活物質における放電曲線の放電電位が挙一の領域の後の放電電位が低下する第2の領域中、この第2の領域の放電電位の平均変化率より放電電位の変化率が小さい第3の領域が存在するので、この第3の領域が上記のLi\textsubscript{w}A\textsubscript{x}D\textsubscript{0}4からなる活物質の反応電位よりも低い電位で反応するショルダー状もしくはステップ状の反応曲線を示すこととなり、したがって、この第3の領域を検出することで、放電末期の状態を容易に検出することが可能、その結果、この電極活物質の放電容量の終点を容易に推定することができる。

本発明のリチウムイオン電池によれば、本発明の電極活物質を正電極に含有したので、放電末期の状態を容易に検出することができ、放電容量の終点を容易に推定することができる。したがって、このリチウムイオン電池をデバイスの電源に適用した場合に、放電末期にて急速に電圧が低下し、デバイスの作動不良を引き起こすのを防止することができる。

以上により、高電圧、高エネルギー密度、高負荷特性を有するとともに、長期のサイクル安定性及び安全性に優れたリチウムイオン電池を提供することができる。

本発明の電極活物質の放電状態の検出方法によれば、Li\textsubscript{w}A\textsubscript{x}D\textsubscript{0}4（但し、AはMn、Coの群から選択される1種または2種、DはP、Si、Sの群から選択される1種または2種以上、0 < w < 4、0 < x ≤ 1.5）からなる粒子の表面を、Li\textsubscript{y}E\textsubscript{2}G\textsubscript{0}4（但し、Eは、Fe、「6及びNiのいずれかからなり、GはP、Si、Sの群から選択される1種または2種以上、0 < y ≤ 2、0 < z ≤ 1.5）を含む被覆層により被覆してなる電極活物
質の放電曲線の放電電位が略一定の第1の領域の後の放電電位が低下する第2の領域中に、この第2の領域の放電電位の平均変化率より放電電位の変化率が小さい第3の領域を検出するので、放電末期の状態を容易に検知することはでき、その結果、この電極活物質の放電容量の終点を容易に推定することができる。

本発明の電極活物質によれば、Li_wA_xD_04（ただし、AはMn、Coの群から選択される1種または2種、DはP、Si、Sの群から選択される1種または2種以上、0 < w ≤ 4、0 < x ≤ 1.5）からなる粒子の表面を、L_i_yE_zG_04（ただし、Eは、Fe、Fe及びNi、のいずれかからなり、GはP、Si、Sの群から選択される1種または2種以上、0 < y ≤ 2、0 < z ≤ 1.5）と炭素質の電子伝導性物質との複合体からなる被覆層により被覆した電極活物質における放電曲線の放電電位が略一定の第1の領域の後の放電電位が低下する第2の領域中に、この第2の領域の放電電位の平均変化率より放電電位の変化率が小さい第3の領域が存在するので、この第3の領域が上記のLi_wA_xD_04からなる活物質の反応電位よりも低い電位で反応するショルダー状もしくはステップ状の反応曲線を示すこととなり、したがって、この第3の領域を検出することで、放電末期の状態を容易に検出することができ、その結果、この電極活物質の放電容量の終点を容易に推定することがができる。

本発明のリチウムイオン電池によれば、本発明の電極活物質を正電極に含有したので、放電末期の状態を容易に検出することができ、放電容量の終点を容易に推定することができる。したがって、このリチウムイオン電池をデバイスの電源に適用した場合に、放電末期にて急速に電圧が低下し、デバイスの作動不良を引き起こすのを防止することができる。

以上により、高電圧、高エネルギー密度、高負荷特性を有するとともに、長期のサイクル安定性及び安全性に優れたリチウムイオン電池を提供することができる。

本発明の電極活物質の製造方法によれば、Li_wA_xD_04（ただし、AはMn
C0の群から選択される1種または2種、DはP、Si、Sの群から選択される1種または2種以上、0 < w ≤ 4、0 < x ≤ 1.5からなる粒子と、Li源と、E源（但し、Eは、Fe、Fe及びNi、のいずれかである）と、G源（但し、GはP、Si、Sの群から選択される1種または2種以上）と、有機化合物とを混合して混合物とし、次いで、この混合物を乾燥して乾燥物とし、次いで、この乾燥物を非酸化性雰囲気にて熱処理することにより前記有機化合物を炭化させて炭素質の電子伝導性物質を生成させ、前記iωAxD04からなる粒子の表面に、Li(yEG04（但し、Eは、Fe、Fe及びNi、のいずれかからなり、GはP、Si、Sの群から選択される1種または2種以上、0 < y ≤ 2、0 < z ≤ 1.5）と前記炭素質の電子伝導性物質との複合体からなる被覆層を生成させるので、放電末期の状態を容易に検出することができ、放電容量の終点を容易に推定することができる電極活物質を容易に作製することができる。

図面の簡単な説明

[0030] [図1]本発明の一実施形態の電極活物質を示す断面図である。
[図2]本発明の実施例4の電極活物質を示す走査型電子顕微鏡（SEM）像である。
[図3]本発明の実施例1のリチウムイオン電池の充放電曲線を示す図である。
[図4]本発明の実施例3のリチウムイオン電池の充放電曲線を示す図である。
[図5]本発明の実施例5のリチウムイオン電池の充放電曲線を示す図である。
[図6]比較例のリチウムイオン電池の充放電曲線を示す図である。
[図7]本発明の実施例3のリチウムイオン電池の放電微分曲線を示す図である。

発明を実施するための形態

[0031] 本発明の電極活物質、リチウムイオン電池、電極活物質の放電状態の検出方法及び電極活物質の製造方法を実施するための形態について説明する。

なお、この形態は、発明の趣旨をより良く理解させるために具体的に説明するものであり、特に指定のない限り、本発明を限定するものではない。
図1は、本発明の一実施形態の電極活物質を示す断面図であり、この電極活物質1は、Li$_w$A$_x$D$_0$₄（但し、AはMn、Coの群から選択される1種または2種、DはP、S、Si、Sの群から選択される1種または2種以上、0 < w ≤ 4, 0 < x ≤ 1.5）からなる粒子（以下、Li$_w$A$_x$D$_0$₄粒子と略称する）2の表面が、Li$_y$E$_z$G₀₄（但し、Eは、Fe、「6及び-をしのいずれかからなり、GはP、Si、Sの群から選択される1種または2種以上、0 < y ≤ 2, 0 < z ≤ 1.5）を含む被覆層3により被覆されている。

