(12) INTERNATIONAL APPLICATION PUBLISHED UNDER THE PATENT COOPERATION TREATY (PCT)

CORRECTED VERSION

(19) World Intellectual Property Organization

International Bureau

(43) International Publication Date 14 November 2002 (14.11.2002)

PCT

(10) International Publication Number WO 02/090558 A1

(51) International Patent Classification⁷: C12N 15/86, 15/63, 15/85, A61K 48/00, A61P 31/00

(21) International Application Number: PCT/FI02/00379

(22) International Filing Date: 3 May 2002 (03.05.2002)

(25) Filing Language: English

(26) Publication Language: English

(30) Priority Data:

20010922 3 May 2001 (03.05.2001) FI 10/138,098 3 May 2002 (03.05.2002) US

- (71) Applicant (for all designated States except US): FIT BIOTECH OYJ PLC [FI/FI]; Lenkkeilijänkatu 10, FIN-33520 Tampere (FI).
- (72) Inventors; and
- (75) Inventors/Applicants (for US only): KROHN, Kai [FI/FI]; Salmentaantie 751, FIN-36450 Salmentaka (FI). BLAZEVIC, Vesna [HR/FI]; Leilikuja 7 C 26, FIN-33820 Tampere (FI). TÄHTINEN, Marja [FI/FI]; Kurunniitynkatu 2, FIN-33730 Tampere (FI). USTAV, Mart [EE/EE]; Jaama Street 58A, 50604 Tartu (EE). TOOTS, Urve [EE/EE]; Aardla 146-1, 50415 Tartu (EE). MÄNNIK, Andres [EE/EE]; Narva mnt. 149-25, 51008 Tartu (EE). RANKI, Annamari [FI/FI]; Sibeliuksenkatu 11 B 28, FIN-00250 Helsinki (FI). USTAV, Ene [EE/EE]; Jaama Street 58A, 50604 Tartu (EE).
- **(74) Agent: KOLSTER OY AB**; Iso Roobertinkatu 23, P.O.Box 148, FIN-00121 Helsinki (FI).

- (81) Designated States (national): AE, AG, AL, AM, AT (utility model), AT, AU, AZ, BA, BB, BG, BR, BY, BZ, CA, CH, CN, CO, CR, CU, CZ (utility model), CZ, DE (utility model), DE, DK (utility model), DK, DM, DZ, EC, EE (utility model), EE, ES, FI (utility model), FI, GB, GD, GE, GH, GM, HR, HU, ID, IL, IN, IS, JP, KE, KG, KP, KR, KZ, LC, LK, LR, LS, LT, LU, LV, MA, MD, MG, MK, MN, MW, MX, MZ, NO, NZ, OM, PH, PL, PT, RO, RU, SD, SE, SG, SI, SK (utility model), SK, SL, TJ, TM, TN, TR, TT, TZ, UA, UG, US, UZ, VN, YU, ZA, ZM, ZW.
- (84) Designated States (regional): ARIPO patent (GH, GM, KE, LS, MW, MZ, SD, SL, SZ, TZ, UG, ZM, ZW), Eurasian patent (AM, AZ, BY, KG, KZ, MD, RU, TJ, TM), European patent (AT, BE, CH, CY, DE, DK, ES, FI, FR, GB, GR, IE, IT, LU, MC, NL, PT, SE, TR), OAPI patent (BF, BJ, CF, CG, CI, CM, GA, GN, GQ, GW, ML, MR, NE, SN, TD, TG).

Published:

- with international search report
- (48) Date of publication of this corrected version:

6 February 2003

(15) Information about Correction:

see PCT Gazette No. 06/2003 of 6 February 2003, Section II

For two-letter codes and other abbreviations, refer to the "Guidance Notes on Codes and Abbreviations" appearing at the beginning of each regular issue of the PCT Gazette.

7

(54) Title: NOVEL EXPRESSION VECTORS AND USES THEREOF

(57) Abstract: The present invention relates to novel vectors, to DNA vaccines and gene therapeutics containing said vectors, to methods for the preparation of the vectors and DNA vaccines and gene therapeutics containing the vectors, and to therapeutic uses of said vectors. More specifically, the present invention relates to novel vectors comprising (a) an expression cassette of a gene of a nuclear-anchoring protein, which contains (i) a DNA binding domain capable of binding to a specific DNA sequence and (ii) a functional domain capable of binding to a nuclear component and (b) a multimerized DNA sequence forming a binding site for the anchoring protein, and optionally (c) one or more expression cassettes of a DNA sequence of interest. In particular the invention relates to vectors that lack a papilloma virus origin of replication. The nuclear-anchoring protein might be the E2 protein of Bovine Papilloma Virus type 1 or Epstein-Barr Virus Nuclear Antigen 1. The invention also relates to vectors that lack an origin of replication functional in a mammalian cell. The invention further relates to methods for expressing a DNA sequence of interest in a subject.

1

NOVEL EXPRESSION VECTORS AND USES THEREOF

1. FIELD OF THE INVENTION

The present invention relates to novel vectors, to DNA vaccines and gene therapeutics containing said vectors, to methods for the preparation of the vectors and DNA vaccines and gene therapeutics containing the vectors, and to therapeutic uses of said vectors. More specifically, the present invention relates to novel vectors comprising (a) an expression cassette of a gene of a nuclear-anchoring protein, which contains (i) a DNA binding domain capable of binding to a specific DNA sequence and (ii) a functional domain capable of binding to a nuclear component and (b) a multimerized DNA forming a binding site for the anchoring protein of a nuclear-anchoring protein, and optionally (c) one or more expression cassettes of a DNA sequence of interest. In particular the invention relates to vectors that lack a papilloma virus origin of replication. The invention also relates to vectors that lack an origin of replication functional in a mammalian cell. The invention further relates to methods for expressing a DNA sequence of interest in a subject.

2. BACKGROUND OF THE INVENTION

15

20

25

30

Transfer of autologous or heterologous genes into animal or human organisms with suitable vectors is emerging as a technique with immense potential to cure diseases with a genetic background or to prevent or cure infectious diseases. Several types of viral and non-viral vectors have been developed and tested in animals and in human subjects to deliver a gene/genes that are defective by mutations and therefore non-functional. Examples of such vectors include Adenovirus vectors, Herpes virus vectors, Retrovirus vectors, Lentivirus vectors and Adeno-associated vectors.

Vaccination has proven to be a highly effective and economical method to prevent a disease caused by infectious agents. Since the introduction of the Vaccinia virus as an attenuated vaccine against the smallpox virus (Variola), vaccines against a multitude of human pathogens have been developed and taken into routine use. Today small pox has been eradicated by vaccinations and the same

2

is to be expected shortly for the poliovirus. Several childhood diseases, such as pertussis, diphtheria and tetanus, can be effectively prevented by vaccinations.

In general, the most successful viral vaccines are live avirulent mutants of the disease-causing viruses. The key to the success of this approach is the fact that a living virus targets the same organs, the same type and similar number of cells, and therefore, by multiplying in the recipient, elicits a long-lasting immune response without causing the disease or causing only a mild disease. In effect, a live attenuated vaccine produces a subclinical infection, the nature's own way of immunizing. As a result, a full immune response will be induced, including humoral, cellular and innate responses, providing a long lasting and sometimes a life-long immune protection against the pathogen.

Although live attenuated vaccines are most potent, they can cause harmful side effects. Thus, an attenuated viral vaccine can revert to a virulent strain or in cases where the attenuated virus is apathogenic in adults it can still cause a disease in infants or in disabled persons. This is true in the case of viruses causing chronic infections, such as Human Immunodeficiency Virus type 1 and 2. Vaccines composed of viral and bacterial proteins or immunogenic peptides are less likely to cause unwanted side effects but may not be as potent as the live vaccines. This is especially the case with vaccines against microbes causing chronic infections, such as certain viruses and intracellular bacteria.

20

The strength and type of immune response is, however, also dependent on how the viral proteins are processed and how they are presented to the immune system by antigen presenting cells (APCs), such as macrophages and dendritic cells. Protein and peptide antigens are taken up by APCs via endocytosis, processed to small immunogenic peptides through an endosomal pathway and presented to T-lymphocytes (T-cells) by MHC (major histocompatibility complex) class II antigens [in man HLAs (human leukocyte antigens) class II]. In contrast, proteins synthesized de novo in APCs or in possible target cells for an immune response, will be processed through a cytoplasmic pathway and presented to T-cells by MHC class I antigens (in man HLAs class I). In general, the presentation of immunogenic peptides through the class II pathway will lead to the activation of the helper/inducer T-cells, which in turn will lead to the activation of B-

3

cells and to antibody response. In contrast, presentation through class I MHC favors the induction of cytotoxic T-lymphocytes (CTLs), which are capable of recognition and destruction of virally infected cells.

In early 1990's, a method to mimic the antigen processing and presentation that was normally achieved by live attenuated vaccines was introduced [Ulmer, J.B. et al Science 259 (1993) 1745-1749]. It was shown that an injection of eukaryotic expression vectors in the form of circular DNA into the muscle induced take-up of this DNA by the muscle cells (and probably others) and was able to induce the expression of the gene of interest, and to raise an immune response, especially a cellular immune response in the form of CTLs, to the protein encoded by the inserted gene. Since that observation, DNA immunization has become a standard method to induce immune responses to foreign proteins in experimental animals and human studies with several DNA vaccines are underway.

Generally, the DNA vectors used in these vaccine studies contain a cloning site for the gene of interest, a strong viral promoter, such as the immediate early promoter of the CMV virus, in order to drive the expression of the gene of interest, a polyadenylation region, and an antibiotic resistance gene and a bacterial replication origin for the propagation of the DNA vector (plasmid) in bacterial cells.

15

20

25

With the vectors described above it is possible to obtain a detectable level of expression of the gene of interest after administering the vector to experimental animals or to humans, either by a direct injection to muscle or to skin with a particle bombardment technique or by applying the vector in a solution directly to mucous membranes. However, the expression obtained by these vectors is short lived: the vectors tend to disappear from the transfected cells little by little and are not transferred to daughter cells in a dividing cell population. The short-term expression of the gene of interest and limited number of cells targeted are probably the major reasons, why only temporary immune responses are observed in subjects immunized with DNA vectors described above. Thus, for example, Boyer et al. observed only temporary immune responses to HIV-1 Env and Rev proteins in

WO 02/090558 P

4

PCT/FI02/00379

human subjects, who were immunized several times with a vector similar to the those described above [Boyer, J. D., J Infect Dis 181 (2000) 476 – 483].

There is a growing interest in developing novel products useful in gene therapy and DNA vaccination. For instance papilloma virus vectors carrying the expression cassette for the gene of interest have been suggested to be useful candidates.

To date more than 70 subtypes of human papilloma viruses (HPVs) and many different animal papilloma viruses have been identified [zur Hausen, H. and de Villiers E., Annu Rev Microbiol 48 (1994) 427 – 447; Bernard, H., et al., Curr Top Microbiol Immunol 186 (1994) 33 – 54]. All papilloma viruses share a similar genome organization and the positioning of all of the translational open reading frames (ORFs) is highly conserved.

Papilloma viruses infect squamous epithelial cells of skin or mucosa at different body sites and induce the formation of benign tumors, which in some cases can progress to malignancy. The papilloma virus genomes are replicated and maintained in the infected cells as multicopy nuclear plasmids. The replication, episomal maintenance, expression of the late genes and virus assembly are tightly coupled to the differentiation of the epithelial tissue: the papilloma virus DNA episomal replication takes place during the initial amplificational replication and the second, i.e. latent, and the third, i.e. vegetative, replications in the differentiating epithelium [Howley, P. M.; Papillomavirinae: the viruses and their replication. In Virology, Fields, B. C., Knipe, D. M., Howley, P. M., Eds., Lippincott-Raven Publishers, Philadelphia, USA, 1996, 2. Edition, p. 2045 – 2076].

Two viral factors encoded by the E1 and E2 open reading frames have been shown to be necessary and sufficient for the initiation of the DNA replication from the papilloma virus origin in the cells [Ustav, M. and Stenlund, A., EMBO J 10 (1991) 449 - 57; Ustav, M., et al., EMBO J 10 (1991) 4321 - 4329; Ustav, E., et al., Proc Natl Acad Sci USA 90 (1993) 898 - 902].

25

30

Functional origins for the initiation of the DNA replication have been defined for BPV1 [Ustav, M., et al., EMBO J 10 (1991) 4321 – 4329], HPV1a [Gopalakrishnan, V. and Khan, S., supra], HPV11 [Russell, J., Botchan, M., J Virol 69 (1995) 651 –660], HPV18 [Sverdrup, F. and Khan, S., J Virol 69 (1995)

15

20

1319 - 1323:Sverdrup, F. and Khan, S., J Virol 68 (1994) 505-509] and many others. Characteristically, all these origin fragments have a high A/T content, and they contain several overlapping individual E1 protein recognition sequences, which together constitute the E1 binding site [Ustav, M., et al., EMBO J 10 (1991) 4321 – 4329; Holt, S., et al., J Virol 68 (1994) 1094 - 1102; Holt, S. and Wilson, V., J Virol 69 (1995) 6525 - 3652; Sedman, T., et al. J Virol 71 (1997) 2887 - 2996]. In addition, these functional origin fragments contain an E2 binding site, which is essential for the initiation of DNA replication in vivo in most cases (Ustav, E., et al., supra). The E2 protein facilitates the first step of the origin recognition by E1. After the initial binding of monomeric E1 to the origin the multimerization of E1 is initiated. This leads to the formation of the complex with the ori melting activity. It has been suggested that E2 has no influence on the following stages of the initiation of the DNA replication [Lusky, M., et al., Proc Natl Acad Sci USA 91 (1994) 8895-8899].

The BPV1 E2 ORF encodes three proteins that originate from selective promoter usage and alternative mRNA splicing [Lambert, P., et al., Annu Rev Genet 22 (1988) 235 – 258]. All these proteins can form homo- and heterodimers with each other and bind specifically to a 12 bp interrupted palindromic sequence 5'-ACCNNNNNNGGT-3' [Androphy, E., et al., Nature 325 (1987) 70 – 739].

There are 17 E2 binding sites in the BPV1 genome and up to four sites in the HPV genomes, which play a crucial role in the initiation of viral DNA replication (Ustav, E., et al., supra) and in the regulation of viral gene expression (Howley, P. M., Papillomavirinae: the viruses and their replication, in Virology, Fields, B. C., Knipe, D. M., Howley, P. M., Eds., Philadelphia: Lippincott-Raven Publishers, 1996. 2. edition, p. 2045 – 2076). Structural and mutational analyses have revealed three distinct functional domains in the full size E2 protein. The Nterminal part (residues 1 to 210) is an activation domain for transcription and replication. It is followed by the unstructured hinge region (residues 211 to 324) and the carboxy-terminal DNA binding-dimerization domain (residues 325 to 410) [Dostatni, N., et al., EMBO J 7 (1988) 3807 – 3816; Haugen, T., et al. EMBO J 7 (1988) 4245 – 4253; McBride, A., et al., EMBO J 7 (1988) 533 – 539; McBride, A., et al., Proc Natl Acad Sci USA 86 (1989) 510-514]. On the basis of X-ray crys-

6

tallographical data, the DNA binding-dimerization domain of E2 has a structure of a dyad-symmetric eight-stranded antiparallel beta barrel, made up of two identical "half-barrel" subunits [Hegde, R., et al., Nature 359 (1992) 505 – 512; Hegde, R., J Nucl Med 36(6 Suppl) (1995) 25S - 27S]. The functional elements of the transactivation domain of E2 have a very high structural integrity as confirmed by mutational analysis [Abroi, A., et al., J Virol 70 (1996) 6169 – 6179; Brokaw, J., et al., J Virol 71 (1996) 23 – 29; Grossel, M., et al., J Virol 70 (1996) 7264 – 7269; Ferguson, M. and Botchan, M., J Virol 70 (1996) 4193-4199] and by X-ray crystallography [Harris, S., and Botchan, M.R., Science 284 (1999) 1673-1677 and Antson, A. et al., Nature 403 (2000) 805-809]. In addition, X-ray crystallography shows that the N-terminal domain of the E2 protein forms a dimeric structure, where Arg 37 has an important function in dimer formation (Antson, A., et al., supra).

As has been described previously, bovine papillomavirus type 1 E2 protein in trans and its multiple binding sites in cis are both necessary and sufficient for the chromatin attachment of the episomal genetic elements. The phenomenon is suggested to provide a mechanism for partitioning viral genome during viral infection in the dividing cells [Ilves, I., et al., J Virol. 73 (1999) 4404-4412].

20

30

None of the papilloma vectors or other vectors disclosed so far fulfills the criteria and requirements set forth for an optimal vaccine, which are the same for DNA vaccines and for conventional vaccines. (It should be noted that these requirements are preferred but not necessary for use as a vaccine.) First, an optimal vaccine must produce protective immunity with minimal adverse effects. Thus the vaccine should be devoid of components, which are toxic and/or cause symptoms of the disease to the recipient. Second, an optimal vaccine must induce a pathogen-specific immune response, i.e. it must elicit a strong and measurable immune response to the desired pathogen without causing an immune response to other components of the vaccine. These two requirements imply that a vector to be used as a DNA vaccine should optimally only express the desired gene(s) and optimally should not replicate in the host or contain any sequences homologous with those of the recipient, since nucleotide sequences that are homologous between the vector and the host's genome may effect the integration of the vector

7

into the host's genome. Third, an optimal vaccine must induce a right type of immune response; i.e. it must raise both humoral and cellular immune responses in order to act on the intracellular and extracellular pathogen. Finally, an optimal vaccine must be stable, i.e. it must retain its potency for a sufficiently long time in the body to raise the immune response in a vaccine formulation for use in various demanding circumstances during storage and preparation. Additionally, vaccines should be of reasonable price. Further, the route and the method of inoculation are important considerations for optimizing a DNA immunization.

When developing a DNA vaccine the stability of the expression of the desired gene is sometimes a major problem. Thus, the maintenance function or the persistance of the vector in the recipient cell has been focused on in the prior art, however, often at the cost of the safety. For example, Ohe, Y., et al.][Hum Gene Ther 6(3) (1995) 325-333] disclose a papilloma virus vector capable of stable, high-level gene expression, which is suggested for use in gene therapy. Transforming early genes E5, E6, and E7 have been deleted from said vector, but it still contains nucleotide sequences encoding other papilloma viral genes, such as the E1 and E2 genes, which are involved in the replication of the virus. Thus, the vector produces several other papilloma proteins, which may elicit undesired immune responses and which induce a risk of the vector's integration in the recipient. Also, the vector is replicable, since it contains the E1 gene. Additionally, it is large in size and therefore subject to bacterial modification during preparation.

20

International Patent Application PCT/EE96/00004 (WO 97/24451) discloses vectors capable of a long-term maintenance in a host cell and methods using such vectors for obtaining long-term production of a gene product of interest in a mammalian host cell, which expresses E1 and E2. These vectors contain a minimal origin of replication of a papilloma virus (MO), a Minichromosome Maintenance Element (MME) of a papilloma virus and a gene encoding said gene product, the MO and MME consisting of a DNA sequence different from the natural papilloma virus sequence, and in some embodiments the E1 gene. Additionally, vectors containing an MME consisting essentially of ten E2 binding sites are disclosed in some examples. These vectors require the presence of the E1 protein either in the host or in the vector for the expression. This imparts the replica-

10

25

tion function to the vectors. These vectors also express the E1 protein in addition to the gene of interest and the E2 protein and contain sequences, such as rabbit β-globin sequences, which are partially homologous to human sequences causing a serious risk of integration to human genome, which reduces the potential of these vectors as DNA vaccines. Additionally, the vectors are unstable due to their size (ca 15 kb): at the preparation stage in a bacterial cell, the bacterial replication machinery tends to modify the vector by random slicing of the vector, which leads to unsatisfactory expression products including products totally lacking the gene of interest.

International Patent Application PCT/EE96/00004 (WO 97/24451) further discloses that E1 and E2 are the only viral proteins necessary for the episomal long-term replication of the vectors. Additionally, the maintenance function of the BPV1 genome is associated with the presence of minimal ori (MO), which is stated to be necessary, although not sufficient, for the long-term persistence or the stable maintenance of the vectors the cells. In addition, the cis-elements, i.e. the Minichromosome Maintenance Elements of the BPV1, are stated to be required for the stable replication of BPV1. In particular, multimeric E2 binding sites (E2BS) are stated to be necessary for the stable maintenance of the vectors.

There is a clear need for improved novel vectors, which would be useful as 20 DNA vaccines.

An object of the invention is therefore to provide novel vectors, which are capable of a long-term maintenance in a large and increasing number of different cells of the host's body and thereby capable of providing a stable expression of the desired antigen(s).

Another object of the invention is to provide novel vectors, which are maintained for a long period of time in the cells that originally received the vector and transferred it to the daughter cells after mitotic cell division.

Yet another object of the invention is to provide novel vectors, which express in addition to the gene or genes of interest preferably only a gene necessary for a long-term maintenance in the recipient cells and thus are devoid of components that are toxic or cause symptoms of the disease to the recipient.

15

20

25

30

A further object of the invention is to provide novel vectors, which mimic attenuated live viral vaccines, especially in their function of multiplying in the body, without inducing any considerable signs of disease and without expressing undesired proteins, which may induce adverse reactions in a host injected with the DNA vaccine.

Still a further object of the invention is to provide novel vectors, which do not replicate in the recipient.

Still another object of the invention is to provide novel vectors, which induce both humoral and cellular immune responses when used as DNA vaccines.

Yet another object of the invention is to provide novel vectors, which are suitable for a large-scale production in bacterial cell.

Yet another object of the invention is to provide novel vectors, which are not host specific and thus enable the production in various bacterial cells.

An additional object of the invention is to provide novel vectors, which are useful as carrier vectors for a gene or genes of interest,

A further object of the invention is to provide novel vectors, which are useful in gene therapy and as gene therapeutic agents and for the production of macromolecular drugs in vivo.

SUMMARY OF THE INVENTION

The present invention discloses novel vectors, which meet the requirements of a carrier vector of a gene or genes of interest or of an optimal DNA vaccination vector and which are preferably devoid of drawbacks and side effects of prior art vectors.

The present invention is based on the surprising finding that a vector (plasmid) carrying (i) an expression cassette of a DNA sequence encoding a nuclear-anchoring protein, and (ii) multiple copies of high affinity binding sites for said nuclear-anchoring protein spreads in proliferating cells. As a result, the number of vector-carrying cells increases even without the replication of the vector. When the vector additionally carries a gene or genes of interest, the number of such cells that express a gene or genes of interest similarly increases without the replication of the vector. Thus, the vector of the invention lacks a papilloma

25

30

virus origin of replication. In a preferred embodiment, the vector of the invention lacks an origin of replication that functions in a mammalian cell.

Accordingly, the present invention discloses novel vectors useful as carrier vectors of a gene or genes of interest, in DNA vaccination and gene therapy and as gene therapeutic agents. In a specific embodiment, said vectors are capable of spreading and, if desired, of expressing a gene or genes of interest in an increasing number of cells for an extended time. The vectors of the present invention preferably express only a nuclear-anchoring protein, and, if desired, the gene or genes of interest, and optionally a selectable marker. However, they preferably lack any redundant, oncogenically transforming or potentially toxic sequences, thereby avoiding a severe drawback of the vectors previously disclosed or suggested for use as DNA vaccines, i.e. hypersensitivity reactions against other viral components. In certain embodiments of the invention, this is achieved by low level of the expressed nuclear-anchoring protein in the cells. At the same time, the vectors of the present invention induce both humoral and cellular immune responses, where the gene or genes of interest is included in the vector.

The vectors of the present invention are advantageous for use both in vitro (e.g., in the production level) and in vivo (e.g., vaccination).

The present invention relates to the subject matter of the invention as set forth in the attached claims.

The present invention relates to expression vectors comprising: (a) a DNA sequence encoding a nuclear-anchoring protein operatively linked to a heterologous promoter, said nuclear-anchoring protein comprising (i) a DNA binding domain which binds to a specific DNA sequence, and (ii) a functional domain that binds to a nuclear component, or a functional equivalent thereof; and (b) a multimerized DNA sequence forming a binding site for the nuclear anchoring protein, wherein said vector lacks a papilloma virus origin of replication. In a preferred embodiment a vector of the invention lacks an origin of replication functional in a mammalian cell.

In certain embodiments, the nuclear component is mitotic chromatin, the nuclear matrix, nuclear domain 10 (ND10), or nuclear domain POD.

10

20

25

In certain specific embodiments, the nuclear anchoring-protein is a chromatin-anchoring protein, and said functional domain binds mitotic chromatin.

In certain embodiments, the nuclear-anchoring protein contains a hinge or linker region.

In certain embodiments, the nuclear-anchoring protein is a natural protein of eukaryotic, prokaryotic, or viral origin. In certain specific embodiments, the natural protein is of viral origin.

In certain embodiments, the nuclear-anchoring protein is a natural protein of eukaryotic origin.

In certain embodiments, the nuclear-anchoring protein is that of a papilloma virus or an Epstein-Barr virus.

In specific embodiments, the nuclear-anchoring protein is the E2 protein of Bovine Papilloma Virus type 1 or Epstein-Barr Virus Nuclear Antigen 1.

In a specific embodiment, the nuclear-anchoring protein is the E2 protein of Bovine Papilloma Virus type 1.

In specific embodiments, the nuclear-anchoring protein is a High Mobility Group protein.

In certain embodiments, the nuclear-anchoring protein is a non-natural protein.

In certain embodiments, the nuclear-anchoring protein is a recombinant protein, a fusion protein, or a protein obtained by molecular modeling techniques.

In specific embodiments, the recombinant protein, fusion protein, or protein obtained by molecular modeling techniques contains any combination of a DNA binding domain which binds to said specific DNA sequence and a functional domain which binds to a nuclear component, wherein said functional domain which binds to a nuclear component is that of a papilloma virus, an Epstein-Barr-Virus, or a High Mobility Group protein.

In certain specific embodiments, the recombinant protein, fusion protein, or protein obtained by molecular modeling techniques contains any combination of a DNA binding domain which binds to said specific DNA sequence and a functional domain which binds to a nuclear component, wherein said functional domain which binds to a nuclear component is that of E2 protein of Bovine Papil-

10

15

20

25

30

Ioma Virus type 1, Epstein-Barr Virus Nuclear Antigen 1, or a High Mobility Group protein.

In certain embodiments, the vector further comprises one or more expression cassettes of a DNA sequence of interest.

In certain embodiments, the DNA sequence of interest is that of an infectious pathogen. In certain embodiments, the infectious pathogen is a virus. In certain specific embodiments, the virus is selected from the group consisting of Human Immunodeficiency Virus (HIV), Herpex Simplex Virus (HSV), Hepatitis C Virus, Influenzae Virus, and Enterovirus.

In certain embodiments, the DNA sequence of interest is that of a bacterium. In certain embodiments, the bacterium is selected from the group consisting of Chlamydia trachomatis, Mycobacterium tuberculosis, and Mycoplasma pneumonia. In a specific embodiment, the bacterium is Salmonella.

In certain embodiments, the DNA sequence of interest is that of a fungal pathogen. In certain embodiments, the fungal pathogen is Candida albigans.

In certain embodiments, the DNA sequence of interest is of HIV origin.

In specific embodiments, the DNA sequence of interest encodes a nonstructural regulatory protein of HIV. In more specific embodiments, the nonstructural regulatory protein of HIV is Nef, Tat and/or Rev. In a specific embodiment, the non-structural regulatory protein of HIV is Nef.

In certain embodiments, the DNA sequence of interest encodes a structural protein of HIV. In a specific embodiment, the DNA sequence of interest is the gene encoding HIV gp120/gp160.

In certain embodiments, the vector of the invention comprises a first expression cassette comprising a DNA sequence of interest which encodes Nef, Tat and/or Rev, and a second expression cassette comprising a DNA sequence of interest which encodes Nef, Tat and/or Rev.

In certain embodiments, the vector of the invention comprises a first expression cassette comprising a DNA sequence of interest which encodes Nef, Tat and/or Rev, and a second expression cassette comprising a DNA sequence of interest which encodes a structural protein of HIV.

20

25

30

In certain embodiments, the DNA sequence of interest encodes a protein associated with cancer.

In certain embodiments, the DNA sequence of interest encodes a protein associated with immune maturation, regulation of immune responses, or regulation of autoimmune responses. In a specific embodiment, the protein is APECED.

In a specific embodiment, the DNA sequence of interest is the Aire gene.

In certain embodiments, the DNA sequence of interest encodes a protein that is defective in any hereditary single gene disease.

In certain embodiments, the DNA sequence of interest encodes a macromolecular drug.

In certain embodiments, the DNA sequence of interest encodes a cyto-kine. In certain specific embodiments, the cytokine is an interleukin selected from the group consisting of IL1, IL2, IL4, IL6 and IL12. In certain other specific embodiments, the DNA sequence of interest encodes an interferon.

In certain embodiments, the DNA sequence of interest encodes a biologically active RNA molecule. In certain specific embodiments, the biologically active RNA molecule is selected from the group consisting of inhibitory antisense and ribozyme molecules. In certain specific embodiments, the inhibitory antisense or ribozyme molecules antagonize the function of an oncogene.

A vector of the invention is suitable for the use for the production of a therapeutic macromolecular agent in vivo.

In certain embodiments, the invention provides a vector for use as a medicament.

In certain embodiments, the invention provides a vector for use as a carrier vector for a gene, genes, or a DNA sequence or DNA sequences of interest, such as a gene, genes, or a DNA sequence or DNA sequences encoding a protein or peptide of an infectious agent, a therapeutic agent, a macromolecular drug, or any combination thereof.

In certain specific embodiments, the invention provides a vector for use as a medicament for treating inherited or acquired genetic defects.

5

20

25

In certain embodiments, the invention provides a vector for use as a therapeutic DNA vaccine against an infectious agent.

In certain embodiments, the invention provides a vector for use as a therapeutic agent.

The invention further relates to methods for providing a protein to a subject, said method comprising administering to the subject a vector of the invention, wherein said vector (i) further comprises a second DNA sequence encoding the protein to be provided to the subject, which second DNA sequence is operably linked to a second promoter, and (ii) does not encode Bovine Papilloma Virus protein E1, and wherein said subject does not express Bovine Papilloma Virus protein E1.

The invention further relates to methods for inducing an immune response to a protein in a subject, said method comprising administering to the subject a vector of the invention wherein said vector (i) further comprises a second DNA sequence encoding said protein, which second DNA sequence is operably linked to a second promoter, and (ii) does not encode Bovine Papilloma Virus protein E1, and wherein said subject does not express Bovine Papilloma Virus protein E1.

The invention further relates to methods for treating an infectious disease in a subject in need of said treatment, said method comprising administering to said subject a therapeutically effective amount of a vector of the invention, wherein the DNA sequence of interest encodes a protein comprising an immunogenic epitope of an infectious agent.

The invention further relates to methods for treating an inherited or acquired genetic defect in a subject in need of said treatment, said method comprising: administering to said subject a therapeutically effective amount of a vector of the invention, wherein said DNA sequence of interest encodes a protein which is affected by said inherited or acquired genetic defect.

The invention further relates to methods for expressing a DNA sequence in a subject, said method comprising administering a vector of the invention to said subject.

15

20

The invention further relates to methods for expressing a DNA sequence in a subject, treating an inherited or acquired genetic defect, treating an infectious disease, inducing an immune-response to a protein, and providing a protein to a subject, wherein the vector of the invention does not encode Bovine Papilloma Virus protein E1, and wherein said subject does not express Bovine Papilloma Virus protein E1.

In certain embodiments, a vector of the invention is used for production of a protein encoded by said DNA sequence of interest in a cell or an organism.

The invention further provides a method for the preparation of a vector of claim 1, 2, or 17 comprising: (a) cultivating a host cell containing said vector and (b) recovering the vector. In a specific embodiment, the method for preparing a vector of the invention further comprises before step (a) a step of transforming said host cell with said vector. In certain specific embodiments, the host cell is a prokaryotic cell. In a specific embodiment, the host cell is an Escherichia coli.

The invention further relates to a host cell that is characterized by containing a vector of the invention. In certain embodiments, the host cell is a bacterial cell. In a certain other embodiments, the host cell is a mammalian cell.

The invention further relates to carrier vectors containing a vector of the invention.

The invention further relates to a pharmaceutical composition comprising a vector of the invention and a suitable pharmaceutical vehicle.

The invention further relates to a DNA vaccine containing a vector of the invention.

The invention further relates to a gene therapeutic agent containing a vector of the invention.

The invention further relates to a method for the preparation of a DNA vaccine, said method comprising combining a vector of the invention with a suitable pharmaceutical vehicle.

The invention further relates to a method for the preparation of an agent for use in gene therapy, said method comprising combining a vector of the invention with a suitable pharmaceutical vehicle.

10

20

25

30

4. DESCRIPTION OF THE FIGURES

Figure 1 shows the schematic map of plasmid super6.

Figure 2 shows the schematic map of plasmid VI.

Figure 3 shows the schematic map of plasmid II.

Figure 4 shows the expression of the Nef and E2 proteins from the vectors super6, super6wt, VI, VIwt, and II in Jurkat cells.

Figure 5 shows the schematic map of plasmid product1.

Figure 6A shows the schematic map of the plasmids NNV-1 and NNV-2 and Figure 6B shows the schematic map of plasmid and NNV-2wt.

Figure 7 shows the expression of the Nef protein from the plasmids NNV-1, NNV-2, NNV-1wt, NNV-2-wt, super6, and super6wt in Jurkat cells.

Figure 8 shows the expression of the Nef and E2 proteins from the plasmids NNV-2-wt, NNV-2-wtFS, and product I in Jurkat cells.

Figure 9 shows the expression of the Nef and E2 proteins from the plasmids NNV-2-wt, NNV-2-wtFS, and product I in P815 cells.

Figure 10 shows the expression of the Nef and E2 proteins from the plasmids NNV-2-wt, NNV-2-wtFS, and product I in CHO cells.

Figure 11 shows the expression of the Nef protein from the plasmids NNV-2-wt, NNV-2-wtFS, and product I in RD cells.

Figure 12 shows the expression of the RNA molecules NNV-2wt in CHO, Jurkat cells, and P815 cells.

Figure 13 shows the stability of NNV-2wt in bacterial cells.

Figure 14 shows the Southern blot analysis of stability of the NNV-2wt as non-replicating episomal element in CHO and Jurkat cell lines.

Figure 15 shows that the vectors NNV2wt, NNV2wtFS and product1 are unable to HPV-11 replication factor-dependent replication.

Figure 16 shows the schematic map of the plasmid 2wtd1EGFP.

Figure 17 shows the schematic map of the plasmid gf10bse2

Figure 18 shows the schematic map of the plasmid 2wtd1EGFPFS.

Figure 19 shows the schematic map of the plasmid NNVd1EGFP.

Figure 20 shows the growth curves of the Jurkat cells transfected with the plasmids 2wtd1EGFP, 2wtd1EGFPFS, NNVd1EGFP or with carrier DNA only.

Figure 21 shows the growth curves of the Jurkat cells transfected with the plasmids 2wtd1EGFP, 2wtd1EGFPFS, gf10bse2 or with carrier DNA only.

Figure 22 shows the change in the percentage of d1EGFP positive cells in a population of Jurkat cells transfected with the vectors 2wtd1EGFP, 2wtd1EGFPFS or NNVd1EGFP.

Figure 23 shows the change in percentage of the d1EGFP positive cells in a population of Jurkat cells transfected with the vectors 2wtd1EGFP, 2wtd1EGFPFS or gf10bse2.

Figure 24 shows the change in the number of d1EGFP expressing cells in a population of Jurkat cells transfected with the vectors 2wtd1EGFP, 2wtd1EGFPFS or NNVd1EGFP.

10

15

20

25

Figure 25 shows the change in the number of d1EGFP expressing cells in a population of Jurkat cells transfected with the vectors 2wtd1EGFP, 2wtd1EGFPFS or gf10bse2.

Figure 26. T-cell responses towards recombinant Nef proteins (5 micrograms/well), measured by T-cell proliferation in five patients immunized with 1 microgram of GTU-Nef.

Figure 27. T-cell responses towards recombinant Nef proteins (5 micrograms/well), measured by T-cell proliferation in five patients immunized with 20 micrograms of GTU-Nef.

Figure 28. T-cell responses towards recombinant Nef proteins (5 micrograms/well), measured by T-cell proliferation in patient # 1 immunized with 1 microgram of GTU-Nef. The results are given as stimulation index of the T-cell proliferation assay (Nef SI) and as IFN-Gamma secretion to the supernatant.

Figure 29. (A) plasmid pEBO LPP; (B) plasmid s6E2d1EGFP; (C) plasmid FRE2d1EGFP

- Figure 30. Plasmid FREBNAd1EGFP
- Figure 31. Vectors did not interfere with cell proliferation
- Figure 32. Vectors were maintained in the cells with different kinetics
- Figure 33. Change of the number of d1EGFP expressing cells in time in transfected total population of cells

Figure 34. Change of the number of d1EGFP expressing cells in time in transfected total population of cells. (A) human embryonic cell line 293; (B) mouse cell line 3T6

Figure 35. Nef and E2 antibody response

Figure 36. Rev and Tat antibody response

Figure 37. Gag and CTL response

5

10

15

25

30

Figure 38. (A) GTU-1; (B) GTU-2Nef; (C) GTU-3Nef; (D) super6wtd1EGFP; (E) FREBNAd1EGFP; (F) E2BSEBNAd1EGFP; (G) NNV-Rev

Figure 39. (A) pNRT; (B) pTRN; (C) pRTN; (D) pTNR; (E) pRNT; (F) p2TRN; (G) p2RNT; (H) p3RNT; (I) pTRN-iE2-GMCSF; (J) pTRN-iMG-GMCSF

Figure 40. (A) pMV1NTR; (B) pMV2NTR; (C) pMV1N11TR; (D) pMV2N11TR

Figure 41. (A) pCTL; (B) pdgag; (C) psynp17/24; (D) poptp17/24; (E) p2mCTL; (F) p2optp17/24; (G) p3mCTL; (H) p3optp17/24

Figure 42. (A) pTRN-CTL; (B) pRNT-CTL; (C) pTRN-dgag; (D) pTRN-CTL-dgag; (E) pRNT-CTL-dgag; (F) pTRN-dgag-CTL; (G) pRNT-dgag-CTL; (H) pTRN-optp17/24-CTL; (I) pTRN-CTL-optp17/24; (J) pRNT-CTL-optp17/24; (K) p2TRN-optp17/24-CTL; (L) p2RNT-optp17/24-CTL; (M) p2TRN-CTL-optp17/24; (N) p2RNT-CTL-optp17/24; (O) p2TRN-CTL-optp17/24-iE2-mGMCSF; (P) p2RNT-CTL-optp17/24-iE2-mGMCSF; (Q) p3TRN-CTL-optp17/24; (R) p3RNT-CTL-optp17/24; (S) p3TRN-CTL-optp17/24-iE2-mGMCSF; (T) p3RNT-CTL-optp17/24-iE2-mGMCSF; (U) FREBNA-RNT-CTL-optp17/24; (V) super6wt-RNT-CTL-optp17/24; (W) E2BSEBNA- RNT-CTL-optp17/24; (X) pCMV- RNT-CTL-optp17/24

Figure 43. Analysis of expression of the multireg antigens.

Figure 44. Analysis of expression of the multireg antigens comprised of immunodominant parts of the proteins.

Figure 45. Analysis of intracellular localization of multireg antigens by immunofluorescence.

Figure 46. Analysis of expression of the gag coded structural proteins and the CTL multi-epitope.

47. The p17/24 protein localization in membranes of RD cells.

Figure 48. Analysis expression of the dgag and CTL containing multigenes in Cos-7 cells.

19

Figure 49. Western blot analyses of multiHIV antigens expressed in Jurkat cells.

Figure 50. Analysis of the expression of the TRN-CTL-optp17/24 and RNT-CTL-optp17/24 antigens as well E2 protein from the GTU-1, GTU-2 and GTU-3 vector.

Figure 51. The maintenance of the multiHIV antigen expression from different vectors.

Figure 52. Intracellular localization of the multiHIV antigens in RD cells.

5. DETAILED DESCRIPTION OF THE INVENTION

5.1 VECTORS OF THE INVENTION

5

10

15

20

30

The present invention is based on the unexpected finding that expression vectors, which carry (A) an expression cassette of a gene of a nuclear-anchoring protein that binds both to (i) a specific DNA sequence and (ii) to a suitable nuclear component and (B) a multimerized DNA binding sequence for said nuclear-anchoring protein are capable of spreading in a proliferating cell population. Such nuclear-anchoring proteins include, but are not limited to, chromatin-anchoring proteins, such as the Bovine Papilloma Virus type 1 E2 protein (BPV1 E2; SEQ ID NO: 50). The DNA binding sequences can be, but are not limited to, multimerized E2 binding sites. On the basis of prior art, it could not be expected that a segregation/partitioning function of, for instance, the papilloma viruses could be expressed separately and that an addition of such segregation/partitioning function to the vaccine vectors would assure the distribution of the vector in the proliferating cell population. Additionally, on the basis of the prior art, it could not have been expected that functional vectors acting independently of the replication origin can be constructed.

The term "nuclear-anchoring protein" as used in the present invention refers to a protein, which binds to a specific DNA sequence and capable of providing a nuclear compartmentalization function to the vector, i.e., to a protein, which is capable of anchoring or attaching the vector to a specific nuclear compartment.

10

PCT/FI02/00379

In certain embodiments of the invention, the nuclear-anchoring protein is a natural protein. Examples of such nuclear compartments are the mitotic chromatin or mitotic chromosomes, the nuclear matrix, nuclear domains like ND10 and POD etc. Examples of nuclear-anchoring proteins are the Bovine Papilloma Virus type 1 (BPV1) E2 protein, EBNA1 (Epstein-Barr Virus Nuclear Antigen 1; SEQ ID NO: 52), and High Mobility Group (HMG) proteins etc. The term "functional equivalent of a nuclear-anchoring protein" as used in the present invention refers to a protein or a polypeptide of natural or non-natural origin having the properties of the nuclear-anchoring protein.

20

In certain other embodiments of the invention, the nuclear-anchoring protein of the invention is a recombinant protein. In certain specific embodiments of the invention, the nuclear-anchoring protein is a fusion protein, a chimeric protein, or a protein obtained by molecular modeling. A fusion protein, or a protein obtained by molecular modeling in connection with the present invention is characterized by its ability to bind to a nuclear component and by its ability to bind sequence-specifically to DNA. In a preferred embodiment of the invention, such a fusion protein is encoded by a vector of the invention which also contains the specific DNA sequence to which the fusion/chimeric protein binds. Nuclear components include, but are not limited to chromatin, the nuclear matrix, the ND10 domain and POD. In order to reduce the risk of interference with the expression of genes endogenous to the host cell, the DNA binding domain and the corresponding DNA sequence is preferably non-endogenous to the host cell/host organism. Such domains include, but are not limited to, the DNA binding domain of the Bovine Papilloma Virus type 1 (BPV1) E2 protein (SEQ ID NO: 50), Epstein-Barr Virus Nuclear Antigen 1 (EBNA1; SEQ ID NO: 52), and High Mobility Group (HMG) proteins (HMG box).

The vector of the invention can further comprise a "DNA sequence of interest", that encodes a protein (including a peptide or polypeptide), e.g., that is an immunogen or a therapeutic. In certain embodiments of the invention, the DNA sequence of interest encodes a biologically active RNA molecule, such as an antisense RNA molecule or a ribozyme.

21

The expression vectors of the invention carrying an expression cassette for a gene of a nuclear-anchoring protein and multimerized binding sites for said nuclear-anchoring protein spread in a proliferating host cell population. This means that a high copy-number of vectors or plasmids are delivered into the target cells and the use of the segregation/partitioning function of the nuclear-anchoring protein and its multimerized binding sites assures the distribution of the vector to the daughter cells during cell division.

The vector of the invention lacks a papilloma virus origin of replication. Further, in a preferred embodiment, the vector of the invention lacks an origin of replication functional in a mammalian cell. The omission of a papilloma virus origin of replication or a mammalian origin of replication constitutes an improvement over prior art vectors for several reasons. (1) Omission of the origin of replication reduces the size of the vector of the invention compared to prior art vectors. Such a reduction in size increases the stability of the vector and facilitates uptake by the host cell. (2) Omission of the origin of replication reduces the risk for recombination with the host cell's genome, thereby reducing the risk of unwanted side effects. (3) The omission of the origin of replication allows to control the dosage simply by adjusting the amount of vector administered. In contrast, with a functioning origin of replication, replication of the vector has to be taken into consideration when determining the required dosage. (4) If the vector is not administered to a host organism continually, the lack of an origin of replication allows the host organism to clear itself of the vector, thus providing more control over the levels of DNA sequences to be expressed in the host organism. Further, the ability of the organism to clear itself of the vector will be advantageous if the presence of the vector is required only during the course of a therapy but is undesirable in a healthy individual.

15

20

25

30

The gene of a nuclear-anchoring protein useful in the vectors of the present invention can be any suitable DNA sequence encoding a natural or artificial protein, such as a recombinant protein, a fusion protein or a protein obtained by molecular modeling techniques, having the required properties. Thus the gene of a natural nuclear-anchoring protein, which contains a DNA binding domain capable of binding to a specific DNA sequence and a functional domain capable of

binding to a nuclear component, can be that of a viral protein, such as the E2 protein of Bovine Papilloma Virus or the EBNA1 (Epstein-Barr Virus Nuclear Antigen 1) of the Epstein-Barr Virus, a eukaryotic protein such a one of the High Mobility Group (HMG) proteins or a like protein, or a prokaryotic protein. Alternatively, the gene of a nuclear-anchoring protein, which contains a DNA binding domain capable of binding to a specific DNA sequence and a functional domain capable of binding to a nuclear component, can also be comprised of DNA sequences, which encode a domain from a cellular protein having the ability to attach to a suitable nuclear structure, such as to mitotic chromosomes, the nuclear matrix or nuclear domains like ND10 or POD.

Alternatively, the DNA sequence, which encodes a non-natural or artificial protein, such as a recombinant protein or a fusion protein or a protein obtained by molecular modeling, which contains a DNA binding domain capable of binding to a specific DNA sequence of, e.g., a papilloma virus, such as the DNA binding domain of the E2 protein of the BPV1, but in which the N-terminus of the nuclear-anchoring protein, e.g. that of the E2 protein, has been replaced with domains of any suitable protein of similar capacity, for example, with the N-terminal domain of Epstein-Barr Virus Nuclear Antigen 1 sequence, can be used. Similarly, DNA sequences, which encode a recombinant protein or a fusion protein, which contains a functional domain capable of binding to a nuclear component, e.g., the N-terminal functional domain of a papilloma virus, such as the E2 protein of the BPV1, but in which the C-terminal DNA-binding dimerization domain of the nuclear-anchoring protein, e.g., that of the E2 protein, has been replaced with domains of any protein of a sufficient DNA-binding strength, e.g., the DNA binding domain of the BPV-1 E2 protein and the EBNA-1, can be used.

20

25

In a preferred embodiment of the invention, the nuclear-anchoring protein is a chromatin-anchoring protein, which contains a DNA binding domain, which binds to a specific DNA sequence, and a functional domain capable of binding to mitotic chromatin. A preferred example of such a chromatin-anchoring protein and its multimerized binding sites useful in the present invention are the E2 protein of Bovine Papilloma Virus type 1 and E2 protein multimerized binding sites. In the case of E2, the mechanism of the spreading function is due to the dual

function of the E2 protein: the capacity of the E2 protein to attach to mitotic chromosomes through the N-terminal domain of the protein and the sequence-specific binding capacity of the C-terminal domain of the E2 protein, which assures the tethering of vectors, which contain a multimerized E2 binding site, to mitotic chromosomes. A segregation/partitioning function is thus provided to the vectors.

In another preferred embodiment of the invention, the expression cassette of a gene of the chromatin-anchoring protein comprises a gene of any suitable protein of cellular, viral or recombinant origin having analogous properties to E2 of the BPV1, i.e., the ability to attach to the mitotic chromatin through one domain and to cooperatively bind DNA through another domain to multimerized binding sites specific for this DNA binding domain.

In a specific embodiment, sequences obtained from BPV1, are used in the vectors of the present invention, they are extensively shortened in size to include just two elements from BPV1. First, they include the E2 protein coding sequence transcribed from a heterologous eukaryotic promoter and polyadenylated at the heterologous polyadenylation site. Second, they include E2 protein multiple binding sites incorporated into the vector as a cluster, where the sites can be as head-to-tail structures or can be included into the vector by spaced positioning. Both of these elements are necessary and, surprisingly, sufficient for the function of the vectors to spread in proliferating cells. Similarly, when DNA sequences based of other suitable sources are used in the vectors of the present invention, the same principles are applied.

20

25

30

According to the present invention, the expression cassette of a gene of a nuclear-anchoring protein, which contains a DNA binding domain capable of binding to a specific DNA sequence and a functional domain capable of binding to a nuclear component, such as an expression cassette of a gene of a chromatin-anchoring protein, like BPV1 E2, comprises a heterologous eukaryotic promoter, the nuclear-anchoring protein coding sequence, such as a chromatin-anchoring protein coding sequence, for instance the BPV1 E2 protein coding sequence, and a poly A site. Different heterologous, eukaryotic promoters, which control the expression of the nuclear-anchoring protein, can be used. Nucleotide sequences of such heterologous, eukaryotic promoters are well known in the art and are readily

available. Such heterologous eukaryotic promoters are of different strength and tissue-specificity. In a preferred embodiment, the nuclear anchoring protein is expressed at low levels.

The multimerized DNA binding sequences, i.e., DNA sequences containing multimeric binding sites, as defined in the context of the present invention, are the region, to which the DNA binding dimerization domain binds. The multimerized DNA binding sequences of the vectors of the present invention can contain any suitable DNA binding site, provided that it fulfills the above requirements.

In a preferred embodiment, the multimerized DNA binding sequence of a vector of the present invention can contain any one of known 17 different affinity E2 binding sites as a hexamer or a higher oligomer, as a octamer or a higher oligomer, as a decamer or higher oligomer. Oligomers containing different E2 binding sites are also applicable. Specifically preferred E2 binding sites useful in the vectors of the present invention are the BPV1 high affinity sites 9 and 10, affinity site 9 being most preferred. When a higher oligomer is concerned, its size is limited only by the construction circumstances and it may contain from 6 to 30 identical binding sites. Preferred vectors of the invention contain 10 BPV-1 E2 binding sites 9 in tandem. When the multimerized DNA binding sequences are comprised of different E2 binding sites, their size and composition is limited only by the method of construction practice. Thus they may contain two or more different E2 binding sites attached to a series of 6 to 30, most preferably 10, E2 binding sites. The Bovine Papilloma Virus type 1 genome (SEQ ID NO: 49) contains 17 E2 protein binding sites which differ in their affinity to E2. The E2 binding sites are described in Li et al. [Genes Dev 3(4) (1989) 510-526], which is incorporated by reference in its entirety herein.

20

25

30

Alternatively, the multimerized DNA binding sequences may be composed of any suitable multimeric specific sequences capable of inducing the cooperative binding of the protein to the plasmid, such as those of the EBNA1 or a suitable HMG protein. 21x30bp repeats of binding sites for EBNA-1 are localized in the region spanning from nucleotide position 7421 to nucleotide position 8042 of the Epstein-Barr virus genome (SEQ ID NO:51). These EBNA-1 binding sites are described in the following references: Rawlins et al., Cell 42(3) (1985) 859-868;

10

20

25

30

Reisman et al., Mol Cell Biol 5(8) (1985) 1822-1832; and Lupton and Levine, Mol Cell Biol 5(10) (1985) 2533-2542, all three of which are incorporated by reference in their entireties herein.

The position of the multimerized DNA binding sequences relative to the expression cassette for the DNA binding dimerization domain is not critical and can be any position in the plasmid. Thus the multimerized DNA binding sequences can be positioned either downstream or upstream relative to the expression cassette for the gene of interest, a position close to the promoter of the gene of interest being preferred.

The vectors of the invention also contain, where appropriate, a suitable promoter for the transcription of the gene or genes or the DNA sequences of interest, additional regulatory sequences, polyadenylation sequences and introns. Preferably the vectors may also include a bacterial plasmid origin of replication and one or more genes for selectable markers to facilitate the preparation of the vector in a bacterial host and a suitable promoter for the expression the gene for antibiotic selection.

The selectable marker can be any suitable marker allowable in DNA vaccines, such a kanamycin or neomycin, and others. In addition, other positive and negative selection markers can be included in the vectors of the invention, where applicable.

The vectors of the present invention only comprise the DNA sequences, for instance BPV1 DNA sequences, which are necessary and sufficient for long-term maintenance. All superfluous sequences, which may induce adverse reactions, such as oncogenic sequences, have been deleted. Thus in preferred vectors of the invention the E2 coding sequence is modified by mutational analysis so that this expresses only E2 protein and overlapping E3, E4 and E5 sequences have been inactivated by the introduction of mutations, which inactivate the translation from Open Reading Frames for E3, E4 and E5. The vector of the invention does not contain a papilloma virus origin of replication. Preferably, the vector of the invention further does not contain an origin of replication functional in a mammalian cell or a mammal.

Furthermore, the vectors of the present invention are not host specific, since the expression of the nuclear-anchoring protein, such as the E2 protein, is controlled by non-native or heterologous promoters. Depending on the particular promoter chosen, these promoters may be functional in a broad range of mammalian cells or they can be cell or tissue specific. Examples of promoters for the nuclear-anchoring protein, such as for the E2 protein, useful in the vectors of the present invention are thymidine kinase promoters, Human Cytomegalovirus Immediate Early Promoter, Rous Sarcoma Virus LTR and like. For the expression of the gene of interest, preferred promoters are strong promoters assuring high levels of expression of the gene of interest, an example for such a promoter is the Human Cytomegalovirus Immediate Early Promoter.

5.2 THE VECTORS OF THE INVENTION AS VEHICLES FOR EXPRESSION OF A DNA SEQUENCE OF INTEREST

15

20

25

A gene, genes or a DNA sequence or DNA sequences to be expressed via a vector of the invention can be any DNA sequence of interest, whose expression is desired. Thus the vectors may contain a gene or genes or a DNA sequence or DNA sequences from infectious microbial pathogens, such as viruses, against which live attenuated vaccines or inactivated vaccines cannot be prepared or used. Such DNA sequences of interest include genes or DNA sequences from viruses, such as Human Immunodeficiency Virus (HIV), Herpex Simplex Virus (HSV), Hepatitis C Virus, Influenzae Virus, Enteroviruses etc.; intracellular bacterial, such as Chlamydia trachomatis, Mycobacterium tuberculosis, Mycoplasma pneumonia etc.; extracellular bacteria, such as Salmonella; or fungi, such as Candida albigans.

In a preferred embodiment of the invention, the vectors contain a gene encoding early regulatory proteins of HIV, i.e. the nonstructural regulatory proteins Nef, Tat or Rev, preferably Nef. In another preferred embodiment of the invention the vectors of the invention contain genes encoding structural proteins of the HIV. In another preferred embodiment the vectors of the present invention contain two or more genes encoding any combination of early regulatory proteins and/or structural proteins of HIV. Illustrative examples of such combinations are a com-

5

10

20

25

30

27

PCT/FI02/00379

bination of a gene encoding the Nef protein and a DNA sequence encoding the Tat protein, possibly together with a DNA sequence encoding outer envelope gly-coprotein of HIV, gp120/gp160 or a combination of any immunogenic epitopes of the proteins of pathogens incorporated into artificial recombinant protein.

Alternatively, the vectors of the invention may contain genes or DNA sequences for inherited or acquired genetic defects, such as sequences of differentiation antigens for melanoma, like a Tyrosinase A coding sequence or a coding sequence of beta-catenins.

In a preferred embodiment of the invention, the vectors contain a gene encoding proteins relating to cancer or other mutational diseases, preferably diseases related to immune maturation and regulation of immune response towards self and nonself, such as the APECED gene.

In another preferred embodiment of the invention, the vectors contain any DNA sequence coding for a protein that is defective in any hereditary single gene hereditary disease.

In another preferred embodiment of the invention, the vectors contain any DNA sequence coding for a macromolecular drug to be delivered and produced in vivo.

The method of the invention for the preparation of the vectors of the invention comprises the following steps: (A) cultivating a host cell containing a vector of the invention, and (B) recovering the vector. In certain specific embodiments, step (A) is preceded by transforming a host cell with a vector of the invention.

The vectors of the invention are preferably amplified in a suitable bacterial host cell, such as Escherichia coli. The vectors of the invention are stable and replicate at high copy numbers in bacterial cells. If a vector of the invention is to be amplified in a bacterial hast cell, the vector of the invention contains a bacterial origin of replication. Nucleotide sequences of bacterial origins of replication are well known to the skilled artisan and can readily be obtained.

Upon transfection into a mammalian host in high copy number, the vector spreads along with cell divisions and the number of cells carrying the vector increases without the replication of the vector, each cell being capable of expressing the protein of interest.

The vectors of the invention result in high expression of the desired protein. For instance, as demonstrated in Examples 4, 7 - 10: a high expression of the Nef protein of the HIV, green fluorescent protein (EGFP) and the AIRE protein could be demonstrated in many different cell lines and the data indicate that not only the number of positive cells, but the quantity of the protein encoded by the gene of interest is increasing in time.

The vectors of the invention also induce both humoral and cellular response as demonstrated in Examples 9 and 10. The results indicate that the vectors of the present invention can effectively be used as DNA vaccines.

The vaccines of the present invention contain a vector of the present invention or a mixture of said vectors in a suitable pharmaceutical carrier. The vaccine may for instance contain a mixture of vectors containing genes for the three different regulatory proteins of the HIV and/or structural proteins of the HIV.

10

20

25

The vaccines of the invention are formulated using standard methods of vaccine formulation to produce vaccines to be administered by any conventional route of administration, i.e. intramuscularily, intradermally and like.

The vectors of the invention may contain the ISS stimulatory sequences in order to activate the immune response of the body.

The vaccines of the invention can be used in a conventional preventive manner to protect an individual from infections, Alternatively, the vaccines of the invention can be used as therapeutical vaccines, especially in the case of viral infections, together with a conventional medication.

As mentioned above, the vectors of the present invention carrying the mechanism of spreading in the host cell find numerous applications as vaccines, in gene therapy, in gene transfer and as therapeutic immunogens. The vectors of the invention can be used to deliver a normal gene to a host having a gene defect, thus leading to a cure or therapy of a genetic disease. Furthermore, the vectors can deliver genes of immunogenic proteins of foreign origin, such as those from microbes or autologous tumor antigens, to be used in the development of vaccines against microbes or cancer. Furthermore, the vectors of the invention can deliver suitable genes of marker substances to nucleus, to be used in studies of cellular function or in diagnostics. Finally, the vectors of the invention can be

25

30

PCT/FI02/00379

used to specifically deliver a gene of macromolecular drug to the nucleus, thus enabling the development of novel therapeutic principles to treat and cure diseases, where the expression of the drug in the site of action, the cell nucleus, is of importance. These drugs can be chemical macromolecules, such as any proteins or polypeptides with therapeutic or curative effect, which interfere with any of the nuclear mechanisms, such as the replication or transcription or the transport of substances to and from the nucleus.

Specifically, the vectors of the present invention can be used for the expression of the specific cytokines, like interleukines (IL1, IL2, IL4, IL6, IL12 and others) or interferon, with the aim of modulating the specific immune responses of the organism (immunotherapy) against foreign antigens or boosting of the activity of the immune system against the mutated self-antigens. The vectors of the present invention are also useful in complementing malfunctioning of the brain due to the loss of specific dopamine-ergic neurons leading to the irreversible neurodegeneration, which is cause for Parkinson's disease, by expressing genes involved into synthesis of dopamine, like tyrosine hydroxylase, as well as other genes deficiency of which would have the similar effect. The vectors of the present invention are also useful for the expression of proteins and peptides regulating the brain activity, like dopamine receptors, CCK-A and CCK-B receptors, as well as neurotrophic factors, like GDNF, BDNF and other proteins regulating the brain activity. Further, the vectors of the present invention are useful for a longterm expression of factor IX in hepatocytes and alfa1-antitrypsin in muscle cells with the aim of complementing respective deficiencies of the organism.

5.3 TARGET DISEASES AND DISORDERS

In certain embodiments, a vector of the invention is used as a vaccine. In certain embodiments, a vector of the invention contains a DNA sequence of interest that encodes a protein or a peptide. Upon administering of such a vector to a subject, the protein or peptide encoded by the DNA sequence of interest is expressed and stimulates an immune response specific to the protein or peptide encoded by the DNA sequence of interest.

PCT/FI02/00379

In specific embodiments, the vector of the invention is used to treat and/or prevent an infectious disease and/or a condition caused by an infectious agent. Such diseases and conditions include, but are not limited to, infectious diseases caused by bacteria, viruses, fungi, protozoa, helminths, and the like. In a more specific embodiment of the invention, the infectious disease is Acquired Immunodeficiency Syndrome.

Preferably, where it is desired to treat or prevent viral diseases, DNA sequences encoding molecules comprising epitopes of known viruses are used. For example, such DNA sequences encoding antigenic epitopes may be prepared from viruses including, but not limited to, hepatitis type A, hepatitis type B, hepatitis type C, influenza, varicella, adenovirus, herpes simplex type I (HSV-I), herpes simplex type II (HSV-II), rinderpest, rhinovirus, echovirus, rotavirus, respiratory syncytial virus, papilloma virus, papova virus, cytomegalovirus, echinovirus, arbovirus, huntavirus, coxsackie virus, mumps virus, measles virus, rubella virus, polio virus, human immunodeficiency virus type I (HIV-I), and human immunodeficiency virus type II (HIV-II).

Preferably, where it is desired to treat or prevent bacterial infections, DNA sequences encoding molecules comprising epitopes of known bacteria are used. For example, such DNA sequences encoding antigenic epitopes may be prepared from bacteria including, but not limited to, mycobacteria rickettsia, mycoplasma, neisseria and legionella.

20

25

30

Preferably, where it is desired to treat or prevent protozoal infections, DNA sequences encoding molecules comprising epitopes of known protozoa are used. For example, such DNA sequences encoding antigenic epitopes may be prepared from protozoa including, but not limited to, leishmania, kokzidioa, and trypanosoma.

Preferably, where it is desired to treat or prevent parasitic infections, DNA sequences encoding molecules comprising epitopes of known parasites are used. For example, such DNA sequences encoding antigenic epitopes may be prepared from parasites including, but not limited to, chlamydia and rickettsia.

