»UK Patent .,GB

2995815

(13)B

(45)Date of B Publication 06.07.2022

(54) Title of the Invention: Distributed industrial performance monitoring and analytics

platform

(51) INT CL: GO5B 19/418 (2006.01)

(21) Application No: 21127444
(22) Date of Filing: 07.10.2016
Date Lodged: 07.09.2021
(30) Priority Data:
(31) 62239620 (32) 09.10.2015 (33) US
(31) 15274207 (32) 23.09.2016 (33) US

(62) Divided from Application No
1617022.7 under section 15(9) of the Patents Act 1977

(43) Date of A Publication 08.12.2021

(56) Documents Cited:
WO 2015/138706 A1
US 20160098037 A1

US 20170351241 A1

(58) Field of Search:

As for published application 2595815 A viz:
INT CL GO5B, GO6F
updated as appropriate

Additional Fields
Other: WPI, EPODOC, Patent Fulltext

(72) Inventor(s):
Mark John Nixon
Alper Turhan Enver
Noel Howard Bell
Joshua Brian Kidd
Paul R Muston

(73) Proprietor(s):
Fisher-Rosemount Systems, Inc
Bldg. 1, 1100 W. Louis Henna Blvd, Round Rock,
Texas 78681, United States of America

(74) Agent and/or Address for Service:
Forresters IP LLP
Rutland House, 148 Edmund Street, BIRMINGHAM,
B3 2JA, United Kingdom

g G18969¢ 99

1/35

8L

SWHLSAS
TYNNILNE
OL AVMALYD

v

oL

INIOd §S400V

INVId J3HL0
OL AVAAELYO

2/35

880IA8(J
plaupueH _pory

IORUOD
$S8001d
ueuolsiH ugjd

e &
) ,,.

VZ 'Ol - m
SOBABUY L e el SOBABUY | ooy
pappaqul 4-n TmmmTm T vmwvmmﬂém

-
sondAleugpue M sondisuy f — M
Buuoyuow J pzol—] § peppequiy ! N
ssiwad-u0 | 80l —{x LORINBYUOO Y BULICHUDH 30UBULICLS — Ol
_ I % asiiaig UD
#“ooueddy meq big ¥
w WaIsAg [0JOD) §5800Ud
g ¥
R % §
% §
L= / :
-4 : _ .
S0INBS s | llemedd H R
Bujesns je—— k g ~,
sonAeuy i s «\N
i i —
| — Eo= 3 LU

S

sonAiBUY Buijspon

pappeqwy || % uoiINBuo)

Bunndwon pnon

3/35

g¢ 9ld

jsuiqed
Buljjeysien

R Jaue) eleq
I 3
asldiejug
uelolsiH @ [emally
(NOd) HomisN o
[0JJU0D) SS800.d - ~
; sonAleuy puy
{] \ uonezilensiA ‘eyeq big
(zZna) N {* ‘sojni uonduosgng
3uoZ paleys ‘% Pm XD
uelolsiH &
lemali4
U
JOMI® : HOMISN
hﬁo&uo % 5 sies() Josn] S .ﬂeoeoo
; j oym._OQ._oO Nni ol s P
ueloisiH ||lemall 9|Iq0\ j e 8_.“_...

aslidJeug

a e
_ Medpig| 3

4/35

150
|
DISTRIBUTED DATA ENGINE (DDE)
155
168 . | E :
\ para
DATA ~~Lgl BIG DATA 316 DATA 5@;%5’?2’3?
SOURCES Lwl RECEIVERS 3 3
17 E : STORAGE > SERVfERS \
1 160 165
?
?
i ! | 175
; BIG DATA L4 |
! ANALYZERS DATAANALYTICS
| l NETWORK
: 170 INTERFACE
3
i
i

5/35

208a~

208b~—

200
Z?Ga
Load Data —— 2022
i CC — 212a
out
~. 2153
—— 2058
218b
2100
\ i
- Fill NaN - 202b
lcﬁ! -~ 212b
out
215b
220

FIG. 4A

6/35

240

242 248b 248f 248h 248;
\ 248a /’ 2480 /’ 248g | 248 | 248k
[, ! \]
g i T S —
=] Module Oonine [AE[>]~] O

248m

/

!/

[

245

FIG. 4B

7/35

[3]
]
L]

252
//

Block Definition Module

Library

% /258 /»262

Block 1 % Block

Definition Instance Property

265— Input Output 270
Connector Conneclor

1 1
From To

272 Wire

FIG. 4C

8/35

240
242 248b 248d 248f 248h 248;
\ 2482 | 248¢c | 248¢ | 248 | 248 | 248k
\ o] | |
/ | / i / LN S R A
T] s g s ,! I S S S
=/ ModuleA1 Offine O Ontine | LA >~ O
248m~-~\IE—|
A1-B1
- meuw
a1
Ba- -1y A1-B2
X
k)
A
&
A1-B4
{l
245

FiG. 4D

9/35

in
B1-Fill NaN
;Q_/! l/282
out PCA
N Componsnits

. &
: P

. IR
E in E‘"
: ¥
g B1-PCA ;
B ;
: g
é ||
i ;
. i
E M;dei Sccres\\ E
p 280a 280b i
A v \

10735

DATASET4/TAGI.CV
DATASET4/TAGA.CY

—4—210
LoadDB o
Project
E 2= H DatabaseM g}»—w?.%b
Daia Set
A +-285¢
= || Datasetd -
Piot
[W 1~ 285d
= il True 4
FIG. 4F
5/2863
TN 4210
&) Columns o
Selected Columns
(DATASET4/TAG1L.CV]
DATASET4/TAG2.CV 286D

FIG. 4G

11735

K2878

210

E = }[

2w {2

-

Confidence Level

}ﬂ.ﬂza"fb
‘rmza?c

4

FIG. 4H

12735

/—288

/296 /292
e > Transport ﬁ > Target
Binding Storage Compile Languaga(s)
BLD
FIG. 41
A
Line Chart
' L —~3156
@ Tag 1
@ Tag 2
Tag 3
Tag 4
Statistics /selected
Loaded \ / Tag Data
318\ / Loaded
320
.
Block specific Results
312 o . -
~ 310 302
Computed Statistics Rlack 1
308
» Resultant Dataset
|
~305
W
FIG. 4J

13735

3
3

338
/

Nams

o
[l
O
Ui
ol |
5

FillNaN

ICanceiE I Save E

Seale

FIG. 4K

14735

340

i Dataseat 4 of Database M

LoadDB4M

3428

34201 Columns X

—— 342C

34247

PLSAM XY

out §

ExploredM X Y

— 3428

FIG. 4L

15735

345

i on-line data source

LoadDB4M 3478

-~ 3470

PLSAM X Y }—347c

Write —347d

| Data Consumer(s)

FIG. 4M

16/35

L-Nb "Oid

J
JEN
_
x ev60.876°0 ww] pw| na| p wnil pd, Wd 91:8591 ‘5102016 welBeig
89€E~, -G
)
x 8958€61 /958" \.\/\/\/\}\ NV GL:8E'6 'GL0Z/Z/6 Twelbelq
0ge 8/¢ g8 z1g
S uonolpald 1se pual] Npels SeweN
v 3
SUOREOBHON aUIKO auIluO sweang ejed
O O —\ —\ g4
z9e—" 09e —~ gge—" gge—")
25 g) e

\ x PlEOQUsEQ soAleuy eledd /|

O
(op)

17735

¢-Nb "Old

198E _mwm/ 1982 US8E- mmwﬁ
)\<<<<< .?x,w.mm Allenp </.\
A%zs ABrouz T
|dM
_— 958€
\'I\I/ \/\/\/\/\/\/\
dvdl-s <(\/\<J\/\/ HH KT
u\ N A Y % B
Y X -
L0l - Dl pIpald NOSI aHAQ S0
psge—’ o68¢~’ asgs eGeg—’
g) e
\ X olpnis sonAleuy eleaq /|

18735

400
— . Discovered
100—, Data Analytics System 410 Knowledge
.
HMI
420 — \
v 412
i
LR 418
PROCESS
CONTROL &=
DATA
\ Process Plant |— .
o 402
—— 405
o
Process Plant
QOutput

FIG. 40

19735

N
1
[

v

ADVERTISE CLUSTER

452

v

REGISTER RESPONDING DATA SOURCE

— 455

v

RECEIVE DATA GENERATED BY DATA SOURCE

——458

v

STREAM AT LEAST SOME OF RECEIVED DATA
TO DATA CONSUMER

—— 480

v

FIG. 4P

LB
]
(o}

v

ADVERTISE CENTRALIZED CLUSTER

472

v

REGISTER RESPONDING CLUSTER

— 475

v

RECEIVE DATA GENERATED BY RESPONDING
CLUSTER

478

v

PERFORM DATA ANALYTICS FUNCTION(S)
ON RECEIVED DATA

480

v

STREAM RESULTS/OUTPUT OF DATA
ANALYTIC(S) TO DATA CONSUMER

~—482

v
FIG. 4Q

v§ "Old

20/35

A $30MN08 VLY $S3004d $S3004d
ol _ IN3ITO 93M JOIAY3S NOILND3XT o K_f_ww%__w e
1L _MIA SYITINOD
‘ 01 1 (| “wvaovia AT
SENEREN 926 I —]
| vivaolg ||je T3A0N ||~ §s¢
(] MIIA Zls (| suannsnoo
- 205 3 3 hes VI
A 4 y
| ‘ ([LNOLLYONddy | SN .
JOVHOLS %
| vivaois ‘ @8\ Em\.. mmm\ =l
‘ SIOINY3S '
~ “NvG 4| snowvz
4 9lg - - 4 . “IVNSIA
SHIOINIS y—] SHOL193X3 -
{1 1S3n03 L e
Y1vdolg _\,__\,_MU,ommimm) 3805 T 66T L
gl <
3 816 7 o HANALSITL xm\ mmmﬁ_ﬁmm
qa0r .
moimmhz_ RS » =
— viva e I > :
|| nomian |, 07e | 7 a I
- SO dINHO4ISNYHL 4 I \ mmw__wm_ 1714
V1vQ | H
v e T /1 [[WHLI09 1304v1 1S
~1 ss300ud 805 1
| [Sumzaew vee | u3ng3S gIm , 3000/LdIYOS 1IOMYL p mmm\ I
-1 vivaold " 83553004d gor A s | sa0nos viva
- YIDYNYA = 2z
INION3 4 304N0S V1vd
vlvaa3alngrilsia | 00s | ¢€S FOINY3S SOILATYNY

21/35

g5 "Old

a4

€9
v ¢ac
NION1d NOILINI43d >
v.ivd \ A0071d
€25 GSC 62S
S30IAd3S V.LVA //

0c¢s

NOILINI43d HOLVHANIO

A

M001d
{ GG

NOILINI43d

d3ddVdM NOILINIA3A WHLIHOOTV

LcS

acs

22 /35

551
553 /
RETRIEVE BLOCK DEFINITION L 003 %
v
, 555
RECEIVE COMMAND TO SHOW PROPERTIES
@ ~ 5587
RETRIEVE METADATA FORPROPERTY g
v
CHECK FOR PLUGIN INFORMATION 559
IN METADATA FOR PROPERTY

“PLUGIN
< INFORMATION
"~ PRESENT "

DISCOVER AND LOAD PLUGIN | 963

v v

INVOKE PLUGINTO GET |- 959 FIND DEFAULT VALUE(S)IN 567
REQUIRED PROPERTY VALUES METADATA

569
e

FIND Ul CONTROL TYPE IN
METADATA

v

ADD VALUE(S) AND 571
APPROPROPRIATE CONTROL 1O
PROPERTY DIALOG

Y e
—

" ADDITIONAL

PROPERTY?

DISPLAY PROPERTIES DIALOG |7

FIG. 5C

23/35

as "oOid

[11, 5umnos,)
‘09 1. S29591ey BdWeES,,
1

{
wZ000°00:C0- 91 LP0-80-%10,, - SUH L pUa,
‘20000000 E01¥0-80-ST0T., | DU L HElS,,
}

{
«Z000°00002TITE-L0-9T0, 2l pua,
2000 0000 €048 -L0-5T07, L SWi Hels,
'

{
L2000 0000 ST LPE-L0-9T0C,, Budi L pua,
W Z000°00:00:G01E7-£0-5T07,, 1 SW L 1S,
'

]:,40108953WL, ~2P09
~:O..m\.: ”:Eﬁ.vmmtm ms).: _
‘(uosi 1 adAjoop, @@;Omgxm .
‘. TAsanb, o swey Alanb, ~ N
VTS
INETly
+ LOY0SL0Z-Lonpoyy || =i
1sloid
L8
~ /
/

/

suo o BWEG o

Leinpoi (]

009

parz -

24 /35

45 "Old

W29~ 11Sod1STY i
1929
W29~
0} VA N cCSUWND
5 m\\\.ﬁ.h\m, 4979
LYOL
wm-mn OFé0 — wmm_zhm %«
SIUAMVIOIBINUIS/H006I50uRoo)/ diy | B M\m@%
m \ O
Nwm BFlG wamﬁg \o
B © suiyoo

einpoy (E)

789"

25/35

4% "Old

¥eg

888 \mmm
L]

10} indul ejep puig

s e9es \\.mmm

L 1504

| SINPOY | s

wsloid

0£9

SUMHG ©

SUIIO O

Leinpoi {=]

759~

26/35

\\l\n
14%)

96 "Old

\\mmvm \\mwm

L

Buipuig suiiug

. B .
s 148 \ww@

L

ADIN0S BUIHO

10afold

N

144"

avol

{

avs

EERf=lY

H

PG

avot

SUIO O

B0 O

8inpoy (E]

i

27 /35

708
QUERY BLOCK

STANDARTIZED QUERY F1— 708

??2@ 3
70 702f
i |]
DATA e QUERY EXECUTION s DATA SOURCE
SOURCE | SERVICE 1 I I
.............. [9) AR
704a 704b 704c 704d
y i‘ ¥ ! ¥ i s i
DATA DATA DATA DATA
PROVIDER PROVIDER PROVIDER PROVIDER
[702b DATA -
W S SOURCE +-702¢ i /de
- - i

702a

DATA |
SOURCE |

DATA |
SOURCE |

Il

FIG. 6A

28 /35

Query1

——708

Onn®

FiliNa1

—710

) Columns4

£y

Explored

FIG. 6B

29/35

"query_name":"queryl",
"docType":"json",
"version":"1.0",

"timeSelector": [

{
"startTime": "2015-07-23705:00:00.000Z",

"endTime": "2015-07-24T15:00:00.000Z"
b

{
"startTime":"2015-07-28T03:00:00.000Z",

"endTime":"2015-07-31712:00:00.000Z"
b

{
"startTime": "2015-08-04T03:00:00.000Z",

"endTime": "2015-08-04T16:00:00.000Z"
}
]

sampleRateSecs": 60,

"columns™: [

{
"tag": "FT630B/DENS.CV",
"alias": "FT630B/DENS.CV",
"dataType": "Float",
"renderType":"VALUE",
"format": "0.###"

7

"tag": "PT615/WIRED_PSIA.CV",
"alias": "PT615/WIRED_PSIA.CV",
"dataType": "Float",
"renderType": "VALUE",
"format": "0.###"

7

"tag": "TT6079/INPUT_1.CV",
"alias": "TT6079/INPUT_1.CV",
"dataType": "Float",
"renderType":"VALUE",
"format": "0.###"

2

{
"tag": "630.molefrac.c5",

"alias":"630.molefrac.c5",
"dataType": "Float",
"renderType": "VALUE",
"format": "0.###"

} FIG. 6C

30/35

o
Len

START)

RECEIVE A STANDARDIZED QUERY
IN A STANDARDIZED QUERY FORMAT

— 742

v

IDENTIFY ONE OR MORE DATA SOURCES FROM
WHICH TO OBTAIN DATA

744

v

GENERATE A DATA SOURCE-SPECIFIC QUERY
FOR EACH DATA SOURCE

746

v

CAUSE EACH DATA SOURCE TO BE QUERIED
USING THE DATA SOURCE-SPECIFIC QUERY

-—748

v

OBTAIN REQUESTED DATA FROM THE ONE OR
MORE DATA SOURCES

L-—750

v

GENERATE A FORMATTED DATA FRAME
INCLUDING THE OBTAINED DATA

752

FIG. 6D

31/35

o
Len

START)

RECEIVE A STANDARDIZED QUERY FROM A DATA
REQUESTING ENTITY

— 762

v

EXTRACT QUERY PARAMETERS FROM THE
RECEWED STANDARDIZED QUERY

— 754

v

GENERATE A DATA SOURCE-SPECIFIC QUERY
FOR EACH DATA SOURCE

7856

v

EXECUTE DATA-SPECIFIC QUERY TO OBTAIN
DATA

-—768

v

FORMAT THE OBTAINED DATA BASED UPON THE
STANDARDIZED QUERY

770

v

PROVIDE FORMATTED DATATO THE DATA
RECEIVING ENTITY

772

FIG. 6E

32/35

2 5 Sunj
- St 2
- = Mean
“““““ Std*2
2.0

07 08 09 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25
FIG. 7A

2.5

15 16 17/18 19 20 21 22 23 24 25 26 27 28 28 30 01 02 03

e FIG. 7B

33/35

1106

-
.

110
™
Y

are Event

1108
i

/,
¥

G

Flow Data

Wiy,

et e
..................... ; ; \\\\\ 9

&ﬁ&&@ﬁ w«

11/22/2013

as 3

1412013
4:00:00

/0172013

L

1011/2013

09/20/2013

0.1 4

1211202013
20:00:00

2112013

09/20/2013

4
i

1200212013

1

/

4
i

10

10:00:00

00:00:0C

4
i

19:06:00 06:00:00
FIG. 7C

09:00:00

00:00

(%]
o~

13:00:00

1113

4 cyclo/day
amplitude

A

1115a

7

sy

g2

S ea

1214202013
20:00:00

4
i

120212013
10:00:00

112272013
00:00:00

2]
= D
[
[N
"o
D W
— 3
=

4
i

102112013
19:00:00

1014/2013
09:00:00

:00:00

n
]

o~

0.8

0.7

0.6+

0.4
0.3
02
0.1+

G9/20/2015 082002043
13:00:00

1112

FIG. 7D

34 /35

1108

1118

incipal

ist Pr

Component

11/04/2013

20:00

5

4
!

]

08:00
FIG. 7E

40:00

17

20:00

06

1110

i S P

<=

094

08+

07

08

/2013

2

4

-

1

11718/2013

1111512013

1

1111172013

14:00

2013
40

?
i

108

i

1

00:00

00

(00

40

14

00

FIG. 7F

20

o0

00

02

35/35

1200

OBTAIN INITIAL SET OF PROCESS SIGNALS
GENERATED AS A RESULT OF A PROCESS
BEING CONTROLLED BY A PROCESS PLANT

L 1202

v

DETERMINE LEADING INDICATOR
OF AN UNDESIRED CONDITION BASED ON INITIAL
SET OF PROCESS SIGNALS

— 1204

v

CREATE/GENERATE ONE OR MORE NEW
PROCESS VARIABLES CORRESPONDING
TO LEADING INDICATOR

1206

v

DETERMINE TIME-SERIES DATA CORRESPONDING
TO ONE OR MORE NEW PROCESS VARIABLES
FROM SUBSEQUENT SET OF PROCESS SIGNALS

— 1208

v

MONITOR THE TIME-SERIES DATA
CORRESPONDING TO NEW PROCESS VARIABLE(S)
TO DETECT PRESENCE OF LEADING INDICATOR

— 1210

v

GENERATE INDICATION OF PREDICTED
UNDESIRABLE CONDITION BASED ON DETECTED
PRESENCE OF LEADING INDICATOR

— 1212

FIG. 7G

DISTRIBUTED INDUSTRIAL PERFORMANCE MONITORING AND ANALYTICS PLATFORM

[0001] This application claims the benefit of U.S. Provisional Application No. 32/239,620 filed on October 9,
2015, and entitled DISTRIBUTED INDUSTRIAL PERFORMANCE MONITORING AND ANALYTICS, the entirety
of which is hereby expressly incorporated herein by reference. The present application is related to: (i) U.S.
Application No. 13/784,041 filed on March 4, 2013 and entitled “BIG DATA IN PROCESS CONTROL
SYSTEMS,” (ii) U.S. Application No. 14/174,413 filed on February 6, 2014 and entitled “COLLECTING AND
DELIVERING DATA TO A BIG DATA MACHINE IN A PROCESS CONTROL SYSTEM,” (iiiy U.S. Application No.
14/456,763 filed on August 11, 2014 and entitled “SECURING DEVICES TO PROCESS CONTROL SYSTEMS,”
(iv) U.S. Application No. 14/216,823 filed on March 17, 2014 and entitled “DATA MODELING STUDIO,” (v) U.S.
Application No. 14/169,965 filed on January 31, 2014 and entitled “MANAGING BIG DATA IN PROCESS
CONTROL SYSTEMS,” (vi) U.S. Application No. 14/212,411 filed on March 14, 2014 and entitled
“DETERMINING ASSOCIATIONS AND ALIGNMENTS OF PROCESS ELEMENTS AND MEASUREMENTS IN
A PROCESS,” (vii) U.S. Application No. 14/212,493 filed on March 14, 2014 and entitled “DISTRIBUTED BIG
DATA IN A PROCESS CONTROL SYSTEM,” (viii) U.S. Application No. 14/506,863 filed on October 6, 2014 and
entitled “STREAMING DATA FOR ANALYTICS IN PROCESS CONTROL SYSTEMS,” (ix) U.S. Application No.
14/507,188 filed on October 6, 2014 and entitled “REGIONAL BIG DATA IN PROCESS CONTROL SYSTEMS,”
(x) U.S. Application No. 62/060,408 filed October 6, 2014 and entitled “DATA PIPELINE FOR PROCESS
CONTROL SYSTEM ANALYTICS,” and (xi) U.S. Application No. 14/507,252 filed on October 6, 2014 and
entitled “AUTOMATIC SIGNAL PROCESSING-BASED LEARNING IN A PROCESS PLANT,” the entire

disclosures of which are hereby expressly incorporated herein by reference.

[0002] The presentdisclosure relates generally to process plants and to process control systems, and more
particularly, to real-time performance monitoring and analytics of real-time data generated by process plants and

process control systems.

[0003] Distributed process control systems, like those used in chemical, petroleum, industrial or other process
plants to manufacture, refine, transform, generate, or produce physical materials or products typically include
one or more process controllers communicatively coupled to one or more field devices via analog, digital or
combined analog/digital buses, or via a wireless communication link or network. The field devices, which may
be, for example, valves, valve positioners, switches and transmitters (e.g., temperature, pressure, level and flow
rate sensors), are located within the process environment and generally perform physical or process control
functions such as opening or closing valves, measuring process and/or environmental parameters such as
temperature or pressure, etc. to control one or more processes executing within the process plant or system.
Smart field devices, such as the field devices conforming to the well-known Fieldbus protocol may also perform
control calculations, alarming functions, and other control functions commonly implemented within the controller.
The process controllers, which are also typically located within the plant environment, receive signals indicative

of process measurements made by the field devices and/or other information pertaining to the field devices and
1

execute a controller application that runs, for example, different control modules which make process control
decisions, generate control signals based on the received information and coordinate with the control modules or
blocks being performed in the field devices, such as HART®, WirelessHART®, and FOUNDATION® Fieldbus field
devices. The control modules in the controller send the control signals over the communication lines or links to
the field devices to thereby control the operation of at least a portion of the process plant, e.g., to control at least
a portion of one or more industrial processes running or executing within the plant. For example, the controllers
and the field devices control at least a portion of a process being controlled by the process control system of the

process plant.

[0004] Information from the field devices and the controller is usually made available over a data highway or
communication network to one or more other hardware devices, such as operator workstations, personal
computers or computing devices, data historians, report generators, centralized databases, or other centralized
administrative computing devices that are typically placed in control rooms or other locations away from the
harsher plant environment. Each of these hardware devices typically is centralized across the process plant or
across a portion of the process plant. These hardware devices run applications that may, for example, enable
an operator to perform functions with respect to controlling a process and/or operating the process plant, such
as changing settings of the process control routine, modifying the operation of the control modules within the
controllers or the field devices, viewing the current state of the process, viewing alarms generated by field
devices and controllers, simulating the operation of the process for the purpose of training personnel or testing
the process control software, keeping and updating a configuration database, etc. The data highway utilized by
the hardware devices, controllers and field devices may include a wired communication path, a wireless

communication path, or a combination of wired and wireless communication paths.

[0005] As an example, the DeltaV M control system, sold by Emerson Process Management, includes
multiple applications stored within and executed by different devices located at diverse places within a process
plant. A configuration application, which resides in one or more workstations or computing devices, enables
users to create or change process control modules and download these process control modules via a data
highway to dedicated distributed controllers. Typically, these control modules are made up of communicatively
interconnected function blocks, which are objects in an object oriented programming protocol that perform
functions within the control scheme based on inputs thereto and that provide outputs to other function blocks
within the control scheme. The configuration application may also allow a configuration designer to create or
change operator interfaces which are used by a viewing application to display data to an operator and to enable
the operator to change settings, such as set points, within the process control routines. Each dedicated
controller and, in some cases, one or more field devices, stores and executes a respective controller application
that runs the control modules assigned and downloaded thereto to implement actual process control
functionality. The viewing applications, which may be executed on one or more operator workstations (or on one
or more remote computing devices in communicative connection with the operator workstations and the data
highway), receive data from the controller application via the data highway and display this data to process
control system designers, operators, or users using the user interfaces, and may provide any of a number of

different views, such as an operator’s view, an engineer’s view, a technician’s view, etc. A data historian

2

application is typically stored in and executed by a data historian device that collects and stores some or all of
the data provided across the data highway while a configuration database application may run in a still further
computer attached to the data highway to store the current process control routine configuration and data

associated therewith. Alternatively, the configuration database may be located in the same workstation as the

configuration application.

[0006] In a process plant or process control system, when evidence of an abnormal condition or fault occurs
(e.g., when an alarm is generated, or when a process measurement or actuator is found to have excessive
variation), an operator, instrument technician or process engineer typically uses an analytics tool in combination
with his or her knowledge of the process being controlled by the system and its flow path through the system to
attempt to determine upstream measurements and process variables that may have contributed to the
production of the evidence of the abnormal condition or fault. For example, an operator may feed a historical log

of data that has been captured over time from the output of a process control device (e.g., a field device, a

controller, etc.) into the DeltaVTM patch analytics product or continuous data analytics tool to attempt to
determine the contributions of various process variables and/or measurements to an abnormal or fault condition.
Typically, a user decides which historical data logs and/or other time-series data to feed into the analytics tool
and identifies candidate upstream factors (e.g., measurements, process variables, etc.) based on his or her
knowledge of the process. Subsequently, these data analytics tools utilize principal component analysis (PCA),
or other analysis techniques such as partial least squares, linear regression, and the like, to determine which of
the candidate upstream factors impact downstream predicted quality parameters. Thus, the accuracy and
effectiveness of the output provided by the analytics tool is based on or limited to the user’s knowledge, and as

such may not provide complete or correct insight into the sources of the abnormal condition or fault.

[0007] Additionally, such analytics are typically performed off-line from the process and as such, the process
may change or move while the analytics are being performed. For example, a typical process plant usually
performs one or two cycles of a particular analytic (e.g., a data collection and analysis cycle) per day, and only
after some time after the analytics have been performed are the results analyzed and any prescriptive actions
developed and implemented in the plant. Thus, not only may the accuracy of the analytics results be suspect,
but the prescriptive actions developed therefrom may not be optimal or may no longer apply to the currently

executing process.

[0008] Further, the architecture of currently known process control plants and process control systems is
strongly influenced by limited controller and device memory, communications bandwidth and controller and
device processor capability. For example, in currently known process control system architectures, the use of
dynamic and static non-volatile memory in the controller is usually minimized or, at the least, managed carefully.
As aresult, during system configuration (e.g., a priori), a user typically must choose which data in the controller
is to be archived or saved, the frequency at which it will be saved, and whether or not compression is used, and
the controller is accordingly configured with this limited set of data rules. Consequently, data which could be
useful in troubleshooting and process analysis is often not archived, and if it is collected, the useful information

may have been lost due to data compression.

[0009] Still further, data sets of industrial or process control plants have been steadily increasing in size to the
point where present data processing analytics applications are inadequate. Typically, known analytics
techniques merely attempt to extract a value from data, but do not address particular sizes of data sets from
which the value is to be extracted, and notably, do not operate on very large sets of data (such as all process
data that is generated by a plant) in a seamless way. Further, known analytics techniques typically cannot

handle streaming or streamed data.

[0010] The limitations of currently known process plant monitoring and analytics and process control systems
discussed above and other limitations may undesirably manifest themselves in the operation and optimization of
process plants or process control systems, for instance, during plant operations, trouble shooting, and/or
predictive modeling. Generally, real-time analytics using real-time, current industrial process performance data

is not possible with known monitoring and analytics tools.

SUMMARY
[0011] Techniques, systems, apparatuses, components, and methods for distributed industrial process
performance monitoring and/or analytics are disclosed herein. Said techniques, systems, apparatuses,
components, and methods may apply to industrial process control systems, environments, and/or plants, which
are interchangeably referred to herein as “automation,” “industrial control,” “process control,” or “process”
systems, environments, and/or plants. Typically, such systems and plants provide control, in a distributed
manner, of one or more processes that operate to manufacture, refine, transform, generate, or produce physical
materials or products. Generally, said techniques, systems, apparatuses, components, and methods include
embedding data monitoring and/or data analytics engines (also referred to interchangeably herein as a
“distributed data engine,” “data engine,” or “DDE"} in a distributed manner within devices that are operating in
concert to control an industrial process. For example, a distributed data engine may be manufactured into a
device that operates with other devices to control a process executing in a process plant or process control
system (e.g., process control devices such as field devices, controllers, I/O cards, etc.), and/or a distributed data
engine may be locally coupled with or directly coupled to such a device. Additional data engines may be
embedded in or manufactured into other devices that are included in the process plant, such as in
communication nodes, workstations or other operator interfaces, servers, and the like. In some configurations,
data engines are connected to various communication links within the process plant or otherwise are connected
to the process plant so as to have a view of or window into the real-time data transmitted during the execution or

control of the process within the plant.

[0012] Data is streamed between various embedded data engines, e.g., by using one or more data
communication channels and networks that typically exist outside of the traditional communication systems
found in distributed control systems (DCSs), programmable logic systems (PLSs), and process control safety
and health monitoring systems (SHMs). To avoid confusion with such traditionally known process control
communication networks and links, the communication channels and network utilized to stream communications
between data engines are interchangeably referred to herein as “data analytics communication channels,” “data
analytics channels,” “data analytics communication networks,” or “data analytics networks.” The streamed data

may include real-time data that is viewed or observed by the data engine. For example, when a distributed data
4

engine is connected to (and thus is viewing the data that is traversing over) a traditional process control system
communication link, the data engine may stream a copy of data that is traversing the traditional communication
link to one or more other data engines via the data analytics network. In another example, when a distributed
data engine is manufactured or embedded into a process control device, the analytics data that is streamed by
the data engine using the data analytics network may include copies of data that is received, generated, or
otherwise processed by the device. Additionally, or alternatively, the streamed data may include data
corresponding to one or more analytics that were performed locally at the device, such as analytics results,
prescriptive actions, and the like. This architecture allows analytics services to be locally bound and provided
close to or even at a data source while at the same time providing larger scale analytics, thereby providing timely
results and optimizations while minimizing bandwidth usage and processing cycles across the system, as is

explained in more detail below.

[0013] In an aspect, a distributed industrial process monitoring and analytics system includes a plurality of
distributed data engines (DDEs) embedded within a process plant that is operating to control a process. Each of
the DDEs is coupled to a respective one or more data sources within the process plant that are respectively
generating data as a result of the process being controlled. Additionally, each of the DDEs stores the data being
generated by the respective one or more data sources to which each DDE is coupled. The system also includes
a data analytics network that supports the streaming of analytics data amongst the plurality of DDEs, and that

supports the transmission of queries for data stored at the plurality of DDEs.

[0014] In another aspect, a method includes advertising a presence of a cluster included in a data analytics
network of a process control plant that is operating to control a process. The method also includes registering a
data source that responds to the advertisement and that generates continuous data resulting from control of the
process by the plant. Additionally, the method includes receiving the continuous data generated by the data
source, and streaming, via the data analytics network, at least some of the continuous data generated by the
data source to a data consumer. One or more portions of the method may be performed by the cluster, for

example.

[0015] In yet another aspect, a method includes advertising a presence of a centralized cluster included in a
data analytics network of a process control plant that is operating to control a process. The method also
includes registering a local cluster that responds to the advertising and that is configured to store streamed,
continuous data that is generated as a result of controlling the process. The local cluster is embedded in the
process plant and is communicatively coupled to one or more data sources that generate at least a portion of the
continuous data while operating to control a process. Additionally, the method may include receiving at least a
portion of the streamed continuous data from the local cluster, performing one or more data analytics functions
on the streamed continuous data received from the local cluster, and streaming, via the data analytics network,
an output of one or more data analytics functions to a data consumer. One or more portions of the method may

be performed by the centralized cluster, for example.

[0016] In another aspect, the system includes a data analytics module bound to a continuous data stream.
The continuous data stream has contents that are generated in real-time by a data source included in a process

plant that is operating to control a process, and the contents of the continuous data stream are generated as a
5

result of the operations to control the process. The system further includes a user interface displaying
continuous output generated in real-time resulting from the data analytics module operating in real-time on the
continuous data stream. The continuous output displayed on the user interface includes a continuous updating

of one or more predicted values.

[0017] In still another aspect, a performance monitoring and analytics system for industrial process control
includes a platform that provides a set of user controls and a canvas which enable a user to create a data
diagram that is representative of a data model. The platform further enables the user to evaluate or compile the
data diagram to execute on an input data set, thereby generating output data. The input data set comprises
time-series data (and optionally, other data) resulting from an on-line process plant controlling a process. The
term “time-series data,” as used herein, generally refers to a sequence of data points, values, or sets that are

generated over a time interval, typically by one or more data sources.

[0018] The data diagram comprises a set of data blocks interconnected by set of wires via which data is
transferred in between data blocks. Each data block of the set of data blocks corresponds to a respective data
operation, includes zero, one, or more input connectors, and includes zero, one or more output connectors.
Respective input data is received at each data block via the input connector(s), and the respective data block
provides respective output data resulting from each data block performing its respective data operation on the
respective input data via the output connector(s). Further, the input connector is included in a first data block of
a set of data blocks, the respective data operation of at least one data block included in the set of data blocks
includes a data analytics function, and different portions of the data diagram are asynchronously and separately
compilable and executable. In some embodiments, e.g., when no input connectors and no output connectors

are configured, input and output data may be handled internally by a data block.

[0019] In an aspect, a method for performing real-time analytics in a process control environment includes
creating a first diagram on a graphical user interface. The first diagram may represent first programming
instructions that are operable to cause a processor to manipulate data generated and stored previously by the
process control environment. The method also includes compiling the first programming instructions
represented by the first diagram, executing the compiled first programming instructions to create a resultant first
output, and evaluating the resultant first output to determine a predictive value of a model used to create a
resultant first output. Additionally, the method includes automatically generating a second diagram from the first
diagram. The second diagram may represent second programming instructions that are operable to cause a
processor to bind to a live data source and to evaluate data received from the live data source using at least the
model used to create the resultant first output. Further, the method includes compiling the second programming
instructions represented by the second diagram and executing the compiled second programming instructions to

predict an aspect of the operation of the process control environment.

[0020] In another aspect, a system for performing real-time analytics in a process control environment
includes a plurality of process control devices operating in a process plant and a controller that is
communicatively coupled to the plurality of process devices via a control network. The system also includes a
big data storage node that comprises a tangible, non-transitory storage medium storing data of the operation of

the process control environment, a processor that is communicatively coupled to the big data storage node, and
6

a program memory that is communicatively coupled to the processor. The program memory may comprise a
tangible, non-transitory storage medium storing instructions that, when executed by the processor, cause the
processor to display a graphical user interface comprising an editing canvas and receive a selection of a plurality
of graphical programming elements for placement onto the editing canvas to create a first diagram. The first
diagram may represent first programming instructions operable to cause the processor to manipulate data stored
on the big data storage node. Additionally, when the instructions are executed by the processor, the processor
may be caused to execute the compiled first programming instructions to create a resultant first output and
create a predictive model based on the resultant first output. When the instructions are executed by the
processor, the processor may be further caused to automatically generate a second diagram from the first
diagram. The second diagram may represent second programming instructions that are operable to cause the
processor to bind to a live data source and evaluate data received from the live data source using at least the
model used to create a resultant first output. When the instructions are executed by the processor, the
processor may be still further caused to compile the second programming instructions represented by the
second diagram and execute the compiled second programming instructions to predict an aspect of the

operation of the process control environment.

[0021] In another aspect, an analytics service for performing data analytics in a process control environment
includes a library of block definitions. The library may be stored on a tangible, non-transitory medium, and each
block definition stored in the library may comprise (i} a target algorithm for performing an action with respect to
data in the process control environment, and (iiy one or more block properties. The analytics service further
includes a set of machine-readable instructions that are stored on the tangible, non-transitory medium and that
are operable, when executed by processor, to (1) present a canvas to a user via a display; (2) present the library
of block definitions to the user; (3) receive one or more selections of one or more corresponding block
definitions; (4) place one or more blocks corresponding to the one or more block definitions on the canvas to
create a module comprising the one or more blocks; (5) facilitate configuration of one or more properties for
either (i) the one or more blocks or (ii) the module or (iii) the one or more blocks and the module; and (6) cause

the evaluation of (i} one or more of the blocks or (ii) the module.

[0022] Additionally, the analytics service includes an execution service operating on a processor, where the
execution service is configured to (1) receive a request to evaluate the one or more blocks or the module; (2)
compile instructions corresponding to the one or more blocks or the module; (3) create one or more job
processes to execute the compiled instructions and cause the one or more job processes to execute the
compiled instructions; and (4) receive results of the one or more job processes. The analytics service also
includes a communication network that couples one or more processors executing the one or more job
processes to one or more distributed data engines. Each distributed data engine may comprise a tangible, non-

transitory storage medium storing data generated in the process control environment.

[0023] Indeed, data generated by or concerning the operation of the process plant may be stored in a plurality
of data stores, such as relational or non-relational databases. These data stores may utilize various data
structures and query mechanisms, such that different query syntax is needed to access the data in different data

stores. A standardized query is described herein to facilitate data access to data stores using various formats.

7

The standardized query utilizing a standardized data query format contains information needed to access data in
a data store, but the standardized query may not be directly executable to obtain such data. Instead, data
source-specific queries are generated based upon the standardized query. This may include extracting query
parameters from the standardized query and generating one or more data source-specific queries utilizing data
source-specific query formats associated with particular data sources. The data source-specific queries may be
executed to access and select data from their respective data sources, which may then be formatted to generate
data frames presenting the data indicated in the standardized query in any desired format. This may include
aligning sampling rates, data properties, or other data characteristics for the data obtained by the data source-
specific queries. In some embodiments, data from multiple data sources utilizing different data source-specific

query formats may be combined into an aggregated data frame for further use in process control or analysis.

[0024] In another aspect, a method, system, and computer-readable medium storing instructions for obtaining
time-series data from an electronic data source are described, comprising receiving an indication of the
electronic data source from which the data is to be obtained, receiving an indication of a time range for which the
data is to be obtained, receiving an indication of a characteristic of the data to be obtained, determining a data
source-specific query format associated with the electronic data source, generating a data source-specific query
complying with the data source-specific format based upon the indications of the time range and the
characteristic of the data to be obtained, causing the data source-specific query to be executed to select the
data from the electronic data source, and/or receiving the data from the electronic data source. The indications
of the time range and the characteristics of the data may be expressed in a standardized query format that is
independent of the electronic data source, and the electronic data source may be a relational database or non-

relational database.

[0025] The method may include a standardized query utilizing the standardized query format. The indication
of the time range and the indication of the characteristics may be received in the standardized query. The
indication of the electronic data source may also be received in the standardized query. The standardized query
may further indicate a format for the data or a file to return the data, such as JavaScript Object Notation (JSON).
The standardized query may also be a JSON-formatted file. The standardized query format may utilize a syntax
that is distinct from a native syntax utilized by the electronic data source. Such syntax utilized by the

standardized query format may not be directly executable to obtain the data from the electronic data source.

[0026] The indication of the time range may include at least one start time and at least one end time. The
indication of the time range may similarly include a sample rate for the data to be obtained. The indication of the
characteristic of the data to be obtained may include an indication of one or more types of measurements
regarding operation of a process plant. The one or more types of measurements may include measurements
from one or more field devices disposed within the process plant. The indication of the one or more types of

measurements may include one or more tags, aliases, and data types associated the data.

[0027] The method may further comprise receiving an indication of a format in which the data is to be received
from the electronic data source, and the data may be received from the electronic data source in the indicated
format. In some embodiments, an indication of a format in which the data is to be obtained may be received,

and the data received from the electronic data source may be converted into the indicated format.
8

[0028] The data source-specific query format may be determined based upon a type of the electronic data
source. Generating the data source-specific query may include mapping the indicated time range and the
indicated characteristics of the data to be obtained to the determined data source-specific query format.

Causing the data source-specific query to be executed may include sending the data source-specific query to an
interface of the electronic data source, such that the interface queries the electronic data source using the data

source-specific query.

[0029] A data frame may be generated that includes the data received from the electronic data source. The
data frame may include a plurality of data points. Each data point may be associated with a time within the time
range. Each data point may further be associated with a time within the time range that aligns with an integer

multiple of a sample period following a start time or is the start time.

[0030] In another aspect, a method, system, and computer-readable medium storing instructions for providing
data from an electronic data source are described, comprising receiving from a data requesting entity a
standardized query that uses a standardized query format, extracting query parameters from the standardized
query, generating a data source-specific query in the data source-specific query format based upon the
extracted query parameters, executing the data source-specific query to obtain the data form the electronic data
source, and/or providing the obtained data to a data receiving entity. The standardized query format may be
different from a data source-specific query format utilized by the electronic data source. The electronic data
source may be a relational database or a non-relational database. The data requesting entity may be a query
block within an analytics program, such as the Data Analytics Studio discussed herein. The data receiving entity
may be the same entity as the data requesting entity. The standardized query may utilize a syntax that is not

directly executable to obtain the data from the electronic data source.

[0031] Extracting the query parameters from the standardized query may include determining a time period
and a data parameter of the data. The time period may have a start time and an end time, and the data
parameter may indicate a type or characteristic of data to be obtained from the electronic data source.

Extracting the query parameters from the standardized query may further include determining a sampling rate.

[0032] Providing the obtained data to the requesting entity may include returning a set of data points
associated with the time period. Each data point may include a timestamp indicating a time for the value or
values associated with the data point. Such timestamps may be limited to times that are the start time or an
integer multiple of the period of the sampling rate following the start time. To achieve a complete time series,
one or more data points may be added to the data set with timestamps indicating integer multiples of the period
of the sampling rate after the start time. The added data points may use values of data entries in the electronic
data source associated with times most closely prior to each timestamp of the one or more added data points.

The set of data points may be formatted based upon a format specified in the standardized query.

[0033] The type or characteristic of the data indicated by the data parameter may be a type of measurement
or a measurement from a type of measurement device. The type or characteristic of the data may further

indicate a specific measurement device, which may be a field device disposed within a process plant. The data

parameter may further indicate a tag of the data to be obtained, an alias for the data to be provided to the data

requesting entity, and/or a data format type for the data to be provided to the data requesting entity.