このLi$_w$A$_x$D$_0$₄粒子2の平均粒子径は5nm以上かつ500nm以下が好ましく、より好ましくは20nm以上かつ200nm以下である。

その理由は、平均粒子径が5nmより小さいと、充放電による体積変化により結晶構造が破壊される虞があるからであり、また、平均粒子径が500nmより大きいと、粒子内部への電子の供給量が不足し、利用効率が低下するからである。

被覆層3は、上記のLi$_y$E$_z$G₀₄を含む被覆層であればよく、より具体的には、次の（1），（2）のいずれかの被覆層である。

（1）Li$_w$A$_x$D$_0$₄粒子2と、Li源と、E源（但し、Eは、Fe、Fe及びNi、のいずれかである）と、G源（但し、GはP、Si、Sの群から選択される1種または2種以上）を混合し、その後、非酸化性雰囲気にて熱処理することにより生成したLi$_y$E$_z$G₀₄からなる被覆層。

（2）Li$_w$A$_x$D$_0$₄粒子2と、Li源と、E源（但し、Eは、Fe、Fe及びNi、のいずれかである）と、G源（但し、GはP、Si、Sの群から選択される1種または2種以上）と、有機化合物とを混合し、その後、非酸化性雰囲気にて熱処理することにより生成したLi$_y$E$_z$G₀₄と炭素質の電子伝導性物質との複合体からなる被覆層。

上記（2）の被覆層では、炭素質の電子伝導性物質を炭素に換算した場合、炭素換算値で30質量％以上かつ99質量％以下含有することが好ましく、より好ましくは50質量％以上かつ95質量％以下である。
この炭素質の電子導電性物質は、炭素質を炭素換算値で30質量％以上かつ99質量％以下含有することで、電極活物質1に所望の電子伝導性を付与することができる。

また、Li₇AₓD₀₄粒子2、Li源、G源及びG源の組成比及び各々の含有量を適宜変更することで、所望の残容量検出機能を容易に付与することができる。

この炭素質の電子導電性物質は、炭素質を炭素換算値で30質量％以上かつ99質量％以下含有することが好ましく、より好ましくは50質量％以上かつ95質量％以下である。

この被覆層3の厚みは、0.1nm以上かつ25nm以下が好ましく、より好ましくは2nm以上かつ10nm以下である。

その理由は、厚みが0.1nmより薄いと、被覆層3自体の電子導電性が不十分となり、その結果、電極活物質1としての電子導電性が大きく低下するからであり、また、厚みが25nmより厚いと、電極活物質1中の高電圧活物質の割合が減少し、活物質が有効に利用され難くなるからである。

このように、Li₇AₓD₀₄粒子2の平均粒子径及び被覆層3の厚みを勘案すると、この電極活物質1の平均粒子径は5nm以上かつ550nm以下、好ましくは20nm以上かつ300nm以下となる。

この電極活物質1は、平均粒子径の範囲がシャープで単分散性に優れているので、この電極活物質1をリチウムイオン電池の正電極に用いた場合、この正電極の電気的特性が極めて均一なものとなり、特性のバラツキも極めて小さいものとなる。したがって、得られたリチウムイオン電池は、高圧力、高エネルギー密度、高負荷特性を有するとともに、長期のサイクル安定性及び安全性に優れたものとなる。

なお、この被覆層3の表面を、さらに炭素質の電子伝導性物質を含む第2の被覆層により被覆することとしてもよい。

この第2の被覆層においても、被覆層3と同様、炭素質の電子導電性物質を炭素に換算した場合、炭素換算値で30質量％以上かつ99質量％以下含有することが好ましく、より好ましくは50質量％以上かつ95質量％以下である。

この炭素質の電子導電性物質は、炭素質を炭素換算値で30質量％以上かつ
つ99質量%以下含有することで、Li₆AₓD₀₄粒子2の表面を2層構造の被覆層で覆った電極活物質に所望の電子伝導性を付与することができる。

[0039] [電極活物質の製造方法 (その1)]

この電極活物質の製造方法は、Li₆AₓD₀₄粒子2の表面をLiₓE₂G₀₄からなる被覆層3で被覆した電極活物質1を製造する方法であり、Li₆AₓD₀₄粒子と、Li源と、E源と、G源と、水を混合して混合物とし、次いで、この混合物を乾燥して乾燥物とし、次いで、この乾燥物を非酸化性雰囲気にて熱処理することにより、Li₆AₓD₀₄粒子の表面に、LiₓE₂G₀₄からなる被覆層を生成させる方法である。

[0040] なお、Li₆AₓD₀₄粒子は、Li源、A源及びD源を、これらのモル比（Li源 : A源 : D源）がω : χ : 1となるように水を基成分とする溶媒に投入し、攪拌してLi₆AₓD₀₄の前駆体溶液とし、この前駆体溶液を耐圧容器に入れ、高温、高圧下、例えば、120℃以上かつ250℃以下、0.2Mパa以上にて、1時間以上かつ24時間以下、水熱処理を行うことにより得ることができる。

[0041] この電極活物質の製造方法に用いられるLi源としては、例えば、水酸化リチウム（LiOH）、炭酸リチウム（Li₂CO₃）、塩化リチウム（LiCl）、リン酸リチウム（Li₃PO₄）等のリチウム無機酸塩、酢酸リチウム（LiCH₃COO）、塩酸リチウム（COOLi₂）等のリチウム有機酸塩、及びこれらの水和物の群から選択された1種または2種以上が好適に用いられる。特に、塩化リチウム、酢酸リチウム等のようなE源、G源及び有機化合物と均一な溶液相を形成する原料が好ましい。

[0042] E源としては、Fe、Fe₆及び一しきいずれかを含む化合物、例えば、塩化鉄（II）（FeCl₂）、硫酸鉄（II）（FeSO₄）、酢酸鉄（II）（Fe（CH₃COO）₂）等の鉄化合物またはその水和物、あるいは、これらの鉄化合物またはその水和物と、塩化ニッケル（II）（NiCl₂）、硫酸ニッケル（II）（NiSO₄）、酢酸ニッケル（II）（Ni（CH₃COO）₂）等のニッケル化合物またはその水和物との混合物、が好適に用いられる。
G源としては、オルトリン酸（H₃P₀₄）、メタリン酸（H₂P₀₃）等のリン酸、リン酸ニ水素アンモニウム（NH₄H₂P₀₄）、リン酸水素アンモニウム（NH₄H₂P₀₄）、及びこれらの水和物等のリン酸源、酸化ケイ素（SiO₂）、シリコンテトラメトキシド（Si（OCH₃）₄）等のシリコンアルコキシド等のSi源、硫酸ニアンモニウム（NH₄）₂SO₄、硫酸（H₂SO₄）等のS源の群から選択された1種または2種以上が好適に用いられる。

