PCT

WORLD INTELLECTUAL PROPERTY ORGANIZATION
International Bureau

INTERNATIONAL APPLICATION PUBLISHED UNDER THE PATENT COOPERATION TREATY (PCT)

(51) International Patent Classification 6:

GOG6F 9/42, 15/16, 17/30 Al

(11) International Publication Number:

(43) International Publication Date:

WO 99/27440

3 June 1999 (03.06.99)

(21) International Application Number: PCT/US98/25275

(22) International Filing Date: 25 November 1998 (25.11.98)

(30) Priority Data:

08/978,349 25 November 1997 (25.11.97) US

(71) Applicant (for ail designated States except US): ALPHA BLOX
CORPORATION [US/US];, 800 Maude Avenue, Mountain
View, CA 94043-4020 (US).

(72) Inventors; and

(75) Inventors/Applicants (for US only): DALE, Geoffrey, W.
[US/US]; 21090 Grenola Drive, Cupertino, CA 95014 (US).
SWENSON, Eric, J. {[US/US]; 745 Granite Ridge Drive,
Santa Cruz, CA 95065 (US). SKOK, Michael, J. [GB/US];
54 Serano Drive, Atherton, CA 94027 (US). STAVE,
Matthew [US/US]; 3100 La Terrace Circle, San Jose, CA
95123 (US). POONEN, Sanjay, J. [IN/US]; 932 Providence
Court, Cupertino, CA 95014 (US).

(74) Agents: SALTER, James, H. et al.; Blakely, Sokoloff, Taylor
& Zafman LLP, 7th floor, 12400 Wilshire Boulevard, Los
Angeles, CA 90025 (US).

(81) Designated States: AL, AM, AT, AT (Utility model), AU
(Petty patent), AZ, BA, BB, BG, BR, BY, CA, CH, CN, CU,
CZ, CZ (Utility model), DE, DE (Utility model), DK, DK
(Utility model), EE, EE (Utility model), ES, FI, FI (Utility
model), GB, GD, GE, GH, GM, HR, HU, ID, IL, IS, JP,
KE, KG, KP, KR, KZ, LC, LK, LR, LS, LT, LU, LV, MD,
MG, MK, MN, MW, MX, NO, NZ, PL, PT, RO, RU, SD,
SE, SG, SI, SK, SK (Utility model), SL, TJ, TM, TR, TT,
UA, UG, US, UZ, VN, YU, ZW, ARIPO patent (GH, GM,
KE, LS, MW, SD, SZ, UG, ZW), Eurasian patent (AM, AZ,
BY, KG, KZ, MD, RU, TJ, TM), European patent (AT, BE,
CH, CY, DE, DK, ES, FI, FR, GB, GR, IE, IT, LU, MC,
NL, PT, SE), OAPI patent (BF, BJ, CF, CG, CI, CM, GA,
GN, GW, ML, MR, NE, SN, TD, TG).

Published
With international search report.

(54) Title: TIER-NEUTRAL DEVELOPMENT OF HYPERTEXT BASED APPLICATIONS

(57) Abstract

A tier-neutral development mechanism CLIENT

for network—based applications is provided. An

}/2 O

HWTTe
SERVER

AfeLickTioN
SERVER

2,

HTTP

application created using the mechanism in-
cludes a plurality of hypertext pages (item 25),
at least some of which incorporate executable
components. The application is invoked by a
hypertext request for a page from a browser
running on a client tier (20a). An application
server (24a) responds to the request by retriev-
ing the requested page and assigning any com-
ponents incorporated therein to the proper tier
for execution. The mechanism provides a sin-
gle model by which any executable component
can be specified by an application developer for
execution on any tier on the network or made
subject to an automatic, dynamic tier assign-
ment by the application server (24a). Compo-
nents of a given application can be distributed
across, and specified for execution on, three
or more different tiers and moved from tier to
tier. An application developer can use a con-
ventional hypertext editor to integrate selected
components into extended hypertext pages to
create an application.

—20%

22

AL
AM
AT
AU
AZ
BA
BB
BE
BF
BG
BJ
BR
BY
CA
CF
CG
CH
Cl
CcM
CN
Cu
CzZ
DE
DK
EE

Codes used to identify States party to the PCT on the front pages of pamphlets publishing international applications under the PCT.

Albania
Armenia
Austria
Australia
Azerbaijan
Bosnia and Herzegovina
Barbados
Belgium
Burkina Faso
Bulgaria

Benin

Brazil

Belarus

Canada

Central African Republic
Congo
Switzerland
Cote d’Ivoire
Cameroon
China

Cuba

Czech Republic
Germany
Denmark
Estonia

ES
FI
FR
GA
GB
GE
GH
GN
GR
HU
IE
IL
IS
IT
Jp
KE
KG
KP

KR
KZ
LC
LI

LK
LR

FOR THE PURPOSES OF INFORMATION ONLY

Spain

Finland

France

Gabon

United Kingdom
Georgia

Ghana

Guinea

Greece

Hungary

Treland

Israel

Iceland

Italy

Japan

Kenya
Kyrgyzstan
Democratic People’s
Republic of Korea
Republic of Korea
Kazakstan -

Saint Lucia
Liechtenstein

Sri Lanka

Liberia

LS
LT
LU
LV
MC
MD
MG
MK

ML
MN
MR
MW
MX
NE
NL
NO
NZ
PL
PT
RO
RU
SD
SE
SG

Lesotho

Lithuania
Luxembourg

Latvia

Monaco

Republic of Moldova
Madagascar

The former Yugoslav
Republic of Macedonia
Mali

Mongolia

Mauritania

Malawi

Mexico

Niger

Netherlands

Norway

New Zealand

Poland

Portugal

Romania

Russian Federation
Sudan

Sweden

Singapore

SI
SK
SN
SZ
TD
TG
T]
™
TR
TT
UA
uG
us
Uz
VN
YU
YAYS

Slovenia

Slovakia

Senegal

Swaziland

Chad

Togo

Tajikistan
Turkmenistan
Turkey

Trinidad and Tobago
Ukraine

Uganda

United States of America
Uzbekistan

Viet Nam
Yugoslavia
Zimbabwe

WO 99/27440 PCT/US98/25275

Tier Neutral Development of Hypertext Based Applications

FIELD OF THE INVENTION

The present invention pertains to the field of network-based
software. More particularly, the present invention relates to software

applications that are designed for use on the Internet.

BACKGROUND OF THE INVENTION
The rapid growth in the use of the Internet and the World Wide

Web ("the Web") has sparked a dramatic increase in the development of
Internet-based software applications. Developments in Internet software
have arisen in many different areas ranging from on-line shopping and
banking to games and entertainment. Web-based tools such as Java,
JavaBeans, and ActiveX have helped to partially bridge the gap between
the simple, text-only Web pages of the early Internet and sophisticated
software applications. In particular, these tools allow Web designers to
include small, special-purpose programs (sometimes referred to as
"applets”, "Beans”, or more generally, "components") within Web pages
written in a hypertext language, such as the Hypertext Mark-up
Language (HTML). Thus, Web pages have been transformed from
passive, text-only displayable documents to dynamic documents that can
provide moving graphics, video, sounds, and interactive capability.
While progress is being made in the development of Internet
applications, application development tools for the Internet still have a
number of shortcomings. For example, conventional Web-oriented
programming models such as Java, JavaBeans, and ActiveX are not "tier-

1

WO 99/27440 PCT/US98/25275

neutral” with respect to the environments in which they run. That is, the
services upon which such models rely tend to be very specific to the tier
(e.g., client or server), operating system, and in some cases, hardware.

For example, while Java and JavaBeans do not have operating system and
hardware dependencies as ActiveX controls do, they must exist in an
environment or infrastructure that provides the necessary services (e.g.,
communications, access to environment, parameterization, connectivity to
external services, etc.) to operate.

The surrounding environment or infrastructure in prior art
application development systems tend to be tier-specific. The tools,
mechanrisms, and services available on client tiers, for example, are quite
different from those available on server tiers. In heterogeneous hardware
environments, the server tiers may also provide significantly different
environments. Further, these systems do not allow components of an
application to be moved from one tier to another, or to be distributed
among multiple tiers. Such capability may be desirable for purposes of
performance, security, or browser capability.

In addition, with conventional tools, interfaces between applets or
other executable components must be custom-coded into the hypertext
document. In particular, an application developer specifically "wires"
(i.e., writes code for) the connections between components, so that the
components can communicate with each other. This constraint makes it
difficult for inexperienced programmers to create Web applications and
causes application development to be a laborious, time-consuming
process.

A common approach to creating application development tools for
the Web has been to retrofit existing tools with Web "front ends" (user

interfaces). As a result, such tools are not ideally-suited to the

2

WO 99/27440 PCT/US98/25275

development of Web applications. Further, retrofitted tools are not likely
to adapt well to future changes in the platforms, users, and types of usage
of the Internet.

Hence, it would be desirable to have Internet applications and
application development mechanisms which overcome the above-
mentioned disadvantages. In particular, what is needed is an application
development mechanism that is specifically designed for development of
Internet applications, especially Web-based applications. What is further
needed is a single development mechanism that is based on a single, tier-
neutral model, using which application developers can create application
components for execution on any tier on a network, distribute application
components across multiple tiers on a network, or move application
components from tier to tier. In addition, what is needed is an application
development mechanism which allows Internet applications to be created

faster and more easily by people who have little or no programming

experience.

SUMMARY OF THE INVENTION

The present invention includes a mechanism for creating a
software application for execution on a network that has multiple tiers.
The mechanism comprises means for specifying application components,
which allows any specified application component to be assigned to
execute on any of the tiers of the network. The mechanism further
comprises means for enabling the application components to be
associated with one or more hypertext-based pages, which allows the
components to be executed in response to requests for the hypertext-

based pages. Other features of the present invention will be apparent

WO 99/27440 PCT/US98/25275

from the accompanying drawings and from the detailed description

which follows.

BRIEF DESCRIPTION OF THE DRAWINGS

The present invention is illustrated by way of example and not
limitation in the figures of the accompanying drawings, in which like
references indicate similar elements and in which:

Figure 1 illustrates a network arrangement by which a Web server
provides a client computer with access to HTML pages.

Figure 2 illustrates a computer system.

Figure 3 illustrates a network arrangement by which a server
computer provides a client computer with access to a Web-based
application in accordance with the present invention.

