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(57) ABSTRACT 
On a multi-core processor that Supports simultaneous multi 
threading, the power state for each logical processor is 
tracked. Upon indication that a logical processor is ready to 
transition into a deep low power state, Software remapping 
(e.g., thread-hopping) may be performed. Accordingly, if 
multiple logical processors, on different cores, are in a low 
power State, they are re-mapped to same core and the core is 
then placed into a low power state. Other embodiments are 
described and claimed. 
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SOFTWARE-BASED THREAD REMAIPPING 
FOR POWER SAVINGS 

RELATED APPLICATIONS 

0001. The present application claims priority to U.S. 
application Ser. No. 12/316,014, filed Dec. 9, 2008, entitled 
SOFTWARE-BASED THREAD REMAPPING FOR 
POWER SAVINGS, the entire contents and disclosure of 
which is hereby incorporated by reference in its entirety. 

BACKGROUND 

0002 Power and thermal management are becoming more 
challenging than ever before in all segments of computer 
based systems. While in the server domain it is the cost of 
electricity that drives the need for low power systems, in 
mobile systems battery life and thermal limitations make 
these issues relevant. Managing a computer-based system for 
maximum performance at minimum power consumption may 
be accomplished by reducing power to all or part of the 
computing system when inactive or otherwise not needed. 
0003. One power management standard for computers is 
the Advanced Configuration and Power Interface (ACPI) 
standard, e.g., Rev. 3.0b, published Oct. 10, 2006, which 
defines an interface that allows the operating system (OS) to 
control hardware elements. Many modern operating systems 
use the ACPI standard to perform power and thermal man 
agement for computing systems. An ACPI implementation 
allows a core to be in different power-saving states (also 
termed low power or idle states) generally referred to as 
so-called C1 to Cn states. 
0004. When the core is active, it runs at a so-called CO 
state, but when the core is idle, the OS tries to maintain a 
balance between the amount of power it can save and the 
overhead of entering and exiting to/from a given state. Thus, 
C1 represents the low power state that has the least power 
savings but can be Switched on and off almost immediately 
(thus referred to as a “shallow low power” or “shallow idle’ 
state), while deep low power states (e.g., C3, C6 or C7) 
represent a power State where the static power consumption 
may be negligible, depending on silicon implementation, but 
the time to enter into this state and respond to activity (i.e., 
back to active CO) is relatively long. Note that different pro 
cessors may include differing numbers of core C-states, each 
mapping to one ACPI C-state. That is, multiple core C-states 
can map to the same ACPI C-state. 
0005. Current OSC-state policy may not provide the most 
efficient performance results because current OS C-state 
policy may not consider activities of other cores in the same 
package. In particular, current OSC-State policy may fail to 
take advantage of efficiencies that could be gained by more 
closely tracking and managing the power states of various 
threads running on different cores of the same package. That 
is, one hardware thread of a core may be in a deep low power 
state while another hardware thread of the core may be active. 
According to current OSC-State policy, a core cannot enter a 
deep low power state unless all threads on the core are in a 
deep low power state. If multiple cores experience this con 
dition, then none of the cores can go into a deep low power 
state (even if multiple hardware threads are inactive). 

BRIEF DESCRIPTION OF THE DRAWINGS 

0006 FIG. 1 is a block diagram illustrating at least one 
embodiment of a system to perform disclosed techniques. 
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0007 FIG. 2 is a block data flow diagram representing 
before and after views of a remapping example according to 
at least one embodiment. 
0008 FIG. 3 is a data- and control-flow diagram illustrat 
ing at least one embodiment of a method for performing 
Software-based thread-hopping for power savings on a 
sample system that includes two dual-threaded cores. 
0009 FIG. 4 is a flowchart illustrating at least one embodi 
ment of a method for performing software-based thread-hop 
ping for power savings. 
0010 FIG. 5 is a block diagram of a system in accordance 
with at least one embodiment of the present invention. 
0011 FIG. 6 is a block diagram of a system in accordance 
with at least one other embodiment of the present invention. 
0012 FIG. 7 is a block diagram of a system in accordance 
with at least one other embodiment of the present invention. 

