087068519 A1 | 0 000 O O 0

(@

O

(12) INTERNATIONAL APPLICATION PUBLISHED UNDER THE PATENT COOPERATION TREATY (PCT)

(19) World Intellectual Property Organization Vd”Ij

International Bureau

(43) International Publication Date
12 June 2008 (12.06.2008)

) IO T OO0 O

(10) International Publication Number

WO 2008/068519 Al

(51) International Patent Classification:
GOGF 9/455 (2006.01)

(21) International Application Number:
PCT/GB2007/050586

(22) International Filing Date:
27 September 2007 (27.09.2007)

(25) Filing Language: English

(26) Publication Language: English
(30) Priority Data:
0619380.9

60/853,924

2 October 2006 (02.10.2006)
24 October 2006 (24.10.2006)

GB
Us

(71) Applicant (for all designated States except US): TRAN-
SITIVE LIMITED [GB/GB]; 5th Floor Alder Castle, 10
Noble Street, London EC2V 7QJ (GB).

(72) Inventor; and

(75) Inventor/Applicant (for US only): BROWN, Alexander
Barraclough [GB/GB]; 125, Newbould Lane, Broomhill,
Sheffield Yorkshire S10 2PL (GB).

(74) Agent: ROBINSON, Ian; Appleyard Lees, 15 Clare
Road, Halifax Yorkshire HX1 2HY (GB).

(81) Designated States (unless otherwise indicated, for every
kind of national protection available): AE, AG, AL, AM,
AT, AU, AZ, BA, BB, BG, BH, BR, BW, BY, BZ, CA, CH,
CN, CO, CR, CU, CZ, DE, DK, DM, DO, DZ, EC, EE, EG,
ES, FI, GB, GD, GE, GH, GM, GT, HN, HR, HU, ID, 1L,
IN, IS, JP, KE, KG, KM, KN, KP, KR, KZ, LA, LC, LK,
LR, LS, LT, LU, LY, MA, MD, ME, MG, MK, MN, MW,
MX, MY, MZ, NA, NG, NI, NO, NZ, OM, PG, PH, PL,
PT, RO, RS, RU, SC, SD, SE, SG, SK, SL, SM, SV, SY,
TJ, TM, TN, TR, TT, TZ, UA, UG, US, UZ, VC, VN, ZA,
M, ZW.
(84) Designated States (unless otherwise indicated, for every
kind of regional protection available): ARIPO (BW, GH,
GM, KE, LS, MW, MZ, NA, SD, SL, SZ, TZ, UG, ZM,
ZW), Eurasian (AM, AZ, BY, KG, KZ, MD, RU, TJ, TM),
European (AT, BE, BG, CH, CY, CZ, DE, DK, EE, ES, FI,
FR, GB, GR, HU, IE, IS, IT, LT, LU, LV, MC, MT, NL, PL,
PT, RO, SE, SI, SK, TR), OAPI (BF, BJ, CF, CG, CI, CM,
GA, GN, GQ, GW, ML, MR, NE, SN, TD, TG).

Published:

with international search report

before the expiration of the time limit for amending the
claims and to be republished in the event of receipt of
amendments

(54) Title: COMPUTER SYSTEM AND METHOD OF ADAPTING A COMPUTER SYSTEM TO SUPPORT A REGISTER

WINDOW ARCHITECTURE

0

E_—mumu

401
=
410 sie_sP

(57) Abstract: A target computing system (10) is adapted to support a register window architecture, particularly for use when
converting non-native subject code (17) instead into target code (21) executed by a target processor (13). A subject register stack
data structure (an "SR stack™) (400) in memory has a plurality of frames (410) each containing a set of entries (401) corresponding to
a subset of subject registers (502) of one register window (510) in a subject processor (3). The SR (10) stack (400) is accessed by the
target code (21) executing on the target processor (13). The SR stack (400) stores a large plurality of such frames 410 and thereby
avoids overhead such as modelling automatic spill and fill operations from the windowed register file of the subject architecture. In
one embodiment, a target computing system (10) having sixteen general purpose working registers is adapted to support a register
window architecture reliant upon a (15) register file containing tens or hundreds of subject registers (502).



WO 2008/068519 PCT/GB2007/050586

10

15

20

25

30

35

COMPUTER SYSTEM AND METHOD OF ADAPTING A COMPUTER SYSTEM
TO SUPPORT A REGISTER WINDOW ARCHITECTURE

Field of the Invention

The present invention relates generally to the field of computers and computer systems.
More particularly, the present invention relates to a computer system which is adapted to
support a register window architecture and to a method of adapting a computer system to
support a register window architecture.

Background of the Invention

The central processing unit (CPU) or processor lies at the heart of all modern computing
systems. The processor executes instructions of a computer program and thus enables the
computer to perform useful work. CPUs are prevalent in all forms of digital devices in modern
life and not just dedicated computing machines such as personal computers, laptops and
PDAs. Modern microprocessors appear in everything from automobiles to washing machines
to children's toys.

A problem arises in that program code which is executable by one type of processor
often cannot be executed in any other type of processor. Firstly, each type of processor has its
own unique Instruction Set Architecture (ISA). Secondly, processors often have unique
hardware features which are not present on other types of processor. Hence, the field of
program code conversion has evolved to automatically convert program code written for one
type of processor into code which is executable instead by another type of processor, or to
optimise an old, inefficient piece of code into a newer, faster version for the same type of
processor. That is, in both embedded and non-embedded CPUs, there are predominant ISAs
for which large bodies of software already exist that could be “accelerated” for performance or
“translated” to other processors that present better cost/performance benefits. One also finds
dominant CPU architectures that are locked in time to their ISA and cannot evolve in
performance or market reach. This problem applies at all levels of the electronics industry,
from stand-alone pocket-sized devices right through to massive networks having tens or
hundreds of powerful computers.

As background information in this field of program code conversion, PCT publications
WO2000/22521 entitled “Program Code Conversion”, W02004/095264 entitled “Method and
Apparatus for Performing Interpreter Optimizations during Program Code Conversion”,
WQ02004/097631 entitled “Improved Architecture for Generating Intermediate Representations
for Program Code Conversion”, W02005/006106 entitled “Method and Apparatus for



WO 2008/068519 PCT/GB2007/050586

10

15

20

25

30

35

Performing Adjustable Precision Exception Handling”, and W02006/103395 entitled “Method
and Apparatus for Precise Handling of Exceptions During Program Code Conversion”, which
are all incorporated herein by reference, disclose methods and apparatus to facilitate program
code conversion capabilities as may be employed in the example embodiments discussed

herein.

Most modern processors include a set of registers as a type of fast-access memory. The
processor uses the registers to hold temporary values while executing a sequence of
instructions in a computer program. The processor hardware contains a limited number of
these registers and, in use, execution of the program can readily fill all of the available
registers with temporary data values. This leads to competition for the available registers as
the processor moves from one section of code to another, because each section of code will
generate temporary values and will need to make use of the registers in the processor to store
those temporary data values.

In response to this difficulty, processors have been developed with a register window
architecture. For example, register window architectures based on the Berkeley RISC design
of the early 1990s provide a large set of hardware registers (the register file) and allow only a
small subset of these registers (the register window) to be accessed by the current section of
code. The other registers in the register file lying outside the current position of the register
window are not accessible by the current section of the computer program. For example, only
eight registers are visible at any one time from a register file of sixty-four registers in total.
When the processor moves from one section of code to another, such as when a procedure
call is performed, then the register window shifts position in the register file and exposes a
different subset of the registers for the new section of code. These movements are generally
classified as either causing a SAVE type movement where the register window moves to a
previously unused position to present a clean set of hardware registers to the executing
subject code, or else a RESTORE type movement which shifts the register window back
toward a previously exposed position and thus reveals a set of previously used registers to the
executing code to thereby restore access to the data values held in those registers. Eventually,
however, the finite number of hardware registers in the register file will be exhausted,
depending upon the number of procedure call levels invoked by executing the program. Here,
a SPILL operation is performed whereby the data values in the registers are moved to a safe
location such as in second-tier memory outside the processor. Later, a FILL operation moves
those data values back into the hardware registers so that processor can continue execution of
the relevant section of code.

This register window architecture is intended to allow the computing system to execute
faster, especially where the processor frequently moves from one section of code to another



WO 2008/068519 PCT/GB2007/050586

10

15

20

25

30

35

and then returns back to the first section (i.e. performs procedure calls), by avoiding the costly
and time-consuming register spill and fill operations for large parts of the computer program.

This register window architecture has been adopted by processors such as the SPARC,
the AMD29000 and the Intel i960 on a large commercial scale. Hence, a large body of code
has already been written to execute only on these architectures and cannot be run by any
other type of processor.

Of these commercial processors, the SPARC is particularly prevalent. Further
background information about the SPARC register window architecture is found, for example,
in SPARC Architecture Manual, Version 8, Section 4.1, “Registers” and SPARC Architecture
Manual, Version 9, Section 5.1, "Registers”, published by SPARC International Inc of
San Jose, California, the disclosure of which is incorporated herein by reference.

As an example, Figure 1 illustrates the use of register windows in a v9 SPARC
architecture of the related art. The v9 SPARC architecture provides a plurality of control/status
registers, and a large number of general purpose (“r’) registers. The general purpose registers
include eight permanently visible global registers (and a further eight global alternates), and a
moveable 24-register window divided into eight “in” registers, eight “local” registers and eight
“out” registers. The current window into the total register file is given by a Current Window
Pointer (CWP) held in one of the control/status registers. The CWP is incremented each time
a ‘restore” instruction is executed, and is decremented for a “save” instruction or when a trap
occurs. In this example, the 24-register window partially overlaps with adjacent windows
positions, such that the eight “out” registers of one window position overlap with the eight “in”
registers of an adjacent window position, whilst the local registers are unique to each window
position. That is, the “out” registers of window position CWP+1 are also addressable as the
“in” registers of the current window CWP. Also, the “out” registers of the current window CWP
are equivalent to the “in” registers of the next window CWP-1. The v9 SPARC architecture
supports from a minimum of three to a maximum of thirty-two window positions, depending on
the specific hardware implementation. Hence, together with the permanently visible global
registers, the v9 SPARC architecture requires 64 to 528 general purpose hardware registers (8
global registers, 8 alternate globals, and 16 registers for each window position).

Figure 2 illustrates the circular nature of the windowed register file in the example v9
SPARC architecture. The hardware registers are finite in number and in this example there
are 128 windowed hardware registers corresponding to eight register window positions. Figure
2 shows window position WO as the current window (CWP = 0). If a procedure using the
current window position WO executes a RESTORE, then window position W7 will become the
current window (CWP = +1). If the procedure at position WO instead executes a SAVE, then



WO 2008/068519 PCT/GB2007/050586

10

15

20

25

30

35

window position W1 becomes the current window. A window overflow trap occurs when all of
the register window positions have been consumed, i.e. because those registers already
contain valid data from executing previous the sections of program code and should not be
overwritten. In the example v9 architecture, window overflow is detected using a CANSAVE
control/status register linked to the CWP. At this point, the contents of the registers are spilled
to a slower-access area of memory, such as an execution stack in the main subject memory 8,
in order to allow execution to continue without overwriting valid data stored in the register file.
When the program eventually RESTOREs to the point where the original register values
become needed again, a fill operation fills the register values from the stack back into the
hardware registers of the register file. Here, a window underflow trap prevents an invalid
restore movement of the register window, with reference to a CANRESTORE control/status
register.