In other specific embodiments, the vector of the invention is used to treat and/or prevent a neoplastic disease in a subject. In these embodiments, the DNA

sequence of interest encodes a protein or peptide that is specific to or associated with the neoplastic disease. By way of non-limiting example, the neoplastic disease can be a fibrosarcoma, myxosarcoma, liposarcoma, chondrosarcoma, osteogenic sarcoma, chordoma, angiosarcoma, endotheliosarcoma, lymphangiosarcoma, lymphangioendotheliosarcoma, synovioma, mesothelioma, Ewing's tumor, leiomyosarcoma, rhabdomyosarcoma, colon carcinoma, pancreatic cancer, breast cancer, ovarian cancer, prostate cancer, squamous cell carcinoma, basal cell carcinoma, adenocarcinoma, sweat gland carcinoma, sebaceous gland carcinoma, papillary carcinoma, papillary adenocarcinomas, cystadenocarcinoma, medullary carcinoma, bronchogenic carcinoma, renal cell carcinoma, hepatoma, bile duct carcinoma, choriocarcinoma, seminoma, embryonal carcinoma, Wilms' tumor, cervical cancer, testicular tumor, lung carcinoma, small cell lung carcinoma, bladder carcinoma, epithelial carcinoma, glioma, astrocytoma, medulloblastoma, craniopharyngioma, ependymoma, pinealoma, hemangioblastoma, acoustic neuroma, oligodendroglioma, meningioma, melanoma, neuroblastoma, retinoblastoma; leukemias, e.g., acute lymphocytic leukemia and acute myelocytic leukemia (myeloblastic, promyelocytic, myelomonocytic, monocytic and erythroleukemia); chronic leukemia (chronic myelocytic (granulocytic) leukemia and chronic lymphocytic leukemia); and polycythemia vera, lymphoma (Hodgkin's disease and non-Hodgkin's disease), multiple myeloma, Waldenström's macroglobulinemia, and heavy chain disease, etc.

15

20

30

In certain other embodiments of the invention, the DNA sequence of interest encodes a protein that is non-functional or malfunctioning due to an inherited disorder or an acquired mutation in the gene encoding the protein. Such genetic diseases include, but are not limited to, metabolic diseases, e.g., Atherosclerosis (affected gene: APOE); cancer, e.g., Familial Adenomatous Polyposis Coli (affected gene: APC gene); auto-immune diseases, e.g., autoimmune polyendocrinopathy-candidosis-ectodermal dysplasia (affected gene: APECED); disorders of the muscle, e.g., Duchenne muscular dystrophyvaccines (affected gene: DMD); diseases of the nervous system, e.g., Alzheimer's Disease (affected genes: PS1 and PS2).

In even other embodiments, the vectors of the invention are used to treat and/or prevent diseases and disorders caused by pathologically high activity of a protein. In these embodiments of the invention, the DNA sequence of interest encodes an antagonist of the overactive protein. Such antagonists include, but are not limited to, antisense RNA molecules, ribozymes, antibodies, and dominant negative proteins. In specific embodiments of the invention, the DNA sequence of interest encodes an inhibitor of an oncogene.

In certain embodiments, the DNA sequence of interest encodes a molecule that antagonizes neoplastic growth. In specific embodiments of the invention, the DNA sequence of interest encodes a tumor suppressor, such as, but not limited to, p53. In other specific embodiments, the DNA sequence of interest encodes an activator of apoptosis, such as but not limited to, a Caspase.

The invention provides methods, whereby a DNA sequence of interest is expressed in a subject. In certain embodiments, a vector containing one or more expression cassettes of a DNA sequence of interest is administered to the subject, wherein the subject does not express the Bovine Papilloma Virus E1 protein.

5.4 THERAPEUTIC METHODS FOR USE WITH THE INVENTION 5.4.1 RECOMBINANT DNA

20

30

In various embodiments of the invention, the vector of the invention comprises one or more expression cassettes comprising a DNA sequence of interest. The DNA sequence of interest can encode a protein and/or a biologically active RNA molecule. In either case, the DNA sequence is inserted into the vector of the invention for expression in recombinant cells or in cells of the host in the case of gene therapy.

An expression cassette, as used herein, refers to a DNA sequence of interest operably linked to one or more regulatory regions or enhancer/promoter sequences which enables expression of the protein of the invention in an appropriate host cell. "Operably-linked" refers to an association in which the regulatory regions and the DNA sequence to be expressed are joined and positioned in such a way as to permit transcription, and in the case of a protein, translation.

The regulatory regions necessary for transcription of the DNA sequence of interest can be provided by the vector of the invention. In a compatible host-construct system, cellular transcriptional factors, such as RNA polymerase, will bind to the regulatory regions of the vector to effect transcription of the DNA sequence of interest in the host organism. The precise nature of the regulatory regions needed for gene expression may vary from host cell to host cell. Generally, a promoter is required which is capable of binding RNA polymerase and promoting the transcription of an operably-associated DNA sequence. Such regulatory regions may include those 5'-non-coding sequences involved with initiation of transcription and translation, such as the TATA box, capping sequence, CAAT sequence, and the like. The non-coding region 3' to the coding sequence may contain transcriptional termination regulatory sequences, such as terminators and polyadenylation sites.

Both constitutive and inducible regulatory regions may be used for expression of the DNA sequence of interest. It may be desirable to use inducible promoters when the conditions optimal for growth of the host cells and the conditions for high level expression of the DNA sequence of interest are different. Examples of useful regulatory regions are provided below (section 5.4.4).

15

20

25

30

In order to attach DNA sequences with regulatory functions, such as promoters, to the DNA sequence of interest or to insert the DNA sequence of interest into the cloning site of a vector, linkers or adapters providing the appropriate compatible restriction sites may be ligated to the ends of the cDNAs by techniques well known in the art [Wu et al., Methods in Enzymol 152 (1987) 343-349). Cleavage with a restriction enzyme can be followed by modification to create blunt ends by digesting back or filling in single-stranded DNA termini before ligation. Alternatively, a desired restriction enzyme site can be introduced into a fragment of DNA by amplification of the DNA by use of PCR with primers containing the desired restriction enzyme site.

The vector comprising a DNA sequence of interest operably linked to a regulatory region (enhancer/promoter sequences) can be directly introduced into appropriate host cells for expression of the DNA sequence of interest without further cloning.

For expression of the DNA sequence of interest in mammalian host cells, a variety of regulatory regions can be used, for example, the SV40 early and late promoters, the cytomegalovirus (CMV) immediate early promoter, and the Rous sarcoma virus long terminal repeat (RSV-LTR) promoter. Inducible promoters that may be useful in mammalian cells include but are not limited to those associated with the metallothionein II gene, mouse mammary tumor virus glucocorticoid responsive long terminal repeats (MMTV-LTR), β-interferon gene, and hsp70 gene [Williams et al., Cancer Res. 49 (1989) 2735-42; Taylor et al., Mol. Cell Biol., 10 (1990) 165-75]. It may be advantageous to use heat shock promoters or stress promoters to drive expression of the DNA sequence of interest in recombinant host cells.

10

15

20

25

30

In addition, the expression vector may contain a selectable or screenable marker gene for initially isolating, identifying or tracking host cells that contain the vector. A number of selection systems may be used for mammalian cells, including but not limited to the Herpes simplex virus thymidine kinase [Wigler et al., Cell 11 (1977) 223], hypoxanthine-guanine phosphoribosyltransferase [Szybalski and Szybalski, Proc. Natl. Acad. Sci. USA 48 (1962) 2026], and adenine phosphoribosyltransferase [Lowy et al., Cell 22 (1980) 817] genes can be employed in tk, hgprt or aprt cells, respectively. Also, antimetabolite resistance can be used as the basis of selection for dihydrofolate reductase (dhfr), which confers resistance to methotrexate [Wigler et al., Natl. Acad. Sci. USA 77 (1980) 3567; O'Hare et al., Proc. Natl. Acad. Sci. USA 78 (1981) 1527]; gpt, which confers resistance to mycophenolic acid [Mulligan & Berg, Proc. Natl. Acad. Sci. USA 78 (1981) 2072]; neomycin phosphotransferase (neo), which confers resistance to the aminoglycoside G-418 [Colberre-Garapin et al., J. Mol. Biol. 150 (1981) 1]; and hygromycin phosphotransferase (hyg), which confers resistance to hygromycin [Santerre et al., 1984, Gene 30 (1984)147]. Other selectable markers, such as but not limited to histidinol and Zeocin® can also be used.

5.4.2 EXPRESSION SYSTEMS AND HOST CELLS

For use with the methods of the invention, the host cell and/or the host organism preferably does not express the Bovine Papilloma Virus E1 protein. Fur-

thermore, preferably the vector of the invention does not encode the Bovine Papilloma Virus E1 protein.

Preferred mammalian host cells include but are not limited to those derived from humans, monkeys and rodents, (see, for example, Kriegler M. in "Gene Transfer and Expression: A Laboratory Manual", New York, Freeman & Co. 1990), such as monkey kidney cell line transformed by SV40 (COS-7, ATCC CRL 1651); human embryonic kidney line (293, 293-EBNA, or 293 cells subcloned for growth in suspension culture, Graham et al., J. Gen. Virol., 36 (1977) 59; baby hamster kidney cells (BHK, ATCC CCL 10); chinese hamster ovary-cells-DHFR [CHO, Urlaub and Chasin. Proc. Natl. Acad. Sci. 77 (1980) 4216]; mouse sertoli cells [Mather, Biol. Reprod. 23 (1980) 243-251]; mouse fibroblast cells (NIH-3T3), monkey kidney cells (CVI ATCC CCL 70); african green monkey kidney cells (VERO-76, ATCC CRL-1587); human cervical carcinoma cells (HELA, ATCC CCL 2); canine kidney cells (MDCK, ATCC CCL 34); buffalo rat liver cells (BRL 3A, ATCC CRL 1442); human lung cells (W138, ATCC CCL 75); human liver cells (Hep G2, HB 8065); and mouse mammary tumor cells (MMT 060562, ATCC CCL51).

The vectors of the invention may be synthesized and assembled from known DNA sequences by well-known techniques in the art. The regulatory regions and enhancer elements can be of a variety of origins, both natural and synthetic. Some host cells may be obtained commercially.

20

30

The vectors of the invention containing a DNA sequence of interest can be introduced into the host cell by a variety of techniques known in the art, including but not limited to, for prokaryotic cells, bacterial transformation (Hanahan, 1985, in DNA Cloning, A Practical Approach, 1:109-136), and for eukaryotic cells, calcium phosphate mediated transfection [Wigler et al., Cell 11 (1977) 223-232], liposome-mediated transfection [Schaefer-Ridder et al., Science 215 (1982) 166-168], electroporation [Wolff et al., Proc Natl Acad Sci 84 (1987)3344], and microinjection [Cappechi, Cell 22 (1980) 479-4889].

In a specific embodiment, cell lines that express the DNA sequence of the invention may be engineered by using a vector that contains a selectable marker. By way of example but not limitation, following the introduction of the vector, en-

36

gineered cells may be allowed to grow for 1-2 days in an enriched media, and then are switched to a selective media. The selectable marker in the vector confers resistance to the selection and optimally allows only cells that contain the vector with the selectable marker to grow in culture.

5

15

20

5.4.3 VACCINE APPROACHES

In certain embodiments, a vector of the invention comprising an expression cassette of a DNA sequence of interest is administered to a subject to induce an immune response. Specifically, the DNA sequence of interest encodes a protein (for example, a peptide or polypeptide), which induces a specific immune response upon its expression. Examples of such proteins are discussed in section 5.3.

For the delivery of a vector of the invention for use as a vaccine, methods may be selected from among those known in the art and/or described in section 5.4.6.

5.4.4 GENE THERAPY APPROACHES

In a specific embodiment, a vector of the invention comprising an expression cassette comprising DNA sequences of interest is administered to treat, or prevent various diseases. The DNA sequence of interest may encode a protein and/or a biologically active RNA molecule. Gene therapy refers to therapy performed by the administration to a subject of an expressed or expressible DNA sequence. In this embodiment of the invention, the DNA sequences produce their encoded protein or RNA molecule that mediates a therapeutic effect.

25

Any of the methods for gene therapy available in the art can be used according to the present invention. Exemplary methods are described below.

For general reviews of the method of gene therapy, see, Goldspiel et al., Clinical Pharmacy 12 (1993) 488-505; Wu and Wu, Biotherapy 3 (1991) 87-95; Tolstoshev, Ann. Rev. Pharmacol. Toxicol. 32 (1993) 573-596; Mulligan, Science 260 (1993) 926-932; Morgan and Anderson, Ann. Rev. Biochem. 62 (1993) 191-217; May, TIBTECH 1, I(5) (1993)155-215. Methods commonly known in the art of recombinant DNA technology which can be used are described in Ausubel et

al. (eds.), Current Protocols in Molecular Biology, John Wiley & Sons, NY (1993); and Kriegler, Gene Transfer and Expression, A Laboratory Manual, Stockton Press, NY (1990).

The following animal regulatory regions, which exhibit tissue specificity and have been utilized in transgenic animals, can be used for expression of the DNA sequence of interest in a particular tissue type: elastase I gene control region which is active in pancreatic acinar cells [Swift et al., Cell 38 (1984) 639-646; Ornitz et al., Cold Spring Harbor Symp. Quant. Biol. 50 (1986) 399-409; MacDonald, Hepatology 7 (1987) 425-515]; insulin gene control region which is active in pancreatic beta cells [Hanahan, Nature 315 (1985)115-122], immunoglobulin gene control region which is active in lymphoid cells [Grosschedl et al., Cell 38 (1984) 647-658; Adames et al., Nature 318 (1985) 533-538; Alexander et al., Mol. Cell. Biol. 7 (1987) 1436-1444], mouse mammary tumor virus control region which is active in testicular, breast, lymphoid and mast cells [Leder et al., Cell 45 (1986) 485-495], albumin gene control region which is active in the liver [Pinkert et al., Genes and Devel. 1 (1987) 268-276], alpha-fetoprotein gene control region which is active in the liver [Krumlauf et al., Mol. Cell. Biol. 5 (1985)1639-1648; Hammer et al., Science 235 (1987) 53-58; alpha 1-antitrypsin gene control region which is active in the liver [Kelsey et al., Genes and Devel. 1 (1987) 161-171], beta-globin gene control region which is active in myeloid cells [Mogram et al., Nature 315 (1985) 338-340; Kollias et al., Cell 46 (1986) 89-94]; myelin basic protein gene control region which is active in oligodendrocyte cells in the brain [Readhead et al., Cell 48 (1987) 703-712]; myosin light chain-2 gene control region which is active in skeletal muscle [Sani, Nature 314 (1985) 283-286], and gonadotropic releasing hormone gene control region which is active in the hypothalamus [Mason et al., Science 234 (1986)1372-1378].

Methods of delivery fro gene therapy approaches are well known in the art and/or described in section 5.4.6.

5.4.5 INHIBITORY ANTISENSE AND RIBOZYME

20

30

In certain embodiments of the invention a vector of the invention contains a DNA sequence of interest that encodes an antisense or ribozyme RNA mole-

38

cule. Techniques for the production and use of such molecules are well known to those of skill in the art.

Antisense RNA molecules act to directly block the translation of mRNA by hybridizing to targeted mRNA and preventing protein translation. Antisense approaches involve the design of oligonucleotides that are complementary to a target gene mRNA. The antisense oligonucleotides will bind to the complementary target gene mRNA transcripts and prevent translation. Absolute complementarity, although preferred, is not required.

A sequence "complementary" to a portion of an RNA, as referred to herein, means a sequence having sufficient complementarity to be able to hybridize with at least the non-polyA portion of an RNA, forming a stable duplex; in the case of double-stranded antisense nucleic acids, a single strand of the duplex DNA may thus be tested, or triplex formation may be assayed. The ability to hybridize will depend on both the degree of complementarity and the length of the antisense nucleic acid. Generally, the longer the hybridizing nucleic acid, the more base mismatches with an RNA it may contain and still form a stable duplex (or triplex, as the case may be). One skilled in the art can ascertain a tolerable degree of mismatch by use of standard procedures to determine the melting point of the hybridized complex.

10

15

20

25

Antisense nucleic acids should be at least six nucleotides in length, and are preferably oligonucleotides ranging from 6 to about 50 nucleotides in length. In specific aspects the oligonucleotide is at least 10 nucleotides, at least 17 nucleotides, at least 25 nucleotides or at least 50 nucleotides. In other embodiments of the invention, the antisense nucleic acids are at least 100, at least 250, at least 500, and at least 1000 nucleotides in length.

Regardless of the choice of target sequence, it is preferred that in vitro studies are first performed to quantitate the ability of the antisense oligonucleotide to inhibit gene expression. It is preferred that these studies utilize controls that distinguish between antisense gene inhibition and nonspecific biological effects of oligonucleotides. It is also preferred that these studies compare levels of the target RNA or protein with that of an internal control RNA or protein. Additionally, it is envisioned that results obtained using the antisense DNA sequence

are compared with those obtained using a control DNA sequence. It is preferred that the control DNA sequence is of approximately the same length as the test oligonucleotide and that the DNA sequence of the oligonucleotide differs from the antisense sequence no more than is necessary to prevent specific hybridization to the target sequence.

While antisense DNA sequences complementary to the target gene coding region sequence could be used, those complementary to the transcribed, untranslated region are most preferred.

10

20

25

For expression of the biologically active RNA, e.g., an antisense RNA molecule, from the vector of the invention the DNA sequence encoding the biologically active RNA molecule is operatively linked to a strong pol III or pol II promoter. The use of such a construct to transfect target cells in the patient will result in the transcription of sufficient amounts of single stranded RNAs that will form complementary base pairs with the endogenous target gene transcripts and thereby prevent translation of the target gene mRNA. For example, a vector of the invention can be introduced, e.g., such that it is taken up by a cell and directs the transcription of an antisense RNA. Such vectors can be constructed by recombinant DNA technology methods standard in the art. Expression of the sequence encoding the antisense RNA can be by any promoter known in the art to act in mammalian, preferably human cells. Such promoters can be inducible or constitutive. Such promoters include but are not limited to: the SV40 early promoter region [Bernoist and Chambon, Nature 290 (1981) 304-310], the promoter contained in the 3 long terminal repeat of Rous sarcoma virus [Yamamoto, et al., Cell 22 (1980) 787-797], the herpes thymidine kinase promoter [Wagner, et al., Proc. Natl. Acad. Sci. U.S.A. 78 (1981) 1441-1445], the regulatory sequences of the metallothionein gene [Brinster, et al., 1982, Nature 296 (1982) 39-42], etc.

In certain embodiments of the invention, a vector of the invention contains a DNA sequence, which encodes a ribozyme. Ribozyme molecules designed to catalytically cleave target gene mRNA transcripts can also be used to prevent translation of a target gene mRNA and, therefore, expression of a target gene product [see, e.g., PCT International Publication WO90/11364, published October 4, 1990; Sarver, et al., Science 247 (1990) 1222-1225].

Ribozymes are enzymatic RNA molecules capable of catalyzing the specific cleavage of RNA. [For a review, see Rossi, Current Biology 4 (1994) 469-471]. The mechanism of ribozyme action involves sequence specific hybridization of the ribozyme molecule to complementary target RNA, followed by an endonucleolytic cleavage event. The composition of ribozyme molecules must include one or more sequences complementary to the target gene mRNA, and must include the well known catalytic sequence responsible for mRNA cleavage. For this sequence, see, e.g., U.S. Patent No. 5,093,246, which is incorporated herein by reference in its entirety.

While ribozymes that cleave mRNA at site-specific recognition sequences can be used to destroy target gene mRNAs, the use of hammerhead ribozymes is preferred. Hammerhead ribozymes cleave mRNAs at locations dictated by flanking regions that form complementary base pairs with the target mRNA. The sole requirement is that the target mRNA have the following sequence of two bases: 5'-UG-3'. The construction and production of hammerhead ribozymes is well known in the art and is described more fully in Myers, 1995, Molecular Biology and Biotechnology: A Comprehensive Desk Reference, VCH Publishers, New York, (see especially Figure 4, page 833) and in Haseloff & Gerlach, Nature, 334 1988) 585-591, which is incorporated herein by reference in its entirety.

10

20

25

30

Preferably the ribozyme is engineered so that the cleavage recognition site is located near the 5' end of the target gene mRNA, *i.e.*, to increase efficiency and minimize the intracellular accumulation of non-functional mRNA transcripts.

The ribozymes of the present invention also include RNA endoribonucleases (hereinafter "Cech-type ribozymes") such as the one that occurs naturally in Tetrahymena thermophila (known as the IVS, or L-19 IVS RNA) and that has been extensively described by Thomas Cech and collaborators [Zaug, et al., Science, 224 (1984) 574-578; Zaug and Cech, Science, 231 (1986) 470-475; Zaug, et al., Nature, 324 (1986) 429-433; published International patent application No. WO 88/04300 by University Patents Inc.; Been & Cech, Cell, 47 (1986) 207-216]. The Cech-type ribozymes have an eight base pair active site, which hybridizes to a target RNA sequence whereafter cleavage of the target RNA takes place. The

10

15

20

25

invention encompasses those Cech-type ribozymes, which target eight base-pair active site sequences that are present in the target gene.

Expression of a ribozyme can be under the control of a strong constitutive pol III or pol II promoter, so that transfected cells will produce sufficient quantities of the ribozyme to destroy endogenous target gene messages and inhibit translation. Because ribozymes unlike antisense molecules, are catalytic, a lower intracellular concentration is required for efficiency.

In instances wherein the antisense and/or ribozyme molecules described herein are utilized to inhibit mutant gene expression, it is possible that the technique may so efficiently reduce or inhibit the translation of mRNA produced by normal target gene alleles that the possibility may arise wherein the concentration of normal target gene product present may be lower than is necessary for a normal phenotype. In such cases, to ensure that substantially normal levels of target gene activity are maintained, therefore, nucleic acid molecules that encode and express target gene polypeptides exhibiting normal target gene activity may, be introduced into cells via gene therapy methods such as those described, below, in Section 5.4.4 that do not contain sequences susceptible to whatever antisense, ribozyme, or triple helix treatments are being utilized. Alternatively, in instances whereby the target gene encodes an extracellular protein, it may be preferable to co-administer normal target gene protein in order to maintain the requisite level of target gene activity.

Methods of administering the ribozyme and antisense RNA molecules are well known in the art and/or described in section 5.4.6.

5.4.6 PHARMACEUTICAL FORMULATIONS AND MODES OF ADMINISTRATION

In a preferred aspect, a pharmaceutical of the invention comprises a substantially purified vector of the invention (*e.g.*, substantially free from substances that limit its effect or produce undesired side-effects). The subject to whom the pharmaceutical is administered in the methods of the invention is preferably an animal, including but not limited to animals such as cows, pigs, horses, chickens, cats, dogs, *etc.*, and is preferably a mammal, and most preferably a human.

20

25

30

PCT/FI02/00379

In certain embodiments, the vector of the invention is directly administered in vivo, where the DNA sequence of interest is expressed to produce the encoded product. This can be accomplished by any of numerous methods known in the art. The vectors of the invention can be administered so that the nucleic acid sequences become intracellular. The vectors of the invention can be administered by direct injection of naked DNA; use of microparticle bombardment (e.g., a gene gun; Biolistic, Dupont); coating with lipids or cell-surface receptors or transfecting agents; encapsulation in microparticles or microcapsules; administration in linkage to a peptide which is known to enter the nucleus; administration in linkage to a ligand subject to receptor-mediated endocytosis [see, e.g., Wu and Wu, J. Biol. Chem. 262 (1987) 4429-4432] (which can be used to target cell types specifically expressing the receptors); etc. In a specific embodiment, the compound or composition can be delivered in a vesicle, in particular a liposome [see Langer, Science 249 (1990) 1527-1533; Treat et al., 1989, in Liposomes in the Therapy of Infectious Disease and Cancer, Lopez-Berestein and Fidler (eds.), Liss, New York, pp. 353-365; Lopez-Berestein, ibid., pp. 317-327].

In certain embodiments, the vector of the invention is coated with lipids or cell-surface receptors or transfecting agents, or linked to a homeobox-like peptide which is known to enter the nucleus [see e.g., Joliot et al., Proc. Natl. Acad. Sci. USA 88 (1991) 1864-1868], etc.

In certain other embodiments, nucleic acid-ligand complexes can be formed in which the ligand comprises a fusogenic viral peptide to disrupt endosomes, allowing the nucleic acid to avoid lysosomal degradation.

In yet other embodiments, the vector of the invention can be targeted *in vivo* for cell specific uptake and expression, by targeting a specific receptor (see, e.g., PCT Publications WO 92/06 180; WO 92/22635; W092/20316; W093/14188, and WO 93/20221).

Methods for use with the invention include, but are not limited to, intradermal, intramuscular, intraperitoneal, intravenous, subcutaneous, intranasal, epidural, and oral routes. Methods for use with the invention further include administration by any convenient route, for example by infusion or bolus injection, by absorption through epithelial or mucocutaneous linings (e.g., oral mucosa, rectal

10

20

25

and intestinal mucosa, etc.). In a specific embodiment, it may be desirable to administer a vector of the invention by injection, by means of a catheter, by means of a suppository, or by means of an implant, said implant being of a porous, non-porous, or gelatinous material, including a membrane, such as a sialastic membrane, or a fiber. Care must be taken to use materials to which the vector does not absorb. Administration can be systemic or local.

In certain embodiments, a vector of the invention is administered together with other biologically active agents such as chemotherapeutic agents or agents that augment the immune system.

In yet another embodiment, methods for use with the invention include delivery via a controlled release system. In one embodiment, a pump may be used [see Langer, supra; Sefton, CRC Crit. Ref. Biomed. Eng. 14 (1989) 201; Buchwald et al., Surgery 88 (1980) 507; Saudek et al., N. Engl. J. Med. 321 (1989) 574]. In another embodiment, polymeric materials can be used [see Medical Applications of Controlled Release, 1974, Langer and Wise (eds.), CRC Pres., Boca Raton, Florida; Controlled Drug Bioavailability, Drug Product Design and Performance, 1984, Smolen and Ball (eds.), Wiley, New York; Ranger and Peppas, Macromol. Sci. Rev. Macromol. Chem. 23 (1983) 61; see also Levy et al., Science 228 (1985) 190; During et al., Ann. Neurol. 25 (1989) 351; Howard et al., J. Neurosurg. 71 (1989) 105].

Other controlled release systems are discussed in the review by Langer, Science 249 (1990)1527-1533.

Pharmaceutical compositions of the invention comprise a therapeutically effective amount of a vector of the invention, and a suitable pharmaceutical vehicle. In a specific embodiment, the term "suitable pharmaceutical vehicle" means approved by a regulatory agency of the Federal or a state government or listed in the U.S. Pharmacopeia or other generally recognized pharmacopeia for use in animals, and more particularly in humans. The term "vehicle" refers to a diluent, adjuvant, excipient, or vehicle with which the therapeutic is administered. Such 30 suitable pharmaceutical vehicles can be sterile liquids, such as water and oils, including those of petroleum, animal, vegetable or synthetic origin, such as peanut oil, soybean oil, mineral oil, sesame oil and the like. Water is a preferred carrier

10

15

20

25

PCT/FI02/00379

when the pharmaceutical composition is administered intravenously. Saline solutions and aqueous dextrose and glycerol solutions can also be employed as liquid carriers, particularly for injectable solutions. Suitable pharmaceutical excipients include starch, glucose, lactose, sucrose, gelatin, malt, rice, flour, chalk, silica gel, sodium stearate, glycerol monostearate, talc, sodium chloride, dried skim milk, glycerol, propylene, glycol, water, ethanol and the like. The composition, if desired, can also contain minor amounts of wetting or emulsifying agents, or pH buffering agents. These compositions can take the form of solutions, suspensions, emulsion, tablets, pills, capsules, powders, sustained-release formulations and the like. The composition can be formulated as a suppository, with traditional binders and carriers such as triglycerides. Oral formulation can include standard carriers such as pharmaceutical grades of mannitol, lactose, starch, magnesium stearate, sodium saccharine, cellulose, magnesium carbonate, etc. Examples of suitable pharmaceutical carriers are described in "Remington's Pharmaceutical Sciences" by E.W. Martin. Such compositions will contain a therapeutically effective amount of the nucleic acid or protein of the invention, preferably in purified form, together with a suitable amount of carrier so as to provide the form for proper administration to the patient. The formulation should suit the mode of administration.

In a specific embodiment, the pharmaceutical of the invention is formulated in accordance with routine procedures as a pharmaceutical composition adapted for intravenous administration to human beings. Typically, compositions for intravenous administration are solutions in sterile isotonic aqueous buffer. Where necessary, the pharmaceutical of the invention may also include a solubilizing agent and a local anesthetic such as lignocaine to ease pain at the site of the injection. Generally, the ingredients are supplied either separately or mixed together in unit dosage form, for example, as a dry lyophilized powder or water free concentrate in a hermetically sealed container such as an ampoule or sachette indicating the quantity of active agent. Where the pharmaceutical of the invention is to be administered by infusion, it can be dispensed with an infusion bottle containing sterile pharmaceutical grade water or saline. Where the pharmaceutical of the invention is administered by injection, an ampoule of sterile water

for injection or saline can be provided so that the ingredients may be mixed prior to administration.

For buccal administration the compositions may take the form of tablets or lozenges formulated in conventional manner.

For administration by inhalation, the compounds for use according to the present invention are conveniently delivered in the form of an aerosol spray presentation from pressurized packs or a nebulizer, with the use of a suitable propellant, e.g., dichlorodifluoromethane, trichlorofluoromethane, dichlorotetrafluoroethane, carbon dioxide or other suitable gas. In the case of a pressurized aerosol the dosage unit may be determined by providing a valve to deliver a metered amount. Capsules and cartridges of e.g. gelatin for use in an inhaler or insufflator may be formulated containing a powder mix of the compound and a suitable powder base such as lactose or starch.

The amount of a vector of the invention, which will be effective in the treatment or prevention of the indicated disease, can be determined by standard clinical techniques. In addition, *in vitro* assays may optionally be employed to help identify optimal dosage ranges. The precise dose to be employed in the formulation will also depend on the route of administration, and the stage of indicated disease, and should be decided according to the judgment of the practitioner and each patient's circumstances. Effective doses may be extrapolated from dose-response curves derived from *in vitro* or animal model test systems.

The present invention may be better understood by reference to the following non-limiting Examples, which are provided as exemplary of the invention. The following examples are presented in order to more fully illustrate the preferred embodiments of the invention. They should in no way be construed, however, as limiting the broad scope of the invention.

6. EXAMPLES

5

15

20

25

30

6.1. EXAMPLE 1

Cloning and analysis of the expression properties of the vectors super6 and super6wt

15

25

30

PCT/FI02/00379

46

The vector plasmids super6 (Figure 1) and super6wt were prepared from previous generation based gene vaccination vectors VI (Figure 2) and VIwt, respectively. Vectors VI and VIwt are principally synthetic bacterial plasmids that contain a transposon Tn903 derived kanamycin resistance marker gene [Oka, A., et al., J Mol Biol 147 (1981) 217-226] and a modified form of pMB1 replicon [Yanisch-Perron, C., et al., Gene 33 (1985) 103-119] needed for the propagation in Escherichia coli cells. Vectors VI and VIwt also contain a Cytomegalovirus Immediately Early Promoter combined with a HSV1 TK leader sequence and rabbit β-globin gene sequences, which both are derived from plasmid pCG [Tanaka, M., et al., 60 (1990) Cell 375-386]. The latter elements are needed for expressing from the nef coding sequence derived from a HAN2 isolate of the HIV-1 strain [Sauermann, U., et al., AIDS Research. Hum. Retrov. 6 (1990) 813-823]. The expression vectors for the Nef carry clustered ten high affinity E2 binding sites (derived from plasmid pUC1910BS, unpublished) just upstream of the CMV promoter.

The parent vector VI contains a modified E2 coding sequence: the hinge region of E2 (amino acids 192-311) is replaced with four glycine-alanine repeats from EBNA1 protein of Epstein-Barr Virus [Baer, R. J., et al., Nature 310 (1984) 207-211]. The protein encoded by this sequence was named as E2d192-311+4G. The parent vector VIwt contains an expression cassette for wild type E2 protein of the bovine papilloma virus type 1 with point mutations introduced for the elimination E3 and E4 open reading frame (ORF) coding capacity by two stop codons into both these ORFs. In the vectors the E2 coding sequences are cloned between a Rous sarcoma virus proviral 5' LTR [Long, E. O., et al., Hum. Immunol. 31 (1991) 229-235] and bovine growth hormone polyadenylation region [Chesnut, J. D., et al., J Immunol Methods 193 (1996) 17-27].

Plasmid vectors super6 and super6wt were constructed by deleting from the respective parent vectors VI and VIwt all beta-globin sequences downstream of the nef gene except the second intron of the rabbit beta-globin gene. The beta-globin sequences (especially the fragment of the exon) show some homology with sequences in the human beta-globin gene, whereas the intron lacks any significant homology to human genomic sequences. The intron was amplified by

PCR from the plasmid pCG [Tanaka, M. et al., Cell 60 (1990) 375-386] using oligonucleotides with some mismatches for modifying the sequences of splicing donor and acceptor sites of the intron to the perfect match to consensus motifs. The Herpes Simplex Virus type 1 thymidine kinase gene polyadenylation region from pHook [Chesnut, J. D., et al., J Immunol Methods 193 (1996) 17-27] was then cloned just next to the 3'-end of the intron, because in parent plasmids the rabbit β-globin polyadenylation signal were used.

The expression properties of the Nef and E2 proteins expressed by the plasmid vectors super6 and super6wt were analyzed and compared with the expression properties of the Nef and E2 proteins expressed by VI and VIwt by Western blotting [Towbin et al., Proc Natl Acad Sci USA 76 (1979) 4350-4354] with monoclonal antibodies against Nef and E2. First, Jurkat cells (a human T-cell lymphoblast cell line) were transfected by electroporation [Ustav et al. EMBO J 2 (1991) 449-457] with 1 µg of super6, super6WT or equimolar amounts of the plasmids VI, VIwt. As a control an equimolar amount of vector II (Figure 3), which contains an identical Nef cassette but no E2 coding sequence, was used. Carrier DNA was used as a negative control. Briefly, the plasmid and carrier DNA were mixed with the cell suspension in a 0.4 cm electroporation cuvette (BioRad Laboratories, Hercules, USA) followed an electric pulse (200V; 1mF) using Gene Pulser IITM with capacitance extender (BioRad Laboratories, Hercules, USA).

Forty-nine hours post-transfection the cells were lysed by treating with a sample buffer containing 50mM Tris-HCl pH 6.8; 2% SDS, 0.1% bromophenol blue, 100mM dithiothreitol, and 10% (v/v) glycerol. The lysates were run on a 10% or 12.5% SDS-polyacrylamide gel and subsequently transferred onto a 0.45 µm PVDF nitrocellulose membrane (Millipore). The membrane was first blocked overnight with a blocking solution containing 5% dry milk (fat-free), 0.1% Tween 20 in 50 mM Tris-HCl pH 7.5; 150mM NaCl and thereafter incubated for 1h with diluted monoclonal anti-Nef antisera (1:100) or anti-E2-antisera (1:1000) in the blocking solution. After each incubation step, unbound proteins were removed by washing strips three times with TBS - 0.1 % Tween-20. The binding of primary immunoglobulins was detected by incubating the strips with horse raddish peroxidase conjugate anti-mouse IgG (Labas, Estonia) followed by visualization using a

20

25

chemoluminesence detection system (Amersham Pharmacia Biotech, United Kingdom).

The results are shown in Figure 4. The expression of the Nef protein is shown on panel A and the expression of E2 protein on panel B. The arrows indicate the right molecular sizes of the Nef and E2 proteins. The expression level of the E2d192-311+4GA is very low and for this reason cannot be seen on the blot presented in Figure 4.

The amounts of Nef expressed from the plasmids super6, super6wt, VI and VIwt (lanes 1-4 in Figure 4A) are quite similar (Figure 4, panel A, lanes 1 to 4). Much less protein is produced from plasmid II (lane 5). The expression levels of the Nef protein are higher from vectors containing wtE2 (cf. lane 1 compared with lane 2 and lane 3 compared with lane 4). This is in accordance with the expression levels of E2 and E2d192-311+4GA proteins from these plasmids (Figure 4, panel B).

15

20

25

30

6.2. EXAMPLE 2

Cloning and analysis of the expression properties of plasmids in series product1 and NNV

To increase the copy number of the vectors super 6 and super6wt in Escherichia coli further modifications were made in these vectors. The Tn903 kanamycin resistance gene, pMB1 replicon and ten E2 binding sites were removed by HindIII/Nhel digestion followed by replacing with the Hind III/Nhel fragment from retroviral vector pBabe Neo [Morgenstern, J.P. and Land, H., Nucleic Acids Research 18 (1990) 3587 - 3596]. This fragment contains a modified pMB1 replicon and the Tn5 kanamycin resistance gene that allow relaxed high copynumber replication of the plasmids in bacteria. The new plasmids were named as the product1 (Figure 5), and product1wt respectively. An unsuccessful attempt to reinsert the ten E2 binding sites back into the blunted Nhel site upstream of the CMV promoter of the product1 resulted in vector New Vector NNV, respectively, with only two binding sites integrated in the plasmid.

Additional ten E2 binding sites were inserted from plasmid pUC1910BS into the New Vector in just downstream the E2 expression cassette. These new

49

vectors were named NNV-1 and NNV-2 (Figure 6A). For replacing the E2d192-311+4GA with wt E2 (with deleted E3 and E4 ORFs), the E2d192-311+4GA coding sequence containing Bsp120l fragment was replaced with wtE2 containing an analogous Bsp120l fragment from the super6wt. Generated plasmids were named NNV-1wt and NNV-2wt (Figure 6B), respectively. The numbers 1 or 2 in vectors of the NNV series mark the orientation of the 10 E2 binding sites region relative to the E2 expression cassette.

The expression properties of the Nef protein from the NNV plasmids, i.e. NNV-1, NNV-2, NNVwt and NNV-2wt, after the transfection of Jurkat cells by electroporation at a concentration of 1 ig of the plasmid were analyzed and compared with the expression properties of the Nef proteins from super6 and super6wt by Western blotting essentially as described in Example 1. The amounts of super6 and super6wt used for the transfection were 0,95 and 1 ig, respectively. The results are shown in Figure 7.

NNV-1 and NNV-2 vectors have expression potential similar to plasmid super6 as evident from the comparison of lanes 1 and 2 on figure 8 with lane 5. The same applies to vectors NNV-1wt, NNV-2wt and super6wt (compare lanes 3 and 4 with lane 6 on figure 7). In accordance with the previous results the plasmids expressing wt E2 produce more Nef protein than E2d192-311+4GA vectors do (compare lane 1 with lane 3 and lane 2 with lane 4 in figure 7). In view of this and since the Nef expression from NNV-2wt was slightly higher than that from NNV-1wt, vector NNV-2wt was selected for further tests.

6.3 EXAMPLE 3

15

20

25

Analysis of the expression properties of NNV-2wt

To analyse the expression properties of NNV-2wt, four different cell lines, i.e. the Jurkat (human T-cell lymphoblasts), P815 (mouse mastocytoma cells), CHO (Chinese Hamster Ovary cells) lines and RD (human embryo rhabdomyosarcoma cells), were transfected by electroporation and analyzed for their expression of Nef of and E2. To reveal the transcription activation and maintenance properties mediated by E2 protein and E2 oligomerized binding sites product1wt, which lacks the E2 binding sites (Figure 5), was used as a control. An additional

15

20

25

control plasmid was plasmid NNV-2wtFS, which differs from NNV-2wt by containing a frameshift introduced into E2 coding sequence, whereby it does not express functional E2 protein.

Each cell line was transfected with different amounts of the vector DNA by electroporation essentially as described in Example 1. Time-points were taken approximately two and five days after transfection. The results of analyses are presented in figures 8 to 10.

The Jurkat cells were transfected with 0.5 µg or 2 µg of the NNV-2wt (lanes 1,2, 8, and 9 in Figure 8) and equal amounts of the plasmids NNV-2wtFS (lanes 3, 4, 10, and 11 in Figure 8) and product1wt (lanes 5, 6, 12, and13 in Figure 8) or carrier only (lanes 7 and 14 in Figure 8). Time-points were taken 44 hours (lanes 1-7) and 114 hours (lanes 8-14) after transfection: The expression of the Nef and E2 proteins was analyzed by Western blotting essentially as described in Example 1.

The P815 cells were transfected with 0.5 µg or 2 µg of the NNV-2wt (lanes 1,2, 8, and 9 in Figure 9) and equal amounts of the plasmids NNV-2wtFS (lanes 3, 4, 10, and 11 in Figure 9) and product1wt (lanes 5, 6, 12, and 13 in Figure 9) or carrier only (lanes 7 and 14 in Figure 9). Time-points were taken 45 hours (lanes 1-7) and 119 hours (lanes 8-14) after transfection: The expression of the Nef proteins was analyzed by Western blotting essentially as described in Example 1. The blot with anti-E2 antibodies 119h post-transfection is not shown, because no special signal could be detected. Generally, the expression level of the Nef protein correlated with the expression level of E2 protein in these cells, which confirms the fact that the function of the E2 protein is to activate the transcription and to help the plasmid to be maintained for a longer time in the proliferating cells.

The CHO cells were transfected with 0.5 µg or 2 µg of the NNV-2wt (lanes 1,2, 8, and 9 in Figure 10) and equal amounts of the plasmids NNV-2wtFS (lanes 3, 4, 10, and 11 in Figure 10) and product1wt (lanes 5, 6, 12, and 13 in Figure 10) or carrier only (lanes 7 and 14 in Figure 10). Time-points were taken 48 hours (lanes 1-7) and 114 hours (lanes 8-14) after transfection. The expression of the Nef and E2 proteins was analyzed by Western blotting essentially as described in Example 1.

The RD cells were transfected with 0.5 µg or 2 µg of the NNV-2wt (lanes 1,2, 8, and 9 in Figure 11) and equal amounts of the plasmids NNV-2wtFS (lanes 3, 4, 10, and 11 in Figure 11) and product1wt (lanes 5, 6, 12, and 13 in Figure 11) or carrier only (lanes 7 and 14 in Figure 11). Time-points were taken 39 hours (lanes 1-7) and 110 hours (lanes 8-14) after transfection. The expression of the Nef protein was analyzed by Western blotting essentially as described in Example 1.

In all four cell lines the expression level of the Nef protein, taken at earlier time points (lanes 1-7 in figures 8 - 11) and at later time points (lanes 8-14 in Figures 8-11) hours, from the NNV-2wt was higher than from control vectors. The superiority of the NNV-2wt was more obvious at later time-points as evident from the comparision of lane 8 with lanes 10 and 12 in Figure 8, and also from the comparision of lane 9 with lanes 11 and 13 in figures 8, 9 and 10.

The expression pattern of RNA from these plasmids was also analyzed using the Northern analysis [Alwine, J. C, et al., Proc Natl Acad Sci U S A 74 (1977) 5350-5354] for the NNV-2wt vector. For this purpose, Jurkat and CHO cells were transfected with 2 μg of the NNV-2wt. For the transfection of P815 cells 10 μg of NNV-2wt were used. The transfections were made essentially as described in Example 1. Forty-eight hours post-transfection total RNA was extracted using RNAeasy kit (Qiagen) and samples containing 21 µg (P815), 15 µg (CHO) or 10 µg (Jurkat) of the RNA were analysed by electrophoresis under the denaturing conditions (1.3% agarose gel containing 20mM MOPS pH 7.0; 2mM NaOAc; 1mM EDTA pH 8.0; 2.2M formaldehyde). The running buffer contained the same components except formaldehyde. The samples were loaded in a buffer containing formamide and formaldehyde. After the electrophoresis the separated RNAs were blotted onto the HybondN+ membrane (Amersham Pharmacia Biotech, United Kingtom) and hybridization with a radio-labeled nef coding sequence, E2 coding sequence or whole vector probes was carried out. The RNA from cells transfected with the carrier was used as a control. The results of the Northern blot analyses are shown in figure 12.

20

30

The results indicate that no other RNA species than complementary mRNAs for E2 and nef are expressed from the vector, since no additional signals

can be detected with the whole vector probe compared with nef and E2 specific hybridizations (compare lanes 1-12 with lanes 13-18 in Figure 12).

6.4 EXAMPLE 4

WO 02/090558

5

10

20

25

Analysis of the attachment of the NNV-2wt to mitotic chromosomes

The attachment of the NNV-2wt to mitotic chromosomes in CHO cells was analyzed by fluoresence in situ hybridisation (FISH) [Tucker J.D., et al., In: J.E.Celis (ed.), Cell Biology: A Laboratory Handbook, vol 2, p. 450-458. Academic Press, Inc. New York, NY. 1994.].

Thirty-six hours post-transfection the CHO cells by electroporation with 1 µg of NNV-2wt or with equimolar amounts of the control plasmids NNV-2wtFS and product1wt (performed essentially as described in Example 1) the cultures were treated with colchicin (Gibco) for arresting the cells in metaphase of the mitosis. Briefly, cells were exposed to colchicine added to medium at final concentration of 0.1 µg/ml for 1-4 h to block the cell cycle at mitosis. Blocked cells were harvested by a trypsin treatment and suspended in a 0.075M KCl solution, incubated at room temperature for 15 min, and fixed in ice-cold methanol-glacial acetic acid (3:1, vol/vol). The spread-out chromosomes at metaphase and nuclei at interphase for fluorescence in situ hybridization analyses were prepared by dropping the cell suspension on wet slides. Several slides from one culture were prepared.

Hybridization probes were generated by nick-translation, using biotin-16-dUTP as a label and plasmid Product1wt as template. A typical nick-translation reaction mixture contained a nick-translation buffer, unlabeled dNTPs, biotin-16-dUTP, and E.coli DNA polymerase.

Chromosome preparations were denatured at 70°C in 70% formamide (pH 7.0-7.3) for 5 min, then immediately dehydrated in a series of washes (70%, 80%, and 96% ice-cold ethanol washes for 3 min each), and air-dried. The hybridization mixture (18 µl per slide) was composed of 50% formamide in 2xSSC (1xSSC is 0.15 M NaCl plus 0.015 M sodium citrate), 10% dextran sulfate, 150 ng of biotinylated plasmid probe DNA and 10 µg of herring sperm carrier DNA. After 5 min of denaturation at 70°C, probe DNA was applied to each slide, sealed under

PCT/FI02/00379

a coverslip, and hybridized for overnight at 37°C in a moist chamber. The slides were washed with three changes of 2xSSC, nd 2xSSC containing 0.1% IGEPAL CA-630 (Sigma Chemical Co.) at 45°C. Prior to the immunofluorescence detection, slides were preincubated for 5 min in PNM a buffer [PN buffer (25.2 g Na₂HPO₄•7 H₂O, 083 g NaH₂PO₄ •_ \Box H₂O and 0.6 ml of IGEPAL CA-630 in 1 liter of H₂O] with 5% nonfat dried milk and 0.02% sodium azide).

Subsequently, the probe was detected with fluorescein isothiocyanate (FITC)-conjugated extravidin. The signal was amplified with biotinylated antiavidin antibody and a second round of extravidin-FITC tretment. Between each of the steps, the slides were washed in PN buffer containing 0.05% IGEPAL CA-630 at room temperature for 2x5 min. Chromosomes were counterstained with propidium iodide and mounted in p-phenylenediamine antifade mounting medium.

Slides were analyzed with a Olympus VANOX-S fluorescence microscope equipped with appropriate filter set.

The results are shown in Table 1.

10

TABLE 1. Chromosomal attachment of the NNV-2wt.

Culture	Meta- phases with epi- somal signal on chromosomes	Ana- lyzed metaphases	%
0.5μg NNV-2wt	11	158	7
0.5µg NNV-2wtFS	0	100	0
0.48µg product1wt	0	100	0
carrier	0	100	0

54

PCT/FI02/00379

The data indicate clearly that the E2 protein and its binding sites are needed for the chromosomal attachment because only the NNV-2wt but not two other vectors have this ability.

5 6.5 EXAMPLE 5

20

30

WO 02/090558

Stability of NNV-2wt during propagation in bacterial cells

The stability of NNV-2wt during propagation in bacterial cells was tested. The plasmid NNV-2wt was mixed with competent Escherichia coli cells of the DH5alpha strain [prepared as described in Inoue, H., et al., Gene 96 (1990) 23-28] and incubated on ice for 30 minutes. Subsequently, the cell suspension was subjected to a heat-shock for 3 minutes at 37°C followed by a rapid cooling on ice. One milliliter of LB medium was added to the sample and the mixture was incubated for 45 minutes at 37°C with vigorous shaking. Finally, a portion of the cells was plated onto dishes containing LB medium with 50 µg/ml of kanamycin. On the next day, the cells from a single colony were transferred onto the new dishes containing the same medium. This procedure was repeated until four generations of bacteria had been grown, and the plasmid DNA from the colonies of each generation was analyzed.

One colony from each generation was used for an inoculation of 2 ml LB medium containing 50 μ g/ml of kanamycin followed by an overnight incubation at 37°C with vigorous shaking. The cells were harvested and the plasmid DNA was extracted from the cell using classical lysis by boiling. [Sambrook, S., et al., Molecular Cloning A Laboratory Manual. Second ed. Cold Spring Harbor Laboratory Press, Cold Spring Harbor, New York]. The samples were digested with restriction endonuclease Xbal (Fermentas, Lithuania) and analyzed by agarose gel electrophoresis in comparison with the original DNA used for transformation. The results are shown in Figure 13.

As can be seen in Figure 13, the vector is stable during the passage in Escherichia coli cells: no colonies with re-arrangements were observed when compared with the DNA used for transformation (lane 9).

55

6.6 EXAMPLE 6

Stability of NNV-2wt in eukaryotic cells

The stability of the plasmid NNV-2wt as a non-replicating episomal element was also analyzed in eukaryotic cells. For this purpose the CHO and Jurkat cells were transfected with 2 µg of NNV-2wt. Total DNAs of the cells were extracted at 24, 72 or 96 hours post-transfection. Briefly, the cells were lyzed in 20mM Tris-HCl pH 8.0; 10mM EDTA pH 8.0; 100mM NaCl; 0.2% SDS; in presence of 200 µg/ml of proteinase K (Fermentas, Lithuania). Next, the samples were extracted sequentially with phenol and with chloroform and precipitated with ethanol. The nucleic acids were resuspended in 10mM Tris-HCl pH 8.0; 1mM EDTA pH 8.0; 20 µg/ml of RNase A (Fermentas, Lithuania) and incubated for 1 hour at 37°C. Finally the DNA was re-precipitated with ammonium acetate and ethanol, washed with 70% ethanol and resuspended in 10mM Tris-HCl pH 8.0; 1mM EDTA pH 8.0. The samples were digested with different restriction endonucleases: with Eco81I (Fermentas, Lithuania) that has two recognition sites on the plasmid, with HindIII (Fermentas, Lithuania) that does not cut the NNV-2wt DNA and with DpnI (New England Biolabs, USA) that digest only DNA synthesized in Escherichia coli cells. Restricted DNAs were separated on TAE agarose electrophoresis and analyzed by Southern blotting [Southern, E.M. J. Mol. Biol. 98 (1975) 503-517] with a vector specific radiolabeled probe. The results are illustrated on figure 14. As obvious from comparison of the fragment sizes of Eco811 digestion (lanes 1, 2 and 7 in figure 14) with respective marker lanes no arrangements of the vector were detected in the assay. Neither were signals observed at a position different from the marker lanes in cases of the Hind III (lanes 3, 4 and 8 in figure 14) or HindIII/DpnI (lanes 5, 6 and 9 in figure 14) digestion indicating that integration and/or replication events were not observed.

6.7 EXAMPLE 7

Analysis of replication of the NNV-2wt in the presence of human papillomaviral replication factors

It has been demonstrated previously that papillomaviral proteins are able to initiate the replication of heterologous ori-containing plasmids from many other

human and animal papillomaviruses [Chiang, C. M., et al., Proc Natl Acad Sci U S A 89 (1992) 5799-5803]. Although NNV-2wt does not contain an intact viral origin of replication, it was tested how the replication is initiated in the presence of human papillomavirus type 1 E1 and E2 proteins. CHO cells were transfected with one microgram of either plasmids NNV-2wt, NNV-2wtFS or product 1 alone or with 4.5 µg of the HPV-11 E1 expression vector pMT/E1 HPV11 or with same amount of pMT/E1 HPV11 and 4.5 µg HPV-11 E2 protein expression vector pMT/E2 HPV 11 as indicated on the top of the figure 15. Transfections were done essentially as described in Example 1. E1 and E2 expression vectors are described previously (Chiang, C. M. et al., supra). An equimolar amount of HPV-11 replication origin containing plasmid HPV11ORI was transfected with the same expression vectors as a positive control.

Low-molecular weight DNA was extracted by modified Hirt lysis [Ustav. et al., EMBO J 2 (1991) 449-457] at 67 hours post-transfection. Briefly, the cells washed with PBS were lyzed on ice at 5 minutes by adding alkaline lysis solutions I (50mM glucose; 25mM Tris-HCI, pH 8.0; 10mM EDTA, pH 8.0) and II (0.2M NaOH; 1% SDS) in a ratio of 1:2 onto the dishes. The lysates were neutralized by 0.5 vol solution III (a mixture of potassium acetate and acetic acid, 3M with respect to potassium and 5M with respect to acetate). After centrifugation the supernatant was precipitated with isopropanol, resuspended and incubated at 55°C in 20mM Tris-HCl pH 8.0; 10mM EDTA pH 8.0; 100mM NaCl; 0.2% SDS; in presence of 200 µg/ml of proteinase K (Fermentas, Lithuania). Next, the samples were extracted sequentially with phenol and with chloroform followed by precipitation with ethanol. The nucleic acids were resuspended in 10mM Tris-HCl pH 8.0; 1mM EDTA pH 8.0; 20 µg/ml RNase A (Fermentas, Lithuania) and incubated for 30 min at 65°C. The samples were digested with linearizing endonuclease (Ndel; Fermentas, Lithuania) in case of the vectors or HindIII (Fermentas, Lithuania) in case of the HPV110RI) and DpnI (New England Biolabs, USA) (breaks nonreplicated DNA), followed by Southern blotting performed essentially as described earlier using a vector specific radiolabeled probe. For positive control of hybridization appropriate markers of the linearized vectors and HPV110RI were used (la-

30

(lanes marked as M on figure 15). As seen from the results set forth in figure 15, no replication signal was detected in case of any vector plasmids.

6.8 EXAMPLE 8

5

15

20

25

30

Analysis of the E2 and its binding sites dependent segregation function of the vectors in dividing cells

As has been described previously, bovine papillomavirus type 1 E2 protein in trans and its multiple binding sites in cis are both necessary and sufficient for the chromatin attachment of the episomal genetic elements. The phenomenon is suggested to provide a mechanism for partitioning viral genome during viral infection in the dividing cells [Ilves, I., et al., J Virol. 73 (1999) 4404-4412]. Because both functional elements are also included into our vector system, the aim of this study was analyze the importance of the E2 protein and oligomerized binding sites for maintenance of the transcriptionally active vector element in population of dividing cells.

For this purpose the Nef coding sequence of the vectors NNV-2wt and super6wt was replaced with coding sequence of the destabilized form of green fluorescent protein (d1EGFP) derived from vector pd1EGFP-N1 (Clontech Laboratories). Because the half-life of this protein is as short as 1 hour, it does not accumulate in the cells and the d1EGFP expression detected by flow cytometer correlates with the presence of transcriptionally active vector in these cells.

From NNV-2wt the nef coding sequence was removed and Smal-Notl fragment from the pd1EGFP-N1 was inserted instead of it. New vector was named as 2wtd1EGFP (Figure 16). Similar replacement was made in case of super6wt for generation gf10bse2 (Figure 17), respectively. The recognition sequence for restrictional endonuclease Spel was introduced into the EcoRI site in the super6wt just upstrem the ten E2BS. The vector gf10bse2 is derived from this plasmid by replacing the Nef coding sequence containing Ndel-Bst1107I fragment with d1EGFP coding sequence containing fragment from 2wtd1EGFP, cut out with same enzymes.

Negative control plasmids lacking either functional E2 coding sequence or its binding sites were also made: The frameshift was introduced into the E2 cod-

58

ing sequence in context of the 2wtd1EGFP by replacing E2 coding sequence containing Bsp120I-Bsp120I with similar fragment from plasmid NNV-2wtFS. The resulting vector was named as 2wtd1EGFPFS (Figure 18). For the construction the control plasmid NNVd1EGFP (Figure 19) the whole E2 expression cartridge (as well bacterial replicon) from the 2wtd1EGFP was removed by Bst1107 and Nhel digestion. The replicon was reconstituted from plasmid product1 as HindIII (filled in)-Nhel fragment.

Jurkat cells were transfected by electroporation with 1µg of the vector 2wtd1EGFP or with equimolar amounts of the plasmids 2wtd1EGFPFS, NNVd1EGFP, gf10bse2 or with carrier DNA only as described in Example 1. At different time-points post-transfection the equal aliquots of the cell suspension were collected for analysis and the samples were diluted thereafter with the fresh medium. At every time-point total number of the cells as well the number of the d1EGFP expressing cells were counted by flow cytometer (Becton-Dickinson FACSCalibur System). With these data, the percentages of d1EGFP expressing cells, alterations of total numbers of cells and numbers of d1EGFP expressing cells in samples were calculated using the carrier-only transfected cells as a negative control for background fluorescence. The calculations of cell numbers were done in consideration of the dilutions made. Finally, the error values were calculated based on technical data of the cytometer about fluctuations of speed of the flow.

Two independent experiments were done. First, the maintenance of d1EGFP expressed from the plasmids 2wtd1EGFP, 2wtd1EGFPFS and NNVd1EGFP were analyzed during the eight days post-transfection. In the second experiment the maintenance of d1EGFP expressed from the plasmids 2wtd1EGFP, 2wtd1EGFPFS and gf10bse2 were analyzed during the thirteen days post-transfection.

As is obvious from Figures 20 and 21, there was no difference of the growth speed of the cells transfected with any vector or carrier only. It means that differences in the d1EGFP expression maintenance are not caused by influences of transfected vectors themselves on the dividing of the cells. Also, during the assay the logarithmic growth of the cells were detected, except the period un-

til second time-point in the experiment represented in Figure 20. This lag period of the growth is probably caused by the electroporation shock of the cells, because the first time-point was taken already 19 hours after the transfection.

59

As illustrated in Figures 22 and 23, the percentages of green fluorescent protein expressing cells decrease in all populations transfected with either plasmid, because the vectors do not replicate in the cells. However, as is seen on the charts, the fraction of positive cells declines more rapidly in cases of control vectors, if compared with the 2wtd1EGFP or gf10bse2. If compared with each other, the gf10bse2 have clear benefit to 2wtd1EGFP (Figure 23.). There is also a notable difference of maintenance between control plasmids 2wtFSd1EGFP and NNVd1EGFP (Figure 22).

These differences between the vectors become much more obvious, if the data are represented as alterations of the numbers of the d1EGFP expressing cells in the populations (Figures 24 and 25). The numbers of the positive cells in cases of the control plasmids are not notable changed during the assay. In contrast, in case of the 2wtd1EGFP the number of d1EGFP expressing cells increases during the first week after the transfection becoming approximately five to ten times higher than in control samples (Figure 24). After this time-point the number start to decrease (Figure 25). The difference of maintenance is strongest in the case of the gf10bse2 vector. The number of positive cells increases continuously during the analyses period. After two weeks it is 6 times higher than in the sample transfected with 2wtd1EGFP and 45 times higher than in the population transfected with frameshift mutant (Figure 25).

The data demonstrate clearly that the vector system of the present invention has active mechanism of segregation based on a nuclear-anchoring protein, i.e. bovine papillomavirus type 1 E2 protein and its binding sites that promotes its maintenance in a population of proliferating cells as a transcriptionally active element.

6.9 EXAMPLE 9:

25

30

CLONING OF THE AIRE GENE INTO SUPER6WT AND EXPRESSION IN AN EPITHELIAL CELL LINE

The AIRE gene coding for the AIRE protein (AIRE = autoimmune regulator) is mutated in an autosomally heredited syndrome APECED (Autoimmune polyendocrinopathy candidiasis ectodermal dystrophy). AIRE is expressed in rare epithelial cells in the medulla of thymus and in the dendritic cells in peripheral blood and in peripheral lymphoid organs. APECED could thus be treated by transferring the non-mutated AIRE gene ex vivo to peripheral blood dendritic cells, followed by the introduction of the corrected dendritic cells back to the patient. To test this possibility human AIRE gene and the homologous murine AIRE gene were transferred to COS-1 cells.

For cloning of the AIRE gene into Super6wt a maxi-preparation of the vector was prepared. First a transfection with Super6wt was done to TOP10 -cells (chemically competent Escherichia coli by Invitrogen) according to manufacturer's protocol. Briefly, the cells were incubated on ice for 30 minutes, after which a heat shock was performed in a water bath at +42°C for 30 seconds. The cells were then transferred directly on ice for 2 minutes and grown in 250 µl of SOC-medium (2% tryptone, 0.5% yeast extract, 10 mM NaCl, 2.5 mM KCl, 10 mM MgCl2, 10 mM MgSO4, 20 mM glucose) at +37°C with shaking for 1 hour.

10

25

30

Plating was done on LB-plates using kanamycin (50 µg/ml) for selection. For maxiprep, colonies were transferred to 150 ml of LB-solution containing kanamycin (50 µg/ml) and grown overnight at +37°C with shaking. Preparation of maxiprep was done using Qiagen's Plasmid Maxi Kit according to manufacturer's protocol.

A digestion with BamHI and Sall restriction enzymes was used to check the vector. The reaction mixture contained 500 ng of Super6w, 5 U of BamHI, 5 U of Sall, 2 μ I of 2XTANGO buffer (both the restriction enzymes and buffer from Fermentas) and sterile water in total volume of 10 μ I. The digestion was carried out at +37°C for one hour.

The digested vector was checked with 1% agarose gel containing ethidium bromide 1 µg/ml in 1X TAE-buffer.

For cloning of the PCR amplified AIRE gene and Aire fragments into the Super6wt, 4 μ g of Super6wt was digested with 10 U Notl restriction enzyme (MBI Fermentas, in 2 μ l enzyme buffer and sterile water added to a final volume of 20

15

25

μl. The digestion was carried at +37°C for 1.5 hours, after which 1U of ZIP-enzyme (alkaline phosphatase) was added to the reaction mixture and incubated further for 30 minutes. The ZIP-enzyme treatment was done to facilitate the insertion of the AIRE gene into the vector by preventing the self-ligation of the vector back to a circular mode. After the digestion the vector was purified using GFXTM PCR DNA and Gel Band Purification Kit (Amersham Pharmacia Biotech) and dissolved in to a concentration of 0.2 micrograms/microliter.

Human and mouse AIRE-gene PCR-products were also digested with Notl restriction enzyme. To the digestion, 26 μ l of PCR product, 3 μ l of an appropriate enzyme buffer and 10U of Notl restriction enzyme (the buffer and enzyme from MBI Fermentas) was used. The digestion was carried out at +37°C for 2 hours, after which digested PCR-products were purified and dissolved in sterile water to a volume of 10 μ l.

The PCR amplified and digested human and mouse AIRE genes were ligated to Super6wt by a T4 DNA ligase (MBI Fermentas). The digested insert DNA was taken (a total volume of 10 μ l), 1.5 μ l of ligase buffer (MBI Fermentas), 5U of T4 DNA ligase and sterile water was added to a final concentration of 15 μ l. The ligation was carried out at +17°C overnight.