DETAILED DESCRIPTION 

0013 Embodiments accurately and in real time perform 
Software-based logical remapping of threads to cores, effec 
tively “exchanging idle threads to the same core so that the 
core may enter a low-power state. More specifically, an oper 
ating system may perform a logical re-mapping and task 
pulling to pull tasks from one hardware thread context on one 
core to another hardware thread context on a different core. If 
a hardware thread context is ready to transition into a low 
power State, the operating system may then determine if any 
other thread contexts in the package are also in a low-power 
state. The operating system may then perform a software 
based logical remapping to Swap one or more of the low 
power thread contexts to the same core as the first low-power 
thread and, if appropriate, Swap an active thread from that 
core to another core. When Swapping has been completed 
Such that all thread contexts mapped to a particular core are in 
a low power state, the core itselfmay be placed in a low power 
state. As used herein, the term “thread” refers to a software 
thread. The terms “logical CPU”, “logical processor”, “hard 
ware thread context', and “thread unit are used interchange 
ably herein to refer to a hardware thread context on which a 
software thread may be executed. At least one embodiment of 
a hardware thread context is described in further detail below 
in connection with FIG. 2 (see discussion of LP and LP). 
For Such embodiment, a thread unit may comprise a portion 
of a core—for example, an SMT (simultaneous multi-thread 
ing) logical processor of a multi-threaded SMT core. For 
other embodiments, however, a thread unit may comprise, for 
example, an entire single-threaded core. 
0014 For at least one embodiment, embodiments of the 
Swap Scheme discussed herein may be used in conjunction 
with existing OS mechanisms in order to achieve Scheduling 
of tasks on those cores for which the least cost (in terms of 
power and/or time) will be incurred. Embodiments may be 
deployed in OS kernel code in conjunction with OS C-state 
and scheduling policy. Alternatively, one or more embodi 
ments may be deployed in platform firmware with an inter 
face to OSC-State policy and scheduling mechanisms. 
0015 Note that the processor core C-states described 
herein are for an example processor Such as those based on 
IA-32 architecture and IA-64 architecture, available from 
Intel Corporation, Santa Clara, Calif., although embodiments 
can equally be used with other processors. Shown in Table 1 
below is an example designation of core C-states available in 
one embodiment, and Table 2 maps these core C-states to the 
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corresponding ACPI states. However, it is to be understood 
that the scope of the present invention is not limited in this 
regard. 
0016 Referring now to FIG. 1, shown is a block diagram 
of a system 10 that employs a Swapping mechanism to 
migrate threads from one logical processor on one core to a 
different logical processor on a different core, based on power 
state information, in accordance with at least one embodi 
ment. As shown in FIG. 1, system 10 includes a processor 
package 20 having a plurality of processor cores 25-25, 
(generically core 25). The number of cores may vary in dif 
ferent implementations, from dual-core packages to many 
core packages including potentially large numbers of cores. 
The optional nature of additional cores is denoted in FIG. 1 by 
broken lines. Each core 25 may include various logic and 
control structures to perform operations on data responsive to 
instructions. Although only one package 20 is illustrated, the 
described methods and mechanisms may be employed by 
computing systems that include multiple packages as well. 
0017 For at least one embodiment, one or more of the 
cores 25 may support multiple hardware thread contexts per 
core. (See, e.g., system 250 of FIG. 2, in which each core 252 
Supports two hardware thread contexts per core.) Such 
embodiment should not be taken to be limiting, in that one of 
skill in the art will understand that each core may support 
more than two hardware thread contexts. 
0018 FIG. 1 illustrates that a computing system 10 may 
include additional elements. For example, in addition to the 
package hardware 20 the system 10 may also include a firm 
ware layer 30, which may include a BIOS (Basic Input 
Output System). The computing system 10 may also include 
a thermal and power interface 40. For at least one embodi 
ment, the thermal and power interface 40 is a hardware/ 
software interface such as that defined by the Advanced Con 
figuration and Power Interface (ACPI) standard, e.g., Rev. 
3.0b, published Oct. 10, 2006, mentioned above. The ACPI 
specification describes platform registers, ACPI tables, e.g., 
42, and the operation of an ACPI BIOS. FIG. 1 shows these 
collective ACPI components logically as a layer between the 
package hardware 20 and firmware 30, on the one hand, and 
an operating system (“OS) 50 on the other. 
0019. The operating system 50 of FIG. 1 may be config 
ured to interact with the thermal and power interface 40 in 
order to direct power management for the package 20. 
Accordingly, FIG. 1 illustrates a system 10 capable of using 
an ACPI interface 40 to perform Operating System-directed 
configuration and Power Management (OSPM). 
0020. The operating system 50 may thus include logic 
(Software, firmware, hardware, or combination) to perform 
the OSPM function. For at least one embodiment, an OSPM 
logic module may be system code that is part of the OS kernel 
51. The OS kernel 51 may also include a scheduling logic 
module (not shown). 
0021. The OS 50 may also include an APCI driver (not 
shown) that establishes the link between the operating system 
or application and the PC hardware. The driver may enable 
calls for certain ACPI-BIOS functions, access to the ACPI 
registers and the reading of the ACPI tables 42. 
0022. For purposes of example, Table 1 below shows core 
C-states and their descriptions, along with the estimated 
power consumption and exit latencies for these states, with 
reference to an example processor having a thermal design 
power (TDP) of 95 watts (W). Ofcourse it is to be understood 
that this is an example only, and that embodiments are not 
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limited in this regard. Table 1 also shows package C-states 
and their descriptions, estimated exit latency, and estimated 
power consumption. 

