
(19) United States
(12) Patent Application Publication (10) Pub. No.: US 2006/0020585 A1

Harvey et al.

US 20060020585A1

(43) Pub. Date: Jan. 26, 2006

(54)

(76)

(21)

(22)

(63)

(60)

WEB SERVICES APPARATUS AND
METHODS

Inventors: Richard Harvey, Ringwood East (AU);
Timothy Bently, Coburg (AU)

Correspondence Address:
RICHARD F. JAWORSKI
Cooper & Dunham LLP
1185 Avenue of the Americas
New York, NY 10036 (US)

Appl. No.: 10/932,696

Filed: Sep. 2, 2004

Related U.S. Application Data

Continuation of application No. 10/648,696, filed on
Aug. 25, 2003, now abandoned.

Provisional application No. 60/406,391, filed on Aug.
26, 2002. Provisional application No. 60/406,399,

filed on Aug. 26, 2002. Provisional application No.
60/406,325, filed on Aug. 26, 2002. Provisional appli
cation No. 60/406,328, filed on Aug. 26, 2002. Pro
visional application No. 60/406.204, filed on Aug. 26,
2002. Provisional application No. 60/406.205, filed
on Aug. 26, 2002. Provisional application No. 60/406,
319, filed on Aug. 26, 2002.

Publication Classification

(51) Int. Cl.
G06F 17/30 (2006.01)

(52) U.S. Cl. .. 707/3

(57) ABSTRACT

A method for use in a Web Services system includes
providing access to a data repository and providing shadow
attributes for use in conducting Searches of the data reposi
tory.

0 Partners, suppliers, Customers

WS

self-discovering

UDD

self-descriptive

WSDL

UDD

Web Services Related Art

Patent Application Publication Jan. 26, 2006 Sheet 1 of 14 US 2006/0020585 A1

{0 Partners, suppliers, Customers

WS

self-discovering self-descriptive

WSDL

SOAP

UDD C Gosty D UDD

Web Services Related Art

FIG. 1a

(Business Service Transactions + Security + Mgmt

Application

Transport SOAP (XMLP)

Network)

WS Protocol Stack Related Art

FIG 1b.

Patent Application Publication Jan. 26, 2006 Sheet 2 of 14 US 2006/0020585 A1

2f 24

businessEntity
Businesskey are
name description
description OverviewDOC
businessServices categoryBag
categoryBag identifierBag
identifierBag

businessService

servicekey
businessKey
name
description
bindingTemplates
CategoryBag

keyedReference
keyName
keyValue

tModelinstancelnfo
Description
OverviewDOC

bindingTemplate
bindingkey
serviceKey
description
accessPoint

hostingRedirector

Related Art

FIG. 2

Patent Application Publication Jan. 26, 2006 Sheet 3 of 14 US 2006/0020585 A1

Directory Service

Application

Related Art

FIG. 3

UDD Service
41

44

FIG. 4

US 2006/0020585 A1

g '?IH

Patent Application Publication Jan. 26, 2006 Sheet 4 of 14

Patent Application Publication Jan. 26, 2006 Sheet 5 of 14 US 2006/0020585 A1

Business Service S1

Binding Template BT1 Tmode TM1

Binding Template/Tmodel relationship

FIG. 6

Tmodel TM1 Binding Template BT1
+Key = ABCD-1234 +TModel Key = ABCD-1234
+Name = My TModel

Primary & Foreign Keys

FIG.7

8 "?INH

US 2006/0020585 A1

ON
9

Patent Application Publication Jan. 26, 2006 Sheet 6 of 14

Patent Application Publication Jan. 26, 2006 Sheet 7 of 14 US 2006/0020585 A1

Ye S

Get next item from list

is item an example of Set object attributes
this object type? based on tem

Have we processed
an item of this object

type yet?

Add item to object
attributes,

and perform any
extra processing.

ls item an intrinsic
component of this object

(e.g. Name, Description)2

ls item a child Instantiate object
object of this object (e.g. of correct type,
BusinessService if this a and pass list of

BusinessEntity)? items to Constructor

FIG. 9

Patent Application Publication Jan. 26, 2006 Sheet 8 of 14 US 2006/0020585 A1

Patent Application Publication Jan. 26, 2006 Sheet 9 of 14 US 2006/0020585 A1

ff0

1

Domain2

ff2 f f4

f f3 / /
Y 1w Y

Y

/ User - User /User
User / User Y User - Y

A. User User2

A. BE2 A. BE2
/ BS / BS

BS2 A. BS
BT - BT - BT

/ / r BT, / n

BT BT BT

FIG. 11

Patent Application Publication Jan. 26, 2006 Sheet 10 of 14 US 2006/0020585 A1

Domain f2f

-1 1Model 1ublisherAssertion 1 Repository
Prefix

10 anization -1 -1 -1 -1
Iganzation TMode.Desipon TModeldentierROverview ocescription TModeCategory:R

-1 f23

1 Repository "L
1-12 1Model
1User Account
1-124 elee e

TModelDescription, TModelcertiekR Overview obesipon TModeCategy.R.
BE,

125
w a

w e Y Y
1 1. 1 1. 1

w

BS in Tcontact DiscoverL BEName BEDescription Publisherssertion

Address Phone Emalion BEIdentifierKR BECategory:KR

ServiceProjection 1.

Addressine Contaclescription

"))
BT BSName BSDescription BSCategory:KR

BTDescription TModelinstancelnfo

TModelinstancelnfoDescription TModelinstanceDetailsDescription OverviewDocDescription

FIG. 12

Patent Application Publication Jan. 26, 2006 Sheet 11 of 14 US 2006/0020585 A1

Business Entity-13t

f32 Authorized Name
f32 BusinessKey
f32 Name --

UDD

(text)
f33 language

f33 f33

(Prior Art
FIG. 13

Business Entity-141

(Object Class) (Business Entity)

Bill

890..abode.890...

f42 Authorizedname

f42 Businesskey Nowell

Name enliCA

Name IN#CATS
f43

f44

(Prior Art)
F.G. 14

Patent Application Publication Jan. 26, 2006 Sheet 12 of 14 US 2006/0020585 A1

Business Entity-15t

(Object Class) (Business Entity)
Authorizedname Bill

BusinessKey 890..abode.890...

CA

(Object Class)
Language en

BEName CA

(Business Entity) (Object Class) (Business Entity)
Language IN

BEName CATS

f52 f53

FIG. 15
UDD Relationship Diagram

object-161

relationship -162

object-163

FIG. 16

Patent Application Publication Jan. 26, 2006 Sheet 13 of 14 US 2006/0020585 A1

Directory Hierarchy Diagram

Parent Object-171

child Object 9
C C2 Cn
B B2B

FIG. 17

Patent Application Publication Jan. 26, 2006 Sheet 14 of 14 US 2006/0020585 A1

f80
k fS6

f82 fS4

NETWORK V CPU SNR - Sa TOPSTN

f84 f30 f32

LAN DATA LAN
MEMORY TRANSMISSION

CONTROLLER INTERFACE

TO LAN
f98

INPUT DEVICES

f86 f38

PRINTER
INTERFACE DISPLAY UNIT

FG. 18

US 2006/0020585 A1

WEB SERVICES APPARATUS AND METHODS

CROSS REFERENCE TO RELATED
APPLICATIONS

0001. The present application claims the benefit of Pro
visional Applications Ser. Nos. 60/406,391; 60/406,399;
60/406,325; 60/406,328; 60/406.204; 60/406.205; and
60/406,319 each of which was filed on Aug. 26, 2002 and the
contents of each of which are incorporated herein by refer
CCC.

BACKGROUND

0002) 1. Field
0003) The present disclosure relates to UDDI Registry
and Web Services in general, and in particular to method(s),
apparatus and System(s) used in giving practical effect to
Such Services.

0004 2. Description of Related Art
0005 UDDI (Universal Description, Discovery and Inte
gration) is a set of Standards that have been defined to enable
applications that use Web Services to quickly, easily and
dynamically interact with one another. UDDI is intended to
create a platform-independent, open framework for describ
ing Services, discovering businesses and integrating System
Services using the Internet, as well as an operational registry.
Refer to the web site www.uddi.org for further details.
0006 A UDDI registry provides valuable support to
systems structured using Web Services. FIG. 1a illustrates
schematically basic Web Services and UDDI concepts. FIG.
1b illustrates Schematically a simplified protocol Stack for
the Web Services environment. UDDI provides a repository
for Web Services information and is itself provided by way
of a Web Service.

0007 UDDI enables applications to publish how they
want to interact on the web. Each “Web Service is a
Self-describing, Self-contained, modular unit of application
logic that provides Some System functionality to other appli
cations through an Internet connection. Applications acceSS
Web Services via ubiquitous web protocols and data for
mats, with no need to worry about how each Web Service is
implemented. Web Services can be mixed and matched with
other Web Services to execute a larger workflow or business
transaction.

0008. The UDDI Standards describe a specific-purpose
repository that is intended to manage descriptions of Web
Service types, busineSS organizations, and details about how
to invoke the Web Services. The. Standards do not neces
sarily specify how the Standards should be implemented,
nor whether the implementation should include Storage
using a database, a Directory or any other medium.
0009. At a web site hosted by the organisation respon
sible for the UDDI Standards (http://www.uddi.org/fads.h-
tml) there are a number of Frequently Asked Questions
(FAQ). One of these questions is: “Can a UDDI registry be
built or based on LDAP. In answer, this web site discloses
that there is no formal relationship between UDDI and
Directories. “The UDDI specification does not dictate reg
istry implementation details. The UDDI specification
defines an XML-based data model and a set of SOAP APIs
to access and manipulate that data model. The SOAP APIs

Jan. 26, 2006

define the behaviour a UDDI repository exhibits. A UDDI
implementation could be built on an LDAP Directory as
long as it conforms to the Specified behaviour. Thus far, all
UDDI implementations have been built on relational data
bases.”

0010. It is to be noted that Directory technologies, such
as X.500 and LDAP, are extensible, general-purpose data
Stores and their associated languages that are most often
used to manage users and resources. They are very well
established technologies, widely adopted, and considered
very stable and reliable.
0011. However, implementing the UDDI Standards
(available at www.uddi.org) on a Directory requires the
Solving of a number of problems. The UDDI Standards leave
many important issues unaddressed, Such as:

0012. The UDDI Standard defines a number of objects,
Some of which are related by a hierarchy, but UDDI
does not define an all-encompassing hierarchy. For
example. BusineSS Service objects will come under
Business Entity objects, and the Binding Template
objects will come under. Business Services. FIG. 2
illustrates an example of this hierarchy. BusineSS Entity
objects are denoted 21, BusineSS Services objects are
denoted 22, and Binding Template objects are denoted
23. It is also to be noted that TModel objects, denoted
24, for example, are not hierarchically related to these
objects. There are also other concepts such as Publisher
Assertions, for example, which are not defined hierar
chically.

0013 creating an efficient implementation of the
requirement that a user be permitted to alter only those
objects under his/her control,

0014 creating an efficient implementation that would
allow UDDI registries to be distributed,

0015 creating an efficient implementation which
enhances aspects of management and performance of
Searching and update.

0016. How to represent complex UDDI objects in a
relatively efficient way. For example Business Entity,
Business Service, Binding Template and/or TModel
have compound repeating elements. In turn these
repeating elements could contain further repeating ele
ments. For example, a BusineSS Entity may contain
contacts and the contacts may contain addresses.
Addresses may contain address lines and phone num
bers. FIG. 13 illustrates schematically a UDDI concept
of a relatively complex object in a Business Entity. The
Business Entity object 131, includes, for example. a
number of attributes 132, Such as Authorized Name,
BusinessKey, and Name. The Name has one or more
Name fields 133, such as text or this may be implicit
in the Name itself. There is also language’. There
may be one or more of these fields 133.

0017. How to provide for relatively rapid searching for
a specific items contained in repeating elements.

0018. How to represent UDDI information and
requirements in hierarchy of Directory objects,

0019 How to manage deletion of UDDI objects and all
their related information in an efficient manner, and

US 2006/0020585 A1

0020. How to optimize construction of intermediate
Search result collections during Search operations. So
that both Directory access and iterative in-memory
operations are minimized, taking into account the
Directory Storage medium limitations. In practice,
Directory entries may be Stored and returned in arbi
trary order, and Directory results may be too large to
SOrt.

0021 How to represent the data concerning a Publisher
ASSertion, in an efficient way,

0022. How to create an efficient implementation of
Publisher Assertions, particularly with regard to the
implementation of the findrelated Business method,

0023. How to implement efficient searching of Pub
lisher ASSertions by relationship,

0024 How to manage the validity of a Publisher
ASSertion,

0025 How to restrict the assertions created and deleted
for a Business Entity are made by the owner of a
Business Entity.

0026. How to efficiently manage related collections of
attributes, as defined in the UDDI standard,

0027. How to define attributes and objects to enhance
the performance of Searching.

0028. Various UDDI Schema have been proposed. How
ever, none are considered to address at least the problems
noted above. For example, one Schema provides a relatively
simplistic mapping of UDDI objects to Directory objects,
without necessarily having regard to the complexities and
optimization to produce an efficient commercial implemen
tation. It is also unclear how a number of the UDDI services
(the find Series, in particular) can be implemented effi
ciently in Such a Schema.
0029. For example, FIG. 14 illustrates schematically a
Novell representation of a relatively complex object in a
Business Entity. The Business Entity object 141, includes
for example a number of attributes 142, each having a type
and value. As illustrated, there is AuthorizedName having
a value Bill, BusinessKey having a value '890.obale.890.