After the ligation 10 µl of ligation reaction mixture was taken for transfection into TOP10 cells according to manufacturer's protocol. The cells were incubated on ice for 30 minutes, after which a heat shock was performed in a water bath at +42°C for 30 seconds. The cells were then transferred directly on ice for 2 minutes and grown in 250 µl of SOC-medium (2% tryptone, 0.5% yeast extract, 10 mM NaCl, 2.5 mM KCl, 10 mM MgCl₂, 10 mM MgSO₄, 20 mM glucose) at +37°C with shaking for 1 hour.

The transfected bacterial cells were plated onto LB-kanamycin plates and colonies were picked on the following day to 2 ml of LB-medium (1% tryptone, 0.5% yeast extract, 170 mM NaCl) with kanamycin and grown overnight at +37°C.

Miniprep DNA preparations from selected colonies were purified using Qiagen's Plasmid Midi Kit and dissolved to a volume of 50 μl of sterile water. The presence and size of the insert was checked with Notl and BamHl digestion. 10 μl of miniprep DNA was taken for digestion, 5U of Notl and 5U of BamHl enzymes,

10

20

25

30

WO 02/090558 PCT/FI02/00379

2 ml of R+ enzyme buffer and sterile water was added to a final volume of 20 μ l. The digestion was carried out at +37°C for 1 hour.

62

The orientation of the insert was analysed with BamHI restriction enzyme. Ten μ I of minprep DNA was taken, 5 U of BamHI, 2 μ I of BamHI buffer (MBI Fermentas) and sterile water was added to a final volume of 20 μ I. The digestion was carried out for 1 hour at +37°C and the products were checked on a1% agarose gel with EtBr in 1XTAE.

On the basis on these results, a plasmid containing a mouse AIRE-gene and a plasmid containing a human AIRE-gene were picked and maxipreps were prepared. Briefly, 0.5 ml of E. coli cell suspension containing the plasmid of interest or a miniprep culture was added to a 150 ml LB-medium containing kanamycin (50 µg/ml) and grown overnight at +37°C. Maxiprep DNAs were prepared using Qiagen's Plasmid Maxi Kit.

The plasmid containing the mouse AIRE-gene was designated as pS6wtmAIRE and plasmid containing the human AIRE-gene as pS6wthAIRE.

The generated vectors were sequenced for approximately 500 bp from both ends to verify the orientation and correctedness of the insert. The sequencing was performed using the dideoxy method with PE Biosystem's Big Dye Terminator RR-mix, which contains the four different terminating dideoxynucletide triphosphates labeled with different fluorescent labels.

Plasmids containing the AIRE gene and AIRE gene fragments were inserted into selected cell lines to check the expression of the protein with Western blot after the transfection.

Cos-1 cells were harvested with trypsin-EDTA (Bio Whittaker Europe) solution and suspended 10x106 cells/ml into Dulbecco's MEM (Life Technologies) medium and 250 µl of cell suspension was taken for transfection. The transfection of Cos-1 cells was performed using electroporation with 2.5x106 cells, 50 µg of salmon sperm DNA as a carrier and 5 µg of appropriate vector. The transfections were made with pS6wthAIRE, pS6wtmAIRE, Super6wt, pCAIRE, psiAIRE and pCAIRE S1-4. pCAIRE and psiAIRE are positive human AIRE controls, pCAIRE S1-4 is a positive mouse AIRE control and Super6wt is a negative control.

The electroporation was done using Biorad's Gene Pulser with capacitance 960 μ Fd, 240 V and 1 pulse. After the pulse the cells were kept at room temperature for 10 minutes and 400 μ l of medium was added. The cells were transferred to 5 ml of medium and centrifuged for 5 minutes with 1000 rpm. Cells were plated and grown for 3 days at +37°C, 5% CO2.

The cells were harvested with trypsin-EDTA and centrifuged. Then Cells were then washed once with 500 ml of 1XPBS (0.14 mM NaCl, 2.7 mM KCl, 7.9 μ M Na2HPO4, 1.5 μ M KH2PO4). 50 μ l of PBS and 100 μ l of SDS loading buffer (5% mercaptoethanol, 16 μ M Bromphenolblue, 20 μ M Xylene Cyanol, 1.6 mM Ficoll 400) was added and cells were heated at +95°C for 10 minutes.

10

20

25

30

For the western blot analysis SDS-PAGE was prepared with 10% separation and 5% stacking gels in a SDS running buffer (25 mM Tris, 250 mM glysin, 0.1% SDS). Cell samples and biotinylated molecular weigh marker were loaded on the gel and electrophoresis was performed with 150 V for 1h 50 minutes. The transfer of proteins to a nitrocellulose membrane was performed at 100 V for 1.5 hours at room temperature with a cooler in transfer buffer.

The membrane was blocked in 5% milk in TBS (0.05 M Tris-Cl, 0.15 M NaCl, pH 7.5) for 30 minutes at room temperature. A primary antibody mixture, anti-AIRE6.1 (human) and anti-AIRE8.1 (mouse) antibodies at a dilution of 1:100 in 5% milk in TBS, was added onto membrane and incubated overnight at +4°C. The membrane was washed two times with 0.1% Tween in TBS for 5 minutes and once with TBS for 5 minutes. The secondary antibody, biotinylated antimouse IgG at a dilution of 1:500 in 5% milk in TBS was incubated for 1 hour at room temperature. The membrane was washed and horseradish peroxidase avidin D at a dilution of 1:1000 in 5% milk in TBS was added. The membrane was incubated at room temperature for 1 hour and washed. A substrate for the peroxidase was prepared of 5 ml chloronaphtol, 20 ml TBS and 10 µl hydrogen peroxide and added onto membrane. After the development of the color the membrane was washed with TBS and dried.

The antibody detecting with human AIRE (anti-AIRE6.1) detected the AI-RE protein expression in the preparates transfected with pS6wthAIRE, pCAIRE and psiAIRE. The antibody detecting murine AIRE detected likewise the murine

AIRE in cells transfected with pS6wtmAIRE and pCAIRE S1-4. The negative control (Super6wt) showed no AIRE/aire proteins.

6.10 EXAMPLE 10: DETECTION OF CELLULAR AND HUMORAL IMMUNE RESPONSE TOWARD HIV.1 NEF IN MICE IMMUNIZED WITH THE NNV-NEF CONSTRUCT

DNA IMMUNIZATIONS

5

20

25

30

To further study the induction of humoral immunity by the vectors of the inventions, 5-8 weeks old both male and female BALB/c (H-2d) mice were used. For the DNA immunizations, the mice were anaesthetized with 1,2 mg of pentobarbital (i.p) and DNA was inoculated on shaved abdominal skin using plasmid DNA coated gold particles. The inoculation was made with Helios Gene Gun (Bio-Rad) using the pressure of 300 psi. The gold particles were 1 µm in diameter, ~1 µg of DNA/cartridge. The mice were immunized twice (on day 0 and day 7) with a total amount of DNA of 0,4 or 8 µg/mouse. The control mice were immunized with 8 µg of the plain vector without the nef-gene, i.e.NNV-deltanef.

A blood sample was taken from the tail of the mice two weeks after the last immunization. The mice were sacrificed four weeks after the last immunization and blood samples (100 μ I) were collected to Eppendorf tubes containing 10 μ I of 0,5 M blotting (++ vs. +) and in ELISA (higher OD, more mice in higher-dose above cut-off EDTA. The absolute number of leukocytes/ml of blood was calculated from these samples for each mouse. The sera were collected for antibody assays and stored at –20°C. The spleens were removed aseptically, weighted and then homogenized to single cell suspensions for use in T, B and NK cell assays and staining.

Detection of the humoral immunogenicity of the vectors of the invention

For the detection of Nef-specific antibodies by Western blotting, serum samples from mice immunized with the vector constructs of the invention were diluted 1:100 to 5% milk in TBS and applied on nitrocellulose strips made with recombinant HIV-1 Nef protein. For the preparation of the nitrocellulose strips, the purified recombinant protein was boiled in a sample buffer containing 1% SDS

10

20

25

30

and 1% 2-mercaptoethanol, then run on a 10 or 12.5 % polyacrylamide gel and subsequently transferred onto a 0.45 µm nitrocellulose paper. The strips were first blocked with 2% BSA in 5% defatted milk-TBS and thereafter incubated with diluted sera (1:100) overnight. After incubation, unbound proteins were removed by washing the strips three times with TBS - 0.05% Tween-20 and twice with water. After washings, the strips were probed with a 1:500 dilution of biotinylated anti-mouse IgG (Vector Laboratories, USA) for 2 hour. After further washings, horseradish peroxidase-avidin in a dilution of 1:1000 (Vector Laboratories, USA) was added for 1 h, the strips were washed again and the bound antibodies were detected with a hydrogen peroxidase substrate, 4-chloro-1-naphtol (Sigma, USA).

The sera were also tested in ELISA to determine the exact antibody titers induced by each construct. Nef antibody ELISA was performed as previously described (Tähtinen et al., 2001). Briefly, Nunc Maxi Sorp plates were coated with 50 ng of Nef (isolate HAN), blocked with 2% BSA in phosphate buffered saline (PBS), and the sera in a dilution of 1:100 to 1:25000 were added in duplicate wells for an overnight incubation. After extensive washings, the secondary antibody, peroxidase conjugated anti-mouse IgG or IgM (DAKO), was added, and the plates were incubated for two hours and then washed. Color intensity produced from the substrate (2,2´-azino-bis(3-ethylbenzthiazoline-6-sulfonic acid, ABTS, Sigma) in a phosphate-citrate buffer was measured at 405 nm using a Labsystems Multiscan Plus ELISA-plate reader. The optical density cut-off value for positive antibody reactions was determined as follows:

cut-off = OD (xl control mice sera) + 3 SD.

Detection of the cellular immunogenicity of the vectors of the invention

To analyze the capacity of the vectors of the invention to induce cellular
immunity, T-cell and B-cell assays as well as cell surface staining were performed.

T cell proliferation assay. The spleen cells were suspended to a final concentration of 1 x 106/ml RPMI-1640 (GibcoBRL) supplemented with 10% FCS (GibcoBRL), 1% penicillin-streptomycin (GibcoBRL) and 50 μM beta-mercaptoethanol (Sigma). Cells were incubated in microtitre plates at 200 μl/well with media only or with different stimuli. The final concentrations of stimuli were:

10

15

20

25

30

Con A 5 μ g/ml, HIV-Nef-protein at a concentration of 1 and 10 μ g/ml, and a negative control antigen HIV-gag at a concentration of 1 and 10 μ g/ml. All reactions were made in quadruplicates. On the sixth day of the incubation 100 μ l of supernatant from each well was collected and stored at -80° C for cytokine assays. Six hours before harvesting 1 μ Ci of 3H-thymidine (Amersham Pharmacia Biotech) was added to each well. The cells were harvested and radioactivity incorporated (cpm) was measured in a scintillation counter. The stimulation indexes (SI) were calculated as follows

SI = mean experimental cpm/ mean media cpm.

Lymphocyte activation. T and B cell activation was detected by double surface staining of fresh splenocytes with anti-CD3-FITC plus anti-CD69-PE (early activation marker) and anti-CD19-FITC plus anti-CD69-PE antibodies (all from Pharmingen). Stainings were analyzed with flow cytometer (FACScan, Becton Dickinson).

CTL assays. Mouse splenocytes were co-cultured with fixed antigen presenting cells (P-815 cells infected with MVA-HIV-nef or control MVA-F6) for five days after which they were tested in a standard 4 hour 51chromium release assay [Hiserodt, J., et al., J Immunol 135 (1995) 53-59; Lagranderie, M., et al., J Virol 71 (1997) 2303–2309) against MVA-HIV-nef infected or control target cells. In CTL assays the specific lysis of 10% or more was considered positive.

Cytokine assay. IFN-gamma and IL-10 were measured from antigen-stimulated cell culture supernatants in order to analyze, whether immunized mice develop a Th1 type or Th2 response. The supernatants were collected from antigen-stimulated cells as described above. Pro-inflammatory cytokines TNF-alfa and IL-10 were measured in the sera of the immunized mice. All cytokines were measured with commercial ELISA kits (Quantikine, R&D Systems).

Spontaneous proliferation. Spontaneous splenocyte proliferation was detected by 3H-thymidine uptake of the cells cultured in the medium only for 6 days.

Anti-double strand (ds) DNA antibodies. dsDNA antibodies were measured in the sera of immunized mice, positive control mice (mrl/lpr, a generous gift from Dr. Gene Shearer, NIH, USA) and normal mice. The antibodies were as-

sayed with ELISA on poly-L-Lysine bounded lambda phage dsDNA. The results are shown in Tables 2 and 3.

Table 2 shows complete immunological results of the mice immunized with HIV-Nef plasmid DNA. Although HIV-1 Nef recombinant protein, which was used for in vitro T cell stimulation, induced some non-HIV-specific proliferation of the cells in each immunized group, there was a significant increase in the mean SI of mice immunized with 0,4 µg of the plasmid (mean SI=72,2) compared to others. Furthermore, negative control protein HIV-gag did not induce any T cell response. Only the T cells of the mice in the group that had nef-specific proliferation also produced nef-specific IFN-gamma. None of the immunized mice had cells producing IL-10, which shows that the T cell response in the immunized mice was of Th1 type and not of Th2 type. In contrast to the T cell response, mice immunized with the higher concentration of nef plasmid DNA (8 µg) had a stronger B cell response compared to mice immunized with 0,4 µg: the humoral response in mice immunized with the higher dose was detectable already three weeks after the last immunization and the response detected was stronger both in Western-). The antibodies detected belonged to IgG-class, no IgM response was detected. None of the mice developed E2 specific antibody.

The mice immunized with 0.4 µg of HIV-nef plasmid DNA had an increased number of leukocytes (6.38x106/ml) in the peripheral blood compared to other groups of immunized mice and normal mice (3.8x106/ml) (Table 3). The same mice had twice as much activated T cells (21%, CD3+CD69+) compared to other mice (9% and 10%). This finding is in correlation with the positive T cell response to HIV-Nef (Table 2), since the mice with a positive T cell response to Nef also had an increased number of activated T cells in their spleens. The results of Table 3 also show that none of the immunized mice developed anti-dsDNA anti-bodies as compared to positive control sera (OD=1,208) indicating that there is no adverse effect of the immunization.

20

68

Table 2	HIV-1	HIV-1	lFÑ-g	IL-10	HIV-1 nef	E2
Mice						
	nef	gag				
	SI [*]	SI	Th1	Th2	Ab	Ab
NNV-Nef 8						
1	6	1	-	-	++	-
2	8	1	-	-	++	-
3	13	2	-	-	++	-
4	15	1	-	-	++	-
5	7	1	-	-	++	-
Mean	9.8	1.2				
NNV-NEF 0.4						
1	24	1	+	-	+	-
2	112	1	+	_	+	-
3	83	1	+	-	+	-
4	73	1	+	-	+	-
5	69	1	+	-	+	-
Mean	72.2	1				
NNV-∆Nef 8						
1	6	1	-	-		-
2	nt	nt	-	-	-	-
3	11	1	-	_	-	-
4	23	2	-	-	-	-
5	12	1	-	-	-	-
Mean	13	1.25				

^{*}SI=stimulation inde>

nt=not tested

^{-&#}x27;, negative

^{+&#}x27;, postitive

^{+&#}x27;+', strong positive

Table 3

14/00	000	000.0000	0040	0040.0000	# 1 DV/
MRC					
6					ab
x10°/ml	spleen	spleen	spleen	spleen	OD (1:10 dil)
					0.355
					0.255
					0.231
					0.280
5	nt	nt	nt	nt	0.387
4.3	50	4	11	3	0.457
4.9	57	4	15	4	0.514
4.3	55	6	15	4	0.367
5.1	54	5	7	0	0.478
4.72	54	4.75 (9%)	12	2.75	0.441
3.9	nt	nt	nt	nt	0.418
8	41	9	18		0.263
7.5	39		25		0.375
5	46	9	16	6	0.285
7.5	43	10	13	7	0.396
6.38	42.25	9 (21%)	18	6.75	0.347
4.5	61	4	9	2	0.413
				1	0.353
					0.382
				8	0.448
					0.501
3.9	54	5.25 (10%)	16.5	4	0.419
	5 4.3 4.9 4.3 5.1 4.72 3.9 8 7.5 5 7.5 6.38 4.5 4.6 3.8 3.1 3.5	5 nt 4.3 50 4.9 57 4.3 55 5.1 54 4.72 54 3.9 nt 8 41 7.5 39 5 46 7.5 43 6.38 42.25 4.5 61 4.6 59 3.8 50 3.1 46 3.5 nt	% % x10 ⁶ /ml spleen 5 nt nt 4.3 50 4 4.9 57 4 4.3 55 6 5.1 54 5 4.72 54 4.75 (9%) 3.9 nt nt 8 41 9 7.5 39 8 5 46 9 7.5 43 10 6.38 42.25 9 (21%) 4.5 61 4 4.6 59 4 3.8 50 6 3.1 46 7 3.5 nt nt	5 nt nt nt nt 4.3 50 4 11 4.9 57 4 15 4.3 55 6 15 5.1 54 5 7 4.72 54 4.75 (9%) 12 3.9 nt nt nt nt 8 41 9 18 7.5 39 8 25 5 46 9 16 7.5 43 10 13 6.38 42.25 9 (21%) 18 4.5 61 4 9 4.6 59 4 15 3.8 50 6 17 3.1 46 7 25 3.5 nt nt nt nt	% % % x10 ⁶ /ml spleen spleen spleen spleen 5 nt nt nt nt 4.3 50 4 11 3 4.9 57 4 15 4 4.3 55 6 15 4 5.1 54 5 7 0 4.72 54 4.75 (9%) 12 2.75 3.9 nt nt nt nt nt nt nt nt nt n

Normal mouse mean WBC=3.8x10⁶/ml.

nt, not tested

a-dsDNA positive control sera OD was 1.208 (1:10 dil)

5

10

15

20

25

30

35

6.11. EXAMPLE 11: SAFETY AND IMMUNOGENICITY OF A PROTOTYPE HIV VACCINE GTU-NEF IN HIV INFECTED PATIENTS

Production of the NNV-2-Nef vaccine (CHECK whether NNV-2 or NNVwt-2 was used)

The investigational vaccine NNV-2-Nef was prepared according to Example 2 with the Manufacturing License No. LLDnro 756/30/2000 (issued by the Finnish National Agency for Medicines on 21.12.2000).

The manufacturing processes performed fulfilled the current Good Manufacturing Practices (cGMP) requirements and provided plasmid DNA preparations suitable for use in clinical phase I and II studies. The manufacturing process consisted of four steps:

- a) Establishment of Master Cell Banks and Working Cell Banks
- b) Fermentation
- c) Purification
- d) Aseptic filling of the vaccine

In detail, NNV-2-Nef was produced in *E. coli* bacteria. The Master Cell Banks (MCBs) and Working Cell Banks (WCBs) containing E. coli DH5 alpha T1 phage resistant cell strain were established in accordance with the specific Standard Operating Procedure from pure cultured and released Research Cell Banks.

a) Establishment of Master Cell Banks and Working Cell Banks

The schematic procedure for establishing the cell bank system is illustrated below:

Thaw of one vial of Research Cell Bank [*E. coli* DH5 alpha T1 phage resistant cell strain (Gibco RBL) transformed with the NNV-2-Nef plasmid.

Inoculate of the culture on modified Luria Bertani medium plate (containing 25 μ g/ml of kanamycin)

Incubate overnight (14-16h) at 37°C

Select of a single colony from the plate and inoculation into 50 ml of modified Luria Bertani medium (containing 25 $\mu g/ml$ of kanamycin)

Incubate overnight (14-16h) at 37°C

Measure optical density of the bacterial culture ($OD_{600} = 2.0 - 6.0$)

Add glycerol to bacterial culture
Divide the culture-glycerol mix to aliquots
Label and store the Master Cell Banks

10

20

30

35

Following the same diagram, the Working Cell Bank was established using one vial of the Master Cell Bank as the starting material. The routine tests performed on the MCB and WCB were: microbiological characterization, absence of contamination, assessment of the plasmid stability by replica plating and the plasmid identity (restriction enzyme digestion and sequencing).

b) Fermentation. In the fermentation the DH5 alpha T1 phage resistant *E. coli* strain (Gibco RBL, UK) transformed with NNV-2-Nef (WCB) was first cultured on plate. From the plate a single colony was inoculated to a 100 ml liquid pre-culture before the actual fermentation in the fermentation reactor. The fermentation was carried out in a 5 l fermentor (B. Braun Medical) on a fed-batch system basis, after which cells were harvested. The culture medium composition for one litre contained 7g of yeast extract, 8g of peptone from soy meal, 10g of NaCl, 800ml of water for injection (WFI), 1N NaOH, pH 7.0, kanamycin 50mg/ml (Sigma), silicon anti-foaming agent (Merck), 1M K₂PO₄ (BioWhittaker).

In the beginning of the fermentation run, a 1 ml sample was taken through the harvesting tube to determine the initial cell density (OD_{600}). The pre-culture was used to inoculate the fermentation medium. During the fermentation, fresh culture medium and 1M potassium phosphate buffer, pH 6.5 - 7.3, were fed to the reactor with the pumps. Addition of the medium allows replenishment of essential nutrients before they run out and phosphate buffer maintains the pH constant. When the fermentation process had continued for approximately 5 hours and at the end of the fermentation run (after approximately 10 hours of fermentation), samples of 1 ml were taken as above and the cell density was measured. After the fermentation, the culture medium was centrifuged (10,000 rpm, 30 minutes, +4 $^{\circ}$ C) and the bacterial pellet (50-60g) was recovered.

c) Purification. The methodology used for the purification of DNA was based on the QIAGEN process scale technology (Qiagen Plasmid Purification Handbook 11/98). The NN2-Nef was purified using the following steps:

Resuspend the bacterial pellet in the resuspension buffer (100-150ml, RT)

Lyse with the lysis buffer (100-150ml, 5 minutes, RT)

72

Neutralize with the neutralization buffers (100-150ml, +4°C)

Incubate (30minutes, +4°C)

Centrifugate (10,000 rpm, 30 minutes, +4°C)

Filtrate supernatant (0.22 micrometers)

Remove endotoxins with Endotoxin removal buffer (60-90ml)

Equilibrate Ultrapure column with Equilibration buffer (350ml, flow rate 10ml/min)

Load lysate to the column (flow rate 4-6ml/min)

Wash the column with Wash buffer (3l, overnight, flow rate 4-

10 6ml/min)

5

15

25

30

35

Elute the plasmid DNA with Elution buffer (400ml, flow rate

3.1ml/min)

Filtrate the eluate (0.22 micrometer)

Precipitate DNA with isopropanol

Centrifuge (20000g, 30 minutes, 4°C)

Purified plasmid DNA

Buffers used within the purification were as follows. The resuspension buffer contained 50mM Tris-Cl, pH 8.0, plus RNase A (50mg); the lysis buffer was 200mM NaOH; the neutralization buffer was 3M potassium acetate, pH 5.5; the endotoxin removal buffer contained 750mM NaCl, 10% Triton X-100; 50mM MOPS, pH7.0; the equilibration buffer contained 750mM NaCl, 50mM MOPS, pH 7.0; the wash buffer contained 1 M NaCl, 50mM MOPS, pH 7.0, 15% isopropanol; and elution buffer contained 1.6 M NaCl, 50mM MOPS, pH 7.0, 15% isopropanol.

d) Aseptic filling

The purified DNA representing the final bulk was dissolved in 0.9% sterile physiological saline to a final concentration of 1 mg/ml and sterile filtered (0.22 micrometer) during the same day. The purified bulk was filled manually (filling volume 0.5 ml) in Schott Type 1 plus glass vials using a steam sterilized Finnpipette® and sterile endotoxin-free tips. The vials filled with the NN2-Nef vaccine were closed immediately, labelled and packed in accordance to the specific Standard Operating Procedure (SOP).

2. Administration of the test vaccine to the patients

Ten HIV-1 infected patients undergoing Highly Active Anti-Retroviral therapy (HAART) were immunized with the experimental DNA vaccine NN2-Nef, expressing the HIV-1 Nef gene (Clade B). For immunizations, two intramuscular injections in the gluteal muscle were given two weeks apart. The doses were 1 and 20 micrograms/injection. Blood samples were drawn at –4, 0, 1, 2, 4, 8 and 12 weeks. The samples were analyzed for humoral (ELISA, Western blot) and cell mediated immune response (T-cell subsets, T-cell proliferation, ELISPOT, cytokine expression, intracellular cytokines).

A clinical examination was performed to each patient participating the study. The clinical examination included a patient interview (anamnesis) and weight determination. Cardiac and pulmonar functions were checked by auscultation and percussion, the blood pressure and heart rate were recorded. Enlargement of lymph nodes, liver and thyroid gland were determined by palpation.

Laboratory tests to evaluate the safety of the vaccine were performed at each visit. These tests included:

Hematology: red blood cell count, haemoglobin, total and differential WBC, platelet count, prothrombin time and activated partial thromboplastin time at baseline; mean erythrocyte corpuscular volume and hemoglobin content has been calculated.

Immunology: nuclear and ds-DNA antibodies.

<u>Serum chemistries</u>: total bilirubin, alkaline phosphatase, SGOT/SLT or SGPT/ALT, serum creatinine, protein electrophoresis, total serum cholesterol, triglycerides, glucose (at baseline), sodium, potassium, and calcium.

<u>Urine analysis</u>: dipstick protein, glucose, ketones, occult blood, bile pigments, pH, specific gravity and microscopic examination of urinary sediment (RBC, WBC, epithelial cells, bacteria, casts), when dipstick determination showed one or more abnormal values.

<u>Viral load</u>: Increases of more than one log 10 should be followed by a confirmatory viral load estimate after two weeks.

None of the patients experienced subjective or objective adverse reactions to the vaccination. No adverse laboratory abnormalities were observed in the panel of clinical chemistry tests (see material and methods for details) performed repeatedly during the vaccination period.

The following immunological studies were performed:

10

15

20

25

WO 02/090558

15

20

74

Lymphocyte proliferation assay (LPA)

Peripheral blood mononuclear cells (PBMC) were isolated from heparinized venous blood by Ficoll-Hypaque density-gradient (Pharmacia) centrifugation and resuspended at 1x10⁶ cells/ml in RPMI 1640 medium (Gibco) supplemented with 5% pooled, heat-inactivated AB* serum (Sigma), antibiotics (100 U/ml penicillin and 100 µg/ml streptomycin; Gibco) and Lglutamine (complete medium, CM). Quadruplicate cultures were then set up in flat-bottomed micro titer plates (1x10⁵ PBMC/well) and the cells were incubated for 6 days in the presence or absence of the following stimuli: rNef (0.2, 1 and 5 µg/ml), GST (0.2, 1 and 5 µg/ml), purified protein derivative of tuberculin (PPD, 12.5 µg/ml; Statens Seruminstitut), Candida albicans antigen (20 μg/ml; Greer Laboratories) and Phytohaemagglutinin (PHA; 5 μg/ml; Life Technologies). For the last 6 h of the incubation period ³H-thymidine (1 μCi/well; Amersham) was added to the cultures and the cells were harvested onto glass fiber filters and incorporated radioactivity was measured in a ycounter. Results are expresses as delta cpm (cpm in the presence of antigencpm without antigen) or as stimulation index (cpm in the presence of antigen/ cpm without antigen).

The results are shown in Figures 26 and 27. None of the vaccinees showed significant T-cell proliferative response to the test antigen, HIV-1 Nef before the vaccination. In contrast, 2 out of 5 vaccinees in the group that had received 1 microgram dose of the test vaccine (patients 1 and 3) (Figure 26) and 2 out of 5 in the group receiving 20 micrograms of the test vaccine (patients 9 and 10) (Figure 27) showed a strong T-cell proliferative response after the first vaccination. After the second vaccination, one (patient 2) vaccinee responded in the 1-microgram group.

IFN- y assays

The type of immune response (Th1/Th2) induced by the vaccine was evaluated by measuring interferon-gamma (IFN- γ) released in 6 days old culture supernatant after antigen (rNef, rGST, PPD) or mitogen (PHA) stimulation of PBMC. For determinations, commercial ELISA kits (R&D Quantikine) were used. The assay employ the quantitative sandwich enzyme immunoassay technique where a monoclonal antibody specific for IFN- γ has been coated onto a microplate. Standards and samples are pipetted into the wells and any IFN- γ present is bound by the immobilized antibody. After washing away any unbound substances, an enzyme-linked polyclonal antibody specific

5

10

15

20

25

WO 02/090558 PCT/FI02/00379

75

for IFN- γ is added to the wells. Following a wash to remove any unbound antibody-enzyme reagent, a substrate solution is added to the wells and color develops in proportion to the amount of the cytokine bound in the initial step. The color development is stopped and the intensity of the color is measured.

IFN-γ response data from patient # 1 is shown in Figure 28. As can be seen, the vaccinee responded to the rNef antigen by marked IFN-γ response correlated with the T-cell proliferation, indicating that the response seen in the vaccinee is in fact of the Th1 type.

HIV-1 infection is characterized by low or totally lacking cell-mediated immune response towards all HIV proteins. The results show that it is possible to induce a robust CMI in such patients with exceptionally low doses of the DNA vaccine NN2-Nef. The doses used were minimal to what has generally been required with DNA vaccines. Thus, for instance, Merch announced recently good results with their experimental HIV vaccine but the doses required were from 1000 to 5000 micrograms (IAVI report, 2002).

6.12 EXAMPLE 12: CONSTRUCTION OF THE PLASMID EXPRESSING EPSTEIN-BARR VIRUS (EBV) EBNA-1 PROTEIN AND CONTAINING 20 BINDING SITES FOR EBNA-1 (FR ELEMENT)

To construct a plasmid expressing Epstein-Barr virus (EBV) EBNA-1 protein and containing 20 binding sites for EBNA-1 (FR element), BPV-1 E2 binding sites were first replaced by EBV EBNA-1 binding sites (oriP without DS element). Plasmid FRE2d1EGFP (Figure 29) was constructed by isolating the *Xmil*(Accl)/Eco32l(EcoRV) DNA fragment (blunt-ended with Klenow enzyme) of pEBO LPP plasmid (Figure 29A) (the fragment contains 20 binding sites for EBNA-1) and inserting it by blunt end ligation into the Spel/Nhel site of s6E2d1EGFP (Figure 29B) (blunt-ended with Klenow enzyme). The constructed plasmid FRE2d1EGFP (Figure 29) was used as a negative control in further experiments. It contains binding sites for EBNA-1 protein instead of the BPV1 E2 10 binding sites, expressing E2, but not EBNA-1.

Next, the sequence encoding BPV-1 E2 protein in FRE2d1EGFP plasmid was replaced by a sequence encoding EBV EBNA-1 protein as follows. The Xmil(Accl)/EcoRl fragment of pEBO LPP plasmid was isolated and bluntended with Klenow enzyme and inserted into the Xbal/Xbal site of

76

FRE2d1EGFP plasmid (blunted with Klenow enzyme). The vector FRE2d1EGFP was previously grown in *Escherichia coli* strain DH5α lacking Dam⁻ methylation, because one Xbal site is sensitive for methylation. The constructed plasmid FREBNAd1EGFP (Figure 30) expresses EBNA-1 protein and contains 20 binding sites for EBNA-1.

For expression, Jurkat, human embryonic kidney cell line 293 (ATCC CRL 1573) and mouse fibroblast cell line 3T6 cells (ATCC CCL 96) were maintained in Iscove's modified Dulbecco's medium (IMDM) supplemented with 10% fetal calf serum (FCS). Four million cells (Jurkat), 75% confluent dishes (293) or ¼ of 75% confluent dishes (3T6) were used for each transfection, which were carried out by electroporation as follows. Cells were harvested by centrifugation (1000 rpm, 5 min, at 20 °C, Jouan CR 422), and resuspended in a complete medium containing 5mM Na-BES buffer (pH 7.5). 250 μ l cell of the cell suspension was mixed with 50 μ g of carrier DNA (salmon sperm DNA) and 1 μ g (in the case of Jurkat and 3T6) or 5 μ g (in the case of 293) of plasmid DNA and electroporated at 200 V and 1000 μ F for Jurkat cells, 170 V and 950 μ F for 293 cells and 230 V and 975 μ F for 3T6 cells. The transfected Jurkat cells were plated on 6-cm dishes with 5 ml of medium; 1/3 of transfected 293 and 3T6 cells were plated on a 6-cm dishes with 5 ml of medium.

The transfected cells were analysed for the expression of d1EGFP protein (modified enhanced green fluorescent protein). All of the constructed plasmids expressed d1EGFP protein, which was detected by measuring the fluorescence using a flow cytometer. Because of the short half-life of the d1EGFP protein, it does not accumulate, and the expression of this protein reflects the presence of transcriptionally active plasmids in the cells. Becton-Dickinson FACSCalibur system was used. The volume of the Jurkat cell suspension was measured before each time-point (approximately after every 24 hour) and if the volume was less than 5 ml, the missing volume of medium was added. Depending on the cell suspension density the appropriate volume was

77

taken for measuring (1 or 2 ml) and replaced with the same amount of medium. This was later taken into consideration when the dilution was calculated.

For the first time-point, 293 cells from the 6-cm dish were suspended in 5 ml of medium for measuring. In every following time-point half of the cells were taken from the 10-cm dish, suspended in 5 ml of medium and then measured. An appropriate volume was added to the rest of the cell suspension. For the first time-point, 3T6 cells from the 6-cm dish were suspended in 1 ml of trypsine, which was then inactivated with 100 µl of FCS. For every following time-point, cells from the 10-cm dish were suspended in 2 ml of trypsin. 1 ml of this suspension was treated as described previously. 9 ml of medium was added to the rest of the suspension. The analyzed cells were taken out of the incubator immediately before the measurement. The appropriate flow speed (500-1000 cells/sec) was determined before each time-point using cells transfected only with carrier DNA as a control. Three different parameters were used to measure size, surface structure and fluorescence of the cells.

The results are presented as graphs in Figure 31. Cells transfected only with carrier DNA were used to measure the auto-fluorescence of the cell-line. 1% of this auto-fluorescence was considered as background fluorescence and was subtracted later from the d1EGFP fluorescence. The received data was analyzed using Microsoft Excel program.

15

20

25

Percentages of the d1EGFP expressing cells were calculated using cells transfected with the carrier only as a negative control for background fluorescence. As shown in Figure 33, the two vectors were maintained in the cells with different kinetics.

The number of the d1EGFP expressing cells was calculated taking the dilutions into consideration using cells transfected with the carrier only as a negative control for background fluorescence. As seen from figure 53, the plasmids expressing EBNA-1 and carrying EBNA-1 specific multimeric binding sites are maintained very efficiently in the transfected cells. At day 1 after transfection approximately 8 x 10⁴ cells expressed EGFP. At day 8, in the case of maintenance vector (FREBNAd1EGFP), the number of the plasmid positive d1EGFP expressing cells had increased ten times to 8 x 10⁵. With the plasmid

lacking EBNA-1 expression (FRE2d1EGFP) or having no EBNA-1 binding sites, the number of plasmid positive cells was retained or in many cases decreased. This fact reflects the mechanism for segregation/partitioning Epstein-Barr virus. Maintenance and segregation function by EBNA1 and EBNA-1 binding sites provides maintenance function to the plasmid if EBNA-1 is expressed and plasmid carries EBNA-1 binding sites. The same mechanism and the same components actually provide the segregation function to Epstein-Barr Virus in the latent phase of life-cycle.

Similar results were obtained also in human embryonic cell line 293 and mouse cell line 3T6 (Figure 34). As a control for the maintenance for 293 and 3T6 cells, s6HPV11 and 2wtFS, respectively, were used.

6.13 EXAMPLE 13: THE IMMUNOGENICITY OF GTU-MULTIGENE VECTORS

THE IMMUNOGENICITY OF GTU-1- MULTIGENE VECTORS

The immunogenicity of six different multi-gene vaccine constructs prepared in Example 12, i.e. GTU-1-RNT, GTU-1-TRN, GTU-1-RNT-CTL, GTU-1-TRN-CTL, GTU-1-TRN-optgag-CTL, and GTU-1-TRN-CTL-optgag vectors were tested in mice. The vectors were transformed into TOP10 or DH5alpha cells, and the MegaPreps were prepared using commercial Qiagen columns. Endotoxins were removed with Pierce Endotoxin Removal Gel.

The test articles were coated on 1 μ m gold particles according to the instructions given by the manufacturer (Bio-Rad) with slight modifications. Balb/c mice were immunized with a Helios Gene Gun using a pressure of 400 psi and 0.5 mg gold/cartridge. Mice were immunized three times at weeks 0, 1, and 3. Mice were sacrificed two weeks after the last immunization.

Mice were divided into six test groups (5 mice/group), which received 3 x 1 μ g DNA as follows:

Group 1. GTU-1-RNT

10

15

20

30

Group 2. GTU-1-TRN

Group 3. GTU-1-RNT-CTL

Group 4. GTU-1-TRN-CTL

Group 5. GTU-1-TRN-optgag-CTL

Group 6. GTU-1-TRN-CTL-optgag

Group 7. Control mice immunized with empty gold particles not loaded with DNA.

The humoral response was followed from tail-blood samples from each mouse. First pre-immunization sample was taken from anesthetized mice before the first immunization was given. Second sample was taken from anesthetized mice before the third immunization. At sacrifice, whole blood sample was used for white blood cell counting, and serum was collected for humoral immunity tests.

The blood samples were tested for antibodies with ELISA using a standard procedure. Nunc Maxi Sorp plates were coated with 100 ng of Nef, Rev, Tat, Gag, CTL or E2 proteins, blocked and sera at a dilution of 1:100 were added in duplicate wells for an overnight incubation. After washing, the plates were incubated for 2 hours with a diluted (1:500) secondary antibody, peroxidase conjugated anti-mouse IgG (DAKO). Color intensity produced from the substrate (2,2′-azino-bis(3-ethylbenzthiazoline-6-sulfonic acid) (ABTS) in phosphate-citrate buffer was measured at 405 nm using Labsystems ELISA-plate reader.

10

30

35

All vectors induced Nef antibodies in all mice, whereas none of the mice showed E2, CTL or Rev antibodies (Fig. 35, 36, and Table 4). Some of the mice immunized with GTU-1-RNT or GTU-1-RNT-CTL also developed Tat antibodies (Fig. 36 and Table 4). Furthermore, mice immunized with vectors containing the optgag sequence developed also Gag antibodies, but the construct GTU-1-TRN-optgag-CTL was a better antibody inducer that the construct GTU-1-TRN-CTL-optgag (Figure 37 and Table 4). The antibodies induced were mainly of the IgG1 class indicating a Th2 type of response usually seen with gene gun immunization. The antibody assays shown below were done from the sera collected when mice were sacrificed.

The results show that a multigene construct, expressing several HIV genes as a fusion protein, can induce an immune response to most of the gene products. The orientation and order of the genes in the multigene and corresponding proteins in the fusion proteins affects the results, however, dramatically. Thus, a response against Tat was seen only when the Tat gene was placed inside the fusion protein (vectors with RNT motif) and not when Tat was the amino terminal protein (vectors with the TRN motif). Response to the Gag proteins was seen only with the vector, where Gag was placed before the CTL containing a stretch of Th and CTL epitopes.

Table 4.

lmmuno III A m	ice ELIS	A results (OD	mean o	f five mice)		
Immunogen	Group numbe r	Nef (own prot)	Tat	Rev	Gag	CTL
GTU-1-RNT	1	2.194	1.391	0.31	0.155	0.36
GTU-1-TRN	2	1.849	0.197	0.252	0.302	0.38
GTU-1-RNT- CTL	3	1.922	0.555	0.295	0.154	0.439
GTU-1-TRN- CTL	4	1.677	0.211	0.298	0.14	0.425
GTU-1-TRN- optgag-CTL	5	1.722	0.182	0.24	0.667	0.381
GTU-1-TRN- CTL-optgag	6	0.547	0.225	0.322	0.228	0.43
Controls	7	0.316	0.226	0.282	0.16	0.405
Immunogen	Group	Percent of Nef response	Tat respon se	Rev response	Gag response	CTL response
GTU-1-RNT	1	100	80	0	0	0
GTU-1-TRN	2	100	0	0	20	0
GTU-1-RNT- CTL	3	100	40	0	0	0
GTU-1-TRN- CTL	4	100	0	0	0	0
GTU-1-TRN- optgag-CTL	5	80	0	0	60	0
GTU-1-TRN- CTL-optgag	6	100	0	0	20	0

6.14. EXAMPLE 14: EXPRESSION OF HYBRID PROTEIN EX-PRESSING NEF, REV AND TAT IN DIFFERENT COMBINATIONS (MUL-TIREG)

For the production of HIV multi-gene vectors, GTU-1 vector with a multi-cloning site (Figure 38A) was used as a backbone. Intact Nef, Rev and Tat coding sequences were amplified by the polymerase chain reaction (PCR) and attached to each other in various orders to multi-regulatory (multireg) antigen coding reading frames (Nef-Tat-Rev, Tat-Rev-Nef, Rev-Tat-Nef, Tat-Nef-Rev and Rev-Nef-Tat; Sequences Id. No. 1 to 5, respectively). These sequences were cloned to the Bsp119I and NotI sites of the GTU-1 vector.

10

15

20

25

30

Similarly, Nef protein expressing GTU-2 and GTU-3 vectors (Figure 38B and 38C; see also Figure 6B for NNV-2wt)) were also used as backbones for the production of HIV multigene vectors. Additionally, the vector super6wt expressing destabilized enhanced green fluorescent protein or d1EGFP (super6wtd1EGFP; Figure 17 and Figure 38D) and plasmid utilizing the EBNA-1 protein and its binding sites (FREBNAd1EGFP; Figure 38E) were used as a Gene Transfer Unit (GTU) platform. For control "non-GTU" vectors, a regular cytomegalovirus (CMV) vector NNV-Rev expressing Rev and a plasmid EBNA-1 and E2BS containing d1EGFP plasmid (NNV-Rev and E2BSEBNAd1EGFP, respectively; Figures 38G and F) were used as backbones.

For the preparation of different GTU-2 and GTU-3 vectors (pNRT, pTRN, pRTN, pTNR and pRNT; and p2TRN and p2RNT; and p3RNT, Figures 39A-E, 39F-G and 39H, respectively), the Nef gene in vectors GTU-2Nef and GTU-3Nef was substituted by the respective multireg antigen using Ndel and Pag I sites. The sequence of the letters N(ef), R(ev) and T(at) in the name shows the position of respective coding sequences of the protein in the multigene. Also two vectors, which contain the IRES element placed into the Sall sites following either the multi-antigen or E2 coding sequences, were prepared (pTRN-iE2-GMCSF and pTRN-iMG-GMCSF, respectively; Figures 39I and J). The latter sequence, which controls the translation of the coding sequence of the mouse granulocyte-magrophage colony stimulating factor (GM-CSF), was cloned into the single BspTI site introduced with IRES.

Additionally, a set of the vectors, in which only immunodominant parts of the regulatory proteins were used for building up the polyproteins, were cloned into the Bsp119I and Notl sites of the GTU-1 (pMV1NTR, pMV2NTR, pMV1N11TR and pMV2N11TR; Figures 40A-D). In case of the pMV2 constructs, linkers that could be digested by intracellular proteases separate the regions of the multi-antigene derived from different regulatory proteins.

Further, GTU-1, GTU-2 and GTU-3 vectors, which express the structural proteins encoded by the gag gene or an artificial polyprotein composed by previously described CTL epitopes, were prepared. The coding sequences were cloned as Bsp119I and Not I digested PCR fragments into the GTU-1 vector (pCTL = BNmCTL, pdgag = pBNdgag, psynp17/24 = pBNsynp17+24, poptp17/24= pBNoptp17/24; Figures 41A-D), and transferred in a Nde I-Pac I fragment to the GTU-2 (p2mCTL and p2optp17/24; Figures 41E and F) and GTU-3 (p3mCTL and p3optp17/24; Figures 41G and H).

10

15

20

25

30

The coding segment designated as CTL (Sequence Id. No.10) contains fragments from pol and env regions involving many previously identified CTL epitopes. The codon usage is optimized so that only codons used frequently in human cells are involved. This coding sequence also contains a well-characterized mouse CTL epitope used in potency assay and an epitope for recognition by anti-mouse CD43 antibody. Also, a dominant SIV p27 epitope was included for use in potency studies in macaques.

The dgag contains truncated p17 (start at 13 aa) +p24+p2+p7 (p1 and p6 are excluded) (Sequence Id. No. 11) of gag region of the Han2 isolate. The synp17/24 (Sequence Id. No. 12) codes for the p17+p24 polypeptide of the Han2 HIV-1. The codon usage is modified to be optimal in human cells. Also, previously identified AU rich RNA instability elements were removed by this way. The optp17/24 coding (Sequence Id. No. 13) region is very similar to the synp17/24 with the exception that the two synonymous mutations made therein do not change the protein composition but remove a potential splicing donor site.

Further, a set of the multi-HIV vectors, which contain both a multireg antigen and structural antigens as a single polyprotein, were created: pTRN-CTL,

83

pRNT-CTL, pTRN-dgag, pTRN-CTL-dgag, pRNT-CTL-dgag, pTRN-dgag-CTL, pRNT-dgag-CTL, pTRN-optp17/24-CTL, pTRN-CTL-optp17/24, and pRNT-CTL-optp17/24; p2TRN-optp17/24-CTL, p2RNT-optp17/24-CTL, p2TRN-CTL-optp17/24, p2RNT-CTL-optp17/24, p2TRN-CTL-optp17/24-iE2-mGMCSF, and p2RNT-CTL-optp17/24-iE2-mGMCSF; and p3TRN-CTL-optp17/24, p3TRN-CTL-optp17/24-iE2-mGMCSF, and p3RNT-CTL-optp17/24-iE2-mGMCSF, Figures 42A-T.

For cloning, as a first step the STOP codon was removed from the regulatory multi-antigen coding sequences. Then the structural antigen coding sequences were added by cloning into the Notl site at the end of the frame so that a Notl site was reconstituted. If both CTL and gag were added, the first antigen coding sequence was without the STOP codon. Generally, the clonings were made in context of GTU-1 and for making the respective GTU-2 (p2...) and GTU-3 (p3...) vectors, the Nef gene in the plasmids GTU-2Nef and GTU-2Nef was replaced using sites for Ndel and Pag I. However, the RNT-optp17/24-CTL antigen was built up directly in GTU-2 vector.

The HIV multi-antigen was cloned to the vectors super6wtd1EGFP and FREBNAd1EGFP instead of the d1EGFP using sites for Eco105I and NotI (super6wt-RNT-CTL-optp17/24 and FREBNA-RNT-CTL-optp17/24; Figures 43V and 42 U, respectively). If indicated, the IRES and mouse mGM-CSF were cloned into the GTU-2 and GTU-3 vectors behind the E2 coding sequence into the sites Mph1103I and Eco91I from pTRN-iE2-mGMCSF (cut out using same restrictases).

Finally, "non-GTU" control vector E2BSEBNA-RNT-CTL-optp17/24 (Figure 42W) for the system utilizing EBNA-1 (contains EBNA-1 expression cassette with E2 binding sites) was made in a similar way as the FREBNA-RNT-CTL-optp17/24. The regular CMV vector pCMV-RNT-CTL-optp17/24 expressing the multi HIV antigen (Figure 42D) was made by cloning the multi-HIV coding fragment from respective GTU-1 vector using sites for Ndel and Pag I.

10

15

20

WO 02/090558

5

10

6.15. EXAMPLE 15: EXPRESSION PROPERTIES OF THE MULTIREG ANTIGENS CARRYING ONLY IMMUNODOMINANT REGIONS OF THE REGULATORY PROTEINS.

1. Intracellular localization of the MultiREG antigens

The intracellular localization of MultiREG antigens expressed by the vectors of the invention was studied by *in situ* immunofluorescence in RD cells using monoclonal antibodies against Nef, Rev and Tat proteins essentially as described in Example 4. The results are summarized in Table 5 and illustrated in figure 45. All antigens that are comprised of intact Nef, Rev and Tat proteins showed exclusive localization in cytoplasm. The aberrant protein initially designed as N(ef)T(at)R(ev), which has a frame-shift before the Rev sequence, showed only the nuclear localization. MultiREG antigens carrying truncated sequences of the regulatory proteins were localized in cytoplasm. In this cases distinct structures like "inclusion bodies" were frequently observed. The same was true for antigens, which carried the protease sites expressed from pMV2 vectors. However in these cases the proteins in nucleus were also detected (Figure 45).

Table 5. Intracellular localization in multireg antigens

Construct	anti-Nef	anti-Rev	anti-Tat	
empty	negative	negative	negative	
GTU-1				
pTRN ··	strong staining in cytoplasm	good staining in cytoplasm	positive staining in cytoplasm	
pNTR	strong staining in nucleus, nucleolus	negative	positive staining in nucleus	
pRNT	strong staining in cytoplasm	good staining in cytoplasm	good staining in cytoplasm	
pNRT	strong, cytoplasmic	good staining in cytoplasm	good staining in cytoplasm	
pRTN	strong, cytoplasmic	good staining in cytoplasm	positive staining in cytoplasm	
pTNR	strong, cytoplasmic	good staining in cytoplasm	good staining in cytoplasm	
pMV1NTR	strong, cytoplasmic	cytoplasmic+inclusi ons	cytoplasmic+inclusion s	
pMV1N11 TR	strong cytoplasmic+inclusions	cytoplasmic+inclusi ons	cytoplasmic+inclusion s	
pMV2NTR	inclusions in nuclei and in cytopi.	inclusions in nuclei and cytoplasm	inclusions in nuclei and cytoplasm	
pMV2N11 TR	only inclusions, in nuclei and in cytopi	only inclusions in nuclei and in cytopi	only inclusions in nuclei and in cytopi.	

86

The intracellular localization of dgag and p17+p24 proteins was also analyzed in RD cells by immunofluorescence with monoclonal anti p24 anti-bodies. In accordance with the Western blot results in Jurkat cells, the dgag could not be detected. However, the p17/24 protein showed localization in plasma membranes (Figure 45). The localization of CTL protein was not analyzed, because no suitable antibody was available.

6.2 EXAMPLE 15: ANALYSIS OF VECTORS ENCODING RECOM-10 BINANT GAG ANTIGENS AND CYTOTOXIC T-CELL EPITOPES (CTL) FROM POL

6.2.1, EXPRESSION

20

25

30

Analysis of expression of the vectors expressing CTL cds or proteins from the gag region were performed by western blot. As seen on Figure 46A and 46B, the CTL and dgag expression was clearly demonstrated in Cos-7 cells as predicted size proteins (25kD and 47kD, respectively). The cotransfection of the Nef, Rev and Tat significantly enhanced the expression of the dgag protein. We interpret this as a result of REV protein action on the GAG mRNA expression We also tried to express the dgag protein from GTU-1 vector in Jurkat cells, but we failed to detect any signal (Figure 46C). The analysis of the codon usage showed that wt GAG sequence had not optimal codon usage for human cells. When the codon usage was optimized (constructs psynp17/24 and poptp17/24), strong p17+p24 (40kD) protein expression was detected in Jurkat cells (Figure 46C and 46D).

6.2.2. INTRACELLULAR LOCALIZATION

For dgag and p17+p24 proteins, the intracellular localization was also analyzed in RD cells by immunofluorescence with anti p24 Mab. Similar to the western blot results in Jurkat cells, the dgag could not be detected. The p17/24 protein showed localization in plasma membranes (Figure 47). The localization of CTL protein was not analyzed caused by lacking of suitable antibody.

WO 02/090558

5

20

30

6.16 EXAMPLE 16: MULTIREG+STRUCTURAL PROTEINS AS MUL-TIHIV ANTIGEN EXPRESSION

As next step, the expression of the MultiHIV antigenes consisting of both, regular multigene together with gag encoded protein and/or CTL multiepitope as single polypeptide was analysed. On Figure 48, the Western blot shows the expression of several multiHIV-antigenes expressing vectors transfected to the Cos-7 cells. It is clearly seen that the expression levels of all 10 regulatory+structural multi-antigenes are significantly lower than of the RNT or TRN proteins. All tested MultiHIV antigenes migrate in the gel as distinct bands near the position of predicted size (73kD for multireg+CTL; 95kD for multireg+dgag and 120kD for multireg+CTL+dgag). Similar to the RNT and TRN. the RNT-CTL migrates more slowly than TRN-CTL. Also, in cases of both TRN and RNT constructs, the MultiREG-CTL-dgag combination showed higher expression level than MultiREG-dgag-CTL.

More detailed analysis of the multiHIV antigenes was performed in Jurkat cells. For this reason, most of the constructed MultiHIV antigenes (multireg+structural), included the MultiREG+CTL+optp17/24 (with predicted size 113kD) were analyzed by Western blotting using antibodies against different parts of the antigene. The results are presented on Figure 49 are principially similar to those were reported in previous section in case of Cos-7 cells. As it was seen in the previous experiments, the dgag containing multi-antigenes express very low levels of the hybrid protein in Jurkat cells. The expression from the vector pTRNdgag was undetectable on all blots. In lanes loaded material from cells transfected with other dgag containing antigene expression vectors, very faint signals only on the Nef Mab hybridized blot were detected at positions of predicted sizes. In contrast, if the dgag part is replaced with the codon optimized p17/24, the expression level increase was observed. Because the TRN-CTL-optp17/24 and RNT-optp17/24 were initially chosen for further analysis, the expression of the antigenes was analyzed from all GTU vectors containing these expression cassettes. Also, the E2 protein expression

20

25

30

WO 02/090558 PCT/FI02/00379

88

from these plasmids was analyzed. The results are illustrated on Figure 50. There are no big differences between the vectors in expression levels of both multi-antigene and the E2 protein. The E2 expression level is not significantly influenced by presence of IRES element followed mouse GM-CSF gene in the plasmid, translated from the same mRNA as the E2.

6.17. EXAMPLE 17: MAINTENANCE OF EXPRESSION OF ANTIGEN

The maintenance of the plasmid in a population of dividing cells was proved using the green fluorescent protein and Nef protein as markers. The maintenance of the expression of the RNT-CTL-optp17/24 antigen produced from different GTU or non-GTU vectors was also analyzed. Specifically, GTU-1 (p RNT-CTL-optp17/24), GTU-2 (p2 RNT-CTL-optp17/24), GTU-3 (p3 RNT-CTL-optp17/24), super6wt (super6wt-RNT-CTL-optp17/24) vectors each utilize the E2 protein and its binding sites for the plasmid maintenance activity. In this experiment, also EBNA-1 and its binding site utilizing GTU vector FREBNA-RNT-CTL-optp17/24 was included. As negative controls, "non-GTU" plasmid containing a mixed pair of the EBNA-1 expression cassette together with E2 binding sites (E2BSEBNA- RNT-CTL-optp17/24) was used. Also, regular CMV expression vector pCMV- RNT-CTL-optp17/24 was used.

Jurkat cells were transfected with equimolar amounts of the plasmids and the antigen expression was studied at 2 and 5 days post-transfection using a monoclonal anti-Nef antibodies. Transfection with carrier DNA only was used as a negative control. The results are presented in Figure 51.

As it seen from figure 51, the expression is detectable only from GTU vectors at the second time-point. The antigen expression from the FREBNA- RNT-CTL-optp17/24 was lower at both time-points, because, unlike E2, the EBNA-1 does not have transcription activation ability.

Also the intracellular localization of the multireg+structural polyproteins was studied by *in situ* immunofluorescence analysis in RD cells essentially as described in Example 4. The results are presented in figure 52.

In all cases localization only in cytoplasm was detected using either monoclonal anti-Nef or anti-p24 antibodies. In accordance with Western blot data, the expression level of optp17/24 containing proteins was much stronger than dgag fragment containing antigens.

5

10

89

All references cited herein are incorporated herein by reference in their entirety and for all purposes to the same extent as if each individual publication or patent or patent application was specifically and individually indicated to be incorporated by reference in its entirety for all purposes.

Many modifications and variations of this invention can be made without departing from its spirit and scope, as will be apparent to those skilled in the art. The specific embodiments described herein are offered by way of example only, and the invention is to be limited only by the terms of the appended claims along with the full scope of equivalents to which such claims are entitled.

5

10

15

20

25

30

WHAT IS CLAIMED IS:

1. An expression vector comprising:

(a) a DNA sequence encoding a nuclear-anchoring protein operatively linked to a heterologous promoter, said nuclear-anchoring protein comprising (i) a DNA binding domain which binds to a specific DNA sequence, and (ii) a functional domain that binds to a nuclear component, or a functional equivalent thereof; and

(b) a multimerized DNA sequence forming a binding site for the nuclear anchoring protein,

wherein said vector lacks a papilloma virus origin of replication.

- 2. The vector of claim 1, wherein said vector lacks an origin of replication functional in a mammalian cell.
- 3. The vector of claim 1 or 2, wherein said nuclear component is mitotic chromatin, the nuclear matrix, nuclear domain 10 (ND10), or nuclear domain POD.
- 4. The vector of claim 1 or 2, wherein said nuclear anchoring-protein is a chromatin-anchoring protein, and said functional domain binds mitotic chromatin.
- 5. The vector of claim 1 or 2, wherein said nuclear-anchoring protein contains a hinge or linker region.
- 6. The vector of claim 1 or 2, wherein said nuclear-anchoring protein is a natural protein of eukaryotic, prokaryotic, or viral origin.
 - 7. The vector of claim 6, wherein said natural protein is of viral origin.
- 8. The vector of claim 6, wherein said nuclear-anchoring protein is a natural protein of eukaryotic origin.
- 9. The vector of claim 1 or 2, wherein said nuclear-anchoring protein is that of a papilloma virus or an Epstein-Barr virus.
- 10. The vector of claim 9, wherein said nuclear-anchoring protein is the E2 protein of Bovine Papilloma Virus type 1 or Epstein-Barr Virus Nuclear Antigen 1.

91

- 11. The vector of claim 10, wherein said nuclear-anchoring protein is the E2 protein of Bovine Papilloma Virus type 1.
- 12. The vector of claim 1 or 2, wherein said nuclear-anchoring protein is a High Mobility Group protein.
- 13. The vector of claim 1 or 2, wherein said nuclear-anchoring protein is a non-natural protein.

5

10

15

20

25

- 14. The vector of claim 13, wherein said nuclear-anchoring protein is a recombinant protein, a fusion protein, or a protein obtained by molecular modeling techniques.
- 15. The vector of claim 14, wherein said recombinant protein, fusion protein, or protein obtained by molecular modeling techniques contains any combination of a DNA binding domain which binds to said specific DNA sequence and a functional domain which binds to a nuclear component, wherein said functional domain which binds to a nuclear component is that of a papilloma virus, an Epstein-Barr-Virus, or a High Mobility Group protein.
- 16. The vector of claim 15, wherein said recombinant protein, fusion protein, or protein obtained by molecular modeling techniques contains any combination of a DNA binding domain which binds to said specific DNA sequence and a functional domain which binds to a nuclear component, wherein said functional domain which binds to a nuclear component is that of E2 protein of Bovine Papilloma Virus type 1, Epstein-Barr Virus Nuclear Antigen 1, or a High Mobility Group protein.
- 17. The vector of claim 1 or 2, wherein said vector further comprises one or more expression cassettes of a DNA sequence of interest.
- 18. The vector of claim 17, wherein said DNA sequence of interest is that of an infectious pathogen.
 - 19. The vector of claim 18, wherein said infectious pathogen is a virus.
- 20. The vector of claim 19, wherein said virus is selected from the group consisting of Human Immunodeficiency Virus (HIV), Herpex Simplex Virus (HSV), Hepatitis C Virus, Influenzae Virus, and Enterovirus.
- 21. The vector of claim 18, wherein said DNA sequence of interest is that of a bacterium.

92

- 22. The vector of claim 21, wherein said bacterium is selected from the group consisting of Chlamydia trachomatis, Mycobacterium tuberculosis, and Mycoplasma pneumonia.
 - 23. The vector of claim 21, wherein said bacterium is Salmonella.
- 24. The vector of claim 17, wherein said DNA sequence of interest is that of a fungal pathogen.

5

- 25. The vector of claim 24, wherein said fungal pathogen is Candida albigans.
- 26. The vector of claim 20, wherein said DNA sequence of interest is of HIV origin. 10
 - 27. The vector of claim 26, wherein said DNA sequence of interest encodes a non-structural regulatory protein of HIV.
 - 28. The vector of claim 27, wherein said non-structural regulatory protein of HIV is Nef, Tat or Rev.
- 29. The vector of claim 28, wherein said nonstructural regulatory pro-15 tein of HIV is Nef.
 - 30. The vector of claim 17, wherein said DNA sequence of interest encodes a structural protein of HIV.
- 31. The vector of claim 30, wherein said DNA sequence of interest is the gene encoding HIV gp120/gp160. 20
 - The vector of claim 17, wherein a first said expression cassette comprises a DNA sequence of interest which encodes Nef, Tat or Rev, and wherein a second said expression cassette comprises a DNA sequence of interest which encodes Nef, Tat or Rev.
 - The vector of claim 17, wherein a first said expression cassette 33. comprises a DNA sequence of interest which encodes Nef, Tat or Rev, and wherein a second said expression cassette comprises a DNA sequence of interest which encodes a structural protein of HIV.
- 34. The vector of claim 17, wherein the DNA sequence of interest encodes a protein associated with cancer. 30

WO 02/090558

- 35. The vector of claim 17, wherein the DNA sequence of interest encodes a protein associated with immune maturation, regulation of immune responses, or regulation of autoimmune responses.
 - 36. The vector of claim 35, wherein said protein is APECED.
- 5 37. The vector of claim 17, wherein the DNA sequence of interest is the Aire gene.
 - 38. The vector of claim 17, wherein the DNA sequence of interest encodes a protein that is defective in any hereditary single gene disease.
- 39. The vector of claim 17, wherein the DNA sequence of interest en-10 codes a macromolecular drug.
 - 40. The vector of claim 39, wherein the DNA sequence of interest encodes a cytokine.
 - 41. The vector of claim 40, wherein said cytokine is an interleukin selected from the group consisting of IL1, IL2, IL4, IL6 and IL12.
- 15 42. The vector of claim 40, wherein the DNA sequence of interest encodes an interferon.
 - 43. The vector of claim 17, wherein said DNA sequence of interest encodes a biologically active RNA molecule.
- 44. The vector of claim 43, wherein said biologically active RNA molecule is selected from the group consisting of inhibitory antisense and ribozyme molecules.
 - 45. The vector of claim 44, wherein said inhibitory antisense or ribozyme molecules antagonize the function of an oncogene.
 - 46. The vector of claim 17 for use as a medicament.
- 25 47. The vector of claim 17 for use as a carrier vector for a gene, genes, or a DNA sequence or DNA sequences of interest, such as a gene, genes, or a DNA sequence or DNA sequences encoding a protein or peptide of an infectious agent, a therapeutic agent, a macromolecular drug, or any combination thereof.
- 30 48. The vector of claim 17 for use as a medicament for treating inherited or acquired genetic defects.