特に、オルトリン酸、硫酸等は、Li源、E源及び有機化合物と均一な溶液相を形成するので好ましい。

これらLi源、E源、G源、水等の溶媒は、均一な溶液相を形成する組み合わせで用いればよく、個々の材料に特に制限はない。

また、均一な溶液相を形成するために、酸やアルカリ等のpH調整剤を添加してもよい。

このようなpH調整剤としては、塩酸、硫酸、硝酸等の無機酸、ギ酸、酢酸、クエン酸、乳酸、アスコルビン酸等の有機酸、の群から選択された1種または2種以上が好適に用いられる。

この製造方法では、LiₓAxD₀₄粒子、Li源、E源、G源及び水等の溶媒を混合して得られた混合物を、乾燥機中、50°C~200°Cにて1時間~4時間乾燥させて乾燥物とし、次いで、この乾燥物を非酸化性雰囲気、例えば窒素（N₂）ガス等の不活性雰囲気、あるいは水素（H₂）ガスを2~5体積％含む窒素（N₂）ガス等の還元性雰囲気にて熱処理することにより、LiₓAxD₀₄粒子の表面にLiₓEyZₓGₓ₀₄からなる被覆層を生成させる。

また、LiₓAxD₀₄粒子、Li源、E源、G源及び水等の溶媒を混合して得られた混合物の乾燥にスプレイドライヤーを用いることも可能である。スプレイドライヤーを用いて乾燥した場合には、球形の電極活性物質が得られることがによる正電極の充填性の向上と、生産性的向上が期待できる。

この熱処理条件としては、LiₓAxD₀₄粒子の表面に、リン酸マンガンリチウム（LiMnP₀₄）やリン酸コバルトリチウム（LiCoPO₄）等の
中心の活物質より低電位で電気化学反応を示す Li_yE_2O_4からなる被覆層が生成する温度及び時間の範囲であればよく、例えば、熱処理温度は500℃以上かつ1000℃以下が好ましく、熱処理時間は、熱処理時の温度にもよるが1時間以上かつ24時間以下が好ましい。

以上により、Li_wA_xD_0_4粒子2の表面が、Li_yE_2O_4からなる被覆層3により被覆され、平均粒子径が5nm以上かつ550nm以下、好ましくは20nm以上かつ300nm以下の電極活物質1を、容易に作製することができる。

なお、この被覆層3の表面を、さらに炭素質の電子伝導性物質を含む第2の被覆層により被覆することとしてもよい。

[0048] 以上により、Li_wA_xD_0_4粒子2の表面をLi_yE_2O_4と炭素質の電子伝導性物質との複合体からなる被覆層3で被覆した電極活物質1を製造する方法であり、Li_wA_xD_0_4粒子と、Li源と、E源と、G源と、有機化合物とを混合して混合物とし、次いで、この混合物を乾燥して乾燥物とし、次いで、この乾燥物を非酸化性雰囲気にて熱処理することにより、前記有機化合物を炭化させて炭素質の電子伝導性物質を生成させ、Li_wA_xD_0_4粒子の表面に、Li_yE_2O_4と炭素質の電子伝導性物質との複合体からなる被覆層を生成させる方法である。

[0049] この電極活物質の製造方法（その2）は、電極活物質の製造方法（その1）とは、添加した有機化合物を炭化させて炭素質の電子伝導性物質を生成させる点が異なるのみで、Li源、E源、G源等については、電極活物質の製造方法（その1）と全く同様である。

ここでは、E源としては、有機化合物による還元効果が期待できることから、鉄化合物としては、硝酸鉄（II）（Fe（NO_3）_3）、塩化鉄（II）（FeCl_3）、クエン酸鉄（III）（FeC_6H_5O_7）等の3価の鉄化合物も好適に用いられる。

特に、塩化鉄（II）（FeCl_2）、酢酸鉄（II）（Fe（CH_3COO）_2
、硫酸鉄 (II) (FeSO₄)、硝酸鉄 (III) (Fe(NO₃)₃)、クエン酸鉄 (II) (FeC₆H₅O₇)等は、Lイ源、G源及び有機化合物と均一な溶液相を形成するので好ましい。

有機化合物としては、非酸化性雰囲気下にて熱処理することにより炭素を生成する有機化合物であればよく、特に制限はされないが、例えば、ヘキサンノール、オクタノール等の高級一価アルコール、アリルアルコール、プロピノール（プロピルアルコール）、テルピニオール等の不飽和一価アルコール、ブドウ糖、シラ糖、乳糖等の糖類、ポリビニルアルコール (PVA) 等が挙げられる。特に、ブドウ糖、シラ糖、ポリビニルアルコール (PVA) 等は、Lイ源、E源、G源及び有機化合物と均一な溶液相を形成するので好ましい。

これからLイ源、E源、G源及び有機化合物は、均一な溶液相を形成する組み合わせで用いればよく、個々の材料に特に制限はない。

また、均一な溶液相を形成するために、酸やアルカリ等のpH調整剤を添加してもよい。

このようなpH調整剤としては、塩酸、硫酸、硝酸等の無機酸、ギ酸、酢酸、クエン酸、乳酸、アスコルビン酸等の有機酸、の群から選択された1種または2種以上が好適に用いられる。特に、有機酸は、加熱分解後に炭素以外の残留物が生じないので好ましい。

これからLイ源、E源、G源及び有機化合物を混合してなる混合物（スラリー等）中の有機化合物の濃度は、特に限定されるものではないが、LイウAXD0₄粒子の表面に、LイョG₅0₄と炭素質の電子伝導性物質との複合体なる被覆層を均一に形成するためには、1質量％以上かつ25質量％以下が好ましい。

この有機化合物を溶解させる溶媒としては、この有機化合物が溶解するものであればよく、特に制限されないが、例えば、水、メタノール、エタノール、1プロパノール、2プロパノール（イソプロピルアルコール：IPA）、ブタノール、ペンタノール、ヘキサンノール、オクタノール、ジアセット
アルコール等のアルコール類、酢酸エチル、酢酸ブチル、乳酸エチル、プロピレンリコールモノメチルエーテル、プチルドリコールモノメチルエーテル、アソチロカトーン等のエステル類、ジェチルエーテル、エチレングリコールモノエチルエーテル（メチルセルロソルプ）、エチレングリコールモノブチルエーテル（ブチルセルロソルプ）、ジエチレングリコールモノメチルエーテル、ジエチレングリコールモノエチルエーテル等のエーテル類が挙げられる。