TABLE 1 

Estimated Exit Estimated power 
Description Latency consumption 

Core CO All core logics active NA 49W 
Core C1 Core clockgated 2 IS 2.4W 
Core C3 Core multi-level cache 10-20 is 1.7W 

(MLC) flushed and 
invalidated 

Core C6 Core powergated 20-40 is OW 
Core C7 Core powergated and 20-40 is OW 

signals "package (pkg) 
last level cache (LLC) 
OK-to-shrink 

Pkg CO All uncore and core logics NA 95 W 
active 

Pkg C1 All cores inactive, plkg 2-5 is 29W 
clockgated 

Pkg C3 Pkg C1 + all external ~50 is 21W 
links to long-latency idle 
states + put memory in 
short-latency inactive state 

Pkg C6 Pkg C3 + reduced voltage ~80 is 6 W 
for powerplane (only very 
low retention voltage 
remains) + put memory in 
long-latency inactive state 

Pkg C7 Pkg C6 + LLC shrunk ~100 Is 4W 

0023 Table 1 illustrates that Core C0 and Core C1 C-states 
are relatively low-latency power states, while the deep 
C-states (e.g., Core C3, Core C6 and Core C7) are high 
latency states. Each SMT thread unit (or “logical processor) 
of a core may also be associated with one of the C-states 
illustrated in Table 1. The C-state associated with a logical 
processor may be referred to herein as “thread C-state'. 
0024 Table 2 shows an example mapping of core C-states 
of an example processor to the ACPI C-States. Again it is 
noted that this mapping is for example only and that embodi 
ments are not limited in this regard. 

TABLE 2 

Core CO->ACPICO 
Core C1->ACPIC1 
Core C3->ACPI C1 or C2 
Core C6->ACPI C2 or C3 
Core C7-e ACPI C3 

0025. It is to be noted that package C-states are not sup 
ported by ACPI; therefore, no ACPI mappings are provided in 
Table 2 for package C-states listed above in Table 1. 
0026. We now turn to FIG. 2 for a brief discussion to 
illustrate the power inefficiencies that may occur when the OS 
kernel (see 51 of FIG. 1) performs known techniques that do 
not provide for migrating low-power threads to the same core. 
(0027 FIG. 2 illustrates a system 250 with a package 20 
that includes two cores, 252 and 252. Of course, while the 
package 20 illustrates only two cores, this simplification is for 
ease of illustration only. One of skill in the art will recognize 
that a package 20 may include any number of cores without 
departing from the scope of the embodiments described and 
claimed herein. 

(0028. The cores 252 and 252 shown in FIG. 2 are multi 
threaded cores. That is, FIG. 2 illustrates that each core 252 is 



US 2015/O 1351.89 A1 

a dual-threaded simultaneous multithreading (“SMT) core, 
where each core 252 maintains a separate architectural State 
(To T) for each of two hardware thread contexts LP, LP, 
but where certain other resources 220, 222, 224 are shared by 
the two hardware thread contexts LP, LP. As is mentioned 
above, for such embodiment each hardware thread context LP 
(or “logical CPU” or “logical processor) may have a separate 
C-state. 

0029. If a hardware thread context is permitted to transi 
tion into a deep thread C-state without taking into account 
total thread and core C-state for the package 20, both power 
and performance inefficiencies may be incurred. This draw 
back is illustrated in the “Before example of system 250A in 
FIG. 2. For purposes of example, assume that hardware thread 
LP of Core 0, 252, is in an active C-state (e.g., CO) but that 
hardware thread LP of Core 0,252, is in a deep core C-state 
(e.g., C6). According to current C-state policy, core C0 252 
cannot enter a deep core C-state because one of its hardware 
threads LP is not in a deep thread C-state. As mentioned 
above, current C-state policy prescribes that a core can only 
enter a deep core C-state if all hardware contexts for that core 
are in a deep thread C-state. 
0030 FIG. 2 illustrates a similar situation with Core 1, 
252 in the “Before example Assume that one hardware 
thread LP of Core 1,252, is in a shallow thread C-state (e.g., 
C1) and that the other hardware thread LP of core 1, 252, is 
in a deep thread C-state (e.g., C6). Accordingly, Core 1 252 
cannot enter a deep core C-state because one of its hardware 
threads LP is not in a deep thread C-state. 
0031. In the “Before example illustrated in FIG. 2, each 
core has n thread contexts and there are a total of n thread 
contexts in a deep thread C-state. However, none of the cores 
can enter a deep core C-state due to the policy requirement 
that no core can enter a deep core C-state unless all the SMT 
thread contexts on the core are in a deep thread C-state. 
0032 Consulting Table 1, one can see that the example 
shown for system 250A in FIG. 2 leads to unnecessary power 
consumption. Table 1 illustrates that a core in C-6 power state 
utilizes roughly Zero watts (OW). Thus, efficient use of the 
Core C-6 power state can provide significant power benefits. 
However, as FIG. 2 illustrates, there are two SMT thread 
contexts, LP1 and LP3, in a deep thread C-state for the pack 
age 20. Because these thread contexts are on different cores, 
neither of cores, Core 0.252 or Core 1, 252, can enter a deep 
core C-state. That is, Core 0 252 is in core C0 state because 
one of its hardware thread contexts, LP, is in an active thread 
C-state (e.g., CO). Thus, the power consumption of Core O 
252 is 4.9 W. Similarly, Core 1252 cannot entera deep core 
C-state because one of its hardware thread contexts, LP, is in 
a shallow idle thread C-state (C1). Core 1 252 is in Core C1 
state. Thus, the power consumption of Core 1 252 is 2.4 W. 
Total power consumption for the system 250A in the 
“Before” example of FIG. 2 is 4.9+2.4-7.3 W. 
0033. The “After example system 250B of FIG. 2 illus 
trates that these power inefficiencies may be avoided by a 
Software-based remapping of Software threads to hardware 
thread contexts according to at least one embodiment of the 
present invention. This remapping capitalizes on the power 
benefit of the core C-6 state by mapping n (in this case, n=2) 
hardware threads onto the same n-way SMT-threaded core, 
where all in threads are in thread C-6 state. 
0034. The “After example of FIG. 2 illustrates that a 
re-mapping may be performed, according to at least one 
embodiment of the invention, in order to achieve a software 
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thread exchange among hardware thread contexts. FIG. 2 
shows that, on the system 250B, the software thread from LP 
has been remapped to LP, and vice versa. Thus, in the “After 
example, both hardware thread contexts LP and LP of Core 
0 of system 250B are in the C6 state. Accordingly, Core O 
252 has been placed in the much more energy-efficient core 
C6 C-state. In contrast, both threads that are in shallow states 
have been mapped to the hardware thread contexts of Core 1 
252. Thus, Core 1252, is in the active COC-state. The power 
usage of the two cores 252 and 252 of the system 250B are: 
4.9 W+0 W=4.9 W. Accordingly the difference in power 
usage between the cores of the “Before’ system 250A and the 
“After system 250B is 7.3 W-4.9 W=2.4 W. This represents 
a 33% power savings due to the Swap. 
0035. It should be noted that the swap illustrated in FIG.2 