49. The vector of claim 17 for use as a therapeutic DNA vaccine against an infectious agent.

94

- 50. The vector of claim 17 for use as a therapeutic agent.
- 51. A vector of claim 17 for the use for production of a protein encoded 5 by said DNA sequence of interest in a cell or an organism.
 - A vector of claim 17 for the use for production of a therapeutic macromolecular agent in vivo.
- A method for providing a protein to a subject, said method 53. comprising administering to the subject the vector of claim 1 or 2, wherein said 10 vector (i) further comprises a second DNA sequence encoding the protein to be provided to the subject, which second DNA sequence is operably linked to a second promoter, and (ii) does not encode Bovine Papilloma Virus protein E1, and wherein said subject does not express Bovine Papilloma Virus protein E1.
- 15 54. A method for inducing an immune response to a protein in a subject, said method comprising administering to the subject the vector of claim 1 or 2, wherein said vector (i) further comprises a second DNA sequence encoding said protein, which second DNA sequence is operably linked to a second promoter, and (ii) does not encode Bovine Papilloma Virus protein E1, and wherein said subject does not express Bovine Papilloma Virus protein E1. 20
 - 55. A method for treating an infectious disease in a subject in need of said treatment, said method comprising administering to said subject a therapeutically effective amount of the vector of claim 17, wherein said DNA sequence of interest encodes a protein comprising an immunogenic epitope of an infectious agent.

25

- 56. A method for treating an inherited or acquired genetic defect in a subject in need of said treatment, said method comprising: administering to said subject a therapeutically effective amount of the vector of claim 17, wherein said DNA sequence of interest encodes a protein which is affected by said inherited or acquired genetic defect.
- A method for expressing a DNA sequence in a subject, said method comprising administering the vector of claim 17 to said subject.

5

- 58. The method of claim 55, 56, or 57, wherein said vector does not encode Bovine Papilloma Virus protein E1, and wherein said subject does not express Bovine Papilloma Virus protein E1.
 - 59. A method for the preparation of a vector of claim 1 or 2 comprising:
 - (a) cultivating a host cell containing said vector; and
 - (b) recovering the vector.
- 60. The method of claim 59, further comprising before step (a) a step of transforming said host cell with said vector.
 - 61. The method of claim 59, wherein said host cell is a prokaryotic cell.
- 62. The method of claim 59, wherein said host cell is an Escherichia coli.
 - 63. A host cell, characterized by containing the vector of claim 1 or 2.
 - 64. A host cell, characterized by containing the vector of claim 17.
 - 65. The host cell of claim 63, wherein said host cell is a bacterial cell.
- 15 66. The host cell of claim 63, wherein said host cell is a mammalian cell.
 - 67. A carrier vector containing the vector of claim 1 or 2.
 - 68. A pharmaceutical composition comprising the vector of claim 17 and a suitable pharmaceutical carrier.
- 20 69. A DNA vaccine containing the vector of claim 17.
 - 70. A DNA vaccine containing the vector of claim 18.
 - 71. A DNA vaccine containing the vector of claim 19.
 - 72. A DNA vaccine containing the vector of claim 21.
 - 73. A DNA vaccine containing the vector of claim 24.
- 25 74. A gene therapeutic agent containing the vector of claim 17.
 - 75. A method for the preparation of the DNA vaccine of claim 69, said method comprising combining the vector of claim 17 with a suitable pharmaceutical vehicle.
- 76. A method for the preparation of the DNA vaccine of claim 69, said method comprising combining the vector of claim 18 with a suitable pharmaceutical vehicle.

- 77. A method for the preparation of the DNA vaccine of claim 69, said method comprising combining the vector of claim 19 with a suitable pharmaceutical vehicle.
- 78. A method for the preparation of the DNA vaccine of claim 69, said method comprising combining the vector of claim 21 with a suitable pharmaceutical vehicle.
 - 79. A method for the preparation of the DNA vaccine of claim 69, said method comprising combining the vector of claim 24 with a suitable pharmaceutical vehicle.
- 80. A method for the preparation of the agent of claim 74, said method comprising combining the vector of claim 17 with a suitable pharmaceutical vehicle.

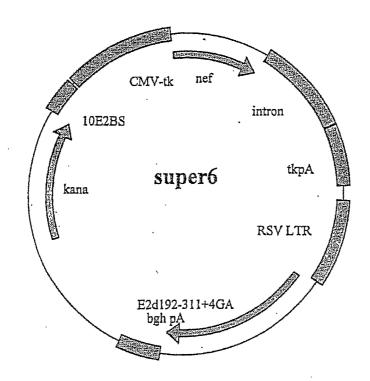


FIG. 1

FIG. 2

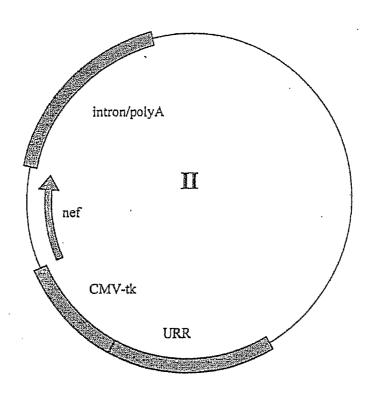
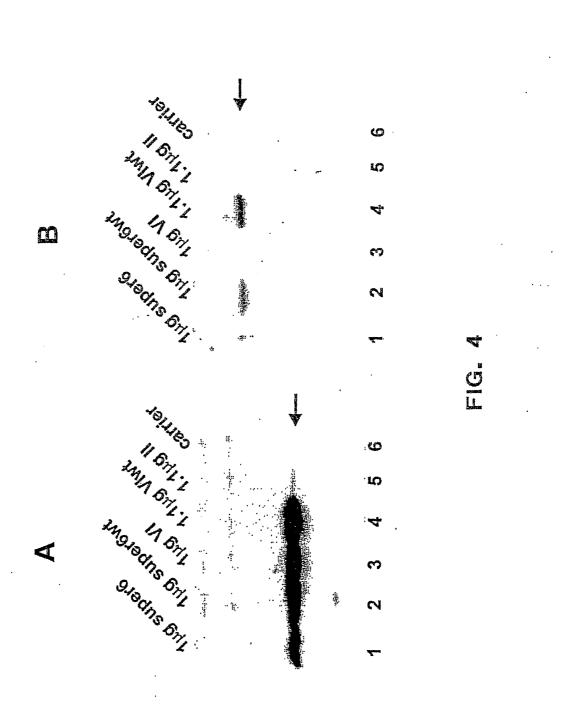



FIG. 3

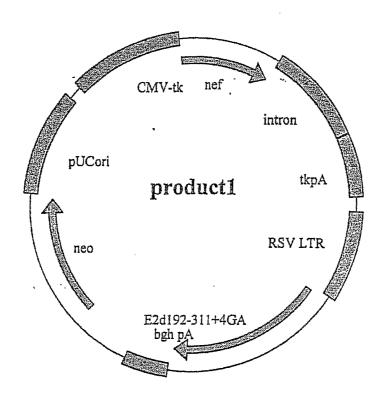


FIG. 5

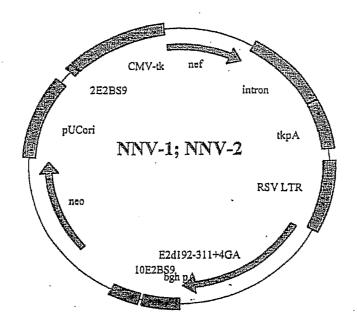


FIG. 6A

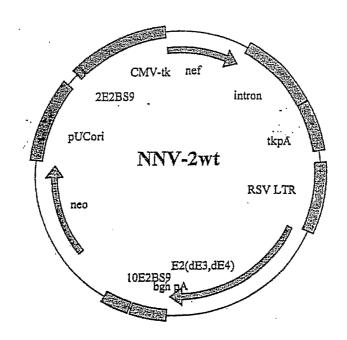


FIG. 6B

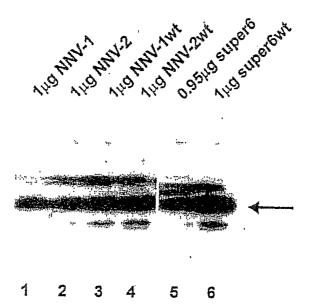


FIG. 7

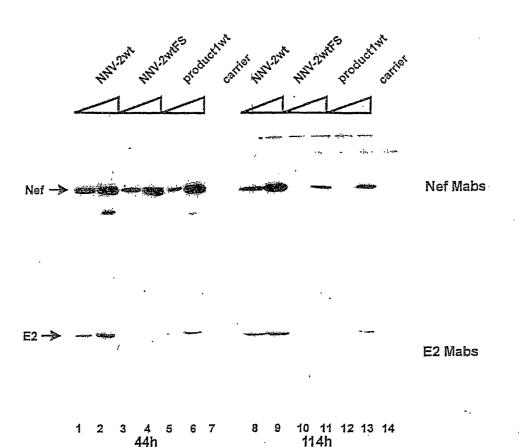


FIG. 8

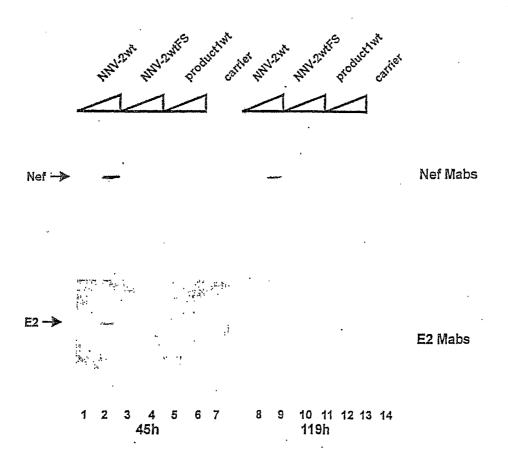
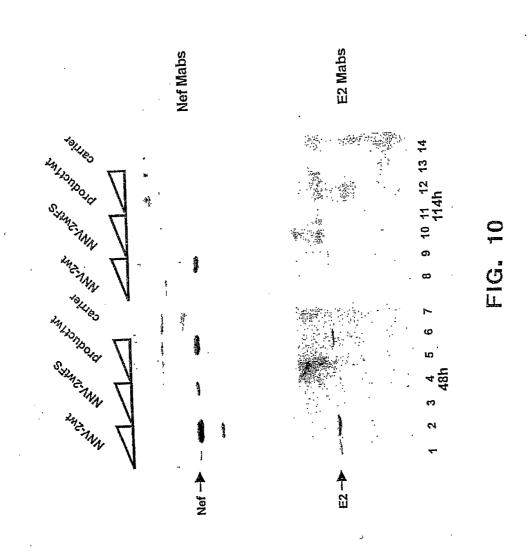



FIG. 9

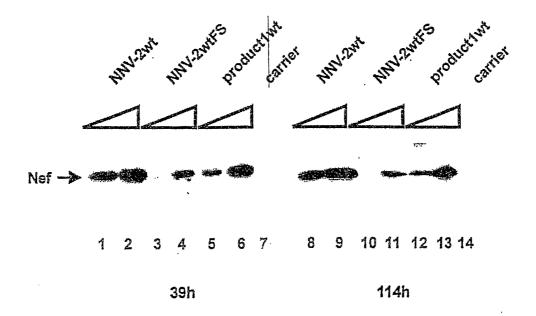
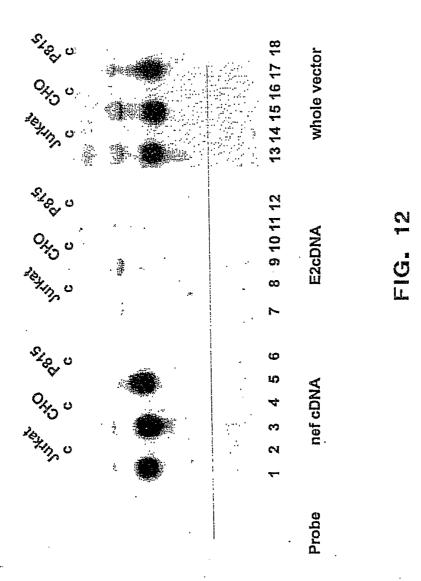



FIG. 11

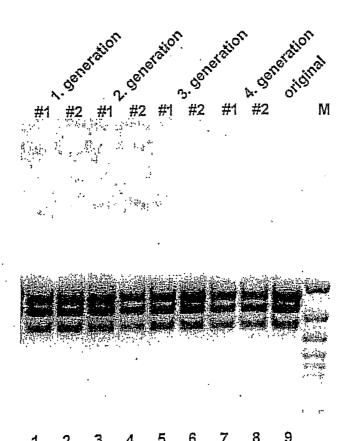


FIG. 13

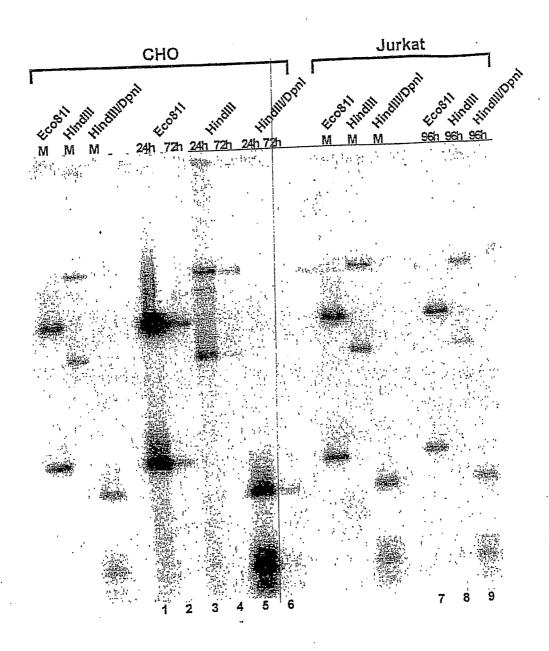
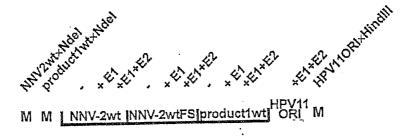



FIG. 14

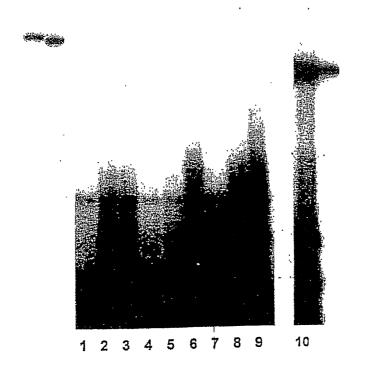


FIG. 15

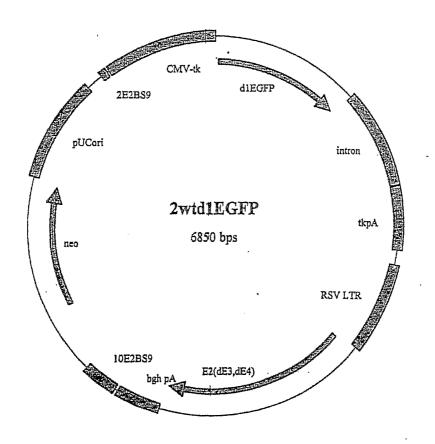


FIG. 16

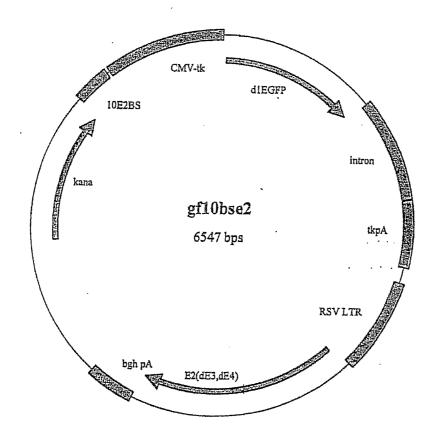


FIG. 17

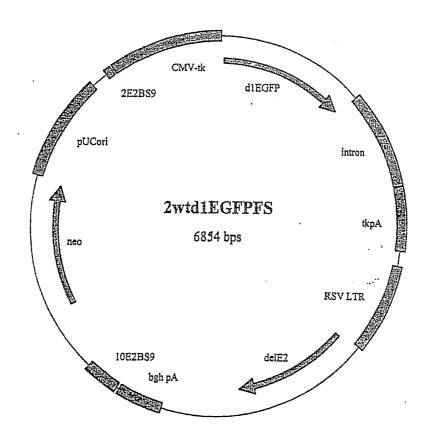


FIG. 18

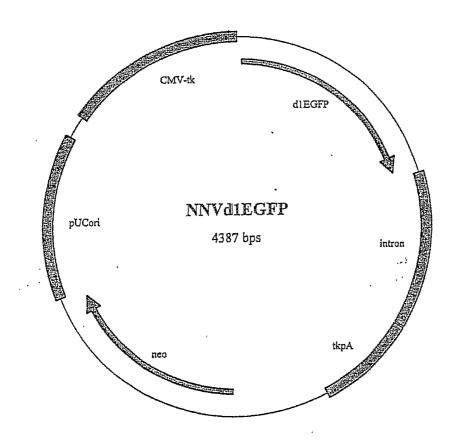
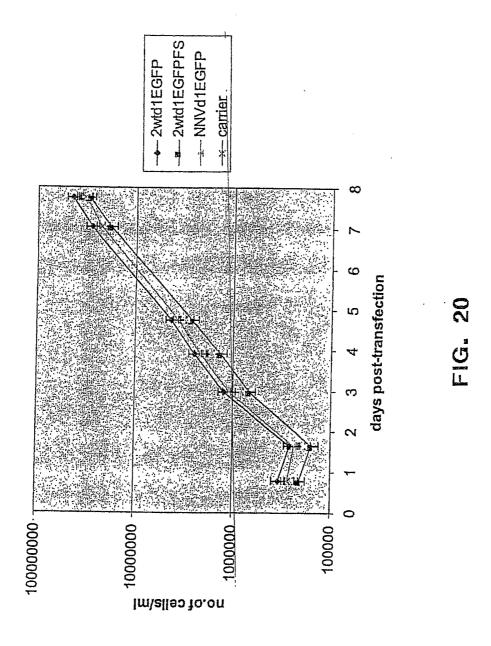



FIG. 19

SUBSTITUTE SHEET (RULE 26)

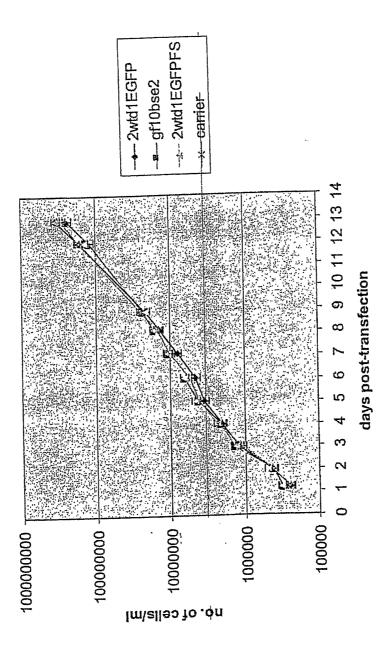


FIG. 2

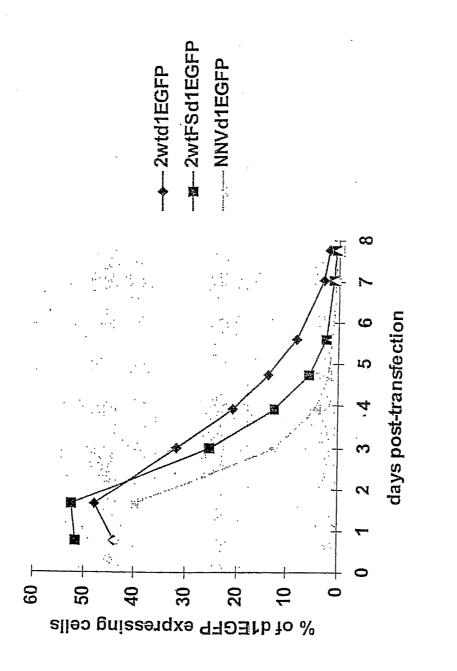


FIG. 22

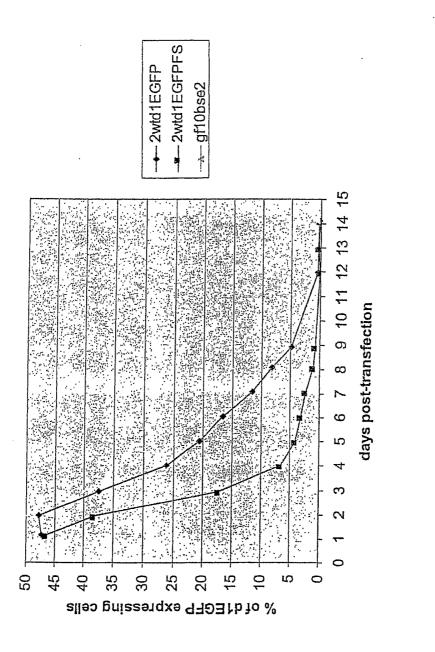


FIG. 23

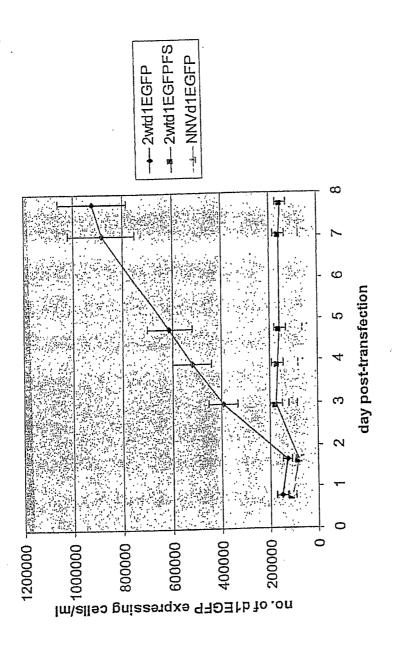
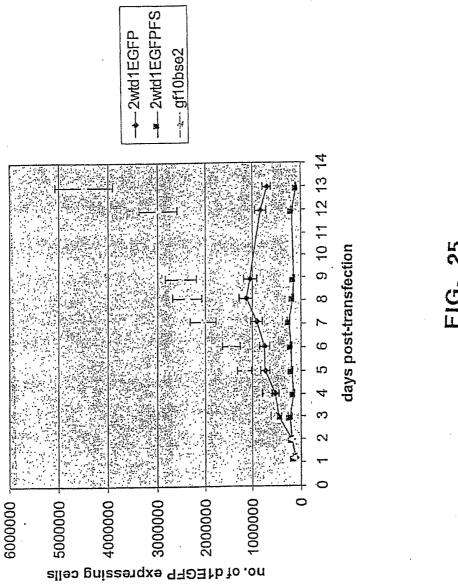



FIG. 22

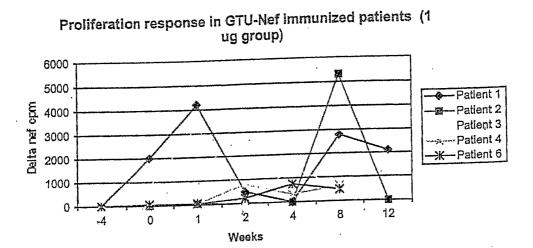


FIG. 26

Proliferation response in GTU-Nef immunized patients (20 ug group)

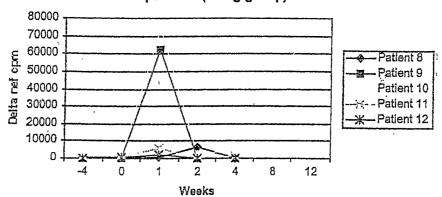


FIG. 27

28/91

CMI response in Patient #1

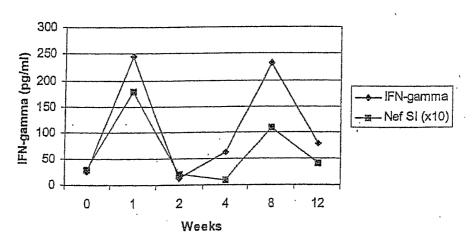


FIG. 28

29/91

Plasmid pEBO LPP

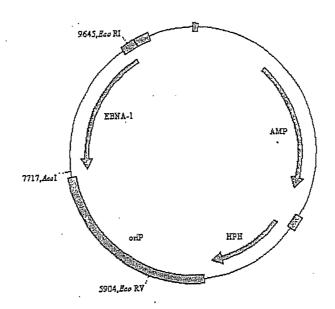


FIG. 29A

Plasmid s6E2d1EGFP

FIG. 29B

30/91

Plasmid FRE2d1EGFP

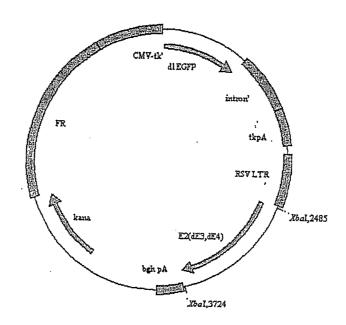


FIG. 29C

31/91

Plasmid FREBNAd1EGFP

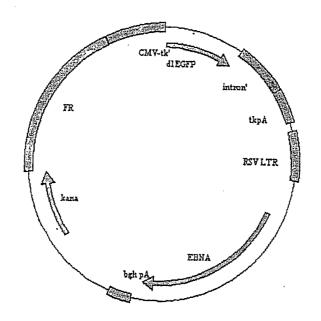


FIG. 30

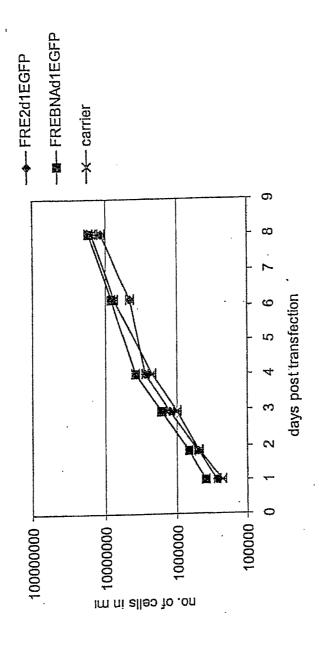
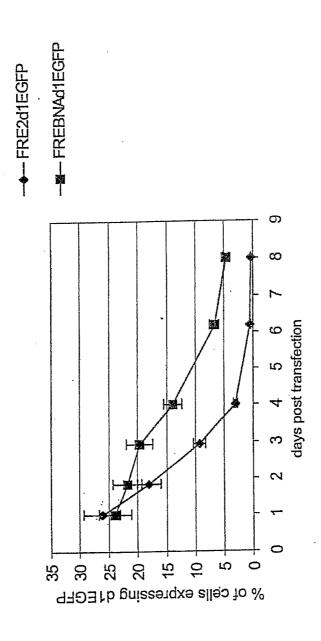
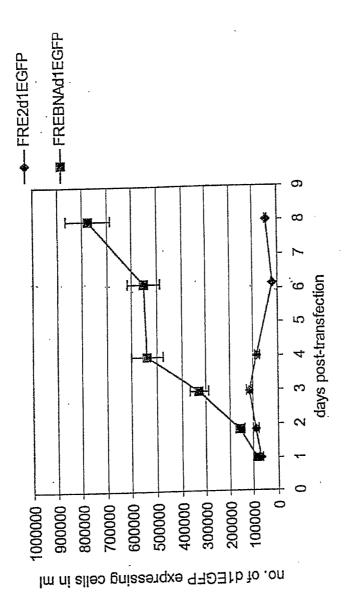




FIG. 3

T.C. 3

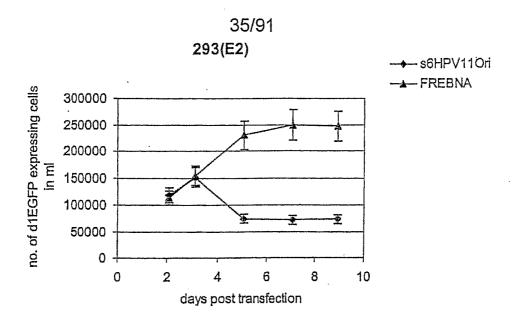
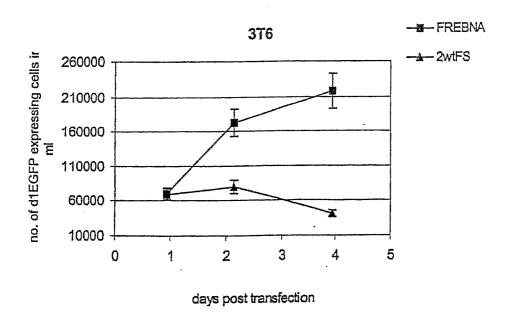