また、アセトン、メチルエチルケトン（M E K）、メチルイソプロピルケトン（M I B K）、アセチル酢酸、シクロヘキサン等のケトン類、ジェチルホルムアミド、N , N_ジメチルアセトアセトアミド、N—メチルピロリドン等のアミド類、エチレングリコール、ジエチレングリコール、プロピレンリコール等のグリコール類等も挙げることができる。これらは、1種のみを単独で用いてもよく、2種以上を混合して用いてもよいが、安全性や価格、L i 源、E 源及びG 源及び有機化合物を溶解させる際の溶解の容易さから水が好ましい。

この製造方法では、L i_w A_x D_0_y粒子、L i 源、E 源、G 源、有機化合物、必要に応じて溶媒を混合して得られた混合物を、乾燥機中、50℃~200℃にて1時間~48時間乾燥させて乾燥物とし、次いで、この乾燥物を非酸化性雰囲気、例えば窒素（N_2）ガス等の不活性雰囲気、あるいは水素（H_2）ガスを2~5体積%含む窒素（N_2）ガス等の還元性雰囲気にて熱処理することにより有機化合物を炭化させて炭素質の電子伝導性物質を生成させ、L i_w A_x D_0_y粒子の表面に、L i_y E_z G_0_yと炭素質の電子伝導性物質との複合体からなる被覆層を生成させる。

また、L i_w A_x D_0_y粒子、L i 源、E 源、G 源、有機化合物、必要に応じて溶媒を混合して得られた混合物の乾燥にスプレイドライヤーを用いることも可能である。スプレイドライヤーを用いて乾燥した場合には、球形の電極活物質が得られることによる正電極の充填性の向上と、生産性の向上が期待される。
できる。

この熱処理条件としては、有機化合物を炭化させて炭素質の電子伝導性物質を生成させることにより、$Li_xA_xD_{0.4}$ 粒子の表面に、リン酸マンガニトリチウム（$LiMnPO_4$）やリン酸コバルトリチウム（$LiCoPO_4$）等の中心の物質より低電位で電気化学反応を示す$Li_yE_zG_{0.4}$ と、炭素質の電子伝導性物質との複合体からなる被覆層が生成する温度及び時間の範囲であればよく、例えば、熱処理温度は500℃以上かつ1000℃以下が好ましく、熱処理時間は、熱処理時の温度にもよるが1時間以上かつ24時間以下が好ましい。

以上により、$Li_xA_xD_{0.4}$ 粒子2の表面が、$Li_yE_zG_{0.4}$ と炭素質の電子伝導性物質との複合体からなる被覆層3により被覆され、平均粒子径が5 nm以上かつ550 nm以下、好ましくは200 nm以上かつ300 nm以下の電極活物質1を、容易に作製することができる。

[電極活物質の放電状態の検出方法]

本実施形態の電極活物質の放電状態の検出方法は、$Li_xA_xD_{0.4}$ 粒子の表面を、$Li_yE_zG_{0.4}$ を含む被覆層により被覆してなる電極活物質の放電曲線の放電電位が若干一定の第1領域の後の放電電位が低下する第2領域中に、この第2の領域の放電電位の平均変化率より放電電位の変化率が小さい第3の領域を検出する方法である。

例えば、上記の電極活物質を加圧成形法あるいはドクタープレード法等により薄板状あるいは薄膜状の電極活物質とし、この薄板状あるいは薄膜状の電極活物質の放電曲線を得ることにより、この電極活物質の放電曲線における第2の領域中に、この第2の領域の放電電位の平均変化率より放電電位の変化率が小さい第3の領域を検出することができる。

よって、この電極活物質をリチウムイオン電池の正電極に適用した場合、放電末期の状態を容易に検知することができ、その結果、この電極活物質の放電容量の終点を容易に推定することができる。

この電極活物質を用いた正電極をリチウムイオン電池の正電極に適用し、
このリチウムイオン電池の放電曲線を得ることとすれば、実際にリチウムイオン電池に実装された状態における電極活性物質の放電末期の状態を検知することができるのので、好ましい。

このように、この電極活性物質の放電曲線の第２の領域中に、この第２の領域の放電電圧の平均変化率より放電電圧の変化率が小さい第３の領域を検出することにより、放電末期の状態を容易に検知することができ、結果、この電極活性物質の放電容量の終点を容易に推定することができる。

[0061] [リチウムイオン電池]

本実施形態のリチウムイオン電池は、本実施形態の電極活性物質を正電極に含有している。

本実施形態の正電極を作製するには、上記の電極活性物質と、バインダー樹脂からなる結着剤と、溶媒とを混合して、電極活性用塩化または電極活性用ベーストを調整する。この際、必要に応じてカーボンプラック等の導電助剤を添加してもよい。

[0062] 上記の結着剤、すなわちバインダー樹脂としては、例えば、ポリテトラフルオロエチレン（PTFE）樹脂、ポリフッ化ビニリデン（PVdF）樹脂、フッ素ゴム等が好適に用いられる。

上記の電極活性物質とバインダー樹脂との配合比は、特に限定されないが、例えば、電極活性物質１００質量部に対してバインダー樹脂を１質量部以上かつ３０質量部以下、好ましくは３質量部以上かつ２０質量部以下とする。

この電極活性用塩化または電極活性用ベーストに用いる溶媒としては、上記した有機化合物を溶解させる溶媒と同様の溶媒が好適であり、ここでは溶媒の説明を省略する。

[0063] 次いで、この電極活性用塩化または電極活性用ベーストを、金属箔の一方の面に塗布し、その後、乾燥し、上記の電極材料とバインダー樹脂との混合物からなる塗膜が一方の面に形成された金属箔を得る。

次いで、この塗膜を加圧圧着し、乾燥して、金属箔の一方の面に正電極層を有する集電体（電極）を作製する。
この集電体（電極）を正電極とすることで、リチウムイオン電池を得ることができる。

このリチウムイオン電池では、放電曲線の放電電位が略一定の第1の領域の後、放電電位が低下する第2の領域中に、この第2の領域の放電電位の平均変化率より放電電位の変化率が小さい第3の領域（以下、ショルダー部と称する）が存在する。

