US 20150135189A1

a9 United States

a2y Patent Application Publication o) Pub. No.: US 2015/0135189 A1

43) Pub. Date: May 14, 2015

(54)

(71)

(72)

@

(22)

(63)

Song
SOFTWARE-BASED THREAD REMAPPING
FOR POWER SAVINGS
Applicant: Intel Corporation, Santa Clara, CA

(US)

Inventor: Justin J. Song, Olympia, WA (US)
Appl. No.: 14/582,757
Filed: Dec. 24, 2014

Related U.S. Application Data

Continuation of application No. 12/316,014, filed on
Dec. 9, 2008, now Pat. No. 8,954,977.

e

AR sibling e

Publication Classification

(51) Int.CL
GOGF 9/50 (2006.01)
GOGF 1/32 (2006.01)
(52) U.S.CL
CPC ... GOGF 9/5088 (2013.01); GOGF 1/3287
(2013.01); GOGF 1/329 (2013.01); GO6F
9/5094 (2013.01)
(57) ABSTRACT

On a multi-core processor that supports simultaneous multi-
threading, the power state for each logical processor is
tracked. Upon indication that a logical processor is ready to
transition into a deep low power state, software remapping
(e.g., thread-hopping) may be performed. Accordingly, if
multiple logical processors, on different cores, are in a low-
power state, they are re-mapped to same core and the core is
then placed into a low power state. Other embodiments are
described and claimed.

Diecision to place
LP X into deep
thread C-state

" thread covtexts in On Xs ko e core, !
< deep thread C-state? S yes————w-entet deep C-state for|
Tl een e - X and core 418 l
RS-
\T/ Yes-
no

T Any thread T —
__context (LP Y) on other eare in deep
\\\\\\ . thread C-state? 406

e

ves
.-~ Would swap . __
-~ "give other core more deep T
" thread contexts than home cope?
e 407 T

—~—.
-

-

i
i
i

| Exchange logical mapping |

-

I
400 ,//

e I Oy

| Enter deep
1 i:‘:ft’:f}p state for

of Xand Z 414 I ®

no

-~ More cores-
o check? 7

No 415
¥
On X’s home
corg, perform
normal C- '_‘"”“T'
state
processing Enter deep
416 core sleep N
- state on home o
corg of LP Y
4
419 Yes
) /i\\

e \\
AL S
P
- enhome core of LE
“\Y now in desp sieep”
3

~ state? 7

~.

LPZ 417

US 2015/0135189 A1l

gz

[°OId

sfieyord

214

7300

nmw

LRIOD

08107

(5

BIRMULIL

May 14, 2015 Sheet 1 of 7

{F aoeuaiu] BMod / BUUSy] |

¥ SO 1dOV

ite)

g wasig Bunessd)

Patent Application Publication

Patent Application Publication = May 14, 2015 Sheet 2 of 7 US 2015/0135189 A1

/*.W,_______»_w,\ o
{ Core € C-state { Core C1 C-state \
2§0A \\M m(-af_:five} / _(shallow idle) J
LP (CO) LP (T8} 280 LP;} {C1) L, (C8)
d / //
] \ A // ,) // ¥ V4
Architectural Architectural Architectural Architectural
State TG State T1 State TO State T1
3o0g Bxecution Resources 220h Execution Resources
599a L1 and L2 caches 222a L1 and L2 caches
7245 Comm, Interface 224b Comm. Interface
Core { Core 1
2524 252,
System Bus

Or Interconnact

BEFORE
R AFTER
. e\ J— D -~
- (Core CQ C-state P !/ Core C6 C-state \
N \ (eotive} /g _ espidiey
LPy {CO) \ LR (Ch 20 LB, (C6) H LR {C6)
} \ / 1/ H /'/
| X ! 7 ‘
L AN | / , ,
Architectural Architectural Architecturat Arxchitectural
State TG State T} State TO State T4
290a Execution Resources 220h Execution Resources
9995 L1 and L2 caches 2228 L1 and L2 caches
224a Comm. Interface 2245 Comm. Interface
Core O Core 1
252 252
System Bus

Or interconnect

FiG. 2

May 14, 2015 Sheet 3 of 7 US 2015/0135189 A1l

Patent Application Publication

£ °DIA

21 2ip1 daap Sswoey 7 m\w//,
desp s8W0Dag N4

L 9400
i
{ &
N’
£5¢ €8¢
L BI07 ‘Buiddew ngo shupy) f/// 0 2105
N
/
Z A X fin
aip) deep
TN 7 sows oy Apesr /7 N\ N
anpoe fw\) aip desp ,/w,.\p : ﬁ/,.m.\\\ eAloE /N\)

Patent Application Publication = May 14, 2015 Sheet 4 of 7

S ~ Decision to plac
S Start N piace

\ 4(}2 /kﬂ-«— D B - ¢ i“ﬁ

o deep

\..__} o thread C-state

T T
" All sibling "~ - ‘
T thread contexts in e On X's hon(ie core, !
R deep thread Costate? T yves———eienier deep C-stale for
T i >t Xandcore 418 1
\\\ 404 T J
\j/‘*-’ Yes
no
X

o -\.\‘\
""" Any thread S

e . . -~
<_context (LF Y} on other core in deep > :

~~.__thread C-state? 406 — 1o
~\~\ /,//"
\\{/
ves
T Would sw:é[;i\\\ /-’ "
.--"""give other core more deep - ~More cores~. |
“thread contexts than home core?” N check? .~

A 1

yes No 415

¥ ¥
T T On X’s home
" BLPY T s
- . N core, perform
- sibling (LP Z) — o
. in active thread C»siate?/,,/’ state o
\'\\\\éﬂ_& /,/”/ processing Enter deep

\T/ 416 core sleep N
| state on home o

ves core of LP Y
/ 3
i ¢ ¥
¥ 419 Yes

o Pull 2’s active task to X l
410 . N
e SN
/,/ Al LP’s \\
L ~on home core of LP ~,
¥ Enter deep “\Y now in deep sleep.”
. . sleep state for ~ state? 7
Exchange logical mapping