FIG. 34A

FIG. 34B

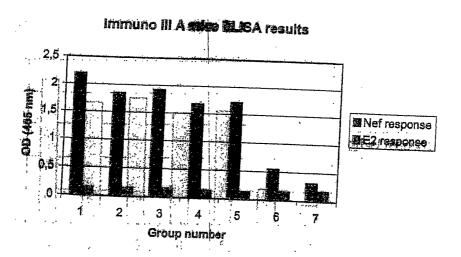


FIG. 35

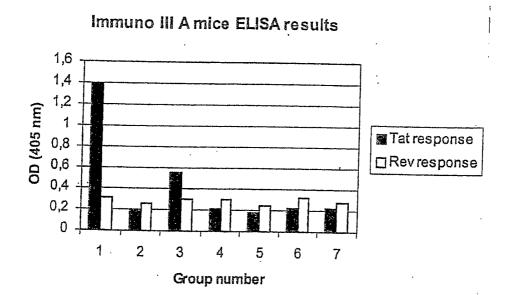


FIG. 36

38/91

Immuno III A mice ELISA results

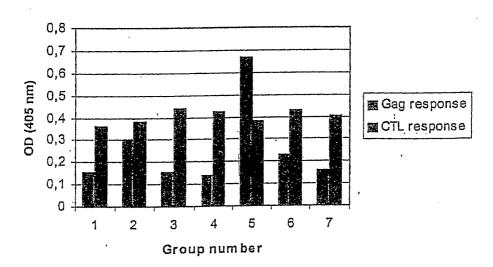


FIG. 37

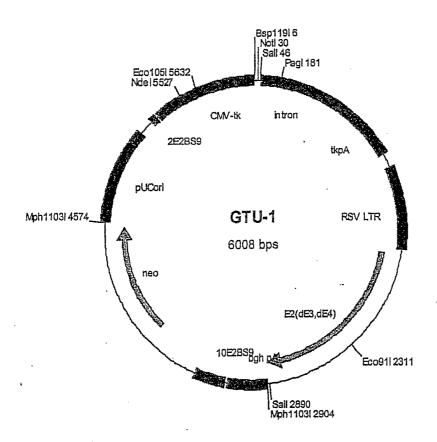


FIG. 38A

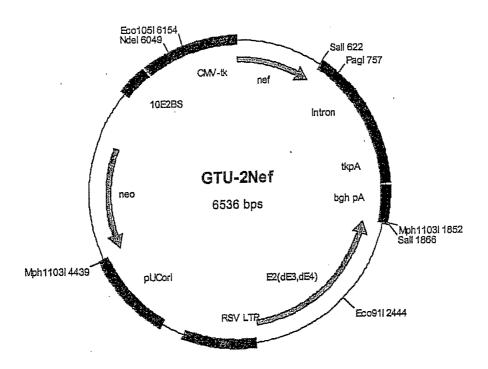


FIG. 38B

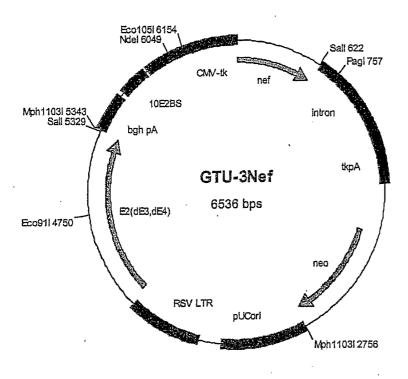


FIG. 38C

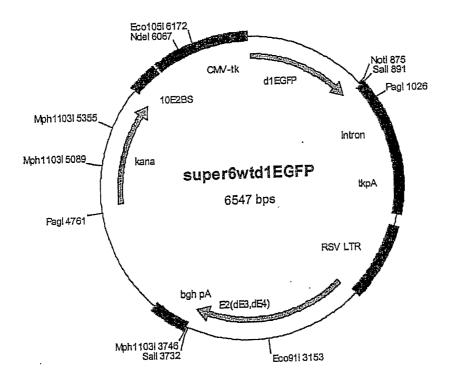


FIG. 38D

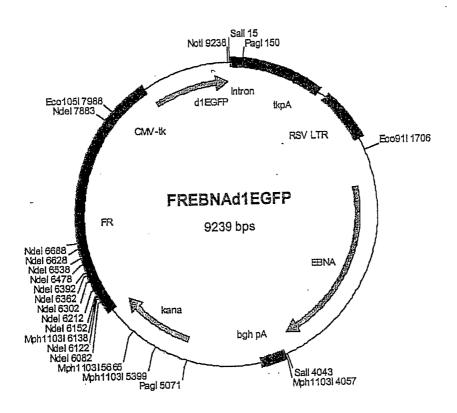


FIG. 38E

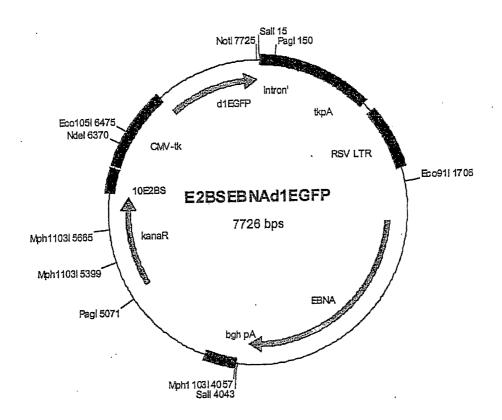


FIG. 38F

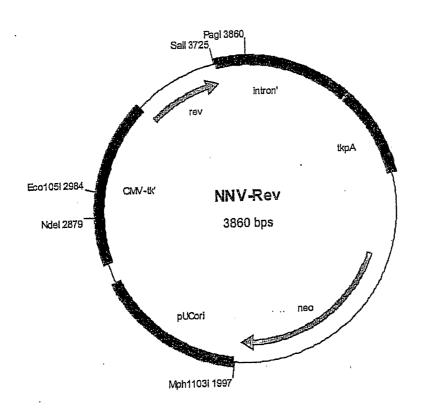


FIG. 38G

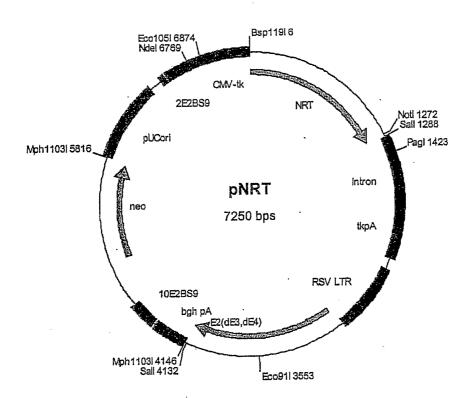


FIG. 39A

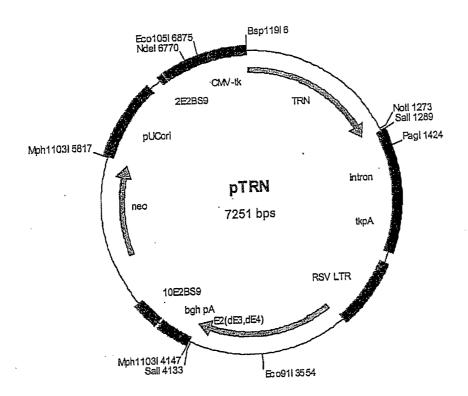


FIG. 39B

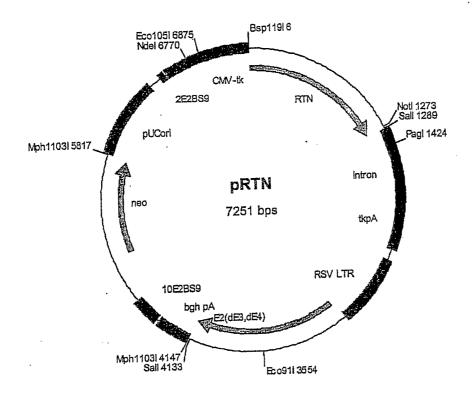


FIG. 39C

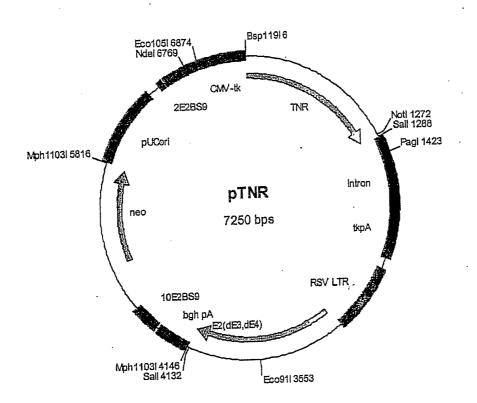


FIG. 39D

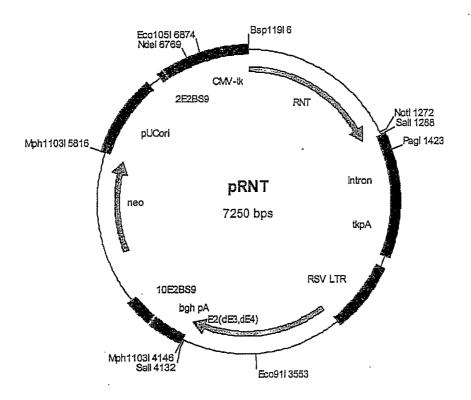


FIG. 39E

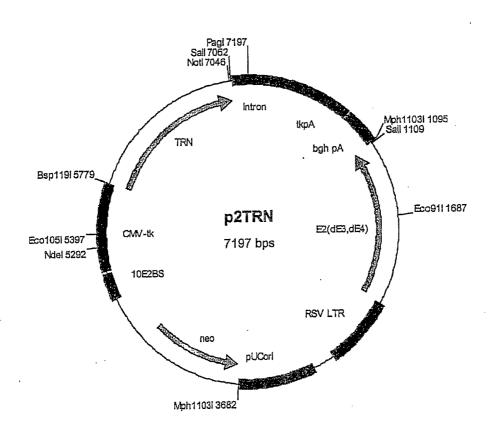


FIG. 39F

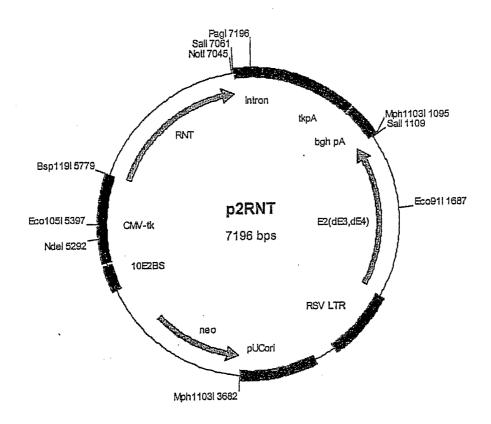


FIG. 39G

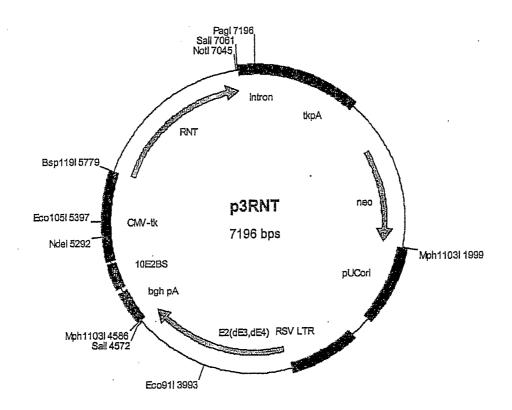


FIG. 39H

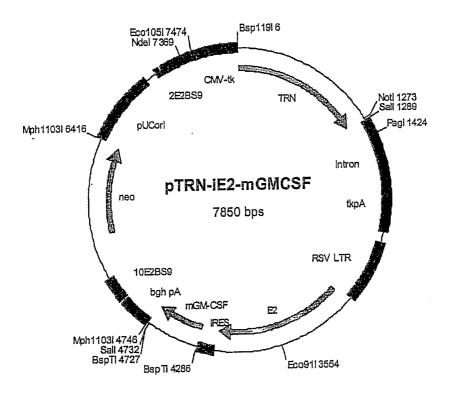


FIG. 39 I

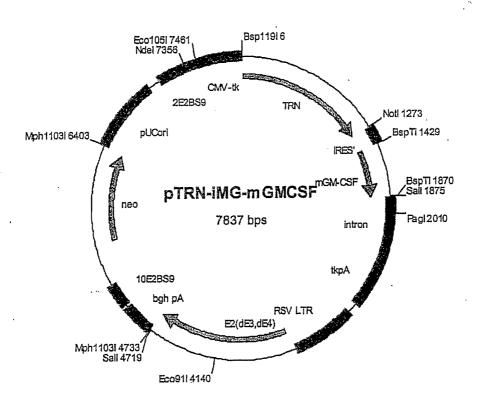


FIG. 39J

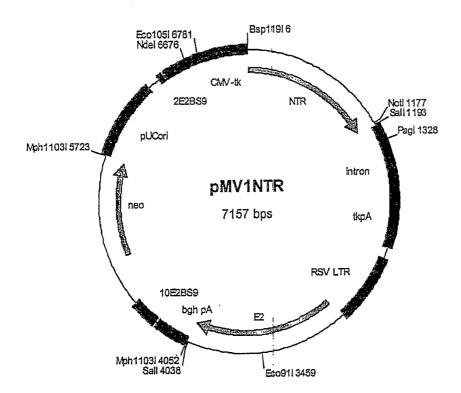


FIG. 40A

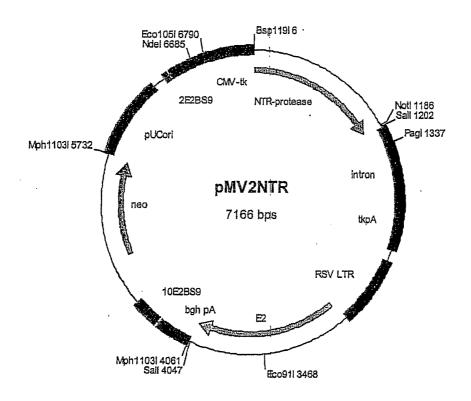


FIG. 40B

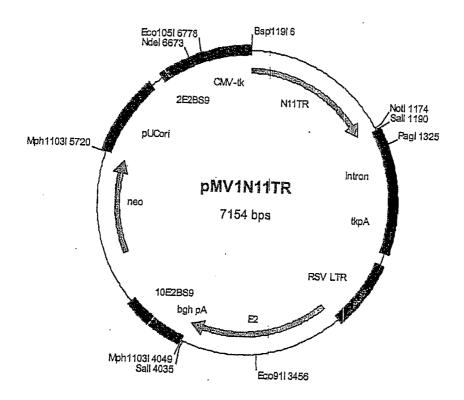


FIG. 40C

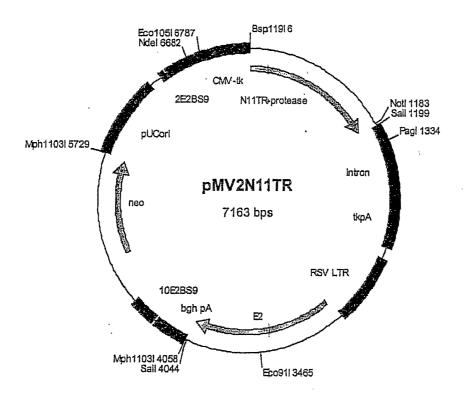


FIG. 40D

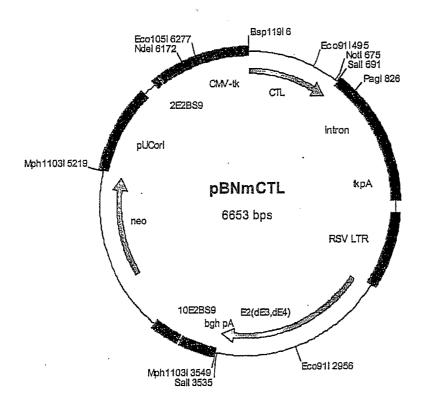


FIG. 41A

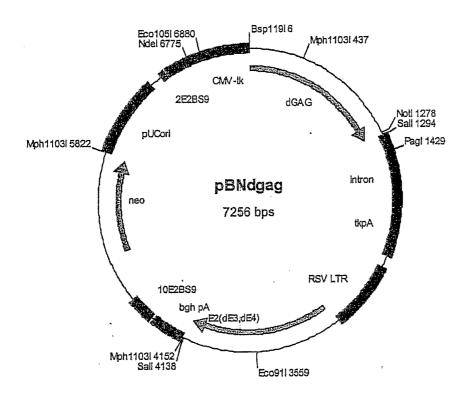


FIG. 41B

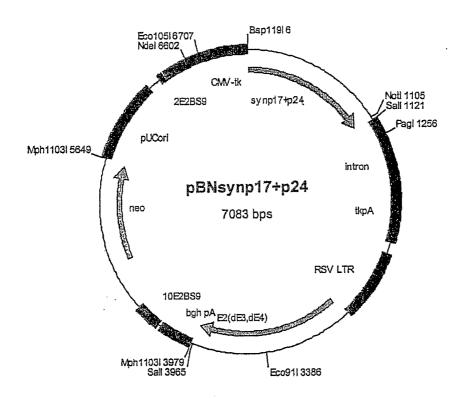


FIG. 41C

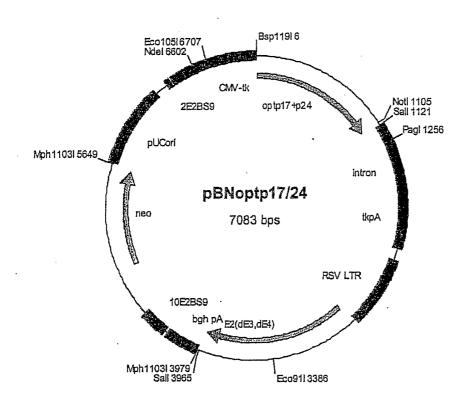


FIG. 41D

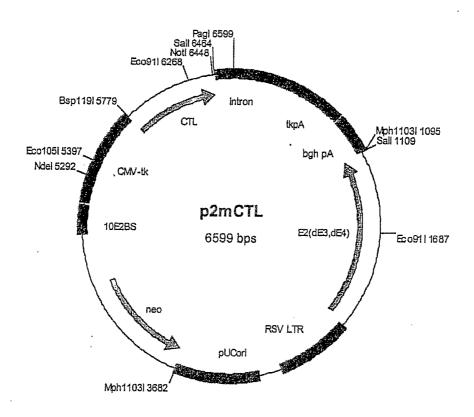


FIG. 41E

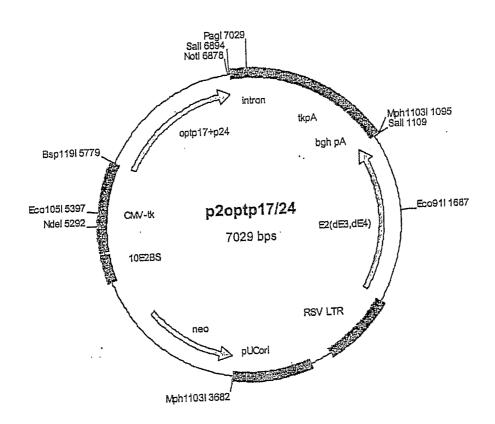


FIG. 41F

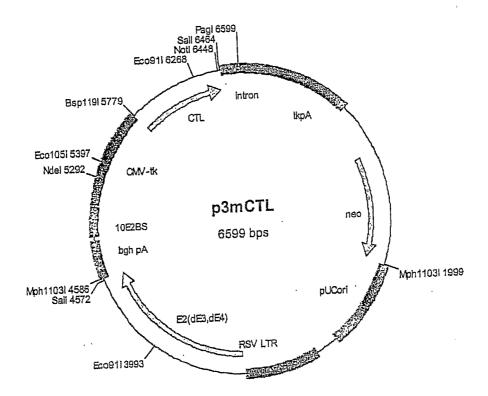


FIG. 41G

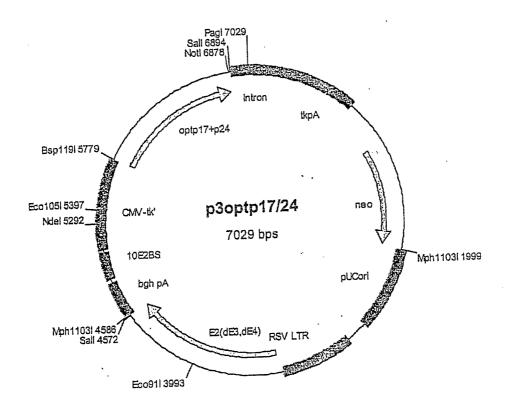


FIG. 41H

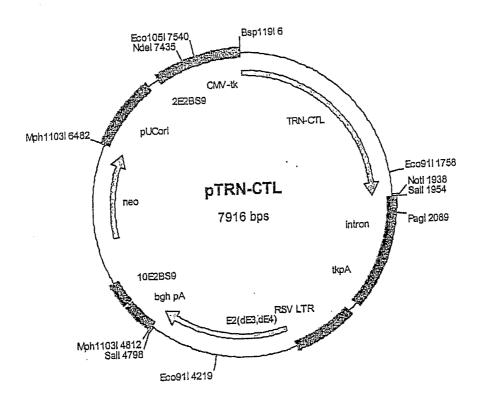


FIG. 42A

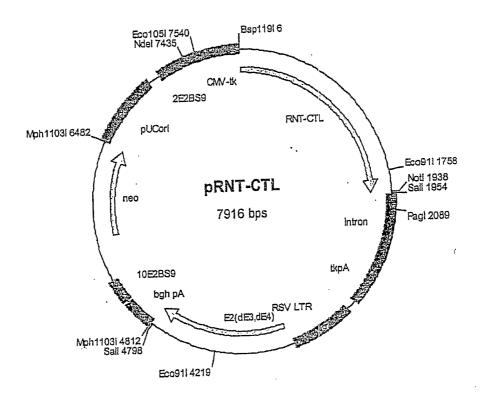


FIG. 42B

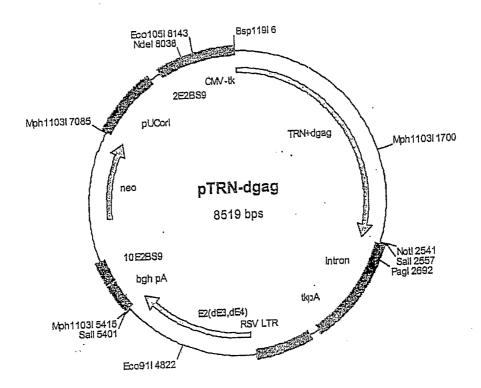


FIG. 42C

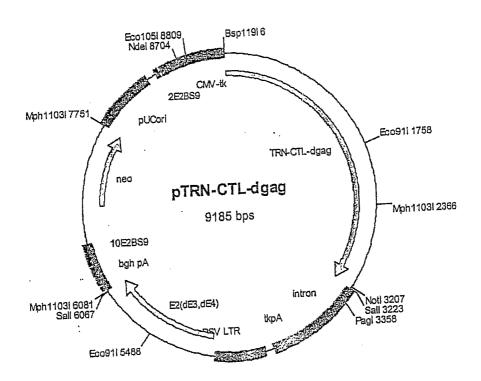


FIG. 42D

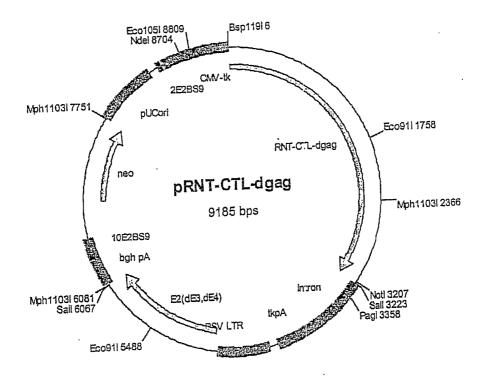


FIG. 42E

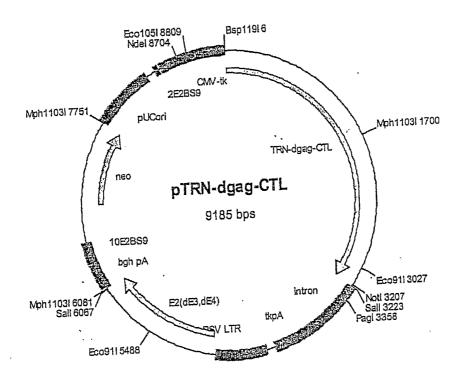


FIG. 42F

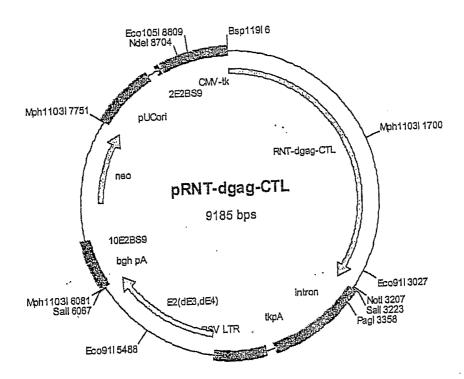


FIG. 42G

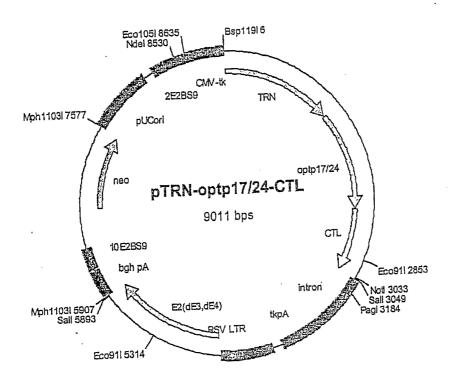


FIG. 42H

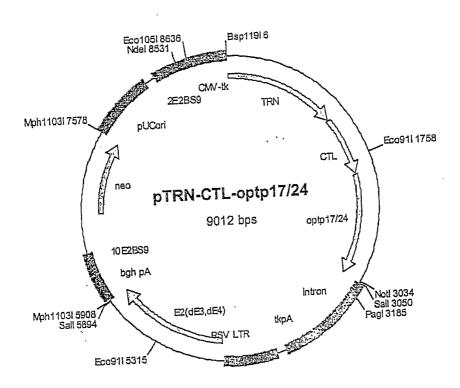


FIG. 42 I

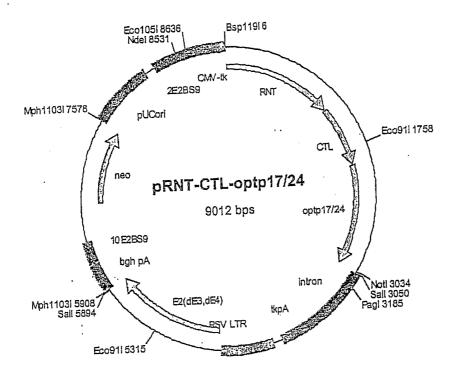


FIG. 42J

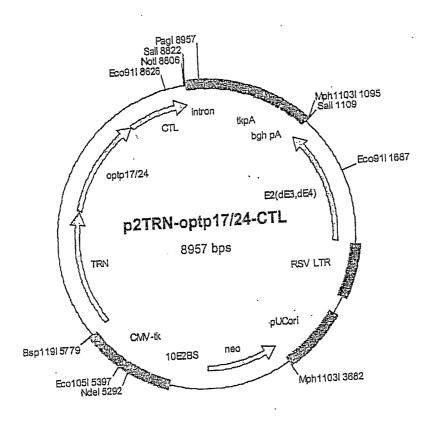


FIG. 42K

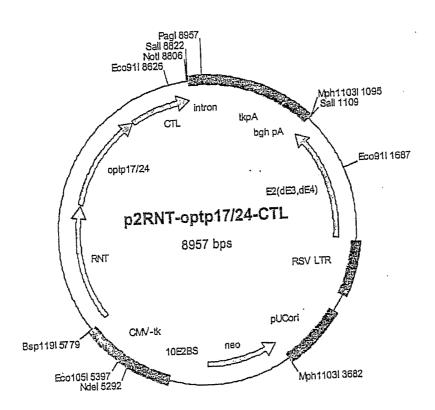


FIG. 42L

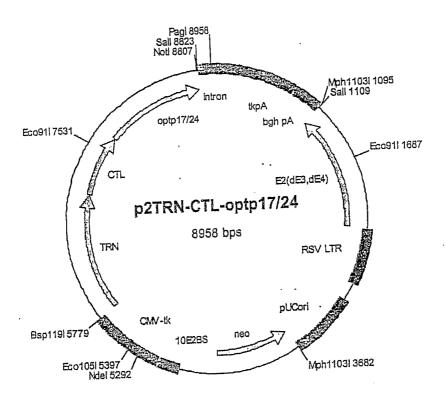


FIG. 42M

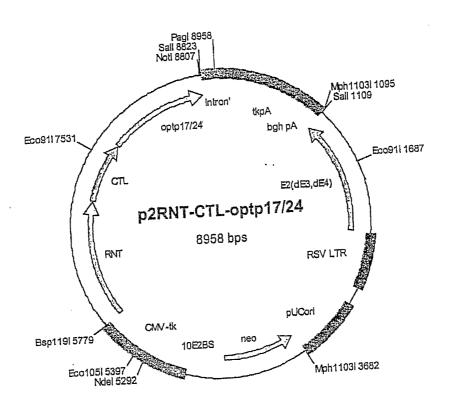


FIG. 42N

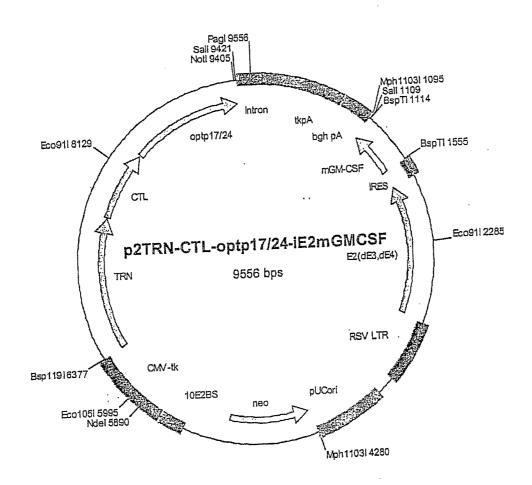


FIG. 42 O

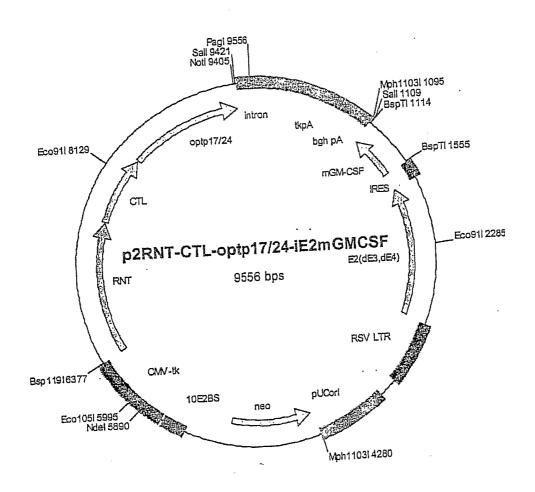


FIG. 42P

84/91

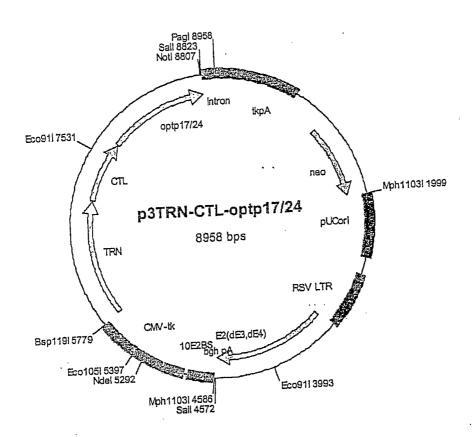


FIG. 42Q

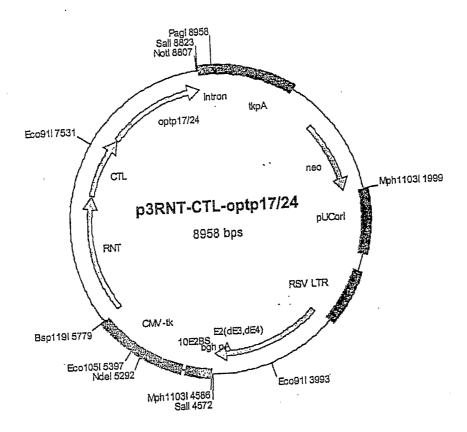


FIG. 42R

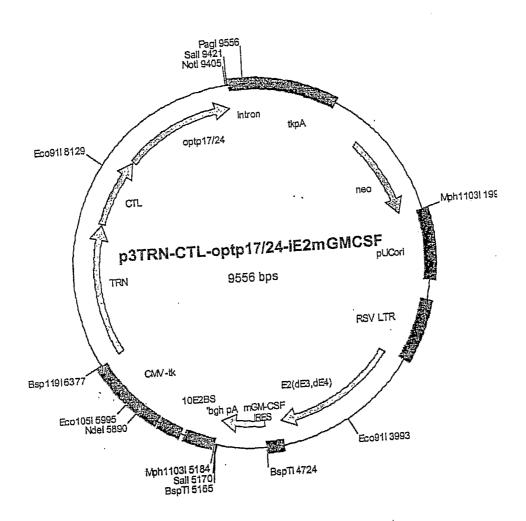


FIG. 42S

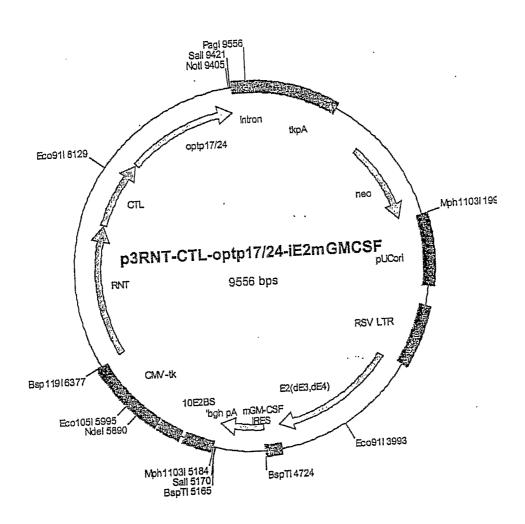


FIG. 42T

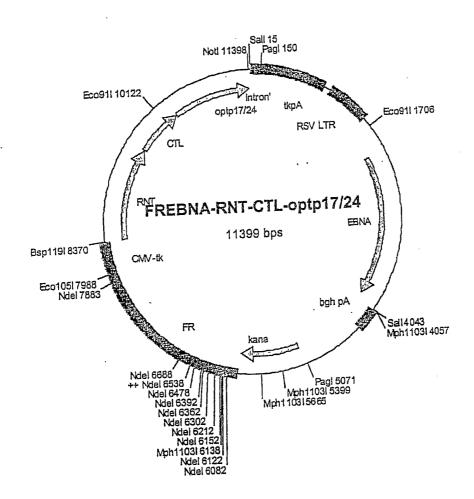


FIG. 42U

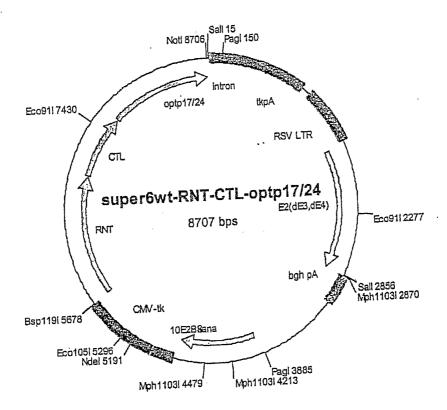


FIG. 42V

90/91

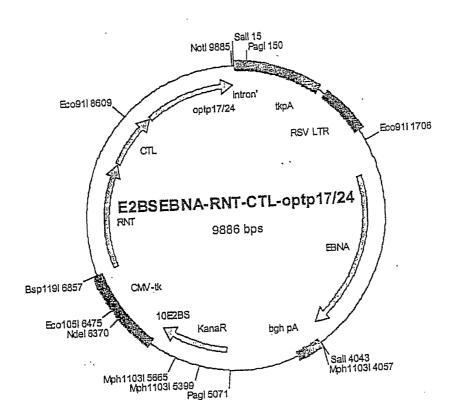


FIG. 42W

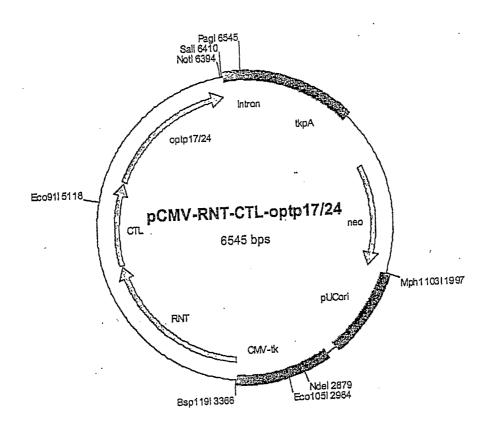


FIG. 42X

SEQUENCE LISTING

```
<110> FIT Biotech Oyj Plc
<120> Novel expression vectors and uses thereof
<130> 11041-006-228 (2010149)
<140> To be assigned
<141> 2002-05-03
<150> FI 20010922
<151> 2001-05-03
<160> 52
<170> PatentIn version 3.1
<210> 1
<211> 1260
<212> DNA
<213> Artificial Sequence
<220>
<223> Hybrid protein comprised of Nef-Tat-Rev (NTR)
<400> 1
atggtgggca agtggtcaaa atgtagtgga tggcctactg taagggaaag aatgaaacaa
                                                                       60
gctgagcctg agccagcagc agatggggtg ggagcagcat ctcgagacct ggaaaaacat
                                                                      120
ggagcaatca caagtagcaa tacagcaact aataacgctg cttgtgcctg gctagaagca
                                                                      180
caagaggaag aggaagtggg ttttccagtc agacctcagg tacctttaag accaatgact
                                                                      240
tacaagggag ctttagatct tagccacttt ttaaaagaaa aggggggact ggaagggtta
                                                                      300
atttactccc caaaaagaca agagatcctt gatctgtggg tctaccacac acaaggctac
                                                                      360
ttccctgatt ggcagaacta cacaccaggg ccaggggtca gatatccact gacctttgga
                                                                      420
tggtgcttca agttagtacc agttgaacca gatgaagaag agaacagcag cctgttacac
                                                                      480
cctgcgagcc tgcatgggac agaggacacg gagagagaag tgttaaagtg gaagtttgac
                                                                      540
agccatctag catttcatca caaggcccga gagctgcatc cggagtacta caaagactgc
                                                                      600
actagtgcag gaagaagcgg agacagcgac gaagagctcc tcaagacagt cagactcatc
                                                                      660
aagtttetet accaaagcaa eeeteeteee agcaacgagg ggaccegaca ggecegaaga
                                                                      720
aatcgaagaa gaaggtggag agagagacag aggcagatcc gttcgattag tgagcggatt
                                                                      780
cttagcactt ttctgggacg acctgcggag cctgtgcctc ttcagctacc gccgcttgag
                                                                      840
agacttactc ttgattgtag cgaagattgt ggaaactctg ggacgcaggg ggtgggaagt
                                                                      900
cctcaagtat tggtggaatc tcctgcagta ttggagccag gaactaaaga aaagcttgag
                                                                      960
ccagtagate ctagactaga gccctggaag catccaggaa gtcagcctag gaccccttgt
                                                                     1020
accaattgct attgtaaaaa gtgttgcctt cattgccaag tttgtttcac aagaaaaggc
                                                                     1.080
ttaggcatct cctatggcag gaagaagcgg agacagcgac gaagagctcc tcaagacagt
                                                                    1140
cagactcatc aagtttctct accaaagcaa ccctcctccc aqcaacqaqq qqacccqaca
                                                                     1200
ggcccgaaga aatcgaagaa gaaggtggag agagagacag aggcagatcc gttcgattag
                                                                     1260
<210>
<211> 1260
<212> DNA
<213> Artificial Sequence
<220>
<223> Hybrid protein comprised of Tat-Rev-Nef (TRN)
<400> 2
atggagccag tagatcctag actagagccc tggaagcatc caggaagtca gcctaggacc
                                                                       60
ccttgtacca attgctattg taaaaagtgt tgccttcatt gccaagtttg tttcacaaga
                                                                      120
aaaggettag geateteeta tggcaggaag aageggagac agegaegaag ageteeteaa
                                                                      180
gacagtcaga ctcatcaagt ttctctacca aagcaaccct cctcccagca acgagggac
                                                                      240
ccgacaggcc cgaagaaatc gaagaagaag gtggagagag agacagaggc agatccgttc
                                                                      300
```

```
gatactagtg caggaagaag cggagacagc gacgaagagc tcctcaagac agtcagactc
                                                                      360
atcaagtttc tctaccaaag caaccctcct cccagcaacg aggggacccg acaggcccga
                                                                      420
agaaatcgaa gaagaaggtg gagagagaga cagaggcaga tccgttcgat tagtgagcgg
                                                                      480
attettagea ettttetggg aegaeetgeg gageetgtge etetteaget aeegeegett
                                                                      540
gagagactta ctcttgattg tagcgaagat tgtggaaact ctgggacgca gggggtggga
                                                                      600
agtcctcaag tattggtgga atctcctgca gtattggagc caggaactaa agaaaagctt
                                                                      660
gtgggcaagt ggtcaaaatg tagtggatgg cctactgtaa gggaaagaat gaaacaagct
                                                                      720
gagcctgagc cagcagcaga tggggtggga gcagcatctc gagacctgga aaaacatgga
                                                                      780
gcaatcacaa gtagcaatac agcaactaat aacgctgctt gtgcctggct agaagcacaa
                                                                      840
gaggaagagg aagtgggttt tccagtcaga cctcaggtac ctttaagacc aatgacttac
                                                                      900
aagggagctt tagatcttag ccacttttta aaagaaaagg ggggactgga agggttaatt
                                                                      960
tactccccaa aaagacaaga gatccttgat ctgtgggtct accacacaca aggctacttc
                                                                     1020
cetgattggc agaactacac accagggcca ggggtcagat atccactgac etttggatgg
                                                                     1080
tgcttcaagt tagtaccagt tgaaccagat gaagaagaga acagcagcct gttacaccct
                                                                     1140
gcgagcctgc atgggacaga ggacacggag agagaagtgt taaagtggaa gtttgacagc
                                                                     1200
catctagcat ttcatcacaa ggcccgagag ctgcatccgg agtactacaa agactgctga
                                                                     1260
<210> 3
<211> 1260
<212>
      DNA
<213> Artificial Sequence
<220>
<223> Hybrid protein comprised of Rev-Tat-Nef (RTN)
<400>
atggcaggaa gaagcggaga cagcgacgaa gagctcctca agacagtcag actcatcaag
                                                                       60
tttctctacc aaagcaaccc tcctcccagc aacgagggga cccgacaggc ccgaagaaat
                                                                      120
cgaagaagaa ggtggagaga gagacagagg cagatccgtt cgattagtga gcggattctt
                                                                      180
agcacttttc tgggacgacc tgcggagcct gtgcctcttc agctaccgcc gcttgagaga
                                                                     240
cttactcttg attgtagcga agattgtgga aactctggga cgcagggggt gggaagtcct
                                                                     300
caagtattgg tggaatctcc tgcagtattg gagccaggaa ctaaagaaac tagtgagcca
                                                                     360
gtagatecta gactagagec etggaageat ecaggaagte agectaggae eeettgtace
                                                                     420
aattgctatt gtaaaaagtg ttgccttcat tgccaagttt gtttcacaag aaaaggctta
                                                                     480
ggcatctcct atggcaggaa gaagcggaga cagcgacgaa gagctcctca agacagtcag
                                                                     540
actcatcaag tttctctacc aaagcaaccc tcctcccagc aacgagggga cccgacaggc
                                                                     600
ccgaagaaat cgaagaagaa ggtggagaga gagacagagg cagatccgtt cgataagctt
                                                                     660
gtgggcaagt ggtcaaaatg tagtggatgg cctactgtaa gggaaagaat gaaacaagct
                                                                     720
gagcctgagc cagcagcaga tggggtggga gcagcatctc gagacctgga aaaacatgga
                                                                     780
gcaatcacaa gtagcaatac agcaactaat aacgctgctt gtgcctggct agaagcacaa
                                                                     840
gaggaagagg aagtgggttt tccagtcaga cctcaggtac ctttaagacc aatgacttac
                                                                     900
aagggagett tagatettag eeacttttta aaagaaaagg ggggaetgga agggttaatt
                                                                     960
tactccccaa aaagacaaga gatccttgat ctgtgggtct accacacaca aggctacttc
                                                                    1020
cctgattggc agaactacac accagggcca ggggtcagat atccactgac ctttggatgg
                                                                    1080
tgcttcaagt tagtaccagt tgaaccagat gaagaagaga acagcagcct gttacaccct
                                                                    1140
gcgagcctgc atgggacaga ggacacggag agagaagtgt taaagtggaa gtttgacagc
                                                                    1200
catctagcat ttcatcacaa ggcccgagag ctgcatccgg agtactacaa agactgctga
                                                                    1260
<210> 4
<211> 1260
<212> DNA
<213> Artificial Sequence
<220>
<223> Hybrid protein comprised of Tat-Nef-Rev (TNR)
<400> 4
atggagccag tagatcctag actagagccc tggaagcatc caggaagtca gcctaggacc
                                                                      60
cettgtacca attgctattg taaaaagtgt tgccttcatt gccaagtttg tttcacaaga
                                                                     120
aaaggettag geateteeta tggeaggaag aageggagae agegaegaag ageteeteaa
                                                                     180
gacagtcaga ctcatcaagt ttctctacca aagcaaccct cctcccagca acgaggggac
                                                                     240
ccgacaggcc cgaagaaatc gaagaagaag gtggagagag agacagaggc agatccgttc
                                                                     300
gatactagtg tgggcaagtg gtcaaaatgt agtggatggc ctactgtaag ggaaagaatg
                                                                     360
```

```
420
aaacaagctg agcctgagcc agcagcagat ggggtgggag cagcatctcg agacctggaa
aaacatggag caatcacaag tagcaataca gcaactaata acgctgcttg tgcctggcta
                                                                      480
gaagcacaag aggaagagga agtgggtttt ccagtcagac ctcaggtacc tttaagacca
                                                                      540
atgacttaca agggagcttt agatcttagc cactttttaa aagaaaaggg gggactggaa
                                                                      600
gggttaattt actccccaaa aagacaagag atccttgatc tgtgggtcta ccacacaca
                                                                      660
ggctacttcc ctgattggca gaactacaca ccagggccag gggtcagata tccactgacc
                                                                      720
tttggatggt gcttcaagtt agtaccagtt gaaccagatg aagaagagaa cagcaqcctq
                                                                      780
ttacaccctg cgagcctgca tgggacagag gacacggaga gagaagtgtt aaagtggaag
                                                                      840
tttgacagcc atctagcatt tcatcacaag gcccgagagc tgcatccgga gtactacaaa
                                                                     900
gactgcaagc ttgcaggaag aagcggagac agcgacgaag agctcctcaa gacagtcaga
                                                                     960
ctcatcaagt ttctctacca aagcaaccct cctcccagca acgaggggac ccgacaqqcc
                                                                    1020
cgaagaaatc gaagaagaag gtggagagag agacagaggc agatccgttc gattagtgag
                                                                    1080
cggattetta geacttttet gggacgacet geggageetg tgeetettea getacegeeg
                                                                    1140
cttgagagac ttactcttga ttgtagcgaa gattgtggaa actctgggac gcagggggtg
                                                                    1200
ggaagtcctc aagtattggt ggaatctcct gcagtattgg agccaggaac taaagaatag
                                                                    1260
<210> 5
<211> 1260
<212> DNA
<213> Artificial Sequence
<220>
<223> Hybrid protein comprised of Rev-Nef-Tat (RNT)
<400> 5
atggcaggaa gaagcggaga cagcgacgaa gagctcctca agacagtcag actcatcaag
                                                                      60
tttctctacc aaagcaaccc tcctcccagc aacgagggga cccgacaggc ccgaagaaat
                                                                      120
cgaagaagaa ggtggagaga gagacagagg cagatccgtt cgattagtga gcggattctt
                                                                      180
agcacttttc tgggacgacc tgcggagcct gtgcctcttc agctaccgcc gcttgagaga
                                                                      240
cttactcttg attgtagcga agattgtgga aactctggga cgcagggggt gggaagtcct
                                                                     300
caagtattgg tggaatctcc tgcagtattg gagccaggaa ctaaagaaac tagtgtgggc
                                                                     360
aagtggtcaa aatgtagtgg atggcctact qtaaqqqaaa qaatqaaaca aqctqaqcct
                                                                     420
gagccagcag cagatggggt gggagcagca tctcgagacc tggaaaaaca tggagcaatc
                                                                     480
acaagtagca atacagcaac taataacgct gcttgtgcct ggctagaagc acaagaggaa
                                                                     540
gaggaagtgg gttttccagt cagacctcag gtacctttaa gaccaatgac ttacaaggga
                                                                     600
getttagate ttagecactt tttaaaagaa aaggggggae tggaagggtt aatttactee
                                                                     660
ccaaaaagac aagagateet tgatetgtgg gtetaccaca cacaaggeta etteeetgat
                                                                     720
tggcagaact acacacagg gccaggggtc agatatccac tgacctttgg atggtgcttc
                                                                     780
aagttagtac cagttgaacc agatgaagaa gagaacagca gcctgttaca ccctgcqagc
                                                                     840
ctgcatggga cagaggacac ggagagagaa gtgttaaagt ggaagtttga cagccatcta
                                                                     900
gcatttcatc acaaggcccg agagctgcat ccggagtact acaaagactg caagcttgag
                                                                     960
ccagtagatc ctagactaga gccctggaag catccaggaa gtcagcctag gaccccttgt
                                                                    1020
accaattgct attgtaaaaa gtgttgcctt cattgccaag tttgtttcac aagaaaaggc
                                                                    1080
ttaggcatct cctatggcag gaagaagcgg agacagcgac gaagagctcc tcaagacagt
                                                                    1140
cagactcatc aagtttetet accaaagcaa eceteeteec agcaacgagg ggaccegaca
                                                                    1200
ggcccgaaga aatcgaagaa gaaggtggag agagagacag aggcagatcc gttcgattag
                                                                    1260
<210> 6
<211>
      1164
<211> 110-
<213> Artificial Sequence
<220>
<223> Protein comprised of Immunodominant parts of the Nef-Tat-Rev(NTR)
<400> 6
atgggatggc ctactgtaag ggaaagaatg aaacaagctg agcctgagcc agcagcagat
                                                                      60
ggggtgggag cagcatctcg agacctggaa aaacatggag caatcacaag tagcaataca
                                                                     120
gcaactaata acgctgcttg tgcctggcta gaagcacaag aggaagagga agtgggtttt
                                                                     180
ccagtcagac ctcaggtacc tttaagacca atgacttaca agggagcttt agatcttagc
                                                                     240
cactttttaa aagaaaaggg gggactggaa gggttaattt actccccaaa aagacaagag
                                                                     300
atcettgate tgtgggteta ceacacacaa ggetaettee etgattggea gaactacaca
                                                                     360
ccagggccag gggtcagata tccactgacc tttggatggt gcttcaagtt agtaccagtt
                                                                     420
```

```
gaaccagatg aagaagagaa cagcagcctg ttacaccctg cgagcctgca tqqqacaqaq
                                                                      480
gacacggaga gagaagtgtt aaagtggaag tttgacagcc atctagcatt tcatcacaaq
                                                                      540
gcccgagagc tgcatccgga gtactacaaa gactgcgctc tggccgccqt tqaqccaqta
                                                                      600
gatectagae tagageeetg gaageateea ggaagteage etaggaeeee ttqtaceaat
                                                                      660
tgctattgta aaaagtgttg ccttcattgc caagtttgtt tcacaagaaa aggcttaggc
                                                                      720
atctcctatg gcaggaagaa gcggagacag cgacgaagag ctcctcaaga cagtcagact
                                                                      780
catcaagttt ctctaccaaa gcaaccctcc tcccagcaac gaggggaccc gacaggcccg
                                                                      840
aagaaatccg gactggccat cctgctgagc gacgaagagc tcctcaagac agtcagactc
                                                                      900
atcaagtttc tctaccaaag caacctcct cccagcaacg aggggacccg acaggcccga
                                                                     960
agaaatcgaa gaagaaggtg gagagagaga cagaggcaga tccgttcgat tagtgagcgg
                                                                     1020
attettagea ettttetggg acgacetgeg gageetgtge etetteaget accqccqctt
                                                                     1080
gagagactta ctcttgattg tagcgaagat tgtggaaact ctgggacgca gggggtggga
                                                                     1140
agtcctcaag tattggtgga atga
                                                                     1164
<210> 7
<211> 1173
<212> DNA
<213> Artificial Sequence
<223> Protein comprised of Immunodominant parts of the Nef-Tat-Rev
separated by protease sites(NTR)
<400>
atgggatggc ctactgtaag ggaaagaatg aaacaagctg agcctgagcc agcagcagat
ggggtgggag cagcatctcg agacctggaa aaacatggag caatcacaag tagcaataca
                                                                      120
gcaactaata acgctgcttg tgcctggcta gaagcacaag aggaagagga agtgggtttt
                                                                      180
ccagtcagac ctcaggtacc tttaagacca atgacttaca agggagcttt agatcttagc
                                                                      240
cactttttaa aagaaaaggg gggactggaa gggttaattt actccccaaa aagacaagag
                                                                      300
atcettgate tgtgggteta ceacacaca ggetaettee etgattggea gaactacaca
                                                                      360
ccagggccag gggtcagata tccactgacc tttggatggt gcttcaagtt agtaccagtt
                                                                      420
gaaccagatg aagaagagaa cagcagcctg ttacaccctg cgagcctgca tgggacagag
                                                                      480
gacacggaga gagaagtgtt aaagtggaag tttgacagcc atctagcatt tcatcacaag
                                                                      540
gcccgagagc tgcatccgga gtactacaaa gactgcgctc tggccttcaa gcgggttgag
                                                                      600
ccagtagate ctagactaga gecetggaag catecaggaa gteagectag gacceettgt
                                                                      660
accaattgct attgtaaaaa gtgttgcctt cattgccaag tttgtttcac aagaaaaggc
                                                                      720
ttaggcatct cctatggcag gaagaagcgg agacagcgac gaagagctcc tcaagacagt
                                                                      780
cagacteate aagtttetet accaaageaa ceeteeteee ageaacgagg ggaceegaca
                                                                      840
ggcccgaaga aatccgtacg ggagaagcgg ctgctgagcg acgaaqaqct cctcaaqaca
                                                                      900
gtcagactca tcaagtttct ctaccaaagc aaccctcctc ccagcaacga ggggacccga
                                                                      960
caggcccgaa gaaatcgaag aagaaggtgg agagagac agaggcagat ccgttcgatt
                                                                    1020
agtgagcgga ttcttagcac ttttctggga cgacctgcgg agcctgtgcc tcttcagcta
                                                                    1080
ccgccgcttg agagacttac tcttgattgt agcgaagatt gtggaaactc tgggacgcag
                                                                    1140
ggggtgggaa gtcctcaagt attggtggaa tga
                                                                    1173
<210> 8
<211> 1161
<212> DNA
<213> Artificial Sequence
<220>
<223> Protein comprised of Immunodominant parts of the regulatory proteins
Nef-Tat-Rev started from aal of Nef (N11TR)
<400> 8
atgtggccta ctgtaaggga aagaatgaaa caagctgagc ctgagccagc agcagatggg
                                                                      60
gtgggagcag catctcgaga cctggaaaaa catggagcaa tcacaagtag caatacagca
                                                                     120
actaataacg ctgcttgtgc ctggctagaa gcacaagagg aagaggaagt gggttttcca
                                                                     180
gtcagacctc aggtaccttt aagaccaatg acttacaagg gagctttaga tcttagccac
                                                                     240
tttttaaaag aaaagggggg actggaaggg ttaatttact ccccaaaaag acaaqaqatc
                                                                     300
cttgatctgt gggtctacca cacacaaggc tacttccctg attggcagaa ctacacacca
                                                                     360
gggccagggg tcagatatcc actgaccttt ggatggtgct tcaagttagt accagttgaa
                                                                     420
ccagatgaag aagagaacag cagcctgtta caccctgcga gcctgcatgg gacagaggac
                                                                     480
```

```
acggagagag aagtgttaaa gtggaagttt gacagccatc tagcatttca tcacaaggcc
cgagagctgc atccggagta ctacaaagac tgcgctctgg ccgccgttga gccagtagat
                                                                      600
cctagactag agccctggaa gcatccagga agtcagccta ggaccccttg taccaattgc
                                                                      660
tattgtaaaa agtgttgcct tcattgccaa gtttgtttca caagaaaaqq cttaqqcatc
                                                                      720
tectatggca ggaagaageg gagacagega egaagagete etcaagacag teagacteat
                                                                     780
caagtttete taccaaagca accetectee cagcaacgag gggaccegac aggecegaag
                                                                     840
aaatccggac tggccatcct gctgagcgac gaagagctcc tcaagacagt cagactcatc
                                                                     900
aagtttetet accaaageaa eeeteeteee agcaaegagg ggaceegaca ggeeegaaga
                                                                     960
aatcgaagaa gaaggtggag agagagacag aggcagatcc gttcgattag tgagcggatt
                                                                    1020
cttagcactt ttctgggacg acctgcggag cctgtgcctc ttcagctacc gccgcttgag
                                                                    1080
agacttactc ttgattgtag cgaagattgt ggaaactctg ggacqcaggg ggtqqqaaqt
                                                                    1140
cctcaagtat tggtggaatg a
                                                                    1161
<210>
<211> 1170
<212> DNA
<213> Artificial Sequence
<220>
<223> Protein comprised of Immunodominant parts of the regulatory proteins
Nef-Tat-Rev started from aal of Nef separated by protease sites (N11TR)
<400> 9
atgtggccta ctgtaaggga aagaatgaaa caagctgagc ctgagccagc agcagatggg
                                                                      60
gtgggagcag catctcgaga cctggaaaaa catggagcaa tcacaagtag caatacagca
                                                                     120
actaataacg ctgcttgtgc ctggctagaa gcacaagagg aagaggaagt gggttttcca
                                                                     180
gtcagacctc aggtaccttt aagaccaatg acttacaagg gagctttaga tcttagccac
                                                                     240
tttttaaaag aaaagggggg actggaaggg ttaatttact ccccaaaaag acaagagatc
                                                                     300
cttgatctgt gggtctacca cacacaaggc tacttccctg attggcagaa ctacacacca
                                                                     360
gggccagggg tcagatatcc actgaccttt ggatggtgct tcaagttagt accagttgaa
                                                                     420
ccagatgaag aagagaacag cagcctgtta caccctgcga gcctgcatgg gacagaggac
                                                                     480
acggagagag aagtgttaaa gtggaagttt gacagccatc tagcatttca tcacaaqqcc
                                                                     540
cgagagctgc atccggagta ctacaaagac tgcgctctgg ccttcaagcg ggttgagcca
                                                                     600
gtagatecta gactagagee etggaageat ecaggaagte ageetaggae ecettgtace
                                                                     660
aattgctatt gtaaaaagtg ttgccttcat tgccaagttt gtttcacaag aaaaggctta
                                                                     720
ggcatetect atggcaggaa gaageggaga cagegaegaa gageteetea aqacaqteaq
                                                                     780
actcatcaag tttctctacc aaagcaaccc tcctcccagc aacgagggga cccgacaggc
                                                                     840
ccgaagaaat ccgtacggga gaagcggctg ctgagcgacg aagagctcct caagacagtc
                                                                     900
agactcatca agtttctcta ccaaagcaac cctcctccca gcaacgaggg gacccgacag
                                                                     960
gcccgaagaa atcgaagaag aaggtggaga gagagacaga ggcagatccg ttcgattagt
                                                                    1020
gageggatte ttageacttt tetgggaega cetgeggage etgtgeetet teagetaceg
                                                                    1080
cegettgaga gaettaetet tgattgtage gaagattgtg gaaactetgg gaegeagggg
                                                                    1140
gtgggaagtc ctcaagtatt ggtggaatga
                                                                    1170
<210> 10
<211> 663
<212> DNA
<213> Artificial Sequence
<220>
<223> Protein comprised of Cytotoxic T-cell epitopes of Pol and Env genes
(CTL)
<400> 10
atgatcaccc tgtggcagcg ccccctggtg gccctgatcg agatctgcac cgagatggag
                                                                      60
aaggagggca agatcagcaa gatcggcccc gccggcctga agaagaagaa gagcgtgacc
                                                                     120
gtgctggacg tgggcgacgc ctacttcagc gtgcccctgg ataaqqactt ccqcaaqtac
                                                                     180
accgcettea ceatececag catetggaag ggeageeeeg ceatetteea qaqeaqeatq
                                                                     240
accaagaagc agaaccccga catcgtgatc taccagtaca tggacgacct gtacgtgccc
                                                                     300
atcgtgctgc ccgagaagga cagctggctg gtgggcaagc tgaactgggc cagccagatc
                                                                     360
tacgccggca tcaaggtgaa gcagctgatc ctgaaggagc ccgtgcacgg cgtgtacgag
                                                                    420
cccatcgtgg gcgccgagac cttctacgtg gacggcgccg ccaaccgcgc cggcaacctg
                                                                    480
tgggtgaccg tgtactacgg cgtgcccgtg tggaaggagg ccaccaccac cctggtggag
                                                                     540
```

```
cgctacctgc gcgaccagca gctgctgggc atctggggct gcgcctgcac cccctacgac
                                                                      600
atcaaccaga tgctgegegg ccctggccgc gccttcgtga ccatccgcca gggcagcctg
                                                                      660
                                                                      663
<210>
       11
<211>
       1266
<212> DNA
<213> Artificial Sequence
<220>
<223>
      Truncated Gag protein sequence (dgag)
<400>
atgttagaca aatgggaaaa aattcggtta aggccagggg gaaagaaaaa atatcaatta
                                                                       60
aaacatatag tatgggcaag cagggagcta gaacgattcg cagttaatcc tggcctgtta
                                                                      120
gaaacatcag aaggctgtag acagataatg ggacagctac aaccgtccct tcagacagga
                                                                      180
tcagaagaac ttagatcatt atataataca gtagcaaccc tctattgtgt gcatcaaaag
                                                                      240
atagaggtaa aagacaccaa ggaagcttta gacaaggtag aggaagagca aaacaacagt
                                                                      300
aagaaaaagg cacagcaaga agcagctgac gcaggaaaca gaaaccaggt cagccaaaat
                                                                      360
taccctatag tgcaaaacct acagggacaa atggtacatc aggccatatc acctagaact
                                                                      420
ttaaatgcat gggtaaaagt agtggaagag aaggctttca gcccagaagt aatacccatg
                                                                      480
ttttcagcat tatcagaagg agccacccca caagatttaa acaccatgct aaacacagtg
                                                                     540
gggggacatc aagcagccat gcaaatgtta aaagaaacca tcaatgagga agctgcagaa
                                                                      600
tgggatagat tgcacccagt gcatgcaggg cctattgcac caggccagat gagagaacca
                                                                     660
aggggaagtg acatagcagg aactactagt accettcagg aacaaatagg atggatgaca
                                                                      720
aataatccac ctatcccagt aggagaaata tataagagat ggataatcct gggattaaat
                                                                     780
aaaatagtaa gaatgtatag ccctaccagc attctggata taaaacaagg accaaaagaa
                                                                     840
ccctttagag attatgtaga ccggttctat aaaaccctaa gagccgagca agctacacag
                                                                     900
gaagtaaaaa attggatgac agaaaccttg ttggtccaaa atgcgaatcc agattqtaaq
                                                                     960
actattttaa aagcattagg accagcaget acactagaag aaatgatgac agcatqtcag
                                                                    1020
ggagtggggg gacccggcca taaagcaaga gttttggctg aagcaatgag ccaagtaaca
                                                                    1080
ggttcagctg ccataatgat gcagagaggc aattttagga accaaagaaa gactgttaag
                                                                    1140
tgtttcaatt gtggcaaaga agggcacata gccagaaatt gcagggcccc taggaaaaag
                                                                    1200
ggctgttgga aatgtggaaa ggaaggacat caaatgaagg attgcacaga aagacaggct
                                                                    1260
aattag
                                                                    1266
<210> 12
<211> 1092
<212> DNA
<213> Artificial Sequence
<220>
<223> Synthetic coding sequence for p17/24 protein of Gag gene (syn 17/24)
<400> 12
atgggcgcaa gagcctccgt gctgagcggc ggagagctgg acaagtggga gaagatccgc
ctgcgccccg gcggcaagaa gaagtaccag ctgaagcaca tcgtgtgggc cagccgcgag
                                                                     120
ctggageget tegeegtgaa eeceggeetg etegagaeea gegaaggetg eegeeagate
                                                                     180
atgggccagc tccagcccag cctccagacc ggcagcgagg agctgcgcag cctgtacaac
                                                                     240
acceptageca cectetacte egtecaccae aagategage teaaggacae caaggagee
                                                                     300
ctggacaagg tggaggagga gcagaacaac agcaagaaga aggcccagca ggaggccgcc
                                                                     360
gacgccggca accgcaacca ggtgagccag aactacccca tcgtgcagaa cctgcagggc
                                                                     420
cagatggtgc accaggccat cagcccccgc accctgaacg cctgggtgaa ggtggtggag
                                                                     480
gagaaggeet teageeeega ggtgateeee atgtteageg eeetgagega gggegetaee
                                                                     540
ccccaggacc tgaacaccat gctgaacacc gtgggcggcc accaggccgc catgcagatg
                                                                     600
ctgaaggaga ccatcaacga ggaggccgcc gagtgggacc gcctgcaccc cgtgcacgcc
                                                                     660
gggcccatcg ccccggcca gatgcgcgag ccccgcggca gcgacatcgc cggcaccacc
                                                                     720
agcaccctcc aggagcagat cggctggatg accaacaacc cccccatccc cgtgggcgag
                                                                     780
atctacaagc gctggatcat cctgggcctg aacaagatcg tccgcatgta cagcccacc
                                                                     840
agcatectgg acateaagea gggeeecaag gageeettee gegaetaegt ggaeegette
                                                                     900
tacaagaccc tgcgcgccga gcaggccacc caggaggtga agaactggat gaccgagacc
                                                                     960
ctgctggtgc agaacgccaa ccccgactgc aagaccatcc tcaaggccct gggacccgcc
                                                                    1020
gccaccctgg aggagatgat gaccgcctgc caaggcgtgg gcggccccgg ccacaaggcc
                                                                    1080
```

```
cgcgtgctgt ga
                                                                       1092
 <210> 13
<211> 1092
<212> DNA
<213> Artificial Sequence
<220>
<223> Synthetic coding sequence for p17/24 protein of Gag gene optimized
for expression in eukaryotic cells (optp17/24)
<400>
       13
atgggcgcaa gagcctccgt gctgagcggc ggagagctgg acaagtggga gaagatccqc
                                                                         60
ctgcgccccg gcggcaagaa gaagtaccag ctgaagcaca tcgtgtgggc cagccgcgag
                                                                        120
ctggagcgct tcgccgtgaa ccccggcctg ctcgagacca gcgaaggctg ccgccagatc
                                                                        180
atgggccagc tccagcccag cctccagacc ggcagcgagg agctgcgcag cctgtacaac
                                                                        240
accgtggcca ccctgtactg cgtgcaccag aagatcgagg tgaaggacac caaggaggcc
                                                                        300
ctggacaagg tggaggagga gcagaacaac agcaagaaga aggcccagca ggaggccgcc
                                                                        360
gacgccggca accgcaacca agtcagccag aactacccca tcgtgcagaa cctgcagggc
                                                                        420
cagatggtgc accaggccat cagccccgc accctgaacg cctgggtgaa ggtggtggag
                                                                        480
gagaaggeet teageceega ggtgateeee atgtteageg ceetgagega gggegetace
                                                                        540
ccccaggacc tgaacaccat gctgaacacc gtgggcggcc accaggccgc catgcagatg
                                                                        600
ctgaaggaga ccatcaacga ggaggccgcc gagtgggacc gcctgcaccc cgtgcacgcc
                                                                        660
gggcccatcg ccccggcca gatgcgcgag ccccgcggca gcgacatcgc cggcaccacc
                                                                        720
agcaccetee aggageagat eggetggatg accaacaace eccecatece egtgggegag
                                                                        780
atctacaagc gctggatcat cctgggcctg aacaagatcg tccgcatgta cagcccacc
                                                                        840
agcatcctgg acatcaagca gggccccaag gagcccttcc gcgactacgt ggaccgcttc
                                                                        900
tacaagaccc tgcgcgccga gcaggccacc caggaggtga agaactggat gaccgagacc
                                                                        960
ctgctggtgc agaacgccaa ccccgactgc aagaccatcc tcaaggccct gggacccgcc
                                                                       1020
gccaccctgg aggagatgat gaccgcctgc caaggcgtgg gcggccccgg ccacaaggcc
                                                                       1080
cgcgtgctgt ga
                                                                       1092
<210> 14
<211> 1926
<212> DNA
<213> Artificial Sequence
<220>
<223> Hybrid protein cds comprised of Tat-Rev-Nef and CTL (TRN-CTL)
<400>
atggagccag tagatcctag actagagccc tggaagcatc caggaagtca gcctaggacc
                                                                         60
cettgtacca attgctattg taaaaagtgt tgccttcatt gccaagtttg tttcacaaga
                                                                        120
aaaggettag geateteeta tggeaggaag aageggagae agegaegaag ageteeteaa
                                                                        180
gacagtcaga ctcatcaagt ttctctacca aagcaaccct cctcccagca acgaggggac
                                                                       240
ccgacaggcc cgaagaaatc gaagaagaag gtggagagag agacagaggc agatccgttc
                                                                       300
gatactagtg caggaagaag cggagacagc gacgaagagc tcctcaagac agtcagactc
                                                                       360
atcaagtttc tctaccaaag caaccctcct cccagcaacg aggggacccg acaggcccga
                                                                       420
agaaatcgaa gaagaaggtg gagagagaga cagaggcaga tccgttcgat tagtgagcgg
                                                                       480
attettagea ettttetggg acgacetgeg gageetgtge etetteaget acegeegett gagagaetta etettgattg tagegaagat tgtggaaact etgggaegea gggggtggga
                                                                       540
                                                                       600
agtecteaag tattggtgga ateteetgea gtattggage caggaactaa agaaaaqett
                                                                       660
gtgggcaagt ggtcaaaatg tagtggatgg cctactgtaa gggaaagaat gaaacaagct
                                                                       720
gagectgage cageageaga tggggtggga geageatete gagaeetgga aaaacatqqa
                                                                       780
gcaatcacaa gtagcaatac agcaactaat aacgctgctt gtgcctggct agaagcacaa
                                                                       840
gaggaagagg aagtgggttt tecagteaga ceteaggtae etttaagace aatgaettae
                                                                       900
aagggagctt tagatcttag ccacttttta aaagaaaagg ggggactgga agggttaatt
                                                                       960
tactccccaa aaagacaaga gatccttgat ctgtgggtct accacacaca aqqctacttc
                                                                      1020
cctgattggc agaactacac accagggcca ggggtcagat atccactgac ctttggatgg
                                                                      1080
tgcttcaagt tagtaccagt tgaaccagat gaagaagaga acagcagcct gttacaccct
                                                                      1140
gcgagcctgc atgggacaga ggacacggag agagaagtgt taaagtggaa gtttgacagc
                                                                      1200
catctagcat ttcatcacaa ggcccgagag ctgcatccgg agtactacaa agactgcgcg
                                                                      1260
geogteatea ecetgtggea gegeeecetg gtggeeetga tegagatetg caeegagatg
                                                                      1320
```

```
gagaaggagg gcaagatcag caagatcggc cccgccggcc tgaagaagaa gaagagcgtg
accepted acc
                                                                                                              1440
tacaccgcct tcaccatccc cagcatctgg aagggcagcc ccgccatctt ccagagcagc
                                                                                                              1500
atgaccaaga agcagaaccc cgacatcgtg atctaccagt acatggacga cctgtacgtg
                                                                                                              1560
cccatcgtgc tgcccgagaa ggacagctgg ctggtgggca agctgaactg ggccagccag
                                                                                                              1620
atctacgccg gcatcaaggt gaagcagctg atcctgaagg agcccgtgca cggcgtgtac
                                                                                                              1680
gageceateg tgggegeega gaeettetae gtggaeggeg cegecaaceg egeeggeaac
                                                                                                              1740
ctgtgggtga ccgtgtacta cggcgtgccc gtgtggaagg aggccaccac caccctggtg
                                                                                                              1800
gagcgctacc tgcgcgacca gcagctgctg ggcatctggg gctgcgcctg cacccctac
                                                                                                              1860
gacatcaacc agatgctgcg cggccctggc cgcgccttcg tgaccatccg ccagggcagc
                                                                                                              1920
                                                                                                              1926
<210> 15
          1926
<211>
<212> DNA
<213> Artificial Sequence
<220>
<223> Hybrid protein cds comprised of Rev-Nef-Tat and CTL (RNT-CTL)
<400> 15
atggcaggaa gaagcggaga cagcgacgaa gagctcctca agacagtcag actcatcaaq
                                                                                                                 60
tttctctacc aaagcaaccc tcctcccagc aacgagggga cccgacaggc ccgaagaaat
                                                                                                                120
cgaagaagaa ggtggagaga gagacagagg cagatccgtt cgattagtga gcggattctt
                                                                                                                180
ageactttte tgggaegaec tgeggageet gtgeetette agetaeegee gettgagaga
                                                                                                                240
cttactcttg attgtagcga agattgtgga aactctggga cgcagggggt gggaagtcct
                                                                                                                300
caagtattgg tggaatctcc tgcagtattg gagccaggaa ctaaagaaac tagtgtgggc
                                                                                                                360
aagtggtcaa aatgtagtgg atggcctact gtaagggaaa gaatgaaaca agctgagcct
                                                                                                                420
gagccagcag cagatggggt gggagcagca tctcgagacc tggaaaaaca tggagcaatc
                                                                                                                480
acaagtagca atacagcaac taataacgct gcttgtgcct ggctagaagc acaagaggaa
                                                                                                                540
gaggaagtgg gttttccagt cagacctcag gtacctttaa gaccaatgac ttacaaggga
                                                                                                                600
gctttagatc ttagccactt tttaaaagaa aaggggggac tggaagggtt aatttactcc
                                                                                                                660
ccaaaaagac aagagatcct tgatctgtgg gtctaccaca cacaaggcta cttccctqat
                                                                                                                720
tggcagaact acacaccagg gccaggggtc agatatccac tgacctttgg atggtgcttc
                                                                                                               780
aagttagtac cagttgaacc agatgaagaa gagaacagca gcctgttaca ccctgcgagc
                                                                                                               840
ctgcatggga cagaggacac ggagagagaa gtgttaaagt ggaagtttga cagccatcta
                                                                                                                900
gcatttcatc acaaggcccg agagctgcat ccggagtact acaaagactg caagcttgag
                                                                                                               960
ccagtagatc ctagactaga gccctggaag catccaggaa gtcagcctag gaccccttgt
                                                                                                              1020
accaattgct attgtaaaaa gtgttgcctt cattgccaag tttgtttcac aagaaaaggc
                                                                                                              1.080
ttaggcatct cctatggcag gaagaagcgg agacagcgac gaagagctcc tcaagacagt
                                                                                                              1140
cagacteate aagtttetet accaaageaa eeeteeteee agcaacgagg ggaceegaca
                                                                                                              1200
ggcccgaaga aatcgaagaa gaaggtggag agagagacag aggcagatcc gttcgatgcg
                                                                                                              1260
gccgtcatca ccctgtggca gcgcccctg gtggccctga tcgagatctg caccgagatg
                                                                                                              1320
gagaaggagg gcaagatcag caagatcggc cccgccggcc tgaagaagaa gaagagcgtg
                                                                                                              1380
acceptgetgg acceptgggega cocctacttc acceptgcccc togataacga cttccccaag
                                                                                                              1440
tacaccgcct tcaccatccc cagcatctgg aagggcagcc ccgccatctt ccagagcagc
                                                                                                              1500
atgaccaaga agcagaaccc cgacatcgtg atctaccagt acatggacga cctgtacqtg
                                                                                                              1560
cccatcgtgc tgcccgagaa ggacagctgg ctggtgggca agctgaactg ggccagccag
                                                                                                              1620
atctacgccg gcatcaaggt gaagcagctg atcctgaagg agcccgtgca cggcgtgtac
                                                                                                              1680
gagcccatcg tgggcgccga gaccttctac gtggacggcg ccgccaaccg cgccggcaac
                                                                                                              1740
ctgtgggtga ccgtgtacta cggcgtgccc gtgtggaagg aggccaccac caccctqqtq
                                                                                                              1800
gagegetace tgegegacea geagetgetg ggeatetggg getgegeetg caccecetae
                                                                                                              1860
gacatcaacc agatgctgcg cggccctggc cgcgccttcg tgaccatccg ccagggcaqc
                                                                                                             1920
ctgtag
                                                                                                              1926
<210>
          16
<211> 2529
<212> DNA
<213> Artificial Sequence
<220>
<223> Hybrid protein cds comprised of Tat-Rev-Nef and truncated Gag
protein (TRN-dgag)
```

```
<400> 16
atggagccag tagatcctag actagagccc tggaagcatc caggaagtca gcctaggacc
                                                                       60
ccttgtacca attgctattg taaaaagtgt tgccttcatt qccaaqtttq tttcacaaqa
                                                                      120
aaaggcttag gcatctccta tggcaggaag aagcggagac agcgacgaag agctcctcaa
                                                                      180
gacagtcaga ctcatcaagt ttctctacca aagcaaccct cctcccagca acgaggggac
                                                                      240
ccgacaggcc cgaagaaatc gaagaagaag gtggagagag agacagaggc agatccgttc
                                                                      300
gatactagtg caggaagaag cggagacagc gacgaaqagc tcctcaagac aqtcagactc
                                                                      360
atcaagtttc tctaccaaag caaccttct cccagcaacg aggggacccg acaggcccga
                                                                      420
agaaatcgaa gaagaaggtg gagagagaga cagaggcaga tccgttcgat tagtgagcgg
                                                                      480
attettagea ettttetggg acgacetgeg gageetgtge etetteaget aceqeeqett
                                                                      540
gagagactta ctcttgattg tagcgaagat tgtggaaact ctgggacgca gggggtggga
                                                                      600
agtecteaag tattggtgga ateteetgea gtattggage caggaactaa agaaaagett
                                                                      660
gtgggcaagt ggtcaaaatg tagtggatgg cctactgtaa gggaaagaat gaaacaagct
                                                                      720
gageetgage cageageaga tggggtggga geageatete gagaeetgga aaaacatgga
                                                                      780
gcaatcacaa gtagcaatac agcaactaat aacgctgctt gtgcctggct agaagcacaa
                                                                      840
gaggaagagg aagtgggttt tccagtcaga cctcaggtac ctttaagacc aatgacttac
                                                                      900
aagggagctt tagatcttag ccacttttta aaagaaaagg ggggactgga agggttaatt
                                                                     960
tactccccaa aaagacaaga gatccttgat ctgtgggtct accacacaca aggctacttc
                                                                     1020
cctgattggc agaactacac accagggcca ggggtcagat atccactgac ctttggatgg
                                                                     1080
tgcttcaagt tagtaccagt tgaaccagat gaagaagaga acagcagcct gttacaccct
                                                                     1140
gcgagcctgc atgggacaga ggacacggag agagaagtgt taaagtggaa gtttgacagc
                                                                     1200
catctagcat ttcatcacaa ggcccgagag ctgcatccgg agtactacaa agactgcgcg
                                                                     1260
gccgtgttag acaaatggga aaaaattcgg ttaaggccag ggggaaagaa aaaatatcaa
                                                                     1320
ttaaaacata tagtatgggc aagcagggag ctagaacgat tcgcagttaa tcctggcctg
                                                                     1380
ttagaaacat cagaaggctg tagacagata atgggacagc tacaaccgtc ccttcaqaca
                                                                     1440
ggatcagaag aacttagatc attatataat acagtagcaa ccctctattg tgtgcatcaa
                                                                     1500
aagatagagg taaaagacac caaggaagct ttagacaagg tagaggaaga gcaaaacaac
                                                                     1560
agtaagaaaa aggcacagca agaagcagct gacgcaggaa acagaaacca ggtcagccaa
                                                                     1620
aattacccta tagtgcaaaa cctacaggga caaatggtac atcaggccat atcacctaga
                                                                     1680
actttaaatg catgggtaaa agtagtggaa gagaaggctt tcagcccaga agtaataccc
                                                                     1740
atgttttcag cattatcaga aggagccacc ccacaagatt taaacaccat gctaaacaca
                                                                     1800
gtggggggac atcaagcagc catgcaaatg ttaaaagaaa ccatcaatga ggaagctgca
                                                                     1860
gaatgggata gattgcaccc agtgcatgca gggcctattg caccaggcca gatgagagaa
                                                                     1920
ccaaggggaa gtgacatagc aggaactact agtaccette aggaacaaat aggatggatg
                                                                     1980
acaaataatc cacctatccc agtaggagaa atatataaga gatggataat cctqqqatta
                                                                     2040
aataaaatag taagaatgta tagccctacc agcattctgg atataaaaca aggaccaaaa
                                                                     2100
gaaccettta gagattatgt agaccggtte tataaaaece taagageega geaagetaea
                                                                     2160
caggaagtaa aaaattggat gacagaaacc ttgttggtcc aaaatgcgaa tccagattgt
                                                                     2220
aagactattt taaaagcatt aggaccagca gctacactag aagaaatgat gacagcatgt
                                                                     2280
cagggagtgg ggggacccgg ccataaagca agagttttgg ctgaagcaat gagccaagta
                                                                     2340
acaggttcag ctgccataat gatgcagaga ggcaatttta ggaaccaaag aaagactgtt
                                                                     2400
aagtgtttca attgtggcaa agaagggcac atagccagaa attgcagggc ccctaggaaa
                                                                     2460
aagggctgtt ggaaatgtgg aaaggaagga catcaaatga aggattgcac agaaagacag
                                                                     2520
gctaattag
                                                                     2529
<210> 17
<211> 3195
<212> DNA
<213> Artificial Sequence
<223> Hybrid protein cds comprised of Tat-Rev-Nef, CTL and truncated Gag
protein (TRN-CTL-dgag)
<400> 17
atggagccag tagatcctag actagagccc tggaagcatc caggaagtca gcctaggacc
                                                                       60
ccttgtacca attgctattg taaaaagtgt tgccttcatt gccaagtttg tttcacaaga
                                                                     120
aaaggettag geateteeta tggeaggaag aageggagae agegaegaag ageteeteaa
                                                                     180
gacagteaga eteateaagt ttetetacea aageaaceet eeteecagea acgagggae
                                                                     240
ccgacaggcc cgaagaaatc gaagaagaag gtggagagag agacagaggc agatccgttc
                                                                     300
gatactagtg caggaagaag cggagacagc gacgaagagc tcctcaagac agtcagactc
                                                                     360
atcaagtttc tctaccaaag caaccctcct cccagcaacg aggggacccg acaggcccga
                                                                     420
agaaatcgaa gaagaaggtg gagagagaga cagaggcaga tccgttcgat tagtgagcgg
                                                                     480
```

```
attettagea ettttetggg acgaeetgeg gageetgtge etetteaget acegeegett
                                                                       540
gagagactta ctcttgattg tagcgaagat tgtggaaact ctgggacgca gggggtggga
                                                                       600
agtoctcaag tattggtgga atotcctgca gtattggago caggaactaa agaaaagott
                                                                       660
gtgggcaagt ggtcaaaatg tagtggatgg cctactgtaa gggaaagaat gaaacaagct
                                                                       720
gagectgage cageageaga tggggtggga geageatete gagaectgga aaaacatgga
                                                                       780
gcaatcacaa gtagcaatac agcaactaat aacgctgctt gtgcctggct agaagcacaa
                                                                       840
gaggaagagg aagtgggttt tccagtcaga cctcaggtac ctttaagacc aatgacttac
                                                                       900
aaggagett tagatettag ceactitta aaagaaaagg ggggaetgga agggttaatt taeteecaa aaagacaaga gateettgat etgtgggtet accacacaca aggetaette
                                                                       960
                                                                      1020
cctgattggc agaactacac accagggcca ggggtcagat atccactgac ctttggatgg
                                                                      1080
tgcttcaagt tagtaccagt tgaaccagat gaagaagaga acagcagcct gttacaccct
                                                                      1140
gcgagcctgc atgggacaga ggacacggag agagaagtgt taaaqtggaa gtttgacagc
                                                                      1200
catctagcat ttcatcacaa ggcccgagag ctgcatccgg agtactacaa agactgcgcg
                                                                      1260
gccgtcatca ccctgtggca gcgcccctg gtggccctga tcgagatctg caccgagatg
                                                                      1320
gagaaggagg gcaagatcag caagatcggc cccgccggcc tgaagaagaa gaagagcgtg
                                                                      1380
accgtgctgg acgtgggcga cgcctacttc agcgtgcccc tggataagga cttccgcaag
                                                                      1440
tacaccgcct tcaccatccc cagcatctgg aagggcagcc ccgccatctt ccagagcagc
                                                                      1500
atgaccaaga agcagaaccc cgacatcgtg atctaccagt acatggacga cctgtacgtg
                                                                     1560
cccatcgtgc tgcccgagaa ggacagctgg ctggtgggca agctgaactg ggccagccag
                                                                     1620
atctacgccg gcatcaaggt gaagcagctg atcctgaagg agcccgtgca cggcgtgtac
                                                                      1680
gagcccatcg tgggcgccga gaccttctac gtggacggcg ccgccaaccg cgccggcaac
                                                                      1740
ctgtgggtga ccgtgtacta cggcgtgccc gtgtggaagg aggccaccac caccctggtg
                                                                      1800
gagegetace tgegegacea geagetgetg ggeatetggg getgegeetg caccecetae
                                                                      1860
gacatcaacc agatgctgcg cggccctggc cgcgccttcg tgaccatccg ccagggcagc
                                                                      1920
ctggcggccg tgttagacaa atgggaaaaa attcggttaa ggccaggggg aaagaaaaaa
                                                                     1980
tatcaattaa aacatatagt atgggcaagc agggagctag aacgattcgc agttaatcct
                                                                      2040
ggcctgttag aaacatcaga aggctgtaga cagataatgg gacagctaca accgtccctt
                                                                      2100
cagacaggat cagaagaact tagatcatta tataatacag tagcaaccct ctattgtgtg
                                                                      2160
catcaaaaga tagaggtaaa agacaccaag gaagctttag acaaggtaga ggaagagcaa
                                                                      2220
aacaacagta agaaaaaggc acagcaagaa gcagctgacg caggaaacag aaaccaggtc
                                                                      2280
agccaaaatt accctatagt gcaaaaccta cagggacaaa tggtacatca ggccatatca
                                                                     2340
cctagaactt taaatgcatg ggtaaaagta gtggaagaga aggctttcag cccagaagta
                                                                     2400
atacccatgt tttcagcatt atcagaagga gccaccccac aagatttaaa caccatgcta
                                                                     2460
aacacagtgg ggggacatca agcagccatg caaatgttaa aagaaaccat caatgaggaa
                                                                     2520
gctgcagaat gggatagatt gcacccagtg catgcagggc ctattgcacc aggccagatg
                                                                     2580
agagaaccaa ggggaagtga catagcagga actactagta cccttcagga acaaatagga
                                                                     2640
tggatgacaa ataatccacc tatcccagta ggagaaatat ataagagatg gataatcctg
                                                                     2700
ggattaaata aaatagtaag aatgtatagc cctaccagca ttctggatat aaaacaagga
                                                                     2760
ccaaaagaac cctttagaga ttatgtagac cggttctata aaaccctaag agccgagcaa
                                                                     2820
gctacacagg aagtaaaaaa ttggatgaca gaaaccttgt tggtccaaaa tgcgaatcca
                                                                     2880
gattgtaaga ctattttaaa agcattagga ccagcagcta cactagaaga aatgatgaca
                                                                     2940
gcatgtcagg gagtgggggg acceggccat aaagcaagag ttttggctga agcaatgagc
                                                                     3000
caagtaacag gttcagctgc cataatgatg cagagaggca attttaggaa ccaaagaaag
                                                                     3060
actgttaagt gtttcaattg tggcaaagaa gggcacatag ccagaaattg cagggcccct
                                                                     3120
aggaaaaagg gctgttggaa atgtggaaag gaaggacatc aaatgaagga ttgcacagaa
                                                                     3180
agacaggcta attag
                                                                     3195
<210> 18
<211>
      3195
<212> DNA
<213> Artificial Sequence
<220>
<223> Hybrid protein cds comprised of Rev-Nef-Tat, CTL and truncated Gag
protein (RNT-CTL-dgaq)
<400> 18
atggcaggaa gaagcggaga cagcgacgaa gagctcctca agacagtcag actcatcaag
                                                                       60
tttctctacc aaagcaaccc tcctcccagc aacgagggga cccgacaggc ccgaagaaat
                                                                      120
cgaagaagaa ggtggagaga gagacagagg cagatccgtt cgattagtga gcggattctt
                                                                      180
agcacttttc tgggacgacc tgcggagcct gtgcctcttc agctaccgcc gcttgagaga
                                                                      240
cttactcttg attgtagcga agattgtgga aactctggga cgcaggggt gggaagtcct
                                                                      300
caagtattgg tggaatctcc tgcagtattg gagccaggaa ctaaagaaac tagtgtgggc
                                                                      360
```

```
420
aagtggtcaa aatgtagtgg atggcctact gtaagggaaa gaatgaaaca agctgagcct
gagccagcag cagatgggt gggagcagca tctcgagacc tggaaaaaca tggagcaatc
                                                                     480
acaagtagca atacagcaac taataacgct gcttgtgcct ggctagaagc acaagaggaa
                                                                     540
                                                                      600
gaggaagtgg gttttccagt cagacctcag gtacctttaa gaccaatgac ttacaaggga
                                                                     660
gctttagatc ttagccactt tttaaaagaa aaggggggac tggaagggtt aatttactcc
ccaaaaagac aagagateet tgatetgtgg gtetaccaca cacaaggeta etteeetgat
                                                                     720
tggcagaact acacaccagg gccaggggtc agatatccac tgacctttgg atggtgcttc
                                                                     780
aagttagtac cagttgaacc agatgaagaa gagaacagca gcctgttaca ccctgcgagc
                                                                     840
                                                                     900
ctgcatggga cagaggacac ggagagagaa gtgttaaagt ggaagtttga cagccatcta
                                                                     960
gcatttcatc acaaggcccg agagctgcat ccggagtact acaaagactg caagcttgag
                                                                    1020
ccagtagatc ctagactaga gccctggaag catccaggaa gtcagcctag gaccccttgt
                                                                    1080
accaattgct attgtaaaaa gtgttgcctt cattgccaag tttgtttcac aagaaaaggc
ttaggcatct cctatggcag gaagaagcgg agacagcgac gaagagctcc tcaagacagt
                                                                    1140
                                                                    1200
cagactcatc aagtttetet accaaagcaa ceeteeteec agcaaegagg ggaceegaca
ggcccgaaga aatcgaagaa gaaggtggag agagagacag aggcagatcc gttcgatgcg
                                                                    1260
geogteatea ecetgtggea gegeecetg gtggeectga tegagatetg cacegagatg
                                                                    1320
gagaaggagg gcaagatcag caagatcggc cccgccggcc tgaagaagaa gaagagcgtg
                                                                    1380
acceptgetgg acgtgggega cgcctacttc agcgtgcccc tggataagga cttccgcaag
                                                                     1440
                                                                    1500
tacaccgcct tcaccatccc cagcatctgg aagggcagcc ccgccatctt ccagagcagc
atgaccaaga agcagaaccc cgacatcgtg atctaccagt acatggacga cctgtacgtg
                                                                    1560
cccatcgtgc tgcccgagaa ggacagctgg ctggtgggca agctgaactg ggccagccag
                                                                     1620
atctacgccg gcatcaaggt gaagcagctg atcctgaagg agcccgtgca cggcgtgtac
                                                                    1680
                                                                    1740
gageceateg tgggegeega gaeettetae gtggaeggeg eegeeaaceg egeeggeaae
ctgtgggtga ccgtgtacta cggcgtgccc gtgtggaagg aggccaccac caccctggtg
                                                                    1800
gaqcqctacc tgcgcqacca gcagctgctg ggcatctggg gctgcgcctg caccccctac
                                                                    1860
                                                                    1920
gacatcaacc agatgctgcg cggccctggc cgcgccttcg tgaccatccg ccagggcagc
                                                                    1980
ctggcggccg tgttagacaa atgggaaaaa attcggttaa ggccaggggg aaagaaaaaa
                                                                     2040
tatcaattaa aacatatagt atgggcaagc agggagctag aacgattcgc agttaatcct
ggcctgttag aaacatcaga aggctgtaga cagataatgg gacagctaca accgtccctt
                                                                    2100
cagacaggat cagaagaact tagatcatta tataatacag tagcaaccct ctattgtgtg
                                                                    2160
catcaaaaga tagaggtaaa agacaccaag gaagctttag acaaggtaga ggaagagcaa
                                                                     2220
                                                                     2280
aacaacagta agaaaaaggc acagcaagaa gcagctgacg caggaaacag aaaccaggtc
                                                                    2340
agccaaaatt accctatagt gcaaaaccta cagggacaaa tggtacatca ggccatatca
                                                                    2400
cctagaactt taaatgcatg ggtaaaagta gtggaagaga aggctttcag cccagaagta
atacccatgt tttcagcatt atcagaagga gccaccccac aagatttaaa caccatgcta
                                                                     2460
aacacagtgg ggggacatca agcagccatg caaatgttaa aagaaaccat caatgaggaa
                                                                    2520
                                                                    2580
gctgcagaat gggatagatt gcacccagtg catgcagggc ctattgcacc aggccagatg
agagaaccaa ggggaagtga catagcagga actactagta cccttcagga acaaatagga
                                                                    2640
                                                                     2700
tggatgacaa ataatccacc tatcccagta ggagaaatat ataagagatg gataatcctg
ggattaaata aaatagtaag aatgtatagc cctaccagca ttctggatat aaaacaagga
                                                                    2760
                                                                    2820
ccaaaagaac cctttagaga ttatgtagac cggttctata aaaccctaag agccgagcaa
                                                                    2880
gctacacagg aagtaaaaaa ttggatgaca gaaaccttgt tggtccaaaa tgcgaatcca
gattgtaaga ctattttaaa agcattagga ccagcagcta cactagaaga aatgatgaca
                                                                    2940
gcatgtcagg gagtgggggg acccggccat aaagcaagag ttttggctga agcaatgagc
                                                                    3000
                                                                    3060
caagtaacag gttcagctgc cataatgatg cagagaggca attttaggaa ccaaagaaag
                                                                    3120
actgttaagt gtttcaattg tggcaaagaa gggcacatag ccagaaattg cagggcccct
aggaaaaagg gctgttggaa atgtggaaag gaaggacatc aaatgaagga ttgcacagaa
                                                                    3180
                                                                    3195
agacaggcta attag
<210>
<211> 3195
<212> DNA
<213> Artificial Sequence
<220>
<223> Hybrid protein cds comprised of Tat-Rev-Nef, truncated Gag protein
and CTL (TRN-dgag-CTL)
<400> 19
atggagccag tagatcctag actagagccc tggaagcatc caggaagtca gcctaggacc
                                                                      60
ccttgtacca attgctattg taaaaagtgt tgccttcatt gccaagtttg tttcacaaga
                                                                     120
                                                                     180
aaaggettag geateteeta tggeaggaag aageggagae agegaegaag ageteeteaa
gacagtcaga ctcatcaagt ttctctacca aagcaaccct cctcccagca acgagggac
                                                                     240
```

```
300
ccgacaggcc cgaagaaatc gaagaagaag gtggagagag agacagaggc agatccgttc
gatactagtg caggaagaag cggagacagc gacgaagagc tcctcaagac agtcagactc
                                                                     360
atcaagtttc tctaccaaag caacctcct cccagcaacg aggggacccg acaggcccga
                                                                     420
aqaaatcqaa qaaqaaqqtq qagaqagaga cagaggcaga tccgttcgat tagtgagcgg
                                                                     480
                                                                     540
attettagea ettttetggg acgacetgeg gageetgtge etetteaget acegeegett
                                                                     600
gagagactta ctcttgattg tagcgaagat tgtggaaact ctgggacgca gggggtggga
agtcctcaag tattggtgga atctcctgca gtattggagc caggaactaa agaaaagctt
                                                                     660
                                                                     720
gtgggcaagt ggtcaaaatg tagtggatgg cctactgtaa gggaaagaat gaaacaagct
gagcctgagc cagcagcaga tggggtggga gcagcatctc gagacctgga aaaacatgga
                                                                     780
gcaatcacaa gtagcaatac agcaactaat aacgctgctt gtgcctggct agaagcacaa
                                                                     840
                                                                     900
qaqqaaqaqq aaqtqqqttt tccaqtcaga cctcaggtac ctttaagacc aatgacttac
                                                                     960
aagggagctt tagatcttag ccacttttta aaagaaaagg ggggactgga agggttaatt
tactccccaa aaagacaaga gatccttgat ctgtgggtct accacacaca aggctacttc
                                                                    1020
cctgattggc agaactacac accagggcca ggggtcagat atccactgac ctttggatgg
                                                                    1080
                                                                    1140
tgcttcaagt tagtaccagt tgaaccagat gaagaagaga acagcagcct gttacaccct
                                                                    1200
gcgagcctgc atgggacaga ggacacggag agagaagtgt taaagtggaa gtttgacagc
catctagcat ttcatcacaa ggcccgagag ctgcatccgg agtactacaa agactgcgcg
                                                                    1260
gccgtgttag acaaatggga aaaaattcgg ttaaggccag ggggaaagaa aaaatatcaa
                                                                    1320
ttaaaacata tagtatgggc aagcagggag ctagaacgat tcgcagttaa tcctggcctg
                                                                    1380
ttagaaacat cagaaggctg tagacagata atgggacagc tacaaccgtc ccttcagaca
                                                                    1440
                                                                    1500
ggatcagaag aacttagatc attatataat acagtagcaa ccctctattg tgtgcatcaa
                                                                    1560
aagatagagg taaaagacac caaggaagct ttagacaagg tagaggaaga gcaaaacaac
agtaagaaaa aggcacagca agaagcagct gacgcaggaa acagaaacca ggtcagccaa
                                                                    1620
aattacccta tagtgcaaaa cctacaggga caaatggtac atcaggccat atcacctaga
                                                                    1680
actttaaatg catgggtaaa agtagtggaa gagaaggctt tcagcccaga agtaataccc
                                                                    1740
                                                                    1800
atgttttcag cattatcaga aggagccacc ccacaagatt taaacaccat gctaaacaca
                                                                    1860
gtgggggac atcaagcagc catgcaaatg ttaaaagaaa ccatcaatga ggaagctgca
gaatgggata gattgcaccc agtgcatgca gggcctattg caccaggcca gatgagagaa
                                                                    1920
ccaaggggaa gtgacatagc aggaactact agtacccttc aggaacaaat aggatggatg
                                                                    1980
                                                                    2040
acaaataatc cacctatccc agtaggagaa atatataaga gatggataat cctgggatta
aataaaatag taagaatgta tagccctacc agcattctgg atataaaaca aggaccaaaa
                                                                    2100
quaccettta gagattatgt agaceggtte tataaaacee taagageega geaagetaca
                                                                    2160
                                                                    2220
caggaagtaa aaaattggat gacagaaacc ttgttggtcc aaaatgcgaa tccagattgt
                                                                    2280
aagactattt taaaagcatt aggaccagca gctacactag aagaaatgat gacagcatgt
                                                                    2340
cagggagtgg ggggacccgg ccataaagca agagttttgg ctgaagcaat gagccaagta
                                                                    2400
acaggttcag ctgccataat gatgcagaga ggcaatttta ggaaccaaag aaagactgtt
aagtgtttca attgtggcaa agaagggcac atagccagaa attgcagggc ccctaggaaa
                                                                    2460
aagggctgtt ggaaatgtgg aaaggaagga catcaaatga aggattgcac agaaagacag
                                                                    2520
gctaatgcgg ccgtcatcac cctgtggcag cgcccctgg tggccctgat cgagatctgc
                                                                    2580
                                                                    2640
accgagatgg agaaggaggg caagatcagc aagatcggcc ccgccggcct gaagaagaag
                                                                    2700
aagagegtga eegtgetgga egtgggegae geetaettea gegtgeeeet ggataaggae
ttccgcaagt acaccgcctt caccatcccc agcatctgga agggcagccc cgccatcttc
                                                                    2760
cagagcagca tgaccaagaa gcagaacccc gacatcgtga tctaccagta catggacgac
                                                                    2820
                                                                    2880
ctgtacgtgc ccatcgtgct gcccgagaag gacagctggc tggtgggcaa gctgaactgg
gccagccaga tctacgccgg catcaaggtg aagcagctga tcctgaagga gcccgtgcac
                                                                    2940
                                                                    3000
ggegtgtaeg agcccategt gggegeegag acettetaeg tggaeggege egccaacege
gccggcaacc tgtgggtgac cgtgtactac ggcgtgcccg tgtggaagga ggccaccacc
                                                                    3060
                                                                    3120
accetggtgg agegetacet gegegaceag eagetgetgg geatetgggg etgegeetge
                                                                    3180
accccctacg acatcaacca gatgctgcgc ggccctggcc gcgccttcgt gaccatccgc
                                                                    3195
cagggcagcc tgtag
<210> 20
<211> 3195
<212> DNA
<213> Artificial Sequence
<220>
<223> Hybrid protein cds comprised of Rev-Nef-Tat, truncated Gag protein
and CTL (RNT-dgag-CTL)
<400> 20
atggcaggaa gaageggaga cagegaegaa gageteetea agacagteag aeteateaag
                                                                     60
tttctctacc aaagcaaccc tcctcccagc aacgagggga cccgacaggc ccgaagaaat
                                                                     120
```

```
cgaagaagaa ggtggagaga gagacagagg cagatccgtt cgattagtga gcggattctt
                                                                      180
agcacttttc tgggacgacc tgcggagcct gtgcctcttc agctaccgcc gcttgagaga
                                                                      240
cttactcttg attgtagcga agattgtgga aactctggga cgcagggggt gggaagtcct
                                                                      300
caagtattgg tggaatctcc tgcagtattg gagccaggaa ctaaagaaac tagtgtgggc
                                                                      360
aagtggtcaa aatgtagtgg atggcctact gtaagggaaa gaatgaaaca agctgagcct
                                                                      420
gagccagcag cagatggggt gggagcagca tetegagaec tggaaaaaca tggagcaate
                                                                      480
acaagtagca atacagcaac taataacgct gcttgtgcct ggctagaagc acaagaggaa
                                                                      540
gaggaagtgg gttttccagt cagacctcag gtacctttaa gaccaatgac ttacaaggga
                                                                      600
gctttagatc ttagccactt tttaaaagaa aaggggggac tggaagggtt aatttactcc
                                                                      660
ccaaaaagac aagagatcct tgatctgtgg gtctaccaca cacaaqqcta cttccctqat
                                                                      720
tggcagaact acacacagg gccaggggtc agatatccac tgacctttgg atggtgcttc
                                                                      780
aagttagtac cagttgaacc agatgaagaa gagaacagca gcctgttaca ccctgcgagc
                                                                      840
ctgcatggga cagaggacac ggagagagaa gtgttaaagt ggaagtttga cagccatcta
                                                                      900
gcatttcatc acaaggcccg agagctgcat ccggagtact acaaagactg caagcttgag
                                                                      960
ccagtagatc ctagactaga gccctggaag catccaggaa gtcagcctag gaccccttgt
                                                                     1020
accaattgct attgtaaaaa gtgttgcctt cattgccaag tttgtttcac aagaaaaggc
                                                                    1080
ttaggcatct cctatggcag gaagaagcgg agacagcgac gaagagctcc tcaagacagt
                                                                    1140
cagactcatc aagtttetet accaaageaa ceeteeteee ageaacgagg ggaceegaca
                                                                    1200
ggcccgaaga aatcgaagaa gaaggtggag agagagacag aggcagatcc gttcgatgcg
                                                                    1260
gccgtgttag acaaatggga aaaaattcgg ttaaggccag ggggaaagaa aaaatatcaa
                                                                    1320
ttaaaacata tagtatgggc aagcagggag ctagaacgat tcgcagttaa tcctggcctq
                                                                    1380
ttagaaacat cagaaggctg tagacagata atgggacagc tacaaccgtc ccttcagaca
                                                                    1440
ggatcagaag aacttagatc attatataat acagtagcaa ccctctattg tgtgcatcaa
                                                                    1500
aagatagagg taaaagacac caaggaagct ttagacaagg tagaggaaga gcaaaacaac
                                                                    1560
agtaagaaaa aggcacagca agaagcagct gacgcaggaa acagaaacca ggtcaqccaa
                                                                    1620
aattacccta tagtgcaaaa cctacaggga caaatggtac atcaggccat atcacctaga
                                                                    1680
actttaaatg catgggtaaa agtagtggaa gagaaggctt tcagcccaga agtaataccc
                                                                    1740
atgttttcag cattatcaga aggagccacc ccacaagatt taaacaccat gctaaacaca
                                                                    1800
gtggggggac atcaagcagc catgcaaatg ttaaaagaaa ccatcaatga ggaagctqca
                                                                    1860
gaatgggata gattgcaccc agtgcatgca gggcctattg caccaggcca gatgagagaa
                                                                    1920
ccaaggggaa gtgacatagc aggaactact agtaccette aggaacaaat aggatggatg
                                                                    1980
acaaataatc cacctatccc agtaggagaa atatataaga gatggataat cctgggatta
                                                                    2040
aataaaatag taagaatgta tagccctacc agcattctgg atataaaaca aggaccaaaa
                                                                    2100
gaaccettta gagattatgt agaccggtte tataaaacce taagageega geaagetaca
                                                                    2160
caggaagtaa aaaattggat gacagaaacc ttgttggtcc aaaatgcgaa tccagattgt
                                                                    2220
aagactattt taaaagcatt aggaccagca gctacactag aagaaatgat gacagcatgt
                                                                    2280
cagggagtgg ggggaccogg ccataaagca agagttttgg ctgaagcaat gagccaagta
                                                                    2340
acaggitcag cigccataat gatgcagaga ggcaatitta ggaaccaaag aaagacigit
                                                                    2400
aagtgtttca attgtggcaa agaagggcac atagccagaa attgcagggc ccctaggaaa
                                                                    2460
aagggctgtt ggaaatgtgg aaaggaagga catcaaatga aggattgcac agaaagacag
                                                                    2520
gctaatgcgg ccgtcatcac cctgtggcag cgcccctgg tggccctgat cgagatctgc
                                                                    2580
accgagatgg agaaggaggg caagatcagc aagatcggcc ccgccggcct gaagaagaag
                                                                    2640
aagagcgtga ccgtgctgga cgtgggcgac gcctacttca gcgtgcccct ggataaggac
                                                                    2700
ttccgcaagt acaccgcctt caccatcccc agcatctgga agggcagccc cgccatcttc
                                                                    2760
cagagcagca tgaccaagaa gcagaacccc gacatcgtga tctaccagta catggacgac
                                                                    2820
ctgtacgtgc ccatcgtgct gcccgagaag gacagctggc tggtgggcaa gctgaactgg
                                                                    2880
gccagccaga tctacgccgg catcaaggtg aagcagctga tcctgaagga gcccgtgcac
                                                                    2940
ggcgtgtacg agcccatcgt gggcgccgag accttctacg tggacggcgc cgccaaccgc
                                                                    3000
geeggeaace tgtgggtgae egtgtaetae ggegtgeeeg tgtggaagga ggeeaceaee
                                                                    3060
accetggtgg agegetacet gegegaceag cagetgetgg geatetgggg etgegeetge
                                                                    3120
accecetacg acateaacca gatgetgege ggeeetggee gegeettegt gaccateege
                                                                    3180
cagggcagcc tgtag
                                                                    3195
```

```
<210> 21
<211> 3020
```