ここで、このショルダー部の60℃における容量は、放電容量の最大値の1/20以上かつ1/3以下であることが好ましい。

このショルダー部の60℃における容量を上記の範囲に限定した理由は、この範囲が、上記のLiwAxD04からなる活物質の反応電位よりも低い電位で反応するショルダー状もしくはステップ状の反応曲線を十分に検出することが可能で、かつ、検出後に残存する残存容量を十分に確保することができるからである。これにより、デバイスにおける放電末期の急速な電圧の低下により作動不良を引き起こすという深刻な問題を回避することが可能になる一方、高電位部分の容量を大幅に損なう虞も無くなる。

このリチウムイオン電池では、ショルダー部の60℃における放電電位を検出し、この検出した値が上記の範囲にあることを確認することで、放電末期の状態を容易に検出することができ、その結果、この電極活物質の放電容量の終点を容易に推定することができる。

このリチウムイオン電池では、ショルダー部の60℃における反応電位は、3.0V以上かつ3.8V以下であることが好ましい。

このショルダー部の60℃における反応電位を上記の範囲に限定した理由は、この範囲が、高電位部分と明確に異なる電位を有することにより、検出が容易であると共に、残存容量部のエネルギーを十分高く確保することが可能となる範囲だからである。

以上説明したように、本実施形態の電極活物質1によれば、LiwAxD04粒子2の表面を、Li2EG04、Li2EG2G4と炭素質の電子伝導性物質との複合体、のいずれかからなる被覆層3により被覆し、この電極活物質1
における放電曲線の放電電位が略一定の第1の領域の後の放電電位が低下する第2の領域中に、この第2の領域の放電電位の平均変化率より放電電位の変化率が小さい第3の領域が存在するので、この第3の領域がLwAxD04粒子2の反応電位よりも低い電位で反応するショルダー状もしくはステップ状の反応曲線を示すこととなり、したがって、このショルダー部を検出することで、放電末期の状態を容易に検出することができ、その結果、この電極活物質1の放電容量の終点を容易に推定することができる。

[0068] 本実施形態の電極活物質1の放電状態の検出方法によれば、LwAxD04粒子2の表面を、LiyE2G04を含む被覆層3により被覆してなる電極活物質1の放電曲線の放電電位が略一定の第1の領域の後の放電電位が低下する第2の領域中に、この第2の領域の放電電位の平均変化率より放電電位の変化率が小さい第3の領域を検出するので、放電末期の状態を容易に検知することができ、その結果、この電極活物質の放電容量の終点を容易に推定することができる。

[0069] 本実施形態のリチウムイオン電池によれば、本実施形態の電極活物質を正電極に含有したので、放電末期の状態を容易に検出することができ、放電容量の終点を容易に推定することができる。したがって、このリチウムイオン電池をデバイスの電源に適用した場合に、放電末期に急激に電圧が低下し、デバイスの作動不良を引き起こすのを防止することができる。

以上により、高電圧、高エネルギー密度、高負荷特性を有するとともに、長期のサイクル安定性及び安全性に優れたリチウムイオン電池を提供することが可能である。

[0070] 本実施形態の電極活物質の製造方法によれば、放電末期の状態を容易に検出することができ、放電容量の終点を容易に推定することができる電極活物質を容易に作製することができる。

[0071] また、本実施形態の電極活物質の製造方法によれば、LwAxD04粒子と、Lイオウ源と、E源と、G源と、有機化合物とを混合して混合物とし、次いでこの混合物を乾燥して乾燥物とし、次いで、この乾燥物を非酸化性雰囲気
にて熱処理することにより有機化合物を炭化させて炭素質の電子伝導性物質を生成させ、Li₃Al₅O₁₄からなる粒子の表面に、Li₇Fe₅O₄と炭素質の電子伝導性物質との複合体からなる被覆層を生成させるので、放電後の状態を容易に検出することができ、放電容量の終点を容易に推定することができる電極活性炭を容易に作製することができる。

実施例

以下、実施例1～5及び比較例により本発明を具体的に説明するが、本発明はこれらの実施例によって限定されるものではない。

（LiMnPO₄粒子の合成）

実施例1～4及び比較例共通のLiMnP₀₄を、以下のようにして作製した。

Li源及びP源としてLi₃PO₄を、Mn源としてMnSO₄・5H₂Oを用い、これらをモル比でLi：Mn：P = 3：1：1となるように純水に溶解して前駆体溶液200mLを作製した。

次いで、この前駆体溶液を耐圧容器に入れ、170℃にて24時間、水熱合成を行った。この反応後に室温になるまで冷却し、沈殿しているケーキ状の反応生成物を得た。

次いで、この沈殿物を蒸留水にて5回水洗して不純物を洗い流し、その後、乾燥しないように含水率30％に保持し、ケーキ状のLiMnP₀₄とした。

このケーキ状のLiMnP₀₄から若干量の試料を採取し、70℃にて2時間真空乾燥させて得られた粉末をX線回折法にて同定したところ、単相のLiMnP₀₄が生成していることが確認された。

（LiCoPO₄粒子の合成）

実施例5のLiCoPO₄を、以下のようにして作製した。

Li源及びP源としてLi₃PO₄を、Co源としてCoSO₄・7H₂Oを用い、これらをモル比でLi：Co：P = 3：1：1となるように純水に溶解して前駆体溶液200mLを作製した。
次いで、この前駆体溶液を耐圧容器に入れ、170℃にて24時間、水熱合成を行った。この反応後に室温になるまで冷却し、沈殿しているケーキ状の反応生成物を得た。

次いで、この沈殿物を蒸留水にて5回水洗して不純物を洗い流し、その後、乾燥しないように含水率30％に保持し、ケーキ状のLiCoPO₄とした。

このケーキ状のLiCoPO₄から若干量の試料を採取し、70℃にて2時間真空乾燥させて得られた粉体をX線回折法にて同定したところ、単相のLiCoPO₄が生成していることが確認された。

（実施例1）

有機化合物として固形分換算で5質量部となるようにポリビニルアルコール10％水溶液を、さらに、Li源としてLiCH₃COO、Fe源としてFe(C₃H₅COO)₂及びリン酸源としてH₃PO₄をLiFePO₄に換算して5質量部となるように各質量を、それぞれ調整して純水中に投入し、攪拌して溶解し、透明で均一な溶液を得た。この溶液にLiMnP₀₄9.5質量部を投入し、攪拌して懸濁させ、得られたスラリーを乾燥器を用いて100℃にて10時間、乾燥させ、得られた乾燥物に600℃にて1時間、熱処理を行い、実施例1の電極活性物質を得た。