- | LPZ 417
of X and 7 414 e

» / FIG. 4

'\
/\, rd
o/ |
No

US 2015/0135189 A1l

Patent Application Publication = May 14, 2015 Sheet S of 7 US 2015/0135189 A1

515

500 Epg i =

Processing

E-ml Element
b

/ 595
o 540 - 520 530

Display GMCH Memory

Frg
=

- 550

{CH

580 L 870

External
Graphics Feripheral
Device

FIG. 5

May 14, 2015 Sheet 6 of 7 US 2015/0135189 A1l

Patent Application Publication

85 3900 |- org s m
| s3oIA3g | 3snow
IOVHOLS YLV 9ee — WINOD _ ees JOHYOTATA |
) % i % T .
! i
25 .7 gig
ol OIaNY | $301A30 O/ ADARE SNE
19 -/ |
069 agg —1 3| zae — 9¢8
SOIHAYHD
869 — d-d AT g ded L 6eg | numaHom
& &
p5e —1 ¢ z58 1 ¢
ms |dd| dd . ldd dad| 77
A 7
989 ' ggg - \. N g “ 99
059
| zi9
289 eygg ori9
HOW e 0 o | How
] 7| 200 3W0D | 5
RHOWAT P i B A it KON
i \\\\ SRR S L I Sww—— S
988 —ITNanT I DNISS3D0Y INIWITE ONISSID0U N
009

May 14, 2015 Sheet 7 of 7 US 2015/0135189 A1l

Patent Application Publication

$L8

AUOW AN

g7 |
Op Aoelisy |
069 296G — o
L3SIHO
g6g — od T ppg
4 4
Peg — ¥ 258 — ¥
oog el dd ded d4d| grg
{ kY /
985 — ggg — . L gsg
oo 8.9
248
" E89 o epmo epLs — 7
0 : . 10
[3HOD E1Ye%)
OO | oo
ares | by apLg +— | 1
INTIWD13 ONISSI00Nd ANIWITE ONISSIOOYd

291

S30IAE0 O

US 2015/0135189 Al

SOFTWARE-BASED THREAD REMAPPING
FOR POWER SAVINGS

RELATED APPLICATIONS

[0001] The present application claims priority to U.S.
application Ser. No. 12/316,014, filed Dec. 9, 2008, entitled
“SOFTWARE-BASED THREAD REMAPPING FOR
POWER SAVINGS,” the entire contents and disclosure of
which is hereby incorporated by reference in its entirety.

BACKGROUND

[0002] Power and thermal management are becoming more
challenging than ever before in all segments of computer-
based systems. While in the server domain it is the cost of
electricity that drives the need for low power systems, in
mobile systems battery life and thermal limitations make
these issues relevant. Managing a computer-based system for
maximum performance at minimum power consumption may
be accomplished by reducing power to all or part of the
computing system when inactive or otherwise not needed.
[0003] One power management standard for computers is
the Advanced Configuration and Power Interface (ACPI)
standard, e.g., Rev. 3.0b, published Oct. 10, 2006, which
defines an interface that allows the operating system (OS) to
control hardware elements. Many modern operating systems
use the ACPI standard to perform power and thermal man-
agement for computing systems. An ACPI implementation
allows a core to be in different power-saving states (also
termed low power or idle states) generally referred to as
so-called C1 to Cn states.

[0004] When the core is active, it runs at a so-called CO
state, but when the core is idle, the OS tries to maintain a
balance between the amount of power it can save and the
overhead of entering and exiting to/from a given state. Thus,
C1 represents the low power state that has the least power
savings but can be switched on and off almost immediately
(thus referred to as a “shallow low power” or “shallow idle”
state), while deep low power states (e.g., C3, C6 or C7)
represent a power state where the static power consumption
may be negligible, depending on silicon implementation, but
the time to enter into this state and respond to activity (i.e.,
back to active CO) is relatively long. Note that different pro-
cessors may include differing numbers of core C-states, each
mapping to one ACPI C-state. That is, multiple core C-states
can map to the same ACPI C-state.

[0005] Current OS C-state policy may not provide the most
efficient performance results because current OS C-state
policy may not consider activities of other cores in the same
package. In particular, current OS C-state policy may fail to
take advantage of efficiencies that could be gained by more
closely tracking and managing the power states of various
threads running on different cores of the same package. That
is, one hardware thread of a core may be in a deep low power
state while another hardware thread of the core may be active.
According to current OS C-state policy, a core cannot enter a
deep low power state unless all threads on the core are in a
deep low power state. If multiple cores experience this con-
dition, then none of the cores can go into a deep low power
state (even if multiple hardware threads are inactive).

BRIEF DESCRIPTION OF THE DRAWINGS

[0006] FIG. 1 is a block diagram illustrating at least one
embodiment of a system to perform disclosed techniques.

May 14, 2015

[0007] FIG. 2 is a block data flow diagram representing
before and after views of a remapping example according to
at least one embodiment.

[0008] FIG. 3 is a data- and control-flow diagram illustrat-
ing at least one embodiment of a method for performing
software-based thread-hopping for power savings on a
sample system that includes two dual-threaded cores.

[0009] FIG. 4 is a flowchart illustrating at least one embodi-
ment of a method for performing software-based thread-hop-
ping for power savings.

[0010] FIG.5 is a block diagram of a system in accordance
with at least one embodiment of the present invention.
[0011] FIG. 6 is a block diagram of a system in accordance
with at least one other embodiment of the present invention.
[0012] FIG. 7 is a block diagram of a system in accordance
with at least one other embodiment of the present invention.