[0034] Providing the data to the data requesting entity may include sending a data frame containing the
obtained data to the data requesting entity. The standardized query may include an indication of a format for the
data frame. The data frame may be formatted according to the indication of the format for the data frame. The

standardized query may indicate the data frame is to be provided to the data receiving entity as a JSON file.

[0035] In another aspect, a method, system, and computer-readable medium storing instructions for
accessing process plant data from a plurality of electronic data sources are described, comprising receiving a
standardized query that utilizes a standardized query format, generating a first data source-specific query based
upon the standardized query, generating a second data source-specific query based upon the standardized
query, causing the first data source-specific query to be executed to obtain a first set of data from the first
electronic data source, causing the second data source-specific query to be executed to obtain a second set of
data from the second electronic data source, and/or generating an aggregated data frame including the first and
second sets of data. The first and second sets of data may each include a plurality of data points containing

information measured by one or more field devices within a process plant.

[0036] The first data source-specific query may utilize a first query format associated with a first electronic
data source, and the second data source-specific query may utilize a second query format associated with a
second electronic data source. The standardized query may include a first indication of the first electronic data
source and a second indication of the second electronic data source. In some embodiments, the first electronic
data source may be a relational database, and the second electronic data source may be a non-relational
database. The first indication may identify the first query format, and the second indication may identify the
second query format. In some embodiments, the first and second indications may be prepended to indications

of data columns.

[0037] The standardized query format may utilize a query syntax that is distinct from both a query syntax of
the first query format and a query syntax of the second query format. The query syntax of the standardized
query format may not be directly executable to obtain either of the first set of data from the first electronic data
source or the second set of data from the second electronic data source. For example, the standardized query

may be included in one or more objects or arrays of a JSON file.

[0038] The standardized query may include an indication of a time range identifying a period of time
corresponding to data entries in the first data set and the second data set. The time range may include a
plurality of time periods, which may be separated by excluded time periods for which data is not queried. The
time range may also identify a first time period associated with the first data set and a second time period
associated with the second data set. The standardized query may also include an indication of a sample rate for

the aggregated data frame.

[0039] The first data set may include data having a first sample rate, and the second data set may include
data having a second sample rate. In such instances, generating the aggregated data frame may include

aligning the first and second sample rates. Aligning the first and second sample rates may include adding data

10

points corresponding to unsampled times needed to achieve a desired sample rate. Such added data points
may be given values of the sampled data directly preceding the added data points in time. Aligning the first and

second data sample rates may similarly include removing sampled data points.

[0040] Systems for implementing such methods may further include one or more processors communicatively
connected to one or more data sources and one or more program memories storing computer-readable
instructions that, when executed by the one or more processors, cause the computer system to perform part or
all of the system functions described above. Computer-readable media may store similar computer-readable
instructions that may be executed by one or more processors of a computer system, thereby causing the
computer system to perform part or all of the system functions described above. Additional or alternative
aspects of the methods, systems, or computer-readable media may be implemented, as described more fully in

the detailed description below.

[0041] Additionally, a novel frequency analysis analytics technique is disclosed, and may be provided by any
of the systems, methods, apparatuses, and techniques described herein. The novel frequency analysis
analytics technique may analyze streamed data to provide early warning fault detection in process plants or
process control systems. More particularly, the frequency analysis analytics technique may create a new set of
process variables corresponding to identified leading indicators of faults, abnormalities, decreases in
performance, target performance levels, undesired conditions, and/or desired conditions, and may determine
time-series data of the new process variables by performing a rolling FFT on streamed process data. The rolling
FFT may convert the streamed process data from the time domain into the frequency domain, in which values of
the new set of process variables may be determined. The determined values of the new process variables may
be transformed back into the time domain for monitoring. The detection of a presence of a leading indicator
within the monitored time domain data may cause an indication of a predicted fault, abnormality, decrease in
performance, and/or other undesired condition to be produced and/or presented, and may result in a change to
the operations of the process plant, thereby avoiding, preventing, and/or mitigating the effect of the undesirable
upsets, events, and/or conditions. Similarly, the detection of a presence of the leading indicator within the
monitored time domain data may cause an indication of a predicted desired condition such as a target level of
performance to be produced and/or presented, and in some cases, along with a time or time interval at which the

desired condition is predicted to occur.

[0042] An aspect of the invention provides a performance monitoring and analytics system for industrial
process control, the system comprising: a platform including a set of user controls and a canvas via which a user
is able to create a data diagram that is representative of a data model and compile the data diagram to execute
on an input data set to generate output data, the input data set comprising time-series data resulting from an on-
line process plant controlling a process, wherein: the data diagram comprises a set of data blocks
interconnected by a set of wires via which data is transferred between data blocks; each data block of the set of
data blocks corresponds to a respective data operation and includes an input connector via which respective
input data is received at the data block and at least one output connector providing respective output data
resulting from the data block performing a respective data operation on the respective input data; the input data

set is received at the input connector of a first data block of the set of data blocks, the respective data operation

11

of at least one data block of the set of data blocks includes a data analytic function, and a first portion and a

second portion of the data diagram are asynchronously and separately compilable and executable.
[0043] Each data block may be asynchronously and separately compilable.

[0044] The output data generated by the data model may comprise at least one value that is descriptive or

characteristic of the input data set.
[0045] The output data generated by the data model may comprise at least one predictive value.

[0046] The at least one predictive value may be indicative of a predicted level of performance of at least a
portion of the on-line process plant, may be indicative of a predicted fault or failure of at least a portion of the on-

line process plant, or may be indicative of a predicted interval of time.

[0047] The output data generated by the data model may comprise at least one value that is prescriptive and
corresponds to a change to the on-line process plant, wherein the change to the on-line process plant may
comprise a change to at least one of: a set point, a value, a control loop, a configuration, a process model, a

connection, a component, or a piece of equipment.

[0048] The set of user controls may include a first user control to access a data block definition library storing
a plurality of data block definitions corresponding to a plurality of data operations, and wherein each of one or
more of the data blocks of the set of data blocks of the data diagram may be a particular instance of a particular

data block definition stored in the data block definition library.

[0049] The particular instance of the particular data block definition may comprise an assigned name or

identity of the particular instance.

[0050] The particular instance of the particular data block definition may comprise a user modification to a

value of a property of the particular data block definition.

[0051] The set of user controls may include a first user control to access a data block definition library storing
a plurality of data block definitions corresponding to a plurality of data operations, and wherein each of at least
some of the data block definitions stored in the data block definition library may include one or more respective

properties.

[0052] A value of at least one of the one or more respective properties may be a default value.

[0053] One or more of the one or more respective properties may be an optional property.

[0054] A second user control, when activated, may cause an evaluation of at least a part of the data diagram.
[0055] The at least the part of the data diagram may be selected by the user.

[0056] The evaluation of the at least the part of the data diagram may comprise a compilation of the at least

the part of the data diagram and an execution of the compilation of the at least the part of the data diagram.

[0057] The set of data blocks of the data diagram may comprise one or more of the following: a data source

data block, a filter data block, a transformers data block, a visualizations data block, a data consumer data block,

or another type of data block; and wherein at least one of; the respective data operation of the data source data
12

block corresponds to obtaining the input data set; the respective data operation of the filter data block comprises
filtering the respective input data of the filter data block; the respective data operation of the transformers data
block comprises at least one of: cleaning the respective input data of the transformers data block, manipulating
contents of the respective input data of the transformers data block, aligning the contents of the respective input
data of the transformers data block, or performing one or more analytic techniques on the respective input data
of the transformers data block; the respective data operation of the visualizations data block comprises
presenting a particular visual representation of the respective input data of the visualizations data block on a
user interface of the platform; or the respective data operation of the data consumer data block comprises
performing an action on the output data of the data model, the action corresponding to a consumer of the output

data of the data model.

[0058] The consumer of the output data of the data model may comprise at least one of: an analytics
application, another type of application, a distributed data engine (DDE), a data historian, a file, a database, the

user interface of the platform, or another user interface.

[0059] The anothertype of data block may comprise an explore data block; the explore data block may
include a first input connector to receive a predicted value from a first other data block and a second input
connector to receive an actual value from a second other data block; and the respective operation performed by

the explore data block may comprise a comparison of the predicted value and the actual value.

[0060] At least one wire of the set of wires of the data diagram may connect a respective data block to an off-
line data source in which the time-series data is stored, the off-line data source may comprise at least one of: a

file, a process control database, and analytics database, or another type of database.

[0061] Each data block of the data diagram may include an indication of a respective block state of the
respective data block, an indication of an identity of the respective data block, and an indication of a result of an
evaluation of the respective data block, and wherein the evaluation of the respective data block may comprise a

compilation of the respective data block and an execution of the compilation of the respective data block.

[0062] The indication of the result of the evaluation of at least one data block of the set of data blocks may

comprise one or more graphical visualizations.

[0063] The indication of the result of the evaluation of at least one data block of the set of data blocks may

comprise a respective set of computed statistics.

[0064] Each data block of the data diagram may perform a time alignment of respective received input data of

the respective data block.

[0065] The respective output data provided by each data block of the data diagram may include at least one

of: a single data value, a set of data values, or another data diagram.

[0066] The data diagram may be an off-line data diagram, and a third user control, when activated, may
cause a transformation of the off-line data diagram of the data model into an on-line data diagram of the data
model, the on-line data diagram of the data model configured to communicatively connect to the on-line process
plant.

13

[0067] A setofdata blocks and a set of wires of the on-line data diagram may be different from the set of data

blocks and the set of wires of the off-line data diagram.

[0068] An activation of a fourth user control may cause a deployment of the on-line data diagram, and the
deployment of the on-line data diagram may comprise a compilation of the on-line data diagram and an
execution of the compilation of the on-line data diagram to generate an on-line data analytics module of the data

model.

[0069] The on-line data analytics module may be executed by one or more distributed data engines (DDEs) of

a plurality of DDEs of a data analytics network of the on-line process plant.

[0070] The configuration of the on-line data diagram to communicatively connect to the on-line process plant
may comprise a binding of the on-line data diagram to a live data source that generates the time-series data

resulting from the on-line process plant controlling the process.
[0071] The platform may automatically bind the on-line data diagram to the live data source.

[0072] The on-line data diagram may be bound to the live data source based upon an activation of a fifth user

control.
[0073] The live data source may be a process control device operating to control the process.

[0074] The process control device may operate to control the process by receiving an input signal,
determining an output signal based on the received input signal, and transmitting the output signal over a

process control communication network to another process control device.

[0075] The process control device may operate to control the process by receiving an input signal and
performing a physical function corresponding to a flow of the on-line process plant based on the received input

signal.

[0076] The time-series data generated by the live data source may comprise a continuous data stream that
may be continuously received at an on-line data analytics module in real-time via a data analytics network of the
on-line process plant, the on-line data analytics module generated from a compilation of the on-line data diagram

of the data model.

[0077] The data analytics network may be overlaid over all process control communication networks of the on-

line process plant.

[0078] The continuous data stream may be continuously received at the on-line data analytics module from a
distributed data engine (DDE) of a plurality of DDEs of the data analytics network.

[0079] The on-line data analytics module continuously may perform, in real-time, one or more analytics

functions on the continuously received data stream, and generates, in real-time, a continuous output.

[0080] The continuous output generated by the on-line data analytics module may comprise one or more

predictive values.

14

[0081] The continuous output generated by the on-line data analytics module may be displayed in real-time

on a user interface as a graphical visualization.

[0082] The continuous output generated by the on-line data analytics module may be displayed in real-time

on a user interface in conjunction with a stream of actual values.

[0083] An indication of an accuracy of the data model may be displayed on a user interface in conjunction
with the continuous output of the on-line data analytics module corresponding to the data model, and wherein
the accuracy of the data model may be based on a comparison of the continuous output of the on-line data

analytics module and one or more actual values generated by the on-line process plant.

[0084] The one or more analytics functions performed on the continuous data stream may comprise a

predictive analytics function or a prescriptive analytics function.

[0085] The continuously received data stream may be cleaned prior to the on-line data analytics module

performing the one or more analytics functions thereon.

[0086] At least some of the contents of the continuously received data stream may be manipulated prior to the

on-line data analytics module performing the one or more analytics functions thereon.

[0087] The on-line data analytics module continuously may perform, in real-time, the one or more analytics
functions on the continuously received data stream and another data stream, and wherein the another data
stream may be generated by at least one other data source as a result of the on-line process plant controlling

the process.

[0088] The online data analytics module may time-align the continuously received data stream and the

another data stream.
[0089] The continuous data stream may be a selected data stream based on a user selection.

[0090] The continuous data stream may be generated based on a query issued by the on-line data analytics
module indicating one or more particular portions of data that may be generated in real-time by the live data

source and that may be to be included in the continuous data stream.

[0091] Another aspect provides a system for monitoring operation of a process plant that is operating to
control a process, comprising: a data analytics module bound to a continuous data stream having contents that
are generated (i) in real-time by a data source included in the process plant while it is operating to control the
process, and (ii) as a result of the operations to control the process; and a user interface displaying a continuous
output generated in real-time by the data analytics module operating in real-time on the continuous data stream,

the continuous output including a continuous update of one or more predicted values.

[0092] The one or more predicted values may be indicative of a predicted performance of at least a portion of
the process plant, a predicted fault or failure of at least a portion of the process plant, or a predicted time interval

corresponding to at least a portion of the process plant.

15

[0093] The data source may be a process control device operating to control the process by receiving an
input signal, determining an output signal based on the received input signal, and transmitting the output signal

over a process control communication network to another process control device.

[0094] The data source may be a process control device operating to control the process by receiving an
input signal and performing a physical function corresponding to a flow of the process plant based on the

received input signal.

[0095] The continuous update of the one or more predicted values may be presented in conjunction with a
continuous update of one or more actual values generated by the process plant while controlling the process in

the process plant, the one or more actual values corresponding to the one or more predicted values.

[0096] The user interface may further display an indication of an accuracy of the data analytics module, the
indication of the accuracy may be based upon a comparison of the one or more predicted values and one or

more actual values may be generated by the process plant while controlling the process.

[0097] The operation of the data analytics module on the continuous data stream may include performing at
least one data analytic function on the continuous data stream, including at least one of: a descriptive analytic

function, a predictive analytic function, or a prescriptive analytic function.

[0098] The operation of the data analytics module on the continuous data stream may include at least one of;
a cleaning of the continuous data stream prior to performing the at least one data analytic function or a

manipulation of the contents of continuous data stream prior to performing the at least one data analytic function.

[0099] The at least one data analytic function may be performed on the continuous data stream and on at
least one other data stream, wherein the contents of the at least one other data stream may be generated by at

least one other data source as a result of the operations to control the process in the process plant.

[00100] The data analytics module may align the continuous data stream and the at least one other data

stream in time.

[00101] The continuous data stream may be a selected data stream, and wherein the selected data stream

may be based on a user selection.

[00102] The continuous data stream may be generated based on a query issued by the data analytics

module.

[00103] The query issued by the data analytics module may indicate one or more particular portions of data
that may be generated in real-time by the data source and that may be to be included in the continuous data

stream.

[00104] The data analytics module may be executed by one or more distributed data engines (DDEs) of a

data analytics network of the process plant.

[00105] The data analytics module may be an on-line data analytics module transformed from an off-line data

analytics module that was created by a user via a data analytics user interface application.

16

[00106] The on-line data analytics module may be a compilation of an on-line data diagram displayed on the
user interface; the off-line data analytics module may be a compilation of an off-line data diagram displayed on

the user interface; and the on-line data diagram may be a transformation of the off-line data diagram.

[00107] The off-line data diagram may comprise a respective set of data blocks interconnected by a

respective set of wires via which data may be transferred between data blocks.

[00108] The data source may be an on-line data source, and at least one wire of the respective set of wires of

the off-line data diagram interconnects a respective data block to an off-line data source.

[00109] The respective set of data blocks of the off-line data diagram may comprise one or more of a data
source data block, a filter data block, a transformers data block, a visualizations data block, a data consumer
data block, or another type of data block; and each data block of the respective set of data blocks of the off-line
data diagram may include an input connector via which respective input data is received at the data block, and
at least one output connector via which the data block may provide respective output data resulting from the

data block performing a respective operation on the received, respective input data.

[00110] At least one of: the respective operation of the data source data block may correspond to obtaining
the received, respective input data of the data source data block from an off-line data source; the respective
operation of the filter data block may comprise a filtering technique; the respective operation of the transformers
data block may comprise at least one of. cleaning the received respective input data of the transformers data
block, manipulating contents of the received respective input data of the transformers data block, aligning the
contents of the received respective input data of the transformers data block, or performing one or more analytic
techniques on the received respective input data of the transformers data block; the respective operation of the
visualizations data block may comprise presenting a respective visual representation of the received respective
input data of the visualizations data block on the user interface; or the respective operation of the data consumer
data block may comprise performing an action on an output of the off-line data analytics module, the action

corresponding to a consumer of the output of the off-line data analytics module.

[00111] Each data block included in the set of data blocks of the off-line data diagram may be a particular
instance of a respective data block definition stored in a data block definition library that is accessible to the data
analytics user interface application, and each data block of the off-line data diagram may include at least one of;
an indication of a respective block state, an indication of an identity of the particular respective instance of the

respective data block definition, or an indication of a result of an evaluation of the respective data block.

[00112] The evaluation of the respective data block may comprise a compilation of the respective data block
and an execution of the compilation of the respective data block, each data block of the off-line data diagram
may perform a time alignment of respective received input data of the each data block, or the indication of the
result of the evaluation of at least one data block of the set of data blocks of the off-line data diagram may

comprise one or more graphical visualizations or a respective set of computed statistics.

[00113] A first portion and a second portion of the off-line data diagram may be asynchronously and
separately evaluated, wherein the respective evaluation of each of the first portion and the second portion may

comprise a respective compilation and execution.
17

[00114] Each data block included in the set of data blocks of the off-line data diagram may be asynchronously

and separately evaluated.

[00115] At least one data block of the set of data blocks of the off-line data diagram may be an explore data
block that receives a predicted value from a first other data block and receives another value from a second
other data block, and performs an operation to generate a comparison of the predicted value and the another

value.

[00116] The on-line data analytics module may exclude the explore data block of the off-line data analytics

module.

[00117] At least one data block of the off-line data diagram may include a respective set of properties,
wherein at least one property included in the respective set of properties of the at least one data block may
include a default value, and wherein at least one property included in the respective set of properties of the at
least one data block may include a value modified by a user, thereby configuring the at least one data block as a
particular instance of a particular data block definition stored in a data block definition library that may be

accessible to the data analytics user interface application.

[00118] A first data block of the set of data blocks included in the off-line data diagram may be configured
based on output data generated by an evaluation of a second data block of the set of data blocks included in the
off-line data diagram, wherein the evaluation of the second data block may comprise a compilation of the second

data block and an execution of the compilation of the second data block.

[00119] The set of data blocks of the off-line data diagram may include a data block comprising a particular
data block instance that has been configured from a data block definition, and wherein a respective identity of

the particular data block instance may be provided during configuration.

[00120] The on-line data diagram may comprise a respective set of data blocks interconnected by a

respective set of wires via which data may be transferred between data blocks.

[00121] The respective set of data blocks and the respective set of interconnecting wires of the on-line data
diagram may be different than a respective set of data blocks and a respective set of interconnecting wires of the

off-line data diagram.

[00122] At least one wire of the respective set of wires of the on-line data diagram may associate a respective
data block and the data source, so that a compilation of the respective data block included in the on-line data
analytics module may cause the respective data block to receive the continuous data stream having the contents

that are generated by the data source.

[00123] The respective set of data blocks of the on-line data diagram may comprise one or more of a data
source data block, a filter data block, a transformers data block, a visualizations data block, a data consumer
data block, or another type of data block; and each data block of the respective set of data blocks of the on-line
data diagram may include an indication of an identity of the each data block, an input connector via which the

each data block receives respective input data, and one or more output connectors via which the each data

18

block provides respective output data resulting from performing a respective operation on the received

respective input data.

[00124] At least one of. the respective operation of the data source data block may correspond to obtaining
the received, respective input data of the data source data block from the data source; the respective operation
of the filter data block may comprise a filtering technique; the respective operation of the transformers data block
on the received respective data of the transformers data block may comprise at least one of: cleaning the
received respective input data of the transformers data block, manipulating contents of the received respective
input data of the transformers data block, aligning the contents of the received respective input data of the
transformers data block, or performing one or more analytic techniques on the received respective input data of
the transformers data block; the respective operation of the visualizations data block interface may comprise
presenting a respective visual representation of the respective received input data of the visualizations data
block on the user interface; or the respective operation of the data consumer data block may comprise providing

at least some of the continuous output of the on-line data analytics module to a data consumer.

[00125] The data consumer may comprise a distributed data engine (DDE) of a plurality of DDEs in a data

analytics network of the process plant.

[00126] Each of at least some of the respective set of data blocks of the on-line data diagram respectively

may perform a time alignment of respective received input data.

[00127] The data analytics user interface application may perform at least one of: the compilation of the on-
line data diagram into the on-line data analytics module, the compilation of the off-line data diagram into the off-

line data analytics module, or the transformation of the off-line data diagram into the on-line data diagram.

[00128] The on-line data analytics module may be bound to the continuous data stream via a distributed data

engine (DDE) of a plurality of DDEs in a data analytics network of the process plant.

[00129] The distributed data engine may provide, to the on-line data analytics module, the continuous data

stream having the contents generated in real-time by the data source.

[00130] The continuous data stream corresponding to the data source may be received at the on-line data
analytics module and may correspond to a subscription of the on-line data analytics module to data that may be

generated by the data source and that may be published.

[00131] The data that may be generated by the data source and that may be published may comprise data
that may be generated by the data source and that may be published by the data source.

[00132] The data that may be generated by the data source and that may be published may comprise data
that may be generated by the data source and that may be published by a distributed data engine (DDE)

corresponding to the data source.

[00133] The continuous data stream corresponding to the data source may be received at the on-line data

analytics module in response to a query issued by the on-line data analytics module.

19

[00134] The query may be issued by the on-line data analytics module to multiple data sources included in

the process plant.

[00135] The data analytics user interface application may perform the transformation of the off-line data

analytics module into the on-line data analytics module.

[00136] The data analytics user interface application may manage the execution of the on-line data analytics
module, and wherein the data analytics user interface application may cause the continuous output of the

execution of the on-line data analytics module to be displayed on the user interface.

[00137] The on-line data analytics module may be included in a plurality of on-line data analytics modules that
are bound to one or more continuous data streams having contents that may be generated by one or more data
sources; and the user interface may display respective continuous output generated in real-time by each of the

plurality of on-line data analytics modules.

[00138] The data analytics module may be an on-line data analytics module transformed from a first off-line
data analytics module corresponding to a first off-line data diagram, and the user interface may further display
an indication of a status of an evaluation of a second off-line data diagram corresponding to a second off-line

data analytics module.

[00139] The evaluation of the second off-line data diagram may comprise a compilation of the second off-line

data diagram.

[00140] The evaluation of the second off-line data diagram may comprise an execution of code corresponding

to the second off-line data diagram.

[00141] Embodiments of the invention are described, by way of example only, with reference to the

accompanying drawings, in which:

[00142] FIG. 1 depicts a block diagram illustrating an example system process plant or process control
system that includes distributed, embedded industrial process performance monitoring and/or analytics engines;
[00143] FIG. 2A depicts a block diagram of an example system for distributed industrial process performance
monitoring/analytics;

[00144] FIG. 2B depicts an embodiment of an arrangement of an example distributed industrial process
performance monitoring analytics system in relation to an example process control system;

[00145] FIG. 3 depicts a block diagram of an example industrial process performance monitoring and/or
analytics engine;

[00146] FIG. 4A depicts an example data diagram illustrating various data block features and
interconnections;

[00147] FIG. 4B depicts an example Data Analytics Studio user interface;

[00148] FIG. 4C depicts an example relationship between a data block definition library, data block definitions,
data modules, data blocks, data block instances, and wires;

[00149] FIG. 4D depicts an example of drafting or creation of a data module;

[00150] FIG. 4E depicts a zoomed-in area of a Data Studio canvas on which a data module is being created;

20

[00151] FIGS. 4F-4H depict example data block definition templates for different types of data blocks;
[00152] FIG. 4l depicts an example flow of evaluation, compilation, or deployment of a data diagram;

[00153] FIG. 4J depicts an example architecture that supports the presentation of standard and custom
visualizations;

[00154] FIG. 4K depicts an example scenario in which a composite data block is created;

[00155] FIG. 4L depicts an example off-line data diagram;

[00156] FIG. 4M depicts an on-line data diagram generated from the transformation of the example off-line
data diagram of FIG. 4L;

[00157] FIGS. 4N-1 and 4N-2 depict example Data Analytics Dashboard user interfaces;

[00158] FIG. 40 depicts a high-level block diagram of a control loop that controls and optimizes process plant
performance;

[00159] FIG. 4P depicts an example method for providing localized data analytics services;

[00160] FIG. 4Q depicts an example method for providing localized data analytics services;

[00161] FIG. 5A depicts a block diagram for an example architecture of an Analytics Service according to the
present description;

[00162] FIG. 5B depicts a block diagram illustrating in greater detail an example data services entity of the
architecture depicted in FIG. 5A;

[00163] FIG. 5C depicts a flow chart illustrating a method for presenting a properties dialog for a block placed
on a programming canvas according to a presently described embodiment;

[00164] FIG. 5D depicts an example programming canvas on which an example offline diagram is configured
on the programming canvas;

[00165] FIG. S5E depicts an example online diagram corresponding to the offline diagram of FIG. 5D;

[00166] FIG. S5F depicts an example properties dialog for a module;

[00167] FIG. 5G depicts an example properties dialog for a block of an offline module, in which the properties
relate to both offline and online operation;

[00168] FIG. 6A depicts a block diagram of an example analytical query system;

[00169] FIG. 6B depicts a block diagram of an example analysis configuration using a standardized query;
[00170] FIG. 6C depicts an example standardized query;

[00171] FIG. 6D depicts a flow diagram of an example standardized query method;

[00172] FIG. 6E depicts a flow diagram of an example standardized query method;

[00173] FIG. 7A depicts a graph of example process flow measurements of a flare system of a refinery during
a time interval,

[00174] FIG. 7B depicts a graph of the example process flow measurements of FIG. 7A during another time
interval;

[00175] FIG. 7C depicts a graph of example process flow data of the refinery that includes flare events in the
data;

[00176] FIG. 7D depicts a graph of time-series data determined from applying a rolling FFT to the process
flow data of FIG. 7C;

21

[00177] FIG. 7E depicts a graph of results of using PCA to analyze frequency domain data of FIG. 7D around
a flare event;

[00178] FIG. 7F depicts a graph of results of using PCA to analyze frequency domain data of FIG. 7D around
another flare event; and

[00179] FIG. 7G depicts a flow diagram of an example method for providing early fault detection in process

plants.

[00180] Techniques, systems, apparatuses, components, and methods for distributed industrial performance
monitoring and analytics are disclosed herein. Generally, said novel performance monitoring and analytics
techniques provide knowledge discovery and actionable knowledge about an industrial process plant, process
control environment, and/or process control system that operates to control one or more industrial processes in
real-time. Typically, an industrial process performed by such process plants or control systems is controlled
therein to thereby manufacture, refine, transform, generate, or produce physical materials or products.
Examples of such process plants or control systems include oil refineries, paper mills, chemical manufacturing,

pharmaceutical manufacturing, food processing and distributing, and the like.

[00181] Of paramount concern in any process control system, plant, or environment is its safety, reliability,
and economic efficiency. Safety of operations is particularly important for any process control system or plant,
as uncontrolled processes, faults, failures, and/or preventable human error may result in explosions, fire, release
of dangerous chemicals, damage to the environment, loss of equipment, and/or loss of human life. Reliability of
equipment and of process operations is important to maintain and/or improve the economic efficiency and
profitability of the plant. Further, the economic efficiency and profitability of a plant may be improved by tuning

the plant’s operations to improve performance.

[00182] Faults that occur in a process control system may affect its safety, reliability, and/or economic
efficiency. Faults generally occur in a process control system when events combine to create situations that the
process control system is not designed to handle, such as unknown changes in feedstock composition,
equipment degradation, equipment failure, and abnormal (or erroneous) user operating actions. Other examples
of faults include unplanned equipment shutdowns, release of chemicals into the atmosphere, lifting of pressure
relief valves, temperature excursions in equipment, and performance degradation. Of course, faults are not
limited to systemic or large-scale events; a fault may be any abnormal event or combination of events that has or

may lead to economic, safety, and/or environmental impact.

[00183] Typically, when a fault is detected (e.g., automatically by the process control system), an alarm is
generated at an operator interface. The operator may then attempt to diagnose the root cause of the fault and
take corrective action. Accordingly, some of the key factors in managing faults include early fault detection and
false alarm reduction, which may include, for example, timely and reliable detection of faults, diagnosis of a
fault’s root cause, and carrying out corrective actions that bring the instrument, controller, process, and/or

equipment that is a source of the fault back to normal operations.

[00184] Known data monitoring and analytics tools attempt to keep process plants within normal operating

regions and provide a first line of defense against the occurrence of faults. Such tools, though, are typically
22

focused on a single loop or on a severely limited scope within a process plant. They are not able to address the
entirety (or even a large portion) of a typical modern process control plant in which hundreds and thousands of

process variables are observed at a very fast rate. Furthermore, known data monitoring and analytics tools are
not able to address unusual events like degrading equipment performance, removed field equipment, or large

changes in operating conditions caused by situations outside of each tool’'s immediate, limited scope.

[00185] On the other hand, the novel distributed industrial process performance monitoring and analytics
techniques, systems, apparatuses, components, and methods disclosed herein are able to address (e.g.,
monitor and/or analyze) any sized-scope of industrial process monitoring and analysis, from the entire process
plant down to a single loop or even a single device. Indeed, in some configurations, the novel techniques
disclosed herein are able to simultaneously address multiple process plants (e.g. multiple oil refineries owned
and operated by a single company or even different companies, provided the data is available). Generally, the
novel performance monitoring and analytics techniques disclosed herein discover and provide knowledge
indicative of early detection and/or prior warning of possible faults that may occur in process plants and control
systems, thus allowing enough time to take prescriptive or corrective action to prevent the fault from occurring.
In some situations, the novel techniques disclosed herein also discover and provide prescriptive actionable
knowledge to prevent possible faults from occurring and/or to limit the impact of their occurrence. Further, the
novel techniques disclosed herein may discover or provide knowledge indicative of possible improvements to

plant efficiency, as well as discover or provide actionable knowledge to realize the efficiency improvements.

EXAMPLE PROCESS CONTROL SYSTEM HAVING DISTRIBUTED INDUSTRIAL PROCESS MONITORING
AND ANALYTICS

[00186] As discussed above, a process plant, process control system, or process control environment that
includes or supports at least some of the novel distributed industrial process monitoring and analytics techniques
described herein operates to control one or more industrial processes in real-time. As such, the process plant or
control system may include therein one or more wired or wireless process control devices, components, or
elements that perform physical functions (such as opening or closing valves, measuring temperature, pressure,
and/or other process and/or environmental parameters, and the like) to control a process executing within the
process plant or system. The process plant or process control system may include, for example, one or more
wired communication networks and/one or more wireless communication networks. The process plant or control

system may include centralized databases, such as continuous, batch and other types of historian databases.

[00187] Toillustrate, FIG. 1 is a detailed block diagram of an example process plant or process control
environment 5 that includes or supports any or all of the distributed industrial process monitoring and analytics
techniques described herein. The process control system 5 includes multiple distributed data engines of a
distributed industrial process monitoring and analytics system that is included in, integrated with, or supported by
the process control plant or environment 5. (A more complete description of a distributed industrial process
monitoring and analytics system is provided in later sections.) Each of the distributed data engines of the
industrial process monitoring and analytics system is directly or indirectly connected (e.g., physically connected

or wirelessly connected) to some component or part of the process plant 5. For example, a distributed data

23

engine may be embedded in or manufactured into a particular device or node of the process plant 5 so as to
form a unitary entity, a data engine may be attached or coupled to a particular device or node of the plant 5, or a
data engine may be attached or coupled to a traditional communication link of the plant 5. In FIG. 1, an

encircled “DDE” denotes a respective example distributed data engine.

[00188] As previously discussed, distributed data engines may be embedded in process control devices
whose main function is to automatically generate and/or receive process control data to perform functions to
control a process in real-time in the process plant environment 5. For instance, respective data engines may be
embedded in or manufactured into process controllers, field devices, and I/O devices. In the process plant
environment 5, process controllers receive signals indicative of process measurements made by field devices,
process this information to implement a control routine, and generate control signals that are sent over traditional
wired or wireless process control communication links or networks to other field devices to control the operation
of a process in the plant 5. Typically, at least one field device performs a physical function (e.g., opening or
closing a valve, increasing or decreasing a temperature, etc.) to control the operation of a process, and some
types of field devices communicate with controllers by using 1/0O devices. Process controllers, field devices, and
1/O devices may be wired or wireless, and any number and combination of wired and wireless process
controllers, field devices and I/O devices may be included in the process plant environment or system 5, and

may each include a respective distributed data engine.

[00189] For example, FIG. 1 illustrates a process controller 11 that is communicatively connected to wired
field devices 15-22 via input/output (I/O) cards 26 and 28, and that is communicatively connected to wireless
field devices 40-46 via a wireless gateway 35 and a process control data highway or backbone 10 (which may
include one or more wired and/or wireless communication links, and may be implemented using any desired or
suitable or communication protocol such as, for example, an Ethernet protocol). In an embodiment, the
controller 11 is communicatively connected to the wireless gateway 35 using one or more communications
networks other than the backbone 10, such as by using any number of other wired or wireless communication
links that support one or more communication protocols, e.g., Wi-Fi or other IEEE 802.11 compliant wireless
local area network protocol, mobile communication protocol (e.g., WIMAX, LTE, or other ITU-R compatible
protocol), Bluetooth®, HART®, WirelessHART®, Profibus, FOUNDATION® Fieldbus, etc. The backbone 10 and
these other communication networks are examples of “traditional” process control communication networks, as

referred to herein.

[00190] The controller 11, which may be, by way of example, the DeltaV™ controller sold by Emerson
Process Management, may operate to implement a batch process or a continuous process using at least some
of the field devices 15-22 and 40-46. In an embodiment, in addition to being communicatively connected to the
process control data highway 10, the controller 11 is also communicatively connected to at least some of the
field devices 15-22 and 40-46 using any desired hardware and software associated with, for example, standard
4-20 mA devices, I/O cards 26, 28, and/or any smart communication protocol such as the FOUNDATION®
Fieldbus protocol, the HART® protocol, the WirelessHART® protocol, etc. In FIG. 1, the controller 11, the field
devices 15-22 and the I/O cards 26, 28 are wired devices, and the field devices 40-46 are wireless field devices.

Of course, the wired field devices 15-22 and wireless field devices 40-46 could conform to any other desired

24

standard(s) or protocols, such as any wired or wireless protocols, including any standards or protocols

developed in the future.

[00191] The process controller 11 of FIG. 1 includes a processor 30 that implements or oversees one or more
process control routines 38 (e.g., that are stored in a memory 32). The processor 30 is configured to
communicate with the field devices 15-22 and 40-46 and with other nodes communicatively connected to the
controller 11. It should be noted that any control routines or modules (including quality prediction and fault
detection modules or function blocks) described herein may have parts thereof implemented or executed by
different controllers or other devices if so desired. Likewise, the control routines or modules 38 described herein
which are to be implemented within the process control system 5 may take any form, including software,
firmware, hardware, etc. Control routines may be implemented in any desired software format, such as using
object oriented programming, ladder logic, sequential function charts, function block diagrams, or using any
other software programming language or design paradigm. The control routines 38 may be stored in any
desired type of memory 32, such as random access memory (RAM), or read only memory (ROM). Likewise, the
control routines 38 may be hard-coded into, for example, one or more EPROMs, EEPROMSs, application specific
integrated circuits (ASICs), or any other hardware or firmware elements. Thus, the controller 11 may be

configured to implement a control strategy or control routine in any desired manner.

[00192] In some embodiments, the controller 11 implements a control strategy using what are commonly
referred to as function blocks, wherein each function block is an object or other part (e.g., a subroutine) of an
overall control routine and operates in conjunction with other function blocks (via communications called links) to
implement process control loops within the process control system 5. Control based function blocks typically
perform one of an input function, such as that associated with a transmitter, a sensor or other process parameter
measurement device, a control function, such as that associated with a control routine that performs PID, fuzzy
logic, etc. control, or an output function which controls the operation of some device, such as a valve, to perform
some physical function within the process control system 5. Of course, hybrid and other types of function blocks
exist. Function blocks may be stored in and executed by the controller 11, which is typically the case when
these function blocks are used for, or are associated with standard 4-20 mA devices and some types of smart
field devices such as HART® devices, or may be stored in and implemented by the field devices themselves,
which can be the case with FOUNDATION® Fieldbus devices. The controller 11 may include one or more
control routines 38 that may implement one or more control loops, and may be performed by executing one or

more of the function blocks.

[00193] The wired field devices 15-22 may be any types of devices, such as sensors, valves, transmitters,
positioners, etc., while the 1/O cards 26 and 28 may be any types of I/O devices conforming to any desired
communication or controller protocol. In FIG. 1, the field devices 15-18 are standard 4-20 mA devices or HART®
devices that communicate over analog lines or combined analog and digital lines to the 1/O card 26, while the
field devices 19-22 are smart devices, such as FOUNDATION® Fieldbus field devices, that communicate over a
digital bus to the 1/O card 28 using a FOUNDATION® Fieldbus communications protocol. In some embodiments,
though, at least some of the wired field devices 15, 16 and 18-21 and/or at least some of the big data I/O cards

26, 28 additionally or alternatively communicate with the controller 11 (and/or other big data nodes) using the

25

process control data highway 10 and/or by using other suitable control system protocols (e.g., Profibus,
DeviceNet, Foundation Fieldbus, ControlNet, Modbus, HART, etc.).

[00194] As shown in FIG. 1, each of the controller 11, the I/O cards 26 and 28, and the wired field devices 15-
16, 18-21 includes a respective, embedded distributed data engine as indicated by the encircled “DDE,” which
communicates with other distributed data engines via one or more data analytics communications channels

and/or networks (not shown in FIG. 1).

[00195] InFIG. 1, the wireless field devices 40-46 communicate via a traditional, wireless process control
communication network 70 using a wireless protocol, such as the WirelessHART® protocol. Such wireless field
devices 40-46 may directly communicate with one or more other devices or nodes of the process control data
analytics communications network 112 that are also configured to communicate wirelessly (using the wireless
protocol or another wireless protocol, for example). To communicate with one or more other nodes that are not
configured to communicate wirelessly, the wireless field devices 40-46 may utilize a wireless gateway 35
connected to the process control data highway 10 or to another traditional process control communications

network.

[00196] The wireless gateway 35 may provide access to various wireless devices 40-58 of the wireless
communications network 70. In particular, the wireless gateway 35 provides communicative coupling between
the wireless devices 40-58, the wired devices 11-28, and/or other nodes or devices of the process control plant
5. For example, the wireless gateway 35 may provide communicative coupling by using the process control data

highway 10 and/or by using one or more other traditional communications networks of the process plant 5.

[00197] Similar to the wired field devices 15-22, the wireless field devices 40-46 of the wireless network 70
may perform physical control functions within the process plant 5, e.g., opening or closing valves or taking
measurements of process parameters. The wireless field devices 40-46, however, are configured to
communicate using the wireless protocol of the network 70. As such, the wireless field devices 40-46, the
wireless gateway 35, and other wireless nodes 52-58 of the wireless network 70 are producers and consumers

of wireless communication packets.

[00198] In some scenarios, the wireless network 70 may include non-wireless devices. For example, a field
device 48 of FIG. 1 may be a legacy 4-20 mA device and a field device 50 may be a traditional wired HART®
device. To communicate within the network 70, the field devices 48 and 50 may be connected to the wireless
communications network 70 via a wireless adaptor or historize at this or 52b. The wireless adaptors 52a, 52b
may support other communication protocols such as Foundation® Fieldbus, PROFIBUS, DeviceNet, etc.
Furthermore, the wireless network 70 may include one or more network access points 55a, 55b, which may be
separate physical devices in wired communication with the wireless gateway 35 or may be provided with the
wireless gateway 35 as an integral device. The wireless network 70 may also include one or more routers 58 to
forward packets from one wireless device to another wireless device within the wireless communications network
70. The wireless devices 40-46 and 52-58 may communicate with each other and with the wireless gateway 35
over wireless links 60 of the wireless communications network 70, and/or via the process control data highway
10.

26

[00199] As shown in FIG. 1, each of the adaptor 52a, access point 55a, and router 58 includes a respective,
embedded distributed data engine as indicated by the encircled “DDE,” which communicates with other
distributed data engines via one or more data analytics communications channels and/or networks (not shown in
FIG. 1).

[0200] In some embodiments, the process control system 5 includes one or more other wireless access points
72 that communicate using other wireless protocols, such as Wi-Fi or other IEEE 802.11 compliant wireless local
area network protocols, mobile communication protocols such as WiMAX (Worldwide Interoperability for
Microwave Access), LTE (Long Term Evolution) or other ITU-R (International Telecommunication Union Radio
communication Sector) compatible protocols, short-wavelength radio communications such as near field
communications (NFC) and Bluetooth, or other wireless communication protocols. Typically, such wireless
access points 72 allow handheld or other portable computing devices (e.g., user interface devices 73) to
communicate over a respective traditional, wireless process control communication network that is different from
the wireless network 70 and that supports a different wireless protocol than the wireless network 70. For
example, a wireless or portable user interface device 73 may be a mobile workstation or diagnostic test
equipment that is utilized by an operator within the process plant 5. In some scenarios, in addition to portable
computing devices, one or more process control devices (e.g., controller 11, field devices 15-22, or wireless
devices 35, 40-58) also communicate using the wireless protocol supported by the access points 72.

[0201] In some embodiments, the process control system 5 includes one or more gateways 75, 78 to systems
that are external to the immediate process control system 5. Typically, such systems are customers or suppliers
of information generated or operated on by the process control system 5. For example, the process control plant
5 may include a gateway node 75 to communicatively connect the immediate process plant 5 with another
process plant. Additionally or alternatively, the process control plant 5 may include a gateway node 78 to
communicatively connect the immediate process plant 5 with an external public or private system, such as a
laboratory system (e.g., Laboratory Information Management System or LIMS), an operator rounds database, a
materials handling system, a maintenance management system, a product inventory control system, a
production scheduling system, a weather data system, a shipping and handling system, a packaging system, the

Internet, another provider’s process control system, or other external systems.

[0202] As shown in FIG. 1, the access point 72, the user interface device 73, and the gateway 75 each
includes a respective, embedded distributed data engine as indicated by the encircled “DDE,” which
communicates with other distributed data engines via one or more data analytics communications channels

and/or networks (not shown in FIG. 1).

[0203] Itis noted that although FIG. 1 only illustrates a single controller 11 with a finite number of field devices
15-22 and 40-46, wireless gateways 35, wireless adaptors 52, access points 55, routers 58, and wireless
process control communications networks 70 included in a process plant 5, this is only an illustrative and non-
limiting embodiment. Any number of controllers 11 may be included in the process control plant or system 5,
and any of the controllers 11 may communicate with any number of wired or wireless devices and networks 15-
22, 40-46, 35, 52, 55, 58 and 70 to control a process in the plant 5.