（実施例2）

Fe源としてFe(C₃H₅COO)₂の替わりにFeS₀₄を用いた他は、実施例1と同様にして実施例2の電極活性物質を得た。

（実施例3）

有機化合物として固形分換算で5質量部となるようにポリビニルアルコール10％水溶液を、さらに、Li源としてLiCH₃COO、Fe源としてクエン酸鉄(II)(FeC₆H₅O₇)及びリン酸源としてH₃PO₄をLiFePO₄に換算して8質量部となるように各質量を、それぞれ調整して純水中に投入し、攪拌して溶解し、透明で均一な溶液を得た。この溶液にLiMnP₀₄9.2質量部を投入し、攪拌して懸濁させ、得られたスラリーを乾燥器を用
いて100℃にて10時間、乾燥させ、得られた乾燥物に600℃にて1時間、熱処理を行い、実施例3の電極活物質を得た。

（実施例4）
スラリーを、乾燥器を用いて100℃にて10時間乾燥させる替わりに、スプレイドライヤーを用いて120℃にて乾燥させた後、実施例3と同様にして実施例4の電極活物質を得た。実施例4の電極活物質の走査型電子顕微鏡（SEM）像を図2に示す。

（実施例5）
LiMnP0₄の替わりにLiCoPO₄を用いた後、実施例3と同様にして実施例5の電極活物質を得た。

（比較例）
Li源としてLi₀を、リン酸源として（NH₄）₂PO₄を、それぞれ用いた後、実施例1と同様にして有機化合物、Li源、Fe源及びリン酸源を含む溶液を得た。この溶液には沈殿物が生成していた。さらに、この溶液にLiMnP0₄95質量部を投入し、実施例1と同様にして攪拌、乾燥及び熱処理を行い、比較例の電極活物質を得た。

「リチウムイオン電池の作製」
実施例1～5及び比較例各々の正電極を作製した。
ここでは、実施例1～5及び比較例各々にて得られた各電極活物質、導電助剤としてアセチレンブラック（AB）、バインダーとしてポリフッ化ビニリデン（PVdF）、溶媒としてN-メチル-2-ピロリジノン（NMP）を用い、これらを混合し、実施例1～5及び比較例各々のベスツトを作製した。なお、ベスツト中の質量比、LiMnP0₄またはLiCoPO₄：AB：PVdFは85：10：5であった。
次いで、これらのベスツトを厚さ30μmのアルミニウム（Al）箔上に塗布し、乾燥した。その後、40MPaの圧力にて圧密し、正電極とした。

（実施例6）
次いで、この正電極を成形機を用いて面積が2cm²の円柱状に打ち抜き、
真空乾燥後、乾燥アラニク下にてステンレススチール（SUS）製の2032コイン型セルを用いて、実施例1〜5及び比較例各々のリチウムイオン電池を作製した。なお、負極には金属Liを、セパレーターには多孔質ポリプロピレン膜を、電解質溶液には1MのLiPF₆溶液を、それぞれ用いた。このLiPF₆溶液の溶媒としては、炭酸エチレンと炭酸ジェチルとの比が1:1のものを利用した。

(0085) 電池特性試験

実施例1〜5及び比較例各々のリチウムイオン電池の電池特性試験を、環境温度60℃、充電電流0.1Cで、試験極の電位がLiの平衡電位に対して所定の充電電圧になるまで充電し、1分間休止の後、0.1Cの放電電流で2.0Vになるまで放電させて行った。

充電電圧は、実施例1〜4及び比較例のMn系のリチウムイオン電池について4.5V、実施例5のCo系のリチウムイオン電池については4.9Vとした。

(0086) 実施例2では、Fe源としてFe（CH₃COO）₂の替わりにFeSO₄を用いたが、放電曲線は実施例1のリチウムイオン電池とほぼ同様であった。

また、実施例4では、乾燥器の替わりにスプレードライヤーを用いて乾燥させたが、放電曲線は実施例3のリチウムイオン電池と同様であった。この実施例4では、スプレードライヤーを用いることで球形の電極活物質が得られ、正極極の充填性が向上すると共に、生産性も向上した。

(0087) 環境温度60℃における、実施例1のリチウムイオン電池の放電曲線を図3に、実施例3のリチウムイオン電池の放電曲線を図4に、実施例5のリチウムイオン電池の放電曲線を図5に、比較例のリチウムイオン電池の放電曲線を図6に、それぞれ示す。図3〜図5中、矢印はショルダー部の位置を示す。

(0088) 実施例2のリチウムイオン電池の放電曲線について容量を電圧で微分した微分曲線を求めた。結果を図7に示す。

この微分曲線の極大値から求めたショルダー部の開始電圧（ショルダー電
圧）は3.70V、このショルダー部の開始点までの放電容量（ショルダー前容量）は140mAh/gであった。一方、2.00Vの時点の放電容量は155mAh/gであり、ショルダー部以降の容量（第3の領域の60℃における容量）の全容量（放電容量の最大値）に対する割合（ショルダー容量比）は、(155—140)/155=0.097であった。

実施例し2、4、5及び比較例各々のリチウムイオン電池についても同様の評価を行った。これらの評価結果を表1に示す。

![表1](attachment:table1.png)

表1によれば、実施例1〜5では、LiFePO4と炭素質の電子伝導性物質との複合体からなる被覆層3に含まれるLiFePO4由来の3.5〜3.7Vのショルダー電圧が認められ、ショルダー容量比は5％以上認められた。これは、ショルダー電圧で容量検出を行えば、容量が5％以上残っている時点で警告を発することはでき、急激な電圧低下によるデバイスの作動不良を事前に防ぐだけの十分な時間的余裕が得られることが分かった。