Figure 4A illustrates software application components in
communication with an infrastructure.

Figure 4B illustrates a software application distributed across
multiple tiers.

Figure 5 is a flow diagram illustrating a routine by which a
software application is invoked.

Figure 6 is a flow diagram illustrating a routine by which a
component is instantiated and registered.

Figure 7 illustrates in greater detail the components illustrated in
Figure 4.

Figure 8A is a flow diagram illustrating in greater detail certain
steps of the routine of Figure 6.

Figure 8B is a diagram illustrating three executable components of

an application being executed on three separate tiers.

4

WO 99/27440 PCT/US98/25275

Figure 9 is a flow diagram illustrating a routine by which an
interface between two components is established.

Figure 10 is a diagram illustrating multiple executable components
of an application being executed on multiple tiers.

Figure 11 illustrates a display screen showing a graphical user
interface for assembling a software application.

Figure 12 illustrates a display screen showing a graphical user

interface, using which an end user can assemble and execute a customized

application.

DETAILED DESCRIPTION

A tier-neutral development mechanism for Web-based applications
is described. In the following description, for purposes of explanation,
numerous specific details are set forth in order to provide a thorough
understanding of the present invention. It will be evident, however, to
one skilled in the art that the present invention may be practiced without
these specific details. In other instances, well-known structures and
devices are shown in block diagram form in order to facilitate description
of the present invention.

The present invention includes a "tier-neutral" mechanism for
application assembly, using which developers with little or no
programming experience can easily create Web based applications. In
other words, using a single application development mechanism in
accordance with the present invention, Web developers can create
applications to run on any tier on a network or to run across multiple

tiers. In this description, the term "tier" is used to distinguish between a

WO 99/27440 PCT/US98/25275

client and a server on a network and to distinguish between multiple
servers.

The present invention may be carried out in one or more computer
systems, each in response to its central processing unit (CPU) executing
sequences of instructions contained in memory. That is, execution of the
sequences of instructions contained in memory causes the computer's
CPU to perform steps to execute part or all of a Web-based application.
As will be apparent from the description which follows, the instructions
may be loaded into the computer's memory from a persistent store, such
as a mass storage device, and/or from one or more of the other computer
systems (collectively referred to as the “host computer system”) over the
Internet. For example, the host computer system may transmit a sequence
of instructions to the receiving ("target") computer system in response to a
message transmitted to the host computer system over a network by the
target computer system. As the target computer system receives the
instructions via a network connection, such as a conventional telephone
modem, Ethernet adapter, Integrated Services Digital Network (ISDN)
adapter, or the like, the target computer system stores the instructions in
memory. The target computer system may store the instructions for later
execution or execute the instructions as they arrive over the network
connection. The host computer system may also execute various aspects
of the Web-based application.

In some cases, instructions which embody the present invention
may be directly supported by the CPU of the executing computer.
Consequently, execution of the instructions may be performed directly by
that computer's CPU. In other cases, the instructions may not be directly
executable by the computer's CPU; under these circumstances, the

instructions may be executed by causing the CPU to execute an

6

WO 99/27440 PCT/US98/25275

interpreter that interprets the instructions, or by causing the CPU to
execute instructions which convert the received instructions to
instructions which can be directly executed by the CPU.

In alternative embodiments, hardwired circuitry may be used in
place of, or in combination with, software instructions to implement the
present invention. Thus, the present invention is not limited to any
specific combination of hardware circuitry and software, nor to any
particular source for the instructions executed by a computer system.

Figure 1 illustrates an arrangement of processing systems by which
a user can browse the World Wide Web ("the Web"). A client computer
system 1 has a connection 3 via the Internet to a server computer system
2. The client system 1 executes browser software which, in response to a
user command, sends a request for a Hypertext Mark-up Language
(HTML) page to the server 2 using Hypertext Transport Protocol (HTTP).
The requested HTML page is one of a number of HTML pages 4 that are
stored in a storage facility 5. The storage facility 5 may or may not be
physically located on the same computer system as the server 2. The
HTML pages 4 are functionally interconnected by various hypertext links
and may be logically arranged in a tree hierarchy, as shown. In response
to the browser's request, the server 2 retrieves the requested page and
provides it to the client 1, which then displays the page to the user.

Figure 2 is a simplified block diagram of the architecture of a
computer system, such as a conventional personal computer (PC). Client
system 1, server system 2, and any other computer system mentioned in
this description may have the architecture of Figure 2 or a similar
architecture, except as stated otherwise. Numerous variations upon the
overall configuration illustrated in Figure 2 are possible, however, within
the scope of the present invention. The computer system of Figure 2

7

WO 99/27440 PCT/US98/25275

includes a CPU 10, random access memory (RAM) 11, read-only memory
(ROM) 12, and a mass storage device 13, all coupled to a bus 18. The bus
18 may actually include one or more physical buses interconnected by one
or more adapters, bridges and/or controllers. Also connected to the bus
18 are a display device 14, a keyboard 15, a pointing device 16, and a
communication device 17. The communication device 17 provides an
interface between the illustrated computer system and the network
connection 3 for purposes of communicating with other computer
systems.

The communication device 17 may be any suitable device for
providing digital communication over the network connection 3, such as a
conventional Ethernet or other local area network (LAN) adapter,
telephone modem, ISDN adapter, Digital Subscriber Line (xDSL) adapter,
cable television modem, or any other suitable device. The mass storage
device 13 may include any suitable non-volatile medium for storing large
amounts of data, such as a magnetic disk, a magneto-optical (MO) disk, a
CD-ROM, CD-R, CD-RW, or the like. The pointing device 16 may be any
suitable device for allowing a user to position a pointer displayed on the
display device 14, such as a mouse, trackball, touchpad, or the like.
Numerous variations upon the aforementioned components are possible
within the scope of the present invention.

The present invention includes a "tier-neutral” model by which
Web developers can easily create Web based applications. In other
words, using a single application assembly mechanism of the present
invention, Web developers can create applications for any tier and, if
desired, distribute applications across multiple tiers. Further, the tool
allows applications to be created quickly and easily by someone with little

Or No programming experience.

WO 99/27440 PCT/US98/25275

Using the above-mentioned development mechanism, Web based
applications are created from conventional HTML pages in combination
with certain executable "components” and a program infrastructure, as
will be described below. The specific functions of the executable
components depend upon the nature of the application but may include,
for example, charting or spreadsheet functions, spell checking, and
various user interface functions. The components can be written in Java
programming language and implemented as Java classes. In such
embodiments, the components can be incorporated into HTML pages
using applet tags. Thus, an application designed according to the present
invention includes one or more conventional HTML pages with one or
more of these components. The components are dynamically
downloaded as needed when the user browses to a corresponding HTML
page, and the entire application is maintained on the server side.

Figure 3 illustrates one arrangement by which the user of a client
computer system 20a can access and execute a Web-based application 19
created in accordance with the present invention. In the description
which follows, the present invention is described using the example of an
application which resides and executes on a wide area network (WAN),
i.e., the Internet. Note, however, that the present invention can also be
used to assemble applications which reside and execute on a LAN, such as
in an Intranet environment. Referring then to Figure 3, the client
computer system 20a executes browser software and preferably includes a
Java Virtual Machine (JVM) 20b. The client 20a executes browser software
and communicates over the Internet with a conventional Web server
(hereinafter the "HTTP server") 21a via a network connection 22 using
HTTP protocol. Network connection 22 may be a conventional telephone
link, ISDN link, xDSL link, cable television link, Ethernet link, or any

9

WO 99/27440 PCT/US98/25275

other suitable communication link. The HTTP server 21a may include its
own JVM 21b, as shown, although that is not necessary for purposes of
the present invention. The HTTP server 21a may comprise any
conventional Web server software, such as Netscape Enterprise Server,
Microsoft Internet Information Server, or Apache.

In accordance with the present invention, the network arrangement
also includes a second server 24a, which shall be referred to as the
"application server" 24a. As will be described below, the application
server 24a performs certain functions associated with the present
invention, such as assigning executable application components to
appropriate tiers. The HTTP server 21a and the application server 24a
may or may not be physically located on the same computer system. The
"application server” includes a JVM 24b. The JVM 21b of the HTTP server
21a includes a link component 23, which provides a communication
interface between the HTTP server 21a and the application server 24a
using Transport Control Protocol (TCP). The link provides a mechanism
by which the HTTP server 21a can delegate HTTP requests to the
application server 24a. If the HTTP server 21a does not include its own
JVM 21b, this link mechanism can be provided using, for example, CGI
(Common Gateway Interface), NSAPI (Netscape Server Application
Program Interface), or Microsoft ISAPI (Internet Server API).

The HTTP server 21a and the application server 24a each have
access to the contents of a storage facility 27. The storage facility 27 may
or may not be physically located on the same computer system as the
HTTP server 21a and/or the application server 24a. In fact, the storage
facility 27 may be located essentially anywhere on the Internet and may
be distributed across multiple computer systems. Further, the storage
facility may be embodied as separate data repositories for the HTTP

10

WO 99/27440 PCT/US98/25275

server 21a and the application server 24a, or one storage facility may be a
subset of the other. Thus, the storage facility 27 is described herein as a
single logical and physical entity only for purposes of simplicity. The
storage facility 27 may be embodied as one or more conventional storage
devices.-

The storage facility 27 stores a number of HTML pages 25 and a
number of executable components 26 of the present invention. The
HTML pages 25 in combination with the components 26 form a Web-
based application 19 in accordance with the present invention. The
HTML pages 25 may be logically arranged in a tree hierarchy, as shown.
Generally, the application 19 is invoked in response to a request from the
client 20a for an HTML page that includes one or more references ("tags")
to one or more of the components 26. Execution of the application 19 is
supported by a programming infrastructure 28, the purpose and functions
of which are described below.

The components 26 of the present invention are based on the
conventional concept of "applets", i.e., small portions of executable code
that can be incorporated (by reference) into HTML pages. The
components 26 may be embodied as Java classes, as is assumed to be the
case for purposes of this description. However, it will be recognized that
the components 26 may alternatively be implemented in another object-
oriented language. Thus, the present invention is not limited to a Java
implementation. Each of the components 26 is incorporated into one or
more of the HTML pages 25 by placing an applet tag corresponding to the
component within the appropriate HTML page or pages.