... ', and Name having multi-values 143, 144 namely
0030) ent; CA
0031) IN# CATS

0032) The UDDI (FIG. 13) and Novell (FIG. 14)
example representations are not considered to be efficient
representations for Web Services.
0033. Thus, there is a need to address the general prob
lems noted above as well as other problems to provide a
relatively extensible, efficient and reliable implementation
of UDDI based on a Directory.

SUMMARY

0034. A method for use in a Web Services system com
prises providing access to a data repository and providing
Shadow attributes for use in conducting Searches of the data
repository.
0.035 A computer recording medium including computer
executable code for performing a method for use in a Web

Jan. 26, 2006

Services System comprises code for providing access to a
data repository and code for providing shadow attributes for
use in conducting Searches of the data repository.

BRIEF DESCRIPTION OF THE DRAWINGS

0036 Further objects, advantages and aspects of the
present disclosure may be better understood by reference to
the following description of preferred embodiments taken in
conjunction with the accompanying drawings, in which:

0037 FIG. 1a illustrates schematically some Web Ser
vices and UDDI concepts;
0038 FIG. 1b illustrates schematically a simplified pro
tocol stack for the Web Services environment;
0039 FIG. 2 illustrates schematically a Hierarchy
according to the related art;
0040 FIG. 3 illustrates schematically a Directory Ser
Vice Model according to the related art,
0041 FIG. 4 illustrates schematically the infrastructure
components for a UDDI Service Model implemented using
X.500 Directory technology according to an embodiment of
the present disclosure,
0042 FIG. 5 illustrates schematically Service Projection,
according to an embodiment of the present disclosure;
0043 FIG. 6 illustrates schematically relationships
between Binding Template and TModel, according to an
embodiment of the present disclosure;
0044 FIG. 7 illustrates schematically how a TModel
creates a relationship between two entities, according to an
embodiment of the present disclosure;
004.5 FIG. 8 illustrates a logical representation of a
request to add a Publisher ASSertion, according to an
embodiment of the present disclosure;
0046 FIG. 9 illustrates a logical representation of a
constructor for UDDI data objects according to an embodi
ment of the present disclosure;
0047 FIG. 10 illustrates schematically placing Business
Entities objects under User object(s);
0048 FIG. 11 illustrates schematically placing Domain
objects over User object(s);
0049 FIG. 12 illustrates schematically an outline of the
Schema according to an embodiment of the present disclo
Sure,

0050 FIG. 13 illustrates schematically a UDDI concept
of a relatively complex object in a BusineSS Entity according
to the related art;

0051 FIG. 14 illustrates schematically a Novell repre
Sentation of a relatively complex object in a BusineSS Entity;

0.052 FIG. 15 illustrates schematically the introduction
of hierarchy in accordance with an embodiment of the
present disclosure for the representation of a relatively
complex object in a BusineSS Entity;

0053 FIG. 16 illustrates schematically a Binding Tem
plate hierarchy Sub-structure according to an embodiment of
the present disclosure,

US 2006/0020585 A1

0054 FIG. 17 illustrates schematically a binding Tem
plate Sub-structure flattened and/or merged; and
0.055 FIG. 18 is a block diagram of a computer system
capable of implementing various aspects of the present
disclosure.

DETAILED DESCRIPTION

0056. In describing preferred embodiments of the present
disclosure illustrated in the drawings, Specific terminology is
employed for Sake of clarity. However, the present disclo
Sure is not intended to be limited to the Specific terminology
So Selected and it is to be understood that each specific
element includes all technical equivalents which operate in
a similar manner.

0057 FIG. 18 shows an example of a computer system
which may implement the method and System of the present
disclosure. The System and method of the present disclosure
may be implemented in the form of a Software application
running on a computer System, for example, a mainframe,
personal computer (PC), handheld computer, server etc. The
Software application may be Stored on a recording media
locally accessible by the computer System, for example,
floppy disk, compact disk, hard disk, etc., or may be remote
from the computer System and accessible via a hard wired or
wireleSS connection to a network, for example, a local area
network, or the Internet.
0.058 An example of a computer System capable of
implementing the present method and System is shown in
FIG. 18. The computer system referred to generally as
system 180 may include a central processing unit (CPU)
182, memory 184, for example, Random Access Memory
(RAM), a printer interface 186, a display unit 188, a (LAN)
local area network data transmission controller 190, a LAN
interface 192, a network controller 194, an internal bus 196
and one or more input devices 198, for example, a keyboard,
mouse etc. As shown, the system 180 may be connected to
a data Storage device, for example, a hard disk, 200, via a
link 202.

0059. The following Summarizes some of the salient
features of embodiments of the present disclosure and a few
of the advantages provided thereby.

0060 According to an embodiment of the present disclo
Sure, a repository layer is created above users So each
repository can be placed on a different Server. This Reposi
tory layer includes one or more Directory nodes which
collectively form the Directory pre-fix. This may also be
known as Domain or Name of the Repository. An advan
tage of this is that it provides a single place to hold
information about a domain. The name of this node repre
sents the Directory prefix.

0061. A user object may be created to hold the data
representing a UDDI account. An advantage of this is that it
provides a Single place to hold information about a user/
acCOunt.

0062 Business Entity object(s) may be arranged under
User object(s), Business Service object(s) under Business
Entity object(s), and Binding Template object(s) under Busi
ness Service object(s). An advantage of this is that a reposi
tory or domain layer above the user object layer enables a
number of repositories to be posted or logically connected

Jan. 26, 2006

together. The domain layer may be arranged in a number of
levels, for example having different countries, AU, US, EP,
etc., organized by continent.
0063 Another advantage is that this feature may be given
effect by use of the Distribution features of an X500 Direc
tory. For example, to implement this, a World, or “Corpo
ration Node is placed at the top of the virtual Directory tree,
and a uniquely named Node is placed at the top of each
UDDI sub-tree (UDDI Name Space). While invisible to
users, these Node' prefixes allow a UDDI repository to
leverage Directory distribution.
0064. According to an embodiment of the present disclo
Sure, the Business Entity objects can be made a child of the
user object. Having a user/account over the BusineSS Entity,
BusineSS Service and Binding Template hierarchy gives the
effect of each user having their own Sub-tree. This enhances
manageability and Security. The user is readily restricted to
modifying and/or controlling only their own Sub-tree. This
also enhances performance by making use of Directory
Sub-tree Search operations
0065 According to an embodiment, TModels defined by
a user can be made children of the user object, thus makes
Security easy to implement. This enhances manageability
and Security Since the user can only modify and/or control
their own Sub-tree. It also enhances performance by making
use of Directory Sub-tree Search operations.
0066 An embodiment of the present disclosure repre
sents a mapping of the UDDI environment using X.500/
LDAP Directory technology. In particular, the hierarchy
structure of the X.500 and LDAP Directory technology has
been found to be suitable to the UDDI environment. Careful
design of additional elements (Such as the user object) have
made the hierarchy even more suitable to the needs of the
UDDI environment.

0067. Throughout the present disclosure, the term Direc
tory is to include X.500, LDAP and similar technologies; the
term “Users is understood to also include Accounts and
Visa Versa; and the term 'Repository is understood to also
include Directory Pre-fix, Domain and or Node and visa
WCS.

0068 Web Services were originally envisaged to be
Services between organizations for example businesses,
partners, customers, Suppliers. In this context, UDDI was
envisaged as a Single repository for the Services these
organizations offer.
0069. It is now apparent that Web Services and UDDI are
useful within an enterprise to integrate applications inside an
organization. It is also apparent that Web Services and UDDI
can be used to integrate products inside a product Set from
a given vendor. It is also applicable outside the commercial
environment, in areas Such as government departments,
large educational institutions, and many other instances of
non-commercial entities.

0070 The following description, although described with
respect to an enterprise, has equal applicability to any type
of environment and particular applicability to the above
mentioned types of environments.
0071 An enterprise UDDI registry can be a service that
can be deployed within the Enterprise to publish information
and Services for internal consumption. In addition, an Enter

US 2006/0020585 A1

prise UDDI service may be leveraged to provide other
functions, Such as configuration discovery for distributed
applications.

0072 Web Services are being driven by the desire to
quickly and easily integrate busineSS processes, both inter
nally and with partners. One component of using Web
Services effectively is a public UDDI registry that enables
Software components to dynamically discover and connect
to appropriate Services across the Internet. Web Services
also offer the promise of being able to integrate busineSS
processes within the Enterprise. In this case, the UDDI
registry can become a piece of an organization's infrastruc
ture (e.g., an important Enterprise application) and therefore
provide the highest levels of Security, performance, reliabil
ity and manageability. Directory technology provides an
ideal foundation to Support the Stringent requirements of an
Enterprise UDDI Registry.
0073. An Enterprise UDDI registry can be defined as one
that delivers Standards-compliant support for UDDI, but
goes beyond it to address four areas for deployment. These
areas include SECURITY to restrict access to authorized
users only, DISTRIBUTION to support large deployments,
MANAGEABILITY for a true production system and
AVAILABILITY to meet service level agreements.
0.074 Strong security may be an important requirement
for certain Enterprise deployments. A public UDDI registry
exists for the Sole purpose of helping anyone discover
available services. An UDDI registry exists for the sole
purpose of having the right people discover these Services.
This is an important distinction.
0075 An Internet UDDI registry is considered inappro
priate for deploying Web Services in an enterprise. For
example, definitions of a Web Service that interfaces to a
payroll System or to an employees benefits management
application would not be posted to an Internet UDDI Reg
istry.

0.076 Security requirements may also mean that even an
internally deployed UDDI registry provide Strong acceSS
controls. This is because a UDDI registry essentially pre
Sents a tutorial on what can be done and how to do it. A
UDDI registry provides a business-level description of any
available Web Service and directions to the WSDL that
completely define the programmatic interface to those Ser
vices. This provides a high-productivity tool for application
developers, as well as hackers.

0.077 Accordingly, it is desirable to restrict access to
interface definitions for financially Sensitive or confidential
(Such as medical records) Systems. Even within the devel
opment organization, it may be wise to restrict access to
information about specific Web Services to those authorized.
0078. Using an unsecured UDDI registry within the
enterprise, or with Selected business partners through an
extranet, could be extremely risky. Thanks to freely down
loadable tools, people with relatively low levels of expertise
can gain access to and use Web Services. Any true Enterprise
solution can implement a standard UDDI service with the
ability to transparently control access to information about
Web Services.

0079. With regard to DISTRIBUTION, in many cases,
the initial deployments of UDDI registries will be on a small

Jan. 26, 2006

Scale. However, as Web Services requirements grow, large
deployments will become more common. In addition, reg
istry usage and deployments will accelerate with the dis
covery of new functions for UDDI registries.
0080 Larger implementations, and use within geographi
cally distributed organizations, will drive implementation of
multiple UDDI registries within a single organization. The
evolution towards distributed registries makes it critical for
any individual registry to be able to interact dynamically
with other registries to Service their requests. Once estab
lished, inter-registry communications could be extended
beyond the firewall to include registries at trusted busineSS
partners, or even with Internet UDDI registries.
0081. There are considered to be two basic approaches to
addressing the needs for inter-registry communication. One
approach is REPLICATION in which the same entry
namespace exists on multiple Servers. Another approach is
DISTRIBUTION in which interconnected servers have dif
ferent entry nameSpaces, yet they operate as one logical
Service.

0082 Although these two approaches may often be con
fused as being Similar, they are quite different.
0083) In a REPLICATION approach, information is
duplicated in every Server that may need to look it up. This
is a relatively simple, even Simplistic, Solution, but it intro
duces requirements to Synchronize updates, and it will, by
definition, increase network congestion as the number of
registries and the Volume of their contents grow. Replication
techniques are best Suited for environments where the num
ber of servers is low, the volume of information is low and
changes are infrequent. For enterprise deployments, repli
cation is most useful to maintain backup repositories in a
fail-over environment. Keeping geographically or function
ally distributed servers synchronized is very difficult using
replication techniques.

0084. In a distribution approach, information is logically
represented on each participating Server, but only Stored in
a single registry. Queries are distributed to the other regis
tries only as required. The information returned is thus
guaranteed to be current. This provides a Single point of
update and eliminates the problems of Synchronization and
bandwidth consumption inherent with replication tech
niques. True distribution is considered to be one answer for
Scalable connectivity between Servers.
0085 For an Enterprise UDDI Registry, there are two
scenarios in which distribution will generally be used. The
first is for organizations with geographically Separated
offices, each generating new UDDI entries and consuming
UDDI services. While it might be possible to run a single
centralized UDDI registry, bandwidth restrictions and time
Zone differences frequently make this difficult to the point of
being unworkable.
0086 A distributed registry provides a flexible, Scalable
Solution. In this Scenario, each participating office has a
Separate registry, and each registry views the others as a
logical part of its own content. The registry Service takes
care of all the connectivity details, and customers need not
be concerned with geography.
0087. The second scenario occurs when an enterprise
needs to connect its internal UDDI system to that of a trusted

US 2006/0020585 A1

partner, or public Internet registry. In the case of a public
registry, in particular, replication is problematic. Internet
registry operators may be unwilling to replicate parts of their
registry to the enterprises internal registry. Again, a distrib
uted approach is one answer. At present, there are no UDDI
Standards for distribution and the proposals for replication
are considered complex. One Solution would provide the
benefits of a UDDI distributed approach without requiring
modifications to the Standard.