27

EXAMPLE DISTRIBUTED INDUSTRIAL PROCESS PERFORMANCE MONITORING/ANALYTICS SYSTEM
ARCHITECTURE

[0204] FIG. 2A includes a block diagram of an example system 100 for distributed industrial process
performance monitoring/analytics, which is also referred to interchangeably herein as a Data Analytics System
(DAS). The DAS 100 may operate in conjunction with, for example, the process plant 5 of FIG. 1, and is so
discussed herein for ease of illustration. However, it is understood that at least a portion of the DAS 100 may

operate in conjunction with other process plants and/or process control systems other than the process plant 5.

[0205] Generally, the DAS 100 supports localized performance monitoring and/or analytics while
simultaneously supporting large-scale (e.g., system-wide and/or across multiple devices or nodes of the process
plant 5) performance monitoring, data mining, and data analytics for process plant environments. To this end,
the system 100 includes a plurality of distributed data engines (DDEs), examples of which are indicated in FIG.
2A by the reference numbers 102a-102e and in FIG. 2B by the reference numbers 102f-102h. As used herein,
the reference number “102x” refers to any one or more of the DDEs 102a-102h. At least some of the distributed
data engines illustrated in FIG. 2A correspond to distributed data engines illustrated in FIG. 1. For example, the
data engine 102a of FIG. 2A is the data engine included in the wireless gateway 35 of FIG. 1, and the data
engine 102b of FIG. 2A is the data engine embedded in the controller 11 of FIG. 1. Additionally, the system 100
includes other distributed data engines 102 that are not shown in FIG. 1. For example, a distributed data engine
102c is connected to the data highway 10, a distributed data engine 102d is embedded in a centralized big data
appliance 108 of the process plant 5, and distributed data engine 102e is embedded in a big data cloud node
110, where the big data cloud node 110 may service the data analytics needs of the process control plant 5 (and
in some configurations, may also service other process control plants). Of course, the system 100 is not only
limited to five data engines 102a-102e or eight data engines 102a-102h, but may include any number of
distributed data engines, at least some of which are embedded in or manufactured into their respective data
sources (e.g., into respective process control devices of the process plant 5) and/or at least some of which are

otherwise connected to some other data source (e.g., component, portion, etc.) of the process plant 5.

[0206] As mentioned above, typically distributed data engines do not communicate with other distributed data
engines by using any of the traditional process control plant communication networks (e.g., the backbone 10, the
wireless network 70, the wired connection between 1/O card 28 and devices 19-22, etc. of FIG. 1), although in
some configurations, some distributed data engines 102x may communicate at least some information to other
data engines by using a traditional process control communication network. Generally, though, the data engines
102x communicate with other data engines 102x by using one or more data analytics communication networks
112 that are separate and distinct from traditional process control networks. Analytics data is streamed between
distributed data engines or nodes of the network 112, e.g., by using an analytic streaming service, a streaming
and/or queuing protocol, and/or by using a messaging broker or system 115 that supports streaming, such as a
custom streaming source, Flume, HDFS, ZeroMQ, Kafka, Microsoft Message Bus, MQTT, AMQP, RabbitMQ,
etc., a custom specialized history object communications protocol such as described in the aforementioned U.S.
Application No. 14/506,863 entitled “STREAMING DATA FOR ANALYTICS IN PROCESS CONTROL

SYSTEMS,” or another suitable communications protocol. Several branches of the data analytics

28

communication network 112 are represented in FIG. 2A by the dashed lines, although in FIG. 2A the network
112 is not fully depicted for clarity’s sake. Thus, in an embodiment, at least a portion of the data analytics
communication network 112 may be, in a sense, an overlay network on top of the traditional process control
communication networks within the plant 5. For example, at least some of the physical equipment that comprise
the DDEs 102x and the data analytics network 112 may be located on the premises of the process plant 5, and

in some cases, may be located amongst the equipment of the process plant 5.

[0207] In another embodiment, at least a portion of the data analytics communication network 112 may be
implemented alongside of or mostly parallel to traditional process control communication networks, as shown in
FIG. 2B. In FIG. 2B, the process plant 5 includes various process control devices or components that are
communicatively connected to a traditional process control communication network, e.g., to assist in controlling
one or more processes within the plant 5. Three of such process control devices/components each have a
respective DDE 102f, 102g, and 102h embedded therein are associated therewith, and each of the DDEs 102f-
102h is communicatively connected to the data analytics network 112. However, the majority of the equipment
supporting and/or comprising the data analytics network 112 is not located amongst the equipment of the

process plant 5, but instead may be remotely located at an enterprise data center.

[0208] In another embodiment, at least a portion of the data analytics communication network 112 may be
implemented as a logical network within the process plant 5. In this embodiment, for example, both process
control data and analytics data may be transported over a same physical communications link that logically has
the appearance of independent links, e.g., one traditional process communication link and one data analytics

communication link.

[0209] Irrespective of the implementation of the data analytics network 112, though, the data analytics
network 112 intersects with traditional process control communication networks at devices or nodes within the
process control system 5 that communicate information to other devices or nodes within the process control
system 5 via traditional process control communication networks and in which distributed data engines are
embedded (e.g., data engines 102a, 102b, 102f, 102g, 102h), and/or by virtue of distributed data engines that
are connected to traditional process control communications networks for the purposes of having a window to

the data being transmitted thereon (e.g., data engine 102c).

[0210] The data analytics network 112 may utilize any desired communication technology and/or
communication protocols. At least some portion of the data analytics network 112 may utilize wired technology,
and at least some portion of the data analytics network 112 may utilize wireless technology. Generally, though,
the data analytics network 112 may support data packet transport protocols and/or technology, such as IP or
other asynchronous data packet protocols over Ethernet.

[0211] At a higher level or layer, the data analytics network 112 may utilize a streaming-capable protocol,
message broker that handles real-time data feeds, and/or messaging system that handles real-time data feeds
115, such as Apache Kafka. As shown in FIG. 2A, the streaming ability 115 provided by the data analytics
network 112 allows the distributed performance monitoring/analytics system or DAS 100 to locally bind and

provide various analytics services close to data sources (e.g., close to or at devices or nodes of the process

29

plant 5 in which distributed data engines 102x are embedded, such as the nodes 11, 18, 26, 28, 72, 35, 52a,
55a, 72 in FIG. 1). Atthe same time, the streaming ability 115 of the system 100 also allows the system 100 to
provide larger scale predictions and optimizations, as only particular source-generated data that is necessary to
support a broader or higher-level of data analytics need to be communicated to recipient data engines. For
example, if the data engine 102d is performing a particular data analytic only on data that is generated by each
of the controllers of the process plant 5 and captured within an hour after a particular configuration change is
instantiated at each controller, the data engine 102b embedded at the controller 11 streams only the required
data to the engine 102d (e.g., streams only the output data generated by the controller 11 to the data engine
102d during the hour after the particular configuration change is instantiated, but does not stream other output

data generated by the controller 11).

[0212] As shown in FIG. 2A, portions of the distributed performance monitoring/analytics system or DAS 100
are locally disposed within the process control environment or plant 5. For example, distributed data engines
102a, 102b, 102c, and 102d are located on the premises of the process plant 5. Also as shown in FIG. 2A, other
portions of the system 100 are remotely disposed. For example, data engine 102e is located in the cloud 110.
Other data engines 102x may be disposed at one or more remote locations (not shown), such as at a server
bank that services multiple process plants or process control systems. Of course, in some configurations, the
system 100 may omit locally disposed data engines, or may omit remotely disposed data engines. That is, the
system 100 may provide performance monitoring and analytics (e.g., via one or more distributed data engines)
entirely on the premises of the subject process control environment 5 (e.g., locally), entirely off the premises of
the subject process control environment 5 (e.g., remotely), or by using a combination of both on-and off-premise

distributed data engines (e.g., both locally and remotely).

EXAMPLE TYPES OF PERFORMANCE MONITORING AND ANALYTICS FOR INDUSTRIAL CONTROL
SYSTEMS

[0213] Generally, performance monitoring and analytics of industrial control systems includes gathering data
generated by the subject control system (e.qg., in real-time while the system is operating control one or
processes), and performing one or more analytical functions or operations on at least some of the gathered data
to determine knowledge about how well the control system is performing, and in some cases to determine
actions that may be taken to improve the system’s performance. Data analytics for industrial process control
systems may be thought of in three general categories: descriptive analytics, predictive analytics, and

prescriptive analytics. A general discussion of these categories of analytics follows.

[0214] Descriptive analytics allow a user to discover what happened within a process control system or plant,
when it happened, how often it happened, and what problem(s) resulted from what happened. Typically,
descriptive analytics are performed on data gleaned from monitoring the process system or plant (e.g., a

posteriori), and may utilize techniques such as basic calculations, scaling, and standard statistics.

[0215] Prescriptive analytics allow a user to optimize the operations within a process control system or plant.
For example, prescriptive analytics allow a user to answer questions such as: What is the best answer? What is

the best outcome given uncertainty? What are significantly different and better choices? Predictive analytics

30

may identify, monitor, and control key quality variables or key indicators of process operations in industrial
process control plants and systems. Additionally, predictive analytics may identify what will happen to key
quality variables or key indicators of process operations given a set of future inputs or causal conditions. The
predicted values may then be utilized by prescriptive analytics to generate a prescriptive action. Typically,
prescriptive analytics utilize techniques such as constraint-based optimization and multi-objective optimization,

however, known data monitoring and analytics tools are rudimentary and severely limited in their scope.

[0216] For example, with known data monitoring and analytics tools, users or operators may optimize the
performance of a single piece of equipment or unit of the plant by using constraint-based optimization tools that
operate on data gleaned from monitoring that single piece of equipment or unit (e.qg., a posteriori}. However, as
a process control system or plant includes numerous pieces of equipment and process units, the overall process
may still be far from optimum due to process interactions between multiple units. Multi-objective optimization
techniques for interacting units or a coordinated optimization across a portion of the process control system are
available in known data monitoring and analytics tools (e.g., first-principle-based modeling), but due to the
increasing complexity of processes, such coordinated optimization techniques are difficult and often take too
long to execute (if they are even possible to execute) to be useful. For example, known multi-objective
optimization tools operate on data gleaned from monitoring multiple pieces of equipment or units (e.g., a
posteriori) to identify optimal operating points and to determine trajectories to maneuver the current operating
point to the optimal one. However, each cycle of data collection and calculations thereon may take so long that
by the time prescriptive actions are identified, the process has moved so far in its operation that the identified
prescriptive actions are no longer optimum, or may even be invalid, counterproductive, and/or dangerous.
Further, when a user attempts to scale down or narrow the size and scope of (and therefore the time needed for)
the calculations by limiting the amount of variables that are input into the multi-objective optimization tool, the
user makes a human judgment as to which variables are selected as inputs, which not only limits the scope, but

also may be incorrect and therefore may produce a misleading or incorrect result.

[0217] Further, known data monitoring and analytics tools often are not able to provide the identity and values
of key quality variables on demand (e.g., due to limitations of available measurement techniques) and cannot
provide timely, pertinent results. For example, currently used techniques for predictive analytics of process
control systems include either off-line techniques (e.g., in a laboratory) or on-line techniques (e.g., by an
analyzer), both of which have their respective drawbacks. Off-line determination of key quality variables is
undesirable, as the significant delay incurred in laboratory testing renders any output as sub-optimal or even
invalid for current process conditions (e.g., measured signals cannot be used as feedback signals). The use of
on-line analyzers to determine key quality variables is also less than desirable, as known on-line analyzers are
problematic, expensive, and require frequent and high cost maintenance. Such limitations may have a severe

influence on the quality of products, production of waste, and safety of operations.

[0218] Further, for large-scale monitoring situations, a traditional, centralized performance monitoring scheme
has severe limitations. A suitable performance monitoring system should have fault tolerance ability, operational
reliability, and economic efficiency, all of which are compromised when a centralized performance monitoring

scheme is applied to large-scale monitoring situations. Specifically, a centralized monitor looks after faults of all

31

units of the process simultaneously. Once a fault in a unit is found, the centralized monitor becomes limited in its
ability to detect further faults from other units that occur in the same time period, as a centralized monitor uses
all measured variables in its computation, and when one variable is unavailable or one communication channel
is blocked, the entire monitoring system may stop functioning. Additionally, the real-time capability of a
centralized monitor is limited by the lowest sampling rate of the variables, which reduces the efficiency of the
monitoring system. Further, different variables in a plant can have very different scale of dynamics (even within
the same unit), and a single monitoring scheme usually does not apply to all variables of an entire process or
unit, and in particular, is sub-optimal for situations when the variables affect one another, e.g., across interacting
process units. Still further, when there are geographical distributions in process control systems (for example,
long distances between various process units, such as in an oil pipeline}, typically each unit is equipped by a
separate performance monitor, thereby providing local (but not overall) performance monitoring, as well as

transmission delay, data loss, and battery limitation problem.

[0219] Unlike the rudimentary, univariate, and/or centralized predictive monitoring and analytic techniques
that are currently in use, and unlike the a posteriori nature of descriptive and prescriptive analytics, the novel
distributive performance monitoring and analytics systems, methods, apparatuses, components, and techniques
for industrial control systems and plants described herein allow a user to monitor what is currently happening in
the process control system or plant at any point in time, and to predict in real-time what is likely to happen next
or later based on the present data. The novel techniques disclosed herein allow user to answer questions such
as: “What is happening now?” “What will happen next?” “What if these trends continue?” with little or no user or

human bias as to the characteristics of the process data.

[0220] The novel techniques for distributed performance monitoring and analytics for industrial control
systems described herein generally include a platform (e.g., the system architecture 100 shown in FIG. 2A) and
applications that operate on top of or in conjunction with the platform. The platform utilizes data-driven methods
augmented with equipment and process knowledge to support, for example, estimation, monitoring, and data
mining of a process control system or plant (e.g., the process control system 5) before, during, and after the
process control system or plant is operating to control one or more processes. In some implementations, the

platform may support multiple process control systems or plants.

[0221] The performance monitoring/analytics applications operating on or in conjunction with the platform may
include, e.g., inferred measurements, equipment monitoring, fault detection, process predictions, causality, other
monitoring applications, and/or other analytics applications. Techniques that may be utilized by the applications
include data mining, optimization, predictive modeling, machine learning, simulation, distributed state estimation,
and the like. As such, performance monitoring/analytics applications may be used to monitor, predict, and
diagnose performance degradation and faults of any number of any portions of the process control system 5,

including in areas such as instrumentation, equipment, control, user interactions, and process.

[0222] Accordingly, the distributed industrial performance monitoring and analytics techniques described
herein may include inferential mechanisms that provide continuous on-line estimations of critical process
variables from readily available process measurements. To sustain data models over an extended period of

time, the system further may support the ability to monitor, tune and enhance the data models. Methods which
32

may be used include, in the simplest case, detuning the models (e.g., increasing the normal operating region to

the prediction +/- 3s). More complex examples include model switching and model adaptation.

[0223] In fact, as part of a research and prototype testing program, the inventors established a prototype
industrial process performance data monitoring and data analytics framework using the techniques described
herein to address soft sensor development problems in the presence of nonlinearity, non-Gaussian distribution,
irregularity of data samples, process constraints, and/or other factors. In these prototypes and research,
monitoring and analysis of data generated by a number of soft sensors for specialty chemical, batch, and
hydrocarbon processes were performed, and resulting knowledge was utilized to improve the processes
obtained. Significant economic and environmental benefits have been reported by our industrial partners.

Examples of our research and prototypes are described in a later section.

[0224] Returning now to FIG. 2A, the distributed industrial performance monitoring and analytics system or
DAS 100 provides the tools, configuration, and interfaces required to support localized performance monitoring
while at the same time supporting large-scale data mining and data analytics for process plant environments,
e.g., the process plant 5 of FIG. 1. For example, the system 100 may include a user interface application (e.g.,
the Data Analytics Studio) for configuring and developing data analytic models, a run-time engine for executing
models (which may operate, in whole or in part, on real-time data generated by the process control system), and
the same or another user interface application (e.g., a Run-time Dashboard) for displaying analytics results. The
system 100 may operate on or support multiple types of data sources, including real-time values as previously
mentioned (e.g., real-time continuous values), event collection, batch data collection, operator rounds data,
LIMS data, external data such as supply chain data and/or weather data, and any other type of data associated
with the process control system, including both structured and unstructured data. The system 100 may provide
a set of standard analytics “out-of-the-box,” such as descriptive statistics, histogram plots, correlation plots, etc.
Additionally, the system 100 may provide a structured environment for users to create desired analytics and to
view both source data and n-order data generated by applying multiple different data analytics to identify implicit
relationships within various data sets of the process control system, and/or to predict product capabilities,
quality, and other characteristics. Generally, the system 100 may provide knowledge discovery about the
process control system as well as actionable knowledge (e.g., to improve or optimize performance of the
process control system, to correct and/or predict faults, to increase reliability, to improve safety, to increase

economic efficiency, etc.), which may be represented as data models.

[0225] As shown in FIG. 2A, the system 100 may be highly distributed, e.g., may include numerous distributed
data engines 102x. The network 112 of embedded data engines102x may interconnect numerous (e.g.,
hundreds, thousands, or even millions) of sensors and sources of process control system information. As
previously mentioned, the data engines102x are clustered near, at, or within the devices and nodes of the
process control system (e.g., manufacturing equipment, process control devices, communication nodes, material
handling systems, lab systems, users of the plant, and even the process itself). As such, the embedded nature
of the distributed industrial performance and analytics system 100 is tightly coupled to the physical process
control plant. However, the embedding and integration of the data engines 102x into the fabric of the

manufacturing of process control system devices and nodes may render the data engines 102x as nearly

33

invisible to end-users. Typically, a data engine102x is small, wirelessly connected into the network 112,
bandwidth limited, and operates under physical constraints such as limited energy and the need for adequate
heat dissipation, as it may be embedded into a process control device such as a temperature or other type of

Sensor.

[0226] As previously mentioned, distributed data engines 102x interconnect with other data engines 102x over
the network 112 by using streaming protocols and/or queuing protocols. Each distributed data engine 102x may
support one or more data monitoring and/or data analytics applications. The sheer number of connected
clusters of applications necessitates the use of statistically correct (instead of deterministic) algorithms for
resource accounting, fault detection and correction, system management, etc., and each cluster may host

functionality that is of interest to localized needs.

[0227] As such, the distributed industrial performance monitoring and analytics system 100 may increase the
safety, efficiency, and productivity of process control plants. For example, the system 100 may precisely control
process parameters, thus reducing the total cost of process manufacture. Additionally, the integration of the
system 100 into the process control environment 5 may result in better product quality and less waste through
close process control and real-time quality assurance; more flexible, quickly configured production lines as a
result of programmable subsystems; system health monitoring, which leads to more-effective, preventive and
lower-cost maintenance; safer working environments due to better monitoring and control; and better component

assembly techniques, such as through the use of smart RFID tags, to name just a few of innumerable benefits.

[0228] Moreover, the distributed industrial performance monitoring and analytics system 100 may improve
human-machine interactions between users and the process control system 5 to the point of generating a real-
time, human-plus-machine control loop within the process plant 5. For example, an improved human-machine
interaction may improve quality and productivity by ensuring that there are no operator/maintenance/reliability
errors, as well as by reducing accidents. Further, the availability, reliability, and continuous quality of service of
the process control plant 5 may be achieved through advanced control, redundancy, intelligent alarming, self-

diagnosis, and repair afforded by the system 100.

EXAMPLE INDUSTRIAL PERFORMANCE DATA MONITORING/DATA ANALYTICS ENGINE

[0229] Turning now to the distributed, industrial performance distributed data monitoring and/or analytics
engines 102x, generally, a distributed data engine 102x may be a node of the data analytics communications
network 112 that collects, observes, retrieves, receives, processes, stores, caches, and/or analyzes all or most
process control related data (e.g., big data) that is generated by or otherwise observed by one or more data
source or sources, €.g., by the device or component into which the data engine 102x is embedded or by the
component(s) to which the data engine 102x is coupled or attached. In some situations, a distributed data
engine 102x may generate additional data (e.g., results of analytics that it performs), and/or may send or forward

”ou

selected data to other nodes of the data analytics network 112. The terms “process control big data,” “process
big data,” and “big data,” as used interchangeably herein, generally refer to all (or almost all) data that is
generated, received, and/or observed by devices and/or components (e.g., both process control
devices/components and analytics devices/components) included in and associated with a process control

34

system or plant (e.g. the process control system or plant 5), and in particular, all (or almost all} data is that is
generated, received, and/or while the process control system or plant is executing in real-time to control one or
more processes. In an embodiment, all data (including all process data and all analytics data) that is generated
by, created by, received at, or otherwise observed by all devices included in and associated with the process
plant 5 is collected and stored as big data within the data analytics communications network 112. In process
plants and process control environments, this collection and analysis of big data is key to improving safety,
reliability, and economic efficiency, as the dimension of time and the presence or omission of particular data
points may be critical. For example, if a particular data value is not delivered to a recipient component of the
process plant within a certain time interval, a process may become uncontrolled, which may result in a fire,
explosion, loss of equipment, and/or loss of human life. Furthermore, multiple and/or complex time-based
relationships between different components, entities, and/or processes operating within the process plant and/or

external to the process plant may affect operating efficiency, product quality, and/or plant safety.

[0230] The process control big data that is generated, collected, observed, retrieved, received, stored,
cached, processed, analyzed, and/or forwarded by the distributed data engines 102x may include data that has
been directly utilized in or generated from controlling a process within the plant 5, e.g., first-order real-time and
configuration data that is generated or used by process control devices such as controllers, input/output (I/O)
devices, and field devices. Additionally or alternatively, the data engines 102x may generate, collect, observe,
process, analyze, store, receive, retrieve, cache, and/or forward data related to delivering and routing such first-
order process control data and other data within the process plant 5, e.g., data related to network control of the
data analytics communications network 112 and/or of other communication networks in the plant 5, data
indicative of bandwidth, network access attempts, diagnostic data, etc. Further, some data engines 102x may
generate, collect, observe, store, cache, retrieve, receive, and/or forward data indicative of results, learning,
and/or information that has been learned within the process control data analytics communications network 112
by processing and/or analyzing process control big data that it has collected. Typically, such analytics results,
learning, and/or learned information are generated from analytics that are performed by one or more data

engines 102x.

[0231] As such, a distributed data engine (e.g. DDE 102x) is interchangeably referred to herein as a “big data
appliance,” “big data appliance node,” or “appliance node.” In most cases, a distributed data engine of big data
appliance node 102x includes multi-core hardware (e.g., multi-core processors) for transmitting and receiving big
data in real-time (e.g., via streaming) and, in some embodiments, for caching and/or storing the real-time big
data for later streaming or other delivery over the process control data analytics communications network 112.
Accordingly, a distributed data engine 102x also includes memory (e.g., high-density memory) for the caching
and/or storing of the big data. Examples of real-time data that may be transmitted, received, streamed, cached,
collected, stored, received, retrieve, cached, and/or otherwise observed by the data engines 102x may include
process control data such as measurement data, configuration data, batch data, event data, and/or continuous
data. For instance, real-time data corresponding to configurations, batch recipes, setpoints, outputs, rates,
control actions, diagnostics, alarms, events and/or changes thereto may be collected. Other examples of real-

time data may include process models, statistics, status data, network and plant management data, and

35

analytics results. Descriptions of various types of example big data appliances and their components which may
be utilized with any or all of the techniques described herein may be found in aforementioned U.S. Patent
Application Nos. 13/784,041, 14/174,413, and 14/212,493, although it is understood that any or all of the

techniques described herein may be utilized with other suitable big data appliances.

[0232] Typically, the distributed data engine 102x generally operates on big data that has been generated or
provided by one or more data sources within the process control plant or system 5 and/or otherwise associated
with the real-time operations of the process control plant or system 5. For example, a DDE 102x may collect and
time-stamp data that is received at and/or generated by the device in which it is embedded, or that is received at
and/or generated by its corresponding data source or sources. The collected data may be stored (at least
temporarily) in the local memory of the data engine 102x. In some situations, at least some of the data may be
transferred or streamed to one or more other data engines 102x using a specialized history object
communications protocol, such as described in the aforementioned U.S. Application No. 14/506,863 entitled
“STREAMING DATA FOR ANALYTICS IN PROCESS CONTROL SYSTEMS,” or another suitable

communications protocol or messaging system such as Kafka.

[0233] In some embodiments, one or more data engines 102x support large scale data mining and data
analytics on multi-dimensional data including real-time continuous values, event collection, batch data collection,
operator rounds data, and/or other data. A distributed data engine 102x may be configured to perform one or
more data analytics on its locally collected data, and/or on data collected by other DDEs 102x. For example, a
DDE 102x may include various tools that operate on structured data (e.g., time series and tabular data stored in
memory, relational, and/or non-relational databases, or that is streamed) as well as unstructured data (e.g.,
pdfs). Additionally, a DDE 102x may support any one or more desired target environments and execute
respective target code therein (e.g., Java, C#, R scripts, Python scripts, Matlab® scripts, Statgraphics, etc.). The
DDE 102x may perform learning algorithms (e.g., partial least square regression, principle component analysis,
etc.), classification techniques (e.g., random forest, pattern recognition, etc.), and/or other data analytics in order
to generate results and/or useful information such as predicting product capabilities, qualities, and/or other
desired characteristics. The results of the local analytics may be stored at the local memory of the data engine
102x, and itself may be treated as additional big data. Further, some data engines 102x may include interfaces
for configuration and developing models, run-time engines for executing models, and dashboards for displaying
results at a user interface. For example, a distributed data engine 102x may be configured with analytics for run-
time in a manner such as discussed in aforementioned U.S. Application No. 62/060,408, entitled “DATA
PIPELINE FOR PROCESS CONTROL SYSTEM ANALYTICS,” and/or as discussed in a later section of the
present disclosure. Displayed results may include standard descriptive statistics, histograms, correlation plots,

and/or other data representations that can identify implicit relationships within the various data sets.

[0234] In some cases, a distributed data engine 102x is embedded in, manufactured into, directly coupled to,
or otherwise co-resident with a host data source (e.g., the data engines 102a, 102b, and 102¢ shown in FIG.

2A). In some cases, a distributed data engine 102x may be a stand-alone big data node of the process control
data analytics communications network 112 (e.g., the data engines 102d and 102e shown in FIG. 2A). That is,

in these cases, the data engine 102x is not embedded in or co-resident with a data source of the process control

36

system or plant 5, but may otherwise observe data that has been generated by one or more data sources (for
example, when a distributed data engine is coupled to a traditional process control communication link, such as
the data engine 102c). Whether embedded or stand-alone, the data engine 102x analyzes big data that has
been locally generated and/or provided by one or more data sources to discover or learn knowledge. This
learned knowledge may be stored at the data engine 102x, operated on locally by the data engine 102x, and/or
provided or transmitted as big data to other data engines 102x, e.g., recipient big data nodes. Additionally, the
distributed data engine 102x may provide a portion of its known or stored big data to other data engines102x

and/or other nodes of the analytics network 112 (e.g. a local or remote user interface node).

[0235] FIG. 3 includes a simplified block diagram of an example distributed industrial process performance
data monitoring and/or data analytics engine 150, instances of which may be included in the process control
data analytics communications network 112 of FIG. 2A (e.g., the distributed data engines 102x). Referring to
FIG. 3, the example distributed data engine 150 includes a big data storage area 155 for caching, storing, and/or
historizing big data, one or more big data appliance receivers 160, and one or more big data appliance request
servicers 165. Each of the big data appliance receivers 160 is configured to receive and/or observe data from
one or more data sources 168. In an example, a big data appliance receiver 160 receives and/or observes, via
a network interface to a traditional, process control communications network such as the data highway 10, a
Fieldbus network, a WirelessHART network, etc., data that is traveling over the traditional, process control
communications network. Additionally or alternatively, the big data appliance receiver 160 may receive data, via
a local interface, from its corresponding data source(s)) 168, such as from a process control or other type of
device into which the DDE 150 is embedded or manufactured, or to which the DDE 150 is locally, directly, and/or
otherwise tightly coupled. Still additionally or alternatively, the big data appliance receiver 160 may receive big
data packets, e.g., via a data analytics network interface 175. The received big data packets may have been
streamed from another DDE 150 and/or may have been generated by a big data source with which the data
engine 150 resides). Irrespective of the source(s) 168 of the received/observed data, the big data appliance
receiver 160 processes the received/observed data packets and/or messages to retrieve the substantive data
and timestamp carried therein, and stores the substantive data and timestamp in the big data storage area 155
of the data engine 150, e.g., as time-series data and optionally also as metadata. The term “metadata,” as used
herein, generally refers to data about data, such as statistical information about data, categorical information
about data, summary information, descriptive information, definitions, etc. The big data storage area 155 may
comprise multiple local and/or remote physical data drives or storage entities, such as RAID (Redundant Array of
Independent Disks) storage, solid-state storage, cloud storage, high-density data storage, and/or any other
suitable data storage technology that is suitable for data bank or data center storage, and that has the
appearance of a single or unitary logical data storage area or entity to other nodes, and that may be configured

to locally store and/or historize big data.

[0236] Each of the big data appliance request servicers 165 is configured to access time-series data and/or
metadata that is stored in the big data appliance storage area 155, e.g., per the request of a requesting entity or
application such as a local or remote data analytics application, a user interface application, or another

application. For example, a big data appliance request servicer 165 may publish selected data stored in the big

37

data appliance storage area 155 at a given time interval to subscribers to the selected data. In another example,
a big data appliance request servicer 165 may retrieve data stored within the local big data appliance storage
area 155 per the request of a remotely executing data analytics application. Additional examples of accessing
data stored at a DDE 150 will be discussed in later sections. Such data may be stored in a variety of data
formats, including relational or non-relational databases or other data structures. In some embodiments, a

standardized query format may be used to access data in any of the these data sources.

[0237] In some embodiments, a distributed data engine 150 includes one or more big data analyzers 170 to
perform respective data analytics and/or learning on at least parts of the big data stored in the memory 155. The
execution of the local analytics and/or learning may be performed in response to a command or instruction
generated by a user or by another node. Additionally or alternatively, the execution of the local analytics and/or
learning may be performed in an automatic and/or autonomous manner without using any input from users or
other nodes to initiate and/or perform the learning analysis. For example, the data analytics and/or learning may
be performed in a manner such as previously discussed, in a manner such as discussed in aforementioned U.S.
Application No. 62/060,408, entitled “DATA PIPELINE FOR PROCESS CONTROL SYSTEM ANALYTICS,” orin
some other suitable manner. In an embodiment, the big data analyzers 170 individually or collectively perform
large scale data analysis on the stored data (e.g., data mining, data discovery, etc.) to discover, detect, or learn
new information or knowledge. Data mining generally involves the process of examining large quantities of data
to extract new or previously unknown interesting data or patterns such as unusual records or multiple groups of
data records. The big data analyzers 170 may also perform large scale data analysis on the stored data (e.g.,
machine learning analysis, data modeling, pattern recognition, predictive analysis, correlation analysis, etc.) to

predict, calculate, or identify implicit relationships or inferences within the stored data.

[0238] In an embodiment, multiple big data analyzers 170 (and/or multiple instances of at least one big data
analyzer 170) may operate in parallel and/or cooperatively to analyze the data stored in the big data storage
area 155 of the distributed data engine 150 and/or to analyze data stored in one or more other big data storage
areas of other distributed data engines102x. Further, the multiple big data analyzers 170 may share, exchange,
or transfer computed parameters and model information between one another as a type of cooperative data
analytics and learning. The multiple big data analyzers 170 may be co-resident on a same big data node, or
may be resident on different big data nodes. An example of cooperative data analytics which may be utilized
with any or all of the techniques described herein is found in aforementioned U.S. Application No. 62/060,408,
entitled “DATA PIPELINE FOR PROCESS CONTROL SYSTEM ANALYTICS,” although any suitable
cooperative data analytics technique or techniques may be utilized with any or all aspects of the present
disclosure. Results of the analyses performed by the big data analyzers 170 may be stored in the big data

appliance storage area 155, and/or may be returned to a requesting entity or application.

[0239] In an embodiment, at least a portion of the big data receivers 160, the big data appliance request
servicers 165, and/or the big data analyzers 170 is included or implemented on one or more integrated circuits,
semiconductors, chips, or other suitable hardware. For example, a big data analyzer 170 that performs spectral
analysis may be implemented by an integrated circuit chip included in a big data node, such as described in
aforementioned U.S. Application 14/507,252 entitled AUTOMATIC SIGNAL PROCESSING-BASED LEARNING

38

IN A PROCESS PLANT.” In an embodiment, at least a portion of the big data receivers 160, the big data
appliance request servicers 165, and/or the big data analyzers 170 comprises computer-executable instructions
stored on a memory and executable by a process running on the distributed data engine 150. For example, at
least some portions of the big data appliance receivers 160, the big data appliance request servicers 165, and/or
the big data appliance analyzers 170 comprise respective computer-executable instructions stored on one or
more non-transitory, tangible memories or data storage devices, and are executable by one or more processors

to perform one or more of the respective big data functions.

[0240] In some embodiments, at least some big data analyzers 170 are not included in a distributed data
engine 150, but instead are co-resident with the distributed data engine 150 on a same host data source device
or component and in communicative connection with the data engine 150. For example, the data engine 150,
including the storage area 155, receivers 160 and servicers 165 may be implemented by a first set of computer-
executable instructions, and the big data analyzers 170 may be implemented by a semiconductor chip or by a
second set of computer-executable instructions, which may or may not be stored on the same non-transitory,
tangible memories or data storage devices as the first set of computer-executable instructions. In some
embodiments, the big data analyzers 170 are not included in a data engine 150 and are not co-resident with the
data engine 150 on a same host data source device or component, but nonetheless are in communicative
connection with the data engine 150. For example, the big data analyzers 170 may be located on another node

of the data analytics network 112 which is not a DDE 150, e.g., a user interface node or an analytics server.

[0241] The distributed data engine 150 shown in FIG. 3 further includes one or more network interfaces 175
that are configured to allow the data engine 150 to transmit and receive payload big data over the data analytics
network 112, as well as to communicate with other data engines and nodes of the data analytics network 112
(e.g., signaling and other types of communications). For example, the data engine 150 may subscribe to one
type of data that is published by another node by using the network interface 175, and the type of data that is
generated by the publishing node and to which the data engine 150 is subscribed may be received via the

network interface 175.

[0242] As previously discussed, various types of real-time data, such as process-related data, plant-related
data, and other types of data, may be generated, collected, observed, retrieved, received, stored, cached,
processed, analyzed, and/or streamed by the distributed data engines 102x. Examples of process-related data
include continuous, batch, measurement, and event data that are generated while a process is being controlled
in the process plant 5 (and, in some cases, are indicative of an effect of a real-time execution of the process).
Further, process-related data may include process definitions, arrangement or set-up data such as configuration
data and/or batch recipe data, data corresponding to the configuration, execution and results of process

diagnostics, etc.

[0243] Plant-related data, such as data related to the process plant 5 but that may not be generated by
applications that directly configure, control, or diagnose a process in the process plant 5, may be generated,
collected, observed, retrieved, received, stored, cached, processed, analyzed, and/or streamed by the
distributed data engines 102x as big data. Examples of plant-related data include vibration data, steam trap

data, data indicative of a value of a parameter corresponding to plant safety (e.g., corrosion data, gas detection
39

data, etc.), data indicative of an event corresponding to plant safety, data corresponding to the health of
machines, data corresponding to assets in the plant such as plant equipment and/or devices, data
corresponding to the configuration, execution and results of equipment, machine, and/or device diagnostics, and

data that is useful for diagnostics and prognostics.

[0244] Further, other types of data including data highway traffic and network management data related to the
process control big data network backbone and of various communications networks of the process plant 5,
user-related data such as data related to user traffic, login attempts, queries and instructions, text data (e.g.,
logs, operating procedures, manuals, etc.), spatial data (e.g., location-based data), and multi-media data (e.g.,
closed circuit TV, video clips, etc.) may be generated, collected, observed, retrieved, received, stored, cached,

processed, analyzed, and/or streamed by the data engines 102x as big data.

[0245] In some embodiments, dynamic measurement and control data may be automatically generated,
collected, observed, retrieved, received, stored, cached, processed, analyzed, and/or streamed by the
distributed data engines 102x as big data. Examples of dynamic measurement and control data include data
specifying changes in a process operation, data specifying changes in operating parameters such as setpoints,
records of process and hardware alarms and events such as downloads or communication failures, etc. In
addition, static data such as controller configurations, batch recipes, alarms and events may be automatically
collected by default when a change is detected or when a controller or other entity is initially added to the data

analytics communications network 112.

[0246] Moreover, in some scenarios, at least some static metadata that describes or identifies dynamic control
and measurement data is captured in the distributed data engines 102x when a change in the metadata is
detected. For example, if a change is made in the controller configuration that impacts the measurement and
control data in modules or units that must be sent by the controller, then an update of the associated metadata is
automatically captured by the data engines 102x. Additionally or alternatively, parameters associated with the
special modules used for buffering data from external systems or sources (e.g., weather forecasts, public events,
company decisions, etc.), surveillance data, and/or other types of monitoring data may be automatically captured

by the data engines 102x.

[0247] In some situations, added parameters created by end users are automatically captured in the

distributed data engines 102x. For example, an end user may create a special calculation in a module or may
add a parameter to a unit that needs to be collected, or the end user may want to collect a standard controller
diagnostic parameter that is not communicated by default. Parameters that the end user optionally configures

may be communicated in the same manner as the default parameters.

USER INTERFACE APPLICATION FOR INDUSTRIAL PERFORMANCE MONITORING/ANALYTICS

[0248] As previously mentioned, the data analytics system or DAS 100 may include one or more user
interface applications via which data-related human-machine interactions are conducted. The presence of
example instances of these user applications is depicted in FIG. 2A by references 120a-120d. The present
section of this disclosure and FIGS. 4A-4Q describe in more detail the user interface application for industrial

performance monitoring/analytics, which may be provided by or operate in conjunction with the process plant or
40

system 5 of FIG. 1, the industrial performance monitoring/analytics system 100 of FIG. 2A, and/or the monitoring
and analytics engine 150 of FIG. 3, for example. However, the user interface application for industrial
performance monitoring/analytics described herein may be provided by or operate in conjunction with other
industrial performance monitoring and analytics systems for process control systems. For ease of discussion,
though, the industrial performance monitoring/analytics user interface application is discussed below with
simultaneous reference to FIGS. 1, 2, and 3. Additionally, for ease of reading, the Industrial Performance
Monitoring/Analytics User Interface Application is referred to herein using capitalization to distinguish from
general-purpose and/or other user interface applications, and is also interchangeably referred to herein as the
“Data Analytics User Application,” the “Data Analytics User Interface Application,” the “Data Analytics

Application,” the “DDE User Interface Application,” or the “User Interface Application.”

[0249] The DDE User Interface Application provides an interface for a user to interact with the distributed
industrial process performance monitoring/analytics system or DAS 100 to define structure, query data, build,
and evaluate draft data models. When the draft data models are finalized, the DDE User Interface Application
allows the data models to be downloaded into a runtime engine and deployed to operate in conjunction with an
on-line process control system. A deployed data model (also referred to as an executing or on-line data module)
may be accessed and monitored via a runtime dashboard of the DDE User Interface Application. The DDE User

Interface Application is also able to generate alarms and notifications that correspond to executing data models.

[0250] Specifically, the DDE User Interface Application enables a user to create, view, and modify data
models, each of which defines one or more data analytics (e.g., descriptive, predictive, and/or prescriptive
analytics) that are to be executed or performed on an input data set. Data models are drafted or created in an
off-line mode (e.g., while the data model is disconnected from live data sources in an on-line or operating
process control system), and in this mode a data model is referred to herein as an “off-line data module.”
Generally, an off-line data module is defined by an off-line data diagram that the user creates, via the DDE User
Interface Application, by selecting a set of “blocks” or “data blocks” and interconnecting the blocks on the
diagram in a desired manner with a set of “wires.” Each data block includes an input via data is received into the
block. Each data block also represents or defines a particular function, action, algorithm, and/or operation that
are to be performed by the each data block on its input data, thereby generating output data that can be
provided to other blocks via one or more outputs. Each data block is able to be separately evaluated, so that the
off-line diagram representation of the block and its interconnecting wires is compiled into executable code and
executed, and the results of the execution of each data block are presented on the off-line data diagram. As will
be discussed in a later section, the compilation of a data block into code and its subsequent execution may be

performed distributively across different target environments and locations.

[0251] Similarly, the off-line data diagram as a whole is also able to be evaluated. The evaluation of an off-
line data diagram includes compiling the data blocks and wires, executing the compiled code to transfer input
data and output data across the wires and perform functions, actions, algorithms, and/or operations as defined
by the particular configuration of blocks and wires of the off-line data diagram. Also similar to individual data
blocks, the compilation of the off-line data diagram and execution of the compiled off-line data diagram may be

performed distributively across different target environments and locations.

41

[0252] Further, the DDE User Interface Application enables a user to transform an off-line data module into an
“on-line data module,” so that the on-line data module of the data model binds to or otherwise receives live (e.g.,
streaming) data being generated by live data sources of the on-line process control system, performs the one or
more data analytics defined therein on the live data, and provides the output to a user interface, historian, or
other applications. For example, the output data generated by a data model may include descriptive, predictive,
and/or prescriptive information or data corresponding to the process plant and/or a process being controlled

therein.

[0253] In particular, a user may transform an on-line data diagram of a particular data model into an on-line
data diagram of the particular data model. Like an off-line data diagram, an on-line data diagram includes a set
of data blocks interconnected by a set of wires, and as the off-line and online-line data diagrams generally
correspond to the same data model, the functions, actions, algorithms, and/or operations defined by the on-line
data diagram corresponds to that of the off-line data diagram. However, at least some of the blocks and
interconnections differ between the off-line data diagram and the on-line data diagram, primarily (but not

necessarily only) to accommodate connecting the on-line data module to the on-line process plant.

[0254] Also similar to off-line data diagrams, on-line data diagrams may be compiled as a whole into
executable code corresponding to the on-line data module of the data model. The compilation of particular
blocks of an on-line data diagram causes the definition of bindings of the particular blocks with respective data
sources and data consumers within the on-line process plant. Deployment of an on-line data module
instantiates these bindings and causes the executable to run or execute, thereby integrating the on-line data
module with the on-line process plant so that the on-line data module executes in conjunction with the
operations of the on-line process plant. The compilation of an on-line data diagram and the binding and
execution of the resulting on-line data module may be performed distributively across different target

environments and locations.

[0255] In a particular useful embodiment, the on-line data module of the data model receives and operates at
least in part on continuous, real-time data that is generated by devices or components of the process plant as a
result of on-going control of an on-line process executing in the plant. For example, the on-line data module
operates on continuous, real-time time-series data generated by the on-line process plant and/or by a process
control system included in the plant while the process plant and the process control system are operating to
control the process. The data model continually operates on the continuous, real-time data stream, (e.g., by
performing its one or more data analytics functions and other functions (if any) thereon as defined by the data
model), and continuously generates a real-time stream of results or output data, which may be displayed at a
user interface (e.g., as a rolling line graph or other depiction) and may continually reflect the current, real-time
values of the output of the data model. In an example, the data output generated by the data model and
displayed at the user interface includes at least one predictive value and its variation over time. Generally,
though, data models are capable of operating on large quantities of data generated by a variety of data sources
within the process control plant or environment 5 for the purposes of fault detection, prediction, and prescription

for the process control plant or environment 5.