<212> DNA

<213> Artificial Sequence

<220>

<223> Hybrid protein cds comprised of Tat-Rev-Nef, truncated Gag protein and CTL (TRN-optp17/24-CTL)

<400> 21

```
atggagccag tagatcctag actagagccc tggaagcatc caggaagtca gcctaggacc
                                                                       60
cettgtacea attgctattg taaaaagtgt tgcettcatt gccaagtttg tttcacaaga
                                                                      120
aaaggettag geateteeta tggcaggaag aageggagae agegaegaag ageteeteaa
                                                                      180
gacagtcaga ctcatcaagt ttctctacca aagcaaccct cctcccagca acgagggac
                                                                      240
ccgacaggcc cgaagaaatc gaagaagaag gtggagagag agacagaggc agatccgttc
                                                                      300
gatactagtg caggaagaag cggagacagc gacgaagagc tcctcaagac agtcagactc
                                                                      360
atcaagtttc tctaccaaag caacctcct cccagcaacg aggggacccg acaggcccga
                                                                      420
agaaatcgaa gaagaaggtg gagagagaga cagaggcaga tccgttcgat tagtgagcgg
                                                                      480
attettagea ettitetggg acgaectgeg gageetgtge etetteaget acegeegett
                                                                      540
gagagactta ctcttgattg tagcgaagat tgtggaaact ctgggacgca gggggtggga
                                                                      600
agtecteaag tattggtgga ateteetgea gtattggage caggaactaa agaaaagett
                                                                      660
gttggcaagt ggtcaaaatg tagtggatgg cctactgtaa gggaaagaat gaaacaagct
                                                                      720
gagectgage cageageaga tggggtggga geageatete gagacetgga aaaacatgga
                                                                      780
gcaatcacaa gtagcaatac agcaactaat aacgctgctt gtgcctggct agaagcacaa
                                                                      840
gaggaagagg aagtgggttt tccagtcaga cctcaggtac ctttaagacc aatgacttac
                                                                      900
aagggagctt tagatcttag ccacttttta aaagaaaagg ggggactgga agggttaatt
                                                                      960
tactccccaa aaagacaaga gatccttgat ctgtgggtct accacacaca aggctacttc
                                                                     1020
cctgattggc agaactacac accagggcca ggggtcagat atccactgac ctttggatgg
                                                                     1080
tgcttcaagt tagtaccagt tgaaccagat gaagaagaga acagcagcct gttacaccct
                                                                     1140
gcgagcctgc atgggacaga ggacacggag agagaagtgt taaagtggaa gtttgacagc
                                                                     1200
catctagcat ttcatcacaa ggcccgagag ctgcatccgg agtactacaa agactgcgcg
                                                                     1260
gccgtgggcg caagagcctc cgtgctgagc ggcggagagc tggacaagtg ggagaagatc
                                                                     1320
cgcctgcgcc ccggcggcaa gaagaagtac cagctgaagc acatcgtgtg ggccagccgc
                                                                     1380
gagetggage gettegeegt gaacecegge etgetegaga ceagegaagg etgeegeeag
                                                                     1440
atcatgggcc agetecagee cageetecag aceggeageg aggagetgeg cageetgtae
                                                                     1500
aacaccgtgg ccaccctgta ctgcgtgcac cagaagatcg aggtgaagga caccaaggag
                                                                     1560
gccctggaca aggtggagga ggagcagaac aacagcaaga agaaggccca gcaggaggcc
                                                                     1620
geogaegeeg geaacegeaa ecaagteage cagaactace ceategtgea gaacetgeag
                                                                     1680
ggccagatgg tgcaccaggc catcagcccc cgcaccctga acgcctgggt gaaggtggtg
                                                                     1740
gaggagaagg cetteagece egaggtgate cecatgttea gegeectaag egagggeget
                                                                     1800
acceccagg acctgaacac catgetgaac accgtgggcg gecaccagge cgccatgcag
                                                                     1860
atgetgaagg agaccatcaa egaggaggee geegagtggg acegeetgea eeceqtqeae
                                                                     1920
gccgggccca tcgccccgg ccagatgcgc gagccccgcg gcagcgacat cgccggcacc
                                                                     1980
accagcaccc tccaggagca gatcggctgg atgaccaaca accccccat ccccgtgggc
                                                                     2040
gagatetaca agegetggat cateetggge etgaacaaga tegteegcat gtacageece
                                                                     2100
accagcatcc tggacatcaa gcagggcccc aaggagccct tccgcgacta cgtggaccgc
                                                                     2160
ttctacaaga ccctgcgcgc cgagcaggcc acccaggagg tgaagaactg gatgaccgag
                                                                     2220
accetgetgg tgeagaacge caaceeegae tgeaagacea teetcaagge cetgggacee
                                                                     2280
gccgccaccc tggaggagat gatgaccgcc tgccaaggcg tgggcggccc cggccacaag
                                                                     2340
gcccgcgtgc tggcggccgt catcaccctg tggcagcgcc ccctggtggc cctgatcgag
                                                                     2400
atetgeaceg agatggagaa ggagggeaag ateageaaga teggeecege eggeetgaag
                                                                     2460
aagaagaaga gcgtgaccgt gctggacgtg ggcgacgcct acttcagcgt gcccctggat
                                                                     2520
aaggacttcc gcaagtacac cgccttcacc atccccagca tctggaaggg cagccccgcc
                                                                     2580
atcttccaga gcagcatgac caagaagcag aaccccgaca tcgtgatcta ccagtacatg
                                                                     2640
gacgacctgt acgtgcccat cgtgctgccc gagaaggaca gctggctggt gggcaagctg
                                                                     2700
aactgggcca gccagatcta cgccggcatc aaggtgaagc agctgatcct gaaggagccc
                                                                     2760
gtgcacggcg tgtacgagcc catcgtgggc gccgagacct tctacgtgga cggcgccgcc
                                                                     2820
aaccgcgccg gcaacctgtg ggtgaccgtg tactacggcg tgcccgtgtg gaaggaggcc
                                                                     2880
accaccacce tggtggageg ctacctgege gaccageage tgetgggeat etggggetge
                                                                     2940
geetgeacce cetacgacat caaccagatg etgegeggee etggeegge etcqtqacca
                                                                     3000
tccgccaggg cagcctgtag
                                                                     3020
<210>
       22
<211>
       3021
<212>
       DNA
<213> Artificial Sequence
<220>
<223> Hybrid protein cdscomprised of Tat-Rev-Nef, CTL and truncated Gag
protein (TRN-CTL-optp17/24)
```

-14-

atggagccag tagatectag actagagece tggaageate caggaagtea geetaggace

<400> 22

```
cettgtacca attgctattg taaaaagtgt tgccttcatt gccaagtttg tttcacaaga
                                                                      120
aaaggettag geateteeta tggcaggaag aageggagae agegaegaag ageteeteaa
                                                                      180
gacagtcaga ctcatcaagt ttctctacca aagcaaccct cctcccagca acgaggggac
                                                                      240
ccgacaggcc cgaagaaatc gaagaagaag gtggagagag agacagaggc agatccgttc
                                                                      300
gatactagtg caggaagaag cggagacagc gacgaagagc tcctcaagac agtcagactc
                                                                      360
atcaagtttc tctaccaaag caaccctcct cccagcaacg aggggacccg acaggcccga
                                                                      420
agaaatcgaa gaagaaggtg gagagagaga cagaggcaga tccgttcgat tagtgagcgg
                                                                      480
attettagea ettttetggg aegacetgeg gageetgtge etetteaget aeegeegett
                                                                      540
gagagactta ctcttgattg tagcgaagat tgtqqaaact ctqqqacqca qqqqqtqqqa
                                                                      600
agtecteaag tattggtgga atetectgea gtattggage caggaactaa agaaaaqett
                                                                      660
gtgggcaagt ggtcaaaatg tagtggatgg cctactgtaa gggaaagaat gaaacaagct
                                                                      720
gagcctgagc cagcagcaga tggggtggga gcagcatctc gagacctgga aaaacatgga
                                                                      780
gcaatcacaa gtagcaatac agcaactaat aacgctgctt gtgcctggct agaagcacaa
                                                                      840
gaggaagagg aagtgggttt tccagtcaga cctcaggtac ctttaagacc aatgacttac
                                                                      900
aagggagett tagatettag ecaettttta aaagaaaagg ggggaetgga agggttaatt
                                                                      960
tactccccaa aaagacaaga gatccttgat ctgtgggtct accacacaca aggctacttc
                                                                     1020
cctgattggc agaactacac accagggcca ggggtcagat atccactgac ctttggatgg
                                                                     1080
tgcttcaagt tagtaccagt tgaaccagat gaagaagaga acagcagcct gttacaccct
                                                                     1140
gcgagcctgc atgggacaga ggacacggag agagaagtgt taaagtggaa gtttgacagc
                                                                    1200
catctagcat ttcatcacaa ggcccgagag ctgcatccgg agtactacaa agactgcgcg
                                                                     1260
geogteatea ceetgtggea gegeeeeetg gtggeeetga tegagatetg caeegagatg
                                                                     1320
gagaaggagg gcaagatcag caagatcggc cccgccggcc tgaagaagaa gaagagcgtg
                                                                    1380
accetected acetegedea cectactic acetecc tegataagga cttccecaag
                                                                    1440
tacaccgcct tcaccatccc cagcatctgg aagggcagcc ccgccatctt ccagagcagc
                                                                    1500
atgaccaaga agcagaaccc cgacatcgtg atctaccagt acatggacga cctgtacgtg
                                                                    1560
cccatcgtgc tgcccgagaa ggacagctgg ctggtgggca agctgaactg ggccagccag
                                                                     1620
atctacgccg gcatcaaggt gaagcagctg atcctgaagg agcccgtgca cggcgtgtac
                                                                     1680
gageccateg tgggegeega gaeettetae gtggaeggeg cegecaaceg egeeggeaac
                                                                     1740
ctgtgggtga ccgtgtacta cggcgtgccc gtgtggaagg aggccaccac caccctgqtq
                                                                    1800
gagegetace tgegegacea geagetgetg ggeatetggg getgegeetg caccecetae
                                                                    1860
gacatcaacc agatgctgcg cggccctggc cgcgccttcg tgaccatccq ccaqqqcaqc
                                                                    1920
ctggcggccg tgggcgcaag agcctccgtg ctgagcggcg gagagctgga caaqtqqqaq
                                                                    1980
aagatccgcc tgcgccccgg cggcaagaag aagtaccagc tgaagcacat cgtgtgggcc
                                                                    2040
agccgcgagc tggagcgctt cgccgtgaac cccggcctgc tcgagaccag cgaaggctgc
                                                                    2100
cgccagatca tgggccagct ccagcccagc ctccagaccg gcagcgagga gctgcgcagc
                                                                    2160
ctgtacaaca ccgtggccac cctgtactgc gtgcaccaga agatcgaggt gaaggacacc
                                                                    2220
aaggaggeee tggacaaggt ggaggaggag cagaacaaca gcaagaagaa ggcccagcag
                                                                    2280
gaggeegeeg aegeeggeaa eegeaaceaa gteageeaga aetaeeeeat egtgeagaac
                                                                    2340
ctgcagggcc agatggtgca ccaggccatc agcccccgca ccctgaacgc ctgggtgaag
                                                                    2400
gtggtggagg agaaggcett cagececgag gtgateecca tgttcagege eetgagegag
                                                                    2460
ggcgctaccc cccaggacct gaacaccatg ctgaacaccg tgggcggcca ccaggccgcc
                                                                    2520
atgcagatgc tgaaggagac catcaacgag gaggccgccg agtgggaccg cctgcacccc
                                                                    2580
gtgcacgccg ggcccatcgc ccccggccag atgcgcgagc cccgcggcag cgacatcgcc
                                                                    2640
ggcaccacca gcacceteca ggagcagate ggetggatga ccaaccacce ecceatecee
                                                                    2700
gtgggcgaga tctacaagcg ctggatcatc ctgggcctga acaagatcgt ccgcatgtac
                                                                    2760
agccccacca gcatcctgga catcaagcag ggccccaagg agcccttccg cgactacqtq
                                                                    2820
gaccgcttct acaagaccct gcgcgccgag caggccaccc aggaggtgaa gaactggatg
                                                                    2880
accgagaccc tgctggtgca gaacgccaac cccgactgca agaccatcct caaggccctg
                                                                    2940
ggacccgccg ccaccctgga ggagatgatg accgcctgcc aaggcgtggg cggcccggc
                                                                    3000
cacaaggccc gcgtgctgtg a
                                                                    3021
<210> 23
<211>
      3021
<212> DNA
<213> Artificial Sequence
<223> Hybrid protein cds comprised of Rev-Nef-Tat, CTL and truncated Gag
protein (RNT-CTL-optp17/24)
```

60

120

atggcaggaa gaagcggaga cagcgacgaa gagctcctca agacagtcag actcatcaag

tttctctacc aaagcaaccc tcctcccagc aacgagggga cccgacaggc ccgaagaaat

<400>

23

```
cgaagaagaa ggtggagaga gagacagagg cagatccgtt cgattagtga gcggattctt
                                                                                                           180
 agcacttttc tgggacgacc tgcggagcct gtgcctcttc agctaccgcc gcttgagaga
                                                                                                           240
cttactcttg attgtagcga agattgtgga aactctggga cgcagggggt gggaagtcct
                                                                                                           300
caagtattgg tggaatctcc tgcagtattg gagccaggaa ctaaagaaac tagtgtgggc
                                                                                                           360
 aagtggtcaa aatgtagtgg atggcctact gtaagggaaa gaatgaaaca agctgagcct
                                                                                                          420
 gagccagcag cagatggggt gggagcagca tctcgagacc tggaaaaaca tggagcaatc
                                                                                                          480
acaagtagca atacagcaac taataacgct gcttgtgcct ggctagaagc acaagaggaa
                                                                                                          540
gaggaagtgg gttttccagt cagacctcag gtacctttaa gaccaatgac ttacaaggga
                                                                                                          600
gctttagatc ttagccactt tttaaaagaa aaggggggac tggaagggtt aatttactcc
                                                                                                          660
ccaaaaagac aagagateet tgatetgtgg gtetaccaca cacaaggeta etteeetqat
                                                                                                          720
tggcagaact acacaccagg gccaggggtc agatatccac tgacctttgg atgqtqcttc
                                                                                                          780
aagttagtac cagttgaacc agatgaagaa gagaacagca gcctgttaca ccctgcgagc
                                                                                                          840
ctgcatggga cagaggacac ggagagagaa gtgttaaagt ggaagtttga cagccatcta
                                                                                                          900
gcatttcatc acaaggcccg agagctgcat ccggagtact acaaagactg caagcttgag
                                                                                                          960
ccagtagatc ctagactaga gccctggaag catccaggaa gtcagcctag gaccccttgt
                                                                                                         1020
accaattgct attgtaaaaa gtgttgcctt cattgccaag tttgtttcac aagaaaaggc
                                                                                                         1080
ttaggcatct cctatggcag gaagaagcgg agacagcgac gaagagctcc tcaagacagt
                                                                                                        1140
cagactcatc aagtttctct accaaagcaa ccctcctccc agcaacgagg ggacccgaca
                                                                                                        1200
ggcccgaaga aatcgaagaa gaaggtggag agagagacag aggcagatcc gttcgatgcg
                                                                                                        1260
gccgtcatca ccctgtggca gcgccccttg gtggccctga tcgagatctg caccgagatg
                                                                                                        1320
gagaaggagg gcaagatcag caagatcggc cccgccggcc tgaagaagaa gaagagcgtg
                                                                                                         1380
acceptected aceptedega electactic allegies telegraphics telegraphics accepted aceptedega aceptedega
                                                                                                        1440
tacaccgcct tcaccatccc cagcatctgg aagggcagcc ccgccatctt ccagagcagc
                                                                                                        1500
atgaccaaga agcagaaccc cgacatcgtg atctaccagt acatggacga cctgtacgtg
                                                                                                        1560
eccategtge tgeecgagaa ggacagetgg etggtgggea agetgaactg ggeeageeag
                                                                                                        1620
atctacgccg gcatcaaggt gaagcagctg atcctgaagg agcccgtgca cggcgtgtac
                                                                                                        1680
gageccateg tgggegeega gaeettetae gtggaeggeg eegeeaaceg egeeggeaac
                                                                                                        1740
ctgtgggtga ccgtgtacta cggcgtgccc gtgtggaagg aggccaccac caccctqqtq
                                                                                                        1800
gagegetace tgegegaeca geagetgetg ggeatetggg getgegeetg caccecetae
                                                                                                        1860
gacatcaacc agatgctgcg cggccctggc cgcgccttcg tgaccatccg ccagggcagc
                                                                                                        1920
ctggcggccg tgggcgcaag agcctccgtg ctgagcggcg gagagctgga caagtgggag
                                                                                                        1980
aagatccgcc tgcgccccgg cggcaagaag aagtaccagc tgaagcacat cgtgtgggcc
                                                                                                        2040
ageogegage tggagegett egeegtgaac eeeggeetge tegagaecag egaaggetge
                                                                                                        2100
cgccagatca tgggccagct ccagcccagc ctccagaccg gcagcgagga gctgcgcagc
                                                                                                        2160
ctgtacaaca ccgtggccac cctgtactgc gtgcaccaga agatcgaggt gaaggacacc
                                                                                                        2220
aaggaggccc tggacaaggt ggaggaggag cagaacaaca gcaagaagaa ggcccagcag
                                                                                                        2280
gaggeegeeg acgeeggeaa eegeaaceaa gteageeaga actaceecat egtgeagaac
                                                                                                        2340
ctgcagggcc agatggtgca ccaggccatc agcccccgca ccctgaacgc ctgggtgaag
                                                                                                        2400
gtggtggagg agaaggcett cageceegag gtgateeeca tgtteagege eetgagegag
                                                                                                        2460
ggcgctaccc cccaggacct gaacaccatg ctgaacaccg tgggcggcca ccaggccgcc
                                                                                                        2520
atgcagatgc tgaaggagac catcaacgag gaggccgccg agtgggaccg cctgcacccc
                                                                                                        2580
gtgcacgccg ggcccatcgc ccccggccag atgcgcgagc cccgcggcag cgacatcgcc
                                                                                                        2640
ggcaccacca gcacceteca ggagcagate ggetggatga ecaacaacce ecceatecee
                                                                                                        2700
gtgggcgaga tctacaagcg ctggatcatc ctgggcctga acaagatcgt ccgcatgtac
                                                                                                        2760
agccccacca gcatcctgga catcaagcag ggccccaagg agcccttccg cgactacgtg
                                                                                                        2820
gaccgcttct acaagaccct gcgcgccgag caggccaccc aggaggtgaa gaactggatg
                                                                                                        2880
accgagaccc tgctggtgca gaacgccaac cccgactgca agaccatcct caaggccctg
                                                                                                        2940
ggacccgccg ccaccctgga ggagatgatg accgcctgcc aaggcgtggg cggcccggc
                                                                                                        3000
cacaaggeee gegtgetgtg a
                                                                                                        3021
<210> 24
<211> 3021
<212> DNA
<213> Artificial Sequence
<220>
<223> Hybrid protein cds comprised of Rev-Nef-Tat, truncated Gag protein
and CTL (RNT-optp17/24-CTL)
<400> 24
atggcaggaa gaagcggaga cagcgacgaa gagctcctca agacagtcag actcatcaag
                                                                                                           60
tttctctacc aaagcaaccc tcctcccagc aacgagggga cccgacaggc ccgaagaaat
                                                                                                         120
cgaagaagaa ggtggagaga gagacagagg cagatccgtt cgattagtga gcggattctt
                                                                                                         180
```

```
agcacttttc tgggacgacc tgcggagcct gtgcctcttc agctaccgcc gcrtgagaga
                                                                      240
cttactcttg attgtagcga agattgtgga aactctggga cgcagggggt gggaagtcct
                                                                      300
caagtattgg tggaatctcc tgcagtattg gagccaggaa ctaaagaaac tagtgtgggc
                                                                      360
aagtggtcaa aatgtagtgg atggcctact gtaagggaaa gaatgaaaca agctgagcct
                                                                      420
gagccagcag cagatggggt gggagcagca tetegagace tggaaaaaca tggagcaate
                                                                      480
acaagtagca atacagcaac taataacgct gcttgtgcct ggctagaagc acaagaggaa
                                                                      540
gaggaagtgg gttttccagt cagacctcag gtacctttaa gaccaatgac ttacaaggga
                                                                      600
gctttagatc ttagccactt tttaaaagaa aaggggggac tggaagggtt aatttactcc
                                                                      660
ccaaaaagac aagagateet tgatetgtgg gtetaecaca cacaaggeta etteectgat
                                                                      720
tggcagaact acacaccagg gccaggggtc agatatccac tqacctttgg atqqtqcttc
                                                                      780
aagttagtac cagttgaacc agatgaagaa gagaacagca gcctgttaca ccctgcgagc
                                                                      840
ctgcatggga cagaggacac ggagagagaa gtgttaaagt ggaagtttga cagccatcta
                                                                      900
gcatttcatc acaaggcccg agagctgcat ccggagtact acaaagactg caagcttgag
                                                                      960
ccagtagatc ctagactaga gccctggaag catccaggaa gtcagcctag gaccccttgt
                                                                    1020
accaattgct attgtaaaaa gtgttgcctt cattgccaag tttgtttcac aagaaaaggc
                                                                    1080
ttaggcatct cctatggcag gaagaagcgg agacagcgac gaagagctcc tcaagacagt
                                                                    1140
cagacteate aagtttetet accaaageaa ceeteeteee ageaacgagg ggaceegaca
                                                                    1200
ggcccgaaga aatcgaagaa gaaggtggag agagagacag aggcagatcc gttcgatgcg
                                                                    1260
gccgtgggcg caagagcctc cgtgctgagc ggcggagagc tggacaagtg ggagaagatc
                                                                    1320
cgcctgcgcc ccggcggcaa gaagaagtac cagctgaagc acatcgtgtg ggccagccgc
                                                                    1380
gagetggage gettegeegt gaacceegge etgetegaga ecagegaagg etgeegeeag
                                                                    1440
atcatgggcc agetccagcc cagectccag accggcagcg aggagetgcg cagectgtac
                                                                    1500
aacaccgtgg ccaccctgta ctgcgtgcac cagaagatcg aggtgaagga caccaaggag
                                                                    1560
gccctggaca aggtggagga ggagcagaac aacagcaaga agaaggccca gcaggaggcc
                                                                    1620
gccgacgccg gcaaccgcaa ccaagtcagc cagaactacc ccatcgtgca gaacctgcag
                                                                    1680
ggccagatgg tgcaccaggc catcagccc cgcaccctga acgcctgggt gaaggtggtg
                                                                    1740
gaggagaagg cetteagece egaggtgate eccatgttea gegeeetaag egagggeget
                                                                    1800
accececagg acetgaacac catgetgaac acegtgggeg gecaccagge egecatgeag
                                                                    1860
atgctgaagg agaccatcaa cgaggaggcc gccgagtggg accgcctgca ccccgtgcac
                                                                    1920
gcegggecca tegececegg ccagatgege gageceegeg gcagegacat egceggeace
                                                                    1980
accagcacco tocaggagca gateggetgg atgaccaaca accececcat ceceqtggge
                                                                    2040
gagatetaca agegetggat cateetggge etgaacaaga tegteegeat gtacageeee
                                                                    2100
accagcatcc tggacatcaa gcagggcccc aaggagccct tccgcgacta cgtggaccgc
                                                                    2160
ttctacaaga ccctgcgcgc cgagcaggcc acccaggagg tgaagaactg gatgaccgag
                                                                    2220
accetgetgg tgeagaaege caacceegae tgeaagaeca teeteaagge cetgggaeee
                                                                    2280
geogocacco tggaggagat gatgacogoc tgccaaggog tgggcggccc cggccacaag
                                                                    2340
gecegegtge tggeggeegt cateaccetg tggeagegee ceetggtgge cetgategag
                                                                    2400
atetgeaceg agatggagaa ggagggeaag ateageaaga teggeeeege eggeetgaag
                                                                    2460
aagaagaaga gcgtgaccgt gctggacgtg ggcgacgcct acttcagcgt gcccctggat
                                                                    2520
aaggacttcc gcaagtacac cgccttcacc atccccagca tctggaaggg cagccccgcc
                                                                    2580
atcttccaga gcagcatgac caagaagcag aaccccgaca tcgtgatcta ccagtacatg
                                                                    2640
gacgacctgt acgtgcccat cgtgctgcc gagaaggaca gctggctggt gggcaagctg
                                                                    2700
aactgggcca gccagatcta cgccggcatc aaggtgaagc agctgatcct gaaggagccc
                                                                    2760
gtgcacggcg tgtacgagcc catcgtgggc gccgagacct tctacgtgga cggcgccgcc
                                                                    2820
aaccgcgccg gcaacctgtg ggtgaccgtg tactacggcg tgcccgtgtg gaaggaggcc
                                                                    2880
accaccacce tggtggageg ctacctgege gaccageage tgetgggeat ctggggetge
                                                                    2940
gcctgcaccc cctacgacat caaccagatg ctgcgcggcc ctggccgcgc cttcgtgacc
                                                                    3000
atccgccagg gcagcctgta g
                                                                    3021
<210>
      25
<211> 419
<212> PRT
<213> Artificial Sequence
<220>
<223>
      Hybrid protein comprised of Nef-Tat-Rev (NTR)
<400> 25
Met Val Gly Lys Trp Ser Lys Cys Ser Gly Trp Pro Thr Val Arg Glu
                                    10
Arg Met Lys Gln Ala Glu Pro Glu Pro Ala Ala Asp Gly Val Gly Ala
                                25
```

Ala Ser Arg Asp Leu Glu Lys His Gly Ala Ile Thr Ser Ser Asn Thr

```
40
Ala Thr Asn Asn Ala Ala Cys Ala Trp Leu Glu Ala Gln Glu Glu
                     55
Glu Val Gly Phe Pro Val Arg Pro Gln Val Pro Leu Arg Pro Met Thr
                                    75
Tyr Lys Gly Ala Leu Asp Leu Ser His Phe Leu Lys Glu Lys Gly Gly
                                90
Leu Glu Gly Leu Ile Tyr Ser Pro Lys Arg Gln Glu Ile Leu Asp Leu
                          105
Trp Val Tyr His Thr Gln Gly Tyr Phe Pro Asp Trp Gln Asn Tyr Thr
       115
                         120
                                          125
Pro Gly Pro Gly Val Arg Tyr Pro Leu Thr Phe Gly Trp Cys Phe Lys
                     135
                           140
Leu Val Pro Val Glu Pro Asp Glu Glu Glu Asn Ser Ser Leu Leu His
    150 155
Pro Ala Ser Leu His Gly Thr Glu Asp Thr Glu Arg Glu Val Leu Lys
                    170
Trp Lys Phe Asp Ser His Leu Ala Phe His His Lys Ala Arg Glu Leu
               185 190
His Pro Glu Tyr Tyr Lys Asp Cys Thr Ser Ala Gly Arg Ser Gly Asp
                         200
Ser Asp Glu Glu Leu Leu Lys Thr Val Arg Leu Ile Lys Phe Leu Tyr
                     215
Gln Ser Asn Pro Pro Pro Ser Asn Glu Gly Thr Arg Gln Ala Arg Arg
                 230
                                   235
Asn Arg Arg Arg Trp Arg Glu Arg Gln Arg Gln Ile Arg Ser Ile
              245
                                250
Ser Glu Arg Ile Leu Ser Thr Phe Leu Gly Arg Pro Ala Glu Pro Val
          260
                            265
                                               270
Pro Leu Gln Leu Pro Pro Leu Glu Arg Leu Thr Leu Asp Cys Ser Glu
                        280
Asp Cys Gly Asn Ser Gly Thr Gln Gly Val Gly Ser Pro Gln Val Leu
                     295
                                       300
Val Glu Ser Pro Ala Val Leu Glu Pro Gly Thr Lys Glu Lys Leu Glu
                  310
                                    315
Pro Val Asp Pro Arg Leu Glu Pro Trp Lys His Pro Gly Ser Gln Pro
                               330
              325
Arg Thr Pro Cys Thr Asn Cys Tyr Cys Lys Lys Cys Cys Leu His Cys
          340
                            345
Gln Val Cys Phe Thr Arg Lys Gly Leu Gly Ile Ser Tyr Gly Arg Lys
                      360
                              365
Lys Arg Arg Gln Arg Arg Ala Pro Gln Asp Ser Gln Thr His Gln
                     375
                                       380
Val Ser Leu Pro Lys Gln Pro Ser Ser Gln Gln Arg Gly Asp Pro Thr
                                  395
Gly Pro Lys Lys Ser Lys Lys Val Glu Arg Glu Thr Glu Ala Asp
Pro Phe Asp
<210> 26
<211> 419
<212> PRT
<213> Artificial Sequence
<223> Hybrid protein comprised of Tat-Rev-Nef (TRN)
<400> 26
Met Glu Pro Val Asp Pro Arg Leu Glu Pro Trp Lys His Pro Gly Ser
Gln Pro Arg Thr Pro Cys Thr Asn Cys Tyr Cys Lys Lys Cys Cys Leu
                            25
                                              30
His Cys Gln Val Cys Phe Thr Arg Lys Gly Leu Gly Ile Ser Tyr Gly
```

```
40
Arg Lys Lys Arg Arg Gln Arg Arg Arg Ala Pro Gln Asp Ser Gln Thr
                    55
                                       60
His Gln Val Ser Leu Pro Lys Gln Pro Ser Ser Gln Gln Arg Gly Asp
                70
                             75
Pro Thr Gly Pro Lys Lys Ser Lys Lys Val Glu Arg Glu Thr Glu
              85
                                 90
Ala Asp Pro Phe Asp Thr Ser Ala Gly Arg Ser Gly Asp Ser Asp Glu
                            1.05
Glu Leu Leu Lys Thr Val Arg Leu Ile Lys Phe Leu Tyr Gln Ser Asn
                        120
Pro Pro Pro Ser Asn Glu Gly Thr Arg Gln Ala Arg Arg Asn Arg Arg
                      135
                                       140
Arg Arg Trp Arg Glu Arg Gln Arg Gln Ile Arg Ser Ile Ser Glu Arg
               150
                                    155
Ile Leu Ser Thr Phe Leu Gly Arg Pro Ala Glu Pro Val Pro Leu Gln
             165 170
Leu Pro Pro Leu Glu Arg Leu Thr Leu Asp Cys Ser Glu Asp Cys Gly
   180
                  185 190
Asn Ser Gly Thr Gln Gly Val Gly Ser Pro Gln Val Leu Val Glu Ser
                         200
Pro Ala Val Leu Glu Pro Gly Thr Lys Glu Lys Leu Val Gly Lys Trp
                     215
                                        220
Ser Lys Cys Ser Gly Trp Pro Thr Val Arg Glu Arg Met Lys Gln Ala
                 230
                                   235
Glu Pro Glu Pro Ala Ala Asp Gly Val Gly Ala Ala Ser Arg Asp Leu
                                250
              245
Glu Lys His Gly Ala Ile Thr Ser Ser Asn Thr Ala Thr Asn Asn Ala
          260
                             265
Ala Cys Ala Trp Leu Glu Ala Gln Glu Glu Glu Val Gly Phe Pro
                        280
                                           285
Val Arg Pro Gln Val Pro Leu Arg Pro Met Thr Tyr Lys Gly Ala Leu
                    295
                                       300
Asp Leu Ser His Phe Leu Lys Glu Lys Gly Gly Leu Glu Gly Leu Ile
                 310
                                    315
Tyr Ser Pro Lys Arg Gln Glu Ile Leu Asp Leu Trp Val Tyr His Thr
             325
                                330
Gln Gly Tyr Phe Pro Asp Trp Gln Asn Tyr Thr Pro Gly Pro Gly Val
                            345
Arg Tyr Pro Leu Thr Phe Gly Trp Cys Phe Lys Leu Val Pro Val Glu
                         360
                              365
Pro Asp Glu Glu Asn Ser Ser Leu Leu His Pro Ala Ser Leu His
   370
                     375
Gly Thr Glu Asp Thr Glu Arg Glu Val Leu Lys Trp Lys Phe Asp Ser
               390
                                  395
His Leu Ala Phe His His Lys Ala Arg Glu Leu His Pro Glu Tyr Tyr
                                410
Lys Asp Cys
<210> 27
<211> 419
<212> PRT
<213> Artificial Sequence
<223> Hybrid protein comprised of Rev-Tat-Nef (RTN)
<400> 27
Met Ala Gly Arg Ser Gly Asp Ser Asp Glu Glu Leu Leu Lys Thr Val
Arg Leu Ile Lys Phe Leu Tyr Gln Ser Asn Pro Pro Pro Ser Asn Glu
          20
                            25
Gly Thr Arg Gln Ala Arg Arg Asn Arg Arg Arg Trp Arg Glu Arg
```

```
40
Gln Arg Gln Ile Arg Ser Ile Ser Glu Arg Ile Leu Ser Thr Phe Leu
                   55
Gly Arg Pro Ala Glu Pro Val Pro Leu Gln Leu Pro Pro Leu Glu Arg
               70
                                   75
Leu Thr Leu Asp Cys Ser Glu Asp Cys Gly Asn Ser Gly Thr Gln Gly
              85
                                90
Val Gly Ser Pro Gln Val Leu Val Glu Ser Pro Ala Val Leu Glu Pro
          100
               105 110
Gly Thr Lys Glu Thr Ser Glu Pro Val Asp Pro Arg Leu Glu Pro Trp
       115
                        120
Lys His Pro Gly Ser Gln Pro Arg Thr Pro Cys Thr Asn Cys Tyr Cys
                     135
                                      140
Lys Lys Cys Cys Leu His Cys Gln Val Cys Phe Thr Arg Lys Gly Leu
                  150
                                   155
Gly Ile Ser Tyr Gly Arg Lys Lys Arg Arg Gln Arg Arg Arg Ala Pro
              165
                    170
Gln Asp Ser Gln Thr His Gln Val Ser Leu Pro Lys Gln Pro Ser Ser
      180
                           185
Gln Gln Arg Gly Asp Pro Thr Gly Pro Lys Lys Ser Lys Lys Val
                              205
                         200
Glu Arg Glu Thr Glu Ala Asp Pro Phe Asp Lys Leu Val Gly Lys Trp
                     215
Ser Lys Cys Ser Gly Trp Pro Thr Val Arg Glu Arg Met Lys Gln Ala
                 230
                                   235
Glu Pro Glu Pro Ala Ala Asp Gly Val Gly Ala Ala Ser Arg Asp Leu
             245
                               250
Glu Lys His Gly Ala Ile Thr Ser Ser Asn Thr Ala Thr Asn Asn Ala
          260
                            265
Ala Cys Ala Trp Leu Glu Ala Gln Glu Glu Glu Val Gly Phe Pro
                      280
                                        285
Val Arg Pro Gln Val Pro Leu Arg Pro Met Thr Tyr Lys Gly Ala Leu
   290 295
                                      300
Asp Leu Ser His Phe Leu Lys Glu Lys Gly Gly Leu Glu Gly Leu Ile
                                   315
                 310
Tyr Ser Pro Lys Arg Gln Glu Ile Leu Asp Leu Trp Val Tyr His Thr
              325
                               330
Gln Gly Tyr Phe Pro Asp Trp Gln Asn Tyr Thr Pro Gly Pro Gly Val
                           345
Arg Tyr Pro Leu Thr Phe Gly Trp Cys Phe Lys Leu Val Pro Val Glu
                       360
                                         365
Pro Asp Glu Glu Asn Ser Ser Leu Leu His Pro Ala Ser Leu His
                     375
                                      380
Gly Thr Glu Asp Thr Glu Arg Glu Val Leu Lys Trp Lys Phe Asp Ser
               390 395
His Leu Ala Phe His His Lys Ala Arg Glu Leu His Pro Glu Tyr Tyr
Lys Asp Cys
<210> 28
<211> 419
<212> PRT
<213> Artificial Sequence
<223> Hybrid protein comprised of Tat-Nef-Rev (TNR)
<400> 28
Met Glu Pro Val Asp Pro Arg Leu Glu Pro Trp Lys His Pro Gly Ser
                               10
Gln Pro Arg Thr Pro Cys Thr Asn Cys Tyr Cys Lys Lys Cys Leu
          2.0
                           25
His Cys Gln Val Cys Phe Thr Arg Lys Gly Leu Gly Ile Ser Tyr Gly
```

```
40
Arg Lys Lys Arg Arg Gln Arg Arg Arg Ala Pro Gln Asp Ser Gln Thr
                   55
                                     60
His Gln Val Ser Leu Pro Lys Gln Pro Ser Ser Gln Gln Arg Gly Asp
                                  75
                70
Pro Thr Gly Pro Lys Lys Ser Lys Lys Lys Val Glu Arg Glu Thr Glu
                              90
Ala Asp Pro Phe Asp Thr Ser Val Gly Lys Trp Ser Lys Cys Ser Gly
                        105
         100
Trp Pro Thr Val Arg Glu Arg Met Lys Gln Ala Glu Pro Glu Pro Ala
                             125
             120
Ala Asp Gly Val Gly Ala Ala Ser Arg Asp Leu Glu Lys His Gly Ala
                                   140
                 135
Ile Thr Ser Ser Asn Thr Ala Thr Asn Asn Ala Ala Cys Ala Trp Leu
                                155
                150
Glu Ala Gln Glu Glu Glu Val Gly Phe Pro Val Arg Pro Gln Val
                             170
             165
Pro Leu Arg Pro Met Thr Tyr Lys Gly Ala Leu Asp Leu Ser His Phe
                           185
                                          190
          180
Leu Lys Glu Lys Gly Gly Leu Glu Gly Leu Ile Tyr Ser Pro Lys Arg
                                        205
       195
                        200
Gln Glu Ile Leu Asp Leu Trp Val Tyr His Thr Gln Gly Tyr Phe Pro
       215
                                     220
  210
Asp Trp Gln Asn Tyr Thr Pro Gly Pro Gly Val Arg Tyr Pro Leu Thr
                230
                                 235
Phe Gly Trp Cys Phe Lys Leu Val Pro Val Glu Pro Asp Glu Glu Glu
       245 250
Asn Ser Ser Leu Leu His Pro Ala Ser Leu His Gly Thr Glu Asp Thr
          260
                          265
                                         270
Glu Arg Glu Val Leu Lys Trp Lys Phe Asp Ser His Leu Ala Phe His
                                        285
                       280
His Lys Ala Arg Glu Leu His Pro Glu Tyr Tyr Lys Asp Cys Lys Leu
                                     300
                 295
Ala Gly Arg Ser Gly Asp Ser Asp Glu Glu Leu Leu Lys Thr Val Arg
                 310
                                  315
Leu Ile Lys Phe Leu Tyr Gln Ser Asn Pro Pro Pro Ser Asn Glu Gly
                  330 335
           325
Thr Arg Gln Ala Arg Arg Asn Arg Arg Arg Trp Arg Glu Arg Gln
         340 345 350
Arg Gln Ile Arg Ser Ile Ser Glu Arg Ile Leu Ser Thr Phe Leu Gly
                     360
Arg Pro Ala Glu Pro Val Pro Leu Gln Leu Pro Pro Leu Glu Arg Leu
                    375 380
Thr Leu Asp Cys Ser Glu Asp Cys Gly Asn Ser Gly Thr Gln Gly Val
                                395
                390
Gly Ser Pro Gln Val Leu Val Glu Ser Pro Ala Val Leu Glu Pro Gly
                    410
             405
Thr Lys Glu
<210> 29
<211> 419
<212> PRT
<213> Artificial Sequence
<223> Hybrid protein comprised of Rev-Nef-Tat (RNT)
<400> 29
Met Ala Gly Arg Ser Gly Asp Ser Asp Glu Glu Leu Leu Lys Thr Val
                              10
Arg Leu Ile Lys Phe Leu Tyr Gln Ser Asn Pro Pro Pro Ser Asn Glu
          20
                         25
Gly Thr Arg Gln Ala Arg Arg Asn Arg Arg Arg Trp Arg Glu Arg
```

```
40
Gln Arg Gln Ile Arg Ser Ile Ser Glu Arg Ile Leu Ser Thr Phe Leu
                   55
Gly Arg Pro Ala Glu Pro Val Pro Leu Gln Leu Pro Pro Leu Glu Arg
               70
                                 75
Leu Thr Leu Asp Cys Ser Glu Asp Cys Gly Asn Ser Gly Thr Gln Gly
              85
                              90
Val Gly Ser Pro Gln Val Leu Val Glu Ser Pro Ala Val Leu Glu Pro
                           105
Gly Thr Lys Glu Thr Ser Val Gly Lys Trp Ser Lys Cys Ser Gly Trp
       115
                        120
                                          125
Pro Thr Val Arg Glu Arg Met Lys Gln Ala Glu Pro Glu Pro Ala Ala
                     135
                                       140
Asp Gly Val Gly Ala Ala Ser Arg Asp Leu Glu Lys His Gly Ala Ile
              150 155
Thr Ser Ser Asn Thr Ala Thr Asn Asn Ala Ala Cys Ala Trp Leu Glu
             165 170
Ala Gln Glu Glu Glu Val Gly Phe Pro Val Arg Pro Gln Val Pro
                            185 190
Leu Arg Pro Met Thr Tyr Lys Gly Ala Leu Asp Leu Ser His Phe Leu
                         200
Lys Glu Lys Gly Gly Leu Glu Gly Leu Ile Tyr Ser Pro Lys Arg Gln
                    215
                                      220
Glu Ile Leu Asp Leu Trp Val Tyr His Thr Gln Gly Tyr Phe Pro Asp
                 230
                                   235
Trp Gln Asn Tyr Thr Pro Gly Pro Gly Val Arg Tyr Pro Leu Thr Phe
              245
                                250
Gly Trp Cys Phe Lys Leu Val Pro Val Glu Pro Asp Glu Glu Glu Asn
          260
                            265
                                              270
Ser Ser Leu Leu His Pro Ala Ser Leu His Gly Thr Glu Asp Thr Glu
              280
Arg Glu Val Leu Lys Trp Lys Phe Asp Ser His Leu Ala Phe His His
                    295
                            300
Lys Ala Arg Glu Leu His Pro Glu Tyr Tyr Lys Asp Cys Lys Leu Glu
                 310
                                 315
Pro Val Asp Pro Arg Leu Glu Pro Trp Lys His Pro Gly Ser Gln Pro
             325
                               330
Arg Thr Pro Cys Thr Asn Cys Tyr Cys Lys Lys Cys Cys Leu His Cys
                            345
Gln Val Cys Phe Thr Arg Lys Gly Leu Gly Ile Ser Tyr Gly Arg Lys
                       360
                              365
Lys Arg Arg Gln Arg Arg Ala Pro Gln Asp Ser Gln Thr His Gln
                     375
                                       380
Val Ser Leu Pro Lys Gln Pro Ser Ser Gln Gln Arg Gly Asp Pro Thr
                390
                                  395
Gly Pro Lys Lys Ser Lys Lys Lys Val Glu Arg Glu Thr Glu Ala Asp
                               410
Pro Phe Asp
<210> 30
<211> 387
<212> PRT
<213> Artificial Sequence
<223> Protein comprised of Immunodominant parts of the Nef-Tat-Rev(NTR)
<400> 30
Met Gly Trp Pro Thr Val Arg Glu Arg Met Lys Gln Ala Glu Pro Glu
Pro Ala Ala Asp Gly Val Gly Ala Ala Ser Arg Asp Leu Glu Lys His
          20
                            25
Gly Ala Ile Thr Ser Ser Asn Thr Ala Thr Asn Asn Ala Ala Cys Ala
```

```
40
Trp Leu Glu Ala Gln Glu Glu Glu Val Gly Phe Pro Val Arg Pro
                      55
Gln Val Pro Leu Arg Pro Met Thr Tyr Lys Gly Ala Leu Asp Leu Ser
                                     75
His Phe Leu Lys Glu Lys Gly Gly Leu Glu Gly Leu Ile Tyr Ser Pro
                                 90
Lys Arg Gln Glu Ile Leu Asp Leu Trp Val Tyr His Thr Gln Gly Tyr
                             105
Phe Pro Asp Trp Gln Asn Tyr Thr Pro Gly Pro Gly Val Arg Tyr Pro
      115
                         120
                                           125
Leu Thr Phe Gly Trp Cys Phe Lys Leu Val Pro Val Glu Pro Asp Glu
                      135
Glu Glu Asn Ser Ser Leu Leu His Pro Ala Ser Leu His Gly Thr Glu
     150 155
Asp Thr Glu Arg Glu Val Leu Lys Trp Lys Phe Asp Ser His Leu Ala
              165 170
Phe His His Lys Ala Arg Glu Leu His Pro Glu Tyr Tyr Lys Asp Cys
                             185 190
Ala Leu Ala Ala Val Glu Pro Val Asp Pro Arg Leu Glu Pro Trp Lys
                          200
His Pro Gly Ser Gln Pro Arg Thr Pro Cys Thr Asn Cys Tyr Cys Lys
                      215
                                      220
Lys Cys Cys Leu His Cys Gln Val Cys Phe Thr Arg Lys Gly Leu Gly
                  230
                                    235
Ile Ser Tyr Gly Arg Lys Lys Arg Arg Gln Arg Arg Arg Ala Pro Gln
               245
                                 250
Asp Ser Gln Thr His Gln Val Ser Leu Pro Lys Gln Pro Ser Ser Gln
          260
                             265
                                                270
Gln Arg Gly Asp Pro Thr Gly Pro Lys Lys Ser Gly Leu Ala Ile Leu
                        280
Leu Ser Asp Glu Glu Leu Leu Lys Thr Val Arg Leu Ile Lys Phe Leu
           295
                                        300
Tyr Gln Ser Asn Pro Pro Pro Ser Asn Glu Gly Thr Arg Gln Ala Arg
                  310
                                     315
Arg Asn Arg Arg Arg Trp Arg Glu Arg Gln Arg Gln Ile Arg Ser
              325
                                330
Ile Ser Glu Arg Ile Leu Ser Thr Phe Leu Gly Arg Pro Ala Glu Pro
          340
                             345
Val Pro Leu Gln Leu Pro Pro Leu Glu Arg Leu Thr Leu Asp Cys Ser
                        360
                                           365
Glu Asp Cys Gly Asn Ser Gly Thr Gln Gly Val Gly Ser Pro Gln Val
 370
               375
                                        380
Leu Val Glu
385
<210> 31
<211> 390
<212> PRT
<213> Artificial Sequence
<223> Protein comprised of Immunodominant parts of the Nef-Tat-Rev
separated by protease sites (NTR)
<400> 31
Met Gly Trp Pro Thr Val Arg Glu Arg Met Lys Gln Ala Glu Pro Glu
                                1.0
```