is performed in software and allows a swap of a subset of 
threads from a multi-threaded SMT core. In contrast, current 
hardware-based core-hopping schemes copy all state for a 
first core to another core. This is done, in Some instances, to 
balance load or even out hotspots on the core. Such hardware 
based core-hopping approaches may be used to Switch work 
from one single-threaded core to another, or to Switch all 
work for all threads from one multi-threaded core to another 
multi-threaded core. However, such hardware-based core 
hopping approaches are relatively gross mechanisms that do 
not allow for finer-grained mapping of a Subset of threads 
from one core to another. A problem that must be resolved 
when Swapping a Subset of threads from one core to another 
is the very complex task of “untangling” shared resources 
(see, e.g., shared execution resources 220 and shared caches 
222 of FIG. 2) so that thread-specific hardware state may be 
transferred to the new core. Such operation can be prohibi 
tively complex in known hardware-based core-hopping 
schemes. Another drawback of hardware-based core-hopping 
is that known approaches transfer thread execution from one 
core to another only when the hardware has become idle. The 
time it takes to wait for hardware resources to become idle can 
result in wasted opportunity to save power. 
0036. To resolve these and other difficulties with hard 
ware-based core-hopping, the inventor has conceived a soft 
ware approach, referred to herein as “thread-hopping. The 
approach is a Software-based remapping approach that 
remaps threads among the logical processors of different 
cores in a package in order to achieve power savings. 
0037. The thread-hopping embodiments described herein 
can be performed in Software (such as, e.g., kernel code of an 
operating system) without requiring any underlying hardware 
changes. Thread-hopping resolves the difficulty of untan 
gling per-thread resources when transferring just a Subset of 
threads from one core to another core. One reason for this is 
that, rather than waiting for hardware threads to become idle, 
embodiments of the thread-hopping mechanism (such as, 
e.g., that described below in connection with FIGS. 3 and 4) 
use a software approach to Suspend execution of the Software 
thread that is to be evicted to another core. Once suspended, 
the software thread is mapped to a new logical processor on a 
different processor core, and the OS scheduler pulls a task for 
the transferee thread, the task to be performed on the newly 
assigned logical processor. This processing is in contrast to 
traditional OS thread scheduling, which is not triggered by a 
change in thread C-state and does not involve logical re 
mapping of the Software thread to a hardware thread context 
on a different core. 
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0038 FIG. 3 is a data flow diagram that illustrates in 
further detail the operations of a software-based remapping 
mechanism according to at least one embodiment. FIG. 3 
illustrates that, at operation 1, the OSPM has determined that 
a hardware thread context (“X”) is ready to enter a deep idle 
state. Before the OS kernel places the hardware thread context 
into an idle state, it performs processing (discussed in further 
detail below in connection with FIG. 4) to determine whether 
it would be more efficient to instead do a software-based task 
pull to pull the task for some other thread context onto thread 
context X. This processing includes operation 2, where it is 
determined whether the sibling hardware thread context(s) on 
the same core 352 as X is/are in a deep idle state. If not, it 
might not be efficient, from a power standpoint, to put X in a 
deep idle state, since the core 352 cannot enter the deep idle 
state according to current C-State policy unless all of its 
hardware contexts are idle. As used herein, a “sibling hard 
ware thread context is meant to refer to the other hardware 
thread contexts, besides the particular context that is ready to 
enter deep idle State, on a single core. For embodiments 
having dual-threaded cores, the number of siblings for any 
hardware thread context is one. For embodiments having 
cores with more than 2 hardware thread contexts per core, the 
number of siblings may be greater than one. 
0039. If it is determined at operation 2 that one or more of 
the sibling thread context(s) for X are not in deep idle state, 
then the operating system determines whether any other core 
includes a hardware thread context that is already in a deep 
idle state. Thus, at operations 3 and 4 the power state of the 
thread contexts on other cores is evaluated. 