42

[0256] In an embodiment, the DDE User Interface Application is web-based and is accessed through a web
browser, so that different instances of the Application can be used by various platforms (e.g., Apple Macintosh,
Linux, Windows, etc.) and by various users at various computing devices, sometimes simultaneously. However,
the DDE User Interface Application is not limited to a web-based implementation, and may utilize any other
suitable implementation that is platform-independent and that can be extended to multiple users and/or

instances simultaneously.

[0257] Further, although the DDE User Interface Application is described herein as applying to a single
process control plant or environment 5 with multiple instances of the DDE User Interface Application executing
simultaneously, this configuration is illustrative only and is not meant to be limiting. For example, in some
configurations, a DDE User Interface Application may be applied to multiple process control plants or
environments that operate independently in different locations and on different processes. For instance, a single
DDE User Interface Application provided by a bank of servers or computers may be utilized by multiple oil
refineries of a petroleum company so that some instances of the DDE User Interface Application execute at

Refinery A and some instances execute at Refinery B.

[0258] At any rate, as previously discussed, the DDE User Interface Application abstracts the functions,
actions, algorithms, and/or operations that may be performed by data blocks on respective input data as blocks
or data blocks. Examples of blocks or data blocks are named by their respective function, e.g., load, clean,
manipulate, analyze, visualize, etc. Each data block may load or obtain respective input data, perform its one or
more respective functions, actions, algorithms, and/or operations on the obtained input data, and generate one
or more respective results or respective output data. Multiple data blocks may be interconnected as desired
(e.g., serially, in parallel, many-to-one, one-to-many, etc.) to form and an off-line data diagram that is
representative or defines a draft data model or off-line data module, and this draft data model/off-line data
module may be executed or evaluated by causing the off-line data module (or portion thereof) to be applied to or
operate on a set of one or more data sets or off-line data sources. For example, during an execution or
evaluation of an off-line data module, the off-line data diagram is compiled into executable code, specified data
set or sets are obtained and loaded into or for the use of the off-line module, and the interconnected blocks of
the compiled, off-line module each are executed to perform their respective operations on their respective inputs
and provide respective results at their respective outputs, thereby resulting in one or more analytics outputs or
results being generated by the overall off-line data module corresponding to the data model that is being
developed or created. In an embodiment, during off-line evaluation, rather than loading data sets from a file into
the draft data model, input data may be received from a streaming off-line data source such as a test tool,
environment, or plant. Further, as will be explained in more detail below, an off-line data module or draft data
model may be incrementally evaluated as it is being developed. In the DDE User Interface Application, the
platform or infrastructure for evaluating off-line data blocks and off-line data modules is the Data Analytics

Services, which is described in a later section.

[0259] After an off-line data module (or portion thereof) has been evaluated, the results of the evaluation are
able to be reviewed and scrutinized by the user, and the draft model (or portion thereof) can be modified

accordingly and reevaluated until a satisfactory result has been achieved. A user may finalize a draft data

43

model/off-line data module, a transform it into an on-line data module, and execute or deploy the on-line data
module to operate on real-time, on-line, or streamed, live data that is being generated due to the real-time
operations of the process control environment or plant 5. For example, an executing or deployed on-line data
module or data model may continuously operate on real-time data that is continuously being generated due to
the on-line operations of the process plant, and the on-line data module or model may itself continuously
generate real-time output data or results of its execution, which may be displayed and continuously updated on a
user interface. The on-line execution or operation of the deployed, on-line data module and corresponding
results may be monitored at a Dashboard of the DDE User Interface Application, which is also described in more

detail in a later section.

[0260] As previously discussed, within the DDE User Interface Application, data blocks, data modules
(whether on-line or off-line), and portions thereof may be visually and/or graphically represented to a user as
diagrams or data diagrams on a workspace or canvas provided by the DDE User Interface Application.
Generally, each data diagram includes a set of data blocks (e.g., which may be represented by two-dimensional
shapes) that are interconnected by a set of wires (e.g., which may be represented by lines). The DDE User
Interface Application typically includes two modes of operation (although, in some embodiments, greater or
lesser numbers of modes may be included), both of which utilize data diagrams for representing data modules

and the data blocks included in the data modules.

[0261] One of the modes of operation is referred to interchangeably herein as the “Data Analytics Studio,” the
“Data Studio,” or the “Studio.” Typically, the Data Studio is utilized by users to design and develop data analytics
models. Additionally, the Data Studio allows a user to transform an off-line module into an on-line module, as
well as deploy a finalized off-line module as a corresponding on-line data module. The Data Studio provides a
work area or drawing canvas upon which a user is able to develop a data model by creating and connecting
blocks into a data diagram, which is a visual, graphical representation of a data model or portions thereof. While
a data model is being developed within the Data Studio, it may be referred to as a draft data model or off-line
data module, and may be thought of as a draft or prototype. An off-line data module diagram may include a
greater number of data blocks and/or connections than its resulting on-line data module, as some of the blocks
and connections included in the off-line module may be used to analyze and view data at different portions of the
module, e.g., for the purposes of analyzing and checking whether or not particular portions of the data model are
evaluating as desired and/or providing sufficiently useful and/or predictive data. Generally, an off-line diagram of
a data module is a representation of a workflow that (1) explores and cleans raw data sets, and (2) may be built,
tuned, and evaluated for desired analytic operations such as classification, regression, clustering, dimensionality
reductions, and more. Data modules that are off-line may be incrementally or continually evaluated as they are
being developed. The results of the evaluation process of an off-line data module or data model are

communicated to the user via the Data Studio.

[0262] In some cases, an execution or evaluation of an off-line data module may take a lengthy period of time
to complete. In these situations, the status and progression of the off-line data module’s evaluation process may
be communicated to the user via another mode of operation of the DDE User Interface Application that is

referred to interchangeably herein as the “Data Analytics Dashboard,” the “Analytics Dashboard,” or simply the

44

“Dashboard.” The Dashboard typically is utilized by users to view and/or manage modules that are (i) off-line
data modules (e.g., draft data models) which are being evaluated, and/or (ii) on-line data modules (e.qg., finalized
data models that have been deployed as data modules). The Dashboard also represents draft data models
under evaluation and deployed on-line data modules using respective diagrams or visual, graphical
representations. A deployed data module is referred to as being “on-line,” as the deployed module is executing
on real-time data that is being generated due to online or runtime operations of the process control system or
plant 5. Generally, an on-line diagram of a data module is a representation of a workflow that is bound to one or
more data sources within the process control system or plant 5 (e.g., streaming data sources) to make real-time
descriptions, predictions, and/or prescriptions, and/or to continuously tune data models during or at runtime.
Data modules that are deployed or on-line may continually execute until they are explicitly terminated from the
Dashboard.

A. Data Module Diagrams

[0263] An example diagram of a data module (whether off-line or on-line) generally includes multiple data
blocks and wires that interconnect various blocks together to form one or more data flow pipelines. As
previously mentioned, a data block generally is an abstraction of a function or operation that a user would like to
be applied to a data set. For example, a particular block may load a data set from the data store or file on disk,
another particular block may replace all missing values (e.g., those values which have no value measured at a
time corresponding to a time at which another parameter/variable does have a measured value) in the data set,
yet another particular data block may perform a random forest analysis, etc. Typically, different data blocks
correspond to different functions or operations that may be performed on data sets, and as such various data
blocks each may have a corresponding type or name, e.g., “Load,” “Query,” “Fill,” “Columns,” “PCA (Principal

Component Analysis),” “PLS (Partial Least Squares),” “Explore,” “Write,” etc.

[0264] Each block may have zero or more respective properties. The set of properties of a block (which for
some blocks may be a null set) respectively correspond to its block type, so that all instances of a same block
type have the same set of properties. For some blocks, default values of properties may be provided by the
DDE User Interface Application, and for some blocks, users may be allowed to enter and/or modify one or more
of the property values. A data block definition defines the respective properties and any default property values
(and for some blocks, other information as well} of a data block type. Data block definitions are stored in a data
block definition library that is provided by the DDE User Interface Application. Generally, the data block
definition library is available to all open instances of the DDE User Interface Application, so that multiple data
analytics users or engineers may simultaneously develop and/or explore data using the resources provided by
the library.

[0265] Each block has zero, one, or more input connectors that specify the data (if any) that flows into the
block from one or more other blocks or data sources. Additionally, each block has zero, one, or more output
connectors of that specify the data (if any) that flows out of the block (and potentially into one or more recipient
blocks via their respective input connectors). The interconnections between inputs and outputs of various blocks
are represented on data module diagrams by wires. Any type of data may flow or be transferred along any wire,

from simple scaler values to data frames that each contain millions of values to object code.
45

[0266] Additionally, each block has a state. For example, when a block is first created, the block is in a
“configuration” or “configuring” or “unconfigured” state. After the block has been configured, the block moves
into a “configured” state. While an off-line block is being evaluated, it is in an “evaluation” state. After the off-line
block has been evaluated, the block moves into either an evaluation “success” state or an evaluation “failed”
state. If an on-line block is undergoing configuration or binding to data sources and/or data consumers, its state
is “configuring” or “binding.” After an on-line block has been deployed into the process control system and is
operating on live data, its state is “deployed” or “executing.” Of course, other states are also possible. Typically,
each block includes a visual indicator that indicates its current state. Additionally, each data module as a whole

may have an indicator that indicates its current state.

[0267] An example data diagram 200 illustrating various possible data block features and interconnections is
shown in FIG. 4A. This example data diagram 200 includes a LoadData block 202a connected to a FillNaN
block 202b via a wire 205. The representation of the LoadData block 202a includes an indication of its current
block state 208a, an indication of its block type or name 210a, an indication of the results of the block’s
evaluation 212a, and an output connector 215a via which at least some of the data that is generated as a result
of the LoadData block’s evaluation is delivered via the wire 205 to a recipient (in this scenario, to the FillNaN
block 202b).

[0268] The FillNaN block 202b includes an input connector 218b which receives the data flowing over the wire
205 from the LoadData block 202a. Similar to the LoadData block 202a, the FillNaN block 202b includes an
indication of its current block state 208b, an indication of its block type or name 210b, an indication of the results
of its evaluation 212b, and an output connector 215b via which at least some of the data that is generated as a

result of the FillNaN block’s evaluation is delivered via a wire 220 to a recipient or consumer (not shown).

[0269] Note thatin FIG. 4A, the LoadData block 202a does not have an input connector as the LoadData
block 202a does not receive data that is output from any other data block of the data diagram 200. Instead, the
LoadData block 202a may be configured to load or obtain one or more input data sets from one or more data
sources. The data sources may include off-line data sources, such as a data file, a data source (e.g., a Seeq
system), a relational or non-relational database, and/or the data sources may include on-line or streaming data

sources, such as data streams generated by the distributed data engines 202x.
B. Data Analytics Studio

[0270] As previously mentioned, one of the modes of operation of the DDE User Interface Application is the
Data Analytics Studio. The Data Analytics Studio may be utilized by users to design, develop, view, and explore
data models. FIG. 4B depicts an example user interface presented by the Data Analytics Studio 240, which
includes a navigation bar 242 and a workspace or drawing canvas 245. The navigation bar 242 provides
controls and indicators via which a user is able to manage off-line and on-line data modules, e.g., by allowing a
user to perform actions such as create a new off-line data module, identify an off-line or on-line data module that
is currently open and shown in the canvas 245, readily view the status (e.g., off-line or on-line) of a data module
that is currently open and shown in the canvas 245, save/store an off-line data module that is currently open and

shown in the canvas 245, transform an off-line module into an on-line data module, toggle between viewing the

46

off-line and the on-line data diagram of a data module, evaluate an off-line data module, deploy an on-line data
module, browse to other data modules, and other such module management functions. As such, the Data
Analytics Studio 240 includes numerous user controls and indicators 248a — 248n thereon, such as, but not
limited to:
e a module navigation control 248a to enable a user to find and browse to other data modules;
e an identifier 248b of the data module that is currently open on the canvas 245;
« one or more indicators 248c, 248d that are indicative of whether the view of the data module that is
currently open on the canvas 245 is an off-line or an on-line view;
e one or more controls 248e, 248f via which a user may toggle between an on-line and an off-line view
of the data module that is currently open on the canvas 245;
e auser control 2489 via which a user may view and/or define properties of the data module that is
currently open on the canvas 245;
e auser control 248h via which a user may save the currently open data module;
e auser control 248i via which a user may evaluate at least a portion of the currently open data
module;
e auser control 248j via which a user may deploy the currently open data module;
e anindicator 248k that is indicative of an operational status of the currently open module; and/or

e one or more other user controls and/or indicators (not shown).

[0271] FIG. 4B also illustrates a user control 248m via which a user may view, select block definitions from,
and/or add to a data block definition library (which is not shown in FIG. 4B). In the embodiment shown in FIG.
4B, the library user control 248m is shown as being located on the canvas 245, however, in other embodiments

said control 248m may be positioned on the navigation bar 242 or at any desired location.

[0272] Indeed, the numbers, types, locations/positioning, form factors, arrangements, etc. of the user controls
and indicators shown in the example Data Analytics Studio 240 are only one of many possible embodiments.
More or less numbers and/or types of user controls and/or indicators may be included. Different
locations/positioning of such user controls and/or indicators may be utilized, as well as different form factors,
arrangements, etc. In some embodiments, the navigation bar 242 may be omitted, and another mechanism for

users to access controls may be provided (e.g., pop-up window, drop down menu, etc.).
1. Data Analytics Studio — Off-Line Data Modules

[0273] In the Data Analytics Studio 240, the drawing canvas or workspace 245 is the area via which off-line
data modules may be developed, defined, and evaluated. For example, on the drawing canvas or workspace
245, a user is able to access the block definition library of the DDE User Interface Application (e.g., via the user
control 248m), select various data block definitions stored therein, and interconnect (e.g., wire together) the
selected block definitions to form a data diagram of a data model. Additionally, on the drawing canvas
workspace 245, a user is able to edit the properties of a particular data block instance; evaluate a portion of a
draft data model, including viewing the progress of the evaluation as well as its results; and/or perform other

actions related to an off-line data module.

47

[0274] As previously discussed, each data block that may be utilized in a data diagram is based on a block
definition of a type of data block. That is, a particular instance of a block of a given type has a set of properties
in accordance with the block definition of the given type, but the particular instance may differ from other
instances of blocks of the same given type, e.g., in @ manner similar to object classes and instances of object
classes. Also as previously discussed, block definitions are stored in the block definition library that is accessed

(e.g., toggled to be in view or hidden) via a user control 248m, which may be situated on the canvas 245.

[0275] Anillustration of an example relationship 250 between the data block definition library, data block
definitions, data modules, data blocks, data block instances, and wires is shown in FIG. 4C. As shown in FIG.
4C, block definitions are made available through a block definition library 252 provided by the DDE User
Interface Application. In some embodiments, different access permissions (e.g., read-only, read-write, etc.) to
particular block definitions and/or to other data analytics library resources (and/or to portions thereof) may be

granted to different users and/or groups of users.

[0276] A block definition 255 stored in the library 252 may be utilized to create an instance 258 of the block
255 that is used within a data module 260. One or more properties 262 of the block definition 255 may be
particularly defined for the block instance 258. The block instance 258 may be configured or designed to include
one or more input connectors 265 via which data is received into the block instance 258, and the block instance
258 may be configured or designed to include one or more output connectors 270 via which output data (e.g.,
data resulting from the evaluation of the block instance 258 operating on the input data received via the input
connector 265) is provided, e.g., to another block instance 258, to be written or stored, to a user interface, etc.
Each input connector 265 of a block instance 258 may receive data over one or more wires 272 of the data
module 260, and each output connector 270 of a block instance 258 may provide data over one or more wires
272 of the data module 260. Each wire 272 of the data module 260 provides an interconnection between a
particular output connector 270 of a particular block instance 258 and a particular input connector 265 of another

particular block instance 258, thereby enabling data to be transferred between the two data block instances.

[0277] In an embodiment, block definitions are organized within the library 252 by categories of functions or
actions. Categories may include sub-categories, sub-categories may include sub-sub-categories, and so on. In
an illustrative but non-limiting example, a block definition library 252 includes at least five categories of block

definitions: Data Sources, Filters, Transformers, Visualizations, and Data Consumers.

[0278] Block definitions that are included in the Data Sources category typically define various actions related
to data sources that provide the input data on which a data module operates. For example, block definitions in
the Data Sources category may include “CreateDataSet” to generate an input dataset, “LoadDataSet” to load or
obtain an existing dataset from an off-line or on-line data source, “LoadDB" to load or obtain data from a
database (such as a process control database or an analytics database), “SaveDataSet” to historize an input
dataset into longer-term data storage (e.g., after its creation, such as for test input data sets), etc. Further, some
of the Data Sources categories may include one or more sub-categories. For example, the CreateDataSet and
LoadDataSet categories may each include respective sub-categories for particular dataset formats and or
environments in which the datasets were generated, e.g., C8V (Comma Separated Values), Raspberry Pi, Seeq,

etc. Generally, off-line Data Sources blocks are configured to obtain or access static data sources, such as data
48

files, process control databases, analytics databases, etc. On the other hand, on-line Data Sources blocks are
typically configured with a binding definition that relates the particular instance of the on-line Data Source block
with one or more on-line data sources within the process plant. Compilation of the configured, on-line Data

Source instantiates the binding so that the on-line Data Source block receives streamed data generated by the

one or more on-line data sources to which it is bound.

[0279] The Data Sources category may include block definitions that relate to searching for or obtaining
selected data from one or more data sources, e.g., “QueryDataSource” or “Query.” Query blocks may operate
on off-line data sources and/or on-line data sources. Generally, the Query block definition allows a data module
to query for, obtain, or request specific types or identities of data (e.g., as indicated by columns, tags, or other
suitable identifiers) and/or query for, obtain, or request data generated only during particular time intervals,
which may be disjoint time intervals. Still further, the Query block is able to query for any type of data
irrespective of the format and/or environment in which data is captured or stored. Additional details of the query

block are provided in a later section of this application.

[0280] Block definitions that are included in the Filters category typically define various filtering techniques
that can be performed on a dataset. For example, block definitions in the Filters category may include “Clip,”

“HighPass,” “LowPass,” “SGF” (e.g., for Savitsky-Golay filtering), “Exponential,” “Averaging,” “Wavelet,” etc.

[0281] Block definitions that are included in the “Transformers” category of the data block definition library 252
typically define various techniques that manipulate, analyze, and/or otherwise transform the contents of a
dataset or of a filtered dataset. For example, the Transformers category may include sub-category data block
definitions corresponding to cleaning input datasets, e.g., “FillNaN" (e.g., to fill in entries of the dataset that are
not a number),” “RmvOQOutlier” (e.g., to remove outlier data), “CorrectBad” (e.g., to correct bad data that is
detected within the input dataset), “ExcludeBad” (e.g., to exclude bad data that is detected), etc. Additionally,
the Transformers category may include sub-category data block definitions corresponding to manipulating the
contents of input datasets, such as “Scale,” “Shift,” “Split,” “Merge,” “CenterNormal,” “DownSample,”
“TimeOffset,” “Columns,” etc. Further, in some embodiments, the Transformers category may include sub-
category block definitions corresponding to aligning data within the input datasets, e.g., “TimeDelay,”

“LagCorrect,” etc.

[0282] The Transformers category may include sub-category data block definitions that correspond to
analyzing input datasets to acquire knowledge and learning about their contents, such as “Sensitivity,”
“Clusters,” “RandomForest,” “CBP” (e.g., conditional Bayesian probability analyses), “KMeans,”
“FourierTransform,” “FastFourierTransform,” “PLS,” “PCA,” etc. Some sub-categories of the Transformers
category may include one or more sub-sub-categories. For instance, the “PCA” sub-category of the
Transformers category may include sub-sub-category data block definitions corresponding to various Principal
Components Analyses techniques, such as “PCA_NIPALS” (PCA and nonlinear iterative partial least squares),
“PCA_SVD” (PCA and Singular Value Decomposition), “PCA_Test,” etc.

[0283] Block definitions of the Visualizations category typically define various techniques for presenting output

generated by a data module. For example, the Visualizations category may include sub-categories

49

corresponding to graphical and/or otherwise visual representations such as “LineGraph,” “Chart,” “BarGraph,”
“ScatterChart,” “Histogram,” “DataGrid,” “DataCloud,” “Animation,” etc. The Visualizations category may include
sub-categories corresponding to preparing output data for particular graphical representations, such as
“RoundSigFig.”

[0284] Block definitions of the Data Consumers category typically define actions related to various consumers
or recipients of the output data generated by a data module. For example, the Data Consumers category may
include the sub-category “Write,” which causes the output data to be written or saved to a file, database, or other
static storage area. The sub-category “Write” in turn may have respective sub-categories corresponding to the
various types of locations, databases, database formats, file formats, etc. indicative of where or how the output
data may be written or saved. The Data Consumers category may include a sub-category “Publish,” which
causes the output data to be streamed (e.g., via the analytics data network 112) or otherwise posted or delivered
to a subscriber or recipient of the data (e.g., to a distributed data engine 102x, to an on-line data module, to an
application being executed by the process control system, to a user interface, etc.). In some embodiments, to
transform an off-line Publish block into its on-line version, the Publish data block is configured and bound to a
live data consumer (e.g., to an on-line data module, an executing application, a process control device, element
or component, etc. that has a subscription to the output of the data model). In an embodiment, the Data
Consumers category may include a sub-category “Convert2Control” which causes the output data to be
converted into a signal of a format that the traditional process control communication networks understand, and
causes the signal to be delivered, via the traditional process control communication networks, to a process
control entity, element, device, or component to effect or cause a change in the process plant 5. The sub-
category “Convert2Control” may include sub-sub-categories corresponding to, for example, various traditional
process protocol formats (e.g., HART, PROFIBUS, WirelessHART, etc.) and/or various targets within the
process plant 5 that are potential recipients of the change signal (e.g., control loop inputs, control loop
configurations, message priorities, parameter values, etc.). For example, a Convert2Control block may be
configured to bind to a particular process control entity, element, device, or component within the process plant 5

that is to receive the output of the Convert2Control block and modify its operations accordingly.

[0285] The data block definition library 252 may include other data block definitions therein, each of which
may or may not belong to a category. For example, the “Explore” block allows a user to explore, in an off-line
mode, output data generated by or more other data blocks. For instance, an Explore data block may receive
multiple different data wires at its input connectors, and may generate a visual representation that includes both
sets of input data in a comparative manner, e.g., by aligning the two input datasets over time and overlaying one
line graph on top of another line graph, by creating histograms with each respective dataset's information
displayed next to the other dataset’s information, etc. The Explore block allows a user to manipulate the
visualization of its output, e.g., by increasing/decreasing the scale of an x-axis and/or a y-axis, sorting and/or
filtering statistical data displayed in a chart, etc. Note that the Explore block is an example of a block that may
not have an on-line counterpart, as its function is primarily to allow a user to explore and understand output data

generated by a draft data model.

50

[0286] For a userto develop a new data model, the user may invoke the data block definition library 252 (e.g.,
by toggling on via the user control 248m). The user may add a desired data block to the canvas 245 (and
thereby add the data block to the data module under development that is depicted on the canvas 245) by
dragging and dropping the definition of the desired data block from the library 252 onto a desired location of the
canvas 245. (Of course, dragging and dropping is only one way of indicating selection, positioning, and
incorporating the particular data block into the data module, and numerous other suitable ways to do so are
possible.) After the drag and drop operation, the selected block definition is associated with the draft data
module, and a respective instance of that data block for the draft data model is created and named. In an
example scenario illustrated in FIG. 4D, draft Module A1 is in the process of being developed and its
corresponding draft, off-line data diagram is shown on the Data Studio canvas 245. As shown by the indicator
248c, Module A1 has an “off-line” status. The user has already added blocks A1-B1, A1-B2, and A1-B3 to draft
Module A1, and has connected them using wires A1-W1 and A1-W2. The user has invoked the library 252 via
the control 248m, selected block B4 from the library, and dragged and dropped block B4 onto the canvas 245
(as indicated by the dashed line), and is in the process of naming the instance of block B4 as “A1-B4.” After the
instance of block B4 has been named, the user may interconnect A1-B4 to one or more other data blocks of
draft Module A1 with wires. For example, the user may hover the cursor over an input connector of A1-B4 and
click to create a new wire connection to the selected input connector. The user may then click on the desired
output connector of another block instance on the canvas 245 to create the new wire interconnecting the
selected input connector to the desired output connector, thereby interconnecting the two block instances. In
another example, the user may hover the cursor over the output connector of another block instance, click to
create a new wire connection to the selected output connector, and click on the desired input connector of A1-B4
to create the interconnecting wire. Of course, any suitable user control mechanism may be utilized to create

wire interconnections between block instances.

[0287] On the Data Studio canvas 245, a user is able to modify values of the given properties of a block for a
particular block instance. To illustrate, FIG. 4E depicts a portion of the Data Studio canvas 245 on which a draft
data module B1 is being developed. Two block instances included in draft Module B1 have been positioned on
the canvas 245 and interconnected, i.e., B1-FillNaN and B1-PCA. B1-FillNaN receives its input data set from a
data source that is not shown in FIG. 4E, and B1-PCA provides two outputs “Model’ 280a and “Scores” 280b to
respective consumer or recipient blocks (also not shown). The user has indicated that he or she desires to
modify the values of the block definition properties corresponding to the B1-PCA block instance (e.g., by
hovering over the B1-PCA block instance, by double-clicking on the B1-PCA block, or by using any other
suitable user control mechanism). In response to the activated user control, a window 282 including a listing of
the defined properties corresponding to the PCA block definition has appeared (e.g., as a floating dialog box,
pop-up window, or some other suitable representation). A user may then modify the values of the various block

properties of B1-PCA as desired via the window 282.

[0288] As previously discussed, the properties of each data block (if any) are defined by its respective block
definition which is stored in the block definition library 252. lllustrative (but non-limiting) examples of block

definitions and their respective properties are shown in FIGS. 4F-4H. It is understood that the block definition

51

library 252 may include one or more of the example block definitions shown in FIGS. 4F-4H, none of these
example block definitions, and/or other block definitions. Further, the number, types, and default values of the
properties for each example block definition shown in FIGS. 4F-4H may also vary from the examples described

herein.

[0289] In FIG. 4F, a data block definition template of a “LoadDB” data block 285a is presented by the DDE
User Interface Application, e.g., as a result of a user dragging the LoadDB block definition from the library 252
onto the canvas 245 and subsequently indicating that he or she desires to view and/or modify the block property
values of the LoadDB data block 285a to create a particular instance of the block 285a. The action or function
that the LoadDB block 285a performs within an off-line diagram of a data model includes loading (or otherwise
obtaining the contents of) a particular dataset on which the data model is to operate. For example, the particular
input dataset may be loaded or obtained from a database or file. The user is able to indicate the particular input
dataset that is to be loaded into the data model by entering the desired names, indicators, or values into the
DatabaseName property field 285b and DataSet property field 285c, e.g., via drop-down menus, search and
select (e.g., of a process control database or other database associated with the process control systemy, free-
form text entry, etc. For example, a user may select a desired DatabaseName 285b from a drop-down menu,
and the selection of the desired database 285b leads to providing a corresponding drop-down menu for the
DataSet field 285c¢ that includes only the datasets 285c of the selected/identified database 285b. The LoadDB
block 285a also includes a Plot property field 285d, which in this implementation is a Boolean flag whose value
indicates whether or not a plot of the dataset 285c¢ from the database 285b is to be generated/presented when
the LoadDB block instance is evaluated. If Plot 285d is set to “yes,” then after block evaluation, a plot of the
loaded dataset 285¢ would be displayed on the graphical representation of the LoadDB block instance shown on
the canvas 245, e.g., in the View Block Results area 212 of the LoadDB block instance. For the LoadDB block
285a, the Plot property 285d is optional, and its value defaults to “no” (e.g., no plot of the loaded input data set is
to be generated/presented when the block is evaluated). After the user has entered all desired values into the
property fields 285b, 285¢, and 285d of the LoadDB data block 285a, the user may save the modified property
values, thereby configuring the LoadDB data block template 285a to create a particular instance of the LoadDB
data block 285a that is to be used in the data model which the user is creating/developing. The user may name
the particular instance, e.g., by entering a desired name (e.g., “LoadDB-1"} into the block name field 210 of the

block instance shown on the canvas 245.

[0290] FIG. 4G illustrates a data block definition template of a “Columns” data block 286a presented by the
DDE User Interface Application. A particular instance of a Columns data block 286a extracts or obtains selected
groups of data from a loaded/obtained dataset (referred to herein as a “column” of data, or data referenced by a
“tag”) as specified by its property values of the SelectedColumns property field 286b. For example, a Columns
data block 286a receives a dataset (or some indication thereof, such as a pointer, indicator, or other reference to
the dataset) via its input connector, e.g., from an instance of a LoadDB data block 285a. The SelectedColumns
property field 286b of the Columns data block 286a allows a user to select one or more columns, tags, or other
portions of the input dataset that the user desires to be operated on by other blocks of the data model. For

example, as shown in FIG. 4G, the user is in the process of scrolling through a list of tags of DatasetA and

52

highlighting desired tags. Typically (but not necessarily), the selected columns or tags are a subset of the total
columns or tags included in the input dataset. A user may save the column or tag selections 286b (and other
block properties, if present), thereby configuring the Columns data block 286a to create a particular instance,
e.g., the particular instance that is to be used in the data model that the user is creating/developing. The user
may name the particular instance of Columns 286a, e.g., by entering a desired name into its block name field
210.

[0291] FIG. 4H illustrates a data block definition template of a “PCA_NIPALS” data block 287a presented by
the DDE User Interface Application. The PCA_NIPALS data block 287a performs a principal components
analysis (PCA) and nonlinear iterative partial least squares operation on a set of data. For example, the
PCA_NIPALS data block 287a may receive, via its input connector, the columns or tags of data (or indicators
thereof or references thereto) determined by an instance of a Columns data block 286a. In another example,
the PCA_NIPALS data block 287a may receive, via its input connector, an entire data set (or indicator thereof or
reference thereto) that has been loaded for use by the data model by a LoadDB 285a data block. The template
of the PCA_NIPALS block 287a allows a user to select the number of components 287b of the PCA and/or a
confidence level 287c, if desired. Both of the property fields 287b, 287¢ are optional for the PCA_NIPALS block
287a, and may be set to default values (e.g., which are defined in the block definition of PCA_NIPALS) or null.
In the example scenario shown in FIG. 4H, the user has indicated that the present instance of PCA_NIPALS is
to be configured to generate two components 287b and at least a 95% confidence level 287c. The
PCA_NIPALS data block 287a template may be configured (with or without modified property values) to create a
particular instance that is to be used in the data model which the user is creating/developing, and the user may

name the particular instance, e.g., by entering a desired name into its block name field 210.

[0292] Some types of data blocks are consumer or recipient data blocks that operate on output data
generated by a previous block. These types of consumer data blocks may need the previous block to be
evaluated in order for the consumer data blocks to be configured. For example, if an instance of a LoadDB
block 485a is wired to provide data to an instance of a Columns block 486a, the evaluation of the LoadDB block
instance 485a would provide the dataset from which a user may select particular columns or tags to configure

the Columns block instance 486a.

[0293] Now turning to the evaluation of off-line data blocks and data modules, an off-line data module may be
repeatedly evaluated as it is being developed, and need not be entirely completed to be evaluated. As such, the
evaluation of an off-line data module may be performed asynchronously, so that a user is able to evaluate
portions of the draft data module, modify the draft data module based on the evaluation, re-evaluate, modify
again, re-evaluate again, etc. For example, a user may create an initial data block for the data module, evaluate
the single data block, then connect a second data block to the first data block, evaluate only the second data
block (or evaluate both the first and the second data block as a whole), add four more data blocks, evaluate only
the newly added data blocks (or evaluate all six data blocks as a whole), etc. That is, when a desired number of
data block instances and/or associated wires have been added to the working data diagram of an off-line or draft
data module, the module (or portion thereof) represented on the canvas 245 may be evaluated, for example, by

activating the evaluation user control 248i on the navigation bar 242. For example, if a user desires to evaluate

53

the entirety of the blocks and wires presented on the canvas 245, the user may simply evaluate the user control
248i. On the other hand, if the user desires to evaluate only a subset of the blocks and wires presented on the
canvas 245, the user may select the desired blocks and/or wires (e.g., by clicking, lassoing, or other suitable

mechanism) and then activate the control 248i to cause the selected set of blocks and wires to be evaluated.

[0294] FIG. 4l illustrates an example of how an off-line data diagram 288 may be evaluated. As the off-line
data diagram 288 is being created or developed, a representation of its blocks and interconnections shown on
the Data Studio canvas 245 is stored into a transport file or document 290 (also referred to herein as a
“configuration file”}, which may of a light-weight data interchange format such as JSON (Java Script Object
Notation) or any other desired format. As such, the graphical, off-line data diagram 288 is bound to the transport
storage file or document 290. When the user indicates that he or she desires the off-line data diagram 288 or
portion thereof to be evaluated (e.g., by activating the user control 248i}, the transport file or document 290 is
compiled into the language of a target execution environment, thereby generating executable code 292 for the
data diagram 288. In an embodiment, the transport file or document 290 may be divided into multiple portions,
each of which is compiled into a different target language that is executable in a different target environment
(e.g., multiple chunks or segments of executable code 292 of different target languages may be generated from
the transport storage file or document 290). After the executable code 292 of the off-line data diagram 288 has
been generated, a process is created to manage and coordinate the execution of the code 292, which may or
may not be across different target environments, and/or which may or may not be performed by different

processors.

[0295] While various blocks of the off-line data diagram 285 are being executed or evaluated, the process
may send feedback to the Data Studio. For example, based on the feedback from the process, the Data Studio
updates the respective status indicators 208 of each data block of the off-line diagram 285 to indicate whether
the block is compiling, is evaluating, has finished evaluation successfully, or has finished evaluation
unsuccessfully (e.g., failed). Indeed, generally, throughout the compilation and execution process illustrated in
FIG. 41, feedback may be returned to the Data Studio and indicated on the user interface. For example, based
on feedback from the process, the Data Studio updates the module status indicator 248k and/or the off-line
status indicator 248c to indicate whether the module as a whole is undergoing compilation, undergoing

evaluation, has completed evaluation successfully, or has completed evaluation unsuccessfully.

[0296] Inthe DDE User Interface Application, the infrastructure and actions used to evaluate off-line data
blocks, diagrams, and modules is provided by the Data Analytics Services. For example, the activation of the
evaluation user control 248i invokes Data Analytics Services to perform the evaluation of the off-line data block,
diagram or module (or portion thereof) that is presently being developed on the canvas 245, e.g., which may
utilize multiple different back-end platforms (e.g., multiple different target languages, compilers, processors,
and/or target environments). Accordingly, the DDE User Interface Application shields users from having to be
concerned with (or even have knowledge of) the back end platforms that are utilized to implement a data block,
diagram, or module. That is, a user can utilize the Data Studio and Dashboard features (e.g., the data block
definition library 252, the canvas 245, and associated user controls) to not only design or engineer data modules

using data diagrams, but also evaluate, test, and deploy their designs in real-time and independently of back-

54

end platforms, which are managed “under the covers” by the Data Analytics Services. Moreover, the DDE User
Interface Application architecture advantageously allows additional back-end platforms and/or components to be
added or deleted without impacting the user-facing data module design, evaluation, testing, and deployment

functionalities.

[0297] A more detailed description of Data Analytics Services and its support for evaluation is provided in a

later section.

[0298] Referring to FIG. 4A, as previously discussed, evaluation of a data module in the offline mode may be
an iterative process. As a user adds and configures blocks for a draft data module, the user can evaluate the
added blocks, and the status of each block is reflected by its respective status icon (e.g., the indicator 208
shown in FIG. 4A). In situations in which the evaluation of the block was unsuccessful or a failure, the user may
obtain details about the failure (e.g., by selecting or clicking on a “failed” status indicator 208) so that the user is
able to address any issues that led to the failure. In situations in which the evaluation of the block was
successful, the user may view the results of the block evaluation, e.g., by selecting or clicking the block’s
respective view block results icon 212. In an embodiment, when a user selects “view block results” 212, a modal
or visualization dialog may appear (e.g., as a pop-up window, floating dialog box, or other suitable format), and

the user may view and explore various visualizations to see the data block results.

[0299] |Indeed, when a data block executes or evaluates, the data block may store any type of result or results
that may be useful to aid the user in determining the effect(s) of the data block operating on the data that was
transferred to it (e.g., via a wire and input connector). The types of result(s) that are stored typically are specific
to the block (and in some cases, to the particular instance of the block), and may be defined or determined by a

block developer. These results may be shown to the user via the modal or visualization dialog window.

[0300] In addition to block- and/or block instance-specific results, the DDE User Interface Application may
provide standard visualizations that may be applicable to more than one (and in some cases, a majority or even
all) of the data blocks. For example, when a block is executed, a standard set of various statistics may be
collected about the state of the data at the end of the block’s execution, so that for each column, tag, or portion
of the dataset, the mean, standard deviation and other such statistics may be computed and stored along with
the resultant dataset. When the visualization dialog of a particular block instance is presented (e.g., via
activation of the respective user control 212), the computed set of standard statistics for each column, tag, or
portion is retrieved from the data store and presented to the user. The user may then select the
columns/tags/portions of interest and request the Data Studio to generate respective charts or other visual
formats that represent the statistics of said columns/tags/portions (e.g., line chart, scatter chart, histogram, data
grid, data summary grid, computed statistics and histogram showing distribution of data, etc.). In an
embodiment, the statistics and dataset are stored independently, as storing the statistics independently from the
resultant dataset advantageously allows the DDE User Interface Application to only load the required amount of

data into the browser.

[0301] An example architecture 300 for presenting standard and custom visualizations is shown in FIG. 4J. In

the example architecture 300, the data block code for “Block1” 302 executes, and the resulting dataset 305,

55

computed standard statistics/other visualizations 308, and Block1-specific results 310 are generated and stored
into a local or remote storage area 312 that is managed by the DDE User Application Interface. At a Data Studio
instance 315 (e.g., a browser window), upon user selection of the “view block results” user control 212 displayed
on the Block1 graphic, the computed statistics 308 (e.g., the standard set and/or any custom visualizations) for
Block1 are loaded 318 to the Data Studio instance 315, and the user is able to select desired columns, tags, or
portions of interest. Upon user selection of the desired columns/tags/portions of Block1, corresponding data is

loaded 320 to the Data Studio instance 315 for the user to view and explore.

[0302] Overtime, as multiple data modules are configured, common patterns of block configuration and usage
may occur, e.g., within the same process control system 5 and/or across an enterprise that has multiple process
control systems. If such commonalities are identified, it may be desirable to group a set of individual data blocks
to form a new block that encapsulates their common behavior, e.g., a composite block. In some scenarios, it
may be desirable to define a custom, unitary data block, e.g., when a set of particular property values is found to
be repeated over time, or when a user desires to define a custom data operation or function. Custom and/or
composite data blocks may be created and stored in the library 252 so that they are available for use in other
data modules. An example scenario 330 illustrating the creation of a composite data block is shown in FIG. 4K.
In a data diagram 332, a user selects two unitary data blocks having a particular relationship (e.g., “Fill NaN” and
“Scale”) 335 to form a new composite block. Using a modal dialog box, pop-up window, or other suitable
interface provided by the Data Studio, the user configures or defines the new composite block with a desired
name “Fill & Scale” and saves the new “Fill & Scale” composite block to the data block definition library 252
(reference 338). At some time after “Fill & Scale” has been defined and saved, it may be incorporated into

another data diagram 339 in lieu of using the individual “Fill NaN" and “Scale” data blocks.

[0303] FIG. 4L depicts an example off-line data diagram 340 that illustrates some of the features and
principles described above, and that is described herein with simultaneous reference to FIGS. 4A, 4B, and 4F-
4H. In FIG. 4L, the example off-line data diagram 340 has been created by a user on the user canvas 245 of the
Data Studio. Specifically, the user has invoked the block definition library 252, e.g., by activating the control
248m on the canvas 245, and has dragged and dropped a LoadDB block template 285a onto the canvas 245.
Further, the user has named the particular instance of the LoadDB block 285a as “LoadDB4M” (reference 342a),
and has configured the LoadDB4M block instance 342a to load Dataset4 from Database M, e.g., by setting the
property values in fields 285c and 285b of the LoadDB4M block 342a. Additionally, although not explicitly
depicted in FIG. 4L, the user has set the Plot property value 285d of the LoadDB4M 342a to “True”, so that upon
evaluation of the block LoadDB4M 342a, a plot of the loaded Dataset4 is generated and presented in the View
Block Results field 212a of the LoadDB4M block 342a.

[0304] After the user configured the LoadDB4M block instance 342a, the user connected two recipient
Columns block instances 342b, 342c to the output of LoadDB4M block instance 342a. For example, the user
dragged and dropped two different instances of the Columns data block template 286a onto the canvas 245, and
respectively named the instances as “Columns X" (reference 342b) and “Columns Y” (reference 342c). Further,
the user has connected each of the respective inputs of the Columns X block 342b and the Columns Y block

342c to the output of the LoadDB4M block 342a by using interconnecting wires.
56

[0305] The user has also configured the Columns X block 342b and the Columns Y block 342¢ based on the
evaluation of the LoadDB4M block 342a. In particular, the user first evaluated the LoadDB4M block 342a (e.g.,
by selecting the image of the block 342a on the canvas 245 and activating the “evaluate” user control 248i},
thereby causing the LoadDB4M block 342a to compile and execute to load or obtain Dataset4 from Database M.
As the Plot property of the LoadDB4M block 342a is set to “True,” this evaluation of the LoadDB4M block 342a
also caused a Plot of the loaded Dataset4 to be displayed, e.g., in the View Block Results field 202a of the
LoadDB4M block 342a (not shown in FIG. 4L). Using this plot, the user viewed and explored various columns,
tags, or sub-groupings of data within Dataset4, and subsequently configured the Columns X block 342b to
receive sub-group or column of data labeled or tagged “X” in Dataset4, and configured the Columns Y block
342c to receive the sub-group or column of data labeled or tagged “Y” in Dataset4 (e.g., by respectively
selecting the appropriate sub-group, column, or tag indicator in the property field 286b of the Columns block
template 286a for each of the Columns blocks 342b, 342c). As such, an evaluation of the Columns X block
342b results in only the data from Dataset4 that is characterized, labeled, or tagged as “X” to be loaded or
accessed at the block 342b, and an evaluation of the Columns Y block 342c results in only the data from

Dataset4 that is characterized, labeled, or tagged as “Y” to be loaded or accessed at the block 342c.

[0306] The user has also dragged, dropped, and configured a Partial Least Squares (PLS) block on the off-
line data diagram 340. In particular, the user has named the PLS block instance 342d “PLS4M_X_Y,” and has
configured the PLS4M_X_Y block 342d to receive the output of the Columns X block 342b and the output of the
Columns Y block 342c at its respective inputs. The PLS4M_X_Y block 342c operates or performs a partial least
squares function, action, algorithm, or operation on the data provided by Columns X 342b and Columns Y 342c,
and the result (e.g., a respective PLS model generated based on the relationship between the Columns X and
Columns Y data) is provided, via the output of the PLS4M_X_Y block 342d, to an Explore4M_X_Y block 342e.
Similar to the other blocks 342a-342d, the Explore4M_X_Y block 342e¢ is an instance of a respective Explore

block definition that the user has dragged and dropped onto the canvas 245, named, and configured.