 4400> 31

 Met Gly Trp Pro Thr Val Arg Glu Arg Met Lys Gln Ala Glu Pro Glu

 1
 5
 10
 15

 Pro Ala Ala Asp Gly Val Gly Ala Ala Ser Arg Asp Leu Glu Lys His
 20
 25
 30

 Gly Ala Ile Thr Ser Ser Asn Thr Ala Thr Asn Asn Ala Ala Cys Ala
 35
 40
 45

 Trp Leu Glu Ala Gln Glu Glu Glu Glu Val Gly Phe Pro Val Arg Pro

```
55
Gln Val Pro Leu Arg Pro Met Thr Tyr Lys Gly Ala Leu Asp Leu Ser
His Phe Leu Lys Glu Lys Gly Gly Leu Glu Gly Leu Ile Tyr Ser Pro
              85
                             90
Lys Arg Gln Glu Ile Leu Asp Leu Trp Val Tyr His Thr Gln Gly Tyr
           100
                            105
Phe Pro Asp Trp Gln Asn Tyr Thr Pro Gly Pro Gly Val Arg Tyr Pro
                       120
Leu Thr Phe Gly Trp Cys Phe Lys Leu Val Pro Val Glu Pro Asp Glu
                     135
Glu Glu Asn Ser Ser Leu Leu His Pro Ala Ser Leu His Gly Thr Glu
                 150
                                   155
Asp Thr Glu Arg Glu Val Leu Lys Trp Lys Phe Asp Ser His Leu Ala
              165
                             170
Phe His His Lys Ala Arg Glu Leu His Pro Glu Tyr Tyr Lys Asp Cys
          180 185
Ala Leu Ala Phe Lys Arg Val Glu Pro Val Asp Pro Arg Leu Glu Pro
           200 205
Trp Lys His Pro Gly Ser Gln Pro Arg Thr Pro Cys Thr Asn Cys Tyr
                     215
                                    220
Cys Lys Lys Cys Cys Leu His Cys Gln Val Cys Phe Thr Arg Lys Gly
                230 235
Leu Gly Ile Ser Tyr Gly Arg Lys Lys Arg Arg Gln Arg Arg Ala
              245
                               250
Pro Gln Asp Ser Gln Thr His Gln Val Ser Leu Pro Lys Gln Pro Ser
          260
                           265
Ser Gln Gln Arg Gly Asp Pro Thr Gly Pro Lys Lys Ser Val Arg Glu
       275
                         280
Lys Arg Leu Leu Ser Asp Glu Glu Leu Leu Lys Thr Val Arg Leu Ile
                    295
                                     300
Lys Phe Leu Tyr Gln Ser Asn Pro Pro Pro Ser Asn Glu Gly Thr Arg
       310 315
Gln Ala Arg Arg Asn Arg Arg Arg Trp Arg Glu Arg Gln Arg Gln
                               330
              325
Ile Arg Ser Ile Ser Glu Arg Ile Leu Ser Thr Phe Leu Gly Arg Pro
        340 345
                                              350
Ala Glu Pro Val Pro Leu Gln Leu Pro Pro Leu Glu Arg Leu Thr Leu
                       360
                                         365
Asp Cys Ser Glu Asp Cys Gly Asn Ser Gly Thr Gln Gly Val Gly Ser
              375
Pro Gln Val Leu Val Glu
                 390
<210> 32
<211> 386
<212> PRT
<213> Artificial Sequence
<223> Protein comprised of Immunodominant parts of the regulatory proteins
Nef-Tat-Rev started from aal of Nef(N11TR)
<400> 32
Met Trp Pro Thr Val Arg Glu Arg Met Lys Gln Ala Glu Pro Glu Pro
Ala Ala Asp Gly Val Gly Ala Ala Ser Arg Asp Leu Glu Lys His Gly
         20
                            25
Ala Ile Thr Ser Ser Asn Thr Ala Thr Asn Asn Ala Ala Cys Ala Trp
                        40
Leu Glu Ala Gln Glu Glu Glu Val Gly Phe Pro Val Arg Pro Gln
                     55
                                      60
Val Pro Leu Arg Pro Met Thr Tyr Lys Gly Ala Leu Asp Leu Ser His
```

```
70
                                       75
Phe Leu Lys Glu Lys Gly Gly Leu Glu Gly Leu Ile Tyr Ser Pro Lys
              85
                                   90
Arg Gln Glu Ile Leu Asp Leu Trp Val Tyr His Thr Gln Gly Tyr Phe
                               105
Pro Asp Trp Gln Asn Tyr Thr Pro Gly Pro Gly Val Arg Tyr Pro Leu
        115
                           120
Thr Phe Gly Trp Cys Phe Lys Leu Val Pro Val Glu Pro Asp Glu Glu
                       135
                                          140
Glu Asn Ser Ser Leu Leu His Pro Ala Ser Leu His Gly Thr Glu Asp
                   150
                                       155
Thr Glu Arg Glu Val Leu Lys Trp Lys Phe Asp Ser His Leu Ala Phe
               165
                                   170
His His Lys Ala Arg Glu Leu His Pro Glu Tyr Tyr Lys Asp Cys Ala
           180
                               185
                                                   190
Leu Ala Ala Val Glu Pro Val Asp Pro Arg Leu Glu Pro Trp Lys His
                          200
Pro Gly Ser Gln Pro Arg Thr Pro Cys Thr Asn Cys Tyr Cys Lys
                               220
                       215
Cys Cys Leu His Cys Gln Val Cys Phe Thr Arg Lys Gly Leu Gly Ile
Ser Tyr Gly Arg Lys Lys Arg Arg Gln Arg Arg Arg Ala Pro Gln Asp
               245
                                   250
Ser Gln Thr His Gln Val Ser Leu Pro Lys Gln Pro Ser Ser Gln Gln
           260
                              265
Arg Gly Asp Pro Thr Gly Pro Lys Lys Ser Gly Leu Ala Ile Leu Leu
        275
                           280
Ser Asp Glu Glu Leu Leu Lys Thr Val Arg Leu Ile Lys Phe Leu Tyr
                       295
                                           300
Gln Ser Asn Pro Pro Pro Ser Asn Glu Gly Thr Arg Gln Ala Arg Arg
                   310
                                       315
Asn Arg Arg Arg Trp Arg Glu Arg Gln Arg Gln Ile Arg Ser Ile
               325
                                   330
Ser Glu Arg Ile Leu Ser Thr Phe Leu Gly Arg Pro Ala Glu Pro Val
                                                  350
Pro Leu Gln Leu Pro Pro Leu Glu Arg Leu Thr Leu Asp Cys Ser Glu
       355 360
                                              365
Asp Cys Gly Asn Ser Gly Thr Gln Gly Val Gly Ser Pro Gln Val Leu
  370
                       375
Val Glu
385
<210> 33
<211> 389
<212> PRT
<213> Artificial Sequence
<223> Protein comprised of Immunodominant parts of the regulatory proteins
Nef-Tat-Rev started from aal of Nef separated by protease sites (N11TR)
Met Trp Pro Thr Val Arg Glu Arg Met Lys Gln Ala Glu Pro Glu Pro
                                   10
Ala Ala Asp Gly Val Gly Ala Ala Ser Arg Asp Leu Glu Lys His Gly
                               25
Ala Ile Thr Ser Ser Asn Thr Ala Thr Asn Asn Ala Ala Cys Ala Trp
       35
                           40
Leu Glu Ala Gln Glu Glu Glu Val Gly Phe Pro Val Arg Pro Gln
                       55
Val Pro Leu Arg Pro Met Thr Tyr Lys Gly Ala Leu Asp Leu Ser His
                   70
                                       75
Phe Leu Lys Glu Lys Gly Gly Leu Glu Gly Leu Ile Tyr Ser Pro Lys
```

```
85
                                  90
Arg Gln Glu Ile Leu Asp Leu Trp Val Tyr His Thr Gln Gly Tyr Phe
                           105
Pro Asp Trp Gln Asn Tyr Thr Pro Gly Pro Gly Val Arg Tyr Pro Leu
       115
               120
Thr Phe Gly Trp Cys Phe Lys Leu Val Pro Val Glu Pro Asp Glu Glu
                       135
Glu Asn Ser Ser Leu Leu His Pro Ala Ser Leu His Gly Thr Glu Asp
                  150
                                     155
Thr Glu Arg Glu Val Leu Lys Trp Lys Phe Asp Ser His Leu Ala Phe
               165
                                 170
His His Lys Ala Arg Glu Leu His Pro Glu Tyr Tyr Lys Asp Cys Ala
                              185
                                                1.90
Leu Ala Phe Lys Arg Val Glu Pro Val Asp Pro Arg Leu Glu Pro Trp
       195
                          200
Lys His Pro Gly Ser Gln Pro Arg Thr Pro Cys Thr Asn Cys Tyr Cys
                      215
                                        220
Lys Lys Cys Cys Leu His Cys Gln Val Cys Phe Thr Arg Lys Gly Leu
         230 235
Gly Ile Ser Tyr Gly Arg Lys Lys Arg Arg Gln Arg Arg Arg Ala Pro
               245
                              250
Gln Asp Ser Gln Thr His Gln Val Ser Leu Pro Lys Gln Pro Ser Ser
           260
                              265
                                                 270
Gln Gln Arg Gly Asp Pro Thr Gly Pro Lys Lys Ser Val Arg Glu Lys
                          280
Arg Leu Leu Ser Asp Glu Glu Leu Leu Lys Thr Val Arg Leu Ile Lys
                      295
                                      300
Phe Leu Tyr Gln Ser Asn Pro Pro Pro Ser Asn Glu Gly Thr Arg Gln
                   310
                                      315
Ala Arg Arg Asn Arg Arg Arg Trp Arg Glu Arg Gln Arg Gln Ile
              325
                                 330
Arg Ser Ile Ser Glu Arg Ile Leu Ser Thr Phe Leu Gly Arg Pro Ala
          340
                             345
Glu Pro Val Pro Leu Gln Leu Pro Pro Leu Glu Arg Leu Thr Leu Asp
                         360
                                             365
Cys Ser Glu Asp Cys Gly Asn Ser Gly Thr Gln Gly Val Gly Ser Pro
  370
                      375
                                         380
Gln Val Leu Val Glu
<210> 34
<211> 220
<212> PRT
<213> Artificial Sequence
<223> Protein comprised of Cytotoxic T-cell epitopes of Pol and Env
genes (CTL)
<400> 34
Met Ile Thr Leu Trp Gln Arg Pro Leu Val Ala Leu Ile Glu Ile Cys
                                  10
Thr Glu Met Glu Lys Glu Gly Lys Ile Ser Lys Ile Gly Pro Ala Gly
                              25
Leu Lys Lys Lys Ser Val Thr Val Leu Asp Val Gly Asp Ala Tyr
                          40
Phe Ser Val Pro Leu Asp Lys Asp Phe Arg Lys Tyr Thr Ala Phe Thr
                      55
                                        60
Ile Pro Ser Ile Trp Lys Gly Ser Pro Ala Ile Phe Gln Ser Ser Met
Thr Lys Lys Gln Asn Pro Asp Ile Val Ile Tyr Gln Tyr Met Asp Asp
               85
                                 90
Leu Tyr Val Pro Ile Val Leu Pro Glu Lys Asp Ser Trp Leu Val Gly
```

```
100
                               105
Lys Leu Asn Trp Ala Ser Gln Ile Tyr Ala Gly Ile Lys Val Lys Gln
                          120
Leu Ile Leu Lys Glu Pro Val His Gly Val Tyr Glu Pro Ile Val Gly
                       135
                                         140
Ala Glu Thr Phe Tyr Val Asp Gly Ala Ala Asn Arg Ala Gly Asn Leu
                   150
Trp Val Thr Val Tyr Tyr Gly Val Pro Val Trp Lys Glu Ala Thr Thr
               165
                                170
Thr Leu Val Glu Arg Tyr Leu Arg Asp Gln Gln Leu Leu Gly Ile Trp
                              185
           180
Gly Cys Ala Cys Thr Pro Tyr Asp Ile Asn Gln Met Leu Arg Gly Pro
                           200
Gly Arg Ala Phe Val Thr Ile Arg Gln Gly Ser Leu
                    215
<210> 35
<211> 421
<212> PRT
<213> Artificial Sequence
<223> Truncated Gag protein sequence (dgag)
<400> 35
Met Leu Asp Lys Trp Glu Lys Ile Arg Leu Arg Pro Gly Gly Lys Lys
Lys Tyr Gln Leu Lys His Ile Val Trp Ala Ser Arg Glu Leu Glu Arg
           2.0
                               25
Phe Ala Val Asn Pro Gly Leu Leu Glu Thr Ser Glu Gly Cys Arg Gln
                          40
Ile Met Gly Gln Leu Gln Pro Ser Leu Gln Thr Gly Ser Glu Glu Leu
                   55
                                       60
Arg Ser Leu Tyr Asn Thr Val Ala Thr Leu Tyr Cys Val His Gln Lys
                   70
Ile Glu Val Lys Asp Thr Lys Glu Ala Leu Asp Lys Val Glu Glu
                                  90
Gln Asn Asn Ser Lys Lys Ala Gln Gln Glu Ala Ala Asp Ala Gly
          100
                              105
Asn Arg Asn Gln Val Ser Gln Asn Tyr Pro Ile Val Gln Asn Leu Gln
                          120
                                            125
Gly Gln Met Val His Gln Ala Ile Ser Pro Arg Thr Leu Asn Ala Trp
   130
                       135
                                          140
Val Lys Val Val Glu Glu Lys Ala Phe Ser Pro Glu Val Ile Pro Met
                  150
                         155
Phe Ser Ala Leu Ser Glu Gly Ala Thr Pro Gln Asp Leu Asn Thr Met
                                 170
               165
Leu Asn Thr Val Gly Gly His Gln Ala Ala Met Gln Met Leu Lys Glu
Thr Ile Asn Glu Glu Ala Ala Glu Trp Asp Arg Leu His Pro Val His
                           200
Ala Gly Pro Ile Ala Pro Gly Gln Met Arg Glu Pro Arg Gly Ser Asp
                       215
Ile Ala Gly Thr Thr Ser Thr Leu Gln Glu Gln Ile Gly Trp Met Thr
                   230
                                      235
Asn Asn Pro Pro Ile Pro Val Gly Glu Ile Tyr Lys Arg Trp Ile Ile
               245
                                  250
Leu Gly Leu Asn Lys Ile Val Arg Met Tyr Ser Pro Thr Ser Ile Leu
                              265
                                                 270
Asp Ile Lys Gln Gly Pro Lys Glu Pro Phe Arg Asp Tyr Val Asp Arg
      275
                          280
                                   285
Phe Tyr Lys Thr Leu Arg Ala Glu Gln Ala Thr Gln Glu Val Lys Asn
   290
                       295
                                          300
```

```
Trp Met Thr Glu Thr Leu Leu Val Gln Asn Ala Asn Pro Asp Cys Lys
                  310
                                     315
Thr Ile Leu Lys Ala Leu Gly Pro Ala Ala Thr Leu Glu Glu Met Met
              325
                                 330
Thr Ala Cys Gln Gly Val Gly Gly Pro Gly His Lys Ala Arg Val Leu
                             345
                                               350
          340
Ala Glu Ala Met Ser Gln Val Thr Gly Ser Ala Ala Ile Met Met Gln
                          360
                                            365
Arg Gly Asn Phe Arg Asn Gln Arg Lys Thr Val Lys Cys Phe Asn Cys
       375 380
Gly Lys Glu Gly His Ile Ala Arg Asn Cys Arg Ala Pro Arg Lys
       390 395
Gly Cys Trp Lys Cys Gly Lys Glu Gly His Gln Met Lys Asp Cys Thr
Glu Arg Gln Ala Asn
          420
<210> 36
<211> 363
<212> PRT
<213> Artificial Sequence
<220>
<223> Synthetic p17/24 protein of Gag gene (Syn 17/24)
<400> 36
Met Gly Ala Arg Ala Ser Val Leu Ser Gly Gly Glu Leu Asp Lys Trp
                                 10
Glu Lys Ile Arg Leu Arg Pro Gly Gly Lys Lys Lys Tyr Gln Leu Lys
        2.0
                             25
His Ile Val Trp Ala Ser Arg Glu Leu Glu Arg Phe Ala Val Asn Pro
                         40
Gly Leu Leu Glu Thr Ser Glu Gly Cys Arg Gln Ile Met Gly Gln Leu
                      55
                                       60
Gln Pro Ser Leu Gln Thr Gly Ser Glu Glu Leu Arg Ser Leu Tyr Asn
Thr Val Ala Thr Leu Tyr Cys Val His Gln Lys Ile Glu Val Lys Asp
              85
                                90
Thr Lys Glu Ala Leu Asp Lys Val Glu Glu Glu Gln Asn Asn Ser Lys
                             105
Lys Lys Ala Gln Gln Glu Ala Ala Asp Ala Gly Asn Arg Asn Gln Val
                                           125
                          120
Ser Gln Asn Tyr Pro Ile Val Gln Asn Leu Gln Gly Gln Met Val His
                      135
                                        140
Gln Ala Ile Ser Pro Arg Thr Leu Asn Ala Trp Val Lys Val Val Glu
                  150
                                    155
Glu Lys Ala Phe Ser Pro Glu Val Ile Pro Met Phe Ser Ala Leu Ser
              165
                                170
Glu Gly Ala Thr Pro Gln Asp Leu Asn Thr Met Leu Asn Thr Val Gly
                             185
Gly His Gln Ala Ala Met Gln Met Leu Lys Glu Thr Ile Asn Glu Glu
                         200
                                           205
      195
Ala Ala Glu Trp Asp Arg Leu His Pro Val His Ala Gly Pro Ile Ala
                     215
Pro Gly Gln Met Arg Glu Pro Arg Gly Ser Asp Ile Ala Gly Thr Thr
                                    235
                  230
Ser Thr Leu Gln Glu Gln Ile Gly Trp Met Thr Asn Asn Pro Pro Ile
              245
                                 250
Pro Val Gly Glu Ile Tyr Lys Arg Trp Ile Ile Leu Gly Leu Asn Lys
                            265
Ile Val Arg Met Tyr Ser Pro Thr Ser Ile Leu Asp Ile Lys Gln Gly
                          280
                                            285
Pro Lys Glu Pro Phe Arg Asp Tyr Val Asp Arg Phe Tyr Lys Thr Leu
```

```
295
Arg Ala Glu Gln Ala Thr Gln Glu Val Lys Asn Trp Met Thr Glu Thr
                  310
                              315
Leu Leu Val Gln Asn Ala Asn Pro Asp Cys Lys Thr Ile Leu Lys Ala
               325
                                  330
                                           335
Leu Gly Pro Ala Ala Thr Leu Glu Glu Met Met Thr Ala Cys Gln Gly
           340
                               345
Val Gly Gly Pro Gly His Lys Ala Arg Val Leu
<210> 37
<211> 363
<212> PRT
<213> Artificial Sequence
<223> Synthetic p17/24 protein of Gag gene optimized for expression in
eukaryotic cells(optp 17/24)
<400> 37
Met Gly Ala Arg Ala Ser Val Leu Ser Gly Gly Glu Leu Asp Lys Trp
                                   10
Glu Lys Ile Arg Leu Arg Pro Gly Gly Lys Lys Lys Tyr Gln Leu Lys
                               25
His Ile Val Trp Ala Ser Arg Glu Leu Glu Arg Phe Ala Val Asn Pro
                           40
Gly Leu Leu Glu Thr Ser Glu Gly Cys Arg Gln Ile Met Gly Gln Leu
Gln Pro Ser Leu Gln Thr Gly Ser Glu Glu Leu Arg Ser Leu Tyr Asn
                   70
                                      75
Thr Val Ala Thr Leu Tyr Cys Val His Gln Lys Ile Glu Val Lys Asp
               85
                                  90
Thr Lys Glu Ala Leu Asp Lys Val Glu Glu Glu Gln Asn Asn Ser Lys
                              105
Lys Lys Ala Gln Glu Ala Ala Asp Ala Gly Asn Arg Asn Gln Val
                           120
                                              125
Ser Gln Asn Tyr Pro Ile Val Gln Asn Leu Gln Gly Gln Met Val His
                      135
                                         140
Gln Ala Ile Ser Pro Arg Thr Leu Asn Ala Trp Val Lys Val Val Glu
                  150
                                     155
Glu Lys Ala Phe Ser Pro Glu Val Ile Pro Met Phe Ser Ala Leu Ser
               165
                                  170
Glu Gly Ala Thr Pro Gln Asp Leu Asn Thr Met Leu Asn Thr Val Gly
           1.80
                             185
                                               190
Gly His Gln Ala Ala Met Gln Met Leu Lys Glu Thr Ile Asn Glu Glu
                          200
                                             205
Ala Ala Glu Trp Asp Arg Leu His Pro Val His Ala Gly Pro Ile Ala
                       215
                                         220
Pro Gly Gln Met Arg Glu Pro Arg Gly Ser Asp Ile Ala Gly Thr Thr
                   230
                                      235
Ser Thr Leu Gln Glu Gln Ile Gly Trp Met Thr Asn Asn Pro Pro Ile
                                  250
Pro Val Gly Glu Ile Tyr Lys Arg Trp Ile Ile Leu Gly Leu Asn Lys
                              265
           260
Ile Val Arg Met Tyr Ser Pro Thr Ser Ile Leu Asp Ile Lys Gln Gly
       275
                          280
Pro Lys Glu Pro Phe Arg Asp Tyr Val Asp Arg Phe Tyr Lys Thr Leu
                      295
                                          300
Arg Ala Glu Gln Ala Thr Gln Glu Val Lys Asn Trp Met Thr Glu Thr
                 310
                                     315
Leu Leu Val Gln Asn Ala Asn Pro Asp Cys Lys Thr Ile Leu Lys Ala
                                  330
```

Leu Gly Pro Ala Ala Thr Leu Glu Glu Met Met Thr Ala Cys Gln Gly

```
340
                                                350
Val Gly Gly Pro Gly His Lys Ala Arg Val Leu
<210> 38
<211> 641
<212> PRT
<213> Artificial Sequence
<223> Hybrid protein comprised of Tat-Rev-Nef and CTL(TRN-CTL)
<400> 38
Met Glu Pro Val Asp Pro Arg Leu Glu Pro Trp Lys His Pro Gly Ser
Gln Pro Arg Thr Pro Cys Thr Asn Cys Tyr Cys Lys Lys Cys Cys Leu
His Cys Gln Val Cys Phe Thr Arg Lys Gly Leu Gly Ile Ser Tyr Gly
                  40
Arg Lys Lys Arg Arg Gln Arg Arg Arg Ala Pro Gln Asp Ser Gln Thr
                      55
His Gln Val Ser Leu Pro Lys Gln Pro Ser Ser Gln Gln Arg Gly Asp
               70
                       75
Pro Thr Gly Pro Lys Lys Ser Lys Lys Lys Val Glu Arg Glu Thr Glu
                                90
Ala Asp Pro Phe Asp Thr Ser Ala Gly Arg Ser Gly Asp Ser Asp Glu
          100
                             105
Glu Leu Leu Lys Thr Val Arg Leu Ile Lys Phe Leu Tyr Gln Ser Asn
       115
                          120
Pro Pro Pro Ser Asn Glu Gly Thr Arg Gln Ala Arg Arg Asn Arg Arg
                     135
                                        140
Arg Arg Trp Arg Glu Arg Gln Arg Gln Ile Arg Ser Ile Ser Glu Arg
              150
                                    155
Ile Leu Ser Thr Phe Leu Gly Arg Pro Ala Glu Pro Val Pro Leu Gln
              165
                                 170
Leu Pro Pro Leu Glu Arg Leu Thr Leu Asp Cys Ser Glu Asp Cys Gly
                             185
                                                190
Asn Ser Gly Thr Gln Gly Val Gly Ser Pro Gln Val Leu Val Glu Ser
                         200
                                            205
Pro Ala Val Leu Glu Pro Gly Thr Lys Glu Lys Leu Val Gly Lys Trp
                     215
                                        220
Ser Lys Cys Ser Gly Trp Pro Thr Val Arg Glu Arg Met Lys Gln Ala
                  230
                                     235
Glu Pro Glu Pro Ala Ala Asp Gly Val Gly Ala Ala Ser Arg Asp Leu
              245
                              250 255
Glu Lys His Gly Ala Ile Thr Ser Ser Asn Thr Ala Thr Asn Asn Ala
                            265
Ala Cys Ala Trp Leu Glu Ala Gln Glu Glu Glu Val Gly Phe Pro
                       280
Val Arg Pro Gln Val Pro Leu Arg Pro Met Thr Tyr Lys Gly Ala Leu
                     295
                                         300
Asp Leu Ser His Phe Leu Lys Glu Lys Gly Gly Leu Glu Gly Leu Ile
                  310
                                     315
Tyr Ser Pro Lys Arg Gln Glu Ile Leu Asp Leu Trp Val Tyr His Thr
              325
                                 330
Gln Gly Tyr Phe Pro Asp Trp Gln Asn Tyr Thr Pro Gly Pro Gly Val
                             345
Arg Tyr Pro Leu Thr Phe Gly Trp Cys Phe Lys Leu Val Pro Val Glu
                         360 365
Pro Asp Glu Glu Asn Ser Ser Leu Leu His Pro Ala Ser Leu His
                     375
                                        380
Gly Thr Glu Asp Thr Glu Arg Glu Val Leu Lys Trp Lys Phe Asp Ser
                                     395
```

```
His Leu Ala Phe His His Lys Ala Arg Glu Leu His Pro Glu Tyr Tyr
                         410 415
            405
Lys Asp Cys Ala Ala Val Ile Thr Leu Trp Gln Arg Pro Leu Val Ala
         420
                             425
Leu Ile Glu Ile Cys Thr Glu Met Glu Lys Glu Gly Lys Ile Ser Lys
                         440
                                            445
Ile Gly Pro Ala Gly Leu Lys Lys Lys Lys Ser Val Thr Val Leu Asp
                      455
Val Gly Asp Ala Tyr Phe Ser Val Pro Leu Asp Lys Asp Phe Arg Lys
                                  475
Tyr Thr Ala Phe Thr Ile Pro Ser Ile Trp Lys Gly Ser Pro Ala Ile
             485
                                490
Phe Gln Ser Ser Met Thr Lys Lys Gln Asn Pro Asp Ile Val Ile Tyr
           500
                              505
                                               510
Gln Tyr Met Asp Asp Leu Tyr Val Pro Ile Val Leu Pro Glu Lys Asp
              520
      515
                                           525
Ser Trp Leu Val Gly Lys Leu Asn Trp Ala Ser Gln Ile Tyr Ala Gly
                     535
Ile Lys Val Lys Gln Leu Ile Leu Lys Glu Pro Val His Gly Val Tyr
                550
                          555
Glu Pro Ile Val Gly Ala Glu Thr Phe Tyr Val Asp Gly Ala Ala Asn
              565
                                 570
Arg Ala Gly Asn Leu Trp Val Thr Val Tyr Tyr Gly Val Pro Val Trp
                             585
Lys Glu Ala Thr Thr Leu Val Glu Arg Tyr Leu Arg Asp Gln Gln
                         600
                                           605
Leu Leu Gly Ile Trp Gly Cys Ala Cys Thr Pro Tyr Asp Ile Asn Gln
                      615
                                       620
Met Leu Arg Gly Pro Gly Arg Ala Phe Val Thr Ile Arg Gln Gly Ser
               630
                                    635
Leu
<210> 39
<211>
      641
<212> PRT
<213> Artificial Sequence
<220>
<223> Hybrid protein comprised of Rev-Nef-Tat and CTL(RNT-CTL)
<400> 39
Met Ala Gly Arg Ser Gly Asp Ser Asp Glu Glu Leu Leu Lys Thr Val
                                 10
Arg Leu Ile Lys Phe Leu Tyr Gln Ser Asn Pro Pro Pro Ser Asn Glu
                            25
Gly Thr Arg Gln Ala Arg Arg Asn Arg Arg Arg Trp Arg Glu Arg
                        40
Gln Arg Gln Ile Arg Ser Ile Ser Glu Arg Ile Leu Ser Thr Phe Leu
                      55
Gly Arg Pro Ala Glu Pro Val Pro Leu Gln Leu Pro Pro Leu Glu Arg
                 70
                                   75
Leu Thr Leu Asp Cys Ser Glu Asp Cys Gly Asn Ser Gly Thr Gln Gly
              85
                                90
Val Gly Ser Pro Gln Val Leu Val Glu Ser Pro Ala Val Leu Glu Pro
          100
                            105
Gly Thr Lys Glu Thr Ser Val Gly Lys Trp Ser Lys Cys Ser Gly Trp
     115
                       120
Pro Thr Val Arg Glu Arg Met Lys Gln Ala Glu Pro Glu Pro Ala Ala
                                       140
Asp Gly Val Gly Ala Ala Ser Arg Asp Leu Glu Lys His Gly Ala Ile
                 150
                                 155
Thr Ser Ser Asn Thr Ala Thr Asn Asn Ala Ala Cys Ala Trp Leu Glu
```

				1					100						
Ala	Gln	Glu	Glu	165 Glu	Glu	Val	Gly		170 Pro		Arg	Pro	Gln	175 Val	Pro
Leu	Arg	Pro	180 Met	Thr	Tyr	Lys	Gly	185 Ala	Leu	Asp	Leu	Ser	190 His	Phe	Leu
		195	Gly				200					205			
	210					215					220				
225			Asp		230					235					240
Trp	Gln	Asn	Tyr	Thr 245	Pro	Gly	Pro	Gly	Val 250	Arg	Tyr	Pro	Leu	Thr 255	Phe
Gly	Trp	Cys	Phe 260	Lys	Leu	Val	Pro	Val 265		Pro	Asp	Glu	Glu 270		Asn
Ser	Ser	Leu 275	Leu	Hìs	Pro	Ala	Ser 280		His	Gly	Thr	Glu 285		Thr	Glu
Arg	Glu 290	_	Leu	Lys	Trp	Lys 295		Asp	Ser	His	Leu 300		Phe	His	His
		Arg	Glu	Leu			Glu	Tyr	Tyr			Cys	Lys	Leu	
305 Pro	Val	Asp	Pro	Arg	310 Leu	Glu	Pro	Trp	Lys	315 His	Pro	Gly	Ser	Gln	320 Pro
Arg	Thr	Pro	Cys	325 Thr	Asn	Cys	Tyr	Cys	330 Lys	Lys	Cys	Cys	Leu	335 His	Cvs
			340 Phe					345		_	_	_	350		-
		355					360					365			_
	370		Gln			375					380				
Val 385	Ser	Leu	Pro	Lys	Gln 390	Pro	Ser	Ser	Gln	Gln 395	Arg	Gly	Asp	Pro	Thr 400
Gly	Pro	Lys	Lys	Ser 405	Lys	Lys	Lys	Val	Glu 410	Arg	Glu	Thr	Glu	Ala 415	Asp
Pro	Phe	Asp	Ala 420	Ala	Val	Ile	Thr	Leu 425	Trp	Gln	Arg	Pro	Leu 430		Ala
Leu	Ile	Glu 435	Ile	Cys	Thr	Glu	Met 440		Lys	Glu	Gly	Lys 445		Ser	Lys
Ile	Gly 450	Pro	Ala	Gly	Leu	Lys 455		Lys	Lys	Ser	Val 460		Val	Leu	Asp
Val 465		Asp	Ala	Tyr	Phe 470		Val	Pro	Leu	Asp 475		Asp	Phe	Arg	Lys 480
	Thr	Ala	Phe			Pro	Ser	Ile			Gly	Ser	Pro		
Phe	Gln	Ser	Ser	485 Met	Thr	Lys	Lys		490 Asn	Pro	Asp	Ile		495 Ile	Tyr
Gln	Tyr	Met	500 Asp	Asp	Leu	Tyr	Val	505 Pro	Ile	Val	Leu	Pro	510 Glu	Lys	Asp
Ser	Trp	515 Leu	Val	Gly	Lys	Leu	520 Asn	Trp	Ala	Ser	Gln	525 Ile	Tyr	Ala	Gly
	530		Lys			535					540		_		_
545					550					555			-		560
			Val	565					570			-		575	
Arg	Ala	Gly	Asn 580	Leu	Trp	Val	Thr	Val 585	Tyr	Tyr	Gly	Val	Pro 590	Val	Trp
Lуs	Glu	Ala 595	Thr	Thr	Thr	Leu	Val 600	Glu	Arg	Tyr	Leu	Arg 605	Asp	Gln	Gln
Leu	Leu 610		Ile	Trp	Gly	Cys 615		Cys	Thr	Pro			Ile	Asn	Gln
Met 625 Leu		Arg	Gly	Pro	Gly 630		Ala	Phe	Val	Thr 635	620 Ile	Arg	Gln	Gly	Ser 640
-210) /	. ∩													

<210> 40 <211> 842

<212> PRT

<213> Artificial Sequence

<220>

<223> Hybrid protein cds comprised of Tat-Rev-Nef and truncated Gag
protein(TRN-dqaq)

<400> 40 Met Glu Pro Val Asp Pro Arg Leu Glu Pro Trp Lys His Pro Gly Ser Gln Pro Arg Thr Pro Cys Thr Asn Cys Tyr Cys Lys Lys Cys Cys Leu 20 25 His Cys Gln Val Cys Phe Thr Arg Lys Gly Leu Gly Ile Ser Tyr Gly 40 Arg Lys Lys Arg Arg Gln Arg Arg Arg Ala Pro Gln Asp Ser Gln Thr 55 His Gln Val Ser Leu Pro Lys Gln Pro Ser Ser Gln Gln Arg Gly Asp 70 75 Pro Thr Gly Pro Lys Lys Ser Lys Lys Lys Val Glu Arg Glu Thr Glu 90 Ala Asp Pro Phe Asp Thr Ser Ala Gly Arg Ser Gly Asp Ser Asp Glu 100 105 110 Glu Leu Leu Lys Thr Val Arg Leu Ile Lys Phe Leu Tyr Gln Ser Asn 120 Pro Pro Pro Ser Asn Glu Gly Thr Arg Gln Ala Arg Arg Asn Arg Arg 135 140 Arg Arg Trp Arg Glu Arg Gln Arg Gln Ile Arg Ser Ile Ser Glu Arg 150 155 Ile Leu Ser Thr Phe Leu Gly Arg Pro Ala Glu Pro Val Pro Leu Gln 170 165 Leu Pro Pro Leu Glu Arg Leu Thr Leu Asp Cys Ser Glu Asp Cys Gly 185 Asn Ser Gly Thr Gln Gly Val Gly Ser Pro Gln Val Leu Val Glu Ser 200 Pro Ala Val Leu Glu Pro Gly Thr Lys Glu Lys Leu Val Gly Lys Trp 215 220 Ser Lys Cys Ser Gly Trp Pro Thr Val Arg Glu Arg Met Lys Gln Ala 230 235 Glu Pro Glu Pro Ala Ala Asp Gly Val Gly Ala Ala Ser Arg Asp Leu 245 250 Glu Lys His Gly Ala Ile Thr Ser Ser Asn Thr Ala Thr Asn Asn Ala 265 Ala Cys Ala Trp Leu Glu Ala Gln Glu Glu Glu Val Gly Phe Pro 280 285 Val Arg Pro Gln Val Pro Leu Arg Pro Met Thr Tyr Lys Gly Ala Leu 295 300 Asp Leu Ser His Phe Leu Lys Glu Lys Gly Gly Leu Glu Gly Leu Ile 310 315 Tyr Ser Pro Lys Arg Gln Glu Ile Leu Asp Leu Trp Val Tyr His Thr 325 330 Gln Gly Tyr Phe Pro Asp Trp Gln Asn Tyr Thr Pro Gly Pro Gly Val 345 Arg Tyr Pro Leu Thr Phe Gly Trp Cys Phe Lys Leu Val Pro Val Glu 360 365 Pro Asp Glu Glu Asn Ser Ser Leu Leu His Pro Ala Ser Leu His 375 380 Gly Thr Glu Asp Thr Glu Arg Glu Val Leu Lys Trp Lys Phe Asp Ser 390 395 His Leu Ala Phe His His Lys Ala Arg Glu Leu His Pro Glu Tyr Tyr 405 410 Lys Asp Cys Ala Ala Val Leu Asp Lys Trp Glu Lys Ile Arg Leu Arg 425

Pro Gly Gly Lys Lys Lys Tyr Gln Leu Lys His Ile Val Trp Ala Ser

```
440
      435
Arg Glu Leu Glu Arg Phe Ala Val Asn Pro Gly Leu Leu Glu Thr Ser
                     455
                                       460
Glu Gly Cys Arg Gln Ile Met Gly Gln Leu Gln Pro Ser Leu Gln Thr
                 470
                                    475
Gly Ser Glu Glu Leu Arg Ser Leu Tyr Asn Thr Val Ala Thr Leu Tyr
              485
                                490
Cys Val His Gln Lys Ile Glu Val Lys Asp Thr Lys Glu Ala Leu Asp
                             505
Lys Val Glu Glu Glu Gln Asn Asn Ser Lys Lys Ala Gln Glu
                                         525
                         520
Ala Ala Asp Ala Gly Asn Arg Asn Gln Val Ser Gln Asn Tyr Pro Ile
                     535
Val Gln Asn Leu Gln Gly Gln Met Val His Gln Ala Ile Ser Pro Arg
    550 555 560
Thr Leu Asn Ala Trp Val Lys Val Val Glu Glu Lys Ala Phe Ser Pro
              565
                      570
Glu Val Ile Pro Met Phe Ser Ala Leu Ser Glu Gly Ala Thr Pro Gln
                          585
Asp Leu Asn Thr Met Leu Asn Thr Val Gly Gly His Gln Ala Ala Met
                         600
Gln Met Leu Lys Glu Thr Ile Asn Glu Glu Ala Ala Glu Trp Asp Arg
                     615
                                        620
Leu His Pro Val His Ala Gly Pro Ile Ala Pro Gly Gln Met Arg Glu
                 630
                                    635
Pro Arg Gly Ser Asp Ile Ala Gly Thr Thr Ser Thr Leu Gln Glu Gln
              645
                               650
Ile Gly Trp Met Thr Asn Asn Pro Pro Ile Pro Val Gly Glu Ile Tyr
          660
                  665
                                               670
Lys Arg Trp Ile Ile Leu Gly Leu Asn Lys Ile Val Arg Met Tyr Ser
                        680
Pro Thr Ser Ile Leu Asp Ile Lys Gln Gly Pro Lys Glu Pro Phe Arg
                             700
                     695
Asp Tyr Val Asp Arg Phe Tyr Lys Thr Leu Arg Ala Glu Gln Ala Thr
                  710
                                    715
Gln Glu Val Lys Asn Trp Met Thr Glu Thr Leu Leu Val Gln Asn Ala
                                730
              725
Asn Pro Asp Cys Lys Thr Ile Leu Lys Ala Leu Gly Pro Ala Ala Thr
          740
                             745
                                              750
Leu Glu Glu Met Met Thr Ala Cys Gln Gly Val Gly Gly Pro Gly His
                         760
Lys Ala Arg Val Leu Ala Glu Ala Met Ser Gln Val Thr Gly Ser Ala
                     775 780
Ala Ile Met Met Gln Arg Gly Asn Phe Arg Asn Gln Arg Lys Thr Val
                 790 795
Lys Cys Phe Asn Cys Gly Lys Glu Gly His Ile Ala Arg Asn Cys Arg
              805
                                810
Ala Pro Arg Lys Lys Gly Cys Trp Lys Cys Gly Lys Glu Gly His Gln
                            825
Met Lys Asp Cys Thr Glu Arg Gln Ala Asn
       835
<210> 41
<211> 1064
<212> PRT
<213> Artificial Sequence
```

<223> Hybrid protein cds comprised of Tat-Rev-Nef, CTL and truncated Gag protein(TRN-TCL-dgag)

<400> 41

Met Glu Pro Val Asp Pro Arg Leu Glu Pro Trp Lys His Pro Gly Ser

1				5					10					15	
Gln	Pro	Arg	Thr 20	Pro	Cys	Thr	Asn	Cys 25	Tyr	Cys	Lys	Lys	Сув 30	Сув	Leu
His	Сув	Gln 35	Val	Cys	Phe	Thr	Arg 40	Lys	Gly	Leu	Gly	Ile 45	Ser	Tyr	Gly
Arg	Lys 50	Lys	Arg	Arg	Gln	Arg 55	Arg	Arg	Ala	Pro	Gln 60	Asp	Ser	Gln	Thr
His 65	Gln	Val	Ser	Leu	Pro 70	Lys	Gln	Pro	Ser	Ser 75	Gln	Gln	Arg	Gly	Asp 80
	Thr	Gly	Pro	Lys 85	Lys	Ser	Lys	Lys	Lys 90	Val	Glu	Arg	Glu	Thr 95	-
Ala	Asp	Pro	Phe 100	Asp	Thr	Ser	Ala	Gly 105	Arg	Ser	Gly	Asp	Ser 110	Asp	Glu
Glu	Leu	Leu 115	Lys	Thr	Val	Arg	Leu 120	Ile	Lys	Phe	Leu	Tyr 125	Gln	Ser	Asn
Pro	Pro 130	Pro	Ser	Asn	Glu	Gly 135	Thr	Arg	Gln	Ala	Arg 140	Arg	Asn	Arg	Arg
Arg 145	Arg	Trp	Arg	Glu	Arg 150	Gln	Arg	Gln	Ile	Arg 155	Ser	Ile	Ser	Glu	Arg 160
Ile	Leu	Ser	Thr	Phe 165	Leu	Gly	Arg	Pro	Ala 170	Glu	Pro	Val	Pro	Leu 175	Gln
			180	Glu				185		_			190	_	-
		195		Gln			200					205			
	210			Glu		215					220				
Ser 225	Lys	Cys	Ser	Gly	Trp 230	Pro	Thr	Val	Arg	Glu 235	Arg	Met	Lys	Gln	Ala 240
Glu	Pro	Glu	Pro	Ala 245	Ala	Asp	Gly	Val	Gly 250	Ala	Ala	Ser	Arg	Asp 255	Leu
Glu	Lys	His	Gly 260	Ala	Ile	Thr	Ser	Ser 265	Asn	Thr	Ala	Thr	Asn 270	Asn	Ala
		275	_	Leu			280					285	-		
	290			Val		295					300	_			
305				Phe	310	-		-	_	315			-		320
Tyr	Ser	Pro	Lys	Arg 325	Gln	Glu	Ile	Leu	Asp 330	Leu	Trp	Val	Tyr	His 335	Thr
	_		340	Pro	_	_		345	_			_	350	-	
Arg	Tyr	Pro 355	Leu	Thr	Phe	Gly	Trp 360	Сув	Phe	Lys	Leu	Val 365	Pro	Val	Glu
Pro	Asp 370	Glu	Glu	Glu	Asn	Ser 375	Ser	Leu	Leu	His	Pro 380	Ala	Ser	Leu	His
385			-	Thr	390					395	_	_		_	400
				His 405					410					415	
			420	Ala				425					430		
Leu	Ile	Glu 435	Ile	Cys	Thr	Glu	Met 440	Glu	Lys	Glu	Gly	Lys 445	Ile	Ser	Lys
	450			Gly		455	_	_	_		460				_
465				Tyr	470					475	_				480
				Thr 485					490					495	
Phe	Gln	Ser	Ser 500	Met	Thr	Lys	Lys	Gln 505	Asn	Pro	Asp	Ile	Val 510	Ile	Tyr

Gln Tyr Met Asp Asp Leu Tyr Val Pro Ile Val Leu Pro Glu Lys Asp 520 Ser Trp Leu Val Gly Lys Leu Asn Trp Ala Ser Gln Ile Tyr Ala Gly 535 Ile Lys Val Lys Gln Leu Ile Leu Lys Glu Pro Val His Gly Val Tyr 555 Glu Pro Ile Val Gly Ala Glu Thr Phe Tyr Val Asp Gly Ala Ala Asn 565 570 Arg Ala Gly Asn Leu Trp Val Thr Val Tyr Tyr Gly Val Pro Val Trp 585 Lys Glu Ala Thr Thr Leu Val Glu Arg Tyr Leu Arg Asp Gln Gln 595 600 605 Leu Leu Gly Ile Trp Gly Cys Ala Cys Thr Pro Tyr Asp Ile Asn Gln 615 620 Met Leu Arg Gly Pro Gly Arg Ala Phe Val Thr Ile Arg Gln Gly Ser 630 635 Leu Ala Ala Val Leu Asp Lys Trp Glu Lys Ile Arg Leu Arg Pro Gly 645 650 Gly Lys Lys Lys Tyr Gln Leu Lys His Ile Val Trp Ala Ser Arg Glu 660 665 Leu Glu Arg Phe Ala Val Asn Pro Gly Leu Leu Glu Thr Ser Glu Gly 685 675 680 Cys Arg Gln Ile Met Gly Gln Leu Gln Pro Ser Leu Gln Thr Gly Ser 695 Glu Glu Leu Arg Ser Leu Tyr Asn Thr Val Ala Thr Leu Tyr Cys Val 710 715 His Gln Lys Ile Glu Val Lys Asp Thr Lys Glu Ala Leu Asp Lys Val 725 730 Glu Glu Glu Gln Asn Asn Ser Lys Lys Ala Gln Gln Glu Ala Ala 740 745 Asp Ala Gly Asn Arg Asn Gln Val Ser Gln Asn Tyr Pro Ile Val Gln 755 760 765 Asn Leu Gln Gly Gln Met Val His Gln Ala Ile Ser Pro Arg Thr Leu 775 Asn Ala Trp Val Lys Val Val Glu Glu Lys Ala Phe Ser Pro Glu Val 790 795 Ile Pro Met Phe Ser Ala Leu Ser Glu Gly Ala Thr Pro Gln Asp Leu 805 810 Asn Thr Met Leu Asn Thr Val Gly Gly His Gln Ala Ala Met Gln Met 820 825 Leu Lys Glu Thr Ile Asn Glu Glu Ala Ala Glu Trp Asp Arg Leu His 840 Pro Val His Ala Gly Pro Ile Ala Pro Gly Gln Met Arg Glu Pro Arg 850 855 860 Gly Ser Asp Ile Ala Gly Thr Thr Ser Thr Leu Gln Glu Gln Ile Gly 870 875 Trp Met Thr Asn Asn Pro Pro Ile Pro Val Gly Glu Ile Tyr Lys Arg 885 890 895 Trp Ile Ile Leu Gly Leu Asn Lys Ile Val Arg Met Tyr Ser Pro Thr 900 905 Ser Ile Leu Asp Ile Lys Gln Gly Pro Lys Glu Pro Phe Arg Asp Tyr 920 925 Val Asp Arg Phe Tyr Lys Thr Leu Arg Ala Glu Gln Ala Thr Gln Glu 935 940 Val Lys Asn Trp Met Thr Glu Thr Leu Leu Val Gln Asn Ala Asn Pro 950 955 Asp Cys Lys Thr Ile Leu Lys Ala Leu Gly Pro Ala Ala Thr Leu Glu 965 970 975 Glu Met Met Thr Ala Cys Gln Gly Val Gly Gly Pro Gly His Lys Ala 985 Arg Val Leu Ala Glu Ala Met Ser Gln Val Thr Gly Ser Ala Ala Ile 1000 Met Met Gln Arg Gly Asn Phe Arg Asn Gln Arg Lys Thr Val Lys

```
1.01.0
                       1015
                                           1020
Cys Phe Asn Cys Gly Lys Glu Gly His Ile Ala Arg Asn Cys Arg
                       1030
                                           1035
Ala Pro Arg Lys Lys Gly Cys Trp Lys Cys Gly Lys Glu Gly His
1040 1045
Gln Met Lys Asp Cys Thr Glu Arg Gln Ala Asn
   1055
                       1060
<210> 42
<211> 1064
<212> PRT
<213> Artificial Sequence
<223> Hybrid protein comprised of Tat-Rev-Nef, CTL and truncated Gag
protein(TRN-CTL-dgag)
<400> 42
Met Ala Gly Arg Ser Gly Asp Ser Asp Glu Glu Leu Leu Lys Thr Val
Arg Leu Ile Lys Phe Leu Tyr Gln Ser Asn Pro Pro Pro Ser Asn Glu
                              25
           20
                                              30
Gly Thr Arg Gln Ala Arg Arg Asn Arg Arg Arg Trp Arg Glu Arg
                          40
Gln Arg Gln Ile Arg Ser Ile Ser Glu Arg Ile Leu Ser Thr Phe Leu
                      55
                                        60
Gly Arg Pro Ala Glu Pro Val Pro Leu Gln Leu Pro Pro Leu Glu Arg
                   70
Leu Thr Leu Asp Cys Ser Glu Asp Cys Gly Asn Ser Gly Thr Gln Gly
              85
                                90
Val Gly Ser Pro Gln Val Leu Val Glu Ser Pro Ala Val Leu Glu Pro
          1.00
                             105
Gly Thr Lys Glu Thr Ser Val Gly Lys Trp Ser Lys Cys Ser Gly Trp
                          120
                                            125
Pro Thr Val Arg Glu Arg Met Lys Gln Ala Glu Pro Glu Pro Ala Ala
                      135
                                         140
Asp Gly Val Gly Ala Ala Ser Arg Asp Leu Glu Lys His Gly Ala Ile
                                     155
Thr Ser Ser Asn Thr Ala Thr Asn Asn Ala Ala Cys Ala Trp Leu Glu
                                 170
              1.65
Ala Gln Glu Glu Glu Val Gly Phe Pro Val Arg Pro Gln Val Pro
           180
                              185
Leu Arg Pro Met Thr Tyr Lys Gly Ala Leu Asp Leu Ser His Phe Leu
                         200
       195
                                  205
Lys Glu Lys Gly Gly Leu Glu Gly Leu Ile Tyr Ser Pro Lys Arg Gln
                      215
Glu Ile Leu Asp Leu Trp Val Tyr His Thr Gln Gly Tyr Phe Pro Asp
                  230
                                     235
Trp Gln Asn Tyr Thr Pro Gly Pro Gly Val Arg Tyr Pro Leu Thr Phe
               245
                                  250
Gly Trp Cys Phe Lys Leu Val Pro Val Glu Pro Asp Glu Glu Glu Asn
                              265
Ser Ser Leu Leu His Pro Ala Ser Leu His Gly Thr Glu Asp Thr Glu
                          280
                                             285
Arg Glu Val Leu Lys Trp Lys Phe Asp Ser His Leu Ala Phe His His
                      295
Lys Ala Arg Glu Leu His Pro Glu Tyr Tyr Lys Asp Cys Lys Leu Glu
                                    315
            310
Pro Val Asp Pro Arg Leu Glu Pro Trp Lys His Pro Gly Ser Gln Pro
              325
                                 330
Arg Thr Pro Cys Thr Asn Cys Tyr Cys Lys Lys Cys Cys Leu His Cys
                              345
Gln Val Cys Phe Thr Arg Lys Gly Leu Gly Ile Ser Tyr Gly Arg Lys
```

Tara	λκα	355	۵ln	λrα	Δrα	Δra	360 Ala	Pro	Gln	Asp	Ser	365 Gln	Thr	His	Gln
	370					375					380				
385					390		Ser			395					400
				405			Lys		410					415	
Pro	Phe	Asp	Ala 420	Ala	Val	Ile	Thr	Leu 425	Trp	Gln	Arg	Pro	Leu 430	Val	Ala
		435	Ile				Met 440					445			
Ile	Gly 450	Pro	Ala	Gly	Leu	Lys 455	Lys	Lys	Lys	Ser	Val 460	Thr	Val	Leu	Asp
Val 465	Gly	Asp	Ala	Tyr	Phe 470	Ser	Val	Pro	Leu	Asp 475	Lys	Asp	Phe	Arg	Lys 480
Tyr	Thr	Ala	Phe	Thr 485		Pro	Ser	Ile	Trp 490	Lys	Gly	Ser	Pro	Ala 495	Ile
			500	Met			Lys	505	Asn				510		
Gln	Tyr	Met 515	Asp	Asp	Leu	Tyr	Val 520	Pro	Ile	Val	Leu	Pro 525	Glu	Lys	Asp
Ser	Trp 530		Val	Gly	Lys	Leu 535	Asn	Trp	Ala	Ser	Gln 540	Ile	Tyr	Ala	Gly
Ile 545		Val	Lys	Gln	Leu 550		Leu	Lys	Glu	Pro 555	Val	His	Gly	Val	Tyr 560
Glu	Pro	Ile	Val	Gly 565		Glu	Thr	Phe	Tyr 570		Asp	Gly	Ala	Ala 575	Asn
Arg	Ala	Gly	Asn 580	Leu	Trp	Val	Thr	Val 585	Tyr	Tyr	Gly	Val	Pro 590	Val	Trp
Lys	Glu	Ala 595		Thr	Thr	Leu	Val 600		Arg	Tyr	Leu	Arg 605	Asp	Gln	Gln
Leu			Ile	Trp	Gly	Cys 615	Ala	Cys	Thr	Pro	Tyr 620		Ile	Asn	Gln
Met 625	610 Leu	Arg	Gly	Pro	Gly 630		Ala	Phe	Val	Thr 635		Arg	Gln	Gly	Ser 640
Leu	Ala	Ala	Val	Leu 645		Lys	Trp	Glu	Lys 650	Ile	Arg	Leu	Arg	Pro 655	Gly
Gly	Lys	Lys	Lys 660		Gln	Leu	Lys	His 665		Val	Trp	Ala	Ser 670	Arg	Glu
Leu	Glu	Arg 675	Phe	Ala	Val	Asn	Pro 680	Gly	Leu	Leu	Glu	Thr 685	Ser	Glu	Gly
Сув	Arg 690			Met	Gly	Gln 695	Leu	Gln	Pro	Ser	Leu 700	Gln	Thr	Gly	Ser
Glu 705	Glu	Leu	Arg	Ser	Leu 710		Asn	Thr	Val	Ala 715	Thr	Leu	Tyr	Cys	Val 720
His	Gln	Lys	Ile	Glu 725	Val	Lys	Asp	Thr	Lys 730	Glu	Ala	Leu	Asp	Lys 735	Val
Glu	Glu	Glu	Gln 740			Ser	Lys	Lys 745			Gln	Gln	Glu 750	Ala	Ala
Asp	Ala	Gly 755	Asn	Arg	Asn	Gln	Val 760		Gln	Asn	Tyr	Pro 765		Val	Gln
Asn				Gln	Met	Val 775	His	Gln	Ala	Ile	Ser 780	Pro	Arg	Thr	Leu
		Trp	Val	Lys	Val 790	Val		Glu	Lys	Ala 795	Phe		Pro	Glu	Val 800
785 Ile	Pro	Met	Phe	Ser 805	Ala		Ser	Glu	Gly 810	Ala		Pro	Gln	Asp 815	Leu
Asn	Thr	Met		Asn		Val	Gly		His		Ala	Ala	Met 830		Met
Leu	Lys				Asn	Glu				Glu	Trp	Asp 845	Arg	Leu	His
Pro	Val 850			Gly	Pro	Ile 855			Gly	Gln	Met 860	Arg		Pro	Arg

```
Gly Ser Asp Ile Ala Gly Thr Thr Ser Thr Leu Gln Glu Gln Ile Gly
                 870
                                      875
Trp Met Thr Asn Asn Pro Pro Ile Pro Val Gly Glu Ile Tyr Lys Arg
            885
                                 890
Trp Ile Ile Leu Gly Leu Asn Lys Ile Val Arg Met Tyr Ser Pro Thr
           900
                              905
Ser Ile Leu Asp Ile Lys Gln Gly Pro Lys Glu Pro Phe Arg Asp Tyr
                        920
Val Asp Arg Phe Tyr Lys Thr Leu Arg Ala Glu Gln Ala Thr Gln Glu
   930 935
                                         940
Val Lys Asn Trp Met Thr Glu Thr Leu Leu Val Gln Asn Ala Asn Pro
                  950
                                      955
Asp Cys Lys Thr Ile Leu Lys Ala Leu Gly Pro Ala Ala Thr Leu Glu
              965
                                  970
Glu Met Met Thr Ala Cys Gln Gly Val Gly Pro Gly His Lys Ala
                             985
Arg Val Leu Ala Glu Ala Met Ser Gln Val Thr Gly Ser Ala Ala Ile
     995
                         1000
                                              1005
Met Met Gln Arg Gly Asn Phe Arg Asn Gln Arg Lys Thr Val Lys
   1010
                        1015
                                            1020
Cys Phe Asn Cys Gly Lys Glu Gly His Ile Ala Arg Asn Cys Arg
   1025
                       1030
                                           1035
Ala Pro Arg Lys Lys Gly Cys Trp Lys Cys Gly Lys Glu Gly His
                       1045
                                            1050
Gln Met Lys Asp Cys Thr Glu Arg Gln Ala Asn
                       1060
<210> 43
<211> 1064
<212> PRT
<213> Artificial Sequence
<223> Hybrid protein comprised of Tat-Rev-Nef, truncated Gag protein and
CTL (TRN-dgag-CTL)
<400> 43
Met Glu Pro Val Asp Pro Arg Leu Glu Pro Trp Lys His Pro Gly Ser
                                  10
Gln Pro Arg Thr Pro Cys Thr Asn Cys Tyr Cys Lys Lys Cys Leu
           20
                              25
His Cys Gln Val Cys Phe Thr Arg Lys Gly Leu Gly Ile Ser Tyr Gly
                          40
                                              45
Arg Lys Lys Arg Arg Gln Arg Arg Arg Ala Pro Gln Asp Ser Gln Thr
                      55
His Gln Val Ser Leu Pro Lys Gln Pro Ser Ser Gln Gln Arg Gly Asp
                   70
                                      75
Pro Thr Gly Pro Lys Lys Ser Lys Lys Lys Val Glu Arg Glu Thr Glu
               85
                                  90
Ala Asp Pro Phe Asp Thr Ser Ala Gly Arg Ser Gly Asp Ser Asp Glu
                             105
Glu Leu Leu Lys Thr Val Arg Leu Ile Lys Phe Leu Tyr Gln Ser Asn
       115
                          120
                                     125
Pro Pro Pro Ser Asn Glu Gly Thr Arg Gln Ala Arg Arg Asn Arg Arg
                      135
                                         140
Arg Arg Trp Arg Glu Arg Gln Arg Gln Ile Arg Ser Ile Ser Glu Arg
                  150
                                      155
Ile Leu Ser Thr Phe Leu Gly Arg Pro Ala Glu Pro Val Pro Leu Gln
                                  170
Leu Pro Pro Leu Glu Arg Leu Thr Leu Asp Cys Ser Glu Asp Cys Gly
          180
                              185
                                              190
Asn Ser Gly Thr Gln Gly Val Gly Ser Pro Gln Val Leu Val Glu Ser
       195
                          200
                                             205
```

Pro	Ala 210	Val	Leu	Glu	Pro	Gly 215	Thr	Lys	Glu	Lys	Leu 220	vaı	сπλ	гла	Trp
Ser 225		Cys	Ser	Gly	Trp 230		Thr	Val	Arg	Glu 235		Met	Lys	Gln	Ala 240
	Pro	Glu	Pro	Ala 245		Asp	Gly	Val	Gly 250		Ala	Ser	Arg	Asp 255	
Glu	Lys	His	Gly 260	Ala	Ile	Thr	Ser	Ser 265		Thr	Ala	Thr	Asn 270	Asn	Ala
Ala	Cys	Ala 275	Trp	Leu	Glu	Ala	Gln 280	Glu	Glu	Glu	Glu	Val 285	Gly	Phe	Pro
Val	Arg 290	Pro	Gln	Val	Pro	Leu 295	Arg	Pro	Met	Thr	Tyr 300	Lys	Gly	Ala	Leu
Asp 305	Leu	Ser	His	Phe	Leu 310	Lys	Glu	Lys	Gly	Gly 315	Leu	Glu	Gly	Leu	Ile 320
Tyr	Ser	Pro	Lys	Arg 325	Gln	Glu	Ile	Leu	Asp 330	Leu	Trp	Val	Tyr	His 335	Thr
Gln	Gly	Tyr	Phe 340	Pro	Asp	Trp	Gln	Asn 345	Tyr	Thr	Pro	Gly	Pro 350	Gly	Val
_		355	Leu			_	360	-		_		365			
	370		Glu			375					380				
385			Asp		390	_				395	_				400
			Phe	405		_			410					415	
-	_	_	Ala 420				_	425	_		_		430		
		435	Lys	_	_	_	440		_			445			
	450		Glu	_		455					460				
465	_		Arg		470					475					480
_			Glu	485	_			_	490					495	
			Gln 500					505					510		_
_		515	Glu				520		-	-	_	525			
	530	_	Ala			535					540				
545			Leu		550					555					560
			Ala	565		_			570					575	
			Pro 580					585			_		590		
		595	Thr				600					605			
	610		Lys			615					620		_		_
625			Val Ser		630					635					640
				645					650					655	
	_	_	Met 660 Ile					665					670		_
		675				-	680		_			685			
	690		Ile			695					700				
дαл	тХт	var	rοb	Ar 9	E TTG	т Х т	пХр	TITT	μ σ α	Tr A	пта	GT (I	27.11	vra	T11T

```
710
                                     715
Gln Glu Val Lys Asn Trp Met Thr Glu Thr Leu Leu Val Gln Asn Ala
              725
                           730
Asn Pro Asp Cys Lys Thr Ile Leu Lys Ala Leu Gly Pro Ala Ala Thr
                   745
           740
Leu Glu Glu Met Met Thr Ala Cys Gln Gly Val Gly Gly Pro Gly His
                          760
Lys Ala Arg Val Leu Ala Glu Ala Met Ser Gln Val Thr Gly Ser Ala
                      775
                                        780
Ala Ile Met Met Gln Arg Gly Asn Phe Arg Asn Gln Arg Lys Thr Val
                  790
                                     795
Lys Cys Phe Asn Cys Gly Lys Glu Gly His Ile Ala Arg Asn Cys Arg
               805
                                 810
Ala Pro Arg Lys Lys Gly Cys Trp Lys Cys Gly Lys Glu Gly His Gln
                             825
                                                830
Met Lys Asp Cys Thr Glu Arg Gln Ala Asn Ala Ala Val Ile Thr Leu
                         840
Trp Gln Arg Pro Leu Val Ala Leu Ile Glu Ile Cys Thr Glu Met Glu
          855
                                       860
Lys Glu Gly Lys Ile Ser Lys Ile Gly Pro Ala Gly Leu Lys Lys
                                    875
Lys Ser Val Thr Val Leu Asp Val Gly Asp Ala Tyr Phe Ser Val Pro
              885
                                 890
Leu Asp Lys Asp Phe Arg Lys Tyr Thr Ala Phe Thr Ile Pro Ser Ile
                             905
Trp Lys Gly Ser Pro Ala Ile Phe Gln Ser Ser Met Thr Lys Lys Gln
      915
                         920
                                     925
Asn Pro Asp Ile Val Ile Tyr Gln Tyr Met Asp Asp Leu Tyr Val Pro
                      935
Ile Val Leu Pro Glu Lys Asp Ser Trp Leu Val Gly Lys Leu Asn Trp
                 950
                                    955
Ala Ser Gln Ile Tyr Ala Gly Ile Lys Val Lys Gln Leu Ile Leu Lys
              965
                                970
Glu Pro Val His Gly Val Tyr Glu Pro Ile Val Gly Ala Glu Thr Phe
                             985
Tyr Val Asp Gly Ala Ala Asn Arg Ala Gly Asn Leu Trp Val Thr Val
                       1000 1005
      995
Tyr Tyr Gly Val Pro Val Trp Lys Glu Ala Thr Thr Thr Leu Val
                      1015
                                         1020
Glu Arg Tyr Leu Arg Asp Gln Gln Leu Leu Gly Ile Trp Gly Cys
                      1030
                                          1035
  1025
Ala Cys Thr Pro Tyr Asp Ile Asn Gln Met Leu Arg Gly Pro Gly
   1040
                       1045
                                          1050
Arg Ala Phe Val Thr Ile Arg Gln Gly Ser Leu
  1055
                      1060
<210> 44
<211> 1064
<212> PRT
<213> Artificial Sequence
<223> Hybrid protein comprised of Rev-Nef-Tat, truncated Gag protein and
CTL (RNT-dgag-CTL)
<400> 44
Met Ala Gly Arg Ser Gly Asp Ser Asp Glu Glu Leu Leu Lys Thr Val
                                 10
Arg Leu Ile Lys Phe Leu Tyr Gln Ser Asn Pro Pro Pro Ser Asn Glu
Gly Thr Arg Gln Ala Arg Arg Asn Arg Arg Arg Trp Arg Glu Arg
                         4.0
                                            45
Gln Arg Gln Ile Arg Ser Ile Ser Glu Arg Ile Leu Ser Thr Phe Leu
```

G] v	50 Ara	Pro	Ala	G] 11	Pro	55 Val	Pro	Leu	Gln	Leu	60 Pro	Pro	Leu	Glu	Ara
65					70					75					80
			Asp	85				_	90			_		95	_
Val	Gly	Ser	Pro 100	Gln	۷al	Leu	Val	Glu 105	Ser	Pro	Ala	Val	Leu 110	Glu	Pro
Gly	Thr	Lys 115	Glu	Thr	Ser	Val	Gly 120	Lys	Trp	Ser	Lys	Cys 125	Ser	Gly	Trp
Pro	Thr 130	-	Arg	Glu	Arg	Met 135		Gln	Ala	Glu	Pro 140		Pro	Ala	Ala
Asp 145	Gly	Val	Gly	Ala	Ala 150	Ser	Arg	Asp	Leu	Glu 155	Lys	His	Gly	Ala	Ile 160
	Ser	Ser	Asn	Thr 165		Thr	Asn	Asn	Ala 170		Cys	Ala	Trp	Leu 175	
Ala	Gln	Glu	Glu 180		Glu	Val	Gly	Phe 185		Val	Arg	Pro	Gln 190		Pro
Leu	Arg	Pro 195	Met	Thr	Tyr	Lys	Gly 200		Leu	Asp	Leu	Ser 205		Phe	Leu
Lys	Glu 210	Lys	Gly	Gly	Leu	Glu 215	Gly	Leu	Ile	Tyr	Ser 220		Lys	Arg	Gln
Glu 225	Ile	Leu	Asp	Leu	Trp 230		Tyr	His	Thr	Gln 235		Tyr	Phe	Pro	Asp 240
Trp	Gln	Asn	Tyr	Thr 245	Pro	Gly	Pro	Gly	Val 250	Arg	Tyr	Pro	Leu	Thr 255	Phe
Gly	Trp	Cys	Phe 260	Lys	Leu	Val	Pro	Val 265		Pro	Asp	Glu	Glu 270		Asn
Ser	Ser	Leu 275	Leu	His	Pro	Ala	Ser 280	Leu	His	Gly	Thr	Glu 285	qaA	Thr	Glu
Arg	Glu 290	Val	Leu	Lys	Trp	Lys 295	Phe	Asp	Ser	His	Leu 300	Ala	Phe	Hìs	His
Lys 305	Ala	Arg	Glu	Leu	His 310	Pro	Glu	Tyr	Tyr	Lys 315	Asp	Cys	Lys	Leu	Glu 320
Pro	Val	Asp	Pro	Arg 325	Leu	Glu	Pro	Trp	Lys 330	His	Pro	Gly	Ser	Gln 335	Pro
Arg	Thr	Pro	Cys 340	Thr	Asn	Cys	Tyr	Cys 345	Lys	Lys	Cys	Cys	Leu 350	His	Cys
Gln	Val	Cys 355	Phe	Thr	Arg	Lys	Gly 360	Leu	Gly	Ile	Ser	Tyr 365	Gly	Arg	Lys
Lys	Arg 370	Arg	Gln	Arg	Arg	Arg 375	Ala	Pro	Gln	Asp	Ser 380	Gln	Thr	His	Gln
Val 385	Ser	Leu	Pro		Gln 390		Ser	Ser		Gln 395		Gly	Asp	Pro	Thr 400
Gly	Pro	Lys	Lys				Lys	Val				Thr	Glu	Ala 415	Asp
Pro	Phe	Asp	Ala 420	Ala	Val	Leu	Asp	Lys 425	Trp	Glu	Lys	Ile	Arg 430	Leu	Arg
Pro	Gly	Gly 435	Lys	Lys	Lys	Tyr	Gln 440	Leu	ГЛЗ	His	Ile	Val 445	Trp	Ala	Ser
Arg	Glu 450	Leu	Glu	Arg	Phe	Ala 455	Val	Asn	Pro	Gly	Leu 460	Leu	Glu	Thr	Ser
Glu 465	Gly	Cys	Arg	Gln	Ile 470	Met	Gly	Gln	Leu	Gln 475	Pro	Ser	Leu	Gln	Thr 480
Gly	Ser	Glu	Glu	Leu 485	Arg	Ser	Leu	Tyr	Asn 490	Thr	Val	Ala	Thr	Leu 495	Tyr
Cys	Val	His	Gln 500	Lys	Ile	Glu	Val	Lys 505	Asp	Thr	Lys	Glu	Ala 510		Asp
Lys	Val	Glu 515	Glu	Glu	Gln	Asn	Asn 520		Lys	Lys	Lys	Ala 525		Gln	Glu
Ala	Ala 530		Ala	Gly	Asn	Arg 535		Gln	Val	Ser	Gln 540		Tyr	Pro	Ile
Val 545		Asn	Leu	Gln	Gly 550		Met	Val	His	Gln 555		Ile	Ser	Pro	Arg 560