DETAILED DESCRIPTION

[0013] Embodiments accurately and in real time perform
software-based logical remapping of threads to cores, effec-
tively “exchanging” idle threads to the same core so that the
core may enter a low-power state. More specifically, an oper-
ating system may perform a logical re-mapping and task
pulling to pull tasks from one hardware thread context on one
core to another hardware thread context on a different core. If
a hardware thread context is ready to transition into a low-
power state, the operating system may then determine if any
other thread contexts in the package are also in a low-power
state. The operating system may then perform a software-
based logical remapping to swap one or more of the low-
power thread contexts to the same core as the first low-power
thread and, if appropriate, swap an active thread from that
core to another core. When swapping has been completed
such that all thread contexts mapped to a particular core are in
alow power state, the core itself may be placed in a low power
state. As used herein, the term “thread” refers to a software
thread. The terms “logical CPU”, “logical processor”, “hard-
ware thread context”, and “thread unit” are used interchange-
ably herein to refer to a hardware thread context on which a
software thread may be executed. At least one embodiment of
a hardware thread context is described in further detail below
in connection with FIG. 2 (see discussion of LP, and LP)).
For such embodiment, a thread unit may comprise a portion
of'a core—for example, an SMT (simultaneous multi-thread-
ing) logical processor of a multi-threaded SMT core. For
other embodiments, however, a thread unit may comprise, for
example, an entire single-threaded core.

[0014] For at least one embodiment, embodiments of the
swap scheme discussed herein may be used in conjunction
with existing OS mechanisms in order to achieve scheduling
of tasks on those cores for which the least cost (in terms of
power and/or time) will be incurred. Embodiments may be
deployed in OS kernel code in conjunction with OS C-state
and scheduling policy. Alternatively, one or more embodi-
ments may be deployed in platform firmware with an inter-
face to OS C-state policy and scheduling mechanisms.
[0015] Note that the processor core C-states described
herein are for an example processor such as those based on
IA-32 architecture and IA-64 architecture, available from
Intel Corporation, Santa Clara, Calif., although embodiments
can equally be used with other processors. Shown in Table 1
below is an example designation of core C-states available in
one embodiment, and Table 2 maps these core C-states to the

US 2015/0135189 Al

corresponding ACPI states. However, it is to be understood
that the scope of the present invention is not limited in this
regard.

[0016] Referring now to FIG. 1, shown is a block diagram
of a system 10 that employs a swapping mechanism to
migrate threads from one logical processor on one core to a
different logical processor on a different core, based on power
state information, in accordance with at least one embodi-
ment. As shown in FIG. 1, system 10 includes a processor
package 20 having a plurality of processor cores 25,-25,
(generically core 25). The number of cores may vary in dif-
ferent implementations, from dual-core packages to many-
core packages including potentially large numbers of cores.
The optional nature of additional cores is denoted in FIG. 1 by
broken lines. Each core 25 may include various logic and
control structures to perform operations on data responsive to
instructions. Although only one package 20 is illustrated, the
described methods and mechanisms may be employed by
computing systems that include multiple packages as well.
[0017] For at least one embodiment, one or more of the
cores 25 may support multiple hardware thread contexts per
core. (See, e.g., system 250 of FIG. 2, in which each core 252
supports two hardware thread contexts per core.) Such
embodiment should not be taken to be limiting, in that one of
skill in the art will understand that each core may support
more than two hardware thread contexts.

[0018] FIG. 1 illustrates that a computing system 10 may
include additional elements. For example, in addition to the
package hardware 20 the system 10 may also include a firm-
ware layer 30, which may include a BIOS (Basic Input-
Output System). The computing system 10 may also include
a thermal and power interface 40. For at least one embodi-
ment, the thermal and power interface 40 is a hardware/
software interface such as that defined by the Advanced Con-
figuration and Power Interface (ACPI) standard, e.g., Rev.
3.0b, published Oct. 10, 2006, mentioned above. The ACPI
specification describes platform registers, ACPI tables, e.g.,
42, and the operation of an ACPI BIOS. FIG. 1 shows these
collective ACPI components logically as a layer between the
package hardware 20 and firmware 30, on the one hand, and
an operating system (“OS”) 50 on the other.

[0019] The operating system 50 of FIG. 1 may be config-
ured to interact with the thermal and power interface 40 in
order to direct power management for the package 20.
Accordingly, FIG. 1 illustrates a system 10 capable of using
an ACPI interface 40 to perform Operating System-directed
configuration and Power Management (OSPM).

[0020] The operating system 50 may thus include logic
(software, firmware, hardware, or combination) to perform
the OSPM function. For at least one embodiment, an OSPM
logic module may be system code that is part of the OS kernel
51. The OS kernel 51 may also include a scheduling logic
module (not shown).

[0021] The OS 50 may also include an APCI driver (not
shown) that establishes the link between the operating system
or application and the PC hardware. The driver may enable
calls for certain ACPI-BIOS functions, access to the ACPI
registers and the reading of the ACPI tables 42.

[0022] For purposes of example, Table 1 below shows core
C-states and their descriptions, along with the estimated
power consumption and exit latencies for these states, with
reference to an example processor having a thermal design
power (TDP) of 95 watts (W). Of course it is to be understood
that this is an example only, and that embodiments are not

May 14, 2015

limited in this regard. Table 1 also shows package C-states
and their descriptions, estimated exit latency, and estimated
power consumption.

TABLE 1

Estimated Exit Estimated power

Description Latency consumption
Core CO All core logics active N/A 49W
Core C1 Core clockgated 2 us 24W
Core C3 Core multi-level cache 10-20 pus 1.7W
(MLC) flushed and
invalidated
Core C6 Core powergated 20-40 ps oW
Core C7 Core powergated and 20-40 ps oW
signals “package (pkg)
last level cache (LLC)
OK-to-shrink”
Pkg CO All uncore and core logics N/A ISW
active
Pkg C1 All cores inactive, pkg 2-5 s 29W
clockgated
Pkg C3 Pkg Cl1 + all external ~50 us 21W
links to long-latency idle
states + put memory in
short-latency inactive state
Pkg C6 Pkg C3 + reduced voltage ~80 us 6W
for powerplane (only very
low retention voltage
remains) + put memory in
long-latency inactive state
Pkg C7 Pkg C6 + LLC shrunk ~100 ps 4w

[0023] Table 1 illustrates that Core CO and Core C1 C-states
are relatively low-latency power states, while the deep
C-states (e.g., Core C3, Core C6 and Core C7) are high-
latency states. Each SMT thread unit (or “logical processor’)
of a core may also be associated with one of the C-states
illustrated in Table 1. The C-state associated with a logical
processor may be referred to herein as “thread C-state”.
[0024] Table 2 shows an example mapping of core C-states
of an example processor to the ACPI C-states. Again it is
noted that this mapping is for example only and that embodi-
ments are not limited in this regard.