[0307] In the off-line diagram 340, in addition to the 342d, the Explore4M_X_Y block 342e being configured to
receive the output generated by the PLS4M_X_Y block 342d, the user has configured the Explore4M_X_Y block
342e to also receive, as an input, the direct output of the Columns Y block 342c, e.g., via wire 342f. This
configuration allows the Explore4dM_X_Y block 342e to enable the user to explore the relationship between the
output of the PLS4M_X_Y block 342c and the output of the Columns Y block 342c, e.g., by presenting one or
more visualizations and/or statistics. For example, typically, an output of the PLS4M_X_Y block 342c includes
one or more predicted values. The Explore4M_X_Y block 342¢ allows a user to compare the one or more
predicted values included in the output of the PLS4M_X_Y block 342¢ with the actual values of the Columns Y
block 342c, e.g., to determine if the use of Columns X data 342b in the PLS4M_X_Y model 342d is sufficiently
predictive of the Columns Y data 342c.

[0308] It is noted that in this off-line data diagram, neither the PLS4M_X_Y block 342d nor the
ExploredM_X_Y block 342e requires its immediately preceding block(s) to be evaluated before its own
configuration can be completed. That is, the configuring of each of the PLS4M_X_Y block 342d and the

ExploredM_X_Y block 342e can be performed independently of other blocks’ evaluations, and at any time.

57

However, as the off-line data diagram 340 represents one or more data pipelines or data flows, typically the
evaluation of each downstream data block requires its upstream data blocks(s) to be evaluated before the
downstream data block can be evaluated (unless, or course, a recipient or downstream data block receives a
test or dummy input data set merely for individual block evaluation purposes). In fact, in some scenarios, a user
configures an entire off-line data diagram 340 as a whole, and/or can evaluate an entire off-line data diagram

340 as a whole rather than on a block-by-block or portion-by-portion basis.
2. Data Analytics Studio — On-Line Data Modules

[0309] Returning now to FIG. 4B, after an off-line data diagram of a data model has been completed and
evaluated to a user’s satisfaction in the Data Studio, the off-line data diagram can be translated or converted into
its equivalent online form. To transform an off-line data diagram into its on-line form, a user may select or
activate the online toggle or user control 248f on the navigation bar 242, thereby causing the DDE User Interface
Application to transform the off-line data diagram into its on-line counterpart data diagram, and cause the on-line
data diagram of the data model to be displayed on the canvas 245. Certain off-line data blocks may have an on-
line counterpart definition (e.g., the off-line and on-line versions of the “Load” data block), other off-line data
blocks may not require a different on-line counterpart but are nonetheless included in an on-line data module
(e.g., a “FillNaN" block or “PCA_NIPALS” block}, while still other off-line data blocks are omitted in the on-line
data module (e.g., an “Explore” block). The infrastructure and actions performed during the transformation of an
off-line diagram into its on-line counterpart is provided by the Data Analytics Services. For example, the
activation of the user control 248f invokes Data Analytics Services to perform the transformation of the off-line
data diagram into its corresponding on-line data diagram. A more detailed description of how the Data Analytics

Services performs this transformation is provided in the description of Data Analytics Services below.

[0310] When the on-line data diagram of the data module is presented on the canvas 245 of the Data Studio,
a user may configure the on-line data module. Typically, configuring an on-line data module includes indicating
the live process control data relating to controlling the process that is to be obtained as input data for the on-line
data module, e.g., by defining the bindings that relate the on-line data module to the corresponding data source
of the input data. Additionally, configuring an on-line data module may include indicating the location(s) and/or
consumers (e.g., by defining bindings) to which output data generated by the on-line data module is to be
provided (e.g., one or more consumer DDEs and/or applications, data stores, files, historians, process control
devices, routines, elements, components, etc.). The configuration and/or modification of data blocks, their
respective properties, and interconnections of on-line data modules is performed in a manner similar to that

discussed above with respect to off-line data modules, in an embodiment.

[0311] Ifthe user identifies a problem or issue with an on-line data module or otherwise desires to modify the
on-line data module, the user may flip or switch the on-line data module back into its off-line representation, e.g.,
by utilizing the off-line toggle or user control 248d, and the user may further modify and evaluate the off-line data
diagram of the data model as described above. Subsequently, when the user flips or switches the off-line data
diagram back to its on-line representation, the modified off-line data diagram transforms into a corresponding on-

line data diagram of the data model.

58

[0312] FIG. 4M illustrates the on-line data diagram 345 corresponding to the example off-line data diagram
340 of FIG. 4L, and FIG. 4M is discussed below with simultaneous reference to FIGS. 4A, 4B, 4F-4H, and FIG.
4L. In the example scenario depicted in FIG. 4M, the user has decided that the off-line diagram 340 of FIG. 4L
defines the data model as intended or desired, and that the data model is ready for deployment into the on-line
process control system. As such, Studio while viewing the off-line data diagram 340 (e.g., as shown in FIG. 4L),
the user has activated the on-line toggle 248f of the Data Studio, thereby transforming the off-line data diagram
340 into a corresponding on-line data diagram 345 which is presented on the canvas 245 of the Data Studio as
shown in FIG. 4M. This transformation is performed by the Data Analytics Services of the DDE User Interface
Application, and the particular actions, mechanisms, and architecture utilized by the Data Analytics Services to

perform this and other transformations are described in more detail in a later section.

[0313] Note that although the on-line data diagram 345 and the off-line data diagram 340 represent the same
data model, the set of blocks and wires of the two data diagrams 345, 340 differ. For example, the data pipeline
of the off-line data diagram 340 that originates at the output of the LoadDB4M block 342a, traverses through the
Columns Y block 342e, and terminates at the input of the Explore4M_X_Y block 342e is omitted from the on-line
data diagram 345, as this data pipeline was utilized in the off-line data diagram 340 to test and validate the off-
line PLS4M_X_Y block 342d and is not necessary in the on-line environment now that the efficacy of the
PLS4M_X_Y block 342d has been demonstrated to the user’s satisfaction. However, in some embodiments, a
user may choose to include this validation data pipeline in the on-line data diagram 345, e.g., if the user desires

to have continual testing and validation of the on-line data model in the on-line environment.

[0314] Another difference between the off-line data diagram 340 and the on-line data diagram 345 is the
LoadDB4M block. Inthe off-line data diagram 340, the LoadDB4M block 342a is configured to load data from
the off-line data source Dataset4 of Database M. On the other hand, in the on-line data diagram 345, the
LoadDB4M block 347a has been transformed into a block that can connect to an on-line data source, such as an
on-line streaming data source within the process plant 5. The user may configure the LoadDB4M block 347a to
bind to a desired on-line data source, and the compilation of the configured LoadDB4M block 347a instantiates
the binding.

[0315] In the on-line data diagram 345, the Columns X block 347b is generally similar or equivalent to its off-
line form 342b. However, as previously discussed, the on-line form of the PLS4M_X_Y block 347c¢ receives only
the input that is necessary for the PLS4M_X_Y block 347c to operate in the on-line environment, i.e., the output
of Columns X block 347b.

[0316] Additionally, the on-line data diagram 345 does not have a counterpart to the off-line Explore4M_X_Y
block 342e, as the purpose of the Explore4M_X_Y block 342¢ in the off-line environment was to provide the user
a view into how well the draft data diagram 340 achieved the user’s goals. In the on-line data diagram 345,
though, the output of the PLS4M_X_Y block 347c¢ is provided to a “Write” data block 347d, which is a type of a
Data Consumers data block. The Write data block 347d causes the real-time output of the PLS4M_X_Y block
347c in the on-line environment to be written to a file or database, as identified in the configuration of the Write
block 347d. Of course, if the user so desires, the output of the PLS4M_X_Y block 347¢ could be additionally or

alternatively provided to one or more other data consumers of the data model by interconnecting the output of
59

the PLS4M_X_Y block 347c with the inputs of other Data Consumer blocks. For example, the PLS4M_X_Y
block 347c could be connected to a Publish block so that the output of the PLS4M_X_Y block 347c is published
to the data analytics network 112 and is available for use by other data analytics applications. In another
example, the PLS4M_X_Y block 347c could be connected to a Convert2Control block, so that the output of the
PLS4M_X_Y block 347c causes a change in the on-line process control system. For example, a
Convert2Control block may be configured to convert the output of the PLS4M_X_Y block 347c into an input
signal for a process control function, loop, or application within the process plant 5, and cause the input signal to

be delivered to the corresponding process control industry, element, device, or component.
3. Deployment of Data Modules

[0317] Typically, on-line data modules are not evaluated asynchronously, as is possible for off-line data
modules. Rather, on-line data modules are first configured (e.g., is bound to a live data source and/or one or
more data consumers/recipients), and then are deployed as a whole to continuously execute and interact with
the on-line process control system. A user may deploy a data module into an on-line process control system, for
example, by clicking or activating the “deploy” user control 248j on the navigation bar 242, thereby notifying the
Data Analytics Services to handle the deployment of the on-line data module. The infrastructure and actions
used for deploying data modules are described in more detail in the description of the Data Analytics Services.
Generally, though, when an on-line data module is deployed, the on-line data module follows a compilation and
execution process similar to that as for an off-line data module that is being evaluated, e.g., as illustrated in FIG.
41. However, the target environment(s) of an on-line data module may be different than the target
environment(s) of its corresponding off-line data module, and on-line data modules are bound to live data

sources within the process control system or plant.

[0318] In an embodiment, the DDE User Interface Application supports “one-click” deployment. That is, when
an off-line data module has been configured to a user’s satisfaction, the user is not required to convert the data
module to its on-line representation and to configure the bindings for the data blocks of the on-line
representation that are responsible for reading and writing data from live data sources. Instead, during “one-
click” deployment, upon user initiation any required bindings for the subject data module are automatically
determined and configured by the DDE User Interface Application. In an example scenario, a user may assign a
data module to execute on a particular DCS controller, e.g., by using a dialog box or window provided by the
Data Studio that retrieves information about the hierarchy of the DCS system. The user may browse the
hierarchy and assign the data module accordingly. The DDE User Interface Application (e.g., the Data Studio
and/or the Data Analytics Services) subsequently utilizes the assigned process control system element (in this
scenario, the particular DCS controller) to automatically determine the necessary bindings. Example
infrastructure and actions used to perform one-click deployment are described in more detail in the description of

the Data Analytics Services.

[0319] After an on-line data analytic module has been successfully deployed, any resulting values (e.g.,
descriptive, predictive, and/or prescriptive) that are generated by its execution may be shown to the user, e.g.,
via the Data Dashboard of the DDE User Interface Application. In an embodiment, the resulting values include

at least one predictive value, and the corresponding real-time, live data value(s) generated by the process
60

control system 5 for the tag(s) or process control elements to which the predicted values apply may also be

shown in conjunction with the predicted values.
C. Data Analytics Dashboard

[0320] As previously discussed, the DDE User Interface Application includes a second mode of operation, the
Data Analytics Dashboard. The Dashboard is typically utilized by users to view and/or manage modules that are
(i} off-line data modules (e.g., draft data models) which are being evaluated, and/or (ii} on-line data modules that
have been deployed into an on-line process control system or plant. Using visual and other representations, the
Dashboard provides a user a view of status and other information corresponding to evaluating off-line data
models, as well as a view of deployed on-line data modules and the real-time or live information that is being
generated by the on-line data modules. Generally, the Data Analytics Dashboard mode provides the user with
an interface via which the user may monitor and manage on-line and off-line data modules. The user may also
terminate the evaluation of any off-line data modules and the execution of any on-line data modules from the
Dashboard. Generally, but not necessarily, at least some of the information displayed on the Data Analytics
Dashboard is provided to the Dashboard 350 by the Data Analytics Services of the DDE User Interface
Application.

[0321] FIG. 4N-1 depicts an example user interface 350 presented by the Data Analytics Dashboard of the
DDE User Interface Application. A first portion 352 of the example Dashboard user interface 350 provides
current data analytics overview information, such as an indication of the number of on-line data modules 355
that are currently being monitored by the DDE User Interface Application and an indication of the number of live
data streams 358 on which the on-line data modules 355 are operating. As previously discussed, the live data
streams 358 are received from one or more data sources that are continuously generating real-time data
resulting from the on-line process control plant or environment 5 controlling one or more industrial processes,
and executing on-line data modules 355 have been configured to receive the live data streams 358. The data
analytics overview information also includes an indication of the number of off-line data modules 360 whose
evaluations are currently being monitored by the DDE User Interface Application. In some embodiments, the
Dashboard user interface 350 includes one or more other notifications or other information 362 related to

monitored data analytics modules, whether on-line or off-.

[0322] When the user clicks on or otherwise activates one of the overview controls 355, 358, 360, 362,
additional summary information corresponding to the selection is presented on a second portion 365 of the
Dashboard 350. In FIG. 4N-1, the user has selected to view summary information for currently executing on-line
data modules 355, of which there are two at the moment, i.e., Diagram2 indicated by reference 368, and
Diagram3 indicated by reference 370. For each executing on-line data module 360, 370, the second portion 365
of the Dashboard 350 indicates its respective summary information, such as the name of the module 372, the
start time at which the module was deployed 375, a trend indication 378 (which may be graphical, as shown in
FIG. 4N-1) of the module’s output over a most recent interval of time, the most current last prediction or
predicted value(s) 380, and/or other information (not shown). Of particular note, on the Dashboard 350, the

trend indication 378 of each on-line data module 368, 370 is continuously updated to reflect the continuously

61

generated output of the respective data module 368, 370, thereby allowing the user to monitor on-line data

module execution and its continuously generated results in real-time.

[0323] Additionally, the Data Analytics Dashboard 350 allows a user to click on any summary information
associated with any data module 360, 378 to view more details, e.g., in a pop-up window, dialog box, or other
suitable viewing mechanism (not shown). For example, when the user clicks on the Name of Diagram2 368, the
Dashboard 250 may present the on-line data module diagram of Diagram2 368 and indications of the one or
more particular data streams 358 to which Diagram2 368 is bound. When the user clicks on the Start
information of Diagram2 368, an indication of the creator of Diagram2 368, the user who deployed Diagram2
368, and/or an owner of Diagram2 368 may be presented. Clicking on the Trend 378 information of Diagram2
368 allows the user to manipulate and explore the output data trend of Diagram2 368, e.g., by extending or
shortening the viewed time interval, converting the trend information into another type of visualization (e.g., bar
charts, pie chart, scatterplot, etc.), applying and/or obtaining statistics regarding the trend data over a given
interval (e.g., average, rolling average, maximum, minimum, etc.), and the like. Similarly, clicking on the Last
Prediction 380 information of Diagram2 368 allows the user to manipulate and explore the latest predicted value
or values, e.g., by viewing the time of the last prediction and how often predictions are being made, comparing

the last prediction with a current live data value, etc.

[0324] When the user selects the user control 360 to view currently executing off-line data modules (of which
there are none in the example scenario of FIG. 4N-1), additional summary information corresponding to off-line
data modules is presented in the second portion 365 of the Dashboard 350. Generally, the summary information
for an off-line data module is similar to that of an on-line data module, however, instead of indicating associated
live data streams, the summary information for the off-line data module may indicate the test data file(s) or data
streams generated by off-line data source(s) (e.g., test tools, devices, and/or environments) on which the off-line
data module is executing. Additionally, the summary information for an off-line data module may indicate the

current status, state, and/or progress of its execution.

[0325] In some scenarios, a user may configure and /or deploy an off-line data module from the Dashboard
(instead from the Data Studio). For example, a user may be monitoring the evaluation of an off-line data module
from the Dashboard, and that off-line data module successfully completes its evaluation. The user may activate
a user control of the Dashboard (not shown) via which the user may configure the data module to reference the
live data source(s) and the data generated by the live data source(s) on which the on-line data module is to
execute. This configuration of the on-line data module to bind to data source(s) is similar to that described
above, with the exception of being initiated from the Dashboard instead of from the Data Studio. Alternatively,
the user may utilize one-click deployment for the off-line data module via the Dashboard.

[0326] \When the user selects the user control 358 to view information associated with on-line data streams
that are currently bound to executing on-line data modules (of which there are three in the example scenario of
FIG. 4N-1), additional summary information corresponding to the on-line data streams is presented in the second
portion 365 of the Dashboard 350 (not shown). The summary information for each live data stream may include
an identifier of the data stream, an indication of the data source from which the data stream is being received, an

indication of a corresponding process control system tag or other traditional process control system identifier of
62

the live data source, information about subscription(s) to and/or the publication of the data stream, an indication
of the one or more on-line data modules that are currently executing on the live data stream, a continuously
updated visualization of the live data stream (e.g., line graph, bar chart, scatterplot, etc. and/or basic statistics

thereof), and/or other information.

[0327] Of particular note in the example scenario depicted in FIG. 4N-1, the data stream overview 358
indicates there are three live data streams that are presently being operated on by on-line data modules, while
the on-line data module overview 355 indicates there are only two executing on-line modules. As such, one of
the two executing on-line modules 368, 370 is operating on two of the live data streams. The user may discover
this relationship either by navigating to view the details of each on-line data module 368, 370, which would
provide an indication of the data streams to which the respective module 368, 370 is bound, or by navigating to
view the details of each data stream 358, which would provide an indication of the executing on-line data

modules that are operating on each data stream 358.

[0328] FIG. 4N-2 depicts an example user interface 382 that may be presented by the Data Analytics
Dashboard of the DDE User Interface Application. In an embodiment, the user interface 382 is included in the
second portion 365 of the user interface 350 shown in FIG. 4N-1. In an embodiment, the user interface 382 is a

full-screen view.

[0329] The user interface 382 includes one or more tiles or cards 385a-385j, each of which corresponds to a
respective executing on-line data module, and which may collectively referred to as a pallet or deck of cards
385x. Each of the cards 385x in the pallet may include information similar to that displayed for executing on-line
data modules 360, 370 of FIG. 4N-1, e.g., the name of the module, a start time at which the module is deployed,
a trend indication of the module’s output over a most recent interval of time, the most current last prediction or
predicted value(s), and/or other information. Also similar to the displays for the executing on-line data modules
360, 370, the trend indication of each of the cards 385x is continuously updated to reflect the continuously
generated output of its respective on-line data module, thereby allowing the user to monitor its execution and

continuously generated results in real-time.

[0330] Each of the cards 385x is resizable and movable, as desired by the user. In an embodiment, the size
of a particular card 385x increases when the particular card is in focus. A card 385x may come into focus
manually, such as when the user clicks on the particular card 385x, hovers over the particular card 385x, etc.
Additionally, or alternatively, a card 385x may come into focus automatically, such as when a particular data
module needs urgent attention (e.g., a predicted value crosses a threshold, the data module itself requires a
user input or user intervention, a condition severity ranking amongst the cards 385x, etc.). Other automatically
generated indications of needed attention may be indicated on the user interface 382, for example, by
highlighting or providing some other treatment to a particular card 385x, sizing the set of cards 385x in
accordance with their respective urgencies, bringing a particular card 385x to the foreground or the front of the
pallet, arranging the cards 385x in order of priority of attention, etc. In an embodiment, a user may define

particular treatments are to be automatically applied to the cards 385x in in which particular situations.

63

[0331] Returning now to data block definitions 255 that are stored in the data block definition library 252 of the
DDE User Interface Application (e.g., as shown in FIG. 4C), the data block definitions that are stored in the
library 252 may be dynamically discovered by the DDE User Interface Application during its start-up or
initialization. In an embodiment, data block definitions are defined using a light-weight data interchange format,
such as JSON files or documents, or other suitable format. The definition file or document of a particular data
block includes a block definition name and details the block properties and connectors that define the particular
data block. In some cases, a particular block definition may provide a definition for an off-line representation

and a definition for an on-line representation.

[0332] As the DDE User Interface Application may continually and dynamically discover block definitions,
additional block definitions (e.g., for custom data blocks, composite data blocks, and/or other data blocks) are
able to be added to the library 252 at any time while the DDE User Interface Application is executing. In an
embodiment, additional block definitions are generated by a utility application which is referred to herein as a
“data block definition wrapper.” For example, the data block definition wrapper may be invoked when a user
saves a custom or composite data block, as previously described with respect to FIG. 4K. When the block
definition wrapper executes, it creates an instance of the additional block definition and causes a corresponding
JSON document or similar that defines the additional block definition to be created and stored. For instance, the
created instance of the additional block definition generates the JSON document and stores it in the library 252.
Referring to FIG. 4K as an example scenario, when the user saves the composite block definition 338, the block
definition wrapper executes to cause a JSON document or similar for the composite block definition 338 to be

generated and stored.

[0333] During configuration of a data block (whether off-line or on-line), the DDE User Interface Application
may need to perform some functionality (e.g., business logic) in order to achieve the configuration experience
required to help the user configure and use the data block successfully. As block definitions are dynamically
discovered by the DDE User Interface Application, this functionality is not embedded in the DDE User Interface
Application itself. Thus, in an embodiment, any associated functionality that is specific to a particular data block
may also be dynamically loaded when the DDE User Interface Application is initialized. Subsequently, a
reference to the dynamically loaded functionality corresponding to the particular data block is maintained in the
block definition of the particular data block, and is used by the DDE User Interface Application when an instance
of the particular block’s block definition is configured. Additional details regarding block definitions and

associated functionality is provided in later sections of the present application.

INDUSTRIAL PROCESS MONITORING AND ANALYTICS SYSTEM INTEGRATED WITH PROCESS
CONTROL SYSTEM

[0334] As seen in the discussion of FIGS. 1-3 and 4A-4N-2 above, the distributed industrial process
performance monitoring and/or analytics system or DAS 100 provides a platform that supports data analytics
configuration, data modeling, data model execution, data visualizations, and streaming services for industrial
process plants. As previously discussed, although various nodes of the monitoring and analytics system 100 are

embedded within a process control system or plant 5, typically the data communications network 112 of the

64

analytics platform 100 exists outside of (and is independent of) existing DCS, PLS, health monitoring, and other
systems of the process plant 5. In an example configuration, the data analytics network 112 is overlaid on top of
the process plant 5, thereby separating the network 112 from most or all of the traditional process control
communications networks 10, 70, etc. of the process plant 5. Traditional process control communication
networks continue to transmit process control data to control, manage, and/or to administrate the control of the
process and operations of the plant 5, while the data analytics network 112 transmits analytics data (which may
include copies of the data transmitted over the traditional process control communication networks) for discovery
of knowledge about the operations of the process plant 5, e.g., descriptive knowledge, predictive knowledge,
and/or prescriptive knowledge. The architecture of the data analytics system 100 allows the data analytics

system 100 to be easily added or integrated into existing, legacy process plants 5.

[0335] The knowledge about the process plant 5 that is discovered by the data analytics system 100 may be
utilized to modify parameters, equipment, operations, and other portions of the process plant 5 to increase the
performance of the plant 5 and decrease the occurrence of faults, failures, and other undesirable conditions.
Advantageously, the data analytics system 100 discovers knowledge about the process plant 5 in real-time in
correspondence with the current, on-line operations of the process plant, so that the discovered knowledge is
descriptive, predictive, and/or prescriptive of the current operations of the process plant 5. As such, the data
analytics system 100 and the process plant 5 form a control loop to control and optimize the performance of the

process plant 5.

[0336] An example, high level block diagram 400 of the control loop that controls and optimizes the
performance of the process plant 5 is illustrated in FIG. 40. As shown in FIG. 40, the on-line process plant 5
generates, operates on, and communicates various types of control data 402 over traditional process control
communication networks (e.g., networks 10, 70, etc.) to control one or more industrial processes and generate
process plant output 405. The distributed industrial process performance monitoring/analytics system 100 is
connected to and integrated with the process plant 5 via embedded distributed data engines 102x that capture
analytics data 408 generated as a result of the process plant 5 controlling the one or more processes to produce
the output 405. As previously discussed, the captured analytics data 408 may include copies of first-order and
higher-order process control data 402, as well as the results/output of analytics functions locally performed by
the DDEs 102x and/or performed by off-line and on-line data analytics modules developed via the Data Studio of
the data analytics system 100. In some cases, the captured analytics data 408 includes new analytics functions

that are generated via the Data Studio and/or that are autonomously generated by the DDEs 102x.

[0337] The data analytics system or platform 100 receives, generates, communicates, and operates on
analytics data 408 to generate analytics output 410. The analytics output 410 may include discovered
knowledge about the process plant 5, such as knowledge that is descriptive of the current operations of the
process plant 5, knowledge that predicts occurrences of faults, failures, time intervals, performance, events, etc.
given the current operations of the process plant 5, and/or knowledge that prescribes one or more prescriptive
actions that may be taken to mitigate undesirable characteristics of current plant operations and/or to mitigate
the probability of the occurrence of undesirable predicted faults, failures, time intervals, performance, events,

etc. given the current operations of the process plant 5. In some embodiments, the discovered knowledge 410

65

includes knowledge about the analytics data 408 itself. For example, the discovered analytics knowledge 410
may include an optimal off-line data set that may be utilized to evaluate different off-line data modules, a series
of steps that have been repeatedly used by data engineers and that are defined as a new data analytics user
procedure, a new configuration of data blocks that are defined as a new data analytic technique, etc. Indeed,
during the testing of a prototype data analytics system 100 integrated into a refinery process plant, a new data
analytic technique for industrial process plants was discovered by the control loop 400, and is explained in a

later section below.

[0338] At least some of the discovered knowledge included in the analytics output 410 may be provided to a
Human-Machine Interface (HMI) 412, such as the Data Analytics User Interface Application. Via the HMI 412, a
user may explore the discovered knowledge 410 generated by the data analytics system 100 with regard to the
process plant 5. In some cases, the exploration of the discovered knowledge 410 includes the user utilizing the
Data Studio to create and execute additional data analytics modules to generate additional discovered
knowledge 410 for additional exploration. At some point, based on the body of discovered knowledge 410, the
user may make one or more changes 418 to one or more values, parameters, equipment, components, control
loops, and/or other current operations of the on-line process plant 5, thereby optimizing the performance and
output 405 of the process plant 5 and/or preventing or deterring the occurrence of faults, failures, and other

undesirable conditions.

[0339] In some situations, at least some of discovered knowledge included in the analytics output 410 is
directly provided to the process plant 5 to effect or implement one or more prescriptive changes, as represented
in FIG. 40 by the arrow 420. For example, the discovered knowledge 410 may include a prescriptive action
comprising a change to a set point, a change to a configuration of a controller, a change to a priority of process
control message, or a change to some other value, parameter, configuration, etc. The data analytics system 100
may automatically and directly download or otherwise cause the change to be implemented in the process plant
5 without requiring any user intervention 418, thereby automatically optimizing the performance and output 405
of the process plant 5 and/or preventing or deterring the occurrence of faults, failures, and other undesirable
conditions based on the discovered knowledge 410. It is noted that this leg of the control loop 400 automatically
updates the on-line process plant 5 to improve its current operations in real-time, as the analytics system 100
processes current analytics data 408 and generates discovered knowledge 410 based on the current operations
of the process plant 5. Thus, in contrast to existing analytics techniques that require hours or even days to
calculate, determine, and implement prescriptive actions, the prescriptive actions generated by the analytics
system 100 are optimized for the current operating conditions of the plant 5 and immediately applied to the
process plant 5, and in some cases are applied even before any user is aware of an impending undesired or

desired condition.

[0340] Of course, for optimum implementation of prescriptive actions within the process plant 5 as a whole,
the control loop 400 requires both the autonomous leg 420 and the HMI control leg 418. For example, some
prescriptive actions require human intervention, such as installing a replacement valve, sensor, or other

component.

66

[0341] As previously discussed, the data analytics platform 100 enables analytics data to be streamed
between a plurality of embedded distributed data engines (DDEs) 102x. Any type of first-order data generated
by the process plant 5 as a result of controlling the process may be streamed. For example, the process control
data included in signals generated by process control devices (e.g., controllers, I/O cards, field devices, etc.) that
are typically transmitted via traditional process control communication networks for purposes of controlling the
process may be also streamed in the data analytics network 112 for the purpose of data analytics. Thus, the
content or data included in process control signals, sensor signals, etc. may be copied and/or reproduced and
streamed over the data analytics network 112. Further, second-order (or higher-order) process control data that
is generated and transmitted via traditional process control communication networks (e.g., data that is to be
historized within process control databases or historians, process control configurations, process control user
interface commands, process control network management signals, and any other signals that are traditionally
sent and received via traditional process control communication networks as a result of controlling a process)
may be streamed in the data analytics network 112 for the purpose of data analytics. Additionally, the data
analytics network 112 may stream computed data or results of analytics functions or techniques that have been

performed on the traditional process control data and/or on computed analytics data.

[0342] Consequently, the data analytics platform 100 integrates with the process plant 5 in part by locally
binding to data sources of the process plant 5, and/or by providing data analytics services or functionality close
to the data sources within the process plant 5, while at the same time provide larger scale predictions and
optimizations. Only the data that is necessary to support outer loop predictions and optimizations need to be

communicated to higher level/more capable analytics servers and cloud platforms of the analytics system 100.

[0343] As previously discussed, some of the plurality of DDEs 102x of the data analytics system 100 are
embedded into physical devices within the process plant 5. For example, some of the plurality of DDEs 702x
each is integral with a respective process control device (e.g., controller 11; /O cards 26, 28; field devices 15-16,
18-21, 42A, 42B, 44, etc.) and/or with a respective network routing and management device (e.g., gateways 35,
75, 78; adaptors 52a; routers 58; access points 55a, 72; etc.). In an embodiment, rather than being integrated
into a unitary device or component of the process plant 5, a DDE may be a stand-alone device attached to a
traditional process communication link or network (e.g. network 10, 70, PLS network, safety health monitoring
system, etc.) as a scope, monitor, or voyeur, and may copy/reproduce selected process control data that is
being transmitted via the traditional process communication links or networks for streaming over the data

analytics network 112 for data analytics purposes.

[0344] In some scenarios, more than one DDE may form a local data analytics cluster with which data
sources may register and join and via which analytics data generated by registered data sources may be
received into the data analytics network 112 as analytics data. In an example, a set of DDEs forms a local
cluster and advertises the presence of the local cluster. The local cluster appears as a unitary node or a single
DDE instance 150 of the data analytics network 112 even though the local cluster comprises multiple DDEs that
are interconnected via the data analytics network 112. Upon a new data source being activated or booted up on
the premises of the process plant 5, the data source scans or looks for local cluster advertisements. The data

source may detect the local cluster's advertisement and register with the local cluster, thereby joining the data

67

analytics network 112. Subsequently, registered data sources may request bandwidth from the analytics system
100 (e.g., via their local cluster), and may publish data to their local cluster, to another node of the data analytics
network 112, or directly to the analytics system 100. As local clusters appear as instances of distributed data
engines 150, local clusters receive locally generated analytics data (e.g., from registered sources and/or other
sources) via respective big data receivers 160, and store the locally generated analytics data in respective local
persistent storage 155. Additionally, local clusters may provide at least some of the stored analytics data to
requesting applications (e.g., to another data analytics application, to a data module, to a user interface, to the
Data Studio, to another application, etc.}, e.g., via a respective big data request servicers 165. In some cases,
local clusters may perform respective local data analytics functions on stored data that has been received from
registered data sources and/or on other data streamed within the data analytics network 112, e.g., via respective
big data request analyzers 170. The result or output of a local data analytics function may be stored locally in
respective big data storage 155, and/or maybe streamed to one or more other DDEs outside the local cluster,
e.g., to another local DDE or local cluster, a centralized data cluster, or to a subscribing application, e.g., via the

respective one or more data analytics network interfaces 175 of the local cluster.

[0345] In some embodiments, local clusters register themselves with more centralized clusters that receive
and store higher level analytics data and that perform respective, higher level data analytics functions. For
example, a particular centralized cluster (e.g., a regional cluster) may receive streamed data from all local
clusters within a particular area of the plant 5, and may perform data analytics thereon. In another example, a
particular centralized cluster may receive streamed data from all control loops of a particular type of
configuration within the plant 5, and may perform data analytics thereon. Similar to local clusters, a centralized

cluster has the appearance of a single node or instance of a DDE 150 in the data analytics network 112.

[0346] Consequently, the ability of the distributed industrial process performance monitoring and analytics
system 100 to provide DDEs and/or clusters of DDEs at various tiers or levels of localization allows fault
detection and predictions to be executed close to the data sources of the process plant 5, thereby providing real-
time fault detection and predictions corresponding to the real-time data generated by the on-line data sources.
Such a multi-tiered or clustered architecture also allows for storage of analytics data throughout the system 100,
and indeed, throughout the process plant 5, as the analytics system 100 includes portions embedded therein.
Further, the data analytics system 100 provides the ability to access data that has been stored at any DDE, and
provides a centralized system for analytics configuration, diagnostics, and monitoring for performance, faults,

and failures.

[0347] In an embodiment, one or more centralized clusters provide a centralized location for a user or system
administrator to establish rules for backup or historization of analytics data from the plurality of DDEs 102x. In
an example, the one or more centralized clusters are located on the premises of the process plant 5 and service
the process plant 5 as a whole. In another example, the one or more centralized clusters are located or hosted
in the cloud and service the process plant 5 as a whole. In some configurations, the centralized cluster(s)
providing backup or historization of the process plant 5 also service other process plants. Generally, as
previously discussed, analytics data is persistently and stored at each DDE or cluster, e.g. in its respective big

data storage area 155. In some cases, some analytics data that is received at or generated by the DDE or

68

cluster may be cached at the DDE or cluster (e.g., based on one or more criteria such as number of subscribers,
frequency of publication or transmission, etc.) for quicker access, but generally all local analytics data is moved
to persistent storage 155 at the DDE or cluster. Periodically or at pre-defined times, the persistently stored
analytics data at each DDE may be backed up, saved, or historized into long-term data analytics storage, e.g., at
a centralized analytics data historian that is accessible via the data analytics network 112. For example, the
data analytics historian may be a plant-wide data analytics historian, and/or may be hosted in the cloud.
Typically, though, the data analytics historian is independent and separate from any process control data
historians. Via a user interface that accesses the one or more centralized clusters, a user or system
administrator may define a set of rules indicating how often each particular DDE storage area 155 is to be

backed up, when the backups are to take place, where the analytics data is to be historized, etc.

[0348] In an embodiment, one or more centralized clusters provide a centralized location for a user or system
administrator to establish rules for replication of analytics data amongst clusters, nodes, and/or DDEs 102x of
the data analytics system 100. For example, the set of replication rules may define which particular analytics
data is to be replicated amongst which particular nodes of the data analytics network 112, and how often the
particular analytics data is to be updated amongst the particular nodes. For instance, the set of replication rules
may define how often the results of analytics function A performed by node A is to be replicated (e.g., by
streaming) at nodes B-D so that the replicated results are available for nodes B-D to utilize in performing their
respective data analytics functions. Similar to the historization and backup rules, the set of replication rules may
be defined by a user or system administrator via a user interface that accesses the one or more centralized
clusters. For example, the system administrator may utilize the user interface to administer the set of replication
rules, and the set of replication rules may be stored at the one or more centralized clusters. The one or more
centralized clusters providing the administration of analytics data replication may be the same set of clusters that

provide the administration of analytics data backup/historization, or may be a different set of clusters.

[0349] In an embodiment, one or more centralized clusters provide a location service, a streaming service
(e.g., the streaming service 115 of FIG. 1), a data dictionary, and/or other functionality which may be utilized by
local clusters, other centralized clusters, and/or individual DDEs 102x to establish analytics data exchange there
between. The one or more centralized clusters providing the location service, the streaming service, the data
dictionary, and/or the other functionality may be the same set of clusters that provide the administration of
analytics data replication and/or the administration of analytics data backups/historization, or may be a different
set of clusters. A system administrator or user may utilize a user interface to access the one or more centralized
clusters to administer the services, dictionaries, and other functionality that is used to establish and provide

analytics data exchange between clusters and nodes of the data analytics network 112.

[0350] FIG. 4P depicts an example method 450 of providing localized data analytics services. In an
embodiment, a distributed data engine 102x or a cluster of DDEs performs at least a portion of the method 450.
Generally, at least a portion of the method 450 may be performed by any portion of a distributed industrial
performance monitoring and/or analytics system, such as the system 100. Indeed, the method 450 may be
implemented using any portions of any of the systems, apparatuses, devices, and/or techniques described

herein. For ease of discussion, though, the method 450 is described below with respect to a cluster of one or

69

more DDEs 102x of the analytics system 100 that appears as a unitary DDE instance 150, although this is only

one embodiment of many, and is not meant to be limiting.

[0351] The example method 450 includes advertising, by a cluster, the presence of the cluster (block 452).
The cluster is included in a data analytics network 112 of a process control plant 5 that is on-line and operating
to control a process, and the cluster advertisements may be transmitted over the data analytics network 112,
over one or more other networks, via a short-range wireless protocol such as Bluetooth, NFC, etc., or via any

other suitable advertising means.

[0352] The method 450 further includes receiving, by the cluster from a data source, a response to the
cluster’s advertising. For example, the response from the data source may be a request of the data source to
register with the cluster, and the method 450 may include registering the data source with the cluster and/or with
the data analytics network 112 (block 455), thereby joining the data source with the data analytics network 112.
The data source may be a device or component that is included in the process plant 5 and that generates data
as a result of the on-line process plant 5 controlling the process. In an example, the data source generates

continuous, time-series data resulting from the process being controlled.

[0353] Additionally, the method 450 includes receiving, by the cluster, the data generated by the data source
(block 458). For example, the data source may stream its generated data to the cluster via the data analytics
network 112. Additionally or alternatively, the cluster may subscribe to particular data that is generated and
published by the data source. In some embodiments, the cluster may query the data source for particular data,
€.g., by using the query mechanism described in a later section of this application. When the data source is a
device or component that typically communicates process control data via one or more traditional process
control communication networks (e.g., networks 10, 70), the data source may continue to communicate process
control data as usual over the one or more traditional process control communication networks, while also
streaming a copy or reproduction of the contents of the communicated process control data to the cluster via the

data analytics network 112.

[0354] Upon receiving the data generated by the data source, the cluster may cache at least some of the
received data, e.g., when the received data meets one or more caching conditions. Irrespective of whether or
not any of the received data is cached, though, the entirety of the received data is locally stored into the

persistent storage 155 of the cluster.

[0355] The method 450 includes streaming, by the cluster via the data analytics network 112, at least some
of the data generated by the data source t0 a data consumer (block 460). A data consumer may be another
analytics node or cluster, a data analytics application, a user interface and/or user interface application, an on-
line data analytics module, another application, and/or a database or data historian, for example. The data
consumer may be bound to the data source and/or to the particular data stream including the at least some of
the data generated by the data source. The particular data desired to be received by the data consumer

typically is time-series data, and may be continuous data.

[0356] The data consumer may have queried the cluster for particular data generated by the data source,

e.g., by utilizing the query mechanism described in a later section of this application, and the streaming (block

70

460) may be in response to the query generated by the data consumer. In an embodiment, the data consumer
may subscribe to particular data that is generated by the data source and is published by the data source or by
the cluster. At any rate, the cluster retrieves the desired data that has been generated by the data source from
its cache or from its local persistent data storage 155, and streams the data to the data consumer via the data
analytics network 112 (block 460).

[0357] In some embodiments, the method 450 includes performing, by the cluster, one or more data analytics
functions or techniques at least a portion of the data generated by the data source (not shown in FIG. 4P). The
one or more analytics functions or techniques may include descriptive analytics, predictive analytics, and/or
prescriptive analytics. The one or more analytics functions or techniques may be performed by the cluster per
the request of an on-line data analytics module, another data analytics application, or a user, for example. In
another example, the one or more analytics functions or techniques may be automatically initiated and
performed by the cluster. The results of the execution of the one or more analytics functions or techniques may
be returned to the requesting party, and/or may be stored locally at the cluster in persistent data storage 155. In
some embodiments, the one or more analytics functions or techniques are performed on data that has been
generated by multiple data sources registered with the cluster, and that has been stored (and optionally cached)

at the cluster.

[0358] As the cluster receives first-order data generated by data sources within the process plant 5 and is
located close to these data sources within the process plant 5, the cluster is referred to herein as a “local”
cluster. In some embodiments, the method 450 includes the local cluster detecting an advertisement generated
by a centralized cluster, such as a regional cluster, an area cluster, a plant-wide cluster, etc. The local cluster
may register itself with the centralized cluster, and may stream at least some of the local analytics data stored in
its cache and/or its persistent data storage 155 to the centralized cluster. For example, the analytics data that is
streamed to the centralized cluster may include data generated by the data source and/or the results of one or
more analytics functions performed by the local cluster. The local cluster may stream data to the centralized
cluster per a query initiated by the centralized cluster, and/or the local cluster may publish data that is subscribed

to by the centralized cluster.

[0359] In some embodiments, the method 450 includes historizing or backing up the data that is stored in the
cluster’s local persistent storage 155 (not shown in FIG. 4P). The data backup may be initiated by the cluster, or
the data backup may be initiated by a centralized analytics data historian. In an embodiment, the cluster and the
centralized analytics data historian may have a publisher/subscriber relationship. The timing and/or the quantity
of data to be backed up from the cluster may be defined by a system administrator of the system 100, in an
embodiment. The data to be backed up may be transmitted and/or streamed from the cluster to an analytics

data historian for long-term storage and backup.

[0360] FIG. 4Q depicts an example method 470 of providing localized data analytics services. In an
embodiment, a distributed data engine 102x or a cluster of DDEs 102x performs at least a portion of the method
470. Generally, at least a portion of the method 470 may be performed by any portion of a distributed industrial
performance monitoring and/or analytics system, such as the system 100. Indeed, the method 470 may be

implemented using any portions of any of the systems, apparatuses, devices, and/or techniques described
71

herein. For ease of discussion, though, the method 470 is described below with respect to a cluster of one or
more DDEs 102x of the system 100 that appears as a unitary DDE instance 150, although this is only one

embodiment of many, and is not meant to be limiting.

[0361] The example method 470 includes advertising, by centralized cluster, the presence of the centralized
cluster (block 472). The centralized cluster differs from the local cluster of FIG. 4P as data sources typically do
not register directly with centralized clusters. Rather, in most cases, local clusters or other types of clusters
register with centralized clusters, and centralized clusters perform data analytics functions on the data that is
received from such other clusters. Similar to local clusters, though, centralized clusters are included in a data
analytics network 112 of the process control plant 5 that is on-line in operating to control a process, and the
centralized cluster advertisements may be transmitted, streamed, and/or broadcast over the data analytics
network 112. A “centralized” cluster, as used herein, generally refers to a cluster to which other clusters register.
A centralized cluster may service a control loop (e.g., a “control loop” cluster), an area of process plant (e.g., an
“area” cluster), a region of a process plant (e.g., a “regional” cluster), the entire process plant (e.g., a “plant-wide”
cluster), multiple process plants (an “enterprise” cluster), and the like. Typically, a centralized cluster comprises
a plurality of DDEs interconnected via the data analytics network 112 that have an appearance as a single,

unitary DDE instance 150.

[0362] The method 470 further includes receiving, by the centralized cluster from another cluster, a response
to the centralized cluster advertising. For example, the response from the other cluster may be a request of the
other cluster to register with the centralized cluster, and the method 470 may include registering the other cluster
with the centralized cluster (block 475). The registering cluster may be a local cluster such as the local cluster of

FIG. 4P, or the registering cluster may be another centralized cluster.