The application components 26 have several distinguishing
characteristics, however, which make them conducive to rapid and easy
application assembly. In particular, the components have relatively large

11

WO 99/27440 PCT/US98/25275

granularity as well as fully exposed controls, which allow the components
to be used by all levels of users from casual page designers to application
developers. The components differ by an order of magnitude in
granularity from traditional applets. Because the components tend to be
inherently larger than traditional applets, they may encompass an entire
business process or function. For example, a single component can be a
charting component or a spreadsheet component.

The components 26 can execute on any tier on the network, e.g.,
only on the application server 24a, only on the client 20a, or on any
available tier (e.g., one of several available servers). User interfaces of the
components 26 are completely decoupled and can be rendered on
different platforms using different languages. Further, the components 26
have features which allow connections between them to be automatically
established at run time without any scripting or custom coding. All
components have fully exposed properties (e.g., applet parameters),
methods, and events that can be controlled through script, for example.
Alternatively, properties can be set at design time using a development
tool or text editor and become the initial state of a component. If the
application developer is using any conventional page design tool, such as
Netscape Visual JavaScript, Microsoft FrontPage, or Net Objects Fusion,
the property style sheets can be presented in simple dialog boxes, and the
exposed properties, methods, and events can be scripted through point-
and-click dialogs.

As noted above, the components 26 can execute on any tier. More
specifically, the system of the present invention allows the application
developer to make an explicit choice of tier assignment for any
component, if desired. Accordingly, each component can be explicitly

specified to execute on the client tier, on the server tier, or on a specific

12

WO 99/27440 PCT/US98/25275

one of multiple server tiers. Alternatively, the application server 24a can
automatically decide on which tier a component is to execute, such as
when no tier specification is made for the component. This automatic tier
assignment may be made based on, for example, available resources, load
balancing criteria, hints, performance criteria, or other criteria. In that
case, the application developer need not be concerned with the tier or
tiers on which a component should execute. The ability to make an
automatic, dynamic tier assignment, therefore, provides an advantage
over other application development systems, in which the developer must
explicit choose a tier.

Server-side components (i.e., components which execute on a
server tier) can be specified to execute so that their output is rendered as
HTML back into the referencing HTML page in place of the applet tag
before the referencing page is provided to the client 20a. In that case, the
client 20a receives only a conventional HTML page with no applet tags.

Another important feature of the present invention is that, in
contrast with conventional Web-based development tools, functional
connections between components of a Web application can be established
to allow components to communicate with each other, without the need
for custom coding by the application developer to specifically "wire"
(specify) the connections. Thus, the tier-neutral model of the present
invention allows the creation of components which effectively "snap
together" automatically when the application is executed. This
characteristic is in contrast with conventional programming models
which require custom coding within hypertext pages to create
connections between applets.

A simple example of how the application 19 executes is described

now with reference to Figure 4A. For purposes of description, assume

13

WO 99/27440 PCT/US98/25275

that the components 26 have been assigned to execute on the client tier
20a, unless stated otherwise. However, note that many of the functions
described below can also be performed in like manner by the application
server 24a. In the example of Figure 4A, the application 19 allows a user
of the client 20a to perform a query upon a database (not shown). The
result set of the query is to be provided by a table. Consequently, the
components 26 include a query component 31 for receiving user input
specifying the query and a table component 30 for actually querying the
database and for providing a result set in response to the query. Note
that the table component 30 may also provide the result set to some form
of output component (not shown) for displaying a chart or some other
form of report to the user.

At this point, it should be noted that in this description, certain
components, methods, and routines are described as "performing”, "for
performing”, or "responsible for" a particular function, or other similar
language. It will be recognized, however, that it is the execution of these
components, methods, and routines by a processor (i.e., a CPU) which
actually causes the function to occur.

To perform the query upon the database, a functional connection
32 is required between the query component 31 and the table component
30. With conventional programming models, such a connection would be
established by custom coding the query component 31 and/or the table
component 30, or by custom coding an event handler in script or a
language which bridges the two components. However, the present
invention enables this connection to be automatically created at run time,
so as to eliminate the need for such custom coding. This feature, which is
described below, enables Web designers with little or no programming

experience to easily construct Web-based applications.

14

WO 99/27440 PCT/US98/25275

In accordance with the present invention, the components 26 also
include a special-purpose component 29 referred to as the "director”
component, as shown in Figure 4A. The director component 29 provides
various control functions associated with the application, which are
performed in conjunction with the infrastructure 28. These functions
include maintaining registrations for the other components 26 and
maintaining certain global default parameters of the application 19. The
director component 29, the table component 30, and the query component
31 each have a connection to the infrastructure 28.

Figure 4B illustrates how a software application created according
to the present invention may be distributed across multiple tiers (two in
this case). As shown, the infrastructure on one tier may have a connection
to a corresponding infrastructure on at least one other tier. Connections
47 and 49 between application components and connection 33 are
established across tiers. A director component and an infrastructure are
instantiated on each tier on which a component is to execute, and more
specifically, for each different session on each tier on which a component
is to execute. Thus, if an application includes both client-side components
and server-side components, then separate director components and
infrastructure are instantiated on the client and on the server and, more
specifically, on any client or server machine on which a component is to
execute. In the case of a multi-tiered application, the director component
29 is connected to a corresponding director component on at least one
other tier via the infrastructures.

Referring still to Figure 4B, the application 19 is distributed
between the client 20a and the application server 24a. An infrastructure
28a is instantiated on the client 20a, while an essentially identical

infrastructure 28b is instantiated on the server 24a. In this example, the

15

WO 99/27440 PCT/US98/25275

components 26 of application 19 include a query component 31, a chart
component 45, and a cube component 46, each instantiated on the client
20a and connected to the infrastructure 28a. The components 26 further
include a director component 29b and a table component 30, both
instantiated on the server 24a and connected to the infrastructure 28b.
The query component 31 is for enabling a user to input a query upon a
database (not shown). The table component 30 is for communicating with
the database and for maintaining a result set based on the query. The
cube component 46 is for transforming two-dimensional data from the
database into a multi-dimensional representation which supports
examining slices or cross-sections of the data. The chart component 45 is
for displaying the results to a user. The client 20a and server 24a further
maintain communications infrastructures 51a and 51b, respectively, which
manage communications over connection 33. Communications
infrastructure 51a has a connection to the client's main infrastructure 28a,
while communications infrastructure 51b has a connection to the server's
main infrastructure 28b and (via link 33) to communications
infrastructure 51a.

In this example, connection 47 is automatically established between
the query component 31 and the table component 30 at run time, to allow
the query component 31 to specify to the table component 30 data that is
to be retrieved from the database. Connection 48 is automatically
established between the chart 45 and the cube 46 at run time, to allow the
chart component 45 to receive data from the cube component 46. Further,
connection 49 is automatically established between the table component
30 and the cube component 46 at run time, to allow data to be transferred

from the table 30 to the cube 46.

16

WO 99/27440 PCT/US98/25275

The process for invoking an application will now be described at a
high level with reference to Figure 5. In step 501, the user of client 20a
(Figure 3) clicks on a hypertext link to one of the HTML pages 25. The
client 20a then transmits a request for the corresponding page to the
HTTP server 21a in step 502. In step 503, the HTTP server 21a passes the
request on to the application server 24a, and in step 504, the application
server 24a retrieves the requested page from the storage facility 27.

Each of the components 26 is referenced by an applet tag in at least
one of the HTML pages 25. Each applet tag may include information that
is not found in conventional applet tags, such as a designation of which
tier the applet is to be executed on and/or the scope (duration) of a
component's instantiation. Therefore, in step 505, the application server
24a determines whether the requested page refers to any server-side
components (i.e., components to be executed on any tier other than the
client tier) based on the contents of the corresponding applet tags and any
rules or heuristics established by the system administrator. If no server-
side components are identified in the requested page in step 505, then in
step 506 the application server 24a passes the requested page to the HT'TP
server 21a, which passes the page to the client 20a in step 507. If the
application server identifies one or more server-side components
referenced by the requested page in step 505, then the application server
24a performs the server-side routine of step 508, which is described
below. Following the server-side routine, the routine of Figure 5 proceeds
from step 506.

As noted above, each applet tag may include information which is
not found in conventional applet tags, such as a designation of which tier
the component is to be executed on and/or the scope (duration) of a
component's instantiation. This information is provided in the form of

17

WO 99/27440 PCT/US98/25275

applet attributes designated "tier" and "scope", respectively. Possible
values for "tier" include, for example, "client"”, which is the default in one
embodiment, "server", or other values to specify more complicated
designations, as set up by the system administrator. In addition, a
component can be specified for a particular client tier or a particular
server tier by defining additional values for "tier", or a component can
support a dynamic choice of tier by the application server 24a, as noted
above. The ability to explicitly assign a component to a given tier allows
the application designer to determine where to put the application logic
and how to distribute the processing load. By using the tier attribute, the
difference between running on the client or the server becomes a simple
property that can be easily toggled for testing purposes or conditionally
set to run on a client or server based on user profile, browser
specifications, or other run-time properties, such as server load,
performance, etc.

The "scope” attribute represents the duration of a component's
instantiation on its specified tier and can have the values "request”,
"application”, "session", or "global". "Request" scope, which is the default
in one embodiment, indicates that the corresponding component will be
instantiated as an object only while the corresponding HTML page is
rendered. "Application" scope indicates that the corresponding
component will be instantiated and available to other tiers provided they
are executing the same application. "Session" scope indicates that the
component will be instantiated and available only throughout a particular
browser session, and "global” scope indicates that the applet is to remain
instantiated until it is explicitly destroyed and is accessible to all clients

and applications.

18

WO 99/27440 PCT/US98/25275

An example of an applet tag including the "tier" and "scope”
parameters is as follows:

<applet code=sample tier=server scope=session
name=sample_component>

</applet>

In the above example, the component known as
"sample_component" is specified to execute on a server tier and to have
"session" scope.

Generally, when a page is requested, a number of objects are
instantiated (created) for each component referenced by the page.
Instantiation of a component is performed by the tier to which the
component has been assigned. Thus, in the example of Figure 4, the client
20a instantiates the table component 30 and the query component 31
when the page referencing these components is downloaded. Also,
downloading the first HTML page that references one of the components
26 to the client also results in the creation of the director component 29.