0088. With regard to manageability, as a component
performing mission-critical functions within an enterprise,
UDDI should meet performance and reliability require
ments. It should not just exist as a convenient utility for
developerS. Read acceSS by clients will be the most frequent
and most time-critical usage of a UDDI registry. Perfor
mance is optimized for maximum throughput, and the
response times of lookup queries should not be affected by
more complex Searching. Performance should not Suffer as
the registry grows in size and complexity. The data Store
underpinning the UDDI Registry should be industrial
Strength and fully Support transactions and automatic recov
ery. In addition, the UDDI servers should have a high degree
of availability and Support features Such as network fail-over
and hot Standby. System Administrators should have capa
bilities to make the UDDI registry easy to maintain, monitor
and control. These capabilities include DYNAMIC CON
FIGURATION to change controls, rules and settings without
taking the service offline, ONLINE BACKUPS AND TUN
ING for high availability, ADMINISTRATIVE CON
TROLS to stop “trawling” of the registry and prevent
denial-of-service attacks, MONITORING via SNMP or
other types of alerting mechanisms, AUDITING AND
DIAGNOSTICS with separate log files for security, statis
tics, queries and update information and DEPLOYMENT
options to Support replication, distribution and routing.
0089 Many developer-focused UDDI registries have
been introduced. These provide useful capabilities for small
development teams, but are not true production quality
Systems. Web Services deployments are growing rapidly and
there is a corresponding need for an Enterprise-quality
registry that can Scale rapidly to Support ongoing Web
Service deployments.
0090. A UDDI registry provides a service. This service
will be relied on by many applications. In the case of on-line
businesses, it may be important that this Service be ever
present. For example, a UDDI registry may be required to
provide service level agreements of 99.99% availability. In
order to facilitate this level of availability, the UDDI registry
may be replicated across two or more machines, and mecha
nisms provided to make certain that the machines are kept
Synchronized, and that, should any of the machines become
unavailable, any incoming queries are automatically routed
to an available machine.

0.091 AS has been pointed out, UDDI may be considered
as effectively analogous to phone directory Service. AS Such,
the Directory model of information Storage is a perfect base
on which to build a UDDI registry service. The Directory
model has been evolved and developed for the specific needs
of Directory-based services, with the security, Scalability
and reliability needed for enterprise level deployment.
0092 Most of the items described above are implemented
at the Service level, rather than at the data Storage level, in

Jan. 26, 2006

application architecture. Relational databases (RDBMS) are
generic toolkits upon which many different kinds of appli
cations can be built. RDBMS implementations concentrate
on providing Solid data access functionality rather than extra
Service functions that are required in the end application.
0093. The Directory Service architecture shown in FIG.
3 illustrates the separation of a Service Layer 31 from the
other components. Encapsulating the interface functions into
a Service Layer 31 results in reusable service infrastructure
components. An excellent example of this is a web server. A
web server provides a collection of functions (HTTP access,
CGI processing and So on) that together make up a service
useful enough to build into a Standalone component. In the
same way, the Directory Service model has been developed
to Supply the functions required by a Specific type of
application. Directory technologies provide the underpin
ning for many mission-critical applications in the area of
authentication and authorization.

0094 UDDI may be viewed as analogous to another kind
of Directory Service. It may then be seen that many of the
implementation problems posed by UDDI can be solved by
using Directory technologies. For example, Directories are
optimized for extremely efficient find and Search operations
that are very common for UDDI phone Directory operations.
0.095. It has already been noted that a UDDI service
should offer Strong Security, distribution and manageability
capabilities if it is to be deployed Successfully in the
Enterprise. These are the very same attributes which have
already been built into Enterprise-strength Directory Ser
vices Solutions.

0096. One way to construct an Enterprise UDDI registry
is to extend the existing Directory infrastructure, which has
been tried and tested in high-performance, real-world appli
cations.

0097. The Directory Services architecture provides the
optimal vehicle to implement an Enterprise UDDI registry.
This combination Supports the capabilities necessary for
success. The UDDI Service as illustrated schematically in
FIG. 4 identifies components which may be implemented
for this infrastructure. UDDI SEMANTIC BRIDGE 41 is a
service component that mediates between the SOAP imple
mentation 42 of UDDI and the LADP interface 43 supported
by Directory 44. Directory 44 delivers information access
with Supporting Security controls, distribution mechanisms,
and administration capabilities. RDBMS 45 provides the
underlying physical data management, transactional integ
rity and backup and recovery mechanisms.
0.098 UDDI registry products may be built directly on
RDBMS technology. Relational Databases, although very
useful and Strong in many ways, do not by themselves meet
the requirements unique to Directory processing It would be
possible to build a Directory-type application from Scratch,
utilizing an RDBMS or other data storage system under
neath. However, this may not be the most efficient approach.
0099. An alternative approach is to apply the Directory
Service model to deliver a UDDI registry and Supply the
functions required for this specific type of application. Even
more functions required for a UDDI registry could be
Supplied by modern, industrial-strength Directory Services.
A UDDI registry may be viewed as a Directory Service with
specialized communications and APIs. Delivering UDDI

US 2006/0020585 A1

Services on a Directory could provide the requisite Security,
distribution and management capabilities without having to
modify the UDDI Standards to gain the benefits.
0100. A careful design of the data representation would
be beneficial to give the functionality and performance
required of a UDDI repository.
0101 The following description refers to various UDDI
concepts. A more detailed description of these UDDI con
cepts can be gained by reference to the UDDI Specifications
(http://www.uddi.org/specification.html).
0102 Aschema, in Directory parlance, is a description of
the data elements that can be stored in the Directory, and
how those elements may be connected together. This
includes descriptions of each of the possible attributes (an
attribute holds a single piece of data), descriptions of the
various objects (an object is a collection of attributes), and
Specifications of the possible object hierarchies. The par
ticular Schema notation used in this specification is the one
used by eTrust Directory, a product of Computer ASSociates
International Inc. eTrust is a product name and trademark
of Computer ASSociates International Inc. Of course, other
Schema notations my be used.
0103) The present disclosure describes a Schema used to
implement a UDDI repository using a Directory as the data
Store. There are a number of concepts involved in this
Schema. There are also a number of techniques used to
enhance the operation of the UDDI implementation. The
following is a brief description of some of these concepts. A
more detailed description of these concepts and techniques
will be described later below when describing embodiments
of the present disclosure.
0104. The present Schema is designed to provide opti
mized operation. The present Schema design, which
includes the definition of Attributes, Object Classes, Entries
and the Hierarchy, is embodied in a manner that enhances
operation. The present Schema design provides significant
advantages in, at least, Security, performance, manageability,
and distribution.

0105. The hierarchy of the system will now be described.
An X.500 Directory supports distribution internally, provid
ing a distributed UDDI repository without any coding at the
UDDI level. A level divides the contents of the repository.
The (optional) domain level of this schema provides that
level, each domain entry, and all of the entries below it, can
be placed on a separate Directory Server transparently to the
UDDI-level programming. FIG. 11 illustrates an embodi
ment of this aspect of the present disclosure. This will be
described in more detail later below.

0106 According to an embodiment of the present disclo
Sure, a user object is placed over the busineSS and TModel
objects. The user object provides a place for the Storage of
information relating to the user. It also provides an anchor
point for all of the data published by the user. FIG. 10
illustrates an embodiment of this aspect of the present
disclosure. This will be described in more detail later below.

0107 Security is facilitated in this domain/user hierar
chical System. A UDDI implementation can enforce that a
user has control over their Sub-tree of data objects.
0108) Searching for user controlled entries is provided.
Searching for data controlled by this user can be enhanced
by using a Sub-tree Search under the user object.

Jan. 26, 2006

0109) It is possible to find a business by specifying, for
example, a TModel that occurs in a Binding Template. This
equates to “finding X by finding one (or more) of its
children”. In other words, a query may be “find all busi
neSSes which have a Service which has a Binding Template
which references this TModel”. Such queries are done by
finding the DN (Distinguished Name) of the descendent
object, and discarding the unwanted levels, to yield the DN
of the Business Entity. It is also possible to do duplicate
elimination in this manner. This find feature comes about
due to the hierarchical nature of the Structure of the present
disclosure.

0110 Searching may be performed using attributes
unique to an object class. This is an optimization that has
two advantages. This simplifies the writing of Searches, and
yields Superior performance through the elimination of
weak clauses. A weak clause is a part of a filter that
returns a large number of entries, or which refers to an
attribute that is part of many entries. A design which used the
same attribute name for every Name would have two
choices when Searching, for a BusineSS Entity by name: it
includes the object class in the search or filter the results of
the search. The former is only possible if business names had
a unique object class, and even So, object class is a weak
clause, incurring more overhead. The latter means extra
code and the potential for returning a result list much larger
than the desired result.

0111 For example, consider a company called "McKen
na's Testing Services” which offers a wide range of Web
Services, all of which include "McKenna’s” in their
name-a search for business entities with "McKennas' in
their name would return intermediate results for all of the
Services as well. These intermediate results may be elimi
nated, but dealing with them reduces performance.

0.112. It is preferable to be able to specify an attribute
name in a Search and have that attribute name uniquely
identify the object class being Sought. To continue the
example above, the Search is much simpler if we can
Specify:

(euBusinessEntityName=McKennas*)

0113 Such a design produces strong Searches, which are
efficient because they are Searching only the desired area.
Strong Searches include Searches which return a Small
number of entries. The Directory can index the euBusines
sEntityName attribute, and return results from that index
this produces good performance, and avoids handling
unnecessary intermediate results.

0114 For simple queries, Such a design means that a
Search for a BusineSS Entity name is a Single clause, rather
than the compound that might be necessary in another
design. Imagine if the name attribute were called euName,
and the Business Entity name object were called euBusin
essEntityName. That would yield a search like:

(&(euName=McKennas*)(oc=euBusinessEnti
tyName))

0115 There is an even more simple design, wherein all
names are Stored in the same object class. This means that
the Search reduces to (euName=McKennas) again, but
now we wade through results for all names, trying to locate
those which have a parent object that is a BusineSS Entity

US 2006/0020585 A1

this last design would yield potentially poor performance,
and rather more complex programming.
0116 Shadow attributes may be used for case-sensitivity.
It is far from trivial to provide both case-sensitive and
case-insensitive Searching using a single index. One option
is to index case-insensitively, then Scan the results case
Sensitively. Another Solution here is to indeX the original
data case-Sensitively, and to add a Second attribute (in which
the same data is stored) which is indexed case-insensitively.
Then all that is required is to choose the appropriate attribute
to Search depending on the find qualifiers.
0117 Every attribute in this design may be single-valued.
This allows efficient indexing, higher performance, and
Stronger Searches.
0118 Using multi-valued attributes makes ambiguous
Searches possible. That is, it is possible to get Search results
which are counter-intuitive, and unintended. Imagine a
multi-valued numeric attribute, called 'n', and an entry
which contains this attribute with the values 2 and 5; this
entry will be returned in response to a Search (&(n<3)(n>4)),
which is not Something that would be readily anticipated.
0119) Single-valued attributes are one of the techniques
used for Strong Searches. A Strong Search is one which can
eliminate the majority of candidate results through the
index. Strong Searches are a key to improved performance.
0120 Aliases may be used for service projection. This is
a significant benefit of using an X.500 Directory as the data
Store. A Service projection can be represented neatly using an
X.500 alias. This has the major advantage of guaranteeing
data integrity. The alias accesses the original data, So any
change to the original is instantly reflected by the alias. If the
Directory implementation Supports alias integrity, then when
the original entry is deleted the alias Vanishes without
additional work.

0121 Publisher Assertions are one of the least clearly
defined elements in the UDDI Standard, and they require
careful design. An inappropriate implementation could
readily yield poor performance.

0.122 Because the most common use of Publisher Asser
tions is the find related Business API, which is searching for
all the completed Publisher ASSertions relating to a Specified
BusineSS Entity, it is good design to place each assertion
under a Business Entity to which it refers.
0123. By calculating the status of the assertion, and
Storing it in the assertion object, it is possible to restrict a
search to completed Publisher Assertions. This means that
the results returned will not contain Spurious references that
are to be removed.

0.124 Storing the relationship object as an auxiliary class
allows the Search to eliminate any assertion which has an
unwanted relationship. If the relationship were Stored as a
child object, it would not be possible to write a single Search
that would address both the relationship and the assertion
completion Status.
0.125 UDDI keys may be used for naming where present.
UDDI defines keys for many of the important object classes,
and these keys are specified as being guaranteed to be
unique. This means that the keys can be used as the naming
attributes for the objects. Using the UDDI keys as the

Jan. 26, 2006

naming attributes means that there is no need to attempt
resolution of naming clashes-that would be required if, for
example, the default name were used as the naming attribute
for a Business Entity.
0.126 Keys may be provided for naming where not
present. That is, not all UDDI objects have defined keys. An
example is Publisher Assertions. For these, the present
System provides a key, using the same algorithm as is used
for the UDDI-defined keys. This re-use of the idea means
that code and structure written for the other objects can be
re-used.

0127. Where a series of UDDI objects are children of
another object, and the order of the children is important
(address lines, for example), the keys assigned to the child
objects are arranged to be monotonically increasing in value,
So that Sorting on the keys yields the desired order. This
Simplifies the process of ensuring the desired order.
0128. Where practical, it is desirable that keys vary in a
little-endian manner. That is, the leftmost byte of the key
varies most rapidly, because that yields the best performance
of indexing in the X.500 Directory being used as the data
StOre.