Thr Leu Asn Ala Trp Val Lys Val Val Glu Glu Lys Ala Phe Ser Pro 565 570 Glu Val Ile Pro Met Phe Ser Ala Leu Ser Glu Gly Ala Thr Pro Gln 585 Asp Leu Asn Thr Met Leu Asn Thr Val Gly Gly His Gln Ala Ala Met 600 Gln Met Leu Lys Glu Thr Ile Asn Glu Glu Ala Ala Glu Trp Asp Arq 615 Leu His Pro Val His Ala Gly Pro Ile Ala Pro Gly Gln Met Arg Glu 630 635 Pro Arg Gly Ser Asp Ile Ala Gly Thr Thr Ser Thr Leu Gln Glu Gln 645 650 Ile Gly Trp Met Thr Asn Asn Pro Pro Ile Pro Val Gly Glu Ile Tyr 665 Lys Arg Trp Ile Ile Leu Gly Leu Asn Lys Ile Val Arg Met Tyr Ser 675 680 685 Pro Thr Ser Ile Leu Asp Ile Lys Gln Gly Pro Lys Glu Pro Phe Arg 695 700 Asp Tyr Val Asp Arg Phe Tyr Lys Thr Leu Arg Ala Glu Gln Ala Thr 710 715 Gln Glu Val Lys Asn Trp Met Thr Glu Thr Leu Leu Val Gln Asn Ala 725 730 Asn Pro Asp Cys Lys Thr Ile Leu Lys Ala Leu Gly Pro Ala Ala Thr 745 Leu Glu Glu Met Met Thr Ala Cys Gln Gly Val Gly Gly Pro Gly His 760 765 Lys Ala Arg Val Leu Ala Glu Ala Met Ser Gln Val Thr Gly Ser Ala 775 780 Ala Ile Met Met Gln Arg Gly Asn Phe Arg Asn Gln Arg Lys Thr Val 785 790 795 Lys Cys Phe Asn Cys Gly Lys Glu Gly His Ile Ala Arg Asn Cys Arg 810 Ala Pro Arg Lys Lys Gly Cys Trp Lys Cys Gly Lys Glu Gly His Gln 820 825 830 Met Lys Asp Cys Thr Glu Arg Gln Ala Asn Ala Ala Val Ile Thr Leu 835 840 Trp Gln Arg Pro Leu Val Ala Leu Ile Glu Ile Cys Thr Glu Met Glu 850 855 860 Lys Glu Gly Lys Ile Ser Lys Ile Gly Pro Ala Gly Leu Lys Lys 870 875 Lys Ser Val Thr Val Leu Asp Val Gly Asp Ala Tyr Phe Ser Val Pro 885 890 Leu Asp Lys Asp Phe Arg Lys Tyr Thr Ala Phe Thr Ile Pro Ser Ile 905 900 910 Trp Lys Gly Ser Pro Ala Ile Phe Gln Ser Ser Met Thr Lys Lys Gln 920 925 Asn Pro Asp Ile Val Ile Tyr Gln Tyr Met Asp Asp Leu Tyr Val Pro 930 935 940 Ile Val Leu Pro Glu Lys Asp Ser Trp Leu Val Gly Lys Leu Asn Trp 950 955 Ala Ser Gln Ile Tyr Ala Gly Ile Lys Val Lys Gln Leu Ile Leu Lys 965 970 Glu Pro Val His Gly Val Tyr Glu Pro Ile Val Gly Ala Glu Thr Phe 985 Tyr Val Asp Gly Ala Ala Asn Arg Ala Gly Asn Leu Trp Val Thr Val 1000 995 1000 1005 Tyr Tyr Gly Val Pro Val Trp Lys Glu Ala Thr Thr Leu Val 1015 1010 1020 Glu Arg Tyr Leu Arg Asp Gln Gln Leu Leu Gly Ile Trp Gly Cys 1030 1035 Ala Cys Thr Pro Tyr Asp Ile Asn Gln Met Leu Arg Gly Pro Gly 1040 1045 1050 Arg Ala Phe Val Thr Ile Arg Gln Gly Ser Leu

1055 1060 <210> 45 <211> 1006 <212> PRT <213> Artificial Sequence <220> <223> Hybrid protein cds comprised of Tat-Rev-Nef, truncated Gag protein and CTL(TRN-optp17/24-CTL) <400> 45 Met Glu Pro Val Asp Pro Arg Leu Glu Pro Trp Lys His Pro Gly Ser Gln Pro Arg Thr Pro Cys Thr Asn Cys Tyr Cys Lys Lys Cys Cys Leu 20 25, His Cys Gln Val Cys Phe Thr Arg Lys Gly Leu Gly Ile Ser Tyr Gly 40 Arg Lys Lys Arg Arg Gln Arg Arg Arg Ala Pro Gln Asp Ser Gln Thr 55 60 His Gln Val Ser Leu Pro Lys Gln Pro Ser Ser Gln Gln Arg Gly Asp 70 75 Pro Thr Gly Pro Lys Lys Ser Lys Lys Lys Val Glu Arg Glu Thr Glu 90 Ala Asp Pro Phe Asp Thr Ser Ala Gly Arg Ser Gly Asp Ser Asp Glu-105 Glu Leu Leu Lys Thr Val Arg Leu Ile Lys Phe Leu Tyr Gln Ser Asn 120 Pro Pro Pro Ser Asn Glu Gly Thr Arg Gln Ala Arg Arg Asn Arg Arg 140 130 135 Arg Arg Trp Arg Glu Arg Gln Arg Gln Ile Arg Ser Ile Ser Glu Arg 150 Ile Leu Ser Thr Phe Leu Gly Arg Pro Ala Glu Pro Val Pro Leu Gln 165 170 175 Leu Pro Pro Leu Glu Arg Leu Thr Leu Asp Cys Ser Glu Asp Cys Gly 185 Asn Ser Gly Thr Gln Gly Val Gly Ser Pro Gln Val Leu Val Glu Ser 200 Pro Ala Val Leu Glu Pro Gly Thr Lys Glu Lys Leu Val Gly Lys Trp 220 215 Ser Lys Cys Ser Gly Trp Pro Thr Val Arg Glu Arg Met Lys Gln Ala 230 235 Glu Pro Glu Pro Ala Ala Asp Gly Val Gly Ala Ala Ser Arg Asp Leu 245 250 Glu Lys His Gly Ala Ile Thr Ser Ser Asn Thr Ala Thr Asn Asn Ala 265 Ala Cys Ala Trp Leu Glu Ala Gln Glu Glu Glu Glu Val Gly Phe Pro 280 285 Val Arg Pro Gln Val Pro Leu Arg Pro Met Thr Tyr Lys Gly Ala Leu 295 300 Asp Leu Ser His Phe Leu Lys Glu Lys Gly Gly Leu Glu Gly Leu Ile 310 315 Tyr Ser Pro Lys Arg Gln Glu Ile Leu Asp Leu Trp Val Tyr His Thr 325 330 Gln Gly Tyr Phe Pro Asp Trp Gln Asn Tyr Thr Pro Gly Pro Gly Val 340 345 Arg Tyr Pro Leu Thr Phe Gly Trp Cys Phe Lys Leu Val Pro Val Glu 355 360 365 Pro Asp Glu Glu Glu Asn Ser Ser Leu Leu His Pro Ala Ser Leu His 375 Gly Thr Glu Asp Thr Glu Arg Glu Val Leu Lys Trp Lys Phe Asp Ser 390 395 His Leu Ala Phe His His Lys Ala Arg Glu Leu His Pro Glu Tyr Tyr

				405					410					415	
Lys	Asp	Cys	Ala 420		Val	Gly	Ala	Arg 425	Ala		Val	Leu	Ser 430		
Glu	Leu	Asp 435	Lys	Trp	Glu	Lys	Ile 440	Arg		Arg	Pro	Gly 445		Lys	Lys
Lys	Tyr 450	Gln	Leu	Lys	His	Ile 455	Val		Ala	Ser	Arg 460		Leu	Glu	Arg
Phe 465	Ala	Val	Asn	Pro	Gly 470	Leu	Leu	Glu	Thr	Ser 475		Gly	Cys	Arg	Gln 480
Ile	Met	Gly	Gln	Leu 485	Gln	Pro	Ser	Leu	Gln 490		Gly	Ser	Glu	Glu 495	Leu
	Ser		500					505					510		_
	Glu	515					520					525			
	Asn 530					535					540		_		-
545	Arg				550					555					560
	Gln			565					570					575	-
	Lys		580			-		585					590		
	Ser Asn	595					600					605			
	610 Ile					615					620				
625	110	ASII	OIU	GIU	630	ALG	GIU	ırb	цам	635	пеп	urs	PIO	vai	640
Ala	Gly	Pro	Ile	Ala 645	Pro	Gly	Gln	Met	Arg 650	Glu	Pro	Arg	Gly	Ser 655	
	Ala		660					665				_	670		
	Asn	675					680					685			
	Gly 690					695					700				
705	Ile				710					715					720
	Tyr			725					730					735	
	Met Ile		740					745					750	_	_
	Ala	755					760					765			
	770 Ala					775					780				
785	Cys				790					795					800
	Gly			805					810					815	
	Tyr		820					825					830		_
	Thr	835					840					845			
	850 Met					855					860				
865	Asp				870					875					880
	Gly		Leu	885				Gln	890				Ile	895	
			900					905					910		

```
Lys Gln Leu Ile Leu Lys Glu Pro Val His Gly Val Tyr Glu Pro Ile
                         920
Val Gly Ala Glu Thr Phe Tyr Val Asp Gly Ala Ala Asn Arg Ala Gly
                      935
Asn Leu Trp Val Thr Val Tyr Tyr Gly Val Pro Val Trp Lys Glu Ala
                                  955
                  950
Thr Thr Leu Val Glu Arg Tyr Leu Arg Asp Gln Gln Leu Leu Gly
                                970
Ile Trp Gly Cys Ala Cys Thr Pro Tyr Asp Ile Asn Gln Met Leu Arg
980 985 990
Gly Pro Gly Arg Ala Phe Val Thr Ile Arg Gln Gly Ser Leu
                          1000
<210> 46
<211> 1006
<212> PRT
<213> Artificial Sequence
<223> Hybrid protein cdscomprised of Tat-Rev-Nef, CTL and truncated Gag
protein (TRN-CTL-optp17/24)
Met Glu Pro Val Asp Pro Arg Leu Glu Pro Trp Lys His Pro Gly Ser
                                 10
Gln Pro Arg Thr Pro Cys Thr Asn Cys Tyr Cys Lys Lys Cys Cys Leu
           2.0
                             25
His Cys Gln Val Cys Phe Thr Arg Lys Gly Leu Gly Ile Ser Tyr Gly
                         40
Arg Lys Lys Arg Arg Gln Arg Arg Arg Ala Pro Gln Asp Ser Gln Thr
               55
His Gln Val Ser Leu Pro Lys Gln Pro Ser Ser Gln Gln Arg Gly Asp
                                     75
Pro Thr Gly Pro Lys Lys Ser Lys Lys Lys Val Glu Arg Glu Thr Glu
              85
                                90
Ala Asp Pro Phe Asp Thr Ser Ala Gly Arg Ser Gly Asp Ser Asp Glu
                             105
Glu Leu Leu Lys Thr Val Arg Leu Ile Lys Phe Leu Tyr Gln Ser Asn
      115
                          120
                                            125
Pro Pro Pro Ser Asn Glu Gly Thr Arg Gln Ala Arg Arg Asn Arg Arg
                                       140
                     135
Arg Arg Trp Arg Glu Arg Gln Arg Gln Ile Arg Ser Ile Ser Glu Arg
                                    155
                 150
Ile Leu Ser Thr Phe Leu Gly Arg Pro Ala Glu Pro Val Pro Leu Gln
                              170 175
              165
Leu Pro Pro Leu Glu Arg Leu Thr Leu Asp Cys Ser Glu Asp Cys Gly
                                                190
                             1.85
Asn Ser Gly Thr Gln Gly Val Gly Ser Pro Gln Val Leu Val Glu Ser
                          200
                                            205
       195
Pro Ala Val Leu Glu Pro Gly Thr Lys Glu Lys Leu Val Gly Lys Trp
                                         220
                     215
Ser Lys Cys Ser Gly Trp Pro Thr Val Arg Glu Arg Met Lys Gln Ala
                  230
                                     235
Glu Pro Glu Pro Ala Ala Asp Gly Val Gly Ala Ala Ser Arg Asp Leu
                                 250
                                                   255
               245
Glu Lys His Gly Ala Ile Thr Ser Ser Asn Thr Ala Thr Asn Asn Ala
                           265
        260
Ala Cys Ala Trp Leu Glu Ala Gln Glu Glu Glu Val Gly Phe Pro
                 280 285
Val Arg Pro Gln Val Pro Leu Arg Pro Met Thr Tyr Lys Gly Ala Leu
                     295
Asp Leu Ser His Phe Leu Lys Glu Lys Gly Gly Leu Glu Gly Leu Ile
                                     315
                  310
```

Tyr	Ser	Pro	Lys	Arg 325	Gln	Glu	Ile	Leu	Asp	Leu	Trp	Val	Tyr	H1s 335	Thr
Gln	Gly	Tyr	Phe 340		Asp	Trp	Gln	Asn 345		Thr	Pro	Gly			Val
Arg	Tyr	Pro 355	Leu	Thr	Phe	Gly	Trp 360		Phe	Lys	Leu	Val 365	350 Pro	Val	Glu
Pro	Asp 370	Glu	Glu	Glu	Asn	Ser 375	Ser	Leu	Leu	His	Pro 380	Ala	Ser	Leu	His
Gly 385		Glu	Asp	Thr	Glu 390		Glu	Val	Leu	Lys 395		Lys	Phe	Asp	Ser 400
	Leu	Ala	Phe	His 405		Lys	Ala	Arg	Glu 410		His	Pro	Glu	Tyr 415	
Lys	Asp	Cys	Ala 420		Val	Ile	Thr	Leu 425		Gln	Arg	Pro	Leu 430		Ala
Leu	Ile	Glu 435	Ile	Cys	Thr	Glu	Met		Lys	Glu	Gly	Lys 445		Ser	Lys
Ile	Gly 450		Ala	Gly	Leu	Lys 455		Lys	Lys	Ser	Val 460		Val	Leu	Asp
Val 465	Gly	Asp	Ala	Tyr	Phe 470		Val	Pro	Leu	Asp		Asp	Phe	Arg	Lys 480
	Thr	Ala	Phe	Thr 485		Pro	Ser	Ile	Trp 490	Lys	Gly	Ser	Pro	Ala 495	
Phe	Gln	Ser	Ser 500	Met	Thr	Lys	Lys	Gln 505	Asn	Pro	Asp	Ile	Val 510	Ile	Tyr
Gln	Tyr	Met 515	Asp	Asp	Leu	Tyr	Val 520	Pro	Ile	Val	Leu	Pro 525	Glu	Lys	Asp
Ser	Trp 530	Leu	Val	Gly	Lys	Leu 535	Asn	Trp	Ala	Ser	Gln 540	Ile	Tyr	Ala	Gly
Ile 545	Lys	Val	Lys	Gln	Leu 550	Ile	Leu	Lys	Glu	Pro 555	Val	His	Gly	Val	Tyr 560
Glu	Pro	Ile	Val	Gly 565	Ala	Glu	Thr	Phe	Tyr 570	Val	Asp	Gly	Ala	Ala 575	Asn
Arg	Ala	Gly	Asn 580	Leu	Trp	Val	Thr	Val 585	Tyr	Tyr	Gly	Val	Pro 590	Val	Trp
Lys	Glu	Ala 595	Thr	Thr	Thr	Leu	Val 600		Arg	Tyr	Leu	Arg 605	Asp	Gln	Gln
Leu	Leu 610	Gly	Ile	Trp	Gly	Cys 615	Ala	Cys	Thr	Pro	Tyr 620	Asp	Ile	Asn	Gln
Met 625	Leu	Arg	Gly	Pro	Gly 630	Arg	Ala	Phe	Val	Thr 635	Ile	Arg	Gln	Gly	Ser 640
Leu	Ala	Ala	Val	Gly 645	Ala	Arg	Ala	Ser	Val 650	Leu	Ser	Gly	Gly	Glu 655	Leu
Asp	Lys	Trp	Glu 660	Lys	Ile	Arg	Leu	Arg 665	Pro	Gly	Gly	Lys	Lys 670	Lys	Tyr
Gln	Leu	Lys 675	His	Ile	Val	Trp	Ala 680	Ser	Arg	Glu	Leu	Glu 685	Arg	Phe	Ala
Val	Asn 690	Pro	Gly	Leu	Leu	Glu 695	Thr	Ser	Glu	Gly	Cys 700	Arg	Gln	Ile	Met
705			Gln		710					715				_	720
	-			725				_	730				_	735	Glu
Val	Lys	Asp	Thr 740	Lys	Glu	Ala	Leu	Asp 745	Lys	Val	Glu	Glu	Glu 750	Gln	Asn
		755					760					765	-		Arg
	770		Ser			775					780			_	
785			Gln		790			_		795			_		800
			Glu	805					810					815	
Ala	Leu	Ser	Glu	Gly	Ala	Thr	Pro	Gln	Asp	Leu	Asn	Thr	Met	Leu	Asn

```
820
                              825
                                                  830
Thr Val Gly Gly His Gln Ala Ala Met Gln Met Leu Lys Glu Thr Ile
                          840
                                           845
Asn Glu Glu Ala Ala Glu Trp Asp Arg Leu His Pro Val His Ala Gly
                      855
Pro Ile Ala Pro Gly Gln Met Arg Glu Pro Arg Gly Ser Asp Ile Ala
                  870
                                      875
Gly Thr Thr Ser Thr Leu Gln Glu Gln Ile Gly Trp Met Thr Asn Asn
                                  890
Pro Pro Ile Pro Val Gly Glu Ile Tyr Lys Arg Trp Ile Ile Leu Gly
          900
                              905
Leu Asn Lys Ile Val Arg Met Tyr Ser Pro Thr Ser Ile Leu Asp Ile
                         920
Lys Gln Gly Pro Lys Glu Pro Phe Arg Asp Tyr Val Asp Arg Phe Tyr
                                          940
                      935
Lys Thr Leu Arg Ala Glu Gln Ala Thr Gln Glu Val Lys Asn Trp Met
                  950
                                      955
Thr Glu Thr Leu Leu Val Gln Asn Ala Asn Pro Asp Cys Lys Thr Ile
                               970 975
            965
Leu Lys Ala Leu Gly Pro Ala Ala Thr Leu Glu Glu Met Met Thr Ala
                             985
Cys Gln Gly Val Gly Pro Gly His Lys Ala Arg Val Leu
                          1000
<210> 47
<211> 1006
<212> PRT
<213> Artificial Sequence
<220>
<223> Hybrid protein comprised of Rev-Nef-Tat, CTL and truncated Gag
protein (RNT-CTL-optp17/24)
<400> 47
Met Ala Gly Arg Ser Gly Asp Ser Asp Glu Glu Leu Leu Lys Thr Val
                                  10
Arg Leu Ile Lys Phe Leu Tyr Gln Ser Asn Pro Pro Pro Ser Asn Glu
                              25
Gly Thr Arg Gln Ala Arg Arg Asn Arg Arg Arg Trp Arg Glu Arg
                                             45
                          40
Gln Arg Gln Ile Arg Ser Ile Ser Glu Arg Ile Leu Ser Thr Phe Leu
                      55
Gly Arg Pro Ala Glu Pro Val Pro Leu Gln Leu Pro Pro Leu Glu Arg
                   70
                                      75
Leu Thr Leu Asp Cys Ser Glu Asp Cys Gly Asn Ser Gly Thr Gln Gly
                                  90
Val Gly Ser Pro Gln Val Leu Val Glu Ser Pro Ala Val Leu Glu Pro
        100
                              105
Gly Thr Lys Glu Thr Ser Val Gly Lys Trp Ser Lys Cys Ser Gly Trp
115 120 125
                          120
Pro Thr Val Arg Glu Arg Met Lys Gln Ala Glu Pro Glu Pro Ala Ala
                       135
Asp Gly Val Gly Ala Ala Ser Arg Asp Leu Glu Lys His Gly Ala Ile
                   150
                                      155
Thr Ser Ser Asn Thr Ala Thr Asn Asn Ala Ala Cys Ala Trp Leu Glu
               165
                                  170
Ala Gln Glu Glu Glu Val Gly Phe Pro Val Arg Pro Gln Val Pro
                              185
          180
Leu Arg Pro Met Thr Tyr Lys Gly Ala Leu Asp Leu Ser His Phe Leu
                           200
Lys Glu Lys Gly Gly Leu Glu Gly Leu Ile Tyr Ser Pro Lys Arg Gln
                    215
                                          220
Glu Ile Leu Asp Leu Trp Val Tyr His Thr Gln Gly Tyr Phe Pro Asp
```

225					230					235					240
Trp	Gln	Asn	Tyr	Thr 245	Pro	Gly	Pro	Gly	Val 250	Arg	Tyr	Pro	Leu	Thr 255	Phe
Gly	Trp	Cys	Phe 260	Lys	Leu	Val	Pro	Val 265	Glu	Pro	qaA	Glu	Glu 270	Glu	Asn
Ser	Ser	Leu 275	Leu	His	Pro	Ala	Ser 280	Leu	His	Gly	Thr	Glu 285	Asp	Thr	Glu
Arg	Glu 290	Val	Leu	Lys	Trp	Lys 295	Phe	Asp	Ser	His	Leu 300	Ala	Phe	His	His
Lys 305	Ala	Arg	Glu	Leu	His 310	Pro	Glu	Tyr	Tyr	Lys 315	Asp	Cys	Lys	Leu	Glu 320
Pro	Val	Asp	Pro	Arg 325	Leu	Glu	Pro	Trp	Lys 330	His	Pro	Gly	Ser	Gln 335	Pro
Arg	Thr	Pro	Cys 340	Thr	Asn	Cys	Tyr	Cys 345	Lys	Lys	Сув	Cys	Leu 350	His	Сув
Gln	۷al	Cys 355	Phe	Thr	Arg	Lys	Gly 360	Leu	Gly	Ile	Ser	Tyr 365	Gly	Arg	Lys
_	370			_	-	375					380			His	
385				_	390					395	_	_	_	Pro	400
_		_	_	405	_	_	_		410	_				Ala 415	_
		_	420					425					430	Val	
		435		_			440		-		_	445		Ser	_
	450					455					460			Leu	
465					470					475				Arg	480
				485					490					Ala 495	
			500		Thr	_	-	505			_		510		-
	_	515	_	_		_	520					525		Lys	_
	530					535					540			Ala	
545			_		550					555			_	Val	560
				565					570			_		Ala 575	
			580					585					590	Val	
-		595					600					605		Gln -	
	610	_		_	_	615		_			620	_		Asn	
625					630					635				Gly	640
				645					650			_	_	Glu 655	
	-		660					665					670	Lys	
		675					680					685	_	Phe	
	690					695					700			Ile	
705					710					715				Arg	720
Leu	Tyr	Asn	Thr	Val 725	Ala	Thr	Leu	Tyr	Cys 730	Val	His	Gln	Lys	Ile 735	Glu

```
Val Lys Asp Thr Lys Glu Ala Leu Asp Lys Val Glu Glu Glu Gln Asn
                             745
Asn Ser Lys Lys Lys Ala Gln Gln Glu Ala Ala Asp Ala Gly Asn Arg
       755
                          760
Asn Gln Val Ser Gln Asn Tyr Pro Ile Val Gln Asn Leu Gln Gly Gln
Met Val His Gln Ala Ile Ser Pro Arg Thr Leu Asn Ala Trp Val Lys
                  790 795 800
Val Val Glu Glu Lys Ala Phe Ser Pro Glu Val Ile Pro Met Phe Ser
               805
Ala Leu Ser Glu Gly Ala Thr Pro Gln Asp Leu Asn Thr Met Leu Asn
                             825 830
Thr Val Gly Gly His Gln Ala Ala Met Gln Met Leu Lys Glu Thr Ile
      835
                         840
Asn Glu Glu Ala Ala Glu Trp Asp Arg Leu His Pro Val His Ala Gly
                      855
                                        860
Pro Ile Ala Pro Gly Gln Met Arg Glu Pro Arg Gly Ser Asp Ile Ala
                  870
                                     875
Gly Thr Thr Ser Thr Leu Gln Glu Gln Ile Gly Trp Met Thr Asn Asn
             885
                                 890
Pro Pro Ile Pro Val Gly Glu Ile Tyr Lys Arg Trp Ile Ile Leu Gly
    900
                           905
Leu Asn Lys Ile Val Arg Met Tyr Ser Pro Thr Ser Ile Leu Asp Ile
                         920
Lys Gln Gly Pro Lys Glu Pro Phe Arg Asp Tyr Val Asp Arg Phe Tyr
                   935
                                        940
Lys Thr Leu Arg Ala Glu Gln Ala Thr Gln Glu Val Lys Asn Trp Met
                 950
                                    955
Thr Glu Thr Leu Leu Val Gln Asn Ala Asn Pro Asp Cys Lys Thr Ile
                                 970
             965
                                      975
Leu Lys Ala Leu Gly Pro Ala Ala Thr Leu Glu Glu Met Met Thr Ala
980 985 990
Cys Gln Gly Val Gly Gly Pro Gly His Lys Ala Arg Val Leu
                         1000
<210> 48
<211> 1006
<212> PRT
<213> Artificial Sequence
<223> Hybrid protein comprised of Rev-Nef-Tat, truncated Gag protein and
CTL (RNT-optp17/24-CTL)
<400> 48
Met Ala Gly Arg Ser Gly Asp Ser Asp Glu Glu Leu Leu Lys Thr Val
                                 10
Arg Leu Ile Lys Phe Leu Tyr Gln Ser Asn Pro Pro Pro Ser Asn Glu
                            25
Gly Thr Arg Gln Ala Arg Arg Asn Arg Arg Arg Trp Arg Glu Arg
                         40
                                           45
Gln Arg Gln Ile Arg Ser Ile Ser Glu Arg Ile Leu Ser Thr Phe Leu
Gly Arg Pro Ala Glu Pro Val Pro Leu Gln Leu Pro Pro Leu Glu Arg
                  70
                                    75
Leu Thr Leu Asp Cys Ser Glu Asp Cys Gly Asn Ser Gly Thr Gln Gly
             85
                                 90
Val Gly Ser Pro Gln Val Leu Val Glu Ser Pro Ala Val Leu Glu Pro
          100
                             105
Gly Thr Lys Glu Thr Ser Val Gly Lys Trp Ser Lys Cys Ser Gly Trp
                      120
    115
                                           125
Pro Thr Val Arg Glu Arg Met Lys Gln Ala Glu Pro Glu Pro Ala Ala
```

Asp 145	Gly	Val	Gly	Ala	Ala 150	Ser	Arg	Asp	Leu	Glu 155	Lys	Hls	Сту	ALa	11e 160
	Ser	Ser	Asn			Thr	Asn	Asn			Cys	Ala	Trp	Leu 175	
Ala	Gln	Glu	Glu 180	165 Glu	Glu	Val	Gly	Phe 185	170 Pro	Val	Arg	Pro	Gln 190		Pro
Leu	Arg	Pro 195	Met	Thr	Tyr	Lys	Gly 200	Ala	Leu	Asp	Leu	Ser 205	His	Phe	Leu
Lys	Glu 210		Gly	Gly	Leu	Glu 215		Leu	Ile	Tyr	Ser 220		Lys	Arg	Gln
Glu 225	Ile	Leu	Asp	Leu	Trp 230	Val	Tyr	His	Thr	Gln 235	Gly	Tyr	Phe	Pro	Asp 240
Trp	Gln	Asn	Tyr	Thr 245	Pro	Gly	Pro	Gly	Val 250	Arg	Tyr	Pro	Leu	Thr 255	Phe
Gly	Trp	Cys	Phe 260	Lys	Leu	Val	Pro	Val 265	Glu	Pro	Asp	Glu	Glu 270	Glu	Asn
Ser	Ser	Leu 275	Leu	His	Pro	Ala	Ser 280	Leu	His	Gly	Thr	Glu 285	Asp	Thr	Glu
_	290		Leu			295					300				
Lуs 305	Ala	Arg	Glu	Leu	His 310	Pro	Glu	Tyr	Tyr	Lys 315	Asp	Cys	Lys	Leu	Glu 320
		_	Pro	325					330					335	
_			Cys 340			_	_	345	_	_			350		
		355	Phe		_	_	360		-			365	_		_
-	370	_	Gln	_	_	375					380				
385			Pro		390					395					400
			Lys	405					410					415	
		_	Ala 420			_		425					430	_	_
		435	Lys				440					445			
	450		Leu	_		455					460				
465			Asn		470					475		_	_		480
			Gln	485					490		-			495	
			Tyr 500					505					510		
		515	Lys			_	520					525			
	530		Ser	_	_	535					540				
545	_		Gln		550			_		555					560
_			Val	565					570	_				575	_
			Val 580					585					590		
		595	Leu				600					605			
	610		Val			615					620				
625			Glu		630					635					640
ATG	GTA	PĽO	Ile	AId	PLO	GTA	GIII	Mec	arg	GTU	50	arg.	GΤĀ	ser	Asp

```
645
                                  650
Ile Ala Gly Thr Thr Ser Thr Leu Gln Glu Gln Ile Gly Trp Met Thr
          660
                        665
Asn Asn Pro Pro Ile Pro Val Gly Glu Ile Tyr Lys Arg Trp Ile Ile
                          680
                                             685
Leu Gly Leu Asn Lys Ile Val Arg Met Tyr Ser Pro Thr Ser Ile Leu
                       695
Asp Ile Lys Gln Gly Pro Lys Glu Pro Phe Arg Asp Tyr Val Asp Arg
                   710
                                   715
Phe Tyr Lys Thr Leu Arg Ala Glu Gln Ala Thr Gln Glu Val Lys Asn
                                  730
Trp Met Thr Glu Thr Leu Leu Val Gln Asn Ala Asn Pro Asp Cys Lys
                              745
           740
                                                  750
Thr Ile Leu Lys Ala Leu Gly Pro Ala Ala Thr Leu Glu Glu Met Met
       755
                           760
                                              765
Thr Ala Cys Gln Gly Val Gly Gly Pro Gly His Lys Ala Arg Val Leu
                      775
Ala Ala Val Ile Thr Leu Trp Gln Arg Pro Leu Val Ala Leu Ile Glu
                  790
                                   795
Ile Cys Thr Glu Met Glu Lys Glu Gly Lys Ile Ser Lys Ile Gly Pro
                                  810
Ala Gly Leu Lys Lys Lys Ser Val Thr Val Leu Asp Val Gly Asp
                              825
           820
Ala Tyr Phe Ser Val Pro Leu Asp Lys Asp Phe Arg Lys Tyr Thr Ala
                          840
Phe Thr Ile Pro Ser Ile Trp Lys Gly Ser Pro Ala Ile Phe Gln Ser
                      855
                                          860
Ser Met Thr Lys Lys Gln Asn Pro Asp Ile Val Ile Tyr Gln Tyr Met
                   870
                                      875
Asp Asp Leu Tyr Val Pro Ile Val Leu Pro Glu Lys Asp Ser Trp Leu
              885
                                 890
Val Gly Lys Leu Asn Trp Ala Ser Gln Ile Tyr Ala Gly Ile Lys Val
                              905
Lys Gln Leu Ile Leu Lys Glu Pro Val His Gly Val Tyr Glu Pro Ile
                          920
                                              925
Val Gly Ala Glu Thr Phe Tyr Val Asp Gly Ala Ala Asn Arg Ala Gly
                       935
                                          940
Asn Leu Trp Val Thr Val Tyr Tyr Gly Val Pro Val Trp Lys Glu Ala
                                      955
                   950
Thr Thr Thr Leu Val Glu Arg Tyr Leu Arg Asp Gln Gln Leu Leu Gly
               965
                                 970 975
Ile Trp Gly Cys Ala Cys Thr Pro Tyr Asp Ile Asn Gln Met Leu Arg
                             985
Gly Pro Gly Arg Ala Phe Val Thr Ile Arg Gln Gly Ser Leu
                          1000
<210> 49
<211> 7945
<212> DNA
<213> Bovine papillomavirus
<220>
<221> misc_feature
<222> 1205
<223> n = A, T, C \text{ or } G
<400> 49
gttaacaata atcacaccat caccgttttt tcaagcggga aaaaatagcc agctaactat 60
aaaaagctgc tgacagaccc cggttttcac atggacctga aaccttttgc aagaaccaat 120
ccatteteag ggttggattg tetgtggtge agagageete ttacagaagt tgatgetttt 180
aggtgcatgg tcaaagactt tcatgttgta attcgggaag gctgtagata tggtgcatgt 240
accatttgtc ttgaaaactg tttagctact gaaagaagac tttggcaagg tgttccagta 300
acaggtgagg aagctgaatt attgcatggc aaaacacttg ataggctttg cataagatgc 360
```

tgctactgtg ggggcaaact aacaaaaaat gaaaaacatc ggcatgtgct ttttaatgag 420 cctttctgca aaaccagagc taacataatt agaggacgct gctacgactg ctgcagacat 480 ggttcaaggt ccaaataccc atagaaactt ggatgattca cctgcaggac cgttgctgat 540 tttaagteca tgtgeaggea caectaecag gteteetgea geacetgatg caectgattt 600 cagacttccg tgccatttcg gccgtcctac taggaagcga ggtcccacta cccctccgct 660 tteeteteee ggaaaaetgt gtgeaacagg geeacgtega gtgtattetg tgaetgtetg 720 etgtggaaac tgeggaaaag agetgaettt tgetgtgaag accagetega egteeetget 780 tggatttgaa caccttttaa actcagattt agacctcttg tgtccacgtt gtgaatctcg 840 cgagcgtcat ggcaaacgat aaaggtagca attgggattc gggcttggga tgctcatatc 900 tgctgactga ggcagaatgt gaaagtgaca aagagaatga ggaacccggg gcaggtgtag 960 aactgtctgt ggaatctgat cggtatgata gccaggatga ggattttgtt gacaatgcat 1020 cagtetttea gggaaateae etggaggtet tecaggeatt agagaaaaag gegggtgagg 1080 agcagatttt aaatttgaaa agaaaagtat tggggagttc gcaaaacagc agcggttccg 1140 aagcatctga aactccagtt aaaagacgga aatcaggagc aaagcgaaga ttatttgctg 1200 aaaangaagc taaccgtgtt cttacgcccc tccaggtaca gggggagggg gaggggaggc 1260 aagaacttaa tgaggagcag gcaattagtc atctacatct gcagcttgtt aaatctaaaa 1320 atgctacagt ttttaagctg gggctcttta aatctttgtt cctttgtagc ttccatgata 1380 ttacgaggtt gtttaagaat gataagacca ctaatcagca atgggtgctg gctgtgtttg 1440 gccttgcaga ggtgtttttt gaggcgagtt tcgaactcct aaagaagcag tgtagttttc 1500 tgcagatgca aaaaagatct catgaaggag gaacttgtgc agtttactta atctgcttta 1560 acacagctaa aagcagagaa acagtccgga atctgatggc aaacacgcta aatgtaagag 1620 aagagtgttt gatgctgcag ccagctaaaa ttcgaggact cagcgcagct ctattctggt 1680 ttaaaagtag tttgtcaccc gctacactta aacatggtgc tttacctgag tggatacggg 1740 cgcaaactac tctgaacgag agcttgcaga ccgagaaatt cgacttcgga actatggtgc 1800 aatgggccta tgatcacaaa tatgctgagg agtctaaaat agcctatgaa tatgctttgg 1860 ctgcaggatc tgatagcaat gcacgggctt ttttagcaac taacagccaa gctaagcatg 1920 tgaaggactg tgcaactatg gtaagacact atctaagagc tgaaacacaa gcattaagca 1980 tgcctgcata tattaaagct aggtgcaagc tggcaactgg ggaaggaagc tggaagtcta 2040 tectaaettt tittaaetat eagaatattg aattaattae etttattaat getitaaage 2100 totggctaaa aggaattoca aaaaaaaact gtttagcatt tattggccct ccaaacacag 2160 gcaagtctat gctctgcaac tcattaattc attttttggg tggtagtgtt ttatcttttg 2220 ccaaccataa aagtcacttt tggcttgctt ccctagcaga tactagagct gctttagtag 2280 atgatgctac tcatgcttgc tggaggtact ttgacacata cctcagaaat gcattggatg 2340 gctaccctgt cagtattgat agaaaacaca aagcagcggt tcaaattaaa gctccacccc 2400 tcctggtaac cagtaatatt gatgtgcagg cagaggacag atatttgtac ttgcatagtc 2460 gggtgcaaac ctttcgcttt gagcagccat gcacagatga atcgggtgag caacctttta 2520 atattactga tgcagattgg aaatcttttt ttgtaaggtt atgggggcgt ttagacctga 2580 ttgacgagga ggaggatagt gaagaggatg gagacagcat gcgaacgttt acatgtagcg 2640 caagaaacac aaatgcagtt gattgagaaa agtagtgata agttgcaaga tcatatactg 2700 tactggactg ctgttagaac tgagaacaca ctgctttatg ctgcaaggaa aaaaggggtg 2760 actgtcctag gacactgcag agtaccacac tctgtagttt gtcaagagag agccaagcag 2820 gccattgaaa tgcagttgtc tttgcaggag ttaagcaaaa ctgagtttgg ggatgaacca 2880 tggtctttgc ttgacacaag ctgggaccga tatatgtcag aacctaaacg gtgctttaag 2940 aaaggcgcca gggtggtaga ggtggagttt gatggaaatg caagcaatac aaactggtac 3000 actgtctaca gcaatttgta catgcgcaca gaggacggct ggcagcttgc gaaggctggg 3060 gctgacggaa ctgggctcta ctactgcacc atggccggtg ctggacgcat ttactattct 3120 cgctttggtg acgaggcagc cagatttagt acaacagggc attactctgt aagagatcag 3180 gacagagtgt atgctggtgt ctcatccacc tcttctgatt ttagagatcg cccagacgga 3240 gtctgggtcg catccgaagg acctgaagga gaccctgcag gaaaagaagc cgagccagcc 3300 cagectgtet ettettiget eggeteecee geetgeggte ceateagage aggeeteggt 3360 tgggtaeggg aeggteeteg etegeacee tacaatttte etgeaggete ggggggetet 3420 attotecget ettecteeac ecegtgeagg geaeggtace ggtggaettg geateaagge 3480 aggaagaaga ggagcagtcg cccgactcca cagaggaaga accagtgact ctcccaaggc 3540 gcaccaccaa tgatggattc cacctgttaa aggcaggagg gtcatgcttt gctctaattt 3600 caggaactgc taaccaggta aagtgctatc gctttcgggt gaaaaagaac catagacatc 3660 gctacgagaa ctgcaccacc acctggttca cagttgctga caacggtgct gaaagacaag 3720 gacaagcaca aatactgatc acctttggat cgccaagtca aaggcaagac tttctgaaac 3780 atgtaccact acctcctgga atgaacattt ccggctttac agccagcttg gacttctgat 3840 cactgocatt goottitett catetgactg gtgtactatg ccaaatetat ggtttetatt 3900 gttcttggga ctagttgctg caatgcaact gctgctatta ctgttcttac tcttgttttt 3960 tettgtatae tgggateatt ttgagtgete etgtaeaggt etgecetttt aatgeettta 4020 catcactggc tattggctgt gtttttactg ttgtgtggat ttgatttgtt ttatatactg 4080 tatgaagttt tttcatttgt gcttgtattg ctgtttgtaa gttttttact agagtttgta 4140

ttccccctgc	tcagatttta	tatggtttaa	. qctqcaqcaa	taaaaatgac	g tgcacgaaaa	4200
agagtaaaac	gtgccagtgc	ctatgaccto	tacaqqacat	gcaagcaagc	gggcacatgt	4260
ccaccagatg	tgataccaaa	. ggtagaaqqa	gatactataq	cagataaaat	tttgaaattt	4320
gggggtcttg	caatctactt	aggagggcta	ggaataggaa	catootctac	tggaagggtt	4380
gctgcaggtg	gatcaccaaq	gtacacacca	ctccgaacag	. cagggt.ccac	atcatcgctt	4440
gcatcaataq	gatccagage	totaacagca	gagacccaca	cagggeeede	tgcgggcatt	4500
cctttagaca	cccttgaaac	tettagagag	ttacatacaa	. aaatatata	ggacactgtg	4560
ctaccagagg	cccctgcaat	agtcactcct	gatgatatta	gggtgtatga	agggcttgat	4600
accetateca	taggtagaga	ctcatccaca	gaegeegee	ttagtagaccc	agageetgae	4020
gatecegaaa	acatagraga	tettaaaeta	gagaccccca	. ccacterger	ttggcaagta	4680
agcaatgctg	ttcatcactc	ctctgageeg	caaccccctgg	tagaaataa	atcgtccatt	4740
ageaacgeeg	ctaatttaa	asatatttt	gtaggaggat	ggagetgea	accorceatt	4800
goagaaaaca	ttgaactga	atacttccc	taggagget	cgggtttagg	ggatacagga	4860
gcctctaaat	cacatacagac	tttaaactcc	ttaaataaaa	caagcacgcc	ccgcagtatt	4920
acquaaqatc	ctasatatt	ttaataaac	agatttagaa	ggtactacac	acaggtgccc	4980
ccacctatac	ttaaggggg	tagtagaagt	attactiguaa	acceaetgta	tgaagcagaa	5040
acagttagaa	gagataggacc	caguggacgu	griggadida	greaggetta	taaacctgat	5100
acacctacaa	cacgragegg	gacagaggig	ggaccacagc	tacatgtcag	gtactcattg	5160
agracratac	togaayatgt	agaagcaatc	ccctacacag	ttgatgaaaa	tacacaggga	5220
tttagtarea	cacecutgea	rgaagagcaa	gcaggttttg	aggagataga	attagatgat	5280
cttagtgaga	Cacatagact	getaecteag	aacacctctt	ctacacctgt	tggtagtggt	5340
gracyaayaa	geoteattee	aactcaggaa	tttagtgcaa	cacggcctac	aggtgttgta	5400
acctatgget	cacctgacac	ttactctgct	agcccagtta	ctgaccctga	ttctacctct	5460
cctagtctag	ttatcgatga	cactactact	acaccaatca	ttataattga	tgggcacaca	5520
grigatitgt	acagcagtaa	ctacaccttg	catccctcct	tgttgaggaa	acgaaaaaaa	5580
cggaaacatg	cctaattttt	tttgcagatg	gcgttgtggc	aacaaggcca	gaagctgtat	5640
ctccctccaa	cccctgtaag	caaggtgctt	tgcagtgaaa	cctatgtgca	aagaaaaagc	5700
atttttatc	atgcagaaac	ggagcgcctg	ctaactatag	gacatccata	ttacccagtg	5760
tetategggg	ccaaaactgt	tcctaaggtc	tctgcaaatc	agtatagggt	atttaaaata	5820
caactacctg	atcccaatca	atttgcacta	cctgacagga	ctgttcacaa	cccaagtaaa	5880
gagcggctgg	tgtgggcagt	cataggtgtg	caggtgtcca	gagggcagcc	tcttggaggt	5940
actgtaactg	ggcaccccac	ttttaatgct	ttgcttgatg	cagaaaatgt	gaatagaaaa	6000
gtcaccaccc	aaacaacaga	tgacaggaaa	caaacaqqcc	tagatgctaa	qcaacaacaq	6060
attctgttgc	taggctgtac	ccctgctgaa	ggggaatatt	ggacaacagc	ccqtccatqt	6120
gttactgatc	gtctagaaaa	tggcgcctgc	cctcctcttg	aattaaaaaa	caaqcacata	6180
gaagatgggg	atatgatgga	aattgggttt	ggtgcagcca	acttcaaaga	aattaatqca	6240
agtaaatcag	atctacctct	tgacattcaa	aatgagatct	gcttgtaccc	agactacctc	6300
aaaatggctg	aggacgctgc	tggtaatagc	atgttctttt	ttgcaaqqaa	agaacaggtg	6360
tatgttagac	acatctggac	cagagggggc	tcggagaaag	aagcccctac	cacagatttt	6420
tatttaaaga	ataataaagg	ggatgccacc	cttaaaatac	ccagtgtgca	ttttggtagt	6480
cccagtggct	cactagtctc	aactgataat	caaattttta	atcggcccta	ctqqctattc	6540
cgtgcccagg	gcatgaacaa	tggaattgca	tggaataatt	tattgttttt	aacaqtqqqq	6600
gacaatacac	gtggtactaa	tcttaccata	agtgtagcct	cagatggaac	cccactaaca	6660
gagtatgata	gctcaaaatt	caatgtatac	catagacata	tqqaaqaata	taagctagcc	6720
tttatattag	agctatgctc	tgtggaaatc	acageteaaa	ctgtgtcaca	tctqcaaqqa	6780
cttatgccct	ctgtgcttga	aaattgggaa	ataggtgtgc	agcctcctac	ctcatcgata	6840
ttagaggaca	cctatcgcta	tatagagtct	cctgcaacta	aatgtgcaag	caatqtaatt	6900
cctgcaaaag	aagaccctta	tgcagggttt	aagttttgga	acatagatct	taaaqaaaaq	6960
ctttctttgg	acttagatca	atttcccttg	ggaagaagat	ttttagcaca	gcaaggggca	7020
ggatgttcaa	ctgtgagaaa	acgaagaatt	aqccaaaaaa	cttccaqtaa	acctacaaaa	7080
aaaaaaaaa	aataaaagct	aagtttctat	aaatgttctg	taaatqtaaa	acagaaggta	7140
agtcaactgc	acctaataaa	aatcacttaa	tagcaatgtg	ctatatcaat	tatttattaa	7200
aaccacaccc	ggtacacatc	ctgtccagca	tttgcagtgc	gtgcattgaa	ttattgtgct	7260
ggctagactt	catggcgcct	ggcaccgaat	cctqccttct	cagcgaaaat.	gaataattgc	7320
tttgttggca	agaaactaag	catcaatggg	acqcqtqcaa	addaddadda	gcggtagatg	7380
cggggtaagt	actgaatttt	aattcgacct	atcccootaa	adcdaaaddd	acacgctttt	7440
ttttcacaca	tagcgggacc	gaacacqtta	taaqtatcqa	ttaggtctat	ttttgtctct	7500
ctgtcggaac	cagaactggt	aaaagtttcc	attgcgtctg	gacttatata	tcattgcgtc	7560
tctatgqttt	ttqqaqqatt	agacgagaca	accagtaatg	atacatacca	gatgtctgta	7620
ccgccatcqa	tqcaccqata	taggtttggg	actccccaac	adactactac	gatgacagct	7680
tcatattata	ttgaatgggc	gcataatcag	cttaattggt	Jacob Cald	tacaagttgt	7740
aacctgatct	ccacaaaata	cattaccaat	cadaatcaaa	ccatcttcac	tgctcgaaac	7800
cgccttaaac	tacagacaga	tcccaccaa	ataggcaga+	caaaacctca	aaaaggcggg	7860
agccaatcaa	aatqcaqcat	tatattttaa	gctcaccgaa	accoutaant	aaagactatg	7920
	3 3		J			, , , , ,

```
tattttttcc cagtgaataa ttgtt
                                                                   7945
 <210> 50
 <211> 306
 <212> PRT
 <213> bovine papillomavirus type 1
 <400> 50
Met Glu Thr Ala Cys Glu Arg Leu His Val Ala Gln Glu Thr Gln Met
                                    10
Gln Leu Ile Glu Lys Ser Ser Asp Lys Leu Gln Asp His Ile Leu Tyr
            20
                                 25
Trp Thr Ala Val Arg Thr Glu Asn Thr Leu Leu Tyr Ala Ala Arg Lys
Lys Gly Val Thr Val Leu Gly His Cys Arg Val Pro His Ser Val Val
                       55
Cys Gln Glu Arg Ala Lys Gln Ala Ile Glu Met Gln Leu Ser Leu Gln
                    70
                                        75
Glu Leu Ser Lys Thr Glu Phe Gly Asp Glu Pro Trp Ser Leu Leu Asp
                85
                                    90
Thr Ser Trp Asp Arg Tyr Met Ser Glu Pro Lys Arg Cys Phe Lys Lys
            100
                                105
Gly Ala Arg Val Val Glu Val Glu Phe Asp Gly Asn Ala Ser Asn Thr
                            120
Asn Trp Tyr Thr Val Tyr Ser Asn Leu Tyr Met Arg Thr Glu Asp Gly
    130
                        135
                                            140
Trp Gln Leu Ala Lys Ala Gly Ala Asp Gly Thr Gly Leu Tyr Tyr Cys
                    150
                                        155
Thr Met Ala Gly Ala Gly Arg Ile Tyr Tyr Ser Arg Phe Gly Asp Glu
                165
                                    170
                                                        175
Ala Ala Arg Phe Ser Thr Thr Gly His Tyr Ser Val Arg Asp Gln Asp
            180
                                185
Arg Val Tyr Ala Gly Val Ser Ser Thr Ser Ser Asp Phe Arg Asp Arg
        195
                           200
                                               205
Pro Asp Gly Val Trp Val Ala Ser Glu Gly Pro Glu Gly Asp Pro Ala
Gly Lys Glu Ala Glu Pro Ala Gln Pro Val Ser Ser Leu Leu Gly Ser
                    230
                                        235
Pro Ala Cys Gly Pro Ile Arg Ala Gly Leu Gly Trp Val Arg Asp Gly
                245
                                    250
Pro Arg Ser His Pro Tyr Asn Phe Pro Ala Gly Ser Gly Ser Ile
                                265
Leu Arg Ser Ser Ser Thr Pro Cys Arg Ala Arg Tyr Arg Trp Thr Trp
                         280
His Gln Gly Arg Lys Lys Arg Ser Ser Arg Pro Thr Pro Gln Arg Lys
Asn Gln
305
<210> 51
<211> 622
<212> DNA
<213> Human herpesvirus 4
<400> 51
gggtatcata tgctgactgt atatgcatga ggatagcata tgctacccgg atacaqatta 60
ggatagcata tactacccag atatagatta ggatagcata tgctacccag atatagatta 120
ggatagccta tgctacccag atataaatta ggatagcata tactacccag atatagatta 180
ggatagcata tgctacccag atatagatta ggatagccta tgctacccag atatagatta 240
ggatagcata tgctacccag atatagatta ggatagcata tgctatccag atatttgggt 300
agtatatgct acccagatat aaattaggat agcatatact accctaatct ctattaggat 360
agcatatgct accoggatac agattaggat agcatatact accoagatat agattaggat 420
agcatatgct acccagatat agattaggat agcctatgct acccagatat aaattaggat 480
```

agcatatact acccagatat agattaggat agcatatgct acccagatat agattaggat 540 agcctatgct acccagatat agattaggat agcatatgct atccagatat ttgggtagta 600 tatgctaccc atggcaacat ta

<210> 52 <211> 641 <212> PRT <213> Human herpesvirus 4 <400> 52 Met Ser Asp Glu Gly Pro Gly Thr Gly Pro Gly Asn Gly Leu Gly Glu 10 Lys Gly Asp Thr Ser Gly Pro Glu Gly Ser Gly Gly Ser Gly Pro Gln 20 Arg Arg Gly Gly Asp Asn His Gly Arg Gly Arg Gly Arg Gly 40 Arg Gly Gly Arg Pro Gly Ala Pro Gly Gly Ser Gly Ser Gly Pro 55 60 Arg His Arg Asp Gly Val Arg Arg Pro Gln Lys Arg Pro Ser Cys Ile 70 75 Gly Cys Lys Gly Thr His Gly Gly Thr Gly Ala Gly Ala Gly Ala Gly 90 Gly Ala Gly Ala Gly Ala Gly Ala Gly Gly Ala Gly Ala Gly 105 110 Gly Gly Ala Gly Gly Ala Gly Gly Ala Gly Ala Gly Gly 120 125 Gly Ala Gly Ala Gly Gly Ala Gly Ala Gly Ala Gly Ala Gly Ala 135 140 Gly Gly Gly Ala Gly Ala Gly Gly Ala Gly Ala Gly Ala Gly 150 155 Gly Gly Ala Gly Gly Ala Gly Ala Gly Ala Gly Gly Ala Gly 165 170 175 Ala Gly Gly Gly Ala Gly Ala Gly Ala Gly Gly Ala Gly Gly 180 185 Ala Gly Gly Ala Gly Ala Gly Gly Ala Gly Ala Gly Gly Ala Gly 200 205 Gly Ala Gly Gly Ala Gly Ala Gly Ala Gly Ala Gly Gly Gly Ala 215 220 Gly Gly Ala Gly Gly Ala Gly Gly Ala Gly Ala Gly Gly Ala 230 235 Gly Ala Gly Gly Ala Gly Ala Gly Ala Gly Gly Ala Gly Ala Gly 250 Gly Ala Gly Gly Ala Gly Ala Gly Gly Ala Gly Ala Gly 260 265 Gly Gly Ala Gly Ala Gly Ala Gly Gly Gly Ala Gly Gly Ala Gly 280 285 Ala Gly Gly Ala Gly Gly Ala Gly Gly Ala Gly Gly Ala Gly 290 295 300 Ala Gly Gly Ala Gly Gly Ala Gly Gly Gly Ala Gly Ala Gly 310 315 Gly Ala Gly Gly Gly Gly Arg Gly Arg Gly Gly Ser Gly Gly 330 Arg Gly Arg Gly Gly Ser Gly Gly Arg Gly Arg Gly Gly Ser Gly Gly 340 345 350 Arg Arg Gly Arg Gly Arg Glu Arg Ala Arg Gly Gly Ser Arg Glu Arg 355 360 365 Ala Arg Gly Arg Gly Arg Gly Glu Lys Arg Pro Arg Ser Pro 375 Ser Ser Gln Ser Ser Ser Gly Ser Pro Pro Arg Arg Pro Pro 390 395 Gly Arg Arg Pro Phe Phe His Pro Val Gly Glu Ala Asp Tyr Phe Glu 410

Tyr His Gln Glu Gly Gly Pro Asp Gly Glu Pro Asp Val Pro Pro Gly

			420					425					43U		
Ala	Ile	Glu 435	Gln	Gly	Pro	Ala	Asp 440	Asp	Pro	Gly	Glu	Gly 445	Pro	Ser	Thr
	450					455					460			-	_
Phe 465	Gly	Lys	His	Arg		Gln		Gly	Ser	Asn 475		Lys	Phe	Glu	Asn 480
Ile	Ala	Glu	Gly	Leu 485	Arg	Ala	Leu	Leu	Ala 490	Arg	Ser	His	Val	Glu 495	Arg
Thr	Thr	Asp	Glu 500	Gly	Thr	Trp	Val	Ala 505	Gly	Val	Phe	Val	Tyr 510	Gly	Gly
Ser	ГЛЗ	Thr 515	Ser		Tyr	Asn ·		Arg	Arg	Gly	Thr	Ala 525	Leu	Ala	Ile
Pro	Gln 530	Cys	Arg	Leu	Thr	Pro 535	Leu	Ser	Arg	Leu	Pro 540	Phe	Gly	Met	Ala
Pro 545	Gly	Pro	Gly	Pro	Gln 550	Pro	Gly	Pro	Leu	Arg 555	Glu	Ser	Ile	Vaļl	Cys 560
Tyr	Phe	Met	Val	Phe 565	Leu	Gln	Thr	His	Ile 570		Ala	Glu	Val	Leu 575	Lys
Asp	Ala	Ile	Lys 580	Asp	Leu	Val	Met	Thr 585	Lys	Pro	Ala	Pro	Thr 590	Cys	Asn
Ile	Arg	Val 595	Thr	۷al	Cys	Ser	Phe 600	Asp	Asp	Gly	Val	Asp 605	Leu	Pro	Pro
Trp	Phe 610	Pro	Pro	Met	Val		Gly		Ala	Ala	Glu 620	Gly	Asp	Asp	Gly
Asp 625 Glu	qaA	Gly	Asp	Glu	Gly 630	Gly	Asp	Gly	Asp	Glu 635	Gly	Glu	Glu	Gly	Gln 640

International application No.

PCT/FI 02/00379

A. CLASSIFICATION OF SUBJECT MATTER

IPC7: C12N 15/86, C12N 15/63, C12N 15/85, A61K 48/00, A61P 31/00 According to International Patent Classification (IPC) or to both national classification and IPC

B. FIELDS SEARCHED

Minimum documentation searched (classification system followed by classification symbols)

IPC7: C12N

Documentation searched other than minimum documentation to the extent that such documents are included in the fields searched

SE, DK, FI, NO classes as above

Electronic data base consulted during the international search (name of data base and, where practicable, search terms used)

EPO-INTERNAL, PAJ, WPI-DATA

C. DOCUMENTS CONSIDERED TO BE RELEVANT

Category*	Citation of document, with indication, where appropriate, of the relevant passages	Relevant to claim No.
X	Journal of Virtology, Volume 73, No. 5, 1999, Ivar Ilves et al: "Long-Term Episomal Maintenance of Bovine Papillomavirus Type 1 Plasmids Is Determined by Attachment to Host Chromosomes, Which Is Mediated by the Viral E2 Protein and Its Binding Sites", pages 4404-4412, page 4404 right column lines 12-35, page 4405 left column first paragraph, page 4409 left column third paragraph and page 4411 left column second paragraph lines 17-25	1-80
Х	Eur. J. Biochem, Volume 267, 2000, Kathleen Van Craenenbroeck et al: "Episomal vectors for gene expression in mammalian cells", pages 5665-5678, page 5669, left column last paragraph - page 5672 right column second paragraph	1-80

	X	Further documents are listed in the continuation of Box (Σ.	See patent family annex.	
1	*	Special categories of cited documents:	"T"	later document published after the international filing date or price	
		document defining the general state of the art which is not considered to be of particular relevance		date and not in conflict with the application but cited to understa the principle or theory underlying the invention	
ı	"17"				

- earlier application or patent but published on or after the international filing date
- document which may throw doubts on priority claim(s) or which is cited to establish the publication date of another citation or other special reason (as specified)
- document referring to an oral disclosure, use, exhibition or other
- document published prior to the international filing date but later than the priority date claimed
- ority and
- "X" document of particular relevance: the claimed invention cannot be considered novel or cannot be considered to involve an inventive step when the document is taken alone
- "Y" document of particular relevance: the claimed invention cannot be considered to involve an inventive step when the document is combined with one or more other such documents, such combination being obvious to a person skilled in the art
- "&" document member of the same patent family

Telephone No. + 46 8 782 25 00

Date of the actual completion of the international search Date of mailing of the international search report n 4 -09- 2002 3 Sept 2002 Name and mailing address of the ISA/ Authorized officer Swedish Patent Office Box 5055, S-102 42 STOCKHOLM SARA NILSSON/BS

Facsimile No. +46 8 666 02 86

International application No.

PCT/FI 02/00379

Category*	Citation of document, with indication, where appropriate, of the relevant passages	Relevant to claim No
X	Vaccine, Volume 18, 2000, Auni Collings et al: "Humoral and cellular immune responses to HIV-1 Nef in mice DNA-immunised with non-replication of self-replicating expression vectors", pages 460-467, page 461 right column thrird paragraph and page 466 left column last paragraph	1-80
x	Gene Therapy, Volume 4, 1997, S. Mücke et al: "Suitability of Epstein - Barr virus-based episomal vectors for expression of cytokine genes in human lymphoma cells", pages 82-92, page 85, figure 1(b)	1-80
A	PNAS, Volume 13, Siu Chun Hung et al: "Maintenance of Epstein-Barr virus (EBV) oriP-based episomes requires EBV-encoded nuclear antigen-1 chromosome-binding domains, which can be replaced by high-mobility group-1 or histone H1, pages 1865-1870, page 1865, left column last paragraph, page 1869 right column paragraph 4	1-80
A	Virology, Volume 270, 2000, Nathalie Bastien et al: "Interaction of the Papillomavirus E2 with Mitotic Chromosomes", pages 124-134	1-80
A	WO 9807876 A2 (MEDICAL RESEARCH COUNCIL), 26 February 1998 (26.02.98)	1-80
5		

International application No. PCT/FI02/00379

Box I	Observations where certain claims were found unsearchable (Continuation of item 1 of first sheet)					
This international search report has not been established in respect of certain claims under Article 17(2)(a) for the following reasons:						
1.	Claims Nos.: 53-58 because they relate to subject matter not required to be searched by this Authority, namely:					
	see next sheet*					
2.	Claims Nos.: 1-80 partially					
	because they relate to parts of the international application that do not comply with the prescribed requirements to such an extent that no meaningful international search can be carried out, specifically:					
	see next sheet**					
	,					
3.	Claims Nos.:					
	because they are dependent claims and are not drafted in accordance with the second and third sentences of Rule 6.4(a).					
Box II	Observations where unity of invention is lacking (Continuation of item 2 of first sheet)					
This Inte	ernational Searching Authority found multiple inventions in this international application, as follows:					
1.	As all required additional search fees were timely paid by the applicant, this international search report covers all searchable claims.					
2.	As all searchable claims could be searched without effort justifying an additional fee, this Authority did not invite payment of any additional fee.					
3.	As only some of the required additional search fees were timely paid by the applicant, this international search report					
	covers only those claims for which fees were paid, specifically claims Nos.:					
	,					
4.	No required additional search fees were timely paid by the applicant. Consequently, this international search report is restricted to the invention first mentioned in the claims; it is covered by claims Nos.:					
	• • • • • • • • • • • • • • • • • • •					
Remark on Protest						
	No protest accompanied the payment of additional search fees.					

International application No. **PCT/FI02/00379**

*

Claims 53-58 relate to methods of treatment of the human or animal body by surgery or by therapy (Rule. 39.1.(iv)). Nevertheless, a search has been executed for these claims. The search has been based on the vector used and on the alleged effects of the vector.

**

Due to the wording "an expression vector **comprising**...", present claim 1 relate to an extremely large number of possible expression vectors. Support within the meaning of Article 6 PCT and disclosure within the meaning of Article 5 PCT is to be found, however, for only a very small proportion of the vectors claimed. In the present case, the claims so lack support, and the application so lacks disclosure, that a meaningful search over the whole of the claimed scope is impossible.

Consequently, the search has been carried out for those parts of the claims which appear to be supported and disclosed, namely those parts related to the vectors prepared in the examples. In these expression vectors, the nuclear-anchoring protein is the E2 protein of Bovine papilloma virus type 1 or Epstein-Barr virus nuclear antigen 1.

Information on patent family members

06/07/02

International application No.
PCT/FI 02/00379

Patent document cited in search report	Publication date		Patent family member(s)	Publication date
WO 9807876 A2	2 26/02/98	AT AU DE DK EP SE ES GB	199570 T 725474 B 4020997 A 69704206 D,T 918874 T 0918874 A,B 0918874 T3 2157084 T 9617214 D	15/03/01 12/10/00 06/03/98 30/08/01 14/05/01 02/06/99 01/08/01 00/00/00
		JP PT	2000516472 T 918874 T	12/12/00 30/08/01