Upon instantiation of a component, the component registers its
existence, as will now be explained with reference to Figure 6. Figure 6
illustrates a routine by which a component is instantiated and registered.
In step 601, the client 20a receives a requested HTML page. In step 602, if
the client 20a detects an applet tag for a component, the browser
instantiates the component in step 603. In step 604, the infrastructure 28
registers that component's existence, and the browser renders the page in
step 605. If no applet tag was found for a component in step 602, then the
client 20a simply renders the page normally in step 605. When the first
HTML page containing an applet tag for one of the components 26 is

downloaded to the client 20a, the director component 29 and each other

19

WO 99/27440 PCT/US98/25275

component referenced by that page (e.g., table component 30 or query
component 31) are instantiated on the client computer system 1.

Referring now to Figure 7, the components 26 and infrastructure 28
will now be described in greater detail. The infrastructure 28 includes an
object referred to as the director sub-component 34. The director
component 29 generally provides the front end to director sub-component
34, in addition to the functions mentioned above. The director sub-
component 34 is responsible for managing the core functions of the
application 19, including maintaining registrations of the other
components (e.g., table component 30, query component 31, etc.)
associated with the application 19 and handling requests from various
components for connections to other components. In particular,
(execution of) the director sub-component 34 maintains a list of
registrations of all components of the application 19, which includes a
reference to each component, and the use of which is described below.
These functions of the director sub-component 34 enable the components
to automatically acquire connections to each other without the need for
the application developer to explicitly "wire" (i.e., write code to specify)
the connections.

Note that in one embodiment, an application of the present
invention will create one director component and one director sub-
component for each distinct scope level used by the application. For
example, if certain components default to the "request” scope while others
are specified as "application” scope for a given tier, then at least two
director components and at least two director sub-components would be

created on that tier, i.e., one for "request” scope and one for "application”

scope.

20

WO 99/27440 PCT/US98/25275

In addition to instantiating components 29, 30, and 31, the client
20a also instantiates several additional objects. (If one or more
components are server-side components, however, then these additional
objects may be created by the application server 24a.) The additional
objects include, for each component, an object referred to as a context sub-
component. Each context sub-component is associated with a particular
one of the components 26, although the context sub-components are
actually part of the infrastructure 28. Each context sub-component may
be implemented as a Java class and includes methods for setting
parameters and properties, locating other components, and registering its
corresponding component. Hence, the client 20a (or application server
24a) creates a context sub-component 35a for the director component 29, a
context sub-component 35b for the table component 30, and a context sub-
component 35¢ for the query component 31. Each context sub-component
has a reference to its corresponding component and a reference to the
director sub-component 34. Note that, although the illustrated
embodiment includes a separate context sub-component for each
component, the context sub-components can be implemented as a single
object which has a reference to all components.

Figure 8A illustrates a routine that is performed as a result of
executing the objects shown in Figure 7. In step 801, the client 20a (or
application server 24a in the case of the server-side routine--see below)
finds an applet tag for one of the components 26 upon receipt of the
HTML page and instantiates that component. Next, in step 802 the newly
created component creates its context sub-component. For example, if the
browser initially finds the tag for the table component 30 in step 801, then
in step 802 the newly created table component 30 creates its context sub-

component 35b.

21

WO 99/27440 PCT/US98/25275

Since the tag for the director component 29 may not be the first tag
identified by the client 20a, the director component 29 may not be the first
component to be instantiated. Consequently, the first component 26 to be
instantiated during execution of the application 19 will then instantiate
the director sub-component 34 (using its context sub-component). Thus,
in step 803, the newly instantiated context sub-component attempts to
locate the director sub-component 34. If the component is the first
component to be instantiated, then its context sub-component will not be
successful in locating the director sub-component 34 (step 804). In that
case, the context sub-component first creates the director sub-component
34 in step 806 and then registers its newly instantiated component with
the director sub-component 29b in step 805. If the director sub-
component was found in step 804 (i.e., the component is not the first
component to be instantiated), then the context sub-component registers
its component with the director sub-component 34 in step 805. The above
routine of Figure 8A is repeated for each component referenced in the
downloaded HTML page.

As noted above, certain components may be specified as server-
side components using the "tier" attribute of the applet tag. When that is
the case, the application server 24a performs the server-side routine of
step 508 (Figure 5). The server-side routine of step 508 involves a process
substantially similar to that of Figure 8A, discussed above. That is, any
server-side components and their supporting infrastructure (i.e., director
sub-component and context sub-component) are instantiated on the
appropriate server tier, which may be the application server 24a or any
other server in the network. In addition, the application server 24a strips
out the corresponding applet tag from the HTML page before allowing

the page to be returned to the client 20a. As a result, the client 20a sees

22

WO 99/27440 PCT/US98/25275

only a standard HTML page. If the output of a server-side component is
HTML code, then that code can be rendered back into the calling page by
the application server 24a before the page is provided to the client 20a.
Note that when a component is instantiated on a server tier and must
persist for longer durations than handling the current request, its scope
will generally be altered from the default "request” scope to a scope of
longer duration.

Note that the present invention enables different components of an
application, and even different components referenced by a single HTML
page, to be instantiated and executed on different tiers. In addition, the
present invention enables components of a single application to be
concurrently instantiated and executed on three or more different tiers,
e.g., a client tier and two or more server tiers. Figure 8B illustrates a
simple example of these capabilities. Another example is described below
with reference to Figure 10. In Figure 8B, an HTML page 62 and three
executable components 63, 64, and 65 referenced by the HTML page 62
are parts of an application of the present invention and are stored in
storage facility 27. Of course, components 63, 64, and 65 are not
instantiated as stored in storage facility 27.

The application server 24a receives a request for the HTML page 62
from the client 20a via the HTTP server 21a (see Figure 3). In response to
the request, the application server 24a provides the HTML page 62 to the
client 20a. Also in response to this request, the application server 24a
causes component 63 to be instantiated and executed on the client 20a,
causes component 64 to be instantiated and executed on the application
server 24a, and causes component 65 to be instantiated and executed on

another server 66.

23

WO 99/27440 PCT/US98/25275

The tier assignments of components 63, 64 and 65 may be based on
any or all of the above-mentioned tier assignment techniques, such as use
of the tier attribute, load balancing, performance, etc. Thus, in this
example, components 63b, 64b, and 65b are concurrently instantiated and
executed on three separate tiers, the client 20a, the application server 24a,
and the second server 66. Note, however, that components need not be
executed on the application server 24a; that is, components could just as
easily be executed on the client tier 20a and two or more server tiers other
than the application server 24a.

Many application components may be considered to be data
"producers”, data "consumers", or "data controllers". A functional
connection is often required between a particular data producer and a
particular data consumer or between a data producer and a data
controller, to allow data to be communicated between those components.
As noted above, the director sub-component 34 (Figure 7) maintains a list
of registrations of all application components 26, which is used to
automatically establish such connections. In accordance with the present
invention, connections between executable components are established
automatically and asynchronously, as required by the application 19, in
response to requests from data producers or data consumers.
Consequently, individual components effectively "snap together"
automatically, without an application developer having to specify the
connections.

Referring again to the example of Figure 7, a connection 32 is
required between the table component 30, which is a data producer, and
the query component 31, which is a data controller. The function of
establishing connections between components is generally performed by
the infrastructure 28 and, more specifically, by the context sub-component

24

WO 99/27440 PCT/US98/25275

of whichever component is requesting a connection. The process of
establishing a connection between two components is described now in
greater detail with reference to Figure 9.

In step 901, a component, such as a data consumer, provides its
context sub-component with a request. The request specifies a set of
criteria to be used to identify one or more appropriate "service providers",
or components to which the requesting component can be connected, such
as a data producer. The criteria may include, for example, the name of
one or more components to which a connection is needed or the name of
one or more interfaces which the requesting component supports. In this
context, an "interface" is a specification of the methods, or subroutines,
which a component supports.

The request is actually provided to a method of the context sub-
component Java class designated "findServiceProvider.” (See the sample
Java code below for an example of how the method findServiceProvider is
used.) Thus, in step 902, the method findServiceProvider contacts the
director sub-component 34 and requests the list of registered components
maintained by the director sub-component 34. In step 903, the director
sub-component 34 provides the list of registrations to the
findServiceProvider of the requesting context sub-component. In step
904, findServiceProvider searches the list for the appropriate service
provider or providers. Specifically, findServiceProvider uses the
references in the list to identify any component or components which
match the criteria specified in the request (e.g., which have the specified
name or support the specified interface). Note that Java allows an object

to be queried to determine whether the object supports a particular

interface.

25

WO 99/27440 PCT/US98/25275

More than one of the other components may satisfy a request.
Accordingly, the criteria specified in the request also include a flag, which
the requesting component can set to indicate that it requires a reference to
all components which satisfy its request. In addition, the criteria of the
request may specifically limit the request to service providers
(components) on the same tier as the requesting component (the local tier)
or to service providers on a remote tier. Furthermore, remote requests
can be limited to a set of scopes, etc.

Thus, if findServiceProvider finds a component or multiple
components which satisfy the criteria in the request (step 905), then in
step 906 findServiceProvider provides to the requesting component the
reference or references to the one or more components which satisfy the
request. If no component is found which satisfies the request, then the
routine ends, with the request remaining pending until a component
which satisfies the request becomes instantiated and registered on the
current tier. Thus, connections between the components 26 of the present
invention are established automatically and asynchronously as required
by the application 19. "Asynchronously" means, in this context, that the
requesting entity is able to perform other processing functions while the
request is pending, rather than having to wait for a response to the
request. Consequently, there is no specific temporal relationship between
the issuance of a request for a connection and the response to that request;
a request can be satisfied at any time after it has been submitted. Further,
a connection can be automatically established even if the component
which satisfies the request is not yet instantiated at the time the request is
submitted.

In addition, a component may become "unregistered" for various

reasons. Unregistration of a component may occur, for example, when

26

WO 99/27440 PCT/US98/25275

the component becomes no longer instantiated, such as if the component
is explicitly destroyed. If a component becomes unregistered for any
reason, then the director sub-component 29a provides any components
which have a connection to the unregistered component with a notice of
unregistration, which indicates to such components that the unregistered
component is no longer available.