TABLE 2

Core CO—ACPI CO
Core C1—=ACPIC1
Core C3—ACPIC1 or C2
Core C6—~ACPIC2 or C3
Core C7T—ACPI C3

[0025] It is to be noted that package C-states are not sup-
ported by ACPI; therefore, no ACPI mappings are provided in
Table 2 for package C-states listed above in Table 1.

[0026] We now turn to FIG. 2 for a brief discussion to
illustrate the power inefficiencies that may occur when the OS
kernel (see 51 of FIG. 1) performs known techniques that do
not provide for migrating low-power threads to the same core.
[0027] FIG. 2 illustrates a system 250 with a package 20
that includes two cores, 252, and 252,. Of course, while the
package 20 illustrates only two cores, this simplification is for
ease of illustration only. One of skill in the art will recognize
that a package 20 may include any number of cores without
departing from the scope of the embodiments described and
claimed herein.

[0028] The cores 252, and 252, shown in FIG. 2 are multi-
threaded cores. That is, FIG. 2 illustrates that each core 252 is

US 2015/0135189 Al

a dual-threaded simultaneous multithreading (“SMT”) core,
where each core 252 maintains a separate architectural state
(T,, T,) for each of two hardware thread contexts LP,, LP,,
but where certain other resources 220, 222, 224 are shared by
the two hardware thread contexts LP,, LP,. As is mentioned
above, for such embodiment each hardware thread context LP
(or “logical CPU” or “logical processor’’) may have a separate
C-state.

[0029] If a hardware thread context is permitted to transi-
tion into a deep thread C-state without taking into account
total thread and core C-state for the package 20, both power
and performance inefficiencies may be incurred. This draw-
back is illustrated in the “Before” example of system 250 A in
FIG. 2. For purposes of example, assume that hardware thread
LP, of Core 0, 252, is in an active C-state (e.g., CO) but that
hardware thread LP, of Core 0, 252, is in a deep core C-state
(e.g., C6). According to current C-state policy, core CO 252,
cannot enter a deep core C-state because one of its hardware
threads LP, is not in a deep thread C-state. As mentioned
above, current C-state policy prescribes that a core can only
enter a deep core C-state if all hardware contexts for that core
are in a deep thread C-state.

[0030] FIG. 2 illustrates a similar situation with Core 1,
252, in the “Before” example Assume that one hardware
thread LP, of Core 1,252, is in a shallow thread C-state (e.g.,
C1) and that the other hardware thread LP; of core 1,252, is
in a deep thread C-state (e.g., C6). Accordingly, Core 1 252,
cannot enter a deep core C-state because one of its hardware
threads [P, is not in a deep thread C-state.

[0031] In the “Before” example illustrated in FIG. 2, each
core has n thread contexts and there are a total of n thread
contexts in a deep thread C-state. However, none of the cores
can enter a deep core C-state due to the policy requirement
that no core can enter a deep core C-state unless all the SMT
thread contexts on the core are in a deep thread C-state.
[0032] Consulting Table 1, one can see that the example
shown for system 250A in FIG. 2 leads to unnecessary power
consumption. Table 1 illustrates that a core in C-6 power state
utilizes roughly zero watts (0 W). Thus, efficient use of the
Core C-6 power state can provide significant power benefits.
However, as FIG. 2 illustrates, there are two SMT thread
contexts, LP1 and L.P3, in a deep thread C-state for the pack-
age 20. Because these thread contexts are on different cores,
neither of cores, Core 0 252, or Core 1,252, can enter a deep
core C-state. That is, Core 0 252 is in core CO state because
one of its hardware thread contexts, P, is in an active thread
C-state (e.g., C0). Thus, the power consumption of Core 0
252,15 4.9 W. Similarly, Core 1 252, cannot enter a deep core
C-state because one of its hardware thread contexts, LP,,, is in
a shallow idle thread C-state (C1). Core 1 252 is in Core C1
state. Thus, the power consumption of Core 1 252, is 2.4 W.
Total power consumption for the system 250A in the
“Before” example of FIG. 2 is 4.9+2.4=73 W.

[0033] The “After” example system 250B of FIG. 2 illus-
trates that these power inefficiencies may be avoided by a
software-based remapping of software threads to hardware
thread contexts according to at least one embodiment of the
present invention. This remapping capitalizes on the power
benefit of the core C-6 state by mapping n (in this case, n=2)
hardware threads onto the same n-way SMT-threaded core,
where all n threads are in thread C-6 state.

[0034] The “After” example of FIG. 2 illustrates that a
re-mapping may be performed, according to at least one
embodiment of the invention, in order to achieve a software

May 14, 2015

thread exchange among hardware thread contexts. FIG. 2
shows that, on the system 250B, the software thread from LP,
has been remapped to LP,, and vice versa. Thus, in the “After”
example, both hardware thread contexts LP, and LP, of Core
0 of system 250B are in the C6 state. Accordingly, Core 0
252, has been placed in the much more energy-efficient core
C6 C-state. In contrast, both threads that are in shallow states
have been mapped to the hardware thread contexts of Core 1
252,. Thus, Core 1 252, isin the active CO C-state. The power
usage of the two cores 252, and 252, of the system 250B are:
4.9 W+0 W=4.9 W. Accordingly the difference in power
usage between the cores of the “Before” system 250A and the
“After” system 2508 is 7.3 W-4.9 W=2.4 W. This represents
a 33% power savings due to the swap.