In this example, the original program code (here called “subject code”) relies on a
particular type of subject hardware having a register window architecture. However, in the field
of program code conversion of the present invention, the subject code is instead converted
into target code and executed by a target computing system. That is, it is desired to replace an
older subject computer system based on the register window architecture instead with a newer
target computer system, but still have the target computer system support the register window
architecture of the subject computing system.

An aim of the present invention is to provide a computing system which is adapted to
support a register window architecture. Exemplary embodiments aim to adapt a computer

system to support a foreign, non-native, register window architecture.

Summary of the Invention

According to the present invention there is provided a computing system, a method of
adapting a computer system, and a computer readable storage medium as set forth in the
appended claims. Other features of the invention will be apparent from the dependent claims
and the description which follows.

In one exemplary aspect of the present invention there is provided a computing system
comprising at least a decoder unit, an encoder unit, a memory and a target processor. The
decoder unit is arranged to decode subject code executable by a subject processor of a
register window based subject computing architecture where a current register window is
positioned to reveal a selected subset of subject registers from a windowed register file The
subject code includes window-based instructions which affect the position of the register

window in relation to the register file, and register-based instructions which contain references



WO 2008/068519 PCT/GB2007/050586

10

15

20

25

30

35

to the registers in the register window. The decoder unit is further arranged to identify the
window-based instructions in the subject code intended to cause movement of the register
window and to derive register window movement information from the window-based
instructions. Further still, decoder unit is arranged to identify the register-based instructions in
the subject code and to derive one or more windowed subject register references from the
register-based instructions. The memory comprises a stack data structure arranged to store a
plurality of entries. The encoder unit is arranged to generate target code from the subject code
decoded by the decoder unit. The target processor is arranged to execute the target code
generated by the encoder unit. Execution of the target code on the target processor sets a
stack pointer relevant to a head of the stack data structure, adjusts the stack pointer with
reference to the register window movement information derived by the decoder unit; and
accesses the entries in the stack data structure with reference to the stack pointer combined
with a displacement determined from each of the windowed subject register references derived
by the decoder unit.

In another exemplary aspect of the present invention there is provided a method of
adapting a computing system to support a register window architecture. The method includes
decoding subject code executable by a subject processor of a register window based subject
computing architecture wherein a register window is positioned to reveal a selected subset of
subject registers from a windowed register file, including identifying a windowed subject
register reference from an instruction in the subject code, where said windowed subject
register reference comprises a reference to one of said subject registers in the register window
and deriving a register window movement information from an instruction in the subject code
for causing a movement of the register window; providing a stack data structure in a memory
of the computing system where the stack data structure is arranged to store a plurality of
entries, and setting a stack pointer indicating a head of the stack data structure in the memory;
converting the subject code into target code and executing the target code on a target
processor of the computing system; adjusting the stack pointer with reference to the identified
register window movement information; and accessing at least one of the entries in the stack
data structure, with reference to the stack pointer in combination with a displacement
determined from the windowed subject register reference.

In still another exemplary aspect of the present invention there is provided a computer
readable storage medium having recorded thereon computer implementable instructions which
when executed adapt a computing system to support a register window architecture, wherein
the computer readable storage medium comprises: a code unit arranged to decode subject
code executable by a subject processor of a register window based subject computing
architecture wherein a current register window is positioned to reveal a selected subset of

subject registers from a windowed register file, including identifying a windowed subject



WO 2008/068519 PCT/GB2007/050586

10

15

20

25

30

35

register reference from an instruction in the subject code, where said windowed subject
register reference comprises a reference to one of said subject registers in the register
window; and deriving a register window movement information from an instruction in the
subject code for causing a movement of the register window; a code unit arranged to provide a
stack data structure in a memory of the computing system arranged to store a plurality of
entries, and to set a stack pointer indicating a head of the stack data structure in the memory;
and a code unit arranged to convert the subject code into target code and to cause execution
of the target code on a processor of the computing system to adjust the stack pointer with
reference to the identified register window movement information and to access at least one of
the entries in the stack data structure with reference to the adjusted stack pointer in
combination with a displacement determined from the windowed subject register reference.

The exemplary embodiments of the present invention concern a mechanism which
adapts a computing system to support a register window architecture, which is particularly
applicable when converting from subject code for a subject processor of a subject computing
system into target code executed instead by a target processor on a target computing system.
The mechanism provides a stack data structure (the “SR stack”) in the memory of the target
computing system. The SR stack has a plurality of frames. Each frame on the SR stack stores
a set of entries corresponding to the windowed subset of subject registers of the register
window as addressed by the subject code. The SR stack is then accessed by the target code
executing on the target computing architecture. The SR stack is able to store a large plurality
of such frames and avoids expensive overhead such as modelling automatic spill and fill
operations from the windowed register file of the subject architecture.

In one exemplary embodiment, a computing system having only sixteen working
registers is adapted to support a register window architecture representing a windowed
register file reliant upon tens or even hundreds of hardware registers. Further, the exemplary
embodiments allow efficient operation of the target computing system, particularly in terms of
processing speed, even when the system is adapted to support the register window
architecture.

Brief Description of the Drawings

For a better understanding of the invention, and to show how embodiments of the same
may be carried into effect, reference will now be made, by way of example, to the

accompanying diagrammatic drawings in which:

Figure 1 illustrates part of a register file in an example subject computing architecture of
the related art;



WO 2008/068519 PCT/GB2007/050586

10

15

20

25

30

35

Figure 2 further illustrates the register file in the example subject computing architecture
of the related art;

Figure 3 is a block diagram illustrative of an apparatus as employed by exemplary
embodiments of the invention;

Figure 4 is a schematic overview of a program code conversion process as employed by
exemplary embodiments of the present invention;

Figure 5 is a schematic overview of a register window emulation mechanism as provided
by exemplary embodiments of the present invention;

Figure 6 is a more detailed schematic diagram of the register window emulation
mechanism of Figure 5;

Figure 7 is a table to further illustrate an example embodiment of the register window
emulation mechanism of Figures 5 & 6;

Figures 8A and 8B are tables to further illustrate another example embodiment of the
register window emulation mechanism of Figures 5 & 6;

Figure 9 is a schematic flow diagram illustrating a method to adapt a computer system
to support a register window architecture according to the exemplary embodiments of the

present invention;

Figure 10 is a schematic diagram showing selected parts of the memory in the
computing system of the exemplary embodiment of the present invention;

Figure 11 is a schematic flow diagram illustrating an example method to perform a
transfer mechanism of exemplary embodiments of the invention; and

Figures 12A & 12B are schematic diagrams illustrating the transfer mechanism in more
detail.

Detailed Description of Exemplary Embodiments

The following description is provided to enable a person skilled in the art to make and
use the invention and sets forth the best modes contemplated by the inventors of carrying out



WO 2008/068519 PCT/GB2007/050586

10

15

20

25

30

35

their invention. Various modifications, however, will remain readily apparent to those skilled in
the art, since the general principles of the present invention have been defined herein
specifically to provide an improved program code conversion method and apparatus.

Referring to Figure 3, a subject program 17 is intended to execute on a subject
computing platform 1 having a subject processor 3. Here, the subject computing platform 1
can be any form of electronic device which relies upon computing operations in the subject
processor 3 to operate the device. However, a target computing platform 10 is instead used to
execute the subject program 17, through a translator unit 19 which performs program code
conversion. Here, the translator unit 19 converts the subject code 17 into target code 21, such
that the target code 21 is then capable of being executed by the target computing platform 10.

As will be familiar to those skilled in the art, the subject processor 3 has a set of subject
registers 5. A subject memory 8 holds, inter alia, the subject code 17 and a subject operating
system 2. Similarly, the example target computing platform 10 in Figure 3 comprises a target
processor 13 having a plurality of target registers 15, and a memory 18 to store a plurality of
operational components including a target operating system 20, the subject code 17, the
translator code 19, and the translated target code 21. The target computing platform 10 is
typically a microprocessor-based computer or other suitable computer.

In one embodiment, the translator code 19 is an emulator to translate subject code of a
subject instruction set architecture (ISA) into translated target code of another ISA, with or
without optimisations (often known as a “this-to-that” translator). In another embodiment, the
translator 19 functions to translate subject code into target code, each of the same ISA, by
performing program code optimisations (known as a “this to this” translator or an “accelerator”).

The translator code 19 is suitably a compiled version of source code implementing the
translator, and runs in conjunction with the operating system 20 on the target processor 13. It
will be appreciated that the structure illustrated in Figure 3 is exemplary only and that, for
example, software, methods and processes according to embodiments of the invention may be
implemented in code residing within or beneath an operating system 20. The subject code 17,
translator code 19, operating system 20, and storage mechanisms of the memory 18 may be
any of a wide variety of types, as known to those skilled in the art.

In the apparatus according to Figure 3, program code conversion is performed
dynamically, at run-time, to execute on the target architecture 10 while the target code 21 is
running. That is, the translator 19 runs inline with the translated target code 21. Running the
subject program 17 through the translator 19 involves two different types of code that execute
in an interleaved manner: the translator code 19; and the target code 21. Hence, the target



WO 2008/068519 PCT/GB2007/050586

10

15

20

25

30

35

code 21 is generated by the translator code 19, throughout run-time, based on the stored
subject code 17 of the program being translated.

In one embodiment, the translator unit 19 emulates relevant portions of the subject
architecture 1 such as the subject processor 3 and particularly the subject registers 5, whilst
actually executing the subject program 17 as target code 21 on the target processor 13. In the
preferred embodiment, at least one global register store 27 is provided (also referred to as the
subject register bank 27 or abstract register bank 27). In a multiprocessor environment,
optionally more than one abstract register bank 27 is provided according to the architecture of
the subject processor under consideration. A representation of a subject state is provided by
components of the translator 19 and the target code 21. That is, the translator 19 stores the
subject state in a variety of explicit programming language devices such as variables and/or
objects. The translated target code 21, by comparison, provides subject processor state
implicitly in the target registers 15 and in memory locations 18, which are manipulated by the
target instructions of the target code 21. For example, a low-level representation of the global
register store 27 is simply a region of allocated memory. In the source code of the translator
19, however, the global register store 27 is a data array or an object which can be accessed
and manipulated at a higher level. Execution of the target code 21 performs the work expected
of the subject code 17 and also updates the emulated model of the subject processor 3, such
that the translator 19 is able to determine an emulated execution context (the subject state)
and, in response, correctly control the flow of execution to dynamically select, translate and
execute appropriate blocks of the subject program as target code.

The term “basic block” will be familiar to those skilled in the art. A basic block is a
section of code with exactly one entry point and exactly one exit point, which limits the block
code to a single control path. For this reason, basic blocks are a useful fundamental unit of
control flow. Suitably, the translator 19 divides the subject code 17 into a plurality of basic
blocks, where each basic block is a sequential set of instructions between a first instruction at
a single entry point and a last instruction at a single exit point (such as a jump, call or branch
instruction). The translator 19 may select just one of these basic blocks (block mode) or select
a group of the basic blocks (group block mode). A group block suitably comprises two or more
basic blocks which are to be treated together as a single unit. Further, the translator may form
iso-blocks representing the same basic block of subject code but under different entry
conditions.