0129. The UDDI Standards define a number of sub
Structures inside Some of the main object types. In many
cases these Sub-Structures are optional, and may be repeated
(they may occur Zero, one, or more than one times in the
same object). A simple example is the name Sub-structure,
containing a string (the name) and a language identifier. The
X.500 schema definition does not support the use of struc
tured attributes, So there is no immediately clear mapping of
sub-structures. There are a few ways in which these sub
structures can be implemented in an X.500 schema.
0.130. One way is to concatenate the components of the
Sub-structure into a single attribute, using a separator of
Some kind to divide the various elements. This may not be
the optimum design choice, because it loses the ability to
indeX or Search the components Separately, and it adds
processing complications to handling the data.
0131. In the present system, the particular design used to
represent Sub-Structures is chosen to maximise performance
and manageability. The design disclosed may use one or
more of a variety of techniques to represent Sub-structures in
a Directory. These techniques can be Summarized in 3
categories.
0.132. One technique is that many of the sub-structures
can be handled as child objects. Names are a good example:
the Business Entity names are stored as children of the
BusineSS Entity. Another example is descriptions, where a
Separate BusineSS Description object is a child of Business
Entity objects. FIG. 15 provides an illustration of an
embodiment of this aspect of the present disclosure and will
be described in more detail below.

0.133 Another technique is flattening/merging. In cases
where there may be at most one relationship to another
object, the attributes may be combined into a Single object.
In this case, the hierarchy is Said to be flattened because two
objects have been combined into one object. A new object is
Said to be merged because the new object contains a com
bination of attributes from the combining objects. Prefer
ably, the contents of the Relationship Object are promoted to
the Parent Object.

US 2006/0020585 A1

0134) For example, FIG. 16 illustrates schematically a
representation of a UDDI relationship diagram. FIG. 17
illustrates Schematically a Directory Hierarchy diagram
where the Directory hierarchy has been formed by a flat
tening of the UDDI objects.

0135). By way of explanation, FIG. 16 illustrates Object
161 having a relationship Object 162 to Object 163.

0136. In accordance with an embodiment of the present
disclosure, where there is a one-to-one relationship, a child
can be promoted. In other words, that part of the hierarchy
can be collapsed or flattened and objects merged. The result
is illustrated schematically in FIG. 17. The Parent Object
171 has contents A1, A2, An and has one or more children,
Child Object 9n, with contents B1, B2, Bn, C1, C2 and Cn.
0.137 Another technique is splitting. For example, in one
particular case (the OverviewDoc Sub-structure), a Sub
Structure contains an unrepeated element and a repeated
element. The unrepeated element (OverviewURL) can be
moved into the parent, while the repeated element can be
made a child object.

0138 Another aspect of the present disclosure is man
agement. Deleting a TModel hides it from find TModel but
does not remove it from the repository. Accordingly, to
implement the correct handling of TModels, a hidden flag
may be implemented. The presence of this flag indicates that
a TModel (or user object) is hidden. The absence of the flag
indicates that it is not. This will be the case for the vast
majority of TModels, so this approach is efficient. No space
is occupied in unhidden objects, and no indexing is used
either. The Directory will index only those entries which do
have the hidden attribute. This also means that the search for
unhidden TModels will be fast and efficient.

0.139. The X.500 Directory used as a data store encour
ages a design which does not store empty values. For
example, a (optional) value which is absent from the object
is not stored in the Directory. This makes efficient use of
Storage Space, and makes for Stronger Searches. Any Search
on an attribute need only consider those objects which have
data for that attribute.

0140. The data hierarchy of the present system matches
well with the intent of the UDDI Standard. When a request
arrives to delete a UDDI object, it maps directly to the
deletion of a Sub-tree in the Directory. For example, deleting
a Service includes deleting its names and descriptions, and
all of its Binding Templates. All of these are children of the
Service entry in the Directory. Accordingly, the present
System deletes the Sub-tree from the Service entry on down.
This is readily implemented, and efficient.

0.141. A domain is a name representing the base of a
hierarchical sub-tree. In X.500 terminology a domain is
known as a context prefix. In LDAP terminology it is known
as a suffix. Giving UDDI repositories a domain name allows
use of true distribution (in the X.500 sense) of the data in the
repository. The UDDI Standard only supports replication.
By having the domain nodes, the present System can use
Directory distribution facilities transparently to the applica
tion.

0142 For example, assume that an Enterprise deploys
UDDI internally, but has two development sites. With this

Jan. 26, 2006

facility, they can deploy a UDDI server at each site, with
distribution allowing each Site to transparently view items
published on both registries.

0.143 An advantage of this is that it allows distribution
for free’. For example, the UDDI server does not have to do
any extra work and the Directory system effectively links
together islands of information.
0144) Nothing in the UDDI Standards dictates how the
user information is Stored. By creating user objects, all of the
information relating to a user can be stored in a single object,
and that object can be used as the root of the Sub-tree holding
all of the objects that the user publishes. This makes the
definition of Security much simpler. For example, if the
object under consideration (be it business, Service, or even
TModel) is underneath the user's user object, then the user
controls it.

0145 UDDI defines objects that contain repeating ele
ments. For benefits Such as performance, Searchability and
manageability these repeating elements can be represented
as child objects.
0146 Storing repeating structured data as child objects
allows representation of the data efficiently in a Directory,
with each field individually available (and indexed) for
Searching.

0147 For example, Business Entity names can be stored
as children of the Business Entity object. Another example
is Business Description which can be stored as children
below Business Entity objects.
0.148. An advantage of this type of system is that it allows
Searching for a name (which is a common UDDI Search),
and the DN of the entry gives the DN of the object to which
the name belongs.

0149 UDDI defines redundant container nodes (UDDI
Structures which contain only child Sub-structures, rather
than attributes). These can be removed because they can be
constructed at relatively low cost from the results of a query.
In Some cases, attributes can be promoted from a child node
to its parent, to remove the now-redundant child-node from
the Directory representation.

0150. For example, tModeInstanceDetails is not repre
Sented in the Directory Schema as it contains no attributes.
instanceDetails is not represented in the Directory Schema as
its attributes were promoted into the tModelInstanceInfo
parent, as were the attributes of its child, overviewDoc. The
category and identifier bags are not represented in the
Directory, their contents are made children of the owner of
the bag

0151. An advantage of this is that it reduces the number
of entries in the Directory. In particular, it minimizes the
depth of the DIT, which can improve performance.
0152 FIG. 12 illustrates schematically a hierarchy struc
ture according to an embodiment of the present disclosure.
One or more Domain or Prefix 121 are provided. Under each
Domain 121, there may be one or more Users 122. Under
each User 122, there may be provided one or more TModel
123 and one or more Business Entity (BE) 124. Under each
Business Entity 124, there may be provided one or more
Publisher Assertion (PA) 125, one or more Business Service
(BS) 126 and one or more Service Projection (SP) 127.

US 2006/0020585 A1

Under each Business Service (BS) 126, there may be pro
vided one or more Binding Template (BT) 128. Aliases can
be placed as required by a particular implementation. For
example, Service Projection object(s) (shown as a triangle in
FIG. 12) may stem as an alias from Business Entity
object(s).
0153. The advantages of this schema design as repre
sented in FIG. 12 will become apparent from a reading of
the present disclosure as a whole.
0154 Publisher Assertions are placed under the business
entities to which they refer because they are most frequently
used in the context of a find Related Businesses call, which
Specifies a busineSS key and is looking for all the businesses
related to that one via Publisher Assertions. The present
System locates the Specified business, then reads all the
Publisher Assertions underneath it (that are complete). This
is a quick and efficient way of locating the relevant asser
tions.

O155 An advantage of this is that it allows fast and
efficient Searches. It also allows easy maintenance of data
integrity. For example, when a busineSS is deleted, any
Publisher Assertions are automatically deleted too.
0156 TModels can be changed (or retired/hidden) by the
user who published them. Placing them under the entry
representing the user makes the Security Simple. For
example, if the TModel lies in the sub-tree under the user
entry, then it can be modified. If not, then it can not.
0157. In more detail, if the DN (Distinguished Name) of
the user trying to make the change matches a prefix of the
DN of the TModel, the entry can be modified by that user,
otherwise it can not. The Directory can be used to make this
determination (Naming exception if the DN doesn't exist),
or the UDDI server can do it.

0158 When an object is deleted from the repository, the
information associated with that object may also be deleted.
This is greatly simplified by the hierarchical design used
according to embodiments of the present Schema. When the
object is deleted, the entire sub-tree of which it is the root
can be deleted, and this process can delete all (and generally
only) the associated information. Deleting a Sub-tree can be
performed bottom-up. Each entry can only be deleted when
all its children are deleted. This is managed by listing all the
children in reverse DN order. This guarantees deletion of the
children before their parents.
0159. An advantage of this is that a sorted list method is
an alternative to the more complex use of recursion. Further,
it is relatively simple and memory-efficient. When all the
entries in the subtree are sorted by DN, and deletes are
executed in reverse order, this guarantees that all children
will be deleted before their parent.
0160 For example, when a business service is deleted,
the System deletes all the Binding Templates associated with
it, their TModel instance information, and the various asso
ciated category information. All this can be deleted by
deleting the sub-tree of which the business service is the
rOOt.

0.161 Due to the hierarchy used in the design of this
schema, the DN of an object reveals the chain of ownership
and control for an object. Note that inference is also depen
dent on careful choice of naming attributes.

Jan. 26, 2006

0162 An advantage of this is that it can reduce the
number of Searches or reads used to gather information. For
instance, with Search results which are child objects (such as
names), the DN of each entry reveals the parent (e.g. the
BusinessEntity) and the owning account.
0163 For example, the DN of a business service reveals
the business to which it belongs, and the user who controls
it.

0.164 Directories do not guarantee any ordering of the
result. When dealing with a complex result (such as a
BusineSS Entity and its busineSS Services, together with their
appropriate names and descriptions), the construction of the
output can be simplified by taking the results of the Search
and sorting them by DN. This organizes them so that the
construction of the results becomes relatively simple. Each
object is constructed before its children, So it is easy to place
the children under their parent, So that the result for a
busineSS is organized before its Services. All the children of
an object appear before the next object of the same type, all
of the services for one business before the next business
appears. This also allows Simple recursive construction,
because the same thing applies at each level.
0.165 An advantage of this is that it minimizes the
number of passes through a list of raw entries required to
construct the UDDI structures.

0166 For example, after sorting, the result for a business,
A, is followed by a result for its first service, AA, that
Service's name, then A's Second Service, AB, and its names,
then a Second business, B.

0.167 A search can also be carried out on children. For
example, a frequent Search request may be “finding X by
finding one (or more) of its children”. One of the ways a
busineSS can be found by a Search is by Specifying, for
example, a TModel that occurs in a binding template. In
other words, the query is “find all businesses which have a
Service which has a binding template which references this
TModel”. These queries can be done by finding the DN of
the descendent object, and chopping off the unwanted levels
to yield the DN of the business entity. Advantageously, this
also eliminates duplication. This Search method comes
about, in part, due to the hierarchy Structure of embodiments
of the present disclosure.
0.168. The use of guaranteed unique keys simplifies mat
ters. The entire repository can be searched for a Single key,
and uniqueness will assure that there will either be no result
(if that key is not present), or one result (if it is present).
There is no need to be cautious about limiting Searches
within the range of a parent. This yields enhanced perfor
mance from the Directory, because it can use database
indexes to their optimum.

0169. An advantage of this is that it makes use of the
fastest type of Directory queries. Another advantage is that
the guaranteed unique names may be important if a given
object is referenced from another.
0170 A property of most indexing systems is that they
are data dependent. If the data is “little endian” (the leftmost
portion changes most rapidly) that data tends to be spread
and So the indexes can give maximum performance. Con
versely, if the data is repetitious, the indexes may not be very
effective. A UUID (Universally Unique Identifier) algorithm

US 2006/0020585 A1

can be used which exhibits “little endian' qualities. An
advantage of this is that it maximises Directory perfor

CC.

0171 Keys may be added to derived objects. Where a
repeating data element is made into a child object, there is
a need to add a naming attribute, which will form the last arc
of its DN. In a Directory, the naming attribute is different
from its siblings, since no two children of the same parent
can have the same name.

0172. Two kinds of keys may be used. For child objects
which do not require order, UUIDs are used because these
are guaranteed to be unique. Where order is important, keys
with a monotonically increasing property are used to guar
antee order.

0173) In the UDDI Standard, a Business Entity can offer
two kinds of Services: those which it controls (represented in
the repository by child objects), and those which it offers an
interface to, despite the fact that they are provided by
another Business Entity. The latter are represented in the
disclosed UDDI repository by aliases. An alias provides
exactly the right features. For example, if the original object
(Service) is altered in Some way by its owner (perhaps
another Binding Template is added), then the object refer
enced via the alias “changes” too. Moreover, any Search
under the Business Entity for a service will yield both real
and aliased Services.

0.174 For example, aliases can be used for Service Pro
jection, where a Business can point to a Service defined
under another Business.