[0035] Itshould be noted that the swap illustrated in FIG. 2
is performed in software and allows a swap of a subset of
threads from a multi-threaded SMT core. In contrast, current
hardware-based core-hopping schemes copy all state for a
first core to another core. This is done, in some instances, to
balance load or even out hot spots on the core. Such hardware-
based core-hopping approaches may be used to switch work
from one single-threaded core to another, or to switch all
work for all threads from one multi-threaded core to another
multi-threaded core. However, such hardware-based core-
hopping approaches are relatively gross mechanisms that do
not allow for finer-grained mapping of a subset of threads
from one core to another. A problem that must be resolved
when swapping a subset of threads from one core to another
is the very complex task of “untangling” shared resources
(see, e.g., shared execution resources 220 and shared caches
222 of FIG. 2) so that thread-specific hardware state may be
transferred to the new core. Such operation can be prohibi-
tively complex in known hardware-based core-hopping
schemes. Another drawback of hardware-based core-hopping
is that known approaches transfer thread execution from one
core to another only when the hardware has become idle. The
time it takes to wait for hardware resources to become idle can
result in wasted opportunity to save power.

[0036] To resolve these and other difficulties with hard-
ware-based core-hopping, the inventor has conceived a soft-
ware approach, referred to herein as “thread-hopping”. The
approach is a software-based remapping approach that
remaps threads among the logical processors of different
cores in a package in order to achieve power savings.

[0037] The thread-hopping embodiments described herein
can be performed in software (such as, e.g., kernel code of an
operating system) without requiring any underlying hardware
changes. Thread-hopping resolves the difficulty of untan-
gling per-thread resources when transferring just a subset of
threads from one core to another core. One reason for this is
that, rather than waiting for hardware threads to become idle,
embodiments of the thread-hopping mechanism (such as,
e.g., that described below in connection with FIGS. 3 and 4)
use a software approach to suspend execution of the software
thread that is to be evicted to another core. Once suspended,
the software thread is mapped to a new logical processor on a
different processor core, and the OS scheduler pulls a task for
the transferee thread, the task to be performed on the newly-
assigned logical processor. This processing is in contrast to
traditional OS thread scheduling, which is not triggered by a
change in thread C-state and does not involve logical re-
mapping of the software thread to a hardware thread context
on a different core.

US 2015/0135189 Al

[0038] FIG. 3 is a data flow diagram that illustrates in
further detail the operations of a software-based remapping
mechanism according to at least one embodiment. FIG. 3
illustrates that, at operation 1, the OSPM has determined that
a hardware thread context (“X”) is ready to enter a deep idle
state. Before the OS kernel places the hardware thread context
into an idle state, it performs processing (discussed in further
detail below in connection with FIG. 4) to determine whether
it would be more efficient to instead do a software-based task
pull to pull the task for some other thread context onto thread
context X. This processing includes operation 2, where it is
determined whether the sibling hardware thread context(s) on
the same core 352 as X is/are in a deep idle state. If not, it
might not be efficient, from a power standpoint, to put X in a
deep idle state, since the core 352 cannot enter the deep idle
state according to current C-state policy unless all of its
hardware contexts are idle. As used herein, a “sibling” hard-
ware thread context is meant to refer to the other hardware
thread contexts, besides the particular context that is ready to
enter deep idle state, on a single core. For embodiments
having dual-threaded cores, the number of siblings for any
hardware thread context is one. For embodiments having
cores with more than 2 hardware thread contexts per core, the
number of siblings may be greater than one.

[0039] Ifit is determined at operation 2 that one or more of
the sibling thread context(s) for X are not in deep idle state,
then the operating system determines whether any other core
includes a hardware thread context that is already in a deep
idle state. Thus, at operations 3 and 4 the power state of the
thread contexts on other cores is evaluated.

[0040] For ease of illustration and discussion, FIG. 3 illus-
trates two cores 352, 353 with two thread contexts per core:
W, X for Core 0 and Y, Z for Core 1, respectively. One of skill
in the art will recognize, however, that embodiments of the
thread-hopping mechanism described herein may be applied
to any number of cores having any number of hardware thread
contexts each.

[0041] At operation 3, it is determined whether any other
hardware context on an active core is in a deep idle state. For
purposes of example, FIG. 3 illustrates that, at operation 3, it
is determined that hardware thread contextY is in a deep idle
state. Upon finding a deep idle thread context Y for an active
core 353, the power state of one or more other thread contexts
on the core 353 is evaluated. In FIG. 3, it is determined at
operation 4 that thread context Z is active. Thus, for power
savings purposes it would be more efficient to put thread
context Z into the deep idle state and pull Z’s current task to
hardware thread context X.

[0042] Accordingly, at operation 5 a remapping is per-
formed. This remapping is performed in software. The OS
kernel executes a suspend operation to suspend the task cur-
rently being executed on logical processor Z. The logical
processors are remapped so that the thread associated with
hardware thread context Z is remapped to logical processor Y.
This remapping includes the transfer of context data for the
task being executed by logical processor Z on Core 1 353 to
logical processor Y on Core 0 252. Execution of the task is
then resumed, but on hardware context Y instead of Z.
[0043] At operation 6, logical processor Z is placed by the
OS kernel into a deep idle state. Because all hardware thread
contexts for Core 1 are now in the deep idle state, the core 353
enters deep idle state at operation 7.

[0044] FIG. 4 is a flowchart showing at least one embodi-
ment of a method 400 for performing a swap as illustrated in

May 14, 2015

FIG. 3 and as illustrated in the “After” example of system
250B of FIG. 2. For at least one embodiment, the method 400
illustrated in FIG. 4 may be performed by an OS kernel (see,
e.g., 51 of FIG. 1). FIG. 4 illustrates that the method 400
provides for thread-hopping to swap a software task onto a
hardware thread context on one core responsive to an impend-
ing power state transition of a hardware thread context on
another core.