In the preferred embodiments, trees of Intermediate Representation (IR) are generated
based on a subject instruction sequence, as part of the process of generating the target code
21 from the original subject program 17. IR trees are abstract representations of the
expressions calculated and operations performed by the subject program. Later, the target



WO 2008/068519 PCT/GB2007/050586

10

15

20

25

30

35

10

code 21 is generated (“planted”) based on the IR trees. Collections of IR nodes are actually
directed acyclic graphs (DAGS), but are referred to colloquially as “trees”.

As those skilled in the art may appreciate, in one embodiment the translator 19 is
implemented using an object-oriented programming language such as C++. For example, an
IR node is implemented as a C++ object, and references to other nodes are implemented as
C++ references to the C++ objects corresponding to those other nodes. An IR tree is therefore
implemented as a collection of IR node objects, containing various references to each other.

Further, in the embodiment under discussion, IR generation uses a set of register
definitions which correspond to specific features of the subject architecture upon which the
subject program 17 is intended to run. For example, there is a unique register definition for
each physical register on the subject architecture (i.e., the subject registers 5 of Figure 3). As
such, register definitions in the translator may be implemented as a C++ object which contains
a reference to an IR node object (i.e., an IR tree). The aggregate of all IR trees referred to by
the set of register definitions is referred to as the working IR forest (“forest” because it contains
multiple abstract register roots, each of which refers to an IR tree). These IR trees and other
processes suitably form part of the translator 19.

Figure 3 further shows native code 28 in the memory 18 of the target architecture 10.
There is a distinction between the target code 21, which results from the run-time translation of
the subject code 17, and the native code 28, which is written or compiled directly for the target
architecture. In some embodiments, a native binding is implemented by the translator 19
when it detects that the subject program’s flow of control enters a section of subject code 17,
such as a subject library, for which a native version of the subject code exists. Rather than
translating the subject code, the translator 19 instead causes the equivalent native code 28 to
be executed on the target processor 13. In example embodiments, the translator 19 binds
generated target code 21 to the native code 28 using a defined interface, such as native code
or target code call stubs, as discussed in more detail in published PCT application
WQ02005/008478 which is incorporated herein by reference.

Figure 4 illustrates the translator 19 in more detail when running on the target computing
platform 10. As discussed above, the front end of the translator 19 includes a decoder unit
191 which decodes a currently needed section of the subject program 17 to provide a plurality
of subject code blocks 17a, 17b, 17¢ (which usually each contain one basic block of subject
code), and may also provide decoder information 171 in relation to each subject block and the
subject instructions contained therein which will assist the later operations of the translator 19.
In some embodiments, an IR unit in the core 192 of the translator 19 produces an intermediate
representation (IR) from the decoded subject instructions, and optimisations are opportunely



WO 2008/068519 PCT/GB2007/050586

10

15

20

25

30

35

11

performed in relation to the intermediate representation. An encoder 193 as part of the back
end of the translator 19 generates (plants) target code 21 executable by the target processor
13. In this simplistic example, three target code blocks 21a-21¢ are generated to perform work
on the target platform 10 equivalent to executing the subject code blocks 17a-17c on the
subject platform 1. Also, the encoder 193 may generate header code and/or footer code 211
for some or all of the target code blocks 21a-21¢ which performs functions such as setting the
environment in which the target block will operate and passing control back to the translator 19
where appropriate. In one embodiment, the translator 19 maintains a record of the subject
code blocks 17a-17¢ for which target code 21a-21¢ has already been generated. Thus, when
the same block of subject code is again encountered later in the program, then the previously
generated target code can be fetched and reused. However, other embodiments of the
invention may use other specific mechanisms to dynamically match the subject code with the
generated target code.

In Figure 4, the subject code 17 is suitably an application program which is converted by
the translator 19 to run on the target system. As general examples, the application program
17 is a complex program such as a web server, a digital content server (e.g. a streaming audio
or streaming video server), a word processor, a spreadsheet editor, a graphics image editing
tool, or a database application, amongst many others. However, in other examples, the subject
code 17 is any sort of program which enables the computing system to perform useful work
and control operations of an electronic device. The target computing platform 10 is often
required to run many such programs simultaneously, in addition to other tasks such as those
associated with the operating system 20 and the translator 19.

In the example embodiments, the subject code 17 takes the form of a binary executable
which has been created (e.g. compiled) specific to the subject architecture 1. There is no
opportunity for human intervention or review of the subject code 17. Instead, the target
computing platform 10, through the translator 19, automatically converts the subject code 17
into the target code 21 as a binary executed on the target computing platform 10. Thus, in the
exemplary embodiment, the translator 19 is a binary translator that converts the subject code
17 as a binary executable of the subject ISA into the target code as a binary executable of the
target ISA. Further, translator 19 is a dynamic binary translator that interleaves the translation
with execution of blocks of the target code 21.

Figure 5 illustrates a mechanism as employed by embodiments of the present invention
to emulate, in the target computing platform 10, key components of a subject processor 3
having a register window architecture. As discussed above, emulating these components of
the subject processor enables the translator 19 to generate target code 21 which faithfully
models the expected behaviour of the subject code 17. In the following example embodiments,



WO 2008/068519 PCT/GB2007/050586

10

15

20

25

30

35

12

the architecture of target processor 13 does not provide register windows, or uses a different
form of register windows compared with the subject processor 13. Hence, the subject code 17
cannot run on the target processor 13. As a practical example, the translator 19 is arranged to
translate subject code intended for execution on a v9 SPARC processor having at least 64,
and more typically several hundred, 64-bit general-purpose hardware registers to run as target
code on a 64-bit x86-type processor having just sixteen general-purpose hardware registers.
As illustrated by this example, the subject processor 3 and the target processor 13 are
sometimes fundamentally incompatible in terms of the number and type of registers available,
and the way that the registers are structured in each processor.

Although the general construction and operation of the subject processor 3 will be
familiar to the skilled person, a brief review is provided here in order to illustrate and discuss
those components of the subject processor that are emulated by the target system. In the
example embodiments discussed herein, the subject processor 3 employs a register window
arrangement according to the example v9 SPARC architecture which has been discussed
above generally with reference to Figures 1 and 2. In this case, the register window positions
are overlapped and have a rotating configuration. However, it will be appreciated that
embodiments of the invention may also be implemented for a register window architecture
having other specific configurations, such as non-overlapping and/or non-rotating
configurations. Some related art descriptions of this register window architecture refer to a
plurality of register windows, only one of which is the current window (i.e. there are many
windows each having a fixed position and only one of which is open at any one time). For
consistency, the following description considers a single current window which is moved to
different register window positions, but the skilled person will readily understand that the
invention is equally applicable to architectures defined in terms of multiple fixed windows.

Figure 5 shows the large plurality of general-purpose hardware registers 5 that are
provided in the subject processor 3. For clarity and ease of explanation, the control/status
registers and the many other parts of the subject processor 3 are not shown. These subject
registers 5 include a small set of globally-visible registers 501 (“global subject registers”) which
are static and are visible to all sections of the subject code 17, and a large file of registers 502
(“windowed subject registers”) which are windowed such that only a subset of this register file
is visible to a currently executing portion of the subject code 17 as the current “register
window” 510 which moves to one of a plurality of register window positions 511. Thus, only the
subset of windowed subject registers 502 which lie under the current position of the register
window 510 are accessible by the executing code at any one time.

Although a large number of registers are provided in the subject hardware, the subject
code 17 is only able to address thirty-two visible general purpose registers at any one time,



WO 2008/068519 PCT/GB2007/050586

10

15

20

25

30

35

13

namely the eight global subject registers 501 (g0-g7) and the twenty-four register window 510
into the windowed subject registers 502 (i0-i7, 10-17, 00-07). Hence, the subject code is written
with reference to this visible set of thirty-two register names.

Turning now to consider the target computing platform 10, the subject code 17 is
provided such as by loading the subject code 17 into an available area in the memory 18 of the
target system and, block by block, the subject code 17 is converted and executed as target
code 21. As discussed above, when the translator 19 first encounters a block of subject code,
the decoder unit 191 decodes the subject instructions. This decoding process includes
identifying references within the subject code instructions to the general purpose subject
registers of the subject architecture, including in particular references to the windowed subject
registers 502 and the global subject registers 501. Secondly, subject code instructions are
identified which cause SAVE and RESTORE type movements of the current register window to
a new position. Here, the instruction set architecture for the example v9 SPARC hardware
includes at least “save” and “restore” instructions which, on the subject platform, would cause
the current register window 510 to move to another one of the positions 511. The register
references and the register window movement information obtained by the decoder 191 are
passed to the core 192 and are used in the encoder 193 to generate the target code 21.

At an initialisation stage, the translator 19 provides various memory structures which
later will be used to emulate the subject processor. In particular, the translator 19 provides the
abstract register bank 27 as discussed above, namely a data structure used to store values
which would have been held in the registers 5 of the subject processor 3 including the global
subject registers 501 and the windowed subject registers 502. Here, a memory region 420 is
defined in the target memory 18 having a set of eight static locations 421 to form a static part
of the abstract register bank 27 relating to the eight global subject registers 501. Where
references to the global subject registers 501 are identified in the subject code instructions
decoded by the decoder unit 191, the equivalent target code instructions are generated with
appropriate references to these static locations 421 in the memory region 420. That is, the
data values representing the contents of these subject global registers 501 are used by the
target code 21, most commonly by loading data from the static locations 421 into the working
registers 15 of the target processor 13, and then storing results back to these memory
locations 421 as appropriate during execution of the target code. In this way, the target code
21 emulates the behaviour of those instructions of the subject code 17 which rely on the global
subject registers 501.

The windowed subject registers 502 behave in a dynamic windowed configuration as
discussed above and hence a separate mechanism is now provided in the target platform to
emulate these subject registers. As shown in Figure 5, to implement this register window



WO 2008/068519 PCT/GB2007/050586

10

15

20

25

30

35

14

mechanism the translator 19 provides a stack data structure within the memory 18 of the target
platform 10, which will referred to below as the “SR stack” 400. As will be familiar to persons
skilled in the art, a stack is a LIFO (last-in-first-out) type of memory structure that is created
and managed efficiently in most commonly available computing architectures. Typically, a
stack is located in memory at a given base address (start address) and grows downwards (or
upwards) in memory as data is added to or removed from the stack. The current position of the
top (head) of the stack is determined by reference to a stack pointer and the stack pointer is
regularly updated to account for the memory locations which are consumed as data is pushed
onto the stack and conversely which are released as data is popped from the stack.
Commonly, data on the stack is manipulable by addressing memory relative to the stack
pointer. In the following examples, the SR stack 400 grows downwardly (i.e. using
progressively decreasing memory addresses) from a given base address SR_BASE in the
target memory 18 and a stack pointer SR_SP is used to determine the current head of the SR
stack.

The SR stack 400 is used to store data values each representing the content of one of
the windowed subject registers 502 as referenced by the subject code 17. That is, decoding
the subject code 17 reveals the windowed subject registers 502 which are accessed by the
subject code 17 during execution, and the data values used by the subject code are now
instead stored as entries 401 in the SR stack 400. The target code 21 is generated to store
these data values on the SR stack 400 in the target memory 18, load the data values into the
working registers 15 of the target processor 13 as needed by the target code 21, and store the
results back to the SR stack 400 as appropriate during execution of the target code. The SR
stack 400 thus forms part of the abstract register bank 27 to emulate the windowed subject
registers 502 and enables the target code 21 to emulate execution of the subject code
instructions which rely on the windowed subject registers 502.