[0363] Additionally, the method 470 includes receiving, at the centralized cluster from a registered cluster,
streamed data (block 478). For example, the registered cluster may stream a portion of its stored and/or cached
data to the centralized cluster via the data analytics network 112. As such, the streamed data typically includes
time-series data, which may be, for example, continuous data. Additionally or alternatively, the centralized
cluster may subscribe to particular data that is published by the registered cluster. In some embodiments, the
centralized cluster queries the registered cluster for particular data, e.g., by using the query mechanism
described in a later section of this application. The streamed data may include data that was generated by the
registered cluster, and/or may include data that was streamed to the registered cluster from data sources and/or

from other clusters.

[0364] In some embodiments, the centralized cluster caches at least some of the streamed data that it
receives, e.g., when the received data meets one or more caching conditions. Irrespective of whether or not any
of the data received at the centralized cluster is cached, the entirety of the received data is locally stored into the

persistent storage 155 of the centralized cluster.

[0365] At a block 480, the method 470 includes performing one or more data analytics functions or techniques
on at least a portion of the received, streamed data (e.g., the data that is stored in its cache and/or its persistent

storage area 155). The one or more analytics functions or techniques may include descriptive analytics,

72

predictive analytics, and/or prescriptive analytics. For example, the one or more analytics functions or
techniques may be performed by the centralized cluster per the request of an on-line data analytics module,
another data analytics application, or a user. In another example, the one or more analytics functions or
techniques may be performed by the centralized cluster automatically and/or periodically. The results or output
of the execution of the one or more analytics functions or techniques may be returned to the requesting party,
and/or may be stored locally in persistent data storage 155 of the centralized cluster. In some embodiments, the
one or more analytics functions or techniques are performed on data that has been generated by multiple

registered clusters, and that has been stored (and optionally cached) at the centralized cluster.

[0366] The method 470 includes streaming, by the centralized cluster via the data analytics network 112, at
least some of the results or output of the one or more analytics functions or techniques to one or more data
consumers (block 482). The one or more data consumers may include another analytics node or cluster, a data
analytics application, a user interface and/or user interface application, an on-line data analytics module, another
application, and/or a database or data historian, for example. The one or more data consumers may be bound
to the centralized cluster, to the particular analytics result/output, and/or to a particular data stream that includes

the particular analytics results/output.

[0367] The one or more data consumers may have queried the centralized cluster for the particular analytics
results/output, e.g., by utilizing the query mechanism described in a later section of this application, and the
streaming (block 482) may be in response to the query generated by the one or more data consumers.
Additionally or alternatively, the data consumer may subscribe to the particular analytics results/output that is
published by the centralized cluster. At any rate, the centralized cluster retrieves the desired data from its cache
or from its local persistent data storage 155 and streams the desired data to the one or more data consumers via
the data analytics network 112. In some cases, the desired analytics results/output data is streamed upon its

generation by the one or more data analytics functions or techniques.

[0368] In some embodiments, the method 470 includes registering one or more additional local clusters to the
centralized cluster and receiving respective analytics data from the one or more additional local clusters (not
shown in FIG. 4Q). In such embodiments, performing the one or more data analytics functions or techniques
(block 480) may include performing the data analytics functions or techniques on analytics data received at the

centralized cluster from multiple local clusters.

[0369] In some embodiments, the method 470 includes historizing or backing up the data stored in the local
persistent storage (e.g., the data stored in the big data storage area 155) of the centralized cluster (not shown in
FIG. 4Q). The data backup may be initiated by the centralized cluster, or the data backup may be initiated by a
centralized analytics data historian. In an example, the centralized cluster in the centralized analytics data
historian may have a publisher/subscriber relationship. The timing and/or the quantity of data to be backed up
from the centralized cluster may be defined by a system administrator of the system 100 at the centralized
cluster or at another centralized cluster. For example, the system administrator may utilize a user interface to
administer a set of rules for backup within the system 100 and/or portions thereof, and the set of rules may be
stored at the centralized cluster. The data to be backed up may be transmitted and/or streamed from the

centralized cluster 152 and analytics data historian for long-term storage and backup.
73

[0370] Additionally or alternatively, in some embodiments the method 470 includes providing a set of rules for
replication of analytics data amongst clusters, nodes, and/or DDEs 102x of the data analytics system 100. For
example, the set of replication rules may define which particular analytics data is to be replicated amongst which
particular nodes of the data analytics network 112, and how often the particular analytics data is to be updated
amongst the particular nodes. For instance, the set of replication rules may define how often the results of
analytics function A performed by node A is to be replicated (e.g., by streaming) at nodes B-D so that the
replicated results are available for notes B-D to utilize in performing their respective data analytics functions.
Similar to the historization and backup rules, the set of replication rules may be defined by system administered
of the system 100 at one or more centralized clusters. For example, the system administrator may utilize the
user interface to administer the set of replication rules, and the set of replication rules may be stored at their one

or more centralized clusters.

[0371] In some embodiments, the method 470 includes the centralized cluster detecting an advertisement
generated by another centralized cluster. For example, the advertising cluster may be a regional cluster, an
area cluster, or a plant-wide cluster located on the premises of the process plant 5. In some cases, the
advertising cluster may be hosted in the cloud, and may provide analytics services for a portion of the plant 5,
the entire plant 5, or multiple plants. The centralized cluster may register itself with the advertising cluster, and
may stream analytics data stored in its cache and/or its persistent data storage 155 to the advertising cluster.
For example, the centralized cluster may stream at least some of the results of analytics functions that the
centralized cluster has performed. The centralized cluster may stream data to the advertising cluster to which
the centralized is registered, and/or the centralized cluster may publish data that is subscribed to by the

advertising cluster.

[0372] In some embodiments, the method 470 includes providing a location service, the streaming service
(e.g., the streaming service 115 of FIG. 1), and/or a data dictionary that may be used by other local and
centralized clusters as well as individual DDEs 102x to establish analytics data exchange there between (not
shown in FIG. 4Q).

SERVICES OF INDUSTRIAL PERFORMANCE MONITORING / ANALYTICS

[0373] The transformation of offline data diagrams into online data diagrams by the Data Studio, the execution
of both offline and online blocks and modules, and the functionality of the analytics represented by the diagrams
is accomplished by an Analytics Service provided by an industrial performance monitoring/analytics system,
such as the data analytics system (DAS) 100. The Analytics Service is interchangeably referred to herein as the
“Service,” “Services,” or “Analytics Services.” Any or all portions of the Analytics Services described herein may
operate in conjunction with any or all portions of FIGS. 1, 2, 3, and/or 4A-4Q and/or with any number of features
and/or techniques described in the sections of the present disclosure respectively corresponding to FIGS. 1, 2,
3, and/or 4A-4Q.

[0374] Generally, the Analytics Service is capable of compiling, executing, and/or transforming off-line
diagrams (e.g., in the Data Studio and/or the Dashboard) and of compiling, executing, and creating online

diagrams (e.g., in the Data Studio and/or the Dashboard). The Analytics Service facilitates the exploration of

74

large sets data — Big Data — without requiring knowledge, necessarily, of the particular type(s) of data and
without requiring the user of the Analytics Service to do the low-level programming that performs the analysis.
An example block diagram architecture of an Analytics Service 500 is shown in FIG. 5A, in the context of a
portion of the system 100. More specifically, the Analytics Service 500 is one of a plurality of computer-
implemented processes, each of which computer-implemented processes is associated with various software
entities (e.g., computer-executable instructions and data stored on one or more tangible, non-transitory
computer media). As will be described in detail below, the Analytics Service 500 interacts with the broader

system 100 in large part via the data produced and/or stored by the various entities in the system 100.

[0375] As described above, the DDE User Interface Application is, in embodiments, a web-based application.
FIG. 5A depicts an embodiment of the Analytics Service 500 implemented in such an embodiment; that is, with a
web-based DDE User Interface Application. In its broadest sense, the Analytics Service 500 implemented in this
manner includes client-side, server-side, and back-end computer-implemented processes. Forinstance, as
depicted in FIG. 5A, the Analytics Service 500 includes a web client process 502, a web server process 504, an
execution service process 506, and one or more job processes 508. The various processes 502, 504, 506, 508
may execute on one or more processors, in one or more workstations or servers, in one or more physical and/or
geographical locations. That is to say, while an instance of the web client process 502 may be executing on a
workstation remote from a server on which the web server process 504 is executing, another instance of the web
client process 502 may be executing on the same server on which the web server process 504 is executing and,
in fact, may be running on the same processor. As another example, the execution service process 506 may be
running on a workstation in the confines of the process control environment, while the one or more job
processes 508 may be executing on one or more processors of a distributed process environment (e.g., a server
farm) located remotely from the process control environment. Simply put, the Analytics Service 500 is designed
to be flexible enough that there is no requirement that the various processes 502, 504, 506, 508 are or are not
executed on the same processor, workstation, bank of processors, in one or more virtual machines, and/or in the
same physical or geographical location. Advantageously, the architecture facilitates not only remote access to
data analytics provided by the Analytics Service 500, and the ability to utilize far-flung processor and computing
resources to perform analytics, but also allows the Analytics Service 500 to consume and/or analyze data across

multiple process plants, however disparate their geographical locations may be.

[0376] The web client process 502 operates according to principles not so different from what is generally
understood, but in accordance with the description of the DDE User Interface Application described above. For
instance, the web client process 502 includes a variety of software entities including, for instance: a viewing
entity 510 which presents the user with the DDE User Interface Application (e.g., the canvas 245 and user
controls 248a-n of the Data Analytics Studio 240, the Data Analytics Dashboard, etc.); a view model entity 512
which manages the transfer and translation of application data such as block state to a form that a user interface
can utilized, and which generates a view that provides feedback from and/or that is otherwise indicative of the
operation of an on-line data module; an application entity 514, which is the software entity (i.e., web-based

application) downloaded to the web client process 502 and resident on the client workstation or device that the

75

user uses to interact with the DDE User Interface Application; and a data services entity 516 that passes data to

and from the DDE User Interface Application.

[0377] The data services entity 516 receives, for example, data returned from various jobs executed in
response to the user inputs and requests. As described above, and in additional detail below, the DDE User
Interface Application may request various analytics be run on data from the process control environment (and in
some cases, being currently generated by the process control environment), either in an exploration mode (e.g.,
in the Data Analysis Studio) used to discover relationships between disparate data (or data of known
relationships) or in a predictive mode (e.g., in the Dashboard) used to perform real-time (or near real time),
continuous analysis to predict at least one value in the process control environment. As used herein, the phrase
“real time” or “real-time” means “sufficiently contemporaneous so as to remain useful for adjusting or otherwise
affecting the current operation of the process plant.” When one or more blocks are placed on the canvas 245,
for example, and one or more of those blocks are executed, the results of that execution may be returned to the
application entity 514 via the data services entity 516 (e.g. using a web socket protocol connection from the web

server process 504), and displayed to the user via the viewing entity 510.

[0378] Atthe same time, the data services entity 516 may communicate with the web server process 504 via
other protocols (e.g., HTTP) to request and receive various types of information necessary to the operation of
the application entity 514. As an example, when the application entity 514 is first executing, it may request and
receive, via the data services entity 516 using the HTTP protocol, the latest block definitions 255 from the block
definition library 252. Alternatively, the application entity 514 may initially receive only the categories and lists of
available block definitions 255 and, when selected by a user, the application entity 514 may request and receive,

via the data services entity 516 using the HTTP protocol, the specific block definition 255 selected by the user.

[0379] Turning now to the web server process 504, one or more server communication entities 518
communicate with the web client process 502. As described above, the communications between the server
communication entity/entities, may implement protocols such as HTTP, HTTPS, and web socket protocols,
though the particular protocols described should not be considered limiting, as any other protocol suitable for the
application may be implemented. In addition to communicating with the web client process 502, the server
communication entity 518 may receive data from one or more processes executing instructions (e.g., data
analysis, data loading, data filtering, etc.) requested according to one or more blocks (i.e., diagrammatic
programming elements) placed on the canvas 245. Data may be received from the processes via, e.g., a web
socket (not shown) in the server communication entity 518, and communicated to the web client process 502,

also via the web socket protocol.

[0380] A data services entity 520 provides to the web client process 502 data other than the data received
from processes executing the instructions associated with the various blocks. For instance, the data services
entity 520 may retrieve and communicate the block definitions 255 from the block definition library 252 to the
application entity 514 and/or may communicate status information about the block execution from the execution

service process 506 to the application entity 514, so that the status can be displayed by the viewing entity 510.

76

[0381] Turning to FIG. 5B, the data services entity 520 is depicted in greater detail. Specifically, the data
services entity 520 includes a copy of (or pointers to) the block definitions 255 in the block definition library 252
and a set of data plugins 523. Each of the data plugins 523 is a set of computer-executable instructions that
conforms to an interface that can be called from the application entity 514 to perform a specific task. Each of the
plugins 523 is independent of the application entity 514 and is loaded by the application entity 514 when the
application entity 514 encounters metadata specifying a plugin 523 to load. The plugins 523 may include logic
specific to the application and/or operating environment in which Analytics Service 500 is operating. That is, the
set of plugins 523 for a process control environment implementing the Analytics Service 500 may be different
than a set of plugins for a financial service implementing the Analytics Service 500 (keeping in mind that the
Analytics Service 500 facilitates the exploration of large sets data — Big Data — without requiring knowledge,
necessarily, of the particular type(s) of data and without requiring the user of the Analytics Service 500 to do the
low-level programming that performs the analysis) and may, in fact, be different than a set of plugins for a

different process control environment implementing the Analytics Service 500.

[0382] The separation of the block definitions 255 from the application entity 514 allows the application entity
514 to use and deploy different block definitions depending on the requirements of the customer. Block
definitions can be created, added, modified, and/or removed without affecting the underlying operation of the
application entity 514, because the logic specific to the application and/or operating environment is not hard-
coded into the application entity 514. By providing the plugins 523 and the block definitions 255 separately from
the application entity 514, the application entity 514 can operate in a similar function regardless of the specific

block definitions 255 and plugins 523 required for a particular application.

[0383] Referring again to FIG. 5A, as described above, the application entity 514 operates to facilitate the
creation on the canvas 245 of offline diagrams, such as the offline diagram 340 of FIG. 4L. To create the offline
diagram, the user selects one or more blocks to place on the canvas 245 (e.g., by dragging and dropping), and
“wires” the blocks together so that data is communicated between the blocks. Each of the blocks is an instance
of a template block stored as one of the block definitions 255 in the block definition library 252. When the user
activates the user control 248m, the application entity 514 causes the viewing entity 510 to display available
categories of block definitions 255 and/or available block definitions 255, from which the user may select a block
to place on the canvas 245. In an embodiment, the block definition library 252 is stored in a memory device
shared by one or both of the execution service process 506 or the web server process 504, and metadata of the
block definition library 252 (e.g., block definition names, block definition categories, etc.) is transmitted to the
application entity 514, with block definitions transmitted to the application entity 514 only when a block is
selected to be placed on the canvas 245. Alternatively, the block definition library 252 is transmitted in its
entirety to the application entity 514 when the application entity 514 is instantiated in the web client, and remains
resident on the web client throughout the execution of the web client process 502. A master copy of the block
definition library 252 may exist in a database (not shown) within the process control environment, in a cloud

storage device accessible via the network, in a workstation, etc.

[0384] The block definitions 255 may be categorized according to the functionality of each block. While FIG.
5A depicts the block definitions 255 divided among each of several depicted categories 521, FIG. 5A is not

77

intended to suggest that the block definitions 255 categorized into any particular category 521 are necessarily
stored together, or are necessarily stored separately from other block definitions 255. While that may be the
case in some embodiments, in other embodiments the block definitions 255 are not stored in any particular order
but instead each may be tagged with metadata that may indicate the category in which the block definition
belongs. The metadata for any given block definition 255 may also indicate, by way of example and not
limitation, the number of inputs and outputs, the properties required for execution of the block, the Ul control type
for each property, when (i.e., under what circumstances) the control for each property is enabled/disabled, plugin

information related to the properties, default values for the properties, etc.

[0385] In many, though not all embodiments, blocks include properties that may or must be specified before
the block can be compiled and executed. Because the block definitions 255 are not built into the application
entity 514, the values from which a user may select a property for a particular block cannot be predetermined
and/or provided to the application entity 514 when the application entity 514 is instantiated. FIG. 5C is a flow
chart depicting a method 551 for presenting a properties dialog for a block placed on the canvas 245. When the
block is placed on the canvas 245, the application entity 514 retrieves the corresponding block definition 255
from the data services entity 520 or, in embodiments, from the database 529 (block 553). Thereafter, application
entity 514 may receive a command to display the properties dialog for the block that was placed on the canvas

245 (block 555), for example, when the user double-clicks on the block.

[0386] \WWhen the application entity 514 receives the command to show the properties for the block (block
555), the application entity 514 parses the block definition property by property. For each property, the
application entity 514 retrieves the metadata for the property (block 557), parsing the metadata for the property
to look for plugin information (block 559). If, for the property, the application entity 514 finds plugin information
(block 561), the application entity 514 discovers and loads the plugin specified (e.g., from the plugins 523 in the
data services entity 520) (block 563). The application entity 514 invokes the plugin specified by the metadata for
the property to get the required property values (block 565). If, on the other hand, the application entity 514
does not find plugin information for the property (block 561), then application entity 514 finds, in the metadata for
the property, a default value or values for the property (block 567).

[0387] In any event, having invoked the plugin specified by the metadata for the property to get the property
values (block 565) or found the default value or values for the property (block 567), the application entity 514
finds the Ul control type (e.g., text box, drop down selection, radio button, check box, etc.) in the metadata for
the property (block 569) and adds the value(s) and the control to a property dialog (block 571). If additional
properties are present in the block definition (block 573), then the application entity 514 retrieves the metadata
for the next property (block 557) and the method continues until there are no more additional properties (block
573). When no additional properties are found in the block definition, the application entity 514 displays the
properties dialog (block 575) for the user to set the properties.

[0388] In some embodiments and/or for some block definitions 255, one or more first properties of the block
may be displayed in an inactive or disabled state until one or more second properties of the block are

configured. Upon configuration of the one or more second properties, the application entity 514 may re-execute

78

one or more steps of the method 551 and/or may re-execute one or more of the plugins 523 associated with the

first properties.

[0389] By way of example, suppose that a user places a “load” block on the canvas 245. The application
entity 514 retrieves the block definition 255. In an embodiment, the block definition 255 for the load block
provides the application entity 514 with metadata about the block and, in particular, indicates that the load block
has three properties: a block name, a selected database (database name) and a selected data set (data set
name) to pull from the selected database. When the property configuration dialog is triggered (e.g., by double
clicking on the load block), the application entity 514 needs to determine what to display. The application entity
514 may determine that there is no plugin information in the metadata for the block name property, and instead
finds a default value, for example, “load<##>." The application entity 514 may also find that the control type for
the block name, indicated in the metadata for the block name property, specifies a text box. The application

entity interprets the default value (e.g., “load01”) and places it into the dialog as a text box.

[0390] The application entity 514, parsing the block definition, finds metadata for the database name property.
Checking the metadata for the database name property, the application entity 514 finds plugin information for the
property and, accordingly, discovers, loads, and invokes the specified plugin. The specified plugin, written for
the particular application and/or operating environment (e.g., for a specific process control environment), is
programmed to discover the list of database names (and associated locations) from which data sets may be
loaded. Having received the list of database names, the application entity 514 parses the metadata for the
database name property and determines that it should be displayed in a drop down selection control. The
application entity 514 adds the drop down selection control to the property dialog with the list of database names

returned by the plugin.

[0391] The application entity 514, parsing the block definition, finds metadata for the data set name property.
The metadata for the data set name property specifies a plugin and indicates that the data set name property is
a drop down selection control, but also indicates that the control must be disabled until the database name is
selected by the user. Finding no further properties in the block definition for the load block, the application entity
514 displays the dialog. Once the user selects one of the database names from the database name drop down
selection control, the application entity 514 knows (from the data block definition) to invoke the plugin specified
in the metadata for the data set name property, passing the selected database name to the invoked plugin as an
argument. The plugin returns the names of the data sets that are available in the selected database name, and
populates the drop down selection control for the data set name property with the names of the available data
sets, displaying the dialog again, this time with the control enabled rather than disabled. The user can then
select the data set name to complete the configuration of the data block.

[0392] Of course, once a block is placed on the canvas 245, the block, after being configured to specify any
required properties, may be executed (i.e., the programming instructions specified in the block definition may be
executed) so that any downstream block (i.e., any block having an input to which the output of the block is
“wired”) will have valid input from which to produce a valid output. With reference to the off-line data diagram
340 shown in FIG. 4L, for example, the LoadDB4M block 342a must be evaluated or executed before the blocks

Columns X 342b and Columns Y 342c can be configured, as the configuration of the blocks Columns X 342b
79

and Columns Y 342c is based on user selections from the output of the LoadDB4M block 342a. On the other
hand, and with additional reference to FIG. 4L, while the PLS4M_X_Y block 342d is able to be configured
independently of the evaluations of blocks Columns X 342b and Columns Y 342c, the blocks Columns X 342b
and Columns Y 342c¢ must be evaluated before the PLS4M_X_Y block 342d can be evaluated based on the

input data set loaded into the off-line data diagram 340.

[0393] The execution and evaluation of the blocks and/or modules is asynchronous. This allows the user to
continue to modify the blocks or modules as they are being evaluated. For instance, the user may start the
execution of one block, while continuing to edit and/or configure one or more other blocks. Advantageously,
each block, being separately compilable and executable, can be evaluated, and the results explored, before
selecting and/or configuring and/or executing a downstream block. As a result, a priori knowledge of the
expected output of a particular block is not necessary, nor is it necessary even to know before seeing the results

of any particular block what the next block in the data flow will be.

[0394] Any execution of an offline or online diagram involves the functionality of the execution service process
506 and job processes 508. In general, as described previously, the job processes 508 may execute on one or
more processors on which the execution service process 506 and/or the web server process 506 are executing
(which may or may not be the same processor(s)}, on one or more processors on which the web client process
502 is executing, and/or on one or more separate processors, such as processors on a cloud computing
platform and may execute on one or more virtual machines configured on one or more processors. Moreover,
each job process 508 may execute in a different target environment, for example by executing each job process
508 in a dedicated virtual machine configured for the target environment. Each of the job processes 508
generally represents a portion of the code to be executed — in some instances, a particular job process 508 will
execute the target script/code associated with a specific block, while in other instances, the instructions
associated with a single block will be divided up into smaller scripts/code segments for execution in multiple job

processes 508.

[0395] In particular, when instructions associated with a single block are divided up into small scripts/code
segments for execution by different job processes, the different job processes may cooperate to accomplish
some form of parallelization. As used herein, “parallel computing” is used to mean the general practice of
dividing a task into smaller units and performing them in parallel; “multi-threaded processing” means the ability of
a software program to run multiple threads (where resources are available); and “distributed computing” means
the ability to spread processing across multiple physical or virtual machines. In principle, distributed computing
can scale out without limit. In view of these concepts, it should be understood that executing instructions on a
distributed platform is not the same as executing the instructions in a distributed mode; without explicit

instructions supporting distributed processing, the instructions will execute locally.

[0396] The ability to parallelize a task is a property inherent in the definition of the task itself. Some tasks are
easy to parallelize, because computations performed by each job process are independent of all other job
processes, and the desired result set is a simple combination of the results from each job processes; we refer to

these tasks “embarrassingly parallel.”

80

[0397] Some tasks require more effort to parallelize. Specifically, such “linearly parallel” tasks are those in
which computations performed by one job process are independent of computations performed by another job
process, but the desired result set is a linear combination of the results from each job process. For example, a
“mean computation” block may be defined by instructions that compute the mean of a set of values in a
distributed database in which a single set of data is stored across multiple physical memory devices. As a more
concrete example, suppose the mean computation block computes the mean temperature across a series of 300
bioreactors, each storing temperature data in a memory of an associated controller. The execution of the mean
computation block can be parallelized by assigning a set of the temperature values for the 300 bioreactors to
each of a plurality of job processes, and then computing the “grand” mean as the weighted mean of the means

determined by each of the plurality of job processes.

[0398] Harder still to parallelize, are tasks in which the data must be organized in a meaningful way. “Data
parallel” tasks are those in which computations performed by each job process are independent of all other job
processes, as long as each job processes has the “correct” chuck of the data. This might include, for example,
calculating an independent temperature mean for each of the same 300 bioreactors above (instead of a mean
across all 300 of them), assuming that there are no cross-effects among the bioreactors. The task can be

parallelized if each of the job processes has the temperature data for a single one of the bioreactors.

[0399] In order for such a task to be data parallel, however, the data must be organized in chunks that align
with the task. This might be the case if each of the 300 bioreactors in the scenario above stores its temperature
data in a single corresponding database or location. However, if the data for all 300 bioreactors were stored in a
single database, and not organized in any way within the database, the data would require reorganization before
any type of analysis could occur. The data reorganization may be handled, in the system described herein, by
other blocks in the diagram constructed to perform the analysis (e.g., by data filtering block, querying blocks,

etc.).

[0400] Creating and managing the job processes 508 and the parallelization and distribution of the job
processes among various processors, is the responsibility of the execution service process 506. When a
module or block is executed, regardless of whether the module or block is executed as part of an online diagram
or an offline diagram, the configuration of the module or block is sent from the web server process 504 to the
execution service process 506. In embodiments, the configuration is sent as a JSON (JavaScript Object
Notation) file, however, the configuration file may utilize any data format that is suitable for language-
independent, asynchronous browser/server communications. The configuration file includes native source code
of the environment in which the analysis (or portion thereof) represented by the diagram 602 is to be executed,

as well as values of environmental properties and variables that are required for its execution.

[0401] Because the block definitions do not require the blocks to be executed in any particular environment,
the target environment being selected upon configuration of the block (or of the module that includes the block),
new target environments may be added to those available in the Analytics Service, without having to rewrite the

Application, the block definitions, or even stored or executing blocks and/or modules.

81

[0402] Similarly, new block definitions 255 may be added to the block definition library 252 at any time without
affecting any of the previously built modules or changing any of the operation of the Analytics Service 500 as a
whole or the application entity 514 in particular. With reference again to FIG. 5B, the creation and addition of
new block definitions is accomplished, in embodiments, by an algorithm definition wrapper 525. In the algorithm
definition wrapper 525, the user or developer may use a definition generator 527 to create a definition by
developing an algorithm. The definition generator 527 generates definitions 255" and stores the definitions 255’
in the block definition library 252, for example in a database 529. As will become clear in a later section of the
description, each block definition 255 may have a corresponding data plugin 523, and the data plugins 523 may
be stored in a location (e.g., a database 531) known to the Analytics Service 500. The data services entity 520
may retrieve the block definitions 255 and the data plugins 523 when the application entity 514 is

initialized/instantiated and may provide them to the application entity 514.

[0403] Alternatively, rather than creating a new block definition, in some embodiments a user-defined block
definition may have no associated algorithm, but instead may include a property into which the user may place
the user’'s own code. That is, one of the block definitions 255 may allow a user to input the user’s own algorithm

into the block as a property.

[0404] As used herein, the terms “parameter” and “parameters” refer, respectively, to a property or properties
of the block(s) and/or modules(s) that are included in the configuration file and passed as parameters to the
execution service by way of the configuration file. Properties passed in the configuration file as parameters may
include, by way of example, file paths, data set names, columns to be selected, confidence levels and numbers
of components desired in results of PCA analyses, and any other information that is required by the compiler
entities 526 to compile executable code and by the job processes 508 to execute the compiled instructions.

That is, not all properties of a block or module are required for execution — some properties of a block or module,
for instance, may specify or otherwise relate to how that block or module is displayed in the Data Analytics

Studio, and have no effect on how the data are collected, manipulated, or processed/analyzed.

[0405] In an embodiment, the configuration file includes the definition of the block and/or module, and also
any properties required for compiling and executing the block/module. In an alternate embodiment, the
configuration file includes only an identification of the block and the required configuration parameters, and the
block definition is retrieved from memory (e.g., from the block definition library 252). Regardless, the
configuration parameters may vary according to the block definition. Some blocks may have zero configuration
parameters, while others may have one, two, or many configuration parameters. Additionally, the configuration
parameters may be required or optional. For example, a data load block (a block that loads a set of data) or a
query block (a block that searches for specific data in a data set) may require a data path that specifies the
location of the data to be loaded or queried. A column selection block, however, may have as a default selection
“all columns” and thus may not require the specific, proactive configuration of a selection of a sub-set of

columns.

[0406] Other parameters in the configuration file may include environmental parameters. The configuration
file may include, by way of example and not limitation: an execution mode specifying, for example, whether the

workflow or portion thereof is to be executed off-line or online; a target execution environment (e.g., Python,
82

PySpark, Native Spark, etc.); whether the execution is to be local or distributed; the configuration of the
distributed environment; an indication of the streaming data source to which the workflow or portion of the
workflow is to be bound; an option to create a new job, or bind to and continue execution of a persistent job; an
option to cache data across persistent jobs; an option to include in the execution of an online diagram a
validation variable to for the purpose of evaluating the accuracy of the executing model; or other environmental

variables.

[0407] The configuration of the block, module, and/or environmental parameters may occur in any of a variety
of ways. As described above, for example, many parameters are passed to the configuration file according to
properties set in the respective block or module. In building the diagram, it is often (though not always)
necessary for a user to configure and execute a particular block before a downstream block can be configured
and/or executed. This is the case where the user is using a first block to load data and a second, downstream
block to select columns from the data — the load block must be configured (e.g., with a path from which to load
the data, a selection of the data to load, etc.) before the load block can be executed, and must be executed

before the columns available in the data are known to the second block so that a user can select the columns.

[0408] Alternatively or additionally, one or more parameters may be added to the configuration file upon
request for execution of the block or module. This may be the case where a user does not specify one of the
properties of the block or module, for instance. It may also be the case where one or more properties are
programmed to be specified only upon a request for execution. In embodiments, for example, the Data Analytics
Studio prompts a user to specify, when a block or module is selected for execution, a target environment for
execution and/or a target processor or bank of processors on which to execute the block or module. Further, in
some embodiments, one or more parameters in the configuration file may be passed from the Data Analytics
Studio environment itself. Parameters such as preferred execution environments, limits on physical locations in
which processing may/must take place (e.g., preventing or requiring cloud execution), and others may be
specified in the application itself for all blocks/modules executed from within the application. These parameters

may be passed to the configuration file upon a request for execution of any particular block or module.

[0409] In any event, referring still to FIG. 5A, a job listener entity 522 receives the execution request with the
configuration file for the block(s) or module(s) to be executed, and creates one or more job manager entities
524, corresponding to the block(s) and/or modules(s) for which execution is requested. The job manager entities
524 receive the configuration file and, in accordance with the specified target execution environment, send the
configuration file to one or more of the diagram compiler entities 526 to be compiled into instructions executable
by the processor in the specified target environment. The diagram compiler entities 526 may be designed such
that each of the diagram compiler entities 526 is operable to compile a configuration file into any of several
specified target environments, or may be designed such that each of the diagram compiler entities 526 is
operable to compile configuration files that specify just one specific target environment. In either event, the
output of a job compiler entity 526 is computer-readable instructions executable by a processor in the specified

target environment.

[0410] The job manager entity 524 that sent configuration file to the diagram compiler entity 526 sends the

compiled output from the diagram compiler entity 526 to a job executor entity 528. The job executor entity 528
83

determines which resource(s) (e.g., processor resources) are available to execute the compiled output in
accordance with the specified configuration parameters related to including the target environment for the job,
whether the job should be distributed or not, whether the job should be local or remote, and any/or other
variables including, but not limited to, the source(s) of the input data and the destination(s) for output data, and
then creates a job process 508 using the identified resources. Each job process 508 executes compiled output
in a particular target environment to implement a particular target algorithm (i.e., specified by the compiled
instructions). In embodiments, some or all of the job processes 508 may be executed by big data analyzers 170

embedded in distributed data engines 150.

[0411] Thus, at least each of the following scenarios is possible in this flexible architecture: a single block or
module executing as multiple job processes 508 in a distributed manner across multiple processors; a single
block or module executing as multiple job processes 508 serially on a single processor; a single block or module
executing as a single job process 508 on a single processor; multiple blocks executing as corresponding multiple
job processes 508 in a distributed manner across multiple processors; etc. Moreover, while it is generally
contemplated that job processes 508 corresponding to a single block or module will execute in the same target
environment (e.g., Python, PySpark, etc.), there is no requirement that all processes for different blocks in a
module, or different modules in a project, operate in a single target environment. In some instances, for
example, a particular target environment may be better suited to accomplish the target algorithm associated with
one block in a module, while other blocks in a module may be more efficiently executed in a different target
environment and, so, the blocks may be configured to specify in the respective properties different target
environments, with the end result being that the job processes 508 associated with the different blocks will be

executed in different environments.

[0412] Further still, it is expected that in many instances the blocks associated with a particular module or
project will be executed on job processes 508 that are all distributed or all local. However, it should be evident in
view of the description above that efficiencies may be gained by executing one or more blocks of a module or
project locally while other blocks of a module or project are executed on one or more remote processors (e.g., in
a cloud computing environment). For example, consider a diagram in which a first block performs a query to
retrieve specified data from a database (or other data storage) that is remotely located from the Analytics
Service 500, and a second block performs an analysis on the data returned by query. It may be more efficient to
create a job process 508 at a processor local to the database (e.g., in an embedded DDE at the database) to
perform the query on the data local to the embedded DDE than it is to perform the query on a processor remote
from the database. This may especially be the case when the database is in another geographical region, such
as when a user queries data for a process control environment other than the one in which the user is currently
sitting. The query results may then be analyzed according to the second block either in the same job process
(and processor), in a different job process in the same processor, or in a different job process in a different

processor (e.g., in a local processor).

[0413] The job executor entities 528 also keep track of the job processes 508, especially in distributed
processing applications, and keep track of data dependencies. Thus, as each job process 508 completes,

output data is returned to the job executor entities 528. The job executors 528 determine whether some or all of

84

that data is passed to another job process 508 and/or passed back to the web server process 504 for display in
the application entity 514 by the web client process 502. During execution of the job processes 508, the job
executor entities 528 may receive status information that may be passed back to the web server process 504 for
display in the application entity 514. The job processes 508 may also return predictive data to the job executor
entities 528, particularly when a job process 508 is executing an online diagram (or a portion of an online
diagram), which executes continuously until explicitly stopped. The predictive data may be returned to the job
executor entities 528 as the predictive data is generated, and may be passed to the web server process 504 for
display in the application entity 514, while keeping in mind that the predictive data may, at the same time, be
written back to a location in the process control environment (e.g., a DDE storage location, a controller
performing a control function, etc.) as a function of one of the blocks in the online diagram. In embodiments,
status, state, and/or predictive data are passed between the job processes 508 and the job executor entities 528
by way of back channel streaming communication channels established during job creation to allow the job

processes 508 to communicate with one another and/or with the job executor entities 528.

[0414] By way of the examples below, it will become apparent that, to some extent, the flow of data through
the Analytics Service 500 is dependent on at least the precise blocks and/or modules configured, the properties
configured for each of the blocks or modules, and whether the diagram being executed is an offline diagram or
an online diagram.

Example 1 — Creating an Offline Diagram

[0415] FIG. 5D is a diagram depicting an example canvas 600 having on it a configured offline diagram 602
that includes blocks 604a-604g and wires 606a-606h. With reference back to FIG. 5A, the canvas 600 would be
displayed by the web client process 502 and, particularly, by the viewing entity 510 in cooperation with the
application entity 514. The application entity 514 would receive the data (including the block definition library
252) via the data services entity 516, which would be in communication with the web server process 540 via the
server communication entity 518.

[0416] Generally, there a couple of methods to construct the offline diagram 602 as pictured in FIG. 5D. First,
a user could toggle the block definition toggle 248m to open the block definition library 252 (see FIG. 4D). From
the block definition library 252, the user could select each of the blocks 604a-604g one at a time, and place the
blocks 604a-604g onto the canvas 600. Next, the user could place the wires 606a-606h to connect the various
blocks: placing the wire 606a between an output 608a of the block 604a and an input 610b of the block 604Db,
placing the wire 606b between an output 608b of the block 604b and an input 610c of the block 604c; placing the
wire 606¢ between the output 608b of block 604b and an input 610d of block 604d; placing the wire 606d
between the output 608b of the block 604b and an input 610e of the block 604e; placing the wire 606e between
an output 608c of the block 604c and an input 61012 of the block 604f; placing the wire 606f between an output
608d of the block 604d and an input 610g of the block 604g; placing the wire 606g between the output 608d of
the block 604d and an input 610f1 of the block 604f; and placing the wire 606h between an output 608f1 of the
block 604f and the input 610g of the block 604g. After so placing the blocks 604a-604g and the wires 606a-

606h, the offline diagram 602 would remain unconfigured.

85

[0417] Alternatively, the user could select and place the blocks 604a-604g one at a time, and configure the
properties for each block 604a to 604g as each block is placed on the canvas 600, optionally (and in most

instances) executing each of the blocks 604a-604g after the properties for the block are configured.

[0418] The user could configure each of the blocks 604a-604g one at a time (regardless of whether the blocks
604a-604g are placed and wired before configuration of the properties or are placed one at a time and the
properties for each configured before the next block is placed), by clicking on the block and specifying in a block
properties window 612 for the block the properties associated with the block. In the FIG. 5D, the block 604a — a
query block — is selected and the block properties window 612 for the query block 604a is displayed. In the
example canvas 600 depicted in FIG. 5D, the block properties window 612 for the query block 604a includes a
query property input area 614, into which the user may enter a query. While the detailed description of the query
language is reserved for discussion in a later section of the specification, it is sufficient for the current purpose to
assume that the query entered into the query property input area 614 may specify a location of the data to be
queried upon execution of the query block 604a. The block properties are stored as parameters in a
configuration file associated with the block. The configuration file may be resident on the web client executing

the web client process 502, or may be located on the web server executing the web server process 504.

[0419] Having configured the properties of the query block 604a, the user would typically execute the block
604 a before placing the next downstream block and/or starting the configuration of the properties of the next
downstream block (in this case, the block 604b). To execute the block 604a, the user would activate the
evaluate user control 248i. Doing so would cause the configuration file associated with the block 604a to be
transmitted to the execution server process 506 via the data services entity 520 of the web server process 504,
The configuration file would be received, for example as a JSON file, by the execution server process 506 and
the job listener entity 522 would create a job manager entity 524 to handle the execution request. The job
manager entity 524 would engage the appropriate diagram compiler entity 526 to compile the configuration file
into executable instructions (i.e., compiled query code) suitable for the target environment specified by the
parameters in the configuration file. The diagram compiler entity 526 would return an output file comprising
compiled code and might also return metadata indicating the target environment for which the compiled code is
suited. (Alternatively, the job manager entity 524 may retain knowledge of the target environment during the
compiling process.) The job manager entity 524 passes the output file to a job executor entity 528, which
determines, in accordance with the parameters of the configuration file related to the target environment,
whether the code should be executed locally or remotely, whether the code should be executed in a distributed
system, etc., and selects and secures processor and memory resources on which to execute the instructions
contained in the output file. The job executor entity 528 then creates the job process or job processes 508 to

execute the output file.

[0420] When execution of the output file is complete (in the case of offline blocks or modules), or as results
are available (for online modules), the results are returned to the job executor entity 528. Because, in this
instance, there was no further execution pending (because the diagram is an offline diagram and the block that
was just executed — the query block 604a — is the only block configured) the results are returned to the web

server process 504 via the server communication entity 508, and ultimately to the application entity 514 on the

86

web client process 502. The output data may include all of the data returned by the query, but may also include
various statistical information (metadata) about the query data, such as (without limitation) mean values,
standard deviations, and median values for each column of data returned by the query. The metadata and the
result data are, in embodiments, stored separately from one another. This advantageously allows the user to
review information about the resultant data without necessarily loading all of the resultant data, which could be
time and/or resource (i.e. computer memory) intensive. The user may view the returned data and/or the
metadata about the returned data by clicking the view block results control 212a (see FIG. 4A) on the block. The
default view may include metadata for the results for each of the variables included in the results, and may allow
the user to select one or more selected portions of the resultant data to load and, if desired, view (e.g., in
graphs, charts, tables, etc.) without having to load all of the data. Additionally, the return of the results to the
application entity 514 enables the configuration of the properties of the next downstream block (in this case the

block 604b), to which the data and/or metadata are made available by virtue of the wire 606a.

[0421] It should be noted that execution of a block (e.g., the block 604a) may not in all instances be required
to configure the next downstream block (e.g., the block 604b). Whether a block must be configured and/or
executed before a downstream block can be configured and/or executed will be dependent on data

dependencies as will be understood in view of the totality of the present disclosure.

[0422] It should also be noted that during execution, the job processes 508 are able to communicate with the
various distributed data engines 150 to receive or access data stored in the big data storage 155. In instances
in which a job process 508 is executing in an embedded big data analyzer 170, the big data analyzer 170 may
be communicatively coupled — directly or via one or more big data request servicers 165 — to the big data
storage 155. Alternatively, in instances in which a job process 508 is executing in a processor that is not part of
an embedded big data analyzer 170, the job process 508 may be communicatively coupled via a network to the

DDEs and may request data via the big data request servicers 165.

[0423] Configuration of the properties of, and execution of, each of the blocks 604b-604g in the offline

diagram 602 continues in the same manner, and need not be elaborated upon in great detail.
A. Using Offline Diagrams to Explore and Model

[0424] A user ofthe DDE User Interface Application working with an Offline diagram is generally looking to do
one or both of two things: (1) explore various sets of data to seek out and discover relationships between various
data sets and/or events; and (2) create models of those relationships with the goal of implementing real-time,
continuous predictive capability. Accomplishing the latter generally requires some measure of time spent
working on the former. That is, in many (though not all) instances, a user will explore data sets to find
relationships between the data using various analysis tools (principal component analysis, Fourier analysis,
regression analysis, etc.), and when a relationship is found that appears to have predictive value, the user will

implement that analysis as a model and employ it in real-time, continuous analysis of the process.

[0425] In embodiments, the Analytics Service 500 may include tools that automatically conduct the analysis of
data, whether real-time data or historized data or both, to discover anomalies, abnormal conditions in the

process environment, relationships between data, and/or features of particular data sets. In an embodiment, the

87

block definition library 252 includes a block 255 that looks at data and discovers and/or highlights anomalies,
such as spikes or dips in the data that, in the context of the dataset being reviewed, are atypical. Such an
anomaly discovery block in an offline diagram could receive as input historized data to look for features of the
historized data that might be interesting to explore further using, for example, some of the techniques described
above including PLS, PCA, and other types of analysis. Alternatively or additionally, an anomaly discovery block
in an online diagram could receive both historized data and real-time data, and compare the historized data to
the real-time data to look for anomalies in the real-time data relative to the historized data. In either case, the
output of the anomaly discovery block could include one or more of the times at which the anomalous event
occurred, the source or sources of the anomalous data (e.g., which measurement and/or device is associated

with the anomaly), and the like.

[0426] In an embodiment, the block definition library 252 includes a block 255 that autonomously discovers
relationships between various data. A relationship discovery block may select random or semi-random sets of
data (aligned in time) and may run several different analyses on the sets of the data to look for relationships that
may be interesting to a user, especially causal relationships or predictive relationships. Of course, truly random
selection of sets of data would be unlikely to yield many useful results. However, the selection of the data sets
could be governed by, for example, physical location, plant hierarchy, or other indicia that might suggest

relationships between data may exist.