[0045] FIG. 4 illustrates that the method 400 begins at start
block 402. Start block 402 may be triggered responsive to a
determination by the OSPM logic (not shown) of the kernel
(e.g., 51 of FIG. 1) that a logical processor (LP X) on one of
the cores (Core 0) of a system should be placed into a deep
thread C-state.

[0046] From start bock 402, processing proceeds to block
404. At block 404, it is determined whether the other hard-
ware thread context(s) on Core 0 are in a deep thread C-state.
For an embodiment that has two hardware thread contexts per
core, it is determined at block 404 whether the other core is in
a deep thread C-state. For all embodiments that includes n
hardware thread contexts per core, where n>2, the processing
at block 404 determines whether all other hardware thread
contexts besides LP X on Core 0 are in a deep thread C-state.
If'so, no swap is needed and it is appropriate to place the entire
core into core deep C-state after placing X into deep thread
C-state, and processing proceeds to block 418. Otherwise,
processing proceeds to block 406.

[0047] Atblock 406, it has been determined via processing
at block 404 that conditions do not exist to place X’s home
core into deep core C-state. Because power savings benefit
could still be achieved if any other core is one thread context
shy of deep C-state conditions, it is determined at block 406
whether another core besides Core 0 has a hardware thread
context in a deep thread C-state. Of course, other cores that
are already in a deep core C-state will have thread contexts in
deep thread C-state, so the block 406 evaluation is performed
only on cores that are not already in a deep core C-state.
[0048] Ifnothread contexts areidentified on another core at
block 406, then processing proceeds either to optional block
415 or to block 416, depending on the embodiment. Process-
ing proceeds to optional block 415 for embodiments that
include more than two cores in a package. The optional nature
of block 415 is denoted by broken lines in FIG. 4. At block
415, it is determined whether there are additional cores to be
evaluated for potential threads to be swapped onto LP X. For
a dual-core embodiment, block 415 is optional and need not
be performed. If it is determined at block 415 that additional
cores are to be evaluated, processing proceeds back to block
406. Otherwise, processing proceeds to block 416. At block
416, normal C-state processing occurs—there are no further
efficiencies to be gained by thread-hopping.

[0049] If, instead, it is determined at block 406 that a hard-
ware thread context (LP Y) on another core (Core 1) is in a
deep thread C-state, then processing proceeds either to
optional block 407 orto block 408, depending on the embodi-
ment. Processing proceeds to optional block 407 for embodi-
ments that include more than two logical processor per core
and proceeds to block 408 for embodiments that include only
two logical processors per core. The optional nature of block
407 is denoted in FIG. 4 with broken lines.

[0050] At block 407, it is determined whether a swap of
work among the two cores would result in the new core
having more logical processors in deep idle thread state than
Core 0 would have if LP X were placed into deep idle thread

US 2015/0135189 Al

state on Core 0. If so, processing proceeds to block 408 in
order to continue with swap processing. If not, there are no
efficiencies to be gained by the swap, so processing instead
proceeds to block either optional block 415 (for embodiments
with more than two logical processors per core) or to block
416.

[0051] Atblock 408, itis determined whether any hardware
thread context (LP Z) on the other core (Core 1) is in an active
state. If so, then the situation exists that a core, other than the
home core of LP X, has at least one hardware thread context
in a deep c-state and at least one other hardware thread context
in an active state. Thus, it would be advantageous, from a
power savings standpoint, to consolidate the deep idle hard-
ware thread contexts onto the same core but it is also true that
the current work from active LP Z should be pulled to another
hardware thread context before LP Z transitions to the deep
idle thread C-state. Accordingly, processing proceeds to
block 410. If, however, it is determined at block 408 that no
siblings on the other core are in an active state, then no task
pulling should occur, and processing proceeds to block 414.
In this case, the sibling core is either already in a deep thread
C-state or some other non-active state (such as, e.g., a Cl
shallow idle state).

[0052] At block 410, software task pulling is performed.
That is, the task that is currently running on LP Z is tempo-
rarily suspended and moved to LP X. To do so, a software
entity, such as the operating system (and, more particularly,
the scheduler of an OS), causes suspension of LP Z’s active
task. The work associated with LP Z’s active task is then
assigned to the home core of LP X. The state necessary for LP
X to begin executing LP Z’s task is moved to the LP X core.
The manner of transferring the context state among cores at
block 410 is implementation-dependent, and may be per-
formed in any of a variety of manners. For at least one
embodiment, for example, the context data from LP Z is
copied to an appropriate section of memory or memory hier-
archy (e.g., into a cache) to which LP X has access. The
instruction pointer is part of the state that gets transferred, so
that LP X, when it resumes execution, will begin execution at
the next instruction that LP Z would have executed. After the
task pull is performed at block 410, operation proceeds to
block 414.

[0053] Atblock 414, the logical mappingof LP X andLP Z
are swapped by software. That is, the logical CPU ID associ-
ated with LP X is swapped to LP Z and, similarly, the logical
CPU ID associated with LPZ is swapped to LP X. Operation
of'the active thread that was formerly running on LP Z is then
resumed on LP X. Processing then proceeds to block 417,
wherein LP Z enters the deep idle state.

[0054] From block 417, processing proceeds to block 420.
At block 420 it is determined whether all logical processors
on the home core of LPY are now in deep sleep states. I[f not,
processing ends at block 422.

[0055] Ifit is determined at block 420 that all logical pro-
cessors for the home core of LP Y are now in a deep thread
C-state, then the core enters a deep core C-state. Processing
then ends at block 422.

[0056] Embodiments may be implemented in many difter-
ent system types. Referring now to FIG. 5, shown is a block
diagram of a system 500 in accordance with one embodiment
of the present invention. As shown in FIG. 5, the system 500
may include one or more processing elements 510, 515,
which are coupled to graphics memory controller hub

May 14, 2015

(GMCH) 520. The optional nature of additional processing
elements 515 is denoted in FIG. 5 with broken lines.

[0057] Each processing element may be a single core or
may, alternatively, include multiple cores. The processing
elements may, optionally, include other on-die elements
besides processing cores, such as integrated memory control-
ler and/or integrated 1/O control logic. Also, for at least one
embodiment, the core(s) of the processing elements may be
multithreaded in that they may include more than one hard-
ware thread context per core.