In the example embodiment as illustrated in Figure 5, the SR stack 400 is divided into a
plurality of frames 410, where each frame 410 contains a set of the data entries 401. In this
example, the addressable set of twenty-four windowed subject registers 502 are referred to as
“i0”-4i77, "10™-“177, “00”-“07” (or equivalently as r[8] to r[31]) by the subject code 17. Hence,
register definitions and register references in the subject code (which are collectively referred
to herein as “register references”) are, from the viewpoint of the subject code 17, expressed in
terms of this addressable set of register names. In the emulation mechanism discussed herein,
those data values required by the subject code 17 to lie in the subject registers 502 are instead
stored in one frame 410 of twenty-four entries 401 on the SR stack 400.

Secondly, where in the subject processor 3 the subject code 17 would cause the current

register window 510 to move to a new position 511, then in the present emulation mechanism



WO 2008/068519 PCT/GB2007/050586

10

15

20

25

30

35

15

a new frame 410 of entries 401 is provided on the SR stack 400. Due to the overlapping nature
of the windowed subject registers 502, this example embodiment provides sixteen new entries
401 on the SR stack 400 for each new frame 410, whilst eight older entries (corresponding to
“00”-"08” of the previous frame 410) now give the data values for the “i0”-"i8” register

references of the current frame.

Figure 6 is a more detailed schematic view of the register window emulation mechanism
discussed herein to illustrate an example mechanism for SR stack addressing. In the
discussion below, example pseudo code instructions are provided as sections of subject code
17a, 17b and target code 21a, 21b and the instructions have been shown here as a simplified
assembler-type pseudo code for clarity. The subject code examples are based generally on
the SPARC v9 ISA (i.e. operation source, destination), but details such as delay slots and
certain instruction arguments have been omitted for clarity. Similarly, the target code examples
are shown as an assembler-type pseudo code which is based generally on the Linux assembly
language using Intel syntax (i.e. operation destination, source). Of course, the example
embodiments of the invention relating to a dynamic binary translator will receive the subject
code 17 as binary machine code and generate target code as binary machine code, but the
assembler-type pseudo code has been provided for ease of explanation. The example pseudo
code shown in Figure 6 will also be discussed in more detail below referring to Figures 7 & 8.

As shown in Figure 6, the decoder unit 191 of the translator 19 decodes the instructions
in the first and second subject code blocks 17a, 17b. Conveniently, this first example
embodiment divides the subject code into the first and second blocks according to the position
of the “save” and “restore” subject instructions. In practical embodiments, each block of subject
code 17a, 17b will typically contain around ten instructions, but sometimes will contain up to

around one hundred instructions.

The decoder 191 identifies the subject code references 175 to the windowed subject
registers 502, and derives the register window movement information 176. In this example
pseudo code, the first subject block 17a includes two “mov” instructions and one “add” which
contain the references 175 to the windowed subject register “I77, “I3” and “06” (i.e. local3,
local7 and output6). Concerning the register window movement information 176, the “save”
instruction here is identified as causing a SAVE type movement. Similarly, the second code
section 17b is decoded to identify another reference 175 to “I3” (local3), and a “restore” to
induce a RESTORE type register window movement 176. The “return” in this example pseudo
code returns to some other caller section of subject code not shown in the diagram.

The target code 21 generated by the translator 19 in this case is illustrated by the target
code blocks 21a and 21b. Here, the translator 19 generates the target code instructions to



WO 2008/068519 PCT/GB2007/050586

10

15

20

25

30

35

16

address relevant entries 401 on the SR stack 400, based at least in part on the identified
subject register references.

In this first embodiment, the relevant SR stack entries 401 are addressed by considering
the identified windowed subject register references 175, and with respect to the stack pointer
SR_SP. Conveniently, the stack pointer SR_SP is updated at the end of each target block in
response to the identified register window movement information 176 found at the end of each
subject block. That is, the target code 21 is generated to update the SR stack pointer SR_SP
to track the current position of the head of the SR stack in response to the SAVE and
RESTORE register window movement information 176 obtained by the decoder 191.

Here, the generated target code 21 contains target instructions which cause the SR
stack pointer SR_SP to be updated to move forward down the SR stack 400 by sixteen 64-bit
entries 401 for each identified SAVE type movement, or roll back by sixteen entries for each
identified RESTORE type movement. Here, the stack pointer is updated by sixteen entries
rather than a full frame of twenty-four entries due to the overlapping of the entries representing
“i”s (inputs) and “0”s (outputs) within each frame 410. As illustrated by the example in Figure 6,
SR_SP is set to a first value “SR_SP1” for the first target code block 21a relevant to a first
frame 410a and is updated to a second value “SR_SP2” such that the second target code

block 21b refers instead to the entries 401 in a second frame 410b.

As also shown in Figure 6, in this first embodiment the required SR stack entries 401 are
found in the current frame 410 of twenty-four entries 401 located at the head of the SR stack
400 as referenced by the current value of the stack pointer SR_SP. Here, each register
reference 175 determines a predetermined displacement relevant to the current value of the
stack pointer SR_SP. As a simplified example, by taking the entry for “00” as having
displacement of 0 (i.e. the stack pointer SR_SP refers to “00” as the first entry on the stack),
then the entries for “01” and “02” have displacements of +1 and +2 64-bit words, respectively,
and so on up to the entry for “i7” at +23 64-bit words. Here, the target code 21 calculates the
address of the required entry on the stack by combining the current value of the stack pointer
with the required displacement.

Conveniently, one of the target registers 13 is chosen to hold the stack pointer SR_SP
and is loaded with the current value of the stack pointer when passing context to the target
code. On the example 64-bit x86 target architecture, the stack pointer is conveniently loaded
into one of the temporary registers such as rbp. That is, as one option, the stack pointer
SR_SP is loaded into the target register rbp in a run loop of the translator 19 prior to calling the
illustrated first section of target code 21a. Alternatively, rbp is conveniently loaded as part of
the header code 211 (shown in Figure 4). Thus, the stack pointer SR_SP is then available for



WO 2008/068519 PCT/GB2007/050586

10

15

20

25

30

35

17

use in the sections of target code 21a, 21b from the register rop. An example instruction to
perform this operation is shown below, where “fs:SR_SP” is a reference to a memory location
which stores the stack pointer during context switches, as part of the subject state held by the
translator 19:

mov rbp, (fs:SR_SP),

The following example shows the calculation of the displacement on the SR stack
where, in the subject code, one of the subject global subject registers “g1” is loaded into the
local windowed subject register “15” (local5). Here, the “I5” entry is located at a displacement of
“+13”, i.e. thirteen 64-bit words (which is conveniently expressed as 13"8 = 104 8-bit bytes in
some architectures having addressing in 8-bit bytes). In the target code, we can assume that
the value for “g1” has already been loaded from the memory region 420 into an available
target register rax:

Subject code Target code
mov g1,15 mov (rbp+13), rax

In response to the identified SAVE movement 176, the current stack pointer value
SR_SP now held in rbx is advanced by sixteen 64-bit entries on the SR stack 400. This will
either add sixteen new entries 401 to the SR stack, or will move the current frame 410 forward
to a previously occupied position and thus now reveal the data values stored in these memory
locations. Secondly, it is useful at this point to also update the version of SR_SP held in
memory at fs:SR_SP, although this can be done separately.

The stack pointer SR_SP is advanced downwardly in memory (in this example by
sixteen 64-bit words) in response to each SAVE type movement information 176 such as with
the target instructions:

add rbp, -16
mov (fs:SR_SP), rbp

Conversely, the stack pointer SR_SP is retarded upwardly in memory in response to
each RESTORE type movement information 176 to then allow the specified displacements to
refer to a previously encountered frame 410 of entries 401 on the SR stack 400, such as with
the target instructions:

add rbp, +16
mov (fs:SR_SP), rbp



WO 2008/068519 PCT/GB2007/050586

10

15

20

25

30

35

18

Figure 7 is a table illustrating the above example embodiment of Figure 6 in more detalil.
That is, Figure 7 shows the subject code blocks 17a, 17b as discussed above. Also, Figure 7
shows the identified subject register references 175 identified by decoding the subject code
instructions, and shows the associated displacements 177 for each identified reference 175.
Further, as shown in Figure 7, decoding the subject code 17 derives the identified register
window movement information 176. Finally, Figure 7 shows the target code blocks 21a, 21b
which are generated from the subject code instructions, with reference to the register
references 175 and the register window movement information 176.

As shown in Figure 7, the first target code block 21a begins with header code 211
which, in this example, includes instructions (not shown) that load the stack pointer SR_SP
into the temporary target register rbp. At this point, we can assume that rbp holds the value
“SP_SR1” and so refers to frame 410a of Figure 6. Next, the target registers rax and rbx are
loaded with the constants “10” and “3”, and then these values are also stored into the
referenced entries on the SR stack 400, with respect to the displacements 177 derived from
the register references 175. Thus, the relevant entries on the SR stack 400 now hold the data
values expected by the subject code in the referenced registers “I7” and “I3”. These target
registers rax and rbx are then used perform work equivalent to the example “"add” subject
instruction, and the result stored to the entry 401 relevant to the “06” reference. The “save”
subject instruction in this embodiment terminates the first subject block 17a. Also, in response
to the register window movement information 176 derived from this “save” the target code 21a
is generated to amend the stack pointer SR_SP held in rbp to advance by sixteen entries on
the SR stack 400, so that SR_SP now has the value “SR_SP2” and refers to frame 410b in
Figure 6. The footer code 211 in this first target block 21a now determines a next action, such
as passing control back to the translator 19 to select a next block of subject code to execute as
translated target code, or to pass control directly to a next block of already generated target
code. In this example, the footer code 211 passes execution control directly to the second
target code block 21b, without returning to the translator 19.

The header code 211 in the second target code block 21b suitably prepares context for
this block. In most cases this includes including loading SP_SP into rbp from the memory at
fs:SR_SP, although in this example a target code optimisation would allow the value already in
rop simply to be carried forward from block 21a. Then, the target code performs the work of the
subject “add” instruction from subject block 17b. Note that, due to the updated value of SR_SP
in rbp, the register reference to “13” (local3) does not resolve to the same entry 401 in the SR
stack 400 as in the first subject code block 17a. That is, in subject block 17a the reference to
“I3” resolved to an entry in frame 410a, whereas the reference to “I3” in subject block 17b now
instead resolves to an entry in frame 410b. In this way, the SR stack 400 emulates the



WO 2008/068519 PCT/GB2007/050586

10

15

20

25

30

35

19

expected behaviour of the register window in the subject processor. Finally, in response to the
register window movement information 176 from the final “restore” in subject block 17b, the
target code 21b has been generated to update the value of SR_SP in rbp to retard the stack
pointer by sixteen entries, whereby the stack pointer is now again referring to frame 410a of
Figure 6. Also, the subject “restore” instruction acts to select the termination point of this
second subject block 17b. In most cases, the “restore” causes the translator to terminate the
subject block 17b. However, in this example, the subject block is actually terminated at the
“return” immediately following the “restore”. At this point it is appropriate to save the updated
stack pointer SR_SP back from rbp to fs:SR_SP, and the footer code 211 now determines a
next action, such as in this case returning execution control to the translator 19, which may in
turn then return control to the subject code (not shown) that called the first subject block 17a

as “func1” to continue execution of the subject program.