0.175. An advantage of this is that leveraging aliases
allows functionality that basically involves “an alternative
name' to be automatically provided. Furthermore, if the
Directory Supports alias integrity, then if the original Service
is deleted, any projections are automatically removed.
0176). In the UDDI Standard there are a number of places
in which we do not wish to have direct reference to another
object, but rather an intermediate Step-Such as in the case
of TModel instance information, or the references to busi
neSS entities in a Publisher ASSertion. In these cases, an alias
would complicate the code. Accordingly, instead the present
System may use a reference to the object. Because the
present System, according to an embodiment, guarantees that
every object has a unique key, then that key behaves exactly
as a reference, Sometimes known as a “foreign' key.
0177 Attribute grouping can be performed using auxil
iary object class. In handling Publisher ASSertions there is a
need for an ability to locate a Publisher Assertion using those
three attributes which uniquely identify the Publisher Asser
tion: the two BusineSS Entity keys, and the relationship
between them. However, the relationship is specified as a
keyed reference, which is itself three different attributes:
TModel key, key name, and key value. One way is to Store
this relationship as a child object of the Publisher Assertion.
However, this may not allow the most efficient search for a
Specific Publisher ASSertion. By making the relationship
keyed reference an auxiliary class to the Publisher ASSertion
entry it is possible to Search for all five attributes in a Single
Search, and thus isolate exactly the Publisher ASSertion
objects required.
0178. One design of this schema may use normal object
oriented design techniques, and yield, for example, all keyed

Jan. 26, 2006

references having the same attribute names. However, this
design may make it more difficult and expensive to isolate,
for example, a BusineSS Entity category keyed reference,
and to avoid confusing it with a TModel category keyed
reference. It may also make it necessary to include object
class terms in the filter and Such terms are weak (highly
repetitious in the repository).
0179 Giving, for example, every different kind of keyed
reference a different object class and different attribute
names, means that any Search for a particular attribute name
necessarily implies the object class. It also means that the
Directory Server can construct an indeX that only has entries
in it for the specific kind of entry desired. Such an index will
be Smaller and consequently faster.
0180 For example, a search like: “euBusinessEnti
tyName=Smith' will consult the index for euBusinessEn
tityName, and So cannot be confused by an entry containing
Smith in an attribute called euTModelName.

0181. There may well be a call for tools outside the scope
of the UDDI Standard. Such tools may need to provide
means of access beyond those specified in the UDDI Stan
dard. To allow for Such tools, this present disclosure defines
abstract classes which bind all the object classes that rep
resent a single UDDI concept. This allows the definition of
Searches which can look at, for example, all names, or all
keyed references.
0182 For example, there is an abstract class euName
which is the superclass of all the Name-type object classes,
including euBusinessEntityName and euTModelName.
0183) The UDDI Standard specifies that it be possible to
Search, for example, names in both case-Sensitive and case
insensitive ways. This can be handled by indexing case
insensitively, and then retrieving the entries and checking
them case-Sensitively, but Such an approach costs perfor
mance. It is preferable in these cases to define a Shadow field
which contains the same data, but is indexed differently.
Similarly, shadow attributes can be used for variations in
language, e.g. diacritical markS.
0.184 For example, the euBusinessEntityName object
class contains two copies of each name. The first version is
indexed case-insensitively, while the Second is indexed
case-Sensitively. This allows the construction of a Search
filter which performs optimally no matter which behaviour
is requested.
0185. Every attribute (except object class) in this reposi
tory may be single-valued. This makes it possible for the
Directory to construct more efficient indexes, and provide
better performance in Searching.
0186 This also removes the possibility of false positive
results in Searching. For example. consider a Search that
looks for names which begin with “Fr”, and end with “nk”.
One might expect this to yield (valid) entries with names like
“Frank'. If, however, name is made a multi-valued attribute,
one may well get an invalid entry with two names like
“Fred” and “Tink”, because this one entry matches both
criteria Specified. By using Single-valued names, each of
which is a child object of the entry, the Spurious matching of
“Fred' and “Tink is eliminated.

0187 Operational attributes are special attributes that are
managed by the UDDI application, but which are not seen
by the user.

US 2006/0020585 A1

0188 In the storage of UDDI data, it should be possible
to have a way to distinguish TModels which are in-use from
those which have been "retired”. When a TModel is deleted,
it may well Still be used by many entries, So it cannot be truly
deleted. Instead it is hidden, which means that it will not be
returned as part of the results of a find TModel call, but it
can still be queried via a get TModelDetail call. This is
implemented by use of an attribute called euHidden, which
is added to those TModels which are hidden. It may be
beneficial and efficient to add a Search Step which eliminates
any entry containing the euhidden attribute to any filter
searching for TModels.
0189 In Directory implementations it is considered gen
erally very inefficient to have an attribute which is predomi
nantly one value. For example, having a hidden attribute
which is set to FALSE for 99% of the entries would produce
poor performance-the indeX would be pretty much unus
able.

0190. What is considered much more effective is to have
the majority of entries stored without the hidden attribute,
and only add the attribute to those entries which are to be
hidden. This has the additional benefit of not requiring the
storage space to hold all those “FALSE' values. Now the
filter for finding all those TModels which are not hidden
becomes “(!(euTModel=*))” which is a negation of an
existence test, and existence tests are rapid, especially when
the attribute only exists on a Small fraction of the entries.
0191 An embodiment of the present disclosure will now
be described for resolving the implementation and UDDI
Standards issues in the context of a Directory. There are a
number of elements to an X.500 schema. These elements
include Attribute definitions, Object Class definitions and
Name Binding definitions. An Attribute definition specifies
a single data element, giving it a unique identifier (an OID),
a name, and a data type. An Object Class definition Specifies
a collection of attributes which is manipulated as a whole. It
gives a unique identifier (an OID), a name, and a list of
attributes, the attributes may be required or optional. A
Name Binding specifies part of a possible hierarchy. The
Name Binding specifies one object class which may be
Stored under another, and specifies the attribute (or
attributes) of the child that names the child object in this
COnteXt.

0.192 There are a number of find qualifiers which impose
additional design requirements. One find qualifier is case
Sensitivity for providing the ability to Search for text data in
both case-Sensitive and case-insensitive manner efficiently.
According to an embodiment of the present disclosure, case
Sensitivity can be resolved by providing additional fields in
the objects, indexed differently.

0193 According to this embodiment, the textual data is
Stored twice in an attribute of type caseExactString, and in
an attribute of type caseIgnoreString. The find qualifier then
determines which of the fields is Searched, resulting in
maximum performance.

0194 For example, if a Business Entity has a name like
“McKenna's Iron Foundry Services”, then that string will be
Stored twice, once in a field that is indexed case-Sensitively,
and once in a field that is indexed case-insensitively-the
Stored data is the same, but the indices generated by the
underlying Directory are different.

Jan. 26, 2006

0.195 Another issue involves implementing service pro
jections efficiently. According to an embodiment of the
present disclosure, this can be solved using the X.500 alias
facility. There are a number of ways in which service
projections may be handled. This embodiment of the present
disclosure handles them by way of Directory aliases. This is
a particularly efficient way to implement them. It guarantees
consistency of the projection with the base Service, because
the base Service is accessed directly through the alias. It also
guarantees that the projection will Vanish the moment the
base Service is deleted, thus ensuring consistency.
0196. For example, if a Business Entity called Williams
Accounting Services publishes a Web Service called Gen
eral Ledger Cross-Check, and it is desired to offer this same
service under a second Business Entity called Williams
Auditing Services, then this can be achieved by placing an
alias entry under the Second BusineSS Entity. An inquirer
enumerating the services offered by Williams Auditing Ser
vices will find the General Ledger Cross-Check Service, just
as it will find any services offered directly by Williams
Auditing Services.
0.197 Another issue involves implementing keys effi
ciently. According to an embodiment of the present disclo
Sure, this is resolved using UUIDS for external keys, and
keys where order is unimportant. Sequential numbers may
be used where order is important. Although keys are repre
Sented as Strings, they are not truly text data. They are
compared without sensitivity to case or diacritic marks.
0198 Externally-visible keys follow one set of rules.
When implementing a repository compliant with Version 2
of the UDDI specification they hold UUIDs, compliant to
ISO-11578. When implementing a repository to Version 3 of
the UDDI specification they hold key strings following the
rules laid out in that version of the Specification.
0199. Note that keys used internally to link elements
together follow another set of rules. Those where order is
unimportant use UUIDs. Where order is important, sequen
tial numbers are used.

0200 For example, a keyed reference that represents an
element of a category bag for a BusineSS Entity called
Williams Auditing Services, might reference a TModel with
a key of 12345678-1234-1234-1234-1234567890ab (UDDI
v2). The order of the keyed references in a category bag is
unimportant, but the keyed reference requires a key to
function as a naming attribute of the object. Thus we might
generate a UUID key for this object, Something like
87654321-4321-4321-4321-baO123456789, and use that as
the naming attribute in the Directory for this object.

0201 Another issue is that data may be organized into
domains if X.500 distribution is desired. This is resolved
according to an embodiment of the present disclosure by
creating a repository layer above users So each repository
can be placed on a different Server.
0202) The UDDI Standard does not allow for the name
space to be distributed. This means that multiple UDDI
registries can co-operate with each other by replication or by
transparently having the backend data Store managing the
distributed name Spaces.
0203 Distributed name spaces can be facilitated by each
repository having a naming pre-fiX. This pre-fix is a set of

US 2006/0020585 A1

nodes that define a Domain. These nodes can be considered
a repository layer above each UDDI registry. These nodes
are placed above the user level.

0204 FIG. 11 illustrates an example of such a node,
called “Domain" 110. Domain 110 is the Directory pre-fix
and may include one or more nodes up to the root. Below the
Domain 110, this example illustrates the arrangement of a
number of users 112, 113 and 114, for example. The number
of Users arranged under a Domain 110 may vary according
to the particular configuration and/or use of the present
System. There may also be a number of domains arranged
depending on the particular configuration and/or use of the
present System. In the example below they are referred to as
repository objects, Suggesting that they represent Separate
physical repositories. Of course, this may not necessarily be
the case, depending on the configuration and/or use of the
present System.

0205 The repository object requires a naming attribute,
but that is all.

set object-class uddiObjectClass:400 =
{ # repository - may be used to break users into groups

name = euRepository
subclass-of top

must-contain
euRepositoryName

0206 Distribution is an important concept in large-scale
Directory deployment, as it allows for data to be shared by
multiple nodes without the massive bandwidth overhead and
Synchronization problems of replication.

0207. In one embodiment, etrust UDDI supports distri
bution using the capabilities of the underlying eTrust Direc
tory Server, and in order for this to work the Schema has been
Structured accordingly, with allowance for a virtual
Domain node(s) at the top of the tree hierarchy and unique
Node identifiers or names at the top of each Node sub-tree
(see UDDI schema description below).
0208 Furthermore, an eTrust UDDI server can be made
distribution-aware through configuration. Two Separate
Directory prefixes can be specified-one for Searching and
reading, and another for Adding entries. To deploy a dis
tributed server, the underlying eTrust Directory server
agents are configured for distribution as per the eTrust
Directory Admin Guide. Each separate eTrust UDDI node is
configured with a unique Node name. The Search/Read
prefix for each node is set to the World or “Corporation
node name. The Add prefix for each node is Set to the unique
name of that Node.

0209. In this way, each Node adds entries to its own
Directory repository, but Searches for entries acroSS all
Nodes via the distribution features of the X500 Directory.
0210. An example of a repository object might be:

euRepositoryName=Melbourne

0211) Another issue involves organizing the data which is
held about the user. This can be resolved by creating a user
object to hold the data.

Jan. 26, 2006

0212 Although there is no user object specified in the
UDDI Specification, Such an object can be utilized according
to an embodiment of the present disclosure. For example, a
user object can be, among other things, a storage point for
user credentials, and an anchor point for publishing.

0213 FIG. 10 illustrates an example of such an arrange
ment, called 'User 101. Below the user 101, this example
illustrates the arrangement of other object(s), Such as Busi
ness Entity object(s) 102, Business Service object(s) 103
and Binding Template object(s) 104. The number of Busi
neSS Entity object(s) arranged under a user 101 may vary
according to the particular configuration and for use of the
present System. There may also be a number of users
arranged depending on the particular configuration and/or
use of the present System.

0214. The data elements held in the user object include
the user key (used to provide a unique name for this user
account), the user name, and the credentials (may be as
Simple as a password, or as complex as a PKI certificate). It
may also contain an authorized name (identifying the person
or role authorized to operate the user account). It may also
contain a hidden flag used in handling the deletion of user
accounts without losing any TModels defined by the user.

set object-class uddiObjectClass:401 =
{ # user account

name = euserAccount
subclass-of top
must-contain

eu UserKey,
eulJserName,
euCredentials

may-contain
euAuthorized Name,
euhidden

0215. An example of a user account object might be:
euuserKey=23456789-2345-2345-2345
23456789Oabc

eul serName=Grace

euCredentials=Amazing 76sQ

(it is assumed in this example, that a simple userid and
password System has been implemented)

0216. Another issue involves representing the data con
cerning a Business Entity (an object class described in the
UDDI Standard), in an efficient way. This is resolved
according to an embodiment of the present disclosure by
representing unique fields as attributes of the object, and
repeating elements as children.

0217. The Business Entity object is a fundamental com
ponent of the UDDI Standard. Its content is defined by the
Standard, but many of its elements are repeating complex
objects, which are not supported by X.500 schema. Such
elements are represented by a hierarchical arrangement.

0218. The only required element in a Business Entity is
the business key. Optional elements include an authorized
name, an operator, and a user key (this last will be present
in a Business Entity published by a normal user).