Below is an example of the Java code for a HTML page that
incorporates two application components, designated Blox1 and Blox2, as
well as the Java code for these components. The component Blox1
supports an interface, ITest, which contains one method, getResponse.
The method getResponse returns a string representation of the text in the
text box displayed in this component. The function of these two
components is to enable a user to change the text in the text box, such that
another component can retrieve the text using the ITest interface. The
component Blox2 has a user interface which shows certain status
information in a text box and supports a button which, when pushed, will
invoke the getResponse method of the ITest interface on Blox1. Blox2
locates this interface using the method IBloxContext.findServiceProvider.
The call to this method may be in the bloxStart method of the component,
which is discussed below. When the button is pushed, the string value,
which originated in the text box of Blox1, is displayed in the text box of
Blox2.

Thus, the sample HTML page is as follows:
<html>

<head>

<title>Example application</title>

27

WO 99/27440 PCT/US98/25275

</head>
<body>

<hl>Example application</hl>

<p>

Here are three Components: (Director, Bloxl, and Blox2)

Director and Blox2 will be colored magenta because the Application.BGCOLOR
property set on Director will be used as the default BGCOLOR property for all
components that don't have their own BGCOLOR property. Note that Blox2
doesn't define any BGCOLOR, and gets its default value from Director.

BloxI will be colored cyan since it overrides the default BGCoLoR
property.

When this page finishes loading, "found ITest interface" will be displayed in the
text field in Blox2. This means that the findServiceProvider call in Blox2 located
the ITest interface defined in Bloxl.

If one enters text in the text box in Bloxl and then push the button in Blox2, then

the text that you entered in Bloxl will be displayed in Blox 2.

Note that no explicit Wiring up between Bloxl and Blox2 occurs in the HTML file.
28

WO 99/27440 PCT/US98/25275

<applet code=alphablox.blox.applet.Director
codebase="/classes"
name=Director
height=20
width=20>

<param name=Application.BGCOLOR value=magenta>

</applet>

<applet code=Bloxl
codebase="/classes"
name=Blox]
height=200
width=200>

<param name=BGCOLOR value=cyan>

</applet>

<applet code=Blox2
codebase="/classes"
name=Blox2
height=200
width=200>
</applet>

29

WO 99/27440 PCT/US98/25275

</body>

</html>

The following is sample Java code for the component Blox1.

import alphablox.mortar.*;
import alphablox.awt.*;

import java.awt.*;

public class Bloxl extends BloxApplet implements
ITest

{
TextField textField = new TextField("default value"); // a text box where

one can edit the response

public void bloxInit()

{
super.bloxInit(); // make sure

BloxApplet.bloxInit gets an opportunity to run

setLayout(new BorderLayout());
add("Center", textField);

30

WO 99/27440 PCT/US98/25275

// bloxStart was not overridden, but the base class BloxApplet defined a

bloxStart that caused this component to become registered with the

infrastructure.

// implementation of ITest interface

/%
* Return the contents of the text field
*/
public String getResponse()
{
return textField.getText();

The following is the sample Java code for Blox2. The sample code

illustrates the use of methods bloxStart and findServiceProvider.

import alphablox.mortar.*;
import alphablox.awt.”;

import java.awt.*;

public class Blox2 extends BloxApplet implements

' IServiceFoundListener

{
TextField textField = new TextField(20); // a text box where one

can write text

Button pushMe = new Button("PushMe"); // a button which one can

push to cause an action to occur

31

WO 99/27440 PCT/US98/25275

private ITest test; / / where the ITest interface will be put

when it is received from Blox!

public void bloxInit()
{
super.bloxInit(); // make sure BloxApplet.bloxInit gets an

opportunity to run

setLayout(new BorderLayout());
add("Center", textField);
add("South”, pushMe);

pushMe.disable(); // disable this button until service

provider is found

}

public void bloxStart()
{

super.bloxStart(); // make sure BloxApplet.bloxStart gets an

opportunity to run

getBloxContext().findServiceProvider("ITest", this); // start search

for any component that supports the ITest interface

}

/>(->(-

32

WO 99/27440 PCT/US98/25275

* This method is invoked by infrastructure when a service requested by
findServiceProvider is satisfied
*/
public void serviceProviderFound(ServiceEvent event)

{

textField.setText("got a response from findServiceProvider");

Object serviceProvider = event.getServiceProvider();

if (serviceProvider instanceof ITest) // it was indeed an ITest supporting
object

{

test = (ITest)serviceProvider; // therefore, remember this interface . .

textField.setText("found ITest interface");

pushMe.enable(); // and enable the button so it

can be called

}

/x-:(-

* This method is invoked by the infrastructure when a service provider
is no longer available.
* We ignore this event.
*/ '
33

WO 99/27440 PCT/US98/25275

public void serviceProviderUnregistered(ServiceEvent event)

{
}

/ %%
* This method is called by AWT (windowing library) when, for example,

a button is pushed.
*/
public boolean action(Event event, object arg)

{

boolean handled = false;

if (event.target == pushMe) // when the pushMe button is pressed
{

String response = test.getResponse(); / / ask Bloxl for a

"response”

textField.setText("got \"" + response + "\" from Bloxl"); // display

what was returned

handled = true; // tell AWT that

event was handled

}

return handled;

The following is sample Java code for the ITest interface:

public interface ITest

34

WO 99/27440 PCT/US98/25275

String getResponse();

As is well known, Java applets support four standard methods
(among ;)thers): init, start, stop, and destroy. In the present invention,
these methods are called by the client 20a or the application server 24a to
manage the lifetime of an applet (e.g., one of the components 26).
Generally, calling the init method causes an applet to be initialized;
calling start causes an applet to be started; calling stop causes an applet to
be stopped; and calling destroy causes an applet to be destroyed. In the
present invention, these four methods call four additional methods,
referred to as bloxInit, bloxStart, bloxStop, and bloxDestroy. For a given
component (e.g., Blox1 or Blox2 in the example below), the default (base)
implementation of bloxInit causes the component's context sub-
component to be created. The default implementation of bloxStart causes
the component to be registered with the director sub-component. In
addition, if there are any requests for connections pending from other
components, the act of registration causes a determination of whether the
newly registered component matches the criteria of any of the requests
and, if so, a message to be sent to the service requestor that the
component is registered. The default implementation of bloxDestroy
method causes a component to be unregistered and a message of
unregistration sent to any component which has a connection to that
component.

In the example above, Director is the embodiment of the director
component 29. Director serves only as a place to define certain global

defaults, as noted above. An example of such a default is the definition of

35

WO 99/27440 PCT/US98/25275

Application.BGCOLOR property on Director, which is used by all
components of the application as the "background color" unless explicitly
overridden on individual components.

Bloxl and Blox2 are both derived from the base class BloxApplet.
This class is defined in the infrastructure 28 (see Figures 3, 4A, and 4B).
The class BloxApplet defines the default implementation of bloxInit,
bloxStart, bloxStop, and bloxDestroy, described previously. BloxApplet
creates the BloxContext, which in turn exposes the IBloxContext interface.
The getBloxContext method in BloxApplet returns the IBloxContext
interface.

Bloxl and Blox2 override the default bloxInit implementation,
while delegating to it to get the base functionality. In the overridden
method, each blox does its specific initialization. Blox1 does not override
bloxStart, bloxStop, and bloxDestroy, and therefore simply gets the
default implementation from BloxApplet. Blox2 overrides the default
bloxStart implementation, while delegating to it to get the base
functionality. In the overridden method, Blox2 attempts to locate an
object which supports the ITest interface. It does so by using the
getBloxContext method in BloxApplet to get the IBloxContext interface,
and then calls the findServiceProvider method on this interface.

There are two possibilities in this example: Either Bloxl will be
instantiated first or it will be instantiated second. If Bloxl is instantiated
first, then when its base implementation of bloxStart is called, it will be
registered with the Director sub-component 34. When Blox2's bloxStart is
called, the findServiceProvider call will result in the infrastructure's
locating Bloxl and invoking Blox2's serviceProviderFound method,

notifying Blox2 of the component which satisfies its request.

36

WO 99/27440 PCT/US98/25275

If Blox2 is instantiated first, the findServiceProvider call will not
find any component to satisfy the request, and the request will remain
pending. When Bloxl is instantiated, and when its base implementation
of bloxStart is called, it will be registered with the Director sub-
component 34. This action will result in the infrastructure's noticing the

pending request and notifying Blox2 (via the serviceProviderFound

method) of Blox!'s existence.

As mentioned above, the present invention also provides the
capability to distribute components of a single application across three or
more separate tiers (e.g., a client tier and two or more server tiers) and to
automatically establish connections between the appropriate components.
An example of this capability was described above with reference to
Figure 8B. The following is sample Java code for another example in
which components are executed on three separate tiers, which is also

illustrated in Figure 10.

<html>

<head>

<title>N-tier Example</title>
<body>

<hl>N-tier Example</hl>

<body>

<applet code=alphablox.blox.applet.Director
name=Director
codebase=/classes

tier=client

37

WO 99/27440

<param name=ApplicationName value=MyApp>

</applet

<applet code=alphablox.blox.applet.Table
name=Table
codebase=/classes
tier="server:host=Host]"

scope=application

<param name=ApplicationName value=MyApp>

</applet>

<applet code=alphablox.blox.applet.Cube
name=Cube
codebase=/classes
tier="server:load<100,class=olap"

scope=application
<param name=ApplicationName value=MyApp>
</applet>
<applet code=alphablox.blox.applet.Grid

name=Grid

codebase=/classes

38

PCT/US98/25275

WO 99/27440 PCT/US98/25275

tier=client
<param name=ApplicationName value=MyApp>
</applet>

</body>
</html>

In the above "n-tier" example, there are four blox involved:
Director, Table, Cube, and Grid, as shown in Figure 10. Director and Grid
are specified to be run on the client tier. Table and Cube are specified to
run on server tiers. Note that while Director is explicitly authored to
execute on the client tier, in accordance with the present invention,
additional Director components are also automatically instantiated and
executed on each additional tier on which another component is to
execute. Table is explicitly specified to run on a server named "Host1".
Cube is specified to run on any server tier which match specific criteria.
These criteria are configurable by system administrators and are specified
here only for purposes of illustration. In this example, Cube will be run
on any available server whose "load" factor is less than 100 and which
belongs to a class of servers that have been labeled as "olap”. Both of the
server components are specified as being of "application” scope, which
means that these components will be available to any other components
in the same application. The application used for all components in this
example is named, "MyApp".