0040. For ease of illustration and discussion, FIG.3 illus 
trates two cores 352, 353 with two thread contexts per core: 
W, X for Core 0 and Y, Z for Core 1, respectively. One of skill 
in the art will recognize, however, that embodiments of the 
thread-hopping mechanism described herein may be applied 
to any number of cores having any number of hardware thread 
contexts each. 
0041 At operation 3, it is determined whether any other 
hardware context on an active core is in a deep idle state. For 
purposes of example, FIG. 3 illustrates that, at operation3, it 
is determined that hardware thread context Y is in a deep idle 
state. Upon finding a deep idle thread context Y for an active 
core 353, the power state of one or more other thread contexts 
on the core 353 is evaluated. In FIG. 3, it is determined at 
operation 4 that thread context Z is active. Thus, for power 
savings purposes it would be more efficient to put thread 
context Z into the deep idle state and pull Z's current task to 
hardware thread context X. 
0042. Accordingly, at operation 5 a remapping is per 
formed. This remapping is performed in software. The OS 
kernel executes a suspend operation to Suspend the task cur 
rently being executed on logical processor Z. The logical 
processors are remapped so that the thread associated with 
hardware thread context Z is remapped to logical processorY. 
This remapping includes the transfer of context data for the 
task being executed by logical processor Z on Core 1353 to 
logical processor Y on Core 0 252. Execution of the task is 
then resumed, but on hardware context Y instead of Z. 
0043. At operation 6, logical processor Z is placed by the 
OS kernel into a deep idle state. Because all hardware thread 
contexts for Core 1 are now in the deep idle state, the core 353 
enters deep idle state at operation 7. 
0044 FIG. 4 is a flowchart showing at least one embodi 
ment of a method 400 for performing a swap as illustrated in 
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FIG. 3 and as illustrated in the After example of system 
250B of FIG. 2. For at least one embodiment, the method 400 
illustrated in FIG. 4 may be performed by an OS kernel (see, 
e.g., 51 of FIG. 1). FIG. 4 illustrates that the method 400 
provides for thread-hopping to Swap a Software task onto a 
hardware thread context on one core responsive to an impend 
ing power state transition of a hardware thread context on 
another core. 
0045 FIG. 4 illustrates that the method 400 begins at start 
block 402. Start block 402 may be triggered responsive to a 
determination by the OSPM logic (not shown) of the kernel 
(e.g., 51 of FIG. 1) that a logical processor (LPX) on one of 
the cores (Core 0) of a system should be placed into a deep 
thread C-state. 
0046. From start bock 402, processing proceeds to block 
404. At block 404, it is determined whether the other hard 
ware thread context(s) on Core 0 are in a deep thread C-state. 
For an embodiment that has two hardware thread contexts per 
core, it is determined at block 404 whether the other core is in 
a deep thread C-state. For all embodiments that includes in 
hardware thread contexts per core, where n>2, the processing 
at block 404 determines whether all other hardware thread 
contexts besides LPX on Core 0 are in a deep thread C-state. 
If so, no Swap is needed and it is appropriate to place the entire 
core into core deep C-state after placing X into deep thread 
C-state, and processing proceeds to block 418. Otherwise, 
processing proceeds to block 406. 
0047. At block 406, it has been determined via processing 
at block 404 that conditions do not exist to place X's home 
core into deep core C-state. Because power savings benefit 
could still be achieved if any other core is one thread context 
shy of deep C-state conditions, it is determined at block 406 
whether another core besides Core 0 has a hardware thread 
context in a deep thread C-state. Of course, other cores that 
are already in a deep core C-state will have thread contexts in 
deep thread C-state, so the block 406 evaluation is performed 
only on cores that are not already in a deep core C-state. 
0048 If no thread contexts are identified on another core at 
block 406, then processing proceeds either to optional block 
415 or to block 416, depending on the embodiment. Process 
ing proceeds to optional block 415 for embodiments that 
include more than two cores in a package. The optional nature 
of block 415 is denoted by broken lines in FIG. 4. At block 
415, it is determined whether there are additional cores to be 
evaluated for potential threads to be swapped onto LPX. For 
a dual-core embodiment, block 415 is optional and need not 
be performed. If it is determined at block 415 that additional 
cores are to be evaluated, processing proceeds back to block 
406. Otherwise, processing proceeds to block 416. At block 
416, normal C-state processing occurs—there are no further 
efficiencies to be gained by thread-hopping. 
0049. If, instead, it is determined at block 406 that a hard 
ware thread context (LPY) on another core (Core 1) is in a 
deep thread C-state, then processing proceeds either to 
optional block 407 or to block 408, depending on the embodi 
ment. Processing proceeds to optional block 407 for embodi 
ments that include more than two logical processor per core 
and proceeds to block 408 for embodiments that include only 
two logical processors per core. The optional nature of block 
407 is denoted in FIG. 4 with broken lines. 

0050. At block 407, it is determined whether a swap of 
work among the two cores would result in the new core 
having more logical processors in deep idle thread state than 
Core O would have if LPX were placed into deep idle thread 
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state on Core 0. If so, processing proceeds to block 408 in 
order to continue with Swap processing. If not, there are no 
efficiencies to be gained by the Swap, so processing instead 
proceeds to block either optional block 415 (for embodiments 
with more than two logical processors per core) or to block 
416. 