一方、比較例では、充放電曲線にショルダー電圧は認められず、また、微分曲線から求められたショルダー容量比は1.4％小さく、実施例1と比較して炭素質被覆層に同量のLiFePO4が含まれているにも関わらず、急激な電圧低下によるデバイスの作動不良を事前に防ぐだけの十分な時間的余裕が得られず、急激な電圧低下によるデバイスの作動不良が懸念される結果と
なった。
さらに、本実施例によれば、LiMnP0₄に対してLiFePO₄が10
質量%未満の少ない添加量であっても、LiMnP0₄に対して良好な導電性
を付与することができなる炭素質被覆層が得られると共に、LiMnP0₄の特
徴である高い電圧で反応する容量を十分に維持することができた。
[0092]なお、実施例1～5では、電極活物質自体の挙動をデータに反映させるた
めに、負極に金属リチウムを用いたが、金属リチウムの代わりに天然黒鉛、
人造黒鉛、コークス等の炭素材料、リチウム合金、Li₄Ti₅O₁₂等の負極
材料を用いてもよい。また、導電助剤としてアセチレンブラックを用いたが、カーボンブラック、
グラファイト、ケッチャンブラック、天然黒鉛、人造黒鉛等の炭素材料を
用いてもよい。
[0093]また、電解質溶液にLiPF₆溶液を、このLiPF₆溶液の溶媒として炭
酸エチレンと炭酸ジェチルとの比が1:1のものを、それぞれ用いたが、L
iPF₆溶液の代わりにLiBF₄溶液やLiClO₄溶液を用いてもよく、炭
酸エチレンの代わりにプロピレンカーボネートやジェチルカーボネートを
用いてもよい。
また、電解液とセパレーターの代わりに固体電解質を用いてもよい。
産業上の利用可能性
[0094]本発明は、電極活物質及びリチウムイオン電池並びに電極活物質の放電状態
の検出方法に適用できる。
符号の説明
[0095]1 電極活物質
2 Li₊₋₆AXD0₄粒子
3 被覆層
請求の範囲

[請 求 項 1]
L iwA x D 0 4 (但し、A は Mn、Co の群から選択される 1 種または 2 種、D は P、Si、S の群から選択される 1 種または 2 種以上、0 < w ≤ 4、0 < x ≤ 1.5) からなる粒子の表面を、L iyE z G 0 4 (但し、E は、Fe、Fe 及び Ni、のいずれかからなり、G は P、Si、S の群から選択される 1 種または 2 種以上、0 < y ≤ 2、0 < z ≤ 1.5) を含む被覆層により被覆してなる電極活性質であつて、

放電曲線の放電電位が略一定の第 1 の領域の後、放電電位が低下する第 2 の領域中に、この第 2 の領域の放電電位の平均を特徴とする電極活性質であつて。

[請 求 項 2] 前記第 3 の領域の 60℃における電流は、放電電流の最大値の 1/2 以上かつ 1/3 以上であることを特徴とする請求項 1 記載の電極活性質。

[請 求 項 3] 前記第 3 の領域の 60℃における反応電位は、3.0V 以上かつ 3.8V 以下であることを特徴とする請求項 2 記載の電極活性質。

[請 求 項 4] 請求項 1 ないし 3 のいずれか 1 項記載の電極活性質を正電極に含有してなることを特徴とするリチウムイオン電池。

[請 求 項 5] L iwA x D 0 4 (但し、A は Mn、Co の群から選択される 1 種または 2 種、D は P、Si、S の群から選択される 1 種または 2 種以上、0 < w ≤ 4、0 < x ≤ 1.5) からなる粒子の表面を、L iyE z G 0 4 (但し、E は、Fe、Fe 及び Ni、のいずれかからなり、G は P、Si、S の群から選択される 1 種または 2 種以上、0 < y ≤ 2、0 < z ≤ 1.5) を含む被覆層により被覆してなる電極活性質の放電状態の検出方法であつて、

前記電極活性質の放電曲線の放電電位が略一定の第 1 の領域の後の放電電位が低下する第 2 の領域中に、この第 2 の領域の放電電位の平
均変化率より放電電位の変化率が小さい第3の領域を検出することを特徴とする電極活物質の放電状態の検出方法。

[請求項6]
$L_i\omega A_x D_{04}$（但し、AはMn, Coの群から選択される1種または2種、DはP, Si, Sの群から選択される1種または2種以上、$0 < w \leq 4, 0 < x \leq 1.5$）からなる粒子の表面を、$Li_yE_z$に覆う（但し、$E$は、$Fe, Fe$及び$Ni$、のいずれかからなら、$G$は$P, Si, S$の群から選択される1種または2種以上、$0 < y \leq 2, 0 < z \leq 1.5$）と炭素質の電子伝導性物質との複合体からなる被覆層により被覆してなる電極活物質であって、

放電曲線の放電電位が略一定の第1の領域の後の放電電位が低下する第2の領域中に、この第2の領域の放電電位の平均変化率より放電電位の変化率が小さい第3の領域が存在することを特徴とする電極活物質。

[請求項7]
前記第3の領域の60℃における容量は、放電容量の最大値の1/20以上かつ1/3以下であることを特徴とする請求項6記載の電極活物質。

[請求項8]
前記第3の領域の60℃における反応電位は、3.0V以上かつ3.8V以下であることを特徴とする請求項7記載の電極活物質。

[請求項9]
請求項6ないし8のいずれか1項記載の電極活物質を正電極に含有してなることを特徴とするリチウムイオン電池。

[請求項10]
$L_i\omega A_x D_{04}$（但し、AはMn, Coの群から選択される1種または2種、DはP, Si, Sの群から選択される1種または2種以上、$0 < w \leq 4, 0 < x \leq 1.5$）からなる粒子と、$Li\omega$源と、$E$源（但し、$E$は、$Fe, Fe$及び$Ni$、のいずれかである）と、$G$源（但し、$G$は$P, Si, S$の群から選択される1種または2種以上）と、有機化合物とを混合して混合物とし、次いで、この混合物を乾燥して乾燥物とし、次いで、この乾燥物を非酸化性雰囲気にて熱処理することにより前記有機化合物を炭化させて炭素質の電子伝導性物質を生成
させ、前記し \(w A_x D 0.4 \) からなる粒子の表面に、\(L i_y E_z G 0.4 \)（但し、\(E \)は、\(Fe \)、\(Fe \)及び\(Ni \)、のいずれかからなり、\(G \)は\(P \)、\(S \)、\(S \)の群から選択される1種または2種以上、\(0 < y \leq 2 \)、\(0 < z \leq 1.5 \）と前記炭素質の電子伝導性物質との複合体からなる被覆層を生成させることを特徴とする電極活物質の製造方法。

[請求項11] 前記し\(i \)源と、前記\(E \)源と、前記\(G \)源と、前記有機化合物とを、均一な液相となるように混合することを特徴とする請求項10記載の電極活物質の製造方法。
[図3]

[図4]
[図7]
INTERNATIONAL SEARCH REPORT

International application No. PCT/JP2013/056593

A. CLASSIFICATION OF SUBJECT MATTER

H01M 4/58 (2010.1) i. H01M 4/36 (2006.01) i.