[0058] FIG. 5 illustrates that the GMCH 520 may be
coupled to amemory 540 that may be, for example, a dynamic
random access memory (DRAM). For at least one embodi-
ment, the memory 540 may include instructions or code that
comprise an operating system (e.g., 50 of FIG. 1).

[0059] The GMCH 520 may be a chipset, or a portion of a
chipset. The GMCH 520 may communicate with the proces-
sor(s) 510, 515 and control interaction between the processor
(s) 510, 515 and memory 540. The GMCH 520 may also act
as an accelerated bus interface between the processor(s) 510,
515 and other elements of the system 500. For at least one
embodiment, the GMCH 520 communicates with the proces-
sor(s) 510, 515 via a multi-drop bus, such as a frontside bus
(FSB) 595.

[0060] Furthermore, GMCH 520 is coupled to a display
540 (such as a flat panel display). GMCH 520 may include an
integrated graphics accelerator. GMCH 520 is further
coupled to an input/output (I/O) controller hub (ICH) 550,
which may be used to couple various peripheral devices to
system 500. Shown for example in the embodiment of FIG. 5
is an external graphics device 560, which may be a discrete
graphics device coupled to ICH 550, along with another
peripheral device 570.

[0061] Alternatively, additional or different processing ele-
ments may also be present in the system 500. For example,
additional processing element(s) 515 may include additional
processors(s) that are the same as processor 510, additional
processor(s) that are heterogeneous or asymmetric to proces-
sor 510, accelerators (such as, e.g., graphics accelerators or
digital signal processing (DSP) units), field programmable
gate arrays, or any other processing element. There can be a
variety of differences between the physical resources 510,
515 in terms of a spectrum of metrics of merit including
architectural, microarchitectural, thermal, power consump-
tion characteristics, and the like. These differences may effec-
tively manifest themselves as asymmetry and heterogeneity
amongst the processing elements 510, 515. For at least one
embodiment, the various processing elements 510, 515 may
reside in the same die package.

[0062] Referring now to FIG. 6, shown is a block diagram
of a second system embodiment 600 in accordance with an
embodiment of the present invention. As shown in FIG. 6,
multiprocessor system 600 is a point-to-point interconnect
system, and includes a first processing element 670 and a
second processing element 680 coupled via a point-to-point
interconnect 650. As shown in FIG. 6, each of processing
elements 670 and 680 may be multicore processors, including
first and second processor cores (i.e., processor cores 674a
and 674b and processor cores 684a and 6845).

[0063] Alternatively, one or more of processing elements
670, 680 may be an element other than a processor, such as an
accelerator or a field programmable gate array.

[0064] While shown with only two processing elements
670, 680, it is to be understood that the scope of the present

US 2015/0135189 Al

invention is not so limited. In other embodiments, one or more
additional processing elements may be present in a given
processor.

[0065] First processing element 670 may further include a
memory controller hub (MCH) 672 and point-to-point (P-P)
interfaces 676 and 678. Similarly, second processing element
680 may include a MCH 682 and P-P interfaces 686 and 688.
As shown in FIG. 6, MCH’s 672 and 682 couple the proces-
sors to respective memories, namely a memory 642 and a
memory 644, which may be portions of main memory locally
attached to the respective processors.

[0066] First processing element 670 and second processing
element 680 may be coupled to a chipset 690 via P-P inter-
connects 676, 686 and 684, respectively. As shown in FIG. 6,
chipset 690 includes P-P interfaces 694 and 698. Further-
more, chipset 690 includes an interface 692 to couple chipset
690 with a high performance graphics engine 648. In one
embodiment, bus 649 may be used to couple graphics engine
648 to chipset 690. Alternately, a point-to-point interconnect
649 may couple these components.

[0067] Inturn, chipset 690 may be coupled to a first bus 616
via an interface 696. In one embodiment, first bus 616 may be
a Peripheral Component Interconnect (PCI) bus, or a bus such
as a PCI Express bus or another third generation 1/O inter-
connect bus, although the scope of the present invention is not
so limited.

[0068] As shown in FIG. 6, various I/O devices 614 may be
coupled to first bus 616, along with a bus bridge 618 which
couples first bus 616 to a second bus 620. In one embodiment,
second bus 620 may be a low pin count (L.PC) bus. Various
devices may be coupled to second bus 620 including, for
example, a keyboard/mouse 622, communication devices 626
and a data storage unit 628 such as a disk drive or other mass
storage device which may include code 630, in one embodi-
ment. The code 630 may include instructions for performing
embodiments of one or more of the methods described above.
Further, an audio /O 624 may be coupled to second bus 620.
Note that other architectures are possible. For example,
instead of the point-to-point architecture of FIG. 6, a system
may implement a multi-drop bus or another such architecture.
[0069] Referring now to FIG. 7, shown is a block diagram
of a third system embodiment 700 in accordance with an
embodiment of the present invention. Like elements in FIGS.
6 and 7 bear like reference numerals, and certain aspects of
FIG. 6 have been omitted from FIG. 7 in order to avoid
obscuring other aspects of FIG. 7.

[0070] FIG. 7 illustrates that the processing elements 670,
680 may include integrated memory and I/O control logic
(“CL”) 672 and 682, respectively. For at least one embodi-
ment, the CL 672, 682 may include memory controller hub
logic (MCH) such as that described above in connection with
FIGS. 5 and 6. In addition. CL 672, 682 may also include [/O
control logic. FIG. 7 illustrates that not only are the memories
642, 644 coupled to the CL 672, 682, but also that [/O devices
714 are also coupled to the control logic 672, 682. Legacy [/O
devices 715 are coupled to the chipset 690.

[0071] Embodiments of the mechanisms disclosed herein
may be implemented in hardware, software, firmware, or a
combination of such implementation approaches. Embodi-
ments of the invention may be implemented as computer
programs executing on programmable systems comprising at
least one processor, a data storage system (including volatile
and non-volatile memory and/or storage elements), at least
one input device, and at least one output device.