US 2006/0020585 A1

set object-class uddiObjectClass:402 =
{ # Business Entity - details of an entity which provides services

name = euBusinessEntity
subclass-of top
must-contain

euBusinessEntityKey
may-contain

euParent JserKey,
euAuthorized Name,

0219. The possible child objects of a Business Entity are:
Name (an object containing the name String and language
code, keyed for ordering); Description (an object containing
the description String and language code, keyed for order
ing); Contact (a complex object-described later below),
Discovery URL (an object containing the URL string and
use-type, keyed); Keyed References which are marked as
category or identifier information through choice of object
class; and Business Services (described below)
0220. An example of a Business Entity object might be:

euBusinessEntityKey = 34567890-3456-3456-3456-34567890abcd
euParent UserKey=23456789-2345-2345-2345-234567890abc

0221 Note that most of the apparent content of the
BusineSS Entity object is actually Stored in objects that are
direct children of the Business Entity object
0222 FIG. 15 illustrates an example of the introduction
of a hierarchy into a Sub-Structure according to an embodi
ment of the present disclosure for the representation of a
relatively complex object in a Business Entity. In FIG. 15,
the multi-valued elements:

For child 152
Language e
Name CA
For child 153
Language IN
Name CATS

are represented as children 152, 153 of the Business Entity
151. There may be none or more children.
0223) Another issue to be resolved is representing the
data concerning a Business Service (an object class
described in the UDDI Standard), in an efficient way.
0224. This can be resolved according to an embodiment
of the present disclosure by representing unique fields as
attributes of the object, and repeating elements as children.
0225. The Business Service can be implemented in at
least two ways. A first is that the BusineSS Service represents
a single conceptual Service provided by the BusineSS Entity,
available through one or more access routes, each of which
was represented by a Binding Template. A Second is that the
BusineSS Service is a grouping mechanism for Services, with
the breakdown into individual Services taking place at the

Jan. 26, 2006

Binding Template level. In either case, the data fields are
defined in the UDDI specification.

0226. The elements of a Business Service are the busi
neSS and Service keys. The business key Specifies the Busi
neSS Entity which owns the Service. This is not necessarily
the Business Entity under which it is discovered. A single
Service can be found under Several busineSS entities, by way
of Service projections. The Service key is the unique iden
tifier of the service throughout the UDDI repository. Both
keys are represented as Strings.

set object-class uddiObjectClass:403 =
{ # business

name = euBusinessService
subclass-of top
must-contain

euBusinessServiceKey,
euParentBusinessKey

0227. There is no optional content of the Business Ser
Vice object. All other content consists of potentially repeat
ing elements, and So is represented as child objects. The
potential child objects of a Business Service are: Binding
Templates (see below); Name (an object containing a name
String and a language code, keyed for ordering); Description
(an object containing the description String and language
code, keyed for ordering); and Keyed References marked as
category information.
0228. For example, a Business Service object might be:

euBusinessServiceKey=4567890a-4567-4567-4567
4567890abcde

euParentBusinessKey=34567890-3456-3456-3456
34567890abcd

0229. Note that most of the apparent content of the
BusineSS Service object is actually Stored in objects that are
direct children of the Business Service object.
0230. Although, FIG. 15 illustrates an example of the
introduction of a hierarchy into a Sub-structure according to
an embodiment of the present disclosure for the represen
tation of a relatively complex object in a BusineSS Entity, it
is equally illustrative of an example of the introduction of a
hierarchy into a Sub-Structure according to an embodiment
of the present disclosure for the representation of a relatively
complex object in a Business Service. The Business Entity
151 of FIG. 15 is equally applicable to a Business Service,
with the multi-valued elements of the Business Service
represented as children 152, 153 of the Business Service
151. There may be none or more children.
0231. Yet another issue involves representing the data
concerning a Binding Template (an object class described in
the UDDI Standard), in an efficient way. This is resolved
according to an embodiment of the present disclosure by
representing unique fields as attributes of the object, and
repeating elements as children.
0232 The Binding Template represents a way in which a
particular Service may be accessed. The only required ele
ments of a Binding Template are its key and the key of the
Service to which it applies. Optional elements may include
an access point or hosting redirector (the object should have

US 2006/0020585 A1

exactly one of these). If an access point is present, then the
access point type should also be present.

set object-class uddiObjectClass:404 =
{ # binding template

name = euBindingTemplate
subclass-of top
must-contain

euBindingTemplateKey
may-contain

euParentServiceKey,
euHostingRedirector,
euAccessPoint,
euAccessPointType

0233. The possible child objects of a Binding Template
are: TModel Instance Info (see below); and Description (an
object containing the description String and language code,
keyed for ordering)
0234. An example of a Binding Template might be:

euBindingTemplateKey=567890ab-5678-5678-5678
567890abcdef

euParentServiceKey=4567890a-4567-4567-4567
4567890abcde

euAccessPoint=http://www.rsps.com.au/wsep
euAccessPointType=http.

0235 Again, although FIG. 15 illustrates an example of
the introduction of a hierarchy into a Sub-structure according
to an embodiment of the present disclosure for the repre
Sentation of a relatively complex object in a BusineSS Entity,
it is equally illustrative of an example of the introduction of
a hierarchy into a Sub-Structure according to an embodiment
of the present disclosure for the representation of a relatively
complex object in a Binding Template. The Business Entity
151 of FIG. 15 is equally applicable to a Binding Template,
with the multi-valued elements of the Binding Template
represented as children 152, 153 of the Binding Template
151. There may be none or more children.
0236 Another issue involves representing the data con
cerning a TModel (an object class described in the UDDI
Standard), in an efficient way. According to an embodiment
of the present disclosure, this can be resolved by represent
ing unique fields as attributes of the object, and repeating
elements as children.

0237 ATModel represents an idea. That idea might be,
for example, a categorization System, requiring the Specifi
cation of values which may be validated. Or it may be a
Specification of a data communication protocol. TModels
are a flexible and powerful concept, and central to the ability
of UDDI to represent complex data in a way that can be
accurately queried.

0238. The only required elements of the TModel object
are a TModel key and a name. These are represented as
Strings.

0239). The optional elements of a TModel object are an
authorised name, an overview URL (part of an Overview
Doc object), a user key, and a hidden flag.
0240 A hidden flag is a an element of the handling of the
TModel. The hidden flag is how the deleteTModel call is

Jan. 26, 2006

handled. When a TModel is “deleted” the hidden flag is
added to the object. This means that the object will not be
returned to a findTModel call, but will be accessible to
getTModel calls.

set object-class uddiObjectClass:405 =
{ # timodel - a reference to an idea.

name = euTModel
subclass-of top
must-contain

euTModelKey,
euTModelName

may-contain
euAuthorized Name,
euOperator,
euOverview.JRL
euParent JserKey,
euhidden

0241 The possible child objects are: Description (an
object containing the description String and language code,
keyed for ordering); Keyed References marked as category
or identifier information; and Overview Doc Description (an
object containing the description String and language code,
keyed for ordering)

0242 An example of a TModel could be:
euTModelKey=uuid:67890abc-6789-6789-6789
67890abcdef1

euTModelName=Corporate QA Policy

euOverview.JRL=http://www.rsps.com.au/policy/
ga.html

euParent UserKey=23456789-2345-2345-2345
23456789Oabc

0243 Again, although FIG. 15 illustrates an example of
the introduction of a hierarchy into a Sub-structure according
to an embodiment of the present disclosure for the repre
Sentation of a relatively complex object in a BusineSS Entity,
it is equally illustrative of an example of the introduction of
a hierarchy into a Sub-Structure according to an embodiment
of the present application for the representation of a rela
tively complex object in a TModel. The Business Entity 151
of FIG. 15 is equally applicable to a TModel, with the
multi-valued elements of the TModel represented as chil
dren 152, 153 of the TModel 151. There may be none or
more children.

0244 Another issue involves representing the data con
cerning a Publisher ASSertion (an object class described in
the UDDI Standard), in an efficient way.
0245 According to an embodiment of the present disclo
Sure, this can be resolved by representing unique fields as
attributes of the object, and using an auxiliary class for the
required relationship keyed reference.

0246 A Publisher Assertion is an object representing a
relationship between two busineSS entities.

0247 The required elements of a Publisher Assertion are
its key, the to and from busineSS and user keys, the Status,
and the relationship. The relationship is specified as a keyed
reference, and Stored as an auxiliary class to the Publisher
ASSertion entry. The Status is Stored as a String, but draws its

US 2006/0020585 A1

possible values from the Completion Status object. All the
keys are represented as Strings.

set object-class uddiObjectClass:406 =
{ # publisher assertion - a relationship between two businesses

name = euPublisher Assertion
subclass-of top
must-contain

euPublisher AssertionKey,
euFrom BusinessKey,
euFrom UserKey,
euToBusines Key,
euToUserKey,
euPublisher AssertionStatus

0248. There is no optional content in a Publisher Asser
tion, and there are no child objects.
0249. An example of a Publisher Assertion might be:

euPublisher AssertionKey=7890abcd-7890-7890
7890-7890abcdef12

euFrom BusinessKey=34567890-3456-3456-3456
34567890abcd

euFrom UserKey=23456789-2345-2345-2345
23456789Oabc

euToBusinessKey=09876543-6543-6543-6543
dcbaO9876543

euToUserKey=98765432-5432-5432-5432
cbaO98765432

euPublisher AssertionStatus=status:complete

0250) Note that there will be an auxiliary class associated
with this entry; it will be of object class euPublisherAsser
tionRelationshipKeyedReference, and will specify the rela
tionship that is being asserted between the two busineSS
entities named. An example might be:

euPublisher AssertionTModel=uuid:807A2C6A
EE22-47 OD-ADC7-EO424A337CO3

euPublisher AssertionKeyName=wholly-owned sub
sidiary
euPublisher AssertionKeyValue=parent-child

0251 Another issue involves representing the data con
cerning a keyed reference (an object class described in the
UDDI Standard), in an efficient way. This is made more
complex, by the need to be able to search efficiently for
particular collections of keyed references: the category bag
on a BusineSS Entity, for example.
0252) This is resolved according to an embodiment of the
present disclosure by creating an abstract base class to
represent keyed references, and Subclass it for each of the
desired collections. The collections do not have a represen
tation in the Directory. For example, they exist as nothing
more than a group of keyed references of the same Subclass,
existing as children of the Same object. For example, the
category bag of a BusineSS Entity is the objects of class
euBusinessEntityCategory Keyed Reference which are chil
dren of the specified Business Entity. Note that a Business
Entity object can well have Several keyed reference objects
as children, with only their object classes making it clear
which ones are part of the category bag and which are part
of the identifier bag.
0253) Keyed references are used in several places within
the UDDI data model. They include a TModel key, a key

15
Jan. 26, 2006

name, and a key value. Two uses of keyed references are
category bags and identifier bags. These bags are collections
of keyed references, and are important to Searching. If these
bags were represented by objects containing undifferentiated
keyed references, then it would be potentially quite difficult
to implement efficient Searching. This is why Several Sub
classes of keyed references have been implemented. A
category bag on a BusineSS Entity is represented by one or
more child objects of the class euBusinessEntityCatego
ryKeyedReference. This makes it easy to implement an
efficient Search for business entities with a specified keyed
reference in their category bags.
0254 The example below shows the abstract class and
one of the derived classes, the euBusinessEntityCatego
ryKeyed Reference, as discussed above. Note that the key to
the keyed reference is inherited from the abstract class,
while the TModel key, key name, and key value are all
Specified in the derived class, So they may have distinctive
names for Searching.

set object-class uddiObjectClass:201 =
{ # abstract class as parent for all keyed references

name = euKeyedReference
subclass-of top
must-contain

euKeyedReferenceKey
}:
set object-class uddiObjectClass:301 =
{ # Business Entity category keyed reference - collection
makes up the category bag

name = euBusinessEntityCategoryKeyedReference
subclass-of euKeyedReference
must-contain

euBusinessEntityCategoryTModel,
euBusinessEntityCategoryKeyName,
euBusinessEntityCategoryKeyValue

0255 The contact is a complex object, representing a
wide variety of information. Much like the Business Entity,
a contact holds a variety of compound repeating elements,
necessitating the use of child object classes.
0256 The only data elements that are directly part of the
contact object are a key, and the name of the perSon or role
the contact represents. There is an optional use-type.
0257 All the other possible elements are children of the
contact object. These are: Address (parent of an ordered list
of address-line objects, each with a key, use-type, Sort code,
and TModel key); Phone (a phone number plus use-type);
E-mail (an e-mail address plus use-type); and Description
(description String plus language code)
0258 Again, although FIG. 15 illustrates an example of
the introduction of a hierarchy into a Sub-structure according
to an embodiment of the present disclosure for the repre
Sentation of a relatively complex object in a BusineSS Entity,
it is equally illustrative of an example of the introduction of
a hierarchy into a Sub-Structure according to an embodiment
of the present disclosure for the representation of a relatively
complex object in a contact object. The Business Entity 151
of FIG. 15 is equally applicable to a contact object, with the
multi-valued elements of the contact object represented as
children 152, 153 of the contact object 151. There may be
none or more children.

US 2006/0020585 A1

0259 Another issue involves representing the names and
descriptions (specified in the UDDI Standard) in an efficient
manner, and allowing rapid Searching for a specific type of
name or description.

0260 According to an embodiment of the present disclo
Sure, the System creates an abstract base class to represent
names, and another to represent descriptions, and Subclass
them for each of the desired types. Search for the attributes
of the Subclass when looking for a Specific type of name
(Business Entity name, for example), and for the abstract
class when looking for any name.

0261) Several of the major objects (Business Entities,
Business Services, etc) have the option of multiple names
and descriptions. The reasons are manifold. It is not uncom
mon for a business to be known by multiple names, perhaps
one formal and one or more colloquial. Moreover, a busineSS
may use different names in different languages. It is not
uncommon for a name to translate badly, for example. For
example, the computer firm Fujitsu used the name Facom in
English-speaking countries for many years. The issue may
exacerbated in languages with multiple character Sets. A
Japanese firm may well have one version of their name in
katakana, and another version in hiragana.

0262 For these reasons and more, both name and
description objects may occur multiple times for a single
object. Each instance is tagged with a language code. In
UDDI version 3 there may be multiple instances with the
same language code (this is not allowed in version 2).
0263 Find qualifiers add further confusion. As men
tioned earlier, UDDI searches are required to support both
case-Sensitive and case-insensitive Searching, and this is best
handled by storing the data twice in the X.500 Directory.