Figure 8 is another table similar to the above example of Figures 6 and 7, to illustrate a
second example mechanism for addressing the SR stack 400.

The decoder unit 191 of the translator 19 identifies the windowed subject register
references 175 and the register window movement information 176 as discussed above.
Further, the identified register window movements 176 are used to derive a frame offset 178
which is expressed in the target code 21 as a frame offset from the SR_SP stack pointer.
Then, each of the register references 175 provide the displacement 177 from this frame offset
178 to address a relevant entry 401 in the SR stack 400. Hence, the stack pointer SR_SP may
now remain constant throughout the target code block 21a, even though two or more frames
410 of entries 401 are under consideration during the block. The second embodiment shown in
Figure 8 in particular allows the translator to inline leaf functions within a single block of target
code, where a leaf function is a function which does not itself call another function. The
function is inlined by treating both the caller and the callee subject code instructions as a
single block subject code 17a and creating therefrom a corresponding single block of target
code 21a. In this simplified example of Figure 8, there is no leaf function, but the operations
discussed below are equally applicable for this purpose.

In a further example embodiment, where the decoder 191 detects that a section of
subject code 17 contains more than a predetermined number of SAVEs or RESTORESs, then
decoding of the block is stopped (broken) at that point, and a new block created with the frame
offset returning to the default value (“f0”). That is, where a section of subject code contains
greater than the permitted number of SAVE or RESTORES, this section of subject code is
subdivided into two or more smaller sections, by creating additional subject code blocks. This
limitation is convenient to allow a break in an otherwise relatively lengthy block.



WO 2008/068519 PCT/GB2007/050586

10

15

20

25

30

35

20

As shown in Figure 8A, the identified register window movements 176 adjust a frame
offset 178 up or down in SAVE and RESTORE directions from an assumed starting position.
Conveniently the frame offset 178 is set to “0” at the start of each decoded block and is
adjusted by one count to “-1”, “-2” etc. for each consecutive SAVE movement. Conversely, the
fame offset is increased by one count for each identified RESTORE type movement. Thus, the
frame offset provides a current cumulative offset from the default starting position based on the
identified register window movement information 176 encountered during that block. For
example, from the default of “0”, a SAVE adjusts the frame offset 178 to “-1”. A second SAVE
then adjusts the offset to “-2”. However, a RESTORE now adjusts the offset back to “-1”, a
second RESTORE adjusts the offset back to “0”, and a further RESTORE adjusts the offset
now to “+1”, and so on. The table in Figure 8 shows the identified register references 175 and
the identified register window movements 176. Also, the table shows the displacements 177
and the frame offsets 178 derived therefrom. Further, the table shows example target code 21
which combines together the frame offset 178 and the displacements 177 to address individual
entries 401 lying in various different frames 410 on the SR stack 400. That is, the current offset
178 and the displacements 177 are used by the core 192 and the encoder unit 193 when
generating and planting the target code. The encoder 193 is thus able to plant target code 21
which simplifies addressing in the SR stack by allowing “base plus offset” type addressing.

As shown in Figure 8A, the target code block 21a begins with header code 211 which,
as in the previous example, suitably loads the stack pointer SR_SP into a target register rbp.
In this example, it is assumed that the value in rbop refers to frame 410a of Figure 6. Next, the
target code performs work equivalent to the example “mov” and “add” subject instructions as
discussed above. In response to the register window movement information 176 derived from
the “save”, the frame offset 178 is decreased by one count and the target code is generated to
temporarily amend the stack pointer SR_SP held in rbp to advance by sixteen entries on the
SR stack 400, so that SR_SP now refers to the subsequent frame 410b in Figure 6. Note that
the “save” subject instruction here does not terminate the subject block. That is, the overhead
of header and footer code is not required. The target code in Figure 8 now immediately
performs the work of the second subject “add” instruction using rax. In response to the register
window movement information 176 derived from the “restore”, the target code has been
generated to update the value of SR_SP in rbp according to the new offset 178 to retard the
stack pointer by sixteen entries, whereby the stack pointer is now again referring to frame
410a of Figure 6. Also, the final subject “restore” instruction acts to select the termination point
of this subject block 17a. The footer 211 thus now saves the updated stack pointer SR_SP
back from rop to fs:SR_SP. As for Figure 7 above, the “return” at the end of the subject block
17a may return execution control to the translator which may in turn then return to the subject

code (not shown) that called the subject block 17a as “func1”.



WO 2008/068519 PCT/GB2007/050586

10

15

20

25

30

35

21

Figure 8B shows a further optimisation in the SR addressing mechanism. Here, the
offset 178 is combined with the displacement 177 prior to generating the target code, such that
the work of temporarily adjusting the value of SR_SP in rbp is avoided. That is, the three
target instructions “add”, "mov” and “add” at the end of Figure 8A are conveniently combined
into a single “add” instruction as shown in Figure 8B. The offset 178 and the displacement 177
are combined in this case by -16 + 11 = -5 to give a combined adjustment of -5 from the
original value of rbp. Here, identifying the register references 175 and associated
displacements 177, together with the register window movement information 176 and the
associated frame offsets 178, allows efficient optimised target code to be planted which both
performs the work of the subject code and emulates the key components of the subject
processor relevant to the operation of that subject code.

The addressing mechanism discussed above in Figure 8 allows the translator 19 to
provide a single block of target code which includes target instructions that emulate the effects
of multiple “save” and/or “restore” instructions of the subject code within a single block of target
code. It will be appreciated that this mechanism also allows the translator 19 to inline subject
functions, and particularly leaf functions, into the target code. That is, the subject “call” and
“return” instructions that are used to perform a procedure call involve the same SAVE and
RESTORE type movements of the register window 510 and can now be achieved without
requiring a function call in the target code.

Figure 9 is a schematic flow diagram of a method of performing the register window
emulation mechanism discussed herein. A Dblock of the subject code 17 is selected and
decoded at step 901. References 175 in this block of subject code 17 to the subject registers
5 of the subject processor 3 are identified at step 902. Most particularly, the references 175
relate to the file of windowed subject registers 502. Also, instructions 176 in the subject code
17 which cause movement of a register window 510 are identified at step 903. At step 904, the
SR stack 400 is provided on the target computing platform 10 as discussed above, with
reference to a stack pointer SR_SP.

At step 905, the target code 21 is generated with reference to the SR stack 400 and the
stack pointer SR_SP. That is, each block of target code 21 is generated with target code
instructions which store and retrieve data values as entries 401 on the SR stack 400. Here, at
step 906, the target code derived from the identified register window movement information
176 adjusts the stack pointer SR_SP, either by immediately updating the stack pointer SR_SP
to refer to the new head of the stack, or by adjusting the temporary frame offset 178. At step
907, the target code 21 derived from the identified register references 175 accesses the
desired entries 401 within the frames 410 of the SR stack, using the associated displacements
176 from the adjusted stack pointer SR_SP.



WO 2008/068519 PCT/GB2007/050586

10

15

20

25

30

35

22

Advantageously, the SR stack mechanism 400 is not limited as to the number of frames
401 which it can store simultaneously. Referring again to Figure 5, it will be noted that this
example hardware implementation of the subject processor 3 provides only eight register
window position 511 and by definition the SPARC hardware is only able to provide a maximum
of 32 register window position. Once each of the register window positions 511 contains valid
data, any additional SAVE forces a spill operation to empty the windowed register file 502 to
free new temporary working space. By contrast, the present emulated register window
mechanism avoids the considerable overhead associated with detecting and performing the
automatic spill and fill operations of the subject architecture. That is, the present register
window mechanism is not bounded by such finite hardware limitations and the SR stack 400
instead expands as required to contain the necessary additional entries 401 for each SAVE. If
the subject computing architecture comprises a maximum finite number n register window
positions, and then the SR stack may have, as execution progress, a plurality m frames 410,
where m and n are both positive integers and m is greater n. The SR stack 400 is relatively
large and is not of a predetermined finite size. In most target computing platforms the memory
18 is sufficiently large that the SR stack 400 appears to the translator 19 as an infinite
resource. Ultimately, the SR stack 400 is limited in size but in practice the theoretical maximum
size of the stack far exceeds the needed size for any realistic implementation (e.g. 1Kb per
sixteen 64-bit entries), such that the SR stack may be treated as an infinite resource (i.e. many
hundreds of frames 410 are easily stored by the SR stack 400).

Figure 10 is a schematic diagram showing a plurality of stack data structures in the
memory of the target computing architecture, to explain a further aspect of the present

invention.

Figure 10 illustrates the SR stack 400 as discussed above, again in this case shown
growing vertically down the diagram. Also, a number of other stacks are defined in the
memory 18 of the target computing architecture 10, as will be familiar to the skilled person.
The illustrated stacks include a subject stack 450, a target stack 460, and a translator stack
470, amongst others. Here, the subject stack 450 emulates an execution stack (also termed a
control stack or function stack) as would be provided in the subject architecture for execution
of the subject code. That is, part of the process of program code conversion from subject code
to target code involves the creation and manipulation of the subject stack 450 on the target
architecture. The target stack 460 is a stack provided for execution of the target code 21. The
translator stack 470 is a stack provided for execution of the translator 19. Each of these
stacks, and other stacks, exist simultaneously in the memory 18 of the target architecture and
are typically managed by the target operating system 20 in conjunction with the translator code
19 and target code 21, etc.



WO 2008/068519 PCT/GB2007/050586

10

15

20

25

30

35

23

The subject stack 450 is of particular interest since, in the subject architecture 1, register
spill operations transfer register values from the windowed hardware subject registers 502
onto the subject stack as provided in the memory 8 of the subject system. Conversely, fill
operations in the subject architecture transfer register values from the subject stack to the
windowed hardware subject registers 502. In the example V9 SPARC architecture, each
SAVE type register movement causes space to be reserved on the execution stack which,
when a spill operation is performed, will be filled with register values from registers 502 in a
respective register window position 511. That is, as illustrated in Figure 10, the subject code
17 (now translated into target code 21) may reasonably assume that required data values will,
in certain circumstances, appear in the allocated space in the emulated version of the subject
stack 450. However, unless such data values are in fact copied from the SR stack 400 to the
emulated subject stack 450, the data values will not appear as expected.

Figure 10 shows an example set of frames of entries on the SR stack 400. Here, the
frames 410 are labelled FO through F8. The frames each overlap as shown in Figure 5, but are
not shown as overlapping in Figure 10 for clarity. Further, the individual entries 401 have not
been shown in Figure 10 again for clarity. To emulate the behaviour of the subject platform,
spaces are reserved on the emulated execution stack 450 as each new frame 410 FO-F8 is
added to the SR stack 400. Also, the emulated subject stack 450 is interspersed with other
data such as temporary values and function call and return parameters, as required to emulate

the effects on the subject stack by the executing subject code 17.

There are certain subject code instructions which specifically affect the transfer of data
from the subject registers to the subject stack. In the v9 SPARC example discussed herein, a
“flushw” instruction flushes all of the registers 502 from the windowed hardware subject
registers 502 into the subject execution stack, except the current window position, by
performing repetitive spill traps. The “flushw” instruction is implemented by causing a spill trap
if any register window position (other than the current register window position) has valid
contents. On the subject architecture, the number of window positions with valid contents is
computed with reference to the CANSAVE control/status register.