In operation, the application server 24a (not shown in Figure 10--

see Figure 3) will strip out the two server-scope components from the

39

WO 99/27440 PCT/US98/25275

HTML sent to the client 20a. Thus, the client 20a will only instantiate the
Director and Grid components. Prior to serving the page to the client 20a,
however, the application server 24a will locate the appropriate servers
which match the specified tier criteria and cause these components to be
executed on those tiers. It will also keep track of all the servers involved
in serving this request so that it can know which servers to contact to
satisfy findServiceProvider requests.

The Table component, once instantiated on its tier, will locate its
external data source (due to the role that Table plays, it doesn't attempt to
locate another component, but uses external protocols to determine its
data source). The Cube component, however, cannot function until it
locates a Table datasource (more accurately, a component which supports
the ITableProducer interface, which Table does). Cube attempts to locate
the ITableProducer component on its own tier, and doesn't find it. It then
contacts the application server 24a to find the correct component. Because
the application server 24a knows that it instantiated components on Host1
and the requesting tier, it passes the request to Host1 (assuming that the
requesting tier has already been searched). Host1's Director gets the
request and locates the Table component, returning this result to the
application server 24a. The application server 24a then returns this result
to Cube. A connection between Cube and Table is thus established.

On the client tier, Grid looks for its data source (of type
ICubeProducer). Not finding the data source on its tier (client 20a), it
passes the request to the application server 24a. The application server
24a passes the request to both Host1 and the host on which it started the
Cube component. The Cube component (which supports the
ICubeProducer interface) is thus located, and a reference to it returned to

the Grid component on the client 20a.

40

WO 99/27440 PCT/US98/25275

Implicitly, remote proxies and stubs are created to allow the

appearance of a local interface when, in fact, the interface spans separate

tiers.

The present invention also includes a mechanism for generating
applications of the type described above, based on templates. Using this
mechanism, any conventional Web page design environment or Internet
integrated development environment (IDE) (e.g., Microsoft FrontPage,
Netscape Visual JavaScript, or Net Objects Fusion) can be used to create
applications according to the present invention. Specifically, a
conventional storage facility can be used to store a library of components
that can be included by application designers in various different Web
applications. Thus, an application designer can select particular
components to create custom-designed applications. This process may be
performed via a graphical user interface such as illustrated in Figure 11.
Figﬁre 11 shows a display 35 including two windows 36 and 37. A
number of icons 40b are displayed in window 37, each of which
represents a component according to the present invention. The
application developer uses a pointing device to place a cursor 38 on
particular ones of icons 40b and to drag-and-drop them into window 36 to
incorporate the corresponding components (i.e., Java classes) into the
application. The interface of Figure 11 may be such that icon 40a
representing the director component 29 appears in window 36 by default,
since each application includes at least one director component.

In response to the application developer's dragging and dropping
an icon into window 36, a corresponding applet tag is automatically
inserted into the HTML page being authored. In one embodiment,

window 36 can also be used to input text using a conventional HTML

41

WO 99/27440 PCT/US98/25275

editor, such that the application developer can graphically combine
standard HTML with various components. In response to icons 40b being
dropped within window 36, the corresponding components are
effectively included within the application that is being created.
Consequently, at run time the infrastructure 28 will automatically ensure
that the correct connections between the components are automatically
established. The application developer is not required to specify these
connections.

Figure 12 illustrates another graphical user interface by which an
end user can both assemble and execute a customized application. In this
example, the application to be assembled is a database application. The
display screen 50 is an HTML page, and the application includes one or
more executable components according to the present invention. From
the display screen 50, the end user can effectively select which
components are included in the application and thereby generate a
customized output report of data stored in the database. The display 50
also includes a set of options from which the user can select to generate a
customized output report. The options include the particular format of
the report to be generated. The user's selections from among these
options determine which executable components are included in the
application for the current run of the application.

In this example, the executable components which may be included
in the application (which are not shown) include a grid component for
generating a report in grid format, a chart component for generating a
report in chart format, and a cube component for maintaining a multi-
dimensional data set. Each of rectangles 55 represents an image depicting
a reduced-size example of the corresponding format. Accordingly, the

user can select one of buttons 54A to request a specific grid format;

42

WO 99/27440 PCT/US98/25275

alternatively, the user can select one of buttons 54B to request a specific
chart format. In this example, there are two different grid formats and
two different chart formats from which the user may choose. When the
user subsequently clicks on the "Assemble" button 59, the user's format
selections cause the appropriate component or components (i.e., grid
component or chart component) to be automatically identified and
executed. The user's selection of button 62 for "Multi-Dimensional
Analysis" will result in the cube component being automatically included
in the application and executed when "Assemble" button 59 is clicked on.
Further, by employing the above-described techniques for automatically
establishing connections between components, the appropriate
connections are automatically established between the selected
components in response to the "Assemble" button 59 being clicked on.
The end user does not need to wire any of the connections.

The end user can also customize various attributes of the
application components using screen 50. For example, the user can: enter
the name of the application to be assembled in field 51 or choose from a
list of previously assembled applications; specify a predefined data set in
field 52 rather than specifying a new query; specify text to be included in
the header, body, and footer of the report by entering the text in fields, 53,
56, and 57, respectively; and, specify a background color for the report in
field 58.

Thus, using a graphical user interface such as that shown in Figure
12 in conjunction with other features of the present invention, the user can
assemble and execute a customized application by selecting only the
desired components for inclusion in the application. Connections

between the selected components are automatically established when the

43

WO 99/27440 PCT/US98/25275

application is executed, such that the end user does not need to be

concerned with "wiring" components together.

Thus, a tier-neutral development mechanism for Web-based
applications has been described. Although the present invention has been
described with reference to specific exemplary embodiments, it will be
evident that various modifications and changes may be made to these
embodiments without departing from the broader spirit and scope of the
invention as set forth in the claims. Accordingly, the specification and
drawings are to be regarded in an illustrative rather than a restrictive

sense.

44

WO 99/27440 PCT/US98/25275

CLAIMS
What is claimed is:

1. A mechanism for creating a software application for execution on a
network having a plurality of tiers, the mechanism comprising:
specifying means for specifying application components, such that
any application component specified using said specifying means can
assigned to execute on any of the plurality of tiers of the network; and
means for enabling the application components to be associated
with at least one hypertext-based page, such that the components are
executable in response to requests for the at least one hypertext-based

page.

2. A mechanism according to claim 1, wherein the specifying means
comprises means for specifying a plurality application components of a

single software application for execution on at least three separate tiers of

the network.

3. A mechanism according to claim 1, wherein the plurality of application
components of the single software application comprises a first
component specified to execute on a first tier and a second component
specified to execute on a second tier different from the first tier, and
wherein the mechanism further comprises means for enabling
communication between the first component executing on the first tier
and the second component executing on the second tier without a user

having specified connections between the components.

45

WO 99/27440 PCT/US98/25275

4. A mechanism according to claim 1, wherein the specifying means
comprises means for specifying a tier on which a first application
component is to execute using an attribute of a tag referencing the first

application component.

5. A mechanism according to claim 1, further comprising means for
dynamically determining, based on a current state, a tier on which a first
application component is to execute in response to a request for a

hypertext-based page corresponding to the first application component.

6. A mechanism according to claim 1, wherein each of the application

components is an object.

7. A method of executing an application on a network having a plurality
of tiers, the application including at least one non-executable component
and a plurality of executable components referenced by said at least one
non-executable component, the plurality of executable components
including a first executable component, a second executable component,
and a third executable component, the plurality of tiers including a first
tier, a second tier, and a third tier, the method comprising the steps of:

receiving from a client system at least one request for said at least
one non-executable component;

in response to said at least one request:

determining on which tier of the network each of the first,

second, and third executable components should be executed;

causing the first executable component to be executed on the

first tier;

46

WO 99/27440 PCT/US98/25275

causing the second executable component to be executed on

the second tier; and

causing the third executable component to be executed on

the third tier.

8. A method according to claim 7, wherein each of the at least one non-

executable components is a hypertext-based page.

9. A method according to claim 7, wherein the first tier is the client

system, the second tier is a first server system, and the third tier is a

second system.

10. A method according to claim 7, wherein each of the first, second, and

third executable components is an object.

11. A method according to claim 7, wherein the determining step
comprises, for at least one of the first, second, and third executable
components, determining on which tier of the network the component
should be executed based on an attribute of a tag in a non-executable

component.

12. A method according to claim 7, wherein the determining step
comprises, for at least one of the first, second, and third executable
components, dynamically determining on which tier of the network the

component should be executed based on a current state.

47

WO 99/27440 PCT/US98/25275

13. A method according to claim 7, wherein each application component
is defined according to a single mechanism by which an application

component can be specified for execution on any tier on the network.

14. A method of enabling a target processing system to execute an
application, the method comprising the step of transmitting sequences of
instructions from a host processing system to the target processing
system, the instructions for causing the target processing system to
perform the method of claim 7 when executed by the target processing

system.

15. A method creating a software application for execution on a network
having at least three tiers, the method comprising the steps of:

specifying a plurality of application components of a single
application, the plurality of application components including at least
three application components, such that each of the at least three
application components can be executed on a separate tier of the network;
and

associating each of the plurality of components with at least one
hypertext-based page, such that each component is executable in response

to a request for an associated hypertext-based page.

16. A method according to claim 15, further comprising the step of
enabling communication between a first component executing on a first
tier and a second component executing on a second tier without using a

specification of a connection between the first and second components.

48

WO 99/27440 PCT/US98/25275

17. A method according to claim 15, further comprising the step of

specifying a tier on which one of the plurality of application components

is to execute.

18. A method according to claim 15, wherein the step of specifying a tier
on which one of the plurality of application components is to execute
comprises specifying a tier in an attribute of a tag in the hypertext-based

page referencing said one of the plurality of application components.

19. A method according to claim 15, wherein each of the application

components comprises an object.

20. A mechanism for creating an application for execution on a network
having a plurality of tiers, the mechanism comprising:

means for specifying application components, such that application
components of a single application can be concurrently executed on at
least three separate tiers of the network; and

means for enabling the application components to be associated
with at least one hypertext-based page, such that the application
components are executable in response to at least one request for the at

least one hypertext-based page.