0051. At block 408, it is determined whether any hardware 
thread context (LPZ) on the other core (Core 1) is in an active 
state. If so, then the situation exists that a core, other than the 
home core of LPX, has at least one hardware thread context 
in a deep c-state and at least one otherhardware thread context 
in an active state. Thus, it would be advantageous, from a 
power savings standpoint, to consolidate the deep idle hard 
ware thread contexts onto the same core but it is also true that 
the current work from active LPZ should be pulled to another 
hardware thread context before LP Z transitions to the deep 
idle thread C-state. Accordingly, processing proceeds to 
block 410. If, however, it is determined at block 408 that no 
siblings on the other core are in an active state, then no task 
pulling should occur, and processing proceeds to block 414. 
In this case, the sibling core is either already in a deep thread 
C-state or some other non-active state (Such as, e.g., a C1 
shallow idle state). 
0052 At block 410, software task pulling is performed. 
That is, the task that is currently running on LP Z is tempo 
rarily suspended and moved to LP X. To do so, a software 
entity, Such as the operating system (and, more particularly, 
the scheduler of an OS), causes suspension of LP Z's active 
task. The work associated with LP Z's active task is then 
assigned to the home core of LPX. The state necessary for LP 
X to begin executing LP Z’s task is moved to the LPX core. 
The manner of transferring the context state among cores at 
block 410 is implementation-dependent, and may be per 
formed in any of a variety of manners. For at least one 
embodiment, for example, the context data from LP Z is 
copied to an appropriate section of memory or memory hier 
archy (e.g., into a cache) to which LP X has access. The 
instruction pointer is part of the state that gets transferred, so 
that LPX, when it resumes execution, will begin execution at 
the next instruction that LPZ would have executed. After the 
task pull is performed at block 410, operation proceeds to 
block 414. 

0053 At block 414, the logical mapping of LPX and LPZ 
are swapped by software. That is, the logical CPUID associ 
ated with LPX is swapped to LP Zand, similarly, the logical 
CPUID associated with LPZ is swapped to LPX. Operation 
of the active thread that was formerly running on LPZ is then 
resumed on LP X. Processing then proceeds to block 417. 
wherein LP Z enters the deep idle state. 
0054 From block 417, processing proceeds to block 420. 
At block 420 it is determined whether all logical processors 
on the home core of LPY are now in deep sleep states. If not, 
processing ends at block 422. 
0055. If it is determined at block 420 that all logical pro 
cessors for the home core of LPY are now in a deep thread 
C-state, then the core enters a deep core C-state. Processing 
then ends at block 422. 

0056. Embodiments may be implemented in many differ 
ent system types. Referring now to FIG. 5, shown is a block 
diagram of a system 500 in accordance with one embodiment 
of the present invention. As shown in FIG. 5, the system 500 
may include one or more processing elements 510, 515, 
which are coupled to graphics memory controller hub 
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(GMCH) 520. The optional nature of additional processing 
elements 515 is denoted in FIG. 5 with broken lines. 
0057 Each processing element may be a single core or 
may, alternatively, include multiple cores. The processing 
elements may, optionally, include other on-die elements 
besides processing cores. Such as integrated memory control 
ler and/or integrated I/O control logic. Also, for at least one 
embodiment, the core(s) of the processing elements may be 
multithreaded in that they may include more than one hard 
ware thread context per core. 
0058 FIG. 5 illustrates that the GMCH 520 may be 
coupled to a memory 540 that may be, for example, a dynamic 
random access memory (DRAM). For at least one embodi 
ment, the memory 540 may include instructions or code that 
comprise an operating system (e.g., 50 of FIG. 1). 
0059. The GMCH 520 may be a chipset, or a portion of a 
chipset. The GMCH 520 may communicate with the proces 
sor(s) 510,515 and control interaction between the processor 
(s) 510,515 and memory 540. The GMCH 520 may also act 
as an accelerated bus interface between the processor(s) 510, 
515 and other elements of the system 500. For at least one 
embodiment, the GMCH 520 communicates with the proces 
sor(s) 510,515 via a multi-drop bus, such as a frontside bus 
(FSB) 595. 
0060. Furthermore, GMCH 520 is coupled to a display 
540 (such as a flat panel display). GMCH 520 may include an 
integrated graphics accelerator. GMCH 520 is further 
coupled to an input/output (I/O) controller hub (ICH) 550, 
which may be used to couple various peripheral devices to 
system 500. Shown for example in the embodiment of FIG.5 
is an external graphics device 560, which may be a discrete 
graphics device coupled to ICH 550, along with another 
peripheral device 570. 
0061 Alternatively, additional or different processing ele 
ments may also be present in the system 500. For example, 
additional processing element(s) 515 may include additional 
processors(s) that are the same as processor 510, additional 
processor(s) that are heterogeneous or asymmetric to proces 
Sor 510, accelerators (such as, e.g., graphics accelerators or 
digital signal processing (DSP) units), field programmable 
gate arrays, or any other processing element. There can be a 
variety of differences between the physical resources 510, 
515 in terms of a spectrum of metrics of merit including 
architectural, microarchitectural, thermal, power consump 
tion characteristics, and the like. These differences may effec 
tively manifest themselves as asymmetry and heterogeneity 
amongst the processing elements 510, 515. For at least one 
embodiment, the various processing elements 510,515 may 
reside in the same die package. 
0062 Referring now to FIG. 6, shown is a block diagram 
of a second system embodiment 600 in accordance with an 
embodiment of the present invention. As shown in FIG. 6, 
multiprocessor System 600 is a point-to-point interconnect 
system, and includes a first processing element 670 and a 
second processing element 680 coupled via a point-to-point 
interconnect 650. As shown in FIG. 6, each of processing 
elements 670 and 680 may be multicore processors, including 
first and second processor cores (i.e., processor cores 674a 
and 674b and processor cores 684a and 684b). 
0063 Alternatively, one or more of processing elements 
670, 680 may be an element other than a processor, such as an 
accelerator or a field programmable gate array. 
0064. While shown with only two processing elements 
670, 680, it is to be understood that the scope of the present 
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invention is not so limited. In other embodiments, one or more 
additional processing elements may be present in a given 
processor. 
0065. First processing element 670 may further include a 
memory controller hub (MCH) 672 and point-to-point (P-P) 
interfaces 676 and 678. Similarly, second processing element 
680 may include a MCH 682 and P-P interfaces 686 and 688. 
As shown in FIG. 6, MCH's 672 and 682 couple the proces 
sors to respective memories, namely a memory 642 and a 
memory 644, which may be portions of main memory locally 
attached to the respective processors. 
0066 First processing element 670 and second processing 
element 680 may be coupled to a chipset 690 via P-P inter 
connects 676, 686 and 684, respectively. As shown in FIG. 6, 
chipset 690 includes P-P interfaces 694 and 698. Further 
more, chipset 690 includes an interface 692 to couple chipset 
690 with a high performance graphics engine 648. In one 
embodiment, bus 649 may be used to couple graphics engine 
648 to chipset 690. Alternately, a point-to-point interconnect 
649 may couple these components. 
0067. In turn, chipset 690 may be coupled to a firstbus 616 
via an interface 696. In one embodiment, first bus 616 may be 
a Peripheral Component Interconnect (PCI) bus, or a bus such 
as a PCI Express bus or another third generation I/O inter 
connect bus, although the scope of the present invention is not 
so limited. 