0264. The example below shows the abstract class and
one of the derived classes, eu BusinessEntityName, used for
the collection of names of a Business Entity:

set object-class uddiObjectClass:202 =
{ # abstract class as parent for all names

name = euName

subclass-of top
must-contain

euNameKey
may-contain

eulanguage
}:
set object-class uddiObjectClass:331 =
{ # name of a Business Entity

name = euBusinessEntityName
subclass-of euName
must-contain

euBusinessEntityNameValue,
euBusinessEntityNameValueIC

inherits euNameKey and eulanguage from euName

0265. Note that the euBusinessEntityName Value is the
attribute that contains the case-Sensitive version of the name;
while the euBusinessEntityName ValueIC is the version
marked as “ignore case', and is thus case-insensitive. The
euNameKey field, inherited from the abstract class, is used
to control the ordering of the names, and provides a unique
naming attribute.

Jan. 26, 2006

0266 An example of a name object might be:
euNameKey=890abcde-890a -890a -890a -890abc
def123

eulanguage=EN
euBusinessEntityNameValue=McKenna's Validation
Systems
euBusinessEntityNameValueIC=McKenna's Valida
tion Systems

0267 Again, although FIG. 15 illustrates an example of
the introduction of a hierarchy into a Sub-structure according
to an embodiment of the present disclosure for the repre
Sentation of a relatively complex object in a BusineSS Entity,
it is equally illustrative of an example of the introduction of
a hierarchy into a Sub-Structure according to an embodiment
of the present disclosure for the representation of a relatively
complex object in an abstract class. The Business Entity 151
of FIG. 15 is equally applicable to an abstract, with the
multi-valued elements of the Binding Template represented
as children 152, 153 of the abstract class 151. There may be
none or more children.

0268 Another issue relates to creating an efficient imple
mentation of the requirement that a user be permitted to alter
only those busineSS entities under his/her control. According
to an embodiment of the present disclosure, this can be
achieved by making the business entities controlled by a
user's children of the user object. This makes Security more
easily implemented.
0269. It may be important to ensure that a publishing user
only be permitted to alter the information that he/she owns.
It is possible to do this with various designs. However, the
optimal design makes it immediately clear whether a user is
authorised to publish an item: all the data controlled by a
given user is located in that user's Subtree.
0270. This design decision has no impact on the ease of
access to business entities as a whole, because all inquiries
into busineSS entities can be conducted from above the user
level in the hierarchy without loss of generality or perfor

CC.

0271 Another issue relates to creating an efficient imple
mentation of Publisher ASSertions, particularly with regard
to the implementation of the find Related Business method.
According to an embodiment of the present disclosure, this
can be achieved by making the Publisher ASSertions relating
to a business children of the business object. This eliminates
the need to Search for that criterion.

0272. One primary use of Publisher Assertions lies in the
find Related Businesses inquiry. This inquiry specifies a
particular BusineSS Entity, and requests information about
all busineSS entities related to that entity by completed
Publisher ASSertions. This inquiry is simplified, and accel
erated, by a hierarchy which places the Publisher Assertions
under the Business Entity to which they relate. This has the
added benefit of increasing consistency. When a BusineSS
Entity is deleted all the associated Publisher Assertions (now
irrelevant) are deleted with it.
0273 Another issue relates to creating an efficient imple
mentation of the requirement that a user be permitted to alter
only those TModels under his/her control. According to an
embodiment of the present disclosure, the System makes the
TModels, defined by a user, children of the user object. This
makes Security easy to implement.

US 2006/0020585 A1

0274 For reasons similar to those that governed the
placing of busineSS entities under user entries, it is Sensible
to place user-defined TModels under the user entry of the
user who defines them. There is no detrimental impact on
locating the TModels, Since they can be located via a single
indexed acceSS. because all TModels are uniquely named.
0275 Another issue relates to implementing efficient
Searching of Publisher ASSertions by relationship. According
to an embodiment of the present disclosure, this can be
achieved by making the relationship keyed reference an
auxiliary class of the Publisher Assertion entry. If the keyed
reference were a child (one implementation) it could not be
Searched with equal efficiency, and Searches for the relation
ship could not be combined with Searches on the content of
the Publisher Assertion, such as the (critical) filter on status
(only completed assertions are considered).
0276 The X.500 schema system may not support the
construction of object classes that include other object
classes as data elements. For example, a keyed reference can
not be a data element of a Publisher Assertion. It is possible
to make the keyed reference a child of the Publisher Asser
tion, but this does not facilitate the construction of an
efficient Search that references the contents of the keyed
reference.

0277 Making the keyed reference an auxiliary class to
the Publisher Assertion entry is an efficient solution to the
problem. It is then possible to search on the content of the
keyed reference as though it were part of the assertion.
0278 As described above, an example of a Publisher
ASSertion might be:

euPublisher AssertionKey=7890abcd-7890-7890
7890-7890abcdef12

euFrom BusinessKey=34567890-3456-3456-3456
34567890abcd

euFrom UserKey=23456789-2345-2345-2345
23456789Oabc

euToBusinessKey=09876543-6543-6543-6543
dcbaO9876543

euToUserKey=98765432-5432-5432-5432
cbaO98765432

euPublisher AssertionStatus=status:complete
euPublisher AssertionTModel=uuid:807A2C6A
EE22-47 OD-ADC7-EO424A337CO3

euPublisher AssertionKeyName=wholly-owned sub
sidiary
euPublisher AssertionKeyValue=parent-child

0279 The auxiliary object class is euPublisher Assertion
KeyReference, and the last three attributes listed above are
the data elements of that class.

0280 According to an embodiment of the present disclo
Sure, a Directory such as eTrustTM Directory by Computer
ASSociates may be utilized to implement an ideal enterprise
UDDI registry platform. eTrust Directory, which is a fully
compliant LDAPv3, X.500 electronic Directory, can be used
to underpin a UDDI Web Services implementation. The
eTrust Directory allows the UDDI implementation to
leverage the highly mature Directory Solution that is well
proven in large-scale, busineSS-critical Directory Service
applications.

0281. There are many unique features of eTrust Direc
tory that make it extremely attractive as a platform on which

Jan. 26, 2006

to build a UDDI registry. Some of these include: Security
features including acceSS control policies, roles, Secure
proxy, mutual authentication, distributed authentication, dis
tributed SSL certificate subject verification and network
address validation; Distribution and routing capabilities
including parallel-distributed Searches, load Sharing, query
Streaming and shortest path routing; A multi-master repli
cation Scheme that combines the Speed and efficiency of
replay-based mechanisms (known as multi-write) with State
based recovery and reconciliation techniques; Availability
features including hot Swap of data-bases, network fail-over
and Directory System Agent (DSA) fail over; Caching
design that is considered fast, and Deployment features
including dynamic configuration (of data types, Schema
rules, Security, knowledge and So on), unlimited data size,
general information integrity rules, extensive administrative
controls and an interactive command console.

0282 eTrust Directory provides a proven X.500 Direc
tory Solution. On top of this proven foundation can be
implemented a UDDI Semantic Bridge to enable a fully
Standards-compliant UDDI Registry. Because of the capa
bilities of the underlying Directory solution, the embodi
ments disclosed herein can deliver flexible Security, distri
bution and manageability without requiring changes or
extensions to the existing UDDI Standards.

0283) One issue of the present embodiment deals with
how to map relationships between entities Stored in disparate
Sections of the Directory.

0284. While UDDI data structures are primarily hierar
chical, there may be a problem with croSS relationship
between different objects.

0285) There are essentially two categories of relation
ships, namely alternative names, and croSS relationships.
According to an embodiment of the present disclosure, the
problem is resolved by making use of the concept of Aliases
to address the alternative names. ESSentially this has the
effect to attach a foreign entity as a virtual child of the
primary entity.

0286 The present embodiment makes use of unique keys
to address the problem of croSS relationships. ESSentially
this has the effect of creating relationship pointers rather
like the Primary/Foreign key system in RDBMS technology
to model relationships between data entities that exist
between disjoint sub-tress within a hierarchical Directory
System.

0287. The use of aliases according to embodiments of the
present disclosure will now be described. A first Scenario is
most clearly demonstrated by the implementation of UDDI
Business Service Projections. A Business Service projection
is in effect an alternative name for a BusineSS Service. A
Business Service Projection is a Business Service which
appears to belong to Business A, but which is in fact owned
and defined by Business B.

0288 Referring to FIG. 5, Business Service 51, a Service
owned by BusineSSA, appears also to belong to BusineSS B.
Any changes made by Business A to Business Service 51
will be reflected in the projected Service appearing under
Business B. Similarly, if Business Service 51 is deleted from
the registry, it will no longer appear under either Business A
or Business B. Additionally, Business Entity B may not edit

US 2006/0020585 A1

or change Business Service 51. For editing and all other
Publishing purposes, only BusineSS Ahas access to BusineSS
Service 51.

0289 ADirectory Alias system can be utilised to achieve
this effect. An alias of Business Service 51 is added to
Business Entity B. The alias is a special marker for the
Directory server which says in effect when someone looks
at this alias, show them this other entry over here.
0290. It means that when the original Service is edited,
the changes will be visible in the projection as well. If the
Directory System Supports Alias integrity, which is the case
with eTrust Directory, if the service is deleted, the projection
will automatically be removed as well.
0291. In addition, the Directory server can be configured
to show the projected Business Service twice when it is
Searched for, once under each parent. This can be useful
when doing Searches which need to resolve the parents of a
Business Service.

0292 Some situations require that objects in disjoint
parts of the Directory hierarchy maintain a relationship.
0293 An example of this is between Binding Templates
and TModels. TModels are used throughout UDDI for
various purposes. They are categorization keys, Search iden
tifiers, (UDDI) relationship descriptors, and in this instance,
technical specification fingerprints. A TModel which is
attached to a BindingTemplate describes a technical Speci
fication to which that BindingTemplate (see FIG. 8) con
forms. For example, a publisher might attach a TModel
asserting that their Binding Template conforms to the SOAP
1.1 Standard.

0294. A registry typically contains a finite set of TMod
els, many of which will be referenced by hundreds or even
thousands of Binding Template entries. In Some cases the
registry will return the details of any attached TModels
with the details of the BindingTemplate.
0295 According to this embodiment of the present dis
closure, a primary/foreign key System Such as that utilized in
relational database System can be Suitably modified and
applied. Every TModel stored in the registry has its own
unique (primary) key. A Binding Template references a
TModel by adding a local (foreign) key which matches the
unique key of the required TModel. FIG. 7 illustrates an
example of this. The server can then look up the TModel in
question if TModel data is needed to be returned with the
Binding Template.
0296 FIG. 6 shows the relationships between a Binding
template and TModel.
0297 FIG. 7 shows how the TModel key creates the
relationship between the two entities.
0298 A Publisher Assertion is an important element of a
UDDI repository. As noted above, it provides users with the
ability to discover which business entities are related to a
BusineSS Entity of interest, and how they are related.
0299 The Publisher Assertion was designed to protect
against abuse, with an asserted relationship only becoming
visible when the owners of both business entities involved
had asserted the relationship. This protection comes at a
cost, in that it complicates the implementation, and neces
sitates careful design to avoid poor performance.

Jan. 26, 2006

0300. One problem is integrity. A Publisher Assertion has
a more complex lifecycle than any other UDDI construct. It
comes into being when the owner of a BusineSS Entity
makes an assertion about that busineSS and its relationship to
another Business Entity. The owner of the other Business
Entity can request a Status report and discover what asser
tions have been made about their businesses, or they may be
notified out-of-band. Either way, the owner of the other
BusineSS Entity can choose to make a matching assertion
about the relationship between the two business entities. At
that moment the assertion is complete, and Visible to users
calling find Related Businesses. One or both assertions can be
modified or deleted, and the assertion becomes incomplete
again, and should no longer be visible. Additionally, the
deletion of either Business Entity should immediately
remove the assertion.

0301 The Publisher Assertion objects may be managed
in a manner that maintains integrity of the assertion.
0302) It is desirable that the owner of a Business Entity
be able to make (and remove) assertions about the business
entities controlled by that owner.
0303. This embodiment of the present disclosure is predi
cated upon the assumption that the UDDI repository will be
a “read-mostly' store, much as intended for an X.500 Direc
tory. To this end, the design is optimized for better read
performance, even at the cost of imposing a heavier burden
on writes.

0304. An object class called Publisher Assertion is
designed to hold data beyond that required by the UDDI
Standard, because of the desirability to optimize Search
performance. The design introduces an operational attribute,
which defines the Publisher Assertion status. The status of
the assertion is determined at the time of writing to the
Directory and in this way need not be determined each time
a Search is performed.
0305 The present embodiment also uses Pointers in the
form of User Keys. When a Publisher Assertion is written to
the Directory the user keys for the “to' and “from busi
neSSes are determined and written into the object. This
Simplifies the getASSertionStatusReport query, because all
that is required to generate Such a report is to Search for a
Publisher Assertion that contains the user key of the person
who is generating the report.
0306 In contrast, there would be considerable effort
required to generate the report if it was necessary to query
all the business keys under the user, then look for Publisher
ASSertions containing those business keys.
0307 One common use of Publisher Assertions is for the
discovery of those businesses related to a given business.
To provide good performance for that query, the Publisher
ASsertion(s) relating to a business are placed as child
node(s) of the business.
0308. In addition, the status of each assertion is recorded
in the assertion as an operational attribute. This makes it is
possible to query just the Publisher Assertions with a status
of complete located beneath the company of interest. This
simplifies the search for find Related Businesses because the
Search will recall only those assertions which are complete.
0309 To simplify security, all businesses controlled by a
user and their Publisher Assertions may be child nodes under

US 2006/0020585 A1

that user's account entry. This implementation enforces
access control by only allowing a User access to the Sub-tree
under the User's account entry.
0310 Note that the operational attribute representing the
status is managed by the UDDI implementation. When a
user publishes an assertion which has already been asserted
by another asserted business, the UDDI implementation will
update the Status of the other assertion, which is in another
sub-tree controlled by the User of the other business. The
access controls allow for this.