21. A mechanism according to claim 20, wherein the application
components of the single application comprises a first component for
execution on a first tier, a second component for execution on a second

tier, and a third component for execution on a third tier.

49

WO 99/27440 PCT/US98/25275

22. A mechanism according to claim 20, wherein the means for specifying

comprises means for specifying the tier on which each application

component is to execute.

23. A mechanism according to claim 20, wherein each of the application

components is an object.

24. A method of creating a software application for execution on a
network, the network having a plurality of tiers, the method comprising
the steps of:

creating a set of hypertext-based pages, the set including at least
one hypertext-based page, each page of the set for receipt and display by
at least one of the plurality of tiers on the network; and

including a reference to at least one of a set of executable
components within one of the set of hypertext-based pages, the set of
executable components including at least one executable component, the
reference including a tier indication specifying a tier on which the at least

one executable component is to execute.

25. A method according to claim 24, wherein the tier indication may

specify any tier of a network having at least three tiers.
P y g

26. A method according to claim 24, wherein said tier is a first tier of a
network, wherein the set of executable components comprise a first
executable component and a second executable component, the method
further comprising the steps of:

- including a second reference to the second executable component

within said one of the set of hypertext-based pages, the second reference

50

WO 99/27440 PCT/US98/25275

including a tier indication specifying a second tier on which the second
executable component is to execute; and

including a third reference to the third executable component
within said one of the set of hypertext-based pages, the third reference
including a tier indication specifying a third tier on which the third

executable component is to execute.

27. A method of enabling a target computer to create a software
application, the method comprising the step of transmitting sequences of
instructions from a host computer to the target computer, the sequences
of instructions including instructions which, when executed on the target

computer, cause the target computer to perform the method recited in

claim 24.

28. A method of executing a software application, the software
application for execution on at least one tier of a network having a
plurality of tiers, the software application including at least one
hypertext-based page referencing at least one executable component, the
method comprising the steps of:

receiving from a remote tier a request for a hypertext-based page
referencing an executable component;

determining on which tier of the network the executable
component should be executed in response to the request;

causing said executable component to be executed on an
appropriate tier of the network in response to the request; and

providing the hypertext-based page to the remote tier in response

to the request.

51

WO 99/27440 PCT/US98/25275

29. A method according to claim 28, wherein the determining step
comprises determining on which tier of the network said component
should be executed based on an attribute of a tag in the hypertext-based

page referencing said executable component.

30. A method according to claim 28, wherein the determining step
comprises dynamically determining, in response to the request, on which
tier of the network said component should be executed, based on a

current parameter associated with the network.

31. A method according to claim 28, wherein each application component
is defined according to a single mechanism by which an application
component can be specified for execution on any of the plurality of tiers of

the network.

32. A method according to claim 28, wherein the step of causing said
component to be executed on an appropriate tier comprises the steps of:
determining whether said component should be executed on the
remote tier; and
causing the component to be executed before providing said
hypertext-based page to the remote tier if said component should not be

executed on the remote tier.

33. A method according to claim 28, further comprising the step of, if said
component should not be executed on the remote tier, causing a result of
executing said component to be incorporated into said hypertext-based

page before providing said hypertext-based page to the remote tier.

52

WO 99/27440 PCT/US98/25275

34. A method according to claim 28, wherein the application further
comprises at least one hypertext-based page referencing a second
executable component and at least one hypertext-based page referencing
a third executable component;

wherein the step of causing said executable component to be
executed on an appropriate tier of the network comprises causing said
executable component to be executed on a first tier of the network;

the method further comprising the steps of:

causing the second executable component to be executed on

a second tier of the network; and

causing the third executable component to be executed on a

third tier of the network.

35. A method of enabling a target processing system to execute an
application, the method comprising the step of transmitting sequences of
instructions from a host processing system to the target processing
system, the instructions for causing the target processing system to

perform the method of claim 28 when executed by the target processing

system.

36. A mechanism for enabling execution of a software application, the
software application for execution on at least one tier of a network having
a plurality of tiers, the software application including at least one
hypertext-based page referencing an executable component, the
mechanism comprising:

means for receiving from a remote tier a request for the hypertext-

based page referencing the executable component;

53

WO 99/27440 PCT/US98/25275

means for determining on which tier of the network the executable
component should be executed in response to the request; and
means for causing said executable component to be executed on an

appropriate tier of the network in response to the request.

37. A mechanism according to claim 36, further comprising means for

providing the hypertext-based page to the remote tier in response to the

request.

38. A mechanism according to claim 36, wherein the means for
determining comprises means for determining on which tier of the
network said component should be executed based on an attribute

associated with said component.

39. A mechanism according to claim 36, wherein the attribute is included
in a reference to said executable component, and wherein the reference is

included within the requested hypertext page.

40. A mechanism according to claim 36, wherein the means for
determining comprises means for determining on which tier of the

network said component should be executed based on a state of the

network.

41. A mechanism according to claim 36, wherein each application
component is defined according to a single model by which an

application component can be specified for execution on any tier on the

network.

54

WO 99/27440 PCT/US98/25275

42. A mechanism according to claim 36, wherein the means for causing
said component to be executed on an appropriate tier comprises:

means for determining whether said component should be
executed on the remote tier; and

means for causing the component to be executed before providing

said hypertext-based page to the remote tier if said component should not

be executed on the remote tier.

43. A mechanism according to claim 36, further comprising means for
causing a result of executing said component to be incorporated into said
hypertext-based page before providing said hypertext-based page to the

remote tier, if said component should not be executed on the remote tier.

44. A mechanism according to claim 36, wherein the application further
comprises at least one hypertext-based page referencing a second
executable component and at least one hypertext-based page referencing
a third executable component;
wherein the means for causing said executable component to be
executed on an appropriate tier of the network comprises means for
causing said executable component to be executed on a first tier of the
network;
the mechanism further comprising:
means for receiving a request for a hypertext-based page
referencing the second executable component;
means for receiving a request for a hypertext-based page
referencing the third executable component;
means for determining on which tier of the network each of

the second and third executable components should be executed;

55

WO 99/27440 PCT/US98/25275

means for causing the second executable component to be
executed on a second tier of the network; and
means for causing the third executable component to be

executed on a third tier of the network.

45. A machine-readable program storage medium tangibly embodying
sequences of instructions, the sequences of instructions for execution by a
processing system to perform steps for enabling execution of an
application on at least one tier of a network having a plurality of tiers, the
application including at least one hypertext-based page referencing an
executable component, the steps comprising:

receiving from a remote tier a request for the hypertext-based page
referencing the executable component;

determining on which tier of the network the executable
component should be executed in response to the request; and

causing said executable component to be executed on an

appropriate tier of the network in response to the request.

46. A machine-readable program storage medium according to claim 45,
the steps further comprising providing the hypertext-based page to the

remote tier in response to the request.

47. A machine-readable program storage medium according to claim 45,
wherein the step of determining comprises the step of determining on
which tier of the network said component should be executed based on an
attribute of said component, wherein the attribute is included in a
reference to said executable component, and wherein the reference is

included within the réquested hypertext page.
56

WO 99/27440 PCT/US98/25275

48. A machine-readable program storage medium according to claim 45,
wherein the step of determining comprises the step of dynamically
determining on which tier of the network said component should be

executed based on a current parameter associated with at least one tier of

the network.

49. A machine-readable program storage medium according to claim 45,
wherein each application component is defined according to a single

model by which an application component can be specified for execution

on any tier on the network.

50. A machine-readable program storage medium according to claim 45,
wherein the step of causing said component to be executed on an
appropriate tier comprises the steps of:

determining whether said component should be executed on the
remote tier; and

causing the component to be executed before providing said

hypertext-based page to the remote tier if said component should not be

executed on the remote tier.

51. A machine-readable program storage medium according to claim 45,
further comprising the step of causing a result of executing said
component to be incorporated into said hypertext-based page before

providing said hypertext-based page to the remote tier, if said component

should not be executed on the remote tier.

57

WO 99/27440 PCT/US98/25275

52. A machine-readable program storage medium according to claim 45,
wherein the application further comprises at least one hypertext-based
page referencing a second executable component and at least one
hypertext-based page referencing a third executable component;

wherein the step of causing said executable component to be
executed on an appropriate tier of the network comprises causing said
executable component to be executed on a first tier of the network; and

the steps further comprising;:

causing the second executable component to be executed on

a second tier of the network; and

causing the third executable component to be executed on a

third tier of the network.

53. A system for enabling a software application to be executed on at least
one of a plurality of tiers on a network, the system comprising;:
a processor;
a first storage unit accessible to the processor and having stored
therein a plurality of executable components, and
a second storage unit accessible to the processor and having stored
therein a plurality of pages functionally connected by hypertext links, the
plurality of pages incorporating the plurality of executable components;
wherein the processor is configured to:
receive a request for one of the pages from a remote tier on
the network; and
access one of the pages and a corresponding first one of the
executable components in response to the request;
identify an appropriate tier on which said first one of the

executable components should be executed in response to the request; and

58

WO 99/27440 PCT/US98/25275

cause said first one of the executable components to be

executed on said appropriate tier in response to the request.

54. A system according to claim 53, wherein the processor is configured
to identify said appropriate tier based on a reference to said first one of
the executable components in the requested page, the reference including
an attribute specifying a tier on which said first one of the executable

components should be executed.

55. A system according to claim 53, wherein the processor is configured

to dynamically identify said appropriate tier based on a current

parameter.

56. A system according to claim 53, wherein the processor is further

configured to:

determine whether the first one of the executable components
should be executed on the remote tier; and

cause the first one of the executable components to be executed
before the requested page is provided to the remote tier, if it is

determined that the first one of the executable components should not be

executed on the remote tier.

57. A system according to claim 53, wherein the processor is further
configured to cause the requested page to be provided to the remote tier
after the first one of the executable components is executed if the remote

tier is not identified as said appropriate tier.

59

WO 99/27440 PCT/US98/25275

58. A system according to claim 53, wherein execution of said component
results in an output, and wherein the processor is further configured to
incorporate the output into the requested page before the requested page
is provided to the remote tier if said first one of the executable

components should not be executed on the remote tier.