[0427] In some embodiments, the relationship discovery block may cooperate with the anomaly discovery
block to discover relationships between data. As an example, the anomaly discovery block may output the times
at which various anomalies occur in various data sets. The anomaly discovery block, in an embodiment, stores
the times of anomalous events and, when events anomalous events occur in different data sets at the same time
or closely spaced in time, one output of the anomaly discovery block may be a list of data sources that
correspond to the data sets that experienced anomalous events in close temporal proximity to one another, and
another output of the anomaly discovery block may be a list of times at which the anomalies occurred. The
relationship discovery block may receive as inputs the outputs of the anomaly discovery block, and may load the
relevant data sets for the relevant time periods, possibly with other data sets and/or larger time periods (e.g.,
extending for some greater time prior to and following the time at which the anomaly occurred), to apply various

types of analysis to the data and seek causal or at least predictive relationships between the data.

[0428] Alternatively, one or more properties of a relationship discovery block may indicate a particular data set
(e.g., values for a particular process variable) for which the user wishes to find relationships in the data. The
relationship discovery block may autonomously seek relationships between other data — related by physical
location, plant hierarchy, logical relationship, etc. — and the specified data set, performing different analyses on
the data until one or more causal or predictive relationships are found that meet certain criteria (e.g., 95%

predictive confidence, 0.75 correlation value, etc.).

[0429] Of course any automatic block, such as the relationship discovery block or the anomaly discovery

block is contemplated as operable in an offline diagram or an online diagram.

88

[0430] In any event, typically, a user would create on the canvas 245 an offline diagram such as the diagram
602 on the canvas 600. The creation of the diagram would proceed generally as described above, with one or
more blocks 604 being placed on the canvas 600 and the properties of each block 604 configured one block at a
time, executing each block 604 before configuring the properties of the next. The user may look critically at the
data at any point in the diagram by clicking on a data summary user control associated with the block 604 to see
various statistics (e.g., means, medians, standard deviations, etc.) about the data in the block, or may connect to
the output 608 of the block 604 (via a wire 606) a block for exploring the data (e.g., the block 604e of FIG. 5D).
Assuming that the user has executed the blocks in the offline diagram up to and including the block to which the
explore block is connected, the user will be able to use the explore block to view the data in various graphs, see
metadata associated with the data, and the like. For example, in the offline diagram 602, the explore block 604e
will allow the user to see the data after the data have been processed by the block 604b. Similarly, the explore
block 6049 receives the data from the PLS block 604f and from the Column block 604d. In the latter case, the
explore block 604g may allow the user to visualize the output of the PLS model (which may include a predicted
value of a variable) and compare the output with the actual values of that variable (from the block 604d) that
were used to create the PLS model. The user may be able to determine, by looking at graphs of the data,
whether the PLS model is accurately representing the process such that it has some predictive value in the

process.

[0431] In embodiments, the data summary user control associated with a block 255 will be specific to the type
and function of the block. A block that loads data (e.g., a query block or a load block), for example, may be
programmed such that the data summary user control, when activated, causes the display of various statistical
data characterizing the data loaded or returned by the query. The data might include, in embodiments, a mean,
a median, a standard deviation, a maximum value, and a minimum value, for each data source included in the
data. By contrast, a block that performs an analysis on data (e.g., a PLS or PCA analysis), may display different
data when the data summary user control is activated. The analysis block may display one or more R-squared
values, coefficients for PLS and/or PCA analysis, variance values, observation counts (e.g., how many time-
series values were included for a particular data source), and customizable graphs that allow the user to select
which data (i.e., from which data sources) to view. The explore block will also behave in different ways
depending on the data output(s) to which its data input(s) is/are connected, in embodiments. That is, the
formats and types of data displayed and/or available to be displayed in an explore block may depend on the

types of blocks generating the inputs to the explore block.

[0432] With reference to FIG. 5D, the function of the offline diagram 602, which is merely one diagram
configuration out of many possibilities, will now be described generically. The offline diagram 602 starts with the
query block 604a, the purpose of which is to find a specific set of data and load it for analysis. The specific set
of data may be, to provide just one example, historized process control data related to a particular process
variable that exhibited an abnormal variation at three specific times. In general, however, the query block 604a
may query any stored data, including without limitation, any data in the big data storage 155, any data stored
and/or cached in one or more of the data sources 168, data stored in external data sources such as weather

data sources, supply chain data sources, deliverable tracking data sources, etc. In embodiments, a database or

89

document store (not depicted) stores documents (e.g., JSON documents) that describe online and/or offline
diagrams associated with the Analytics Service, in which case the query block 604a may be configured to query
that database or document store with respect to the types of calculations performed, the source or sources of
the data used in the calculations, the quality of the results, etc. A query of the latter type may advantageously
allow a history or knowledge base of the diagrams to be built. The query block 604a may be configured to select
the values of that process variable and some number of other process variables, and may even be configured to
select the sample rate and/or the values of the particular process variable and the other process variables only,
for example, within a range of times corresponding to an hour before through an hour after each of the three
events. That is, the query may select ranges of time that are disjoint, and find data produced during those time

ranges for any number of variables, at least one of which is the one the user hopes to predict.

[0433] Once executed, the data retrieved by the query block 604a can be used by the Fill block 604b. In the
example diagram 602, the Fill block 604b may fill in data for a variable corresponding to times at which the
variable did not have a value, but one of the other variables did. That is, where one of the queried values is
sampled at a rate more frequent than another, the Fill block 604b may insert values for the less-frequently
sampled variable to match the frequency of the more-frequently sampled variable. In embodiments, the Fill
block 604b may extrapolate the value of the less frequently sampled variable. For instance, if four values of the
more-frequently sampled variable occur between samples of the less frequently sampled variable, the block
604b may find the difference between two consecutive values of the less-frequently sampled variable (e.g., 1.0
and 6.0), divide by four, and fill in the “missing” four values with consecutively larger or smaller values (e.g., 2.0,
3.0, 4.0, and 5.0) so that for every value of the more-frequently sampled variable, there is a corresponding value
for the less-frequently sampled value. (Of course, this would not be a plausible method of filling values in a real-
time analysis, as the later values would not yet be known.) In other embodiments, the Fill block 604b may
simply fill in the “missing” values with the most recently sampled value for the less-frequently sampled value. In

the example used above, the missing values would each be filled in with the value 1.0.

[0434] Having found the data and inserted values to create a set of data without missing values, the output of
the Fill block 604b is provided to three blocks: the explore block 604e, a first column block 604c and a second
column block 604d. The explore block 604e is described above. The first and second column blocks 604c and
604d operate, respectively, to pull variables (columns) out of the data. The data are stored in tables in which
each column represents a variable, and the rows in each column represent values of the respective variable at
different times (i.e., time series data). The first column block 604c may, for example, select all of the columns
(i.e., all of the variables) that include the data for variables other than the process variable that exhibited the
abnormal variation, while the second column block 604d may, for example, select the column that includes the

data for the process variable that exhibited the abnormal variation.

[0435] The output of each of the column blocks 604c and 604d is sent to the PLS block 604f. The input 610f2
of the block 604f may be configured to accept the values of independent, explanatory, or input variables, in an
embodiment, while the input 610f1 of the block 604f may be configured to accept the values of dependent,
explained, or output variables. While a particular arrangement and/or function of the inputs to the model block

(e.g., the PLS block 604f, in the offline diagram 602) is shown in the diagram 602, the arrangement and function
90

of the inputs may be different depending on the function of the block, the types of inputs, the number of inputs,

etc.

[0436] The output 608f1 of the block 604f is wired to the explore block 604g. The explore block 604f is
therefore receiving the value output by the PLS block 604f and the values of the variable that exhibited the
abnormal variation. The user, using the explore block 604g is able to see how the output of the block 604f
compares to the dependent variable at any given time, and determine the predictive value. The output 608f2 of
the block 604f, while not wired to any other block in FIG. 8D, is illustrative of a property of some of the blocks
and wires. Specifically, the output 608f2 is an object output. The object output is operable to output code; in this
instance, for example, the object output outputs the sensitivity model as programmed, including the model, the
data, and the output. Of course, this means that a wire connected to the output 608f2 would necessarily be able
to carry the model across the wire. Connecting the wire to the input of a new block could, for example, program

the block with the entire diagram upstream to create a block that includes all of the functionality and data.

[0437] Thus, as should now be apparent, the user may iteratively revise the offline diagram 602 and explore
the results to build a diagram that has the desired predictive value for a given variable. In so doing, the user
may use different sets of data, different sub-sets of a same set of data, different modeling/analysis techniques,
and the like. Put another way, the user may query or load different sets of data (e.g., replacing or modifying or
adding to the block 604a in the offline diagram 602), may segment the data differently by trying to predict
different variables (e.g., by changing with columns are selected in each of the blocks 604c and 604d), may try
different types of analyses (PCA, PLS, etc.) and/or different properties for a particular analysis (e.g., by replacing
or modifying the block 604f), etc.

[0438] In view of the example above, it will be clear that the DDE User Interface Application and attendant
Analytical Services have advantageous utility in many systems in which vast amounts of data are collected.
With respect to process control systems, process control environments have, relatively recently, expanded the
amount of data collected and stored to include, in some instances, all data generated in the environment.
Whereas past systems generated significant data, those systems used only a small portion of that data for
process control, feeding it into process control algorithms and displaying some of it on operator workstations, for
example; relatively little of the data was stored for later analysis and/or use. The value of a variable sampled
once a second might, for example, be stored only once a minute to balance the need for post hoc analysis with
the limits of storage and network capacity. Further, data that were stored were often compressed, resulting in

less reliable data.

[0439] In contrast, current systems store much more of the data generated in the plant. In embodiments,
such systems now store every variable value every time a sample is recorded, and may also store data never
historized before, such as operator inputs, operator-to-operator messaging, video, etc. The DDE User Interface
Application and the Analytic Services described herein cooperate to facilitate the exploration of all of that data in
addition to other data (e.g., from other plants, weather data, etc.) and the discovery of relationships that may
previously have gone unnoticed or been undiscoverable. As a result of discovering the relationships between
various process values and the interactions of and between process values, plant engineers, operators, and

maintenance personnel, can better design, build, operate, and maintain the process plants, which, in turn, leads
91

to process plants that are cheaper, more efficient, easier to operate and maintain, produce better product, have

fewer negative effects on the environment, and are safer for personnel and the surrounding community.
B. Creating an Online Diagram

[0440] Of course, one way that the discovered relationships may be employed toward the improved operation
of the process is by using the discovered relationships to perform real-time continuous prediction. Specifically,
having discovered in historical data of the process one or more relationships between process values or other
data, such that one set of values can be used to predict another value or values (or the occurrence of some
event(s)), the discovered relationship can be used to look at real-time data from the process to predict the same
value or values (or the occurrence of the same event(s)). The DDE User Interface Application and the Analytic

Services facilitate the use of the discovered relationships to perform predictive analysis, as described below.

[0441] The DDE User Interface Application includes functionality that allows it to convert an offline diagram
(such as the offline diagram 602) to an online diagram (i.e., one using at least one real-time value to predict an
aspect of plant operation). As described above, an online diagram differs from the offline diagrams in that it is
bound to at least one real-time data source (rather than purely historized data), and provides a real-time,
continuous predictive output, which can be viewed, stored, and/or used in a control algorithm to trigger alarms,

alerts, and/or effect changes in the operation of the process plant.

[0442] As long as an offline diagram includes at least one model generating block, the user of the DDE User
Interface Application can activate the Online toggle user control 248f, and the offline diagram will be converted to
an online diagram automatically, and displayed on the canvas 245. With reference again to FIG. 5A, the
conversion from offline diagram to online diagram is accomplished, in embodiments, by way of a diagram

transformer entity 530 in the web server process 504.

[0443] In its simplest embodiment, the diagram transformer entity 530 locates the model generating block
(e.g., the PLS block 604f in the offline diagram 602), removes any output wires (e.g., the wire 606h), adds a write
block, and connects a wire between the output of the model generating block and the input of the write block.
The write block generally write the values output from the model to a data storage location, a process control
algorithm (e.g., executing a control algorithm in a controller or in a function block in a process control device),
and/or to the Dashboard. The diagram transformer entity 530 also replaces the offline data loading block with a
corresponding online data loading block that, rather than loading a batch of historized data, binds to at least one

real-time data source from the process control environment.

[0444] In various other embodiments, however, the diagram transformer entity 530 is operable to do more
than merely replacing two blocks in the offline diagram. In some embodiments, the diagram transformer entity
530 actively removes blocks from the offline diagram to create the online diagram. For example, if a model block
requires two inputs in order to create a model (e.g., a series of X variables and a Y variable), the two inputs
would be generated at different blocks. However, if the model only has one input when implementing the
developed model (i.e., in the online diagramy), then the block previously providing data to the other input is no
longer necessary and can be removed. As another example, the diagram transformer entity 530 may remove

explore blocks (e.g., the explore block 604e of FIG. 5D) when creating the online diagram.

92

[0445] In some embodiments, the diagram transformer 530 may reference a schema library (not shown) that
provides offline and online schemas for each block type, which schemas define what inputs and outputs are
associated with the online and offline version of the block, what data source(s) it accesses, and the like. In
alternate embodiments, each block definition 255 in the block definition library 252 defines both the online and

offline schemas for the block.

[0446] In some embodiments, the diagram transformer entity 530 can be configured to perform or not perform
optional operations during the transformation of an offline diagram to an online diagram. For instance, some of
the optional operations may include, without limitation, tagging the predicted value so that it can be used as an
input to a process control algorithm, outputting a continuous graph of the predicted value on the Dashboard, and
writing the predicted value to distributed data engine. In some cases, the at least some of the output generated
by the diagram transformer entity 530 may be provided for analytics and/or control system visualizations (such

as faceplates, Trendicons, etc.).

[0447] The real-time sources to which the data loading blocks (load, query, etc.) bind, the location(s) to which
the output of the model block posts, and/or the virtual tags associated with the output data, are also each
configurable, in embodiments, to the extent that a given embodiment implements each option. In embodiments
each is configured in the environment of the application entity 514 resident in the web client process 502, for
example, as a module property and/or a block property. For example, the module properties for a module may
include a data posting location, and a real-time data binding location, as generally depicted in FIG. 5F. In FIG.
5F, a module properties dialog 630 is displayed for the module when a user activates a module properties
control 632. The module properties dialog 630 includes a module name field 634, which allows the user to input
a name for the module. The module properties dialog 630 also includes a Post field 636 that allows a user to
specify where data that are output by the online diagram during execution are to be written (i.e., posted). The
location to which the data is posted can be a storage location in which the data is historized, a control module in
the process control environment that uses the posted values as inputs to a control algorithm to control the
operation of the process plant, or both. A user control 636a may open an explorer window that allows the user
to select the location to which the data will be posted, by viewing available locations in a graphical format (e.qg.,
in a tree format, a directory structure, a list of optional locations, etc.). Similarly, a field 638 allows the user to
specify a data path to bind to as a source of online data during execution of the online diagram. A user control
638a similarly opens an explorer window that allows the user to select the location from which the data will be

received.

[0448] Alternatively, the offline block may include a property related to the offline version of the block and the
online version of the block may include a similar property for the online version of the block. For instance, a load
block may have a “source path” (e.g., \DDE_path\device_tag) property in the offline version of the block, but may
have a “device tag” (e.g., \unit1\device_tag) property in the online version of the block, which allows the load
block to read real-time data from the source corresponding to the data stored at the source path of the offline
block. Likewise, a write block in the online diagram may have a property that specifies the location to which the

output data should be written.

93

[0449] As still another alternative, this time with reference to FIG. 5G, blocks in an offline diagram 640 may
each have configuration for both offline and online operation. As an example, a load block 642 may be selected
and may have an associated block properties dialog 644. The block properties dialog 644 includes a block
name field 646, which allows the user to input a name for the block. The block properties dialog 644 also
includes an offline source field 648 that allows a user to specify where data that are to be loaded in the offline
diagram are found. The location in which the data to be loaded is stored can be a storage location in which the
data is historized, for example. A user control 648a may open an explorer window that allows the user to select
the location from which the data will be loaded, by viewing available locations in a graphical format (e.g., in a
tree format, a directory structure, a list of optional locations, etc.). Similarly, a field 649 allows the user to specify
a data path to bind to as a source of online data during execution of the online diagram. A user control 649a
similarly opens an explorer window that allows the user to select the location from which the data will be
received. Of course the controls 648, 648a, 649, 649a can be any control specified in the block definition and

may invoke the execution of appropriate plugins as previously described.

[0450] In embodiments, the relationships between paths to stored, historized data from which an offline block
would retrieve/query data, on the one hand, and a corresponding source of real-time data to which an online
block can be bound, on the other hand, is managed by a data source manager module 532. The data source
manager module 532 may be integrated as part of the web server process 502, may be included as part of the
diagram transformer entity 530, or may simply be a lookup table that the diagram transformer entity 530
references when transforming an offline diagram to an online diagram. In at least some embodiments, the data
source manager module 532 cooperates with the big data request servicers 165 to set up a stream of real-time

data in accordance with the requirements of an online block.

[0451] FIG. 5E depicts an online diagram 622 corresponding to the offline diagram 602 of FIG. 5D. The
online diagram 622 includes blocks 624a, 624b, 624c, 624f, and 624h, and wires 626a, 626b, 626e, and 626;.
Where the blocks and/or wires correspond to those in the offline diagram 602, the letters associated with the

blocks are the same.

[0452] The operation and execution of the online diagram 622 proceeds in generally the same way as that of
the offline diagram 602, described above. The online diagram 622, once all of the properties are configured
(and the associated parameters stored in the configuration file(s)), can be “deployed” by engaging the deploy
user interface control 248j. Activating the control 248j will send the configuration file to the execution service
process 506, where it will be compiled according to the parameters in the configuration file. When executed as
one or more job processes 508, however, instead of downloading or querying data from the big data storage 155
via the data analytics network interface 175, the job processes 508 will receive real-time data from the big data
receivers, for example, or directly through a stream that is set up by one of the big data request servicers 165.
Also, rather than sending output data back to the job executors 528 to send only to the application entity 514 via
the server communication entity 518 of the web server process 504 for display on the dashboard, the job
processes 508 may post output data back to the big data storage 155 and/or to one or more of the data sources

(e.g., controllers, other DDEs, etc.).

94

QUERY LANGUAGE FOR INDUSTRIAL PERFORMANCE MONITORING/ANALYTICS

[0453] The data sources associated with a process control system or environment on which the industrial
performance monitoring/analytics system 100 operates typically provide time series data, although other types of
data may be used (e.g., cross-sectional data from a plurality of batches separately executed in one or more
process plants 5). Time series data may include various types of data measurements from various types of
measurement devices within the process plant 5, including the field devices 15-22 and 40-46. The data sources
may vary in their format over a wide range from commonly known to proprietary formats, e.g., OSISoft Pl, DeltaV
Historian, SEEQ, FF3, and/or manually captured formats in spreadsheets. Some data sources may include
relational databases, while other data sources may include non-relational (NoSQL) databases. Still further data
sources may not be databases, instead using file directories or text within a document (e.g., an XML document)
to store data. In addition to differences in query syntax, the variety of data sources may require fundamentally
distinct query structures because of differences in how data is stored. For example, document oriented non-
relational databases such as Mongo store data based upon documents, rather than in tables accessible through
SQL queries in relational databases such as MySQL. Thus, queries for data stored in different types of data
sources employ distinct structures and rules, in addition to formatting and syntactic differences. Rather than
using each of the various data sources’ native query mechanisms to access the data stored therein, the
industrial performance monitoring/analytics systems and techniques described herein (and, in particular, the
DDE User Interface Application) utilizes a standardized query to interface with each of the data sources 702a-
702f, as is shown in FIG. 6A.

[0454] FIG. 6A illustrates a block diagram showing various data sources 702a-702f and data providers 704a-
704d communicatively connected to a query block 708 of the DDE User Interface Application via a query
execution service 706. Each of the data sources 702a-702f is an electronic data source, storing data in a
computer-readable format. Some data sources 702e and 702f may interface with the query execution service
706 without an intervening data provider 704, such as through an internal or network data connection. Other
data sources 702a-702d interface with the query execution service 706 via one or more data source provider
704a-704d. The data providers 704a-704d may be configured to access, search, sort, read, and/or write data to
or from the respective data sources 702a-702d. In some embodiments, the data providers 704a-704d may
receive data source-specific queries that utilize the respective data source-specific query formats of the data
sources 702a-702d. In other embodiments, the data source providers 704a-704d may be configured to receive
a standardized query 709 using a customized query language from the query block 708 and convert the
standardized query into a respective data source-specific query format utilizing the particular query mechanisms
of the target data sources 702a-702d. The data providers 704a-704d or the data sources 702e-702f may
include an execution engine (not shown) that processes and executes data source-specific queries for a specific
data source 702. The execution engine may be part of the data source 702 itself, or it may be part of the data
provider 704 associated with the data source 702 (e.g., the data provider 704b associated with data source
702b). Each data source 702 may be a database or document store, such as a document store including a
plurality of JavaScript Object Notation (JSON) files containing data. In some embodiments, the data sources

702a-702f may even include live data sources, such as data streams generated by the field devices 15-22 and

95

40-46 of the process plant 5. Such live data sources may be queried by parsing data obtained and retaining or

extracting only the portion of the data specifically requested.

[0455] The data sources 702a-702f may be configured to store data in any known or hereafter developed
format. Data sources 702a, 702b, and 702e are shown as databases to represent data stored in relational
databases. Examples of such relational databases include MySQL or other databases storing data in tables and
utilizing SQL-formatted querying of the data. Data sources 702c, 702d, and 702f are shown as collections of
files or data entries to represent non-relational data stores, such as NoSQL databases or non-database data
sources. Examples of non-relational databases include document-oriented databases such as MongoDB or
CouchDB that store data based upon documents, rather than tables. Because storing or searching extremely
large data or complex data sets may be more efficient using non-relational databases, such databases are
frequently used for big data analysis. Querying such non-relational databases requires different techniques and
different syntax, however, as the data in such non-relational databases is not generally arranged in a tabular
format (which forms the basis of SQL databases). Because SQL querying is widely used and well known, it is
also frequently used for data storage and analysis. By using a standardized query format for the standardized
query 709 that is converted into a data source-specific query that utilizes a data source-specific format, the
invention disclosed herein allows a user to access data in SQL or NoSQL databases with the same query
format. The standardized query format further allows data from multiple different types of data sources 702 to be
combined into one data set having a consistent data structure and format. Thus, the query block 708 may serve
as a super-connector, connecting data sources 702 having different data structures, formats, and query

mechanisms using standardized queries 709.

[0456] The query block 708 may be a block implemented within the Data Analytics Studio, as discussed
above, to specify data to be obtained from the data sources 702a-702f. For example, the query block 708 may
be a configuration file having one or more block properties, including a property specifying the standardized
query 709. The standardized query 709 may be a separate file (such as a JavaScript Object Notation file)
referenced by the query block 708. The query block 708 may alternatively be any object containing or indicating
the standardized query 709, such as a process or routine operating within any of the Distributed Data Engines
150. The query block 708 receives the standardized query 709 (such as by user selection or input), and the
standardized query 709 utilizes a standardized query format. By utilizing a standardized query format, the data
sources 702a-702f may be queried without the user, technician, or data requesting entity requiring knowledge of
the particular types or structures of data in the data sources 702a-702f. The standardized query format may be
either an existing query format utilized by some data sources or a different query format that is not directly
utilized by any data sources. In the latter case, standardized queries utilizing the syntax of the standardized
query format are not directly executable or implementable to obtain data from the data sources 702a-702f. The
standardized query may specify one or more of the data sources 702a-702f (or one or more of the data
providers704a-704d) from which the data is to be obtained. Alternatively, the query block 708 may include a

property specifying one or more of the data sources 702a-702f.

[0457] The query execution service 706 receives the standardized query 709 from the query block 708 and

causes one or more of the data sources 702a-702f to be queried. Receiving the standardized query 709 from

96

the query block 708 may include receiving a file containing query parameters indicating the data to be obtained
from the data sources 702a-702f. Causing the data sources 702a-702f to be queried may include extracting the
query parameters and generating one or more data source-specific queries based upon the query parameters.
Each data source-specific query may then be executed by the execution service 706 or sent to the data sources
702e-702f or data providers 704a-704d to be executed to obtain the data indicated by the query parameters.
Such query parameter may indicate specific data to be obtained from one or more data sources 702, which may
be measured data (such as measurements from field devices 15-22 and 40-46), metrics calculated or otherwise
derived from measured data, and/or metadata regarding the data sources 702 or the data stored therein. For
example, such metadata may include indications of types, sources, or quality of data stored in a data source
702, including types of calculations performed on the data. Such metadata may be useful in developing process

models or a knowledge base from the data sources 702 of the system.

[0458] The query execution service 706 may be the execution service process 506 discussed above. The
query execution service 706 may include any of the components of the analytics service 500, including the data
services 520, the job listener 522, the job managers 524, the job executors 528, or the data source manager
532. For example, the query block 708 may be created by the application 514 with input from a user, including
the standardized query 709 stored in a JSON file. Upon receiving a user request or other triggering event, the
application 514 may cause the standardized query709 to be communicated from or through the web server
process 504 to the job listener 522 of the execution service process 506 (which execution service process 506
may serve as the execution service 706). The job listener 522 may cause the standardized query 709 to be
received by one or more job managers 524, which may further cause one or more job executors 528 to convert
the standardized query 709 into one or more data source-specific queries associated with one or more job
processes 508. The job processes 508 may then cause the one or more data sources 702 (i.e., the data
sources 168 or big data storage 155) to be queried using the data source-specific queries. The data obtained by
querying the one or more data sources 702 may then be received by the job processes 508, the execution

service process 506, the data services 520, and/or the application 514.

[0459] In some embodiments, the query execution service 706 converts the standardized query 709 into data
source-specific queries that utilize data source-specific formats native to the data sources 702e or 702f. In
alternative embodiments, the query execution service 706 may determine one or more data sources 702a-702f
to query and may provide the standardized query 709 to one or more data providers 704a-704d to be converted
into data source-specific queries. The data providers 704 may be separate from the data sources 702 or may be
combined with the data sources 702. Data providers 704a and 704d are shown as being communicatively
connected to data sources 702a and 702d, respectively, but are nonetheless separate. In contrast, data
providers 704b and 704c are shown as containing or being combined with the data sources 702b and 702c,
respectively. For example, the data provider 704b may be a server (such as a data historian) or a database
interface program on which the data source 720b is stored as a database. As another example, the data
provider704a may similarly be a server or database interface program that is connected to an external data
source 702a, such as a database stored in an external memory device communicatively connected to the server.

As yet another example, the data providers 704a-704d may be job processes 508 that include algorithms to

97

convert the standardized query 709 into data source-specific queries when they receive the standardized query

709 or query parameters from the standardized query 709 from the query execution service 706.

[0460] To illustrate the use of standardized queries in process control and analysis, FIG. 6B illustrates a block
diagram of the query block 708 in the Data Analytics Studio. The query block 708 is associated with the
standardized query 709 that obtains process data from one or more data sources 702a-702f. For example, a
user may define the standardized query 709 in the standardized query format into a field of the query block 708.
The standardized query 709 may be stored together with the query block 708, or it may be stored in a separate
file. For example, the query block 708 may be a configuration file that includes a query property storing an
identifier of a JSON-formatted file containing the standardized query 709. Upon the occurrence of an event
(such as the occurrence of a time, a process control state, or a user selection), the standardized query 709 may
be identified from the query block 708 and sent to the query execution service 706 to obtain the requested data
from one or more of the data sources 702a-702f. The data indicated by the standardized query 709 or
information related to such data (e.g., summary information, validation metadata, etc.) may be returned to the
query block 708 or to another data receiving entity. Such other data receiving entity may include another block
in the Data Analytics Studio, a job process 508, the query execution service 706, data services 520, the
application 514, a program memory, or any other service, routine, process, or device that may further analyze,
present, or store data associated with the process plant 5. As discussed above, the process data may be
obtained via one or more data providers 704 in some embodiments. The obtained data may be received at the
query block 708, the query execution service 706, or other data receiving entity in the desired format or may be
formatted by the query block 708, the query execution service 706, or other data receiving entity. For example,
the query execution service 706 may generate a data frame by causing the standardized query 709 to be
converted into one or more data source-specific queries and the results of such source-specific queries to be
formatted in a desired manner. Such formatted data frames may, in some embodiments, be returned to the
query block 708. The data obtained from the one or more data sources 702 may include a plurality of data
points retrieved by the data source-specific query, which data points may correspond to process variables, such
as measurements within the process plant 5 or values derived from such measurements. Such data points may
represent points in a time series, having time stamps associated with each point. Alternatively, such data points
may represent cross-sectional data associated with a location, a process batch, or other identifying features.
The data obtained by executing the standardized query may be referred to as a data frame to denote its variable

structure, which may or may not use a tabular format.

[0461] The query block 708 may provide the data frame obtained using the standardized query to the fill block
710, which fills empty or not-a-number (NaN) entries in the data set according to rules associated with the fill
block 710. This may be done in order to sanitize the data or to check for incorrect data or indications of errors in
the data frame, as well as to add data points needed to reach a desired sampling rate, as described elsewhere
herein. The data frame may then be used for further analysis and/or process control. As illustrated, one or more
sets of data may be selected from the data frame by independent variable block 712 and dependent variable
block 714. For example, the dependent variable block 712 may select one or more types of data from the data

frame received from fill block 710, corresponding to data matching specified parameters or characteristics (e.g.,

98

pressure or temperature measurements) or data columns (where the data frame corresponds to a data table).
The dependent variable block 714 may similarly be used to select one or more types of data from the data frame
received from the fill block 710. Although two blocks 712 and 714 are shown, any number of similar blocks may
be used. The analysis block 716 may then receive the data selected by the independent variable block 712 and
the dependent variable block 714, as shown by the connectors between the blocks. The analysis block 716 may
perform any type of analysis for which it is configured. For example, the analysis block 716 may perform partial
least squares (PLS) analysis to determine the effect of the data of the independent variable block 712 on the
data of the dependent variable block 714. An exploration block 718 may be connected to the analysis block 716
and the dependent variable block 714 to test the proper configuration of the query block 708 and the other
blocks and connections. This exploration block 718 may generate graphical, tabular, or textual output that may
be stored or viewed by the user. Although the foregoing description discusses the blocks 708-718 as taking
certain actions, it will be understood that these blocks may instead cause such actions to be taken by the web
server process 504, the execution service process 506, and/or the job processes 508 of the analytics service

500, as discussed elsewhere herein.

[0462] To further demonstrate the use of standardized queries 709, FIG. 6C illustrates an exemplary query
utilizing an exemplary standardized query format. The exemplary query is presented as utilizing a JSON-
compliant format to maximize cross-platform compatibility, but any other format may be used (e.g., an XML-
based format, a CSV-based format, etc.). The exemplary query begins with a query name, followed by an
indication of the format to be used to return the data frame (which is specified as JSON) and an indication of a
version of the query format. The “timeSelector” array indicates a plurality of timeframes indicating ranges of time
for which data is to be returned by the “startTime” and “endTime” objects. In the exemplary query, the start and
end times are specified in terms of calendar data and clock time in Coordinated Universal Time, separated by
the letter “T.” As indicated by the exemplary query, each of the timeframes may be separated by excluded time
periods for which data is not queried, which correspond to the time periods between the end time of one of the
timeframes and the start time of another timeframe. Following the “timeSelector” array, the “sampleRateSecs”
object specifies a sampling rate in terms of seconds, which specifies how many data points are to be obtained
per unit time. The final portion of the exemplary query is a “columns” array indicating the parameters of data to
be obtained from the data source 702 (i.e., the process variables to be obtained). The exemplary query
specifies four types or columns of data to return. Each of the four columns is identified by a “tag” object
specifying a data source and/or process variable of a data source (i.e., “FT630B/DENS.CV,”
“PT615/WIRED_PSIA.CV,” “TT6079/INPUT_1.CV,” and “630.molefrac.c5"). Each of the four columns include an
“alias” object to label the returned data within the data frame, a “dataType” object to specify the data type of the
data (e.g., floating point value, long integer value, text string, etc.), a “renderType” object (e.g., values, counts,
etc.), and a “format” object specifying the format of the data to be returned (i.e., “0.###" indicating a format

consisting of a floating point value with three digits following the decimal).

[0463] The “tag” objects associated with the columns may identify a data source 702 from which to obtain the
data. Alternatively, where the exemplary query does not expressly specify the data source 702, such data

source or data sources 702a-702f may be specified by other properties of the block 708. In similar queries

99

utilizing the standardized query format, the data source or data sources 702 may be expressly indicated in the
query by an object. Such indication may include a path to the source object or a value indicating the type of data
source (e.g., MongoDB, CouchDB, SQL, etc.). The indication of the data source 702 may further indicate an
associated data provider 704, where appropriate. Alternatively, the data source manager 532 may provide an
indication of the data provider 704 or the structure or format utilized by the data source 702. In some
embodiments, the indication of the source may further include a separate indication of the data source 702 for
each parameter or column of data to be obtained. Thereby, queries utilizing the standardized query format may

obtain data from multiple distinct data sources 702.

[0464] As noted above, standardized queries 709 are converted into data source-specific queries that may be
executed for each targeted data source 702. Such conversion may be performed by the query execution service
706 or may be performed by each targeted data provider 704a-704d. FIG. 6D illustrates an exemplary query
method 740 in which the query execution service 706 converts the standardized query 709 into one or more data
source-specific queries, and FIG. 6E illustrates an exemplary query method 760 in which the data provider 704

converts the standardized query 709 into a source-specific query.

[0465] The method 740 may begin by receiving a standardized query utilizing a standardized query format
(block 742). The standardized query may be received by the query block 708, the query execution service 706,
or a data provider 704a-704d. The query may include any of the features or elements described above. The
query may be received from a user via direct input or may be received from a program block or routine, which
may generate and/or store standardized queries based upon user input. The standardized query may be
constructed in a file or format compliant with JavaScript Object Notation (JSON), or it may be constructed using
any other convenient language or syntax. The standardized query may utilize a syntax that is executable by
some data sources 702a-702f to obtain data (such as SQL), or the standardized query may utilize a syntax that
is not directly executable by the data sources 702a-702f to obtain data (such as the exemplary query illustrated
in FIG. 6C). The standardized query may identify the data to be obtained (e.g., timeframes and parameters of
the data), data sources 702 from which the data is to be obtained (e.g., data sources 702a-702f or data
providers 704a-704d), and/or the format in which the data is to be provided. If the standardized query 709 is
received at the query block 708, it may then be sent to the query execution service 706 upon occurrence of a
triggering event, such as user selection of an option to run the query or a request for the query data by another

object, routine, block, process, service, or function within the analytics service 500.

[0466] Following receipt of the standardized query 709, the query execution service 706 (or the data provider
704) may determine one or more data sources 702 from which data is to be obtained (block 744). In some
embodiments, the determination may involve receiving or identifying an indication of the one or more data
sources 702. The indication may be specific to each data characteristic (e.g., process variable or column) or
may be general to the entire query. Such indication or indications may be included as objects or tags within the
standardized query 709, or it may be indicated by an additional property of the query block 708. For example,
an indication of the data source 702 for a data column or type of data may be prepended to the object or tag
specifying the data column or type of data. Alternatively, the query block 708 or data provider 704 may be

otherwise associated with one or more data sources 702. This association may be effected by receiving an

100

indication of the one or more data sources 702 separately from the standardized query 709. For example, the
query block 708 may be associated with one or more data sources 702 (or with one or more data providers 704)
via a data source property when the query block 708 is created by receiving a selection of the data sources 702
(or data providers 704). Similarly, a data provider 704a-704d may be associated with one or more data sources
702a-702d when the data provider 704a-704d is configured, either inherently or through associations created

during configuration.

[0467] Using the information regarding the one or more data sources and the standardized query 709, data
source-specific queries are generated to obtain data from the one or more data sources 702 (block 746). The
data source-specific queries may be generated by the query execution service 706 and sent to each data source
702a-702f to be queried (directly or via a data source provider 704a-704d) based upon the data sources
identified at block 744. Alternatively, the query execution service 706 may send the standardized query 709 to
be converted into a data source-specific query by each of the one or more data providers 704a-704d associated
with data sources 702a-702d from which data is to be obtained based upon the data sources identified at block
744. For example, the query execution service 706 may cause one or more job processes 508 to convert the
standardized query 709 as data providers 704. Regardless of whether the query execution service 706 or the
data providers 704 generate the data source-specific query from the standardized query 709, the data source-
specific query must utilize a data source-specific format that may be executed by a data provider 704 or a data
source 702 to obtain data stored in the data source 702. The data source-specific query format may be any
known or hereafter developed format or syntax for querying or otherwise accessing data stored in an electronic

data source, such as SQL, MongoDB, CouchDB, etc.

[0468] Generating the data source-specific query may include identifying query parameters in the
standardized query 709. The query parameters may include parameters associated with a timeframe or other
characteristics of the data, such as the timeframe specified by the “timeSelector” array, the sample rate specified
by the “sampleRateSecs” object, and the data parameters specified by the “columns” array (particularly the “tag”
objects) in the exemplary standardized query discussed above. These query parameters may include
indications of process variables associated with types or measurements, types of measurement devices, or
specific measurement devices (such as the field devices 15-22 and 40-46). One or more timeframes may be
specified for each data source 702 to be queried, and different data sources or data having different parameters
(e.g., different columns, different process variables, etc.) within a data source may have different timeframes
associated therewith. The identified query parameters may be extracted from the standardized query 709 by the
query execution service 706 or the data provider 704 and converted into aspects of the data source-specific
query. The generated data source-specific query thus contains query language representing the substantive
parameters specified in the standardized query 709, but such substantive parameters are included in the data

source-specific query in the data source-specific query format.

[0469] In embodiments in which one or more timeframes and sampling rates have been specified, the data
source-specific query may be generated to provide data associated with a plurality of data points at specified
times within the time period specified by each timeframe. Each data point may have a timestamp indicating a

specified time associated with the data point, which is an integer multiple of the period of the sampling rate at or

101

following the start time associated with the timeframe occurring at or before the end time associated with the
timeframe. Multiple timeframes may be specified by the standardized query, as indicated in FIG. 6C. In such
instances, the data source-specific query may be generated to obtain data at data points having timestamps
corresponding to the sampling rate or rates within each of the multiple timeframes. In some such instances,
separate data source-specific queries may be generated for some of all of the multiple timeframes. If one or
more timeframes are specified without a sampling rate, the plurality of data points may be obtained with
timestamps, but the timestamps may take on any value within the timeframe. Thus, the timestamps will indicate

times at which each data point was measured (or at which underlying process values were measured).

[0470] The query execution service 706 or the data provider 704 may then cause the one or more data
source-specific queries to be executed to query the identified data sources 702 (block 748). This may include
transmitting the data source-specific query from the query execution service 706 to one or more data providers
707a-704d and/or to one or more data sources 702a-702f. Similarly, the data providers 704 may transmit the
data source-specific query to the data sources to obtain the requested data in some embodiments. In further
embodiments, the data source-specific query may be executed by an execution engine of the recipient data
source 702. In other embodiments, the data providers 704 may execute one or more of the data source-specific
queries by accessing and manipulating the data stored within the data sources 702. The data returned from the
one or more data sources upon execution of the one or more data source-specific queries may then be sent to
or received by a data receiving entity, which may include the data provider 704, query execution service 706, or
the query block 708. Thus, the data receiving entity obtains the requested data from the one or more data
sources 702 (block 750).

[0471] In embodiments in which a sampling rate is specified, obtaining the data may include ensuring the data
includes data points with timestamps matching each of the sample points indicated by the timeframe and
sampling rate. This may be done for each timeframe and sampling rate. As noted above, these sample points
correspond to integer multiples of the period of the sampling rate at or following the start time of the timeframe
and occurring at or before the end time of the timeframe. If the data points stored in the data source 702 do not
include a data point for one or more of the times associated with the sample points, additional data points may
be added having timestamps corresponding to the sample points. The additional data points may be assigned
values associated with values of data entries within the data source 702 that are most closely prior to the
timestamp in time. For example, a data source 702 may include data points for times 7:01:5500 (having value
V1), 7:02:0500 (having value V2), and 7:02:5500 (having value V3), but the timeframe indicated in the
standardized query may be 7:02:0000 (the start time) to 7:03:0000 (the end time), and the period of the sample
rate may be 0:00:5000 (corresponding to a sampling rate of one sample every half second). In such example,
the obtained data points will have timestamps of 7:02:0000, 7:02:5000, and 7:03:0000, which will have values
V1, V2, and V3, respectively. Thus the most current prior value V2 (measured at 7:02:0500) is used for the data
point having timestamp 7:02:5000, even though another value (V3 at time 7:02:5500) is closer in time following
the timestamp. Additionally, excess data points occurring at times between the desired sample times may be
removed or deleted from the obtained data. Thus each data point in the obtained data (following such

adjustments or alignments) will have a timestamp that is associated with an integer multiples of the period of the

102

sampling rate at or following the start time within each timeframe indicated by the standardized query. Other

means of aligning data points within the obtained data may similarly be used.

[0472] Where multiple data sources 702 are indicated in the same standardized query, each of the data
sources 702 may have data points having different timestamps, and the measurements associated with such
timestamps may have occurred at different sample rates. For example, a first data source 702a and a second
data source 702d may be indicated by the standardized query. The data source 702a may be a first data source
storing data points having a first sample rate (e.g., one measurement every second), and the data source 702d
may be a second data source storing data points having a second sample rate (e.g., four measurements every
second). The obtained data may be aligned according to the parameters specified within the standardized query
by adding or removing data points at times that are integer multiples of the period of the sampling rate specified

by the standardized query, as discussed above.

[0473] When the data receiving entity obtains the data from the one or more data sources 702, the data
receiving entity may further format the data according to formatting parameters or instructions associated with
the standardized query 709 (block 752). Such formatting parameters or instructions may be included in the
standardized query 709, may be associated with the standardized query format, or may be specified in a
separate property of the query block 708. In some embodiments, this may include further generating a data
frame from the obtained data by adjusting the format of the obtained data to match a desired format. Where a
plurality of data sources 702 have been queried, generating the data frame may further comprise combining the
data obtained from each of the plurality of data sources 702 to generate an aggregated data frame. For
example, where a first data set is queried from a first data source 702a and a second data set is queried from a
second data source 702d, an aggregated data frame combining the first and second data sets may be

generated.

[0474] The method 760 may begin by receiving a standardized query 709 from a data requesting entity (block
762). A data requesting entity, such as the query block 708 or the query execution service 706, may request
data from one or more data sources 702 by sending a standardized query 709 to a data provider 704. The data
provider 704 may be associated with one or more data sources 702 or may be configured to obtain data from
various data sources 702 via a network connection. Alternatively, the data requesting entity may receive the
standardized query 709 from another data block, software routine, process, or service within the data analytics
system 100. Additionally, a data receiving entity (which may likewise be the query block 708, the query
execution service 706, a job process 508, data services 520, the application 514, a program memory, or any
other service, routine, process, or device that may further analyze, present, or store data associated with the
process plant 5) may be indicated by the standardized query 709 or otherwise. Such data receiving entity may
be the same entity as the data requesting entity in some instances, or the data requesting entity may be
separate from the data receiving entity. For clarity, the following discussion of the exemplary method 760 will
assume the data provider 704a receives a standardized query 709 from the query execution service 706 as the
data requesting entity and the data receiving entity, wherein the standardized query 709 requests data from the

data source 702a. This is done to better illustrate the salient features of the method and is not intended to limit

103

the scope of the disclosure. Those familiar with the art will understand that numerous alterative configurations

may be readily created with only minor and ordinary adaptations of the method as discussed herein.