0311. As an alternative embodiment to storing two Pub
lisher ASSertion objects, one under each of the two BusineSS
Entities involved, a single Publisher Assertion object is
provided in its own sub-tree. For example, the Publisher
ASSertion Sub-tree can be provided under Repository
object(s). When the assertion is initially stored in this case,
it is given an incomplete status (for example, tokeyincom
plete or fromkeyincomplete, depending on which side
asserted it). If the Publisher Assertion is asserted by a
complementary user, the Status is changed to complete. If the
Publisher Assertion is deleted by one of the two, then the
status is changed back to incomplete. If the Publisher
Assertion is deleted by both sides, then the Publisher Asser
tion object is deleted. Advantageously, this results injust one
copy of an assertion, and most of the maintenance work
consists of doing a modify of the Single attribute that holds
the Status of the assertion.

0312 FIG. 12 illustrates schematically a hierarchy
according to an embodiment of the present disclosure. The
Schematic illustrates both alternatives, where the Publisher
ASSertion object is placed under BusineSS Entity and/or
Repository object.
0313 FIG. 8 illustrates a method to request to add a
Publisher Assertion. In Step S80, a determination is made
whether the request is valid. If not valid (No, Step S80), the
request fails (Step S92). If the request is valid (Yes, Step
S80), a determination is made whether the request is from
business ours (Step S82). If it is not from business ours (No,
Step S82), a determination is made whether it is to business
ours (Step S84). If not to business ours (No, Step S84), the
request fails (Step S92). If it is to business ours (Yes, Step
S84), a determination is made whether the assertion is made
by from owners (Step S86). If the assertion is not made by
from owner (No, Step S86), an incomplete assertion is
written (Step S94). If the assertion is made by from owner
(Yes, Step S86), the complete assertion is written (Step S96).
Returning to Step S82, m if it is determined that the request
is from business ours (Yes, Step S82), a determination is
made whether it is to business ours (Step S88). If not to
business ours (No, Step S88), a determination is made
whether the assertion is made by to owner (Step S90). If the
assertion is not made by the to owner (No, Step S90), the
incomplete assertion is written (Step S94). If the result of
Step S88 is Yes (To business ours), or the result of Step S90
is Yes (assertion made by To owner), the complete assertion
is written (Step S96).
0314. The next issue deals with how to optimize con
Struction of intermediate Search result collections during
Search operations So that both Directory access and iterative
in-memory operations are minimized, taking into account
the Directory Storage medium limitations. In practice, Direc
tory entries may be Stored and returned in arbitrary order,
and Directory results may be too large to Sort.

Jan. 26, 2006

0315 According to an embodiment of the present disclo
Sure, an object-oriented in-memory data Storage System
coupled with a unique result Sorting Scheme which Sorts
intermediate results by Distinguished Name is provided.
This allows one search to return many different types of
objects-BusinessEntities, BusinessServices, etc-and Still
allows the system to easily construct the correct XML
Structure for returning the data to the user. It is to be noted
that Web Service interactions are in XML.

0316 A description of such a system will now be
described. A UDDI BusinessEntity and any child data ele
ments in the present disclosure are represented (partially) in
the Directory according to the following hierarchy: Busin
essEntity

0317 BusinessService
0318 BindingTemplate
0319 BindingTemplate

0320 ServiceName
0321) ServiceName

0322 BusinessService
0323 BindingTemplate
0324 BindingTemplate

0325 ServiceName
0326 ServiceName

0327 BusinessName
0328 BusinessName
0329 BusinessDescription
0330 BusinessDescription

0331 Note that ServiceName, BusinessName and Busi
neSSDescription have been described in relation to aspects of
the present disclosure dealing with Substructures and Object
Splitting.
0332 The BusinessEntity retrieval code performs a
Directory SubTree search based upon the unique key of the
required BusineSS Entity or busineSS entities. This Search
will return the entries found, plus all sub-entries. The
Directory Standards do not guarantee any particular order to
the returned entries-or even that Sub-entries will immedi
ately follow their parent entry.
0333. Therefore, the retrieval code then sorts the returned
entries by Distinguished Name. This guarantees that Sub
entries will be ordered after their parents, and that parent
child relationships can easily be distinguished. A variety of
Sorting algorithms can be used. The Sorting algorithm used
should exhibit characteristics of high performance in the
case where entries are partially Sorted.
0334. The algorithm for results construction is essentially
in operation a depth-first, left-to-right tree-walk. It is
otherwise known in graph theory as a postorder traversal.
0335 The sorted list is passed to the constructor method
of a new BusinessEntity object. This object may be, for
example, an object-oriented programming construct
designed to represent a UDDI Business Entity. The Busin
essEntity object contains the code to construct itself from

US 2006/0020585 A1

the data provided in the entry last. The code moves itera
tively through the list, making decisions about each entry. It
is understood that the first entry in the list should be the main
entry for the BusineSS Entity itself, and as Soon as it finds
another BusinessEntity it is understood that construction has
finished-the ordering of the list guarantees this. AS Soon as
it finds a BusinessService or other child entry, an object of
the appropriate type is instantiated and the list is passed to
the new object's constructor, along with a pointer telling it
where to start in the list.

0336 Each object contains essentially similar processing
code to handle construction of itself and delegate construc
tion of any child entries to appropriate child objects.
0337. In this way, only a single Directory search need be
performed, and the resulting list is handled in an efficient
fashion, with every entry being processed once. If the list
was left in an arbitrary order, or Sorted in Some other fashion,
the list would have to be processed in multiple passes to
correctly construct a UDDI hierarchy from the resulting
entries.

0338 Delegation of construction and list processing to
the different programming objects in the hierarchy keeps the
processing code to a comparatively Small size, making it
more efficient and ultimately faster.
0339 FIG. 9 illustrates programming constructs
(objects), including a representation of the Sorted entry list.
A determination is made whether there are any further items
in a list of items. If there are no additional items (No, Step
S100), the process exits (Step S118). If there are additional
items (Yes, Step S100), the next item in the list is retrieved
(Step S102). A determination is then made whether the item
is of this object type. If the item is of this object type (Yes,
Step S104), the object attributes are set based on the item
(Step S106) and the process returns to Step S100. If it is not
of this object type (No, Step S104), a determination is made
whether an item of this object type has been processed yet
(Step S108). If the item of this object type has not yet been
processed (No, Step S108), the process returns to Step S100.
If an item of this object type has been processed (Yes, Step
S108), a determination is made whether the item is an
intrinsic component of this object (e.g., Name, Description,
etc.). If it is an intrinsic component (Yes, Step S110), the
item is added to the object attribute and extra processing
may be performed (Step S112) and the process returns to
Step S100. If it is not an intrinsic component (No, Step 110),
a determination is made whether the item is a child object of
this object (e.g., BusinessService if this is a BusinessEntity).
If it is a child object (Yes, Step S114), the system instantiates
an object of the correct type, and passes the list of items to
a constructor (Step S116) and the process returns to Step
S100. If it is not a child object (No, Step S114), the process
returns to Step S100.
0340. The following real word example demonstrates
the kind of arbitrary ordering an LDAP Directory might be
expected to return.

SearchResultEntry
objectName:
businessKey=1ba3034aeef738.da00eef78599fe00004,userKey=
1ba3034aedb915

Jan. 26, 2006

-continued

attributes
type: objectClass
value: businessEntity
type: businessKey
value: 1ba3034aeef738da00eef78599fe0004
SearchResultEntry
objectName:
descriptionKey=1ba3034aeef738da00eef786302b0008,
businessKey=1ba3034
aeef738da00eef78599fe0004,userKey=1ba3034aedb.9154900edb.915491c
OOO1,O =CA
attributes
type objectClass
value uddiDescription
SearchResultEntry
objectName:
serviceKey=1ba3034aeef738da00eef789707ff)00c,businessKey=
1ba3034aeef738da00eef78599fe0004,userKey=1ba3034aedb.9154900edb
915491c(OOO1,0=CA
attributes
type: objectClass
value: businessService
SearchResultEntry
object Name:
nameKey=1ba,3034aeef738.da00eef7897Oda000d, serviceKey=
1ba3034aeef738da00eef789707ff)00c,businessKey=1ba3034aeef738.da00
eef78599fe0004,userKey=1ba3034ae
db9154900edb915491c()001,OCA
attributes
type: objectClass
value: businessServiceName
SearchResultEntry
objectName:
CbindingKey=1ba3034aeef738da00eef7899fb7000eserviceKey=1ba3034
aeef738da00eef789707f000c,businessKey=1ba3034aeef738da00eef78599
fe0004,userKey=1ba303

attributes
type: objectClass
value: bindingTemplate
SearchResultEntry
objectName:
nameKey=1ba,3034aeef738.da00eef7862fe50007,businessKey=1ba3034
aeef738
da00eef78599fe0004,userKey=1ba3034aedb.9154900edb.915491c()001,
O=CA
attributes
type: objectClass
value: businessEntityName

0341 List 1- The Name entry highlighted in bold is a
leaf of the BusinessEntity entry at the top of the list, and it
would be useful if it appeared before the BusinessService
entry and other branch-children of the BusinessEntity. How
ever, it appears at the end of the list, which forces any
processing code to Search the entire list to ensure all direct
children of the BusinessEntity have been processed. This
may not be the most efficient.

0342. Accordingly, a version of the same data which has
been Sorted according to the rules formulated according to
an embodiment of the present disclosure:

SearchResultEntry
objectName:
businessKey=1ba3034aeef738da00eef78599fe0004,userKey=1ba3034aedb
915.4900edb915491c(OOO1.O=CA
attributes

US 2006/0020585 A1

-continued

type: objectClass
value: businessEntity
type: businessKey
value: 1ba3034aeef738da00eef78599fe0004
SearchResultEntry
object Name:
descriptionKey=1ba3034aeef738da00eef786302b0008,businessKey=1ba
3034aeef738da00eef78599fe0004,userKey=1ba3034aedb.9154900edb
915491c(OOO1,0=CA
attributes
type: objectClass
value: uddiDescription
SearchResultEntry
objectName:
nameKey=1ba3034aeef738.da00eef7862fe50007,businessKey=1ba3034
aeef738
da00eef78599fe0004,userKey=1ba3034aedb.9154900edb.915491c()001,O=
CA
attributes
type: objectClass
value: businessEntityName
SearchResultEntry
objectName:
serviceKey=1ba3034aeef73Bda00eef789707ff)00c,businessKey=1ba3034
aeef738da00eef78599fe0004,userKey=1ba3034aedb.9154900edb.915491c
OOO1,o=CA
attributes
type: objectClass
value: businessService
SearchResultEntry
object Name:
bindingKey=1ba3034aeef738.da00eef7899fb7000eserviceKey=1ba3034
aeef738.da00eef789707f000c,businessKey=1 ba3034aeef738.da00eef78599
fe0004,userKey=1ba303

attributes
type: objectClass
value: bindingTemplate
SearchResultEntry
objectName:
nameKey=1ba3034aeef738.da00eef7897Oda000d, serviceKey=1ba3034aeef
738.da00eef789707f000c,businessKey=1ba3034aeef738da00eef78599fe
O004,userKey=1ba3034ae

attributes
type: objectClass
value: businessServiceName

0343 As the present disclosure may be embodied in
several forms without departing from the spirit of the
essential characteristics of the disclosure, it should be under
stood that the above described embodiments are not to limit
the present disclosure unless otherwise Specified, but rather

Jan. 26, 2006

should be construed broadly within the spirit and scope of
the disclosure as defined in the appended claims. Various
modifications and equivalent arrangements are intended to
be included within the Spirit and Scope of the disclosure and
appended claims.
What is claimed is:

1. A method for use in a Web Services system comprising:
providing access to a data repository; and
providing shadow attributes for use in conducting

Searches of the data repository.
2. The method as recited in claim 1, wherein the shadow

attributes Store values case insensitively.
3. The method as recited in claim 1, further comprising

Searching the Shadow attributes according to a matching
rule.

4. The method as recited in claim 1, wherein an attribute
representing an operator of the repository is not stored as an
attribute.

5. The method as recited in claim 1, further comprising
Storing an operational attribute based on a pre-calculated
operation.

6. The method as recited in claim 5, wherein the opera
tional attribute relates to at least one of deleted Users and
Service Projection status.

7. A computer recording medium including computer
executable code for performing a method for use in a Web
Services System comprising:

code for providing access to a data repository; and
code for providing Shadow attributes for use in conduct

ing Searches of the data repository.
8. The computer recording medium as recited in claim 7,

wherein the Shadow attributes Store values case insensi
tively.

9. The computer recording medium as recited in claim 7,
further comprising code for Searching the Shadow attributes
according to a matching rule.

10. The computer recording medium as recited in claim 7,
wherein an attribute representing an operator of the reposi
tory is not Stored as an attribute.

11. The computer recording medium as recited in claim 7,
further comprising code for Storing an operational attribute
based on a pre-calculated operation.

12. The computer recording medium as recited in claim
11, wherein the operational attribute relates to at least one of
deleted Users and Service Projection status.

k k k k k