0068. As shown in FIG. 6, various I/O devices 614 may be 
coupled to first bus 616, along with a bus bridge 618 which 
couples first bus 616 to a second bus 620. In one embodiment, 
second bus 620 may be a low pin count (LPC) bus. Various 
devices may be coupled to second bus 620 including, for 
example, a keyboard/mouse 622, communication devices 626 
and a data storage unit 628 Such as a disk drive or other mass 
storage device which may include code 630, in one embodi 
ment. The code 630 may include instructions for performing 
embodiments of one or more of the methods described above. 
Further, an audio I/O 624 may be coupled to second bus 620. 
Note that other architectures are possible. For example, 
instead of the point-to-point architecture of FIG. 6, a system 
may implement a multi-drop bus or another Such architecture. 
0069. Referring now to FIG. 7, shown is a block diagram 
of a third system embodiment 700 in accordance with an 
embodiment of the present invention. Like elements in FIGS. 
6 and 7 bear like reference numerals, and certain aspects of 
FIG. 6 have been omitted from FIG. 7 in order to avoid 
obscuring other aspects of FIG. 7. 
0070 FIG. 7 illustrates that the processing elements 670, 
680 may include integrated memory and I/O control logic 
(“CL”) 672 and 682, respectively. For at least one embodi 
ment, the CL 672, 682 may include memory controller hub 
logic (MCH) such as that described above in connection with 
FIGS. 5 and 6. In addition. CL 672, 682 may also include I/O 
control logic. FIG. 7 illustrates that not only are the memories 
642, 644 coupled to the CL 672,682, but also that I/O devices 
714 are also coupled to the control logic 672, 682. Legacy I/O 
devices 715 are coupled to the chipset 690. 
0071 Embodiments of the mechanisms disclosed herein 
may be implemented in hardware, Software, firmware, or a 
combination of Such implementation approaches. Embodi 
ments of the invention may be implemented as computer 
programs executing on programmable systems comprising at 
least one processor, a data storage system (including Volatile 
and non-volatile memory and/or storage elements), at least 
one input device, and at least one output device. 
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0072 Program code, such as code 630 illustrated in FIG. 
6, may be applied to input data to perform the functions 
described herein and generate output information. For 
example, program code 630 may include an operating system 
that is coded to perform embodiments of the methods illus 
trated in FIGS. 2, 3 and 4. Accordingly, embodiments of the 
invention also include media that are machine-accessible and 
computer usable, the media containing instructions for per 
forming the operations of a method or containing design data, 
Such as HDL, which defines structures, circuits, apparatuses, 
processors and/or system features described herein. Such 
embodiments may also be referred to as computer program 
products. 
0073. Such machine-accessible, computer-usable storage 
media may include, without limitation, tangible arrange 
ments of particles manufactured or formed by a machine or 
device, including storage media Such as hard disks, any other 
type of disk including floppy disks, optical disks, compact 
disk read-only memories (CD-ROMs), compact disk rewrit 
able's (CD-RWs), and magneto-optical disks, semiconductor 
devices such as read-only memories (ROMs), random access 
memories (RAMS) Such as dynamic random access memories 
(DRAMs), static random access memories (SRAMs), eras 
able programmable read-only memories (EPROMs), flash 
memories, electrically erasable programmable read-only 
memories (EEPROMs), magnetic or optical cards, or any 
other type of computer-usable media Suitable for storing elec 
tronic instructions. 
0074 The output information may be applied to one or 
more output devices, in known fashion. For purposes of this 
application, a processing system includes any system that has 
a processor, such as, for example; a digital signal processor 
(DSP), a microcontroller, an application specific integrated 
circuit (ASIC), or a microprocessor. 
0075. The programs may be implemented in a high level 
procedural or objectoriented programming language to com 
municate with a processing system. The programs may also 
be implemented in assembly or machine language, if desired. 
In fact, the mechanisms described herein are not limited in 
Scope to any particular programming language. In any case, 
the language may be a compiled or interpreted language. 
0076 Presented herein are embodiments of methods, 
apparatuses, and systems for remapping thread units and re 
assigning work among threads on different cores to consoli 
date idle threads onto the same core. While particular 
embodiments of the present invention have been shown and 
described, it will be obvious to those skilled in the art that 
numerous changes, variations and modifications can be made 
without departing from the scope of the appended claims. 
Accordingly, one of skill in the art will recognize that changes 
and modifications can be made without departing from the 
present invention in its broader aspects. The appended claims 
are to encompass within their scope all Such changes, varia 
tions, and modifications that fall within the true scope and 
spirit of the present invention. 
What is claimed is: 
1. A method comprising: 
based on power state information for a first logical proces 