May 14, 2015

[0072] Program code, such as code 630 illustrated in FIG.
6, may be applied to input data to perform the functions
described herein and generate output information. For
example, program code 630 may include an operating system
that is coded to perform embodiments of the methods illus-
trated in FIGS. 2, 3 and 4. Accordingly, embodiments of the
invention also include media that are machine-accessible and
computer usable, the media containing instructions for per-
forming the operations of a method or containing design data,
such as HDL, which defines structures, circuits, apparatuses,
processors and/or system features described herein. Such
embodiments may also be referred to as computer program
products.
[0073] Such machine-accessible, computer-usable storage
media may include, without limitation, tangible arrange-
ments of particles manufactured or formed by a machine or
device, including storage media such as hard disks, any other
type of disk including floppy disks, optical disks, compact
disk read-only memories (CD-ROMs), compact disk rewrit-
able’s (CD-RWs), and magneto-optical disks, semiconductor
devices such as read-only memories (ROMs), random access
memories (RAMSs) such as dynamic random access memories
(DRAMs), static random access memories (SRAMs), eras-
able programmable read-only memories (EPROMs), flash
memories, electrically erasable programmable read-only
memories (EEPROMs), magnetic or optical cards, or any
other type of computer-usable media suitable for storing elec-
tronic instructions.
[0074] The output information may be applied to one or
more output devices, in known fashion. For purposes of this
application, a processing system includes any system that has
a processor, such as, for example; a digital signal processor
(DSP), a microcontroller, an application specific integrated
circuit (ASIC), or a microprocessor.
[0075] The programs may be implemented in a high level
procedural or object oriented programming language to com-
municate with a processing system. The programs may also
be implemented in assembly or machine language, if desired.
In fact, the mechanisms described herein are not limited in
scope to any particular programming language. In any case,
the language may be a compiled or interpreted language.
[0076] Presented herein are embodiments of methods,
apparatuses, and systems for remapping thread units and re-
assigning work among threads on different cores to consoli-
date idle threads onto the same core. While particular
embodiments of the present invention have been shown and
described, it will be obvious to those skilled in the art that
numerous changes, variations and modifications can be made
without departing from the scope of the appended claims.
Accordingly, one of skill in the art will recognize that changes
and modifications can be made without departing from the
present invention in its broader aspects. The appended claims
are to encompass within their scope all such changes, varia-
tions, and modifications that fall within the true scope and
spirit of the present invention.
What is claimed is:
1. A method comprising:
based on power state information for a first logical proces-
sor of a first core and a first logical processor of a second
core, swapping work from the first logical processor of
the first core to the first logical processor of the second
core;
placing the first logical processor of the first core into a
power-off state;

US 2015/0135189 Al

and

placing the first core into a power-off state.

2. The method of claim 1, wherein the swapping is per-
formed by control software of a computing platform that
includes the first and second cores.

3. The method of claim 2, wherein the swapping is per-
formed by an operating system of the computing platform.

4. The method of claim 2, wherein the swapping includes
performing a software-based context switch.

5. The method of claim 1, wherein the first and second
cores reside in a same die package.

6. The method of claim 1, wherein the swapping includes
remapping a thread identifier associated with the second core
to the first core.

7. A system comprising:

a chip package that includes a first core with a first logical
processor and a second core with a second logical pro-
cessor;

a scheduler module coupled with the chip package, the
scheduler module to swap, based on power state infor-
mation related to the first logical processor and the sec-
ond logical processor, work from the first logical pro-
cessor to the second logical processor; and

a power module coupled with the scheduler module, the
power module to place the first logical processor into a
power-off state, and place the first core into a power-off
state.

8. The system of claim 7, wherein the power module is
further to place the first logical processor in the power-off
state subsequent to the swap.

9. The system of claim 7, wherein the power module is
further to place the first core into the power-off state subse-
quent to placement of the first logical processor into the
power-off state.

10. The system of claim 7, wherein said scheduler module
and said power module are software modules.

11. The system of claim 7, wherein the first core and the
second core reside on a same die package.

12. The system of claim 7, wherein the first core and the
second core are members of a processing element having an
integrated memory controller.

13. One or more non-transitory computer-readable media
comprising instructions to cause an element of a computing
platform, upon execution of the instructions by one or more
processors associated with the element, to:

May 14, 2015

based on power state information for a first logical proces-
sor of a first core and a first logical processor of a second
core, swap work from the first logical processor of the
first core to the first logical processor of the second core;

place the first logical processor of the first core into a

power-off state; and

place the first core into a power-off state.

14. The one or more non-transitory computer-readable
media of claim 13, wherein the element of the computing
platform is control software of the computing platform.

15. The one or more non-transitory computer-readable
media of claim 14, wherein the element of the computing
platform is an operating system of the computing platform.

16. The method of claim 14, wherein the instructions to
swap include instructions to perform a software-based con-
text switch.

17. The method of claim 13, wherein the first and second
cores reside in a same die package.

18. The method of claim 13, wherein the instructions to
swap includes instructions to remap a thread identifier asso-
ciated with the second core to the first core.

19. A computing platform comprising:

based on power state information for a first logical proces-

sor of a first core and a first logical processor of a second
core, means to swapping work from the first logical
processor of the first core to the first logical processor of
the second core;

means to place the first logical processor of the first core

into a power-off state; and

means to place the first core into a power-off state.

20. The computing platform of claim 19, wherein the
means to swap include control software of a computing plat-
form that includes the first and second cores.

21. The computing platform of claim 20, wherein the
means to swap include an operating system of the computing
platform.

22. The computing platform of claim 20, wherein the
means to swap include means to perform a software-based
context switch.

23. The computing platform of claim 19, wherein the first
and second cores reside in a same die package.

24. The computing platform of claim 19, wherein the
means to swap include means to remap a thread identifier
associated with the second core to the first core.

#* #* #* #* #*