[0475] When the standardized query is received at the data provider 704a, the data provider 704a extracts
query parameters from the standardized query 709 (block 764). The query parameters may include parameters
associated with time (e.g., a timeframe for which data is to be obtained, a sampling rate, etc.), data types or
characteristics (e.g., process variables, columns within a table, measurements, calculated values from
measurements, etc.), or the data source 702a from which the data is to be obtained (e.g., an indication of the
database, a path thereto, or a table therein). Extracting the query parameters may include determining one or
more parameters based upon objects, arrays, or elements within the standardized query 709. In some
embodiments, the data provider 704a may further extract parameters indicating how the data is to be returned to
the query execution service 706 (i.e., formatting, structure, timing, or protocol to use in providing the requested
data to the data requesting entity). The data provider 704a may store the extracted query parameters in a
volatile or non-volatile memory for use in generating one or more data source-specific queries and/or formatting

obtained data to provide to the data requesting entity.

[0476] The data provider 704a may then generate a data source-specific query based upon the extracted
query parameters (block 766}, which data source-specific query utilizes a data source specific query format
associated with the data source 702a. For example, the data source 702a may be a non-relational database
utilizing a MongoDB data structure or format, in which case the data provider 704a generates a data source-
specific query utilizing the query syntax of MongoDB to obtain the data indicated by the query parameters
extracted from the standardized query 709. As an alternative example, the data source 702a may be a relational
database utilizing MySQL, in which case the data provider 704a generates a data source-specific query utilizing
a SQL query syntax to obtain the data indicated by the query parameters extracted from the standardized query
709. To generate the data source-specific query, the data provider 704a may apply a mapping between the
standardized query format and the data source-specific query format. Such mapping may include adjustments
to syntax or format that convert the query parameters expressed in the standardized query 709 into
substantively equivalent parameters in the data source-specific query format. In some embodiments, extracting
the query parameters and generating the data source-specific query may be combined, such that the data
provider 704a directly maps the query parameters indicated by the standardized query to parameters or
elements of the data source-specific query. As discussed above, the data source-specific query may be
generated to return data points having timestamps corresponding to integer multiples of the period of the

sampling rate at or following the start time within each timeframe indicated by the standardized query 709.

[0477] Once the data source-specific query has been generated, the data provider 704a may execute the
data source-specific query to obtain the requested data from the data source 702a (block 768). In some
embodiments, the data provider 704a may send a request to execute the data source-specific query to the data
source 702a, and the data source 702a may execute the data source-specific query and return the resulting data
to the data provider 704a. Alternatively, the data provider 704a may serve as an interface or execution engine
for the data source 702a, in which case the data provider 704a may execute the data source-specific query

according to the rules of the data source-specific query format to access, analyze, and select data stored in the

104

data source 702a. Regardless of whether the data source-specific query is executed by the data provider 704a
or the data source 702a, the resulting data from execution of the data source-specific query is obtained by the

data provider 704a.

[0478] In some embodiments, the data provider 704a may format the data obtained by execution of the query
based upon the standardized query 709 (block 770). The data provider 704a may thus process the obtained
data to format the obtained data to correspond to requirements for the data expressed in the standardized query
709. This may include generating a data frame from the obtained data that includes the obtained data in a
format that may be readily used by the query execution service 7086, including applying data format rules and
data aliases to the obtained data. For example, the standardized query 709 may specify that the data is to be
provided in a document using a JSON file. Similarly, the standardized query may specify that the data is to be
returned to the data requesting entity in a tabular format or that the data values are to be formatted as floating
point numbers with three digits following the decimal point. Although these formatting requirements may be
specified in the standardized query 709, some or all of the formatting requirements may be specified by the
standardized query format (or version thereof). In this manner, the standardized queries employing the
standardized query format (or version thereof) will always return data in a consistent format. As discussed
above, formatting the obtained data may include adjusting or aligning the times of the data points to have
timestamps corresponding to integer multiples of the period of the sampling rate at or following the start time
within each timeframe indicated by the standardized query 709. This may further include adding data points with

appropriate timestamps or removing excess data points occurring at times between the desired sample times.

[0479] Once the obtained data has been formatted, the data provider 704a provides the formatted data to the
data receiving entity (block 772). The data provider 704a may transmit a data frame in the requested format or
any known format to the query execution service 706 for further analysis. In further embodiments, some or all of
the formatting of the obtained data may instead be performed by the query execution service 706 after the data
provider 704a sends the unformatted or partially formatted data obtained from execution of the data source-
specific query to the query execution service 706. When the data has been received by the data requesting
entity and formatted, the formatted data may be used in process plant control or analysis, as discussed
elsewhere herein. In some embodiments, the query execution service 706 may further provide the data frame to

another data receiving entity, such as the query block 708 or a job process 508.

[0480] Generally, any or all portions of the data sources 702a-f, the data source providers 704a-d, and the
query block 708, as well as the query language utilized to obtain from the variably-formatted data sources 702a-
f, may operate in conjunction with any or all portions of FIGS. 1, 2, 3, 4A-4Q, and/or 5A-5G, and/or with any
number of features and/or techniques described in the sections of the present disclosure respectively
corresponding to FIGS. 1, 2, 3, 4A-4Q, and/or 5A-5G.

FREQUENCY ANALYSIS ANALYTICS TECHNIQUE FOR EARLY WARNING FAULT DETECTION

[0481] A novel data analytics technique or function (e.g., that may be provided by the distributed industrial
process performance monitoring/analytics system or DAS 100) is a frequency analysis analytics technique or

function for early warning fault detection in process control systems or plants, such as the process plant 5. Said

105

novel frequency analysis analytics technique or function is referred to herein as a “rolling fast Fourier transform”
or “rolling FFT,” and may be utilized in conjunction with any of the systems, architectures, methods, and
techniques described herein. For example, a data block definition for the rolling FFT may be stored in the data
block definition library 252 and made available for users to utilize in data modules that are executed off-line
and/or that are executed on-line. Additionally or alternatively, one or more distributed data engines 102x may
execute a rolling FFT on data obtained at the one or more DDEs 102x. A rolling FFT, though, is not limited to
only be used in conjunction with the systems, architectures, methods, and techniques described herein, and may
be utilized in conjunction with any system, architecture, method, and/or technique that generates time-series
data. As will be shown below, the rolling FFT analytic technique or function is a combination of both descriptive

and predictive analytics.

[0482] Generally, in a process control system or plant, abnormalities, faults, decreases in performance, and/or
other undesired or undesirable conditions may be prevented (or their impact may be minimized) if process data
that provides leading indications of future process plant behavior can be discovered, preferably in a time frame
that allows for preventative or mitigating actions to take place. Such process data may include measurement
data, for example, of pressures, temperatures, and flow rates of material moving through the plant, and similar
information for pieces of equipment. Such process data may also include, for example, the chemical
composition of process flow streams and on/off states of equipment. Generally, process data to which a rolling
FFT may be applied may include any on-line and off-line time-series data that is generated as a result of
controlling a process within a process plant, and that is obtained in any suitable manner, e.g., by sampling,
receiving a data stream, reading from a database, data file, data source (e.g., Seeq system), or historian,

querying, etc.

[0483] One technique of finding leading indicators in a process plant includes analyzing the behavior of the
process data over time. The behavior may change for many reasons, but in some scenarios, the changes may
be associated with process upsets that lead to abnormalities, faults, decreases in performance, and/or other
conditions, and as such may be considered to be leading indicators of such conditions. The rolling FFT
technique described herein converts a first set of time-series data corresponding to the leading indicators into
the frequency domain and subsequently generates a second set of time-series data based on the frequency
domain data, which may then be monitored and used to predict the occurrence of abnormalities, faults,

decreases in performance, and/or conditions in the process plant.

[0484] Conventionally, process data from the process plant may be collected, received, or otherwise obtained
to use as input into frequency analysis techniques. The data may be any data related to existing process signals
found in the process plant, such as temperatures, flows, pressures, compositions, and/or other continuous
signals that are generated as a result of operating the process plant to control a process. Conventionally, an
FFT is performed on the obtained process data to identify amplitudes of important frequencies therein by using a
fixed window (e.g., a specific number of data points), which is usually based on a power of 2 (e.g., 219 = 1024).
Modern computation methods allow this window of data to have a user defined length, however, the length is
often limited by the amount of available computer memory. The number of samples and sampling frequency in

an FFT must also meet the Nyquist criteria of having at least two samples per the fastest frequency of interest.

106

Further, the conventional FFT should operate on several cycles of the periodic behavior of the desired data

signal.

[0485] In many conventional applications of FFT applied to process data, though, it is assumed that the signal
of interest does not change over time. However, the rolling FFT is not constrained by this assumption. Indeed,
a “rolling” type FFT advantageously is able to capture the changes to a signal over time to identify when those
changes to the signal over time occur. In particular, the rolling FFT includes performing an FFT on a window of
data generated by a signal or variable of interest (such as a measurement, sensed value, or other signal
generated as a result of the process plant) and recording the amplitudes (e.g., the peak amplitudes) of the
frequencies for that window. The window is then moved one sample forward in time and the FFT is again
performed with the results being recorded or saved. This continues until the end of the time-series data.
Because an FFT is performed for every sample time in the data set (except for, in some cases, the first n-1
samples where n is the number of samples in the window), one or more new time-series data sets comprising
the amplitudes (e.g., the peak amplitudes) of one or more frequencies of interest is created or generated. Each
frequency of interest may correspond to a respective new process variable of the process plant that generates
the respective time-series data corresponding to the amplitudes (e.g., to the peak amplitudes) of the frequency
of interest. The time-series data generated by each new process variable may be stored, monitored, and/or

analyzed to predict possible abnormal, fault, or other conditions in the process plant.

[0486] Thus, for a signal or variable of interest, one or more new process variables corresponding to
predicting undesired process plant conditions may be created, generated, and utilized within the process plant.
A signal or variable of interest may be an individual signal or measurement point, or may be a combination (e.g.,
a sum or other combination) of the signals or measurement values of the individual signals/points. A variable of
interest may be defined by a user, or may be automatically determined by a data block, data module, and/or

data analytic function.

[0487] As discussed above, the process of determining the set of new time-series data sets involves
converting the signals or variables of interest from the time domain to the frequency domain, obtaining frequency
domain data, and transforming the obtained frequency domain data to determine the time-series data
corresponding to the new process variables. The conversion or transformation back to the time domain is
significant, as this allows the new time-series data sets to be viewed along with the original process data signal
and/or other time-series process data. As such, the new time-series data may be explored by using the same
analytics techniques (e.g., statistical analysis, PCA, standard deviations, etc.) that are available for use on the
data generated by the original signals or variables of interest and/or other process data and, in some situations,
may be analyzed in conjunction with the original process data and/or other process data. For example, both the
new time-series data and the original/other process data may be provided as inputs into a Transformers data
block 521.

[0488] To illustrate an example of a rolling FFT analytic technique and its benefits, consider an example
scenario in which a rolling FFT is applied to the problem of detecting potential flare events in a process plant,
such as a refinery or chemical plant. In general, some process plants have flaring systems that collect excess

vapors from individual process units and burn the collected excess vapors prior to their release to the
107

atmosphere to remove toxic chemicals. This burning of excess vapors or gases is generally referred to as a
“burn off” or a “flare event.” In some scenarios, instead of being burned off, the flare gas is compressed and
reused as feedstock or fuel gas, however, when the capacity of the flare gas compressor is exceeded, a flare
event will occur so that the excess material is released through a flare burner. Typically, the number and/or
frequency of flare events are governed by environmental and/or other types of regulations. While some planned
flare events are allowed and are necessary, a process plant provider or company may be fined when unplanned
flare events occur too frequently. Thus, it is desirable for a process plant provider or operator to be able to
predict that an unplanned flare event will or is likely to occur based on current operating conditions, and to be
able to obtain this prediction with sufficient lead time during which operators may take mitigating actions to

prevent the unplanned flare event from taking place.

[0489] This is a difficult problem to solve, as modern refineries and chemical plants are complex systems with
many interconnected units (e.g., tens or even hundreds of interconnected units), and each unit in itself can be
considered a large process plant. Normally, these units are connected to a common flare system. Because any
one of these units can be a potential source of the vapor that must be handled by the flare system, it can be
difficult to monitor which unit or units are near flare conditions. Further, once a flare does occur, it is not

immediately obvious which unit is responsible.

[0490] The rolling FFT technique described herein may be used to deal with this situation. FIG. 7A shows
example process data generated by a refinery to which a rolling FFT was applied. The example process data
includes a process flow measurement or signal 1100 obtained from a unit in the flare system of the refinery
during a particular time interval. As can be seen, the process flow signal 1100 is periodic in nature with the
period being approximately one day (e.g., as the periodicity may correspond to the daily heating and cooling
cycle). Additionally, the example process data includes another signal 1102 which is indicative of the flare
pressure of the flare system over the same particular time interval. The flare pressure is a measurement of the
collective vapors in the flare system, and this measurement may be obtained, for example, from a sensor of a
compressor or other vessel containing the excess gas and vapors. Note that in FIG. 7A, the signal data 1100
and 1102 are aligned in time and scaled so that their behavior and relationship over time is easily visualized. In
an embodiment, one or more data blocks, data modules, and/or one or more DDEs 102x receive the signal data
1100 and 1102 and perform the time alignment of the two signals 1100 and 1102 so the signals 1100 and 1102

can be displayed in the time-aligned manner shown in FIG. 7A.

[0491] FIG. 7B shows the same signals 1100 and 1102 for a different time interval during which a flare event
1104 in the signal 1102 has occurred (e.g., the flare pressure corresponding to signal 1102 has built up and
exceeded a pressure limit, thus causing the flare event 1104). Looking at FIG. 7B, it is apparent that the
behavior of the process flow signal 1100 changes prior to the flare event 1104. For example, the periodic
behavior of the process flow signal 1100 changes two to three days prior to the occurrence of the flare event
1104. The identification of the change in the process flow signal 1100 as a leading indicator for the flare event
1104 may be determined, for example, by using data analysis techniques such as PCA, cross-correlation, PLS
regression, etc. This change/leading indicator may be captured, identified, or defined; a new signal or process

variable corresponding to the identified change/leading indicator may be generated, defined, or created; and the

108

time-series output of the new process variable may be determined by utilizing a rolling FFT. Accordingly, by
monitoring the time-series data of the new process variable as determined by the rolling FFT for the presence of
a leading indicator, an impending flare may be determined, and a corresponding warning may be presented to a
user (e.g., an engineer, a process operator, etc.) so that preventative and/or mitigating actions may be taken. In
an embodiment, the newly defined process variable may be incorporated in the process control systems of the
refinery (e.g., by assigning a tag and/or otherwise causing process control databases to recognize the new
process variable), and may be monitored using traditional process control monitoring equipment and techniques.
As such, status and other information corresponding to the new process control variable may be presented to

the user just as any other item of process information with limits, alarms, trending charts, etc.

[0492] In an embodiment, a process flow signal that is utilized to predict a flare event is a combination (e.g., a
summation, a weighted average, or other suitable combination) of individual flows or measurements. FIG. 7C
shows an embodiment in which a process signal to which the rolling FFT analysis may be applied corresponds
to changes to a sum of individual process flow signals 1106. The sum signal 1106 may be created by adding up
the measurements of individual flow signals, in an example. Generating the sum 1106 or other desired
combination of signals reduces the number of new signals that need to be created and analyzed, which in turn
can simplify the overall analysis. However, there is no restriction on using a single process signal or some
combination of signals. FIG. 7C also simultaneously shows the flare pressure signal 1102 including flare events
1108 and 1110 during the displayed time interval. Note that the signals 1106 and 1102 are time-aligned, so that
inter-relationships are easily visualized. A change in the behavior of the sum of process flows 1106 can be seen
just prior to the flare event 1108, but for the flare event 1110, the change in the summed process flows 1106
occurs after the flare event 1110. Additional analysis of the relationship between the flow 1102 and the flow
1106 may be needed to determine whether or not (and if so, how) the behavior of the summed process flows

1106, e.g., over a larger time interval, by performing additional analytics functions, etc.

[0493] FIG. 7D shows the results 1112 of applying the rolling FFT technique to the signal 1106, which
transformed the sum of process flow signals 1106 from the original time domain into the frequency domain, and
then back to the time domain. In particular, the signal 1112 in FIG. 7D corresponds to the amplitudes (e.g., time-
series data) of a particular frequency of interest (e.g., the fourth frequency corresponding to four cycles per day)
of the signal 1106. The fourth frequency corresponding to four cycles per day has been defined as a new
process variable whose time-series peak amplitude values have been captured from corresponding frequency
domain data, and displayed in the time domain as the signal 1112 in conjunction with the flare pressure signal
1102. Note that the signals 1112 and 1102 are time-aligned, so that inter-relationships are easily visualized. As
seen in FIG. 7D, the particular peak amplitude 1113 of the signal 1112 is associated with the flare event 1108.
The data 1112 appears noisy, though, and contains what could be called false positives (e.g., events 1115a,
1115b). However, false positives are not overly concerning, as they may be used in an advisory capacity, and/or

may represent “near” flare events that were avoided.

[0494] To further process and clean the signal data 1112, additional data analysis techniques may be
performed. For example, in FIG. 7E, PCA has been applied to the frequency domain data of the fourth

frequency corresponding to four cycles per day to determine its first principal component, and the time-series

109

values of the first principal component is shown as the signal 1118. In particular, FIG. 7E shows a zoomed-in
view of the behavior of the first principal component 1118 during the time interval around the flare event 1108 of
the flare pressure signal 1102. Note that the signals 1118 and 1102 are time-aligned, so that relationships there
between are easily visualized. As can be seen in FIG. 7E, a spike in the value of the first principal component
1118 occurs well before the flare event 1108, and subsequently thereafter the value of the first principal
component 1118 decreases significantly. To capture this spike, a decaying filter may be used to retain the
signal 1118 for a period of time. In an embodiment, the decaying filter may be defined by a data block definition
and corresponding data block property that allow instances of the decaying filter to be tuned differently for each
application. For example, configurable properties of the decaying filter block may define the rate of increase
and/or the rate of decay of the signal. In some embodiments, additional principal components may be

determined and used to increase the sensitivity of the technique.

[0495] FIG. 7F shows a zoomed-in view of another portion of FIG. 7D. Specifically, FIG. 7F shows in more
detail the behavior of the first principal component 1118 during the time around the flare event 1110 of the flare
pressure signal 1102. In FIG. 7F, the value of the first principal component 1118 corresponding to the flare
event 1110 is smaller than for the flare event 1108, however, there is still a significant difference in values when

compared to the baseline.

[0496] The technique of using the rolling FFT analytic to detect leading indicators in process control data may
be used in off-line analysis and data model building efforts. However, once the new process variables (e.g.,
frequencies, principal components, and/or other higher-order data of interest) are identified and defined, the
rolling FFT analytic may be performed on streaming real-time data from the on-line process plant. For example,
the rolling FFT may be defined as a data block and stored in the block definition library 252 so that instances of
the rolling FFT data block may be incorporated into on-line data modules and bound to on-line sources within the
process plant. Accordingly, the live, streaming data operated on by the rolling FFT analytic may provide real-
time predictions/warnings of an impending condition to a user or plant operator. In some embodiments, a user
may define a combination data block to include a rolling FFT data block interconnected to other analytics
function blocks (e.g., PCA, PLS, and/or other analytics function blocks). Additionally, a user may define a data
block that combines (e.g., sums, calculates a weighted average, etc.) multiple process signals into a single
signal to utilize as an input into a rolling FFT data block and/or into a combination block including a rolling FFT
data block.

[0497] Thus, the rolling FFT data analytics technique is an example of a descriptive analytics technique that

may be utilized for off-line process data and for on-line process data.

[0498] In some embodiments, the new process variables corresponding to the rolling FFT analytic technique
may be incorporated into the process plant. For example, the new process variables may be defined, identified
(e.g., by assigning respective process control tags), and stored in a process control database of the process
plant. In an embodiment, the time-series data generated by the new process variable may serve as an input to a
control function or control block that operates to control a portion of process in the process plant, or may serve

as a trigger for a change in the process plant.

110

[0499] Further, aside from detecting potential flare events, other situations in which rolling FFTs may be
applied to prevent undesired conditions or events include warning of potential pressure relief valve lifting,
potential compressor surge, impending pump failure, impending valve failure, flow instabilities such as flooding in
distillation columns, failures in rotating crushing mills, oil and gas well production instabilities, etc. In some
scenarios, rolling FFTs may be applied to prevent undesired performance measures of one or more entities

within the process plant or even of the process plant as a whole.

[0500] FIG. 7G shows a flow diagram of an example method 1200 for providing early fault detection in
process plants and process control systems. One or more portions of the method 1200 may be performed by a
data block in the block definition library 252, for example. One or more portions of the method 1200 may be
performed by one or more portions of the industrial process performance monitoring/analytics system 100, e.g.,
by one or more DDEs 102x, by an off-line data module, by an on-line data module, etc. Of course, one or more
portions of the method 1200 may be performed by systems, devices, and apparatuses other than those of the
data analytics system 100 described herein. In some embodiments, the method 1200 may include more, less, or

different steps other than that described herein.

[0501] At a block 1202, the method 1200 may include receiving or obtaining an initial set of process signals or
data generated as a result of a process plant controlling a process. The initial set of process signals may
include time domain data generated by one or more process control devices operating to control a process in the
process plant, and/or may include time domain data generated by one or more other components, devices, or
entities within the process plant as a result of controlling the process (e.g., first-order process data generated by
various data sources within the process plant). For example, the initial set of process signals may include values
of process measurements over time, such as of temperatures, flows, pressures, compositions, states, etc. In
some embodiments, the obtained initial set of process signals or data may include second- or higher-order
process data over time that is generated as a result of the process plant controlling the process, such as
diagnostic results, a series of operator or user actions, an available bandwidth of a link or process
communication network, a result of a data analytic, etc. The obtained initial set of process signals may include

off-line process data and/or on-line process data, for example.

[0502] At a block 1204, the method 1200 may include determining, based on the obtained initial set of
process signals, a leading indicator of an abnormality, a fault, a decrease in performance, or other
undesired/undesirable condition occurring (or that has occurred) within the process plant. For example, the
leading indicator may be a change in the behavior of one or more process control signals that occurs prior to the
occurrence of the abnormality, fault, decrease in performance, and/or other condition, such as a spike in a peak
amplitude of a particular frequency of a particular process control signal (e.g., the spike 1104 shown in FIG. 7B).
In an embodiment, the leading indicator may be determined by using one or more statistical analytics techniques
on one or more of the obtained initial set of process signals, such as PCA, PLS regression, clustering, cross-
correlation, etc. One or more off-line and/or on-line data blocks and/or data modules of the data analytics
system 100 may operate on one or more obtained process signals to determine one or more leading indicators

of the abnormality, fault, decrease in performance, and/or other condition, in an embodiment.

111

[0503] At a block 1206, the method 1200 may include creating, defining, or generating a set of one or more
new process variables corresponding to the leading indicator. In an embodiment, a new process variable
corresponding to a particular change in the behavior of a particular signal may be created, defined, or generated.
For example, a frequency of interest (e.g., the frequency of the signal 1106 of FIG. 7C) in which the leading
indicator may occur may be identified and created/generated as a new process variable. In some embodiments,
generating the set of one or more new process variables (block 1206} includes defining/identifying/generating a
first new process variable corresponding to the leading indicator (e.g., the change to the signal 1106 of FIG. 7C),
and subsequently performing one or more analytics techniques on the time-series data generated by the first
new process variable (either alone or in combination with other time-series data generated by other process
variables) to determine another new process variable associated with the leading indicator. For example,
referring to FIG. 7D, a PCA was applied to the frequency domain data corresponding to the signal 1106 of FIG.
7C to determine a first principal component, and the first principal component was identified/defined as another

new process variable whose values over time are represented in FIG. 7C by the signal 1112,

[0504] In some implementations of the block 1206, one or more off-line and/or on-line data blocks and/or data
modules of the data analytics system 100 may operate to identify and create/define/generate the one or more
new process variables corresponding to the leading indicator. The one or more new process variables may be

tagged and/or stored within the process plant or process control system, in some cases.

[0505] Ata block 1208, the method 1200 may include obtaining a subsequent set of process signals (e.g., in a
manner similar to that of block 1202) and performing a rolling FFT thereon to determine time-series data
corresponding to the one or more new process variables. The subsequent set of process signals may include
off-line and/or on-line signals, for example. To perform the rolling FFT thereon, an FFT may be performed on a
first window of data of the subsequent set of process signals and the values of the peak amplitudes of the
frequencies therein may be saved as time-series data, an FFT may be performed on a second window of data
and the values of the peak amplitudes of the frequencies therein may be saved as time-series data, and so on,
thereby generating respective time-series data for one or more frequencies of interest included within the
subsequent set of process signals. For example, when a particular frequency of interest of a particular process
signal corresponds to a new process variable, a rolling FFT may be applied to the subsequent set of process
signals to obtain the behavior of the particular frequency of interest within the subsequent set of process signals
over time, e.g., to obtain time-series data comprising peak amplitude values generated by the new process
variable over time. In situations in which analytics techniques were performed to identify new process variables
(e.g., the new process variable corresponds to the first principal component of the frequency domain data
corresponding to the signal 1106 as discussed above), the one or more analytics techniques may also be
applied at the block 1208 to determine the time-series data of such new process variables. The block 1208 may
be performed by one or more portions of the data analytics system 100, such as by one or more on-line and/or

off-line data blocks and/or data modules, in an embodiment.

[0506] At a block 1210, the method 1200 may include monitoring the time-series data generated by the one or
more new process variables (e.g., as obtained at the block 1208) for the presence of the leading indicator. For

example, when the peak amplitude of a particular frequency of interest exceeds a magnitude and/or duration

112

threshold, the presence of the leading indicator may be detected. In an embodiment, the new process variable
is identified by a respective tag or other indicator and is incorporated into the process plant, and as such, the
monitoring of its time-series data values (block 1215) may be performed by fault detection, alarm handling,
and/or other monitoring applications of the process plant. Additionally or alternatively, the monitoring of the time-
series data (block 1215) to detect the presence of the leading indicator may be performed by the data analytics

system 100.

[0507] At a block 1212, the method 1200 may include generating an indication that a fault, abnormality, event,
decrease in performance, undesired condition, and/or desired condition, etc. is predicted to occur based on a
detected presence of the leading indicator discovered during the monitoring at the block 1210. In some cases,
the block 1212 includes generating an indication of a time frame during which said condition is predicted to
occur. For example, a trend chart, an alarm, an alert, and/or other visual or auditory indicator may be generated
and presented by a user interface to warn a user or operator of impending abnormalities, faults, decreases in
performance, and/or other conditions in the process plant based on the presence of leading indicators in

obtained time-series data.

[0508] In some embodiments (not shown in FIG. 7G), the method 1200 may include causing a signal (such as
a control signal or other signal indicative of a change) to be generated and provided to the on-line process plant
based on the detected presence of the leading indicators. For example, the data analytics system 100 may
automatically generate one or more control signals based on the detected presence of a leading indicator in the
monitored data (block 1210), and may automatically provide the one or more control signals to one or more
controllers to change the behavior of at least a portion of the process control plant. Other signals that may be
provided to the on-line process plant to effect a change therein include, for example, a trigger or a signal
indicative of a change to a parameter, a value, a configuration, and/or a state (e.g., of a piece of equipment,

device, routine, or application, etc.), or to an application executing within or in conjunction with the process plant.

[0509] In some embodiments (not shown in FIG. 7G), the method 1200 may include causing one or more
signals to be generated and provided to the data analytics system 100. For example, the method 1200 may
include providing, to the data analytics system 100, an indication of the new process variables and their
respective identifiers, an indication of determined leading indicators, the identities and sequences of various
analytic techniques performed on the time-series data (and on higher order data generated therefrom, such as
the output of various analytics techniques applied thereto) to determine additional new process variables, the
monitored time-series data generated by the new process variables, the presence of leading indicators therein,
etc. Generally, the method 1200 may include causing any data generated by execution of the method 1200 to
be provided to the data analytics system 100. In an embodiment, the one or more signals provided to the data

analytics system 100 may be streamed data.

[0510] Of course, the method 1200 is not limited to the blocks 1202-1212. In some embodiments, additional
blocks may be performed by the method 1200, and/or some of the blocks 1202-1212 may be omitted from the
method 1200. Further, embodiments of the method 1200 may operate in conjunction with any or all portions of
FIGS. 1, 2, 3, 4A-4Q, 5A-5G, and 6A-6E, and/or with any number of features and/or techniques described in

other sections of the present disclosure.
113

[0511] In view of the above, one who is familiar with the evolution of process control systems over time, e.g.,
from centralized process control systems in which control and other processing was performed more or less
centrally, to next generation distributed control systems (DCS) in which control and other processing was
distributed amongst multiple controllers throughout a plant, will recognize that the novel Distributed Analytics
System (DAS) 100 and associated industrial process performance monitoring and analytics methods, devices,
apparatuses, components, and techniques described herein provides a similar leap into the next generation of
process control performance monitoring and analytics. For example, rather than performing targeted, narrowly-
focused analytics at an operator work station of a process control system, off-line at an analytics facility, or by
using rudimentary analytics tools, the distributed analytics system 100 and associated methods, devices,
apparatuses, components, and techniques disclosed herein allow for comprehensive performance monitoring
and real-time analytics that is distributed throughout the plant and even at corporate and/or enterprise levels in a
manner similar to that of distributed control systems (see, e.g., FIG. 2B) so that real-time descriptions,
predictions, and prescriptions related to current operations of the process plant are constantly available.
Additionally, the modular, distributed architecture of the DAS 100 enables performance and analytics functions
to be embedded as close to or as far away from data sources of the process plant and/or process control system
as desired, and allows additional DDEs 102x to be added to the DAS 100 as or when desired (e.g., for more
localized processing horsepower, to provide analytics at a particular region or location of the plant 5, when the
plant 5 expands, etc). Further, as explained above, the DAS 100 allows for the design, definition, deployment,
and monitoring of data modules to be partitioned or separated from the environments and platforms in which
they are executing, thereby freeing up a data engineer or user from having to be concerned with coding and
compilation of analytics and data modules/models at all. Still further, this separation allows for greater flexibility

and seamless migration to different target environments.

[0512] When implemented in software, any of the applications, services, and engines described herein may
be stored in any tangible, non-transitory computer readable memory such as on a magnetic disk, a laser disk,
solid state memory device, molecular memory storage device, or other storage medium, in a RAM or ROM of a
computer or processor, etc. Although the example systems disclosed herein are disclosed as including, among
other components, software and/or firmware executed on hardware, it should be noted that such systems are
merely illustrative and should not be considered as limiting. For example, it is contemplated that any or all of
these hardware, software, and firmware components could be embodied exclusively in hardware, exclusively in
software, or in any combination of hardware and software. Accordingly, while the example systems described
herein are described as being implemented in software executed on a processor of one or more computer
devices, persons of ordinary skill in the art will readily appreciate that the examples provided are not the only

way to implement such systems.

[0513] Thus, while the present invention has been described with reference to specific examples, which are
intended to be illustrative only and not to be limiting of the invention, it will be apparent to those of ordinary skill
in the art that changes, additions or deletions may be made to the disclosed embodiments without departing

from the spirit and scope of the invention.

114

[0514] The particular features, structures, and/or characteristics of any specific embodiment may be combined
in any suitable manner and/or in any suitable combination with one and/or more other embodiments, including
the use of selected features with or without corresponding use of other features. In addition, many modifications
may be made to adapt a particular application, situation and/or material to the essential scope or spirit of the
present invention. It is to be understood that other variations and/or modifications of the embodiments of the
present invention described and/or illustrated herein are possible in light of the teachings herein and should be
considered part of the spirit or scope of the present invention. Certain aspects of the invention are described

herein as exemplary aspects.

[0515] When used in this specification and claims, the terms "comprises" and "comprising" and variations
thereof mean that the specified features, steps or integers are included. The terms are not to be interpreted to

exclude the presence of other features, steps or components.

[0516] The features disclosed in the foregoing description, or the following claims, or the accompanying
drawings, expressed in their specific forms or in terms of a means for performing the disclosed function, or a
method or process for attaining the disclosed result, as appropriate, may, separately, or in any combination of

such features, be utilised for realising the invention in diverse forms thereof.

116

ASPECTS:

1. A performance monitoring and analytics system for industrial process control, the system
comprising:

a platform including a set of user controls and a canvas via which a user is able to create a data diagram
that is representative of a data model and compile the data diagram to execute on an input data set to generate
output data, the input data set comprising time-series data resulting from an on-line process plant controlling a
process, wherein:

the data diagram comprises a set of data blocks interconnected by a set of wires via which data
is transferred between data blocks;

each data block of the set of data blocks corresponds to a respective data operation and
includes an input connector via which respective input data is received at the data block and at least one
output connector providing respective output data resulting from the data block performing a respective
data operation on the respective input data;

the input data set is received at the input connector of a first data block of the set of data blocks,

the respective data operation of at least one data block of the set of data blocks includes a data
analytic function, and

a first portion and a second portion of the data diagram are asynchronously and separately

compilable and executable.

2. The system of aspect 1, wherein each data block is asynchronously and separately compilable.

3. The system of aspect 1 or 2, wherein the output data generated by the data model comprises at

least one value that is descriptive or characteristic of the input data set.

4, The system of any preceding aspect, wherein the output data generated by the data model

comprises at least one predictive value.

5. The system of aspect 4, wherein the at least one predictive value is indicative of a predicted
level of performance of at least a portion of the on-line process plant, is indicative of a predicted fault or failure of

at least a portion of the on-line process plant, or is indicative of a predicted interval of time.

6. The system of any preceding aspect, wherein the output data generated by the data model
comprises at least one value that is prescriptive and corresponds to a change to the on-line process plant,
wherein the change to the on-line process plant comprises a change to at least one of: a set point, a value, a

control loop, a configuration, a process model, a connection, a component, or a piece of equipment.

7. The system of any preceding aspect, wherein the set of user controls includes a first user

control to access a data block definition library storing a plurality of data block definitions corresponding to a
116

plurality of data operations, and wherein each of one or more of the data blocks of the set of data blocks of the

data diagram is a particular instance of a particular data block definition stored in the data block definition library.

8. The system of aspect 7, wherein the particular instance of the particular data block definition

comprises an assigned name or identity of the particular instance.

9. The system of aspect 7, where the particular instance of the particular data block definition

comprises a user modification to a value of a property of the particular data block definition.

10. The system of any preceding aspect, wherein the set of user controls includes a first user
control to access a data block definition library storing a plurality of data block definitions corresponding to a
plurality of data operations, and wherein each of at least some of the data block definitions stored in the data

block definition library includes one or more respective properties.

11. The system of aspect 10, wherein a value of at least one of the one or more respective

properties is a default value.

12. The system of aspect 10 or 11, wherein one or more of the one or more respective properties is

an optional property.

13. The system of any preceding aspect, wherein a second user control, when activated, causes an

evaluation of at least a part of the data diagram.

14. The system of aspect 13, wherein the at least the part of the data diagram is selected by the

user.

15. The system of aspect 13 or 14, wherein the evaluation of the at least the part of the data
diagram comprises a compilation of the at least the part of the data diagram and an execution of the compilation

of the at least the part of the data diagram.

16. The system of any preceding aspect,
wherein the set of data blocks of the data diagram comprises one or more of the following: a data source
data block, a filter data block, a transformers data block, a visualizations data block, a data consumer data block,
or another type of data block; and
wherein at least one of:
the respective data operation of the data source data block corresponds to obtaining the input
data set;
the respective data operation of the filter data block comprises filtering the respective input data
of the filter data block;

117

the respective data operation of the transformers data block comprises at least one of: cleaning
the respective input data of the transformers data block, manipulating contents of the respective input
data of the transformers data block, aligning the contents of the respective input data of the transformers
data block, or performing one or more analytic techniques on the respective input data of the
transformers data block;

the respective data operation of the visualizations data block comprises presenting a particular
visual representation of the respective input data of the visualizations data block on a user interface of
the platform; or

the respective data operation of the data consumer data block comprises performing an action
on the output data of the data model, the action corresponding to a consumer of the output data of the

data model.

17. The system of aspect 16, wherein the consumer of the output data of the data model comprises
at least one of: an analytics application, another type of application, a distributed data engine (DDE), a data

historian, a file, a database, the user interface of the platform, or another user interface.

18. The system of aspect 16 or 17, wherein:

the another type of data block comprises an explore data block;

the explore data block includes a first input connector to receive a predicted value from a first other data
block and a second input connector to receive an actual value from a second other data block; and

the respective operation performed by the explore data block comprises a comparison of the predicted

value and the actual value.

19. The system of any preceding aspect, wherein at least one wire of the set of wires of the data
diagram connects a respective data block to an off-line data source in which the time-series data is stored, the
off-line data source comprises at least one of: a file, a process control database, and analytics database, or

another type of database.

20. The system of any preceding aspect, wherein each data block of the data diagram includes an
indication of a respective block state of the respective data block, an indication of an identity of the respective
data block, and an indication of a result of an evaluation of the respective data block, and wherein the evaluation
of the respective data block comprises a compilation of the respective data block and an execution of the

compilation of the respective data block.

21. The system of aspect 20, wherein the indication of the result of the evaluation of at least one

data block of the set of data blocks comprises one or more graphical visualizations.

22. The system of aspect 20 or 21, wherein the indication of the result of the evaluation of at least

one data block of the set of data blocks comprises a respective set of computed statistics.

118

23. The system of any preceding aspect, wherein each data block of the data diagram performs a

time alignment of respective received input data of the respective data block.

24, The system of any preceding aspect, wherein the respective output data provided by each data
block of the data diagram includes at least one of: a single data value, a set of data values, or another data

diagram.

25. The system of any preceding aspect, wherein:

the data diagram is an off-line data diagram, and

a third user control, when activated, causes a transformation of the off-line data diagram of the data
model into an on-line data diagram of the data model, the on-line data diagram of the data model configured to

communicatively connect to the on-line process plant.

26. The system of aspect 25, wherein a set of data blocks and a set of wires of the on-line data

diagram is different from the set of data blocks and the set of wires of the off-line data diagram.

27. The system of aspect 25 or 26, wherein:

an activation of a fourth user control causes a deployment of the on-line data diagram, and

the deployment of the on-line data diagram comprises a compilation of the on-line data diagram and an
execution of the compilation of the on-line data diagram to generate an on-line data analytics module of the data

model.

28. The system of aspect 27, wherein the on-line data analytics module is executed by one or more

distributed data engines (DDEs) of a plurality of DDEs of a data analytics network of the on-line process plant.
29. The system of any of aspects 25 to 28, wherein the configuration of the on-line data diagram to
communicatively connect to the on-line process plant comprises a binding of the on-line data diagram to a live

data source that generates the time-series data resulting from the on-line process plant controlling the process.

30. The system of aspect 29, wherein the platform automatically binds the on-line data diagram to

the live data source.

31. The system of aspect 29 or 30, wherein the on-line data diagram is bound to the live data

source based upon an activation of a fifth user control.

32. The system of any of aspects 29 to 31, wherein the live data source is a process control device

operating to control the process.

119

33. The system of aspect 32, wherein the process control device operates to control the process by
receiving an input signal, determining an output signal based on the received input signal, and transmitting the

output signal over a process control communication network to another process control device.

34. The system of aspect 32 or 33, wherein the process control device operates to control the
process by receiving an input signal and performing a physical function corresponding to a flow of the on-line

process plant based on the received input signal.

35. The system of any of aspects 29 to 34, wherein the time-series data generated by the live data
source comprises a continuous data stream that is continuously received at an on-line data analytics module in
real-time via a data analytics network of the on-line process plant, the on-line data analytics module generated

from a compilation of the on-line data diagram of the data model.

36. The system of aspect 35, wherein the data analytics network is overlaid over all process control

communication networks of the on-line process plant.

37. The system of aspect 35 or 36, wherein the continuous data stream is continuously received at
the on-line data analytics module from a distributed data engine (DDE) of a plurality of DDEs of the data

analytics network.

38. The system of any of aspects 35 to 37, wherein the on-line data analytics module continuously
performs, in real-time, one or more analytics functions on the continuously received data stream, and generates,

in real-time, a continuous output.

39. The system of aspect 38, wherein the continuous output generated by the on-line data analytics

module comprises one or more predictive values.

40. The system of aspect 38 or 39, wherein the continuous output generated by the on-line data

analytics module is displayed in real-time on a user interface as a graphical visualization.

41, The system of any of aspects 38 to 40, wherein the continuous output generated by the on-line

data analytics module is displayed in real-time on a user interface in conjunction with a stream of actual values.

42, The system of any of aspects 38 to 41, wherein an indication of an accuracy of the data model is
displayed on a user interface in conjunction with the continuous output of the on-line data analytics module
corresponding to the data model, and wherein the accuracy of the data model is based on a comparison of the
continuous output of the on-line data analytics module and one or more actual values generated by the on-line

process plant.

120

43. The system of any of aspects 38 to 42, wherein the one or more analytics functions performed

on the continuous data stream comprise a predictive analytics function or a prescriptive analytics function.

44, The system of any of aspects 38 to 43, wherein the continuously received data stream is

cleaned prior to the on-line data analytics module performing the one or more analytics functions thereon.

45, The system of any of aspects 38 to 44, wherein at least some of the contents of the continuously
received data stream are manipulated prior to the on-line data analytics module performing the one or more

analytics functions thereon.

46. The system of any of aspects 38 to 45, wherein the on-line data analytics module continuously
performs, in real-time, the one or more analytics functions on the continuously received data stream and another
data stream, and wherein the another data stream is generated by at least one other data source as a result of

the on-line process plant controlling the process.

47. The system of aspect 46, wherein the online data analytics module time-aligns the continuously
received data stream and the another data stream.

48. The system of any of aspects 35 to 47, wherein the continuous data stream is a selected data

stream based on a user selection.

49, The system of any of aspects 35 to 48, wherein the continuous data stream is generated based
on a query issued by the on-line data analytics module indicating one or more particular portions of data that is

generated in real-time by the live data source and that is to be included in the continuous data stream.

50. A system for monitoring operation of a process plant that is operating to control a process,
comprising:

a data analytics module bound to a continuous data stream having contents that are generated (i) in
real-time by a data source included in the process plant while it is operating to control the process, and (ii) as a
result of the operations to control the process; and

a user interface displaying a continuous output generated in real-time by the data analytics module
operating in real-time on the continuous data stream, the continuous output including a continuous update of one

or more predicted values.
51. The system of aspect 50, wherein the one or more predicted values are indicative of a predicted

performance of at least a portion of the process plant, a predicted fault or failure of at least a portion of the

process plant, or a predicted time interval corresponding to at least a portion of the process plant.

121

52. The system of aspect 50 or 51, wherein the data source is a process control device operating to
control the process by receiving an input signal, determining an output signal based on the received input signal,
and transmitting the output signal over a process control communication network to another process control

device.

53. The system of any of aspects 50 to 52, wherein the data source is a process control device
operating to control the process by receiving an input signal and performing a physical function corresponding to

a flow of the process plant based on the received input signal.

54, The system of any of aspects 50 to 53, wherein the continuous update of the one or more
predicted values is presented in conjunction with a continuous update of one or more actual values generated by
the process plant while controlling the process in the process plant, the one or more actual values corresponding

to the one or more predicted values.

55. The system of any of aspects 50 to 54, wherein the user interface further displays an indication
of an accuracy of the data analytics module