sor of a first core and a first logical processor of a second 
core, Swapping work from the first logical processor of 
the first core to the first logical processor of the second 
core; 

placing the first logical processor of the first core into a 
power-off state; 
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and 
placing the first core into a power-off state. 
2. The method of claim 1, wherein the Swapping is per 

formed by control software of a computing platform that 
includes the first and second cores. 

3. The method of claim 2, wherein the swapping is per 
formed by an operating system of the computing platform. 

4. The method of claim 2, wherein the Swapping includes 
performing a Software-based context Switch. 

5. The method of claim 1, wherein the first and second 
cores reside in a same die package. 

6. The method of claim 1, wherein the swapping includes 
remapping a thread identifier associated with the second core 
to the first core. 

7. A system comprising: 
a chip package that includes a first core with a first logical 

processor and a second core with a second logical pro 
cessor, 

a scheduler module coupled with the chip package, the 
Scheduler module to Swap, based on power state infor 
mation related to the first logical processor and the sec 
ond logical processor, work from the first logical pro 
cessor to the second logical processor, and 

a power module coupled with the scheduler module, the 
power module to place the first logical processor into a 
power-off state, and place the first core into a power-off 
State. 

8. The system of claim 7, wherein the power module is 
further to place the first logical processor in the power-off 
state Subsequent to the Swap. 

9. The system of claim 7, wherein the power module is 
further to place the first core into the power-off state subse 
quent to placement of the first logical processor into the 
power-off state. 

10. The system of claim 7, wherein said scheduler module 
and said power module are software modules. 

11. The system of claim 7, wherein the first core and the 
second core reside on a same die package. 

12. The system of claim 7, wherein the first core and the 
second core are members of a processing element having an 
integrated memory controller. 

13. One or more non-transitory computer-readable media 
comprising instructions to cause an element of a computing 
platform, upon execution of the instructions by one or more 
processors associated with the element, to: 
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based on power state information for a first logical proces 
sor of a first core and a first logical processor of a second 
core, Swap work from the first logical processor of the 
first core to the first logical processor of the second core; 

place the first logical processor of the first core into a 
power-off state; and 

place the first core into a power-off state. 
14. The one or more non-transitory computer-readable 

media of claim 13, wherein the element of the computing 
platform is control Software of the computing platform. 

15. The one or more non-transitory computer-readable 
media of claim 14, wherein the element of the computing 
platform is an operating system of the computing platform. 

16. The method of claim 14, wherein the instructions to 
Swap include instructions to perform a software-based con 
text switch. 

17. The method of claim 13, wherein the first and second 
cores reside in a same die package. 

18. The method of claim 13, wherein the instructions to 
Swap includes instructions to remap a thread identifier asso 
ciated with the second core to the first core. 

19. A computing platform comprising: 
based on power state information for a first logical proces 

sor of a first core and a first logical processor of a second 
core, means to Swapping work from the first logical 
processor of the first core to the first logical processor of 
the second core; 

means to place the first logical processor of the first core 
into a power-off State; and 

means to place the first core into a power-off state. 
20. The computing platform of claim 19, wherein the 

means to Swap include control Software of a computing plat 
form that includes the first and second cores. 

21. The computing platform of claim 20, wherein the 
means to Swap include an operating system of the computing 
platform. 

22. The computing platform of claim 20, wherein the 
means to Swap include means to perform a software-based 
context Switch. 

23. The computing platform of claim 19, wherein the first 
and second cores reside in a same die package. 

24. The computing platform of claim 19, wherein the 
means to Swap include means to remap a thread identifier 
associated with the second core to the first core. 
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