59. A system according to claim 53, wherein the application further
comprises at least one hypertext-based page referencing a second one of
the executable components and at least one hypertext-based page
referencing a third one of the executable components;
and wherein the processor is further configured to:

receive a request for a hypertext-based page referencing the
second one of the executable components;

receive a request for a hypertext-based page referencing the
third one of the executable components;

determine on which tier of the network each of the second
and third ones of the executable components should be executed;

causing the second one of the executable components to be
executed on a second tier of the network; and

causing the third one of the executable components to be

executed on a third tier of the network.

60

PCT/US98/25275

WO 99/27440
1/14
_ > _ .
CLIENT HTITE HTTe
Tg SERVER
T ==
l
1
| |
L

FIG. 1

PCT/US98/25275

WO 99/27440

2/14

¢~

Zl ol Gl Pl
A0IA3a A2I1A3d
WOo2 ONLLNIOd aAvogAaN AY1dsida
QPM
cl 2l I ol
A9VA0LS
SSYWN WO WY ndo

FIG. 2

PCT/US98/25275

WO 99/27440

3/14

h2~

Tz~

(Y%

MM NYLSYNINT

E

_

_ | INLH _ |
I
(N O []
V& At _p_ | L_ _ [||
L= L _ = |
N
T— — YA
mu._... /ﬂ%
o WAL
WAS.
} Fe~|
JINYAS VANRIY
Mool ¥V oy 1~ iy

TT

0L~

il H

vq N\

WAL

AN

FIG. 3

PCT/US98/25275

WO 99/27440

4/14

—————

——

DIRECToR.

29

|

TNFRASTRUCTURE

To

O MYe
TIER(

FIG. 4A

PCT/US98/25275

5/14

WO 99/27440

™ 2 AIN
& Wwa

%31

SEnLondL SWINT

BYnLinyisayint
™
Ex): 71 i RS R B
?\ 2307 Ma.\ Loeio Lyany YaLI34lq
TAANRS Malv I\ Yy e — . - .
. g -
e - LoanD b

FIG. 4B

WO 99/27440

6/14

USER CLICKS ON HYPERTEXT
LINK

L~ S90)

A 4

BROWSER TRANSMITS REQUEST
TO HTTP SERVER

|~ S0

Y

HTTP SERVER PASSES REQUEST
TO APPLICATION SERVER

L~ 503

'

APPLICATION SERVER
RETRIEVES REQUESTED PAGE

—~ 3 0Y

Jos

ANY
SERVER-SIDE

YES -p

PCT/US98/25275

PRLY:

SERVER-SIDE
ROUTINE

APPLICATION SERVER PASSES
REQUESTED PAGE TO HTTP
SERVER

~ $56

b

HTTP SERVER TRANSMITS
REQUESTED PAGE TO BROWSER

FIG. 5

WO 99/27440

7/14

BROWSER RECEIVES
REQUESTED PAGE

—60)

OUND APPLET

TAGFOR A
COMPONENT

YES
\ 4

toL

BROWSER
INSTANTIATES
COMPONENT

— 603

v

INFRASTRUCTURE
REGISTERS
COMPONENT

r-'éO"I

-

BROWSER RENDERS
PAGE

,-’éof

FIG. 6

PCT/US98/25275

PCT/US98/25275

WO 99/27440

- 8/14

IWOI-Gng
AT Yoi-22%1q

-]
:,.“r..i L -

~ JNO>-F0S
25¢ - A¥3alpNaed

TN

r.fl T_
| |

—————

.

T

2PN LNYLSWYANT §

|
.,

/w\ F
1= = F ——= |

(.mﬂL

JWo-gng
L X3LNoD

|

Srvow
e ro—

Yol ?23¥q

!

-

,
.

——

I

_

Fig. 7

99/27440 PCT/US98/25275
WO

9/14

BROWSER INSTANTIATES |~ ol
COMPONENT

'

COMPONENT INSTANTIATES ITS |~ Qo2
CONTEXT SUB-COMPONENT

'

CONTEXT SUB-COMPONENT |~ 803
ATTEMPTS TO LOCATE DIRECTOR
SUB-COMPONENT

904 806

DIRECTOR CONTEXT SUB-COMPONENT
SUB-COMPONENT NO —p CREATES DIRECTOR
SUB-COMPONENT

CONTEXT SUB-COMPONENT |~ 805~
REGISTERS ITS COMPONENT
WITH DIRECTOR
SUB-COMPONENT

FIG. 8A

PCT/US98/25275

WO 99/27440

10/14

L2

REINED

~———— — -

99~

Jaryay
NOLLYI9IY

E U
_ | 79
[|
\ l
| | r.._L w.r T .;:.I"
l v |
|

L - e— |

e R

D — S

.c|¢mmm wiH

pani
m@ 29 ~

inanmo

FIG. 8B

WO 99/27440 PCT/US98/25275

=
v

0

COMPONENT PROVIDES ITS ConTEXT 1~ 1°1

SUB-COMPONENT WITH REQUEST FOR A
CONNECTION

)
CONTEXT SUB-COMPONENT CONTACTs 1~ 1° &

DIRECTOR SUB-COMPONENT AND
REQUESTS LIST OF REGISTRATIONS

'

DIRECTOR SUB-COMPONENT 0%
PROVIDES LIST OF REGISTRATIONS
TO CONTEXT SUB-COMPONENT

I

CONTEXT SUB-COMPONENT EXECUTES L~ 104
"FINDSERVICEPROVIDER" TO SEARCH LIST
FOR APPROPRIATE SERVICE PROVIDER

11/14

YES
A 4

CONTEXT SUB-COMPONENT b~ 706
RETURNS REFERENCE(S) TO
SERVICE PROVIDER COMPONENT(S)
TO ITS OWN COMPONENT

l<_
=)

FIG. 9

PCT/US98/25275

WO 99/27440

12/14

EIC .v \,ﬁum\cb”.
¢
e

| wViSoH, Yanyas

(201 < gyon)
YANYAS
VIS,
*

e
L]
caq e =
e foe====

}
|
[LFINY
>Pf D~
T |

)
)
\
M
+

(eal » avaq)

Yanyays r

:m(...o..

. e -

10

FIG.

€9

LnN3atind

som\\

L

PCT/US98/25275

WO 99/27440

13/14

e e i Bt - B

ﬂﬂr@: o PTios WIN oW

DRAG THE RLocks Vo WoULD LICE T ZreludE

_&

NOUR APPLIGATION TNTO THE LEFT WINGOW
Mllft..}.l.-.v'lllll...lll o . . ‘ . e ..J
\ab NI
i N
] [E
Yol «.\\ Yob ‘ol
B
e o il Tl
"‘.,l \.,,.Np 32 ﬁ DLtk v
[
‘1o Yol
E ‘m_.?nx’
~—
T N R —
3b 37

11

FIG.

PCT/US98/25275

WO 99/27440

14/14

Jramsma ..
T A A T SRR VIR AT TN SN P i

Jhs
N oo.\(l JT:«&U .

>

. 4%
T 2 —jry5 0/

53

T

bs
C 38wanv)
%M)\B..&o?u %é&vnxuco

Lo~
Yhs, 5 XA Aaod

29 -eob _\
2443 ﬁﬂmﬂ

&rwp . \{, uSWu

) T Y1 S Av.r:0©\ wnpa2os) Ys O %L»SO u_%:_m @

'

A

sishpany &9
(e t..I:Z Q. vymw\,_.sx\ QtN ®

Jxﬁ&nk So,r_..J.f %..& SPJ.&SC&.KH

_]

o

2E =

L xal Adpeald

| s d

A §62 c.ak.cum_ d4 »

e

A Illr\.-\(lcoiﬂ

12

FIG.

INTERNATIONAL SEARCH REPORT Intemational application No.
PCT/US98/25275

A. CLASSIFICATION OF SUBJECT MATTER
IPC(6) :GO6F 09/42, 15/16, 17/30
US CL :395/701, 395/685, 395/682
According to Intemational Patent Classification (IPC) or to both nationai classification and IPC

B. FIELDS SEARCHED

Minimum documentation searched (classification system followed by classification symbols)

US. . 395/701, 395/685, 395/682

Documentation searched other than minimum documentation to the extent that such documents are included in the fields searched
SOFTWARE DEVELOPMENT 1999 RESOURCE GUIDE

Electronic data base consulted during the intemnational search (name of data base and, where practicable, search terms used)

APS, STN, ACM

C. DOCUMENTS CONSIDERED TO BE RELEVANT

Category* Citation of document, with indication, where appropriate, of the relevant passages Relevant to claim No.

X,P USA 5,838,906 A (DOYLE ET AL.) 17 NOVEMBER 1998, | 1-59
ABSTRACT, BACKGROUND, SUMMARY, COLS. 9-11 AND 14- |
15.

Y USA 5,457,797 A (BUTTERWORTH ET AL.) 10 OCTOBER 1995, | 1-59
ABSTRACT, BACKGROUND, SUMMARY, AND COLS. 7-11.

A NEIL JENKINS ET AL., CLIENT/ SERVER UNLEASHED,| 1,7,15,20,
SEPTEMBER 1996, 395-405. 24,28,36,
45,53

D Further documents are listed in the continuation of Box C. D See patent family annex.

* Special categories of cited d ta: T later document published after the international filing date or priority
date and not in conflict with the application but cited to understand

"A" document defming the general state of the art which is not considered the principle or theory underlying the invention
to be of particular relevance
BE earlier document published on or after the international filing date X document of particular relevance; the clamed wvention ca.nnol. be
considered novel or cannot be considered (o volve an mvenuve step
‘L* document which may throw doubts on priority claim(s) or which is when the document 1s taken alone
cited to establish the publication date of another citation or other .
special reason (as specified) "y document of particular relevance; the claimed invention cannot be
considered to involve an inventive step when the documenm is
O document referring to an oral disclosure, use, exhibiion or other combined with one or more other such documents, such combtnation
means being obvious to a person skilled i the art
“p* document published prior w the internauonal filing date but later than =g = document member of the same patent family
the prionty date claimed
Date of the actual completion of the international search Date of mailing of the intemational search report
27 JANUARY 1999 03 MAR 1999
Name and mailing address of the ISA/US Authorized officer
Commissioner of Patents and Trademarks | .
Box PCT N ’\‘\
Washington, D.C. 20231 JOHN CHAVIS QnL
Facsimile No. (703) 305-3230 Telephone No. (703) 305-9600

Form PCT/ISA/210 (second sheet)(July 1992)«

	Abstract
	Bibliographic
	Description
	Claims
	Drawings
	Search_Report