Also, the programming language C may include native code libraries which are compiled
specific to a particular subject computing platform. The C programming language includes
instructions such as “setjmp” and “longjmp” which, although now widely considered to be
archaic and notoriously difficult to implement, can appear in many real-world subject programs,
especially legacy programs. The “setjmp” and “longjmp” instructions are typically used in the C
programming language for non-local exits or for software exception handling. The setimp

function identifies return points by saving information about the execution environment at the



WO 2008/068519 PCT/GB2007/050586

10

15

20

25

30

35

24

point where the call to the setimp function appears in the subject code. Execution of the
subject program continues normally after the call to setjmp, until, at some later point, calling
longjmp causes an exit to this return point, such that execution control is transferred back to
the point where setjimp was called. The setjmp routine typically includes copying register
values from the subject registers to the subject stack, and the longjmp function typically
restores those values from the stack to the subject registers.

As another example, the programming language C may include processor-family-
specific implementations, in assembly, of functions to create, save and restore a context, for
use in signal handling or for user multi-threading. Some C libraries provide such routines under

the names “getcontext”, “setcontext”, and “makecontext”. The context functions are provided
as if part of a native C library, but with specific implementations for specific hardware such as

ARM, PowerPC, SPARC and x86.

As a further example, the higher-level programming language C++ provides instructions
specifically to handle software exceptions.  Although these C++ exception handling
instructions are primarily intended for handling exceptional situations encountered during
execution of a subject program, they are also a convenient programming construct in
themselves and are often used to simplify a program’s algorithm, in contrast to more typical “if”

type instructions. Specifically, C++ exception instructions include “try”,

catch” and “throw
instructions. Implementing these instructions in binary subject code executable by the subject
processor thus involves the transfer of data between the subject registers and the subject
stack.

There are many other situations which require such transfer of data including, for
example, stack unwinding whereby the subject program walks back up the execution stack
and hence requires valid subject register values to be present on the execution stack.

Figure 11 is a schematic flow diagram illustrating a mechanism to transfer data values
between the SR stack 400 used for emulating the windowed subject registers 502 and the
subject stack 450 used to emulate the execution stack of the subject platform, and vice versa.

At step 1101, the subject code 17 is decoded to, inter alia, identify SAVE and
RESTORE type register window movements 176 as discussed above. At step 1102, a CR
counter is updated for each identified register window movement 176. Suitably, each SAVE
adds +1 to the CR counter, and each RESTORE decrements -1 from the CR counter. Thus, as
the subject program progresses, the CR counter counts the number of frames 410 of entries
401 on the SR stack 400. Also, at step 1103, subject instructions are identified which in the
subject architecture require data values held in the windowed subject registers 502 to be



WO 2008/068519 PCT/GB2007/050586

10

15

20

25

30

35

25

saved to the subject execution stack, which here are termed SPILL type instructions. As a
particular example for the SPARC subject architecture, the “flushw” subject instruction is
identified. At step 1104, and as shown in Figure 10, target code 21 is provided to flush a
determined number of frames 410 of entries 401 from the SR stack 400 to the corresponding
space allocated on the emulated subject stack 450. In this illustrated example of Figure 10, the
SR stack 400 contained entries for nine frames labelled FO to F8. Here, the CR counter shows
that eight earlier frames FO to F7 (i.e. not including the current frame of entries F8) need to be
copied from the SR stack 400 to the subject stack 400 (CR=8). At step 1105, following this
repetitive spill operation, the CR counter is updated (reset) to zero to show that all of the
required frames 410 have been copied from the SR stack 400 to the subject stack 450.

As noted above, in the subject architecture the “flushw” instruction invalidates all register
window positions 511 except the current position and thus the subject execution stack now
holds the canonical version of the subject register values for all previous register window
positions. Some subject programs such as the C context functions, setjmp/longjump functions
and C++ exceptions will alter the data values stored in the subject stack. Hence, in this
emulated environment illustrated in Figure 10, it is important to refer to the values now held in
the emulated subject execution stack 450 rather than the (now potentially invalid) data in the
entries 401 on the SR stack 400. Accordingly, at step 1106 the target code is now generated
to access the desired data values on the emulated subject stack 450 where appropriate.

Step 1107 comprises identifying subject code instructions which in the subject
architecture cause register values to be loaded into the windowed register file 502 from the
subject execution stack, which here are termed here FILL type instructions. In the example
SPARC subject architecture, this is suitably a “restore” instruction. In the emulated mechanism
provided herein, the CR counter is tested at step 1108. If the CR counter is non-zero (CR>0) to
indicate that one or more valid frames 410 exist in the SR stack 400, then at step 1105 the CR
is updated (in this case decremented, CR=CR-1) in response to the RESTORE instruction and
no data is copied from the subject stack 450. The subject “restore” here causes an adjustment
of the stack pointer SR_SP to select a different frame 410 on the SR stack as discussed
above. However, where the CR counter is zero (CR=0) to indicate that no valid earlier frames
exist on the SR stack, then at step 1109 a fill operation is performed to copy a frame of data
values from the subject stack 450 back to the SR stack 400 for use as the new current frame
410 following the RESTORE. The frame of data values from the subject stack 450 may have
been modified by the subject program, and hence the canonical versions of these data values
are now again available in the entries 401 of the SR stack 400 for subsequent use in the
subject program. In particular, the SPARC architecture by convention stores the stack pointer
for the subject stack in subject register 06 (also known by the alias sp). Due to the overlap of
the register window positions 511, the stack pointer for a caller procedure is also available in



WO 2008/068519 PCT/GB2007/050586

10

15

20

25

30

35

26

the subject register i6. This previous stack pointer is termed the frame pointer (and can be
accessed using the alias fp). Modifications to the stored register values typically involve
changing the register values for the frame pointer (i6/fp) and/or the stack pointer (06/sp). Thus,
it is important that these data values are accurately maintained by the emulation mechanism
discussed herein.

Figure 12A shows an example spill operation in more detail. The operation “flushw” was
performed earlier for frames labelled FO and F1, and thus reset the CR counter to zero. Since
that point, there have been (at least) seventeen further SAVE register movements to form
frames F2 to F19 on the SR stack 400 as noted by the CR counter (CR=17). A SPILL
instruction (i.e. “flushw”) is identified in the subject code, which causes the seventeen frames
of register values F19 to F2 to be copied from the SR stack 400 to the subject stack 450 and
returns the CR counter to zero. All of the frames F2 to F18 are now invalid, and only the
currently active frame F19 remains valid on the SR stack.

Figure 12B shows an example fill operation in more detail, following on from the
situation shown in Figure 12A. Here, a RESTORE from the currently active frame F19 (where
CR=0) causes a frame of register values to be loaded from the subject stack 450 to form the
new current frame, here at F18, replacing the (invalid) values previously in that frame on the
SR stack. Execution now continues using the register values loaded into the new current frame
F18. The stack pointer for the SR stack SP_SRS is updated, immediately or at the end of a
subject code block, to account for this register window movement.

Other specific embodiments of this transfer mechanism are also contemplated. In
particular, following the spill operation (“flushw”), any suitable point on the SR stack may then
be used as the new current frame, since “flushw” invalidates all register windows except the
current window. For example, the SR stack can be cleared and the stack space reclaimed
completely after each “flushw”, or a default position on the SR stack may be set as the new
current frame such as half way along an allocated space for the stack.

At least some embodiments of the invention may be constructed solely using dedicated
hardware, and terms such as ‘module’ or ‘unit’ used herein may include, but are not limited to,
a hardware device, such as a Field Programmable Gate Array (FPGA) or Application Specific
Integrated Circuit (ASIC), which performs certain tasks. Alternatively, elements of the
invention may be configured to reside on an addressable storage medium and be configured
to execute on one or more processors. Thus, functional elements of the invention may in
some embodiments include, by way of example, components, such as software components,
object-oriented software components, class components and task components, processes,

functions, attributes, procedures, subroutines, segments of program code, drivers, firmware,



WO 2008/068519 PCT/GB2007/050586

10

15

20

25

30

27

microcode, circuitry, data, databases, data structures, tables, arrays, and variables. Further,
although the preferred embodiments have been described with reference to the components,
modules and units discussed herein, such functional elements may be combined into fewer
elements or separated into additional elements.

Although a few example embodiments have been shown and described, it will be
appreciated by those skilled in the art that various changes and modifications might be made
without departing from the scope of the invention, as defined in the appended claims.

Attention is directed to all papers and documents which are filed concurrently with or
previous to this specification in connection with this application and which are open to public
inspection with this specification, and the contents of all such papers and documents are
incorporated herein by reference.

All of the features disclosed in this specification (including any accompanying claims,
abstract and drawings), and/or all of the steps of any method or process so disclosed, may be
combined in any combination, except combinations where at least some of such features

and/or steps are mutually exclusive.

Each feature disclosed in this specification (including any accompanying claims,
abstract and drawings) may be replaced by alternative features serving the same, equivalent
or similar purpose, unless expressly stated otherwise. Thus, unless expressly stated
otherwise, each feature disclosed is one example only of a generic series of equivalent or

similar features.

The invention is not restricted to the details of the foregoing embodiment(s). The
invention extends to any novel one, or any novel combination, of the features disclosed in this
specification (including any accompanying claims, abstract and drawings), or to any novel one,
or any novel combination, of the steps of any method or process so disclosed.



WO 2008/068519 PCT/GB2007/050586

10

15

20

25

30

35

28

CLAIMS

1. A computing system adapted to support a register window architecture, for use
with subject code executable by a subject processor of a register window based subject
computing architecture where a register window is positioned to reveal a selected subset of
subject registers of the subject processor from a windowed register file, the subject code
including window-based instructions which affect the register window and register-based
instructions containing references to the subject registers in the register window, the

computing system comprising:

a decoder unit arranged to decode the subject code to derive register window
movement information from the window-based instructions and to derive one or more

windowed subject register references from the register-based instructions;

a memory having a stack data structure arranged to store a plurality of entries;

an encoder unit arranged to generate target code from the subject code decoded by the
decoder unit; and

a target processor arranged to execute the target code to set a stack pointer relevant to
a head of the stack data structure in the memory, to adjust the stack pointer with reference to
the register window movement information, and to access the entries in the stack data
structure with reference to the stack pointer combined with displacements determined with
respect to a respective one of the windowed subject register references.

2. The computing system of claim 1, wherein the decoder unit is arranged to identify
one or more of the window-based instructions in the subject code which cause at least SAVE
and RESTORE type movements of the register window, and to derive at least SAVE and
RESTORE type register window movement information therefrom.

3. The computing system of claim 2, wherein the target processor is arranged to
adjust the stack pointer in response to each said SAVE and RESTORE type register window

movement information.

4. The computing system of claim 3, wherein the target processor is arranged to
adjust the stack pointer by a predetermined offset in response to each said SAVE and
RESTORE type register window movement information.



WO 2008/068519 PCT/GB2007/050586

10

15

20

25

30

35

29

5. The computing system of claim 4, wherein the target processor is arranged to
increment the stack pointer by the predetermined offset in response to each said SAVE type
register window movement information and to decrement the stack pointer by the
predetermined offset in response to each said RESTORE type register window movement

information, or vice versa.