According to International Patent Classification (IPC) or to both national classification and IPC

B. FIELDS SEARCHED

Minimum documentation searched (classification system followed by classification symbols)

H 01 M 4 / 5 8 . H 0 1 M 4 / 3 6

Documentation searched other than minimum documentation to the extent that such documents are included in the fields searched

Jitsuyo Shinan Koho 1922-1 996 Jitsuyo Shinan Toroku Koho 1996-2013
Kokai Jitsuyo Shinan Koho 1971-2013 Toroku Jitsuyo Shinan Koho 1994-2013

Electronic data base consulted during the international search (name of data base and, where practicable, search terms used)

C. DOCUMENTS CONSIDERED TO BE RELEVANT

<table>
<thead>
<tr>
<th>Category</th>
<th>Citation of document, with indication, where appropriate, of the relevant passages</th>
<th>Relevant to claim No.</th>
</tr>
</thead>
<tbody>
<tr>
<td>X</td>
<td>JP 2011-181375 A (Sumitomo Osaka Cement Co., Ltd.). 15 September 2011 (15.09.2011). claims 1, 3; paragraphs [0020] to [0034], [0048] to [0060], [0083], [0084], [0096], [0097]; fig. 6. (Family: none)</td>
<td>1, 4, 6, 9, 11 2, 3, 5, 7, 8</td>
</tr>
</tbody>
</table>

Further documents are listed in the continuation of Box C. See patent family annex.

- "A" Special categories of cited documents:
- "E" earlier application or patent but published on or after the international filing date
- "L" document which may throw doubts on priority claim(s) or which is cited to establish the publication date of another citation or other special reason (as specified)
- "O" document referring to an oral disclosure, use, exhibition or other means
- "P" document published prior to the international filing date but later than the priority date claimed
- "T" later document published after the international filing date or priority date and not in conflict with the application but cited to understand the principle or theory underlying the invention
- "X" document of particular relevance; the claimed invention cannot be considered novel or cannot be considered to involve an inventive step when the document is taken alone
- "Y" document of particular relevance; the claimed invention cannot be considered novel or cannot be considered to involve an inventive step when the document is combined with one or more other such documents, such combination being obvious to a person skilled in the art
- "&" document member of the same patent family

Date of the actual completion of the international search 30 May, 2013 (30.05.13)
Date of mailing of the international search report 11 June, 2013 (11.06.13)

Name and mailing address of the ISA/ Japanese Patent Office

Authorized officer

Facsimile No.

Authorized officer

Telephone No.

Form PCT/ISA/210 (second sheet) (July 2009)
INTERNATIONAL SEARCH REPORT

DOCUMENTS CONSIDERED TO BE RELEVANT

<table>
<thead>
<tr>
<th>Category</th>
<th>Citation of document, with indication, where appropriate, of the relevant passages</th>
<th>Relevant to claim No.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Y</td>
<td>JP 05-258773 A (FDK Corp.), 08 October 1993 (08.10.1993), paragraphs [0017] to [0024] (Family: none)</td>
<td>2, 3, 5, 7, 8</td>
</tr>
</tbody>
</table>
国際調査報告

国際出願番号 PCT/JP2013/056593

A. 発明の属する分野の分類（国際特許分類（IPC））
 Int.Cl. H01M4/58 (2010.01) i , H01M4/36 (2006.01) i

B. 調査を行った分野

調査を行った最小限資料（国際特許分類（IPC））
 Int.Cl. H01M4/58, H01M4/36

最小限資料以外の資料で調査を行った分野に含まれるもの
 日本国実用新案公報 1922－
 日本国公開実用新案公報 1971－
 日本国実用新案登録公報 1996－
 日本国登録実用新案公報 1994－

国際調査で使用した電子データベース（データベースの名称、調査に使用した用語）

C. 関連すると認められる文献

引用文献の	引用文献名 及び一部の箇所が関連するときは、その関連する箇所の表示	関連する\n	カテゴリー	請求項番号		請求項の番号
X	JP 2011-181375 A (住友大阪セメント株式会社) 2011.09.15.	1,4,6,9-11				
Y	請求項 1, 3, 段落 [0 0 2 0] – [0 0 3 4], [0 0 4 8] – [0 0 6 0], [0 0 8 3], [0 0 8 4], [0 0 9 6], [0 0 9 7], 図 6 (フアミリーなし)	2,3,5,7,8				
X	Wo 2011/032284 AI (HYDRO-QUEBEC) 2011.03.24.	1.4				
Y	第9頁第17行－第12頁第3行, FIG. 3	2,3,5				

C欄の続きにも文献が列挙されている。

* 引用文献のカテゴリー
 \(\Gamma A\) 特に関連のある文献ではなく、一般的な技術水準を示すもの
 \(\Gamma E\) 国際出願日付の出願または特許であるが、国際出願日以後に公表されたもの
 \(\Gamma L\) 持有権主張に疑義を提起する文献又は他の文献の発行日若しくは他の特別な理由を確立するために引用される文献（理由を付す）
 \(\Gamma P\) 国際出願日付で、かつ優先権の主張の基礎となる出願

国際調査を完了した日 30.05.2013
国際調査報告の発送日 11.06.2013

国際調査機関の名称及び住所
 日本国特許庁（ISA／JP）
 郵便番号 100-8915
 東京都千代田区霞が関三丁目4番3号

特許庁審査官（権限のある職員）
 川村 裕二
 電話番号 03-3581-1101 内線 3477

様式 PCT／ISA／210（第2ページ）（2009年7月）
引用文献の関連するカテゴリ

<table>
<thead>
<tr>
<th>引用文献のカテゴリ</th>
<th>引用文献名及び一部の箇所が関連するときは、その関連する箇所の表示</th>
<th>関連する求項の番号</th>
</tr>
</thead>
<tbody>
<tr>
<td>Y</td>
<td>JP 05-258773 A（富士電気化学株式会社）1993.10.08，段落【0 0 1 7】-【0 0 2 4】（ファミリーなし）</td>
<td>2, 3, 5, 7, 8</td>
</tr>
<tr>
<td>Y</td>
<td>JP 2007-250299 A（日立ビクルエナジー株式会社）2007.09.27，段落【0 0 7】-【0 0 1 0】、【0 0 2 4】-【0 0 3 7】（ファミリーなし）</td>
<td>2, 3, 5, 7, 8</td>
</tr>
</tbody>
</table>

様式PCT/ISA/210（第2ページの続き）（2009年7月）