6. The computing system of claim 5, wherein the predetermined offset corresponds
to a size of an addressable set of the windowed subject register references.

7. The computing system of claim 6, wherein the target processor is arranged to
determine the displacement for each of the windowed subject register references with respect
to a position of the respective windowed subject register reference within the addressable set
of the windowed subject register references.

8. The computing system of claim 1, wherein the encoder unit is arranged to issue at
least one target code instruction which causes the target processor to access a selected entry
of the stack data structure by combining the adjusted stack pointer with the determined
displacement.

9. The computing system of claim 1, wherein the target processor is arranged to
determine a frame offset to adjust the stack pointer by a predetermined number of entries
according to the register window movement information, and to adjust the stack pointer
according to the determined frame offset and the determined displacement to access a
selected entry from the stack data structure.

10. The computing system of claim 1, wherein the decoder unit is arranged to divide
the subject code into a plurality of blocks according to the window-based instructions in the

subject code from which the register window movement information is derived.

11. The computing system of claim 1, wherein the subject code includes at least one
caller portion that performs a function call to a callee portion, and the encoder unit is arranged
to generate a single block of target code which inlines the callee portion into the caller portion.

12. The computing system of claim 11, wherein the encoder unit is arranged to
generate the target code instructions executed by the target processor to:

i) access a selected entry from the stack data structure according to the windowed
subject register reference identified in the caller portion of the subject code with reference to
the displacement derived from the windowed subject register reference and the stack pointer;



WO 2008/068519 PCT/GB2007/050586

10

15

20

25

30

35

30

i) increase a frame offset equivalent to a predetermined number of entries of the stack
data structure according to the register window movement information derived from the caller
portion of the subject code;

iii) access a selected entry from the stack data structure according to a windowed
subject register reference identified in the callee portion of subject code, with reference to the
displacement derived from the windowed subject register reference and the stack pointer
adjusted according to the frame offset; and

iv) decrease the frame offset according to the register window movement information

derived from the callee portion of subject code.

13. The computing system of claim 1, wherein:

the memory further comprises an emulated execution stack arranged to emulate an

execution stack for execution of the subject code;

the decoder unit is arranged to decode the subject code to identify at least SAVE and
RESTORE type register window movement information;

the encoder unit is arranged to generate the target code executed by the target
processor to update a counter for each identified register window movement, including
incrementing the counter for each SAVE and decrementing the counter for each RESTORE,
whereby the counter counts a number of frames, each frame containing a predetermined

number of the entries stored on the stack data structure;

the decoder unit is arranged to identify a SPILL type instruction in the subject code
which would require a spill of data values held in the windowed subject register references
derived from the register-based instructions in the subject code;

the encoder unit is arranged to generate the target code executed by the target
processor to copy data values from entries in the stack data structure to corresponding entries
allocated on the emulated execution stack in the memory, where the entries lie in a number of

frames as determined by the counter;

the encoder unit is arranged to generate the target code executed by the target
processor to reset the counter to a default value indicating that there are no valid frames of
entries in the stack data structure; and



WO 2008/068519 PCT/GB2007/050586

10

15

20

25

30

35

31

the encoder unit is arranged to generate the target code executed by the target
processor to0 address the data values stored in the entries in the emulated execution stack in
the memory.

14. The computing system of claim 13, wherein:

the decoder unit is further arranged to identify a FILL type instructions in the subject
code which requires a fill of data values held in the entries in the emulated execution stack in

the memory;

the encoder unit is arranged to generate the target code executed by the target
processor to test the counter with respect to the default value, and

i) where testing the counter indicates that one or more valid frames of entries exist in the
stack data structure, then to update the counter according to the identified FILL instruction,
and

i) where testing the counter indicates that no valid earlier frames of entries exist on the
stack data structure, then to copy data values from a frame of entries of the emulated
execution stack in the memory to the stack data structure in the memory as a current frame of
entries in the stack data structure.

15. The computing system of claim 1, wherein the decoder unit is arranged to divide
the subject code into a plurality of subject code blocks, and the encoder unit is arranged to
generate the target code as a corresponding plurality of target code blocks interleaved with
execution of the target code blocks by the target processor.

16. The computing system of claim 1, wherein the subject code is binary executable
code and the target code is binary executable code.

17. A method of controlling a computing system adapted to support a register window
architecture, comprising the steps of:

(a) decoding subject code executable by a subject processor of a register window
based subject computing architecture wherein a register window is positioned to reveal a
selected subset of subject registers from a windowed register file, including the steps of:



WO 2008/068519 PCT/GB2007/050586

10

15

20

25

30

35

32

(a1) identifying a windowed subject register reference from an instruction in the
subject code, where said windowed subject register reference comprises a reference to
one of said subject registers in the register window;

(a2) deriving a register window movement information from an instruction in the

subject code for causing a movement of the register window;

(o)  providing a stack data structure in a memory of the computing system where the
stack data structure is arranged to store a plurality of entries, and setting a stack pointer
indicating a head of the stack data structure in the memory;

(c)  converting the subject code into target code and executing the target code on a
target processor of the computing system, thereby performing the steps of:

(c1) adjusting the stack pointer with reference to the identified register window

movement information; and

(c2) accessing at least one of the entries in the stack data structure, with
reference to the stack pointer in combination with a displacement determined from the
windowed subject register reference.

18. The method of claim 17, wherein:

the step (a2) comprises identifying one or more instructions in the subject code for
causing at least SAVE and RESTORE type movements of the register window, and thereby
deriving at least SAVE and RESTORE type register window movement information; and

the step (c1) comprises incrementing the stack pointer by a predetermined frame offset
in response to each said SAVE type register window movement information and decrementing
the stack pointer by a predetermined frame offset in response to each said RESTORE type

register window movement information, or vice versa.

19. The method of claim 18, wherein each of the entries in the stack data structure
corresponds to one of a set of windowed subject register references in the register-based
instructions in the subject code; and

in the step (c1), the frame offset adjusts the stack pointer by a number of the entries on
the stack data structure corresponding to the size of the set; and



WO 2008/068519 PCT/GB2007/050586

10

15

20

25

30

35

33

in the step (c2), the displacement displaces the stack pointer by a number of the entries
on the stack data structure according to a relative position of the windowed subject register
reference within the set.

20. The method of claim 17, further comprising the step of dividing the subject code
into a plurality of blocks according to the position of the instructions from which the register
window movement information is derived and, for each such block, performing the steps (a),
(o) and (c) with respect to the subject code instructions in the subject code block.

21. The method of claim 17, wherein the subject code includes at least one caller
portion that performs a function call to a callee portion, and the step (c¢) further comprises
providing a single block of the target code which inlines the callee portion into the caller
portion.

22. The method of claim 21, further comprising the steps of:

providing the stack pointer having a first value and executing one or more target code
instructions to access a selected entry from the stack data structure according a windowed
subject register reference identified in the caller portion of subject code, with reference to the
displacement derived from the windowed subject register reference and the first value of the
stack pointer;

increasing a frame offset by a predetermined number of entries according to the register

window movement information derived from the caller portion of subject code;

executing one or more target code instructions to access a selected entry from the stack
data structure according to a windowed subject register reference identified in the callee
portion of subject code, with reference to the displacement derived from the windowed subject
register reference and the stack pointer as adjusted according to the frame offset; and

decreasing the frame offset according to the register window movement information

derived from the callee portion of subject code.

23. The method of claim 18, further comprising:

providing an emulated execution stack in the memory of the computing system to
emulate an execution stack for execution of the subject code;



WO 2008/068519 PCT/GB2007/050586

10

15

20

25

30

35

34

decoding the subject code to identify at least the SAVE and RESTORE type register
window movement information;

updating a counter for each such SAVE and RESTORE type register window movement
information, including incrementing the counter for each SAVE and decrementing the counter
for each RESTORE, whereby the counter counts a number of frames of the entries stored on
the stack data structure;

identifying a SPILL type instruction in the subject code which requires a spill of data
values held in the windowed subject registers addressed by the subject code into the
execution stack;

copying data values from a number of frames of entries from the stack data structure to
corresponding space allocated on the emulated execution stack, where the number of frames
of entries is determined by the counter;

resetting the counter to a default value indicating that there are no valid frames of
entries in the stack data structure; and

generating target code to address the data values stored on the emulated execution
stack.

24, The method of claim 23, further comprising:

identifying a FILL type instruction in the subject code which requires a fill of data values
held in the execution stack into the windowed subject registers addressed by the subject code;

testing the counter with respect to the default value;

where testing the counter indicates that one or more valid frames of entries exist in the

stack data structure, then updating the counter according to the identified FILL instruction; and

where testing the counter indicates that no valid earlier frames of entries exist on the
stack data structure, then copying a frame of data values from the emulated execution stack to

the stack data structure for use as a current frame of entries.

25. A computer readable storage medium having recorded thereon computer
implementable instructions which when executed adapt a computing system to support a

register window architecture, wherein the computer readable storage medium comprises:



WO 2008/068519 PCT/GB2007/050586

10

15

20

35

(a) acode unit arranged to decode subject code executable by a subject processor of
a register window based subject computing architecture wherein a current register window is
positioned to reveal a selected subset of subject registers from a windowed register file,
including identifying a windowed subject register reference from an instruction in the subject
code, where said windowed subject register reference comprises a reference to one of said
subject registers in the register window; and deriving a register window movement information

from an instruction in the subject code for causing a movement of the register window;

(o) a code unit arranged to provide a stack data structure in a memory of the
computing system arranged to store a plurality of entries, and to set a stack pointer indicating
a head of the stack data structure in the memory; and

(c) a code unit arranged to convert the subject code into target code and to cause
execution of the target code on a processor of the computing system to adjust the stack
pointer with reference to the identified register window movement information and to access at
least one of the entries in the stack data structure with reference to the adjusted stack pointer

in combination with a displacement determined from the windowed subject register reference.



WO 2008/068519 PCT/GB2007/050586
1/12
/ Window CWP+1
1[31]
.. “in” registers
1[24]
1[23]
.. “local” registers
16] / Window CWP
i[15] 31
. “out” registers . “Iin” registers
8] r[24]
1[23]
.. “local” registers
1[16]
1[15] r[31]
“out” registers " “Iin” registers
1[8] r[24]
r[23]
... “local” registers
r[16]
r[15]
“out” registers
1[8]
P
Window CWP-1 ~
1[7]
“global” registers
110]

Fig. 1
(Related Art)



PCT/GB2007/050586

WO 2008/068519

2/12

CWR

i

3

foCafk

Fig. 2
(Related Art)



WO 2008/068519 PCT/GB2007/050586

3/12
e 17
Subject Code
-2
g / Subject Operating System “
Subject Processor
43
-5
\ 1
28 17 19 21
Native | Subject Translator Translated Code
Code Code 27 (Target Code)
18 / Operating System pd 20
Target Processor
- 13
{ - 15 ]

Fig. 3



WO 2008/068519 PCT/GB2007/050586
4/12
sC
- 17
19
A
191
Decoder Unit L
A 17a
171 ~ SC_BBI -~
sc 32 |7 17b
171 N
17¢
171 ~ SC_BB3 e
] 192
Core
J 193
Encoder Unit
211
N—"— 2
TC_BB1 -]
TCBB2 NV~ 21b
211 N
- 21c
TC_BB3 -]

Fig. 4




WO 2008/068519 PCT/GB2007/050586

5/12
_ 510
N s
3 .
502 N 511
17 N
----------------- Subject Code e il
19 N \ 4
Translator
400
420
e — -~ SR_BASE
421 ~ g8
D [ — 1
) Cég(),, S —
A
44i877 (
CCiO”
441877 401
1 —P
441077
440877
13 077
° 4_10/k u <4— SR_SP

A 4

21
~N Target Code

13\ 15

Fig. 5



WO 2008/068519

PCT/GB2007/050586

6/12
13 bl 175
17a mov 17=#3 17
mov 13=#10 “13”
add 06=17,13 .
(6]
save | - 176
SAVE
175
170~ add 13=13.-1 =T
=13, 13
restore
I 176
tu
e RESTOREY
19
PINTD ‘ d Core  ——— -
ccodaer ] ore
|~ 193
Encoder H
_~ 400 Y _2la
[header code (211)]
o — mov rax, #3
401 mov (rbp + 15), rax
0 N S mov rbx, #10
mov (rbp + 11), rbx
add rax, rbx
mov (rbp + 6), rax
L~ 410a add tbp, -1#16
[footer code (211)]
) _-21b
[header code (211)]
SR SP1 > add (rbp+11), -1
B ——— add rbp, +1*16
et / [footer code (211)]
-
£251 | 4100
£
sr_sp2 —ptzmd J

Fig. 6



PCT/GB2007/050586

WO 2008/068519

7/12

[(1T2) 2pod 1100]] (duou) uImnjox
911+ ‘dqr ppe I+ (IHHIOLSHA 210)821
I- “(11+dqr) ppe 0 (suou) er+ ¢l I-°¢I=¢I ppe
[(112) opoo Jopeay]
QLT YI0[q 193.1€) QLT YooIq 13[qns
[(112) 9p0d 19100]]
9I«I- ‘dqI ppe I- (I)AAVS QABS
9+ 90
xeI {9 + dq1) Ao + o
XqI ‘Xe1 ppe 0 (ouow) I el ¢l LI=90 ppe
cr+ Ll
xqI ‘(1T + dq1) Ao Suou 1 Aow
OT4# XqJ Aour 0 ( ) I+ ¢l OT#=¢1
xe1 ‘(¢ + dqr) aow B .
¢ “XeI Aou 0 (suou) cr+ L1 ¢H#=L] Aol Touny
[(112) opoo Jopeay]
'BTZ YP0[q 195ae) ‘BLT YO0[q 109([qns
dsus (9LT) JUDUDAOIY | (SPLOMMA-P9 UN) | ) s o
apo)) P3ae], JO JUSWIRAOIA] MOPUIAA J9ISISY ydunsnlpy 1siSo apo)) 1d[qng
ELLLAR paynuapy Anuy e
L b4




PCT/GB2007/050586

WO 2008/068519

8/12

0 (IH)TAOLSTA Q10)8aI
[-°(S- dqx) ppe 91 « I~ (suou) [T+ €l I-°¢I=¢I ppe
ol « I- (I)AAVS JA®BS
g8 "bi4
[opoo 1100]] wmnjox
91«1+ ‘dqr ppe 0 (I+H)aIOLSHY 2101501
I- ‘(11+dqy) ppe ol « I- (Suou) I+ ¢l [-‘¢I=¢I ppe
91«1~ ‘dqJ ppe ol « I- (I-)dAVS QABS
9+ 90
xer ‘(g + dqr) Ao
fo szH ppe 0 (ouow) I+ el 90*LI=¢I ppe
SI+ Ll
xqI ‘(1T + dq1) Ao
OT4 *XqI Ao 0 (Suou) I+ ¢l OT#=¢[ Aow
xer + dqg1) Aomn
(1 cH AMNW Aoul 0 (Suou) SI+ Ll cH=L] Aot ‘pouny
[opoo 1opeay]
BT 7 YO0Iq 19318) ‘LT YO0[q 19[qns
(Sprom 31q 9
SPJIOM J1Q-$9 UT
apo)) pose, X QT JO SOweaj ur) | (9L]) JUIWIAOTA] (sp FM.M_V_% Y (SLT) WY apor) Pafqng
(8L1) paynuaPY J9)S180y :
1S AW yudRdsI(Y
v8 b




WO 2008/068519 PCT/GB2007/050586
9/12

901

DECODE
SUBJECT CODE A

903
! 902 e

IDENTIFY REGISTER IDENTIFY REGISTER
REFERENCES WINDOW MOVEMENTS

904

A

PROVIDE SR STACK
& STACK POINTER

A

PLANT TARGET | ~905
CODE

906

A - 907 A /
ADDRESS ENTRIES ADJUST STACK
ON SR STACK POINTER

Fig. 9



WO 2008/068519 PCT/GB2007/050586

10/12
- 400 //450 //460 ,/470
FO
F1 \ -------
F2 \r-.P_‘Q__.l
F1
"""" |
oo
F2
F6
410
N
F8
_Fo__
F7
ity
_F8
|




WO 2008/068519 PCT/GB2007/050586
11/12

1101
R DECODE j
>  SUBJECTCODE ¢
‘ 1102
SET CR
‘ 1103 107
IDENTIFY SPILL IDENTIFY FILL
INSTRUCTIONS INSTRUCTIONS
1104
-~ 1108
SPILL TO SUBJECT
STACK
! 1109
UPDATE CR ) FILL TO SR STACK
TN 1105
, __ 1106
GENERATE TARGET GENERATE TARGET
CODE REFERRING TO CODE REFERRING TO
SUBJECT STACK SR STACK
TNC1106

Fig. 11



WO 2008/068519 PCT/GB2007/050586

12/12
__ 400 450
FO
F1
= FO
F1
e

CR:17|

Fl7 _\f“ﬁﬁ“
FIS f—0u [ 1
F19 ‘\;t"ﬁié"

P

s F19

Fig. 12A
/400 _ 450
FO
F1
 F2 il
F1
F2
F17 ~r
F18 \
F19 $ F18
SR_SP ———————— CR:() _______
_F19

Fig. 12B



INTERNATIONAL SEARCH REPORT

international application No

PCT/GB2007/050586

A. CLASSIFICATION OF SUBJECT MATTER

INV.

GO6F9/455

According to International Patent Classification (IPC) or to both national classification and IPC

B. FIELDS SEARCHED

Minimum documentation searched (classification system followed by classification symbols)

GO6F

Documentation searched other than minimum documentation to the extent that such documents are included in the fields searched

Electronic daia base consulted during the international search (name of data base and, where practical, search terms used)

EPO-Internal, COMPENDEX, INSPEC, IBM-TDB

C. DOCUMENTS CONSIDERED TO BE RELEVANT

Category*

Citation of document, wilh indication, where appropriate, of the relevant passages

Relevant to claim No.

PALMER T ET AL: "Experiences Constructing
a Lightweight SPARC Interpreter for a
Dynamic Binary Translator"

INTERNET ARTICLE, [Online]

14 March 2003 (2003-03-14), pages 1-9,
XP002472427

Retrieved from the Internet:
URL:http://web.archive.org/web/20060303040
446/http://www.cs.umass.edu/{trekp/sind-ex
prs.pdf> [retrieved on 2008-03-05]
abstract

page 2, left-hand column, line 3 -
right-hand column, line 14

page 3, right-hand column, 1ine 28 -
left-hand column, 1ine 21

Sy

1-25

m Further documenits are listed in the continuation of Box C.

E See pateni family annex.

* Special calegories of cited documents :

*A* document defining the general state of the arn which is not

‘T* later document published after the international filing date

or priority date and not in conflict with the application but

considered to be of particular relevance invention

*E" earlier document but published on or after the international
filing date

*L" document which may throw doubts on priority claim(s) or
which is cited to establish the publication date of another
citation or other special reason (as specified)

*0O* document referring 1o an oral disclosure, use, exhibition or
other means

*P* document published prior to the international filing date but
later than the priority date claimed

cited to understand the principle or theory underlying the

*X' document of particular relevance; the claimed invention

cannot be considered novetl or cannot be considered to

in the art.

involve an inventive step when the document is taken alone

*Y* document of particular relevance; the claimed invention
cannol be considered to involve an inventive step when the
document is combined with one or more other such docu—
ments, such combination being obvious to a person skilled

*&" document member of the same patent family

Date of the actual completion of the international search

12 March 2008

Date of mailing of the intemational search reporn

31/03/2008

Name and mailing address of the ISA/

European Patent Office, P.B. 5818 Patentlaan 2
NL - 2280 HV Rijswijk

Authorized officer

Tel. (+31-70) 340-2040, Tx. 31 651 epo nl, de Man Rona] d
’

Fax: (+31-70) 340-3016

Form PCT/ISA/210 (second sheet) (April 2005)

page 1 of 2




INTERNATIONAL SEARCH REPORT

International application No

PCT/GB2007/050586

C(Continuation). DOCUMENTS CONSIDERED TO BE RELEVANT

Category*

Citation of document, with indication, where appropriate, of the relevant passages

Relevant to claim No.

A

WEAVER D ET AL: "The SPARC Architecture
Manual - Version 9"

INTERNET ARTICLE, [Onlinel]

September 2000 (2000-09), XP002472428
Retrieved from the Internet:
URL:http://developers.sun.com/solaris/arti
cles/sparcv9.pdf>

[retrieved on 2008-03-11]

cited in the application

pages 30-34

pages 58-60

pages 301-308

US 2005/015758 A1 (NORTH GERAINT [GB])
20 January 2005 (2005-01-20)

abstract

paragraph [0030]

1-25

1-25

Form PCT/ISA/210 (continuation of second sheet) (April 2005)

page 2 of 2




INTERNATIONAL SEARCH REPORT

International application No

Information on patent family members PCT/GBZOO7/050586
Patent document Publication Patent family Publication
cited in search report date member(s) date
US 2005015758 Al 20-01-2005 EP 1649360 A2 26-04-2006
WO 2005008479 A2 27-01-2005
JP 2007531075 T 01-11-2007
KR 20060033912 A 20-04-2006

Fomm PCT/ISA/210 (patent family annex) (April 2005)




	Page 1 - front-page
	Page 2 - description
	Page 3 - description
	Page 4 - description
	Page 5 - description
	Page 6 - description
	Page 7 - description
	Page 8 - description
	Page 9 - description
	Page 10 - description
	Page 11 - description
	Page 12 - description
	Page 13 - description
	Page 14 - description
	Page 15 - description
	Page 16 - description
	Page 17 - description
	Page 18 - description
	Page 19 - description
	Page 20 - description
	Page 21 - description
	Page 22 - description
	Page 23 - description
	Page 24 - description
	Page 25 - description
	Page 26 - description
	Page 27 - description
	Page 28 - description
	Page 29 - claims
	Page 30 - claims
	Page 31 - claims
	Page 32 - claims
	Page 33 - claims
	Page 34 - claims
	Page 35 - claims
	Page 36 - claims
	Page 37 - drawings
	Page 38 - drawings
	Page 39 - drawings
	Page 40 - drawings
	Page 41 - drawings
	Page 42 - drawings
	Page 43 - drawings
	Page 44 - drawings
	Page 45 - drawings
	Page 46 - drawings
	Page 47 - drawings
	Page 48 - drawings
	Page 49 - wo-search-report
	Page 50 - wo-search-report
	Page 51 - wo-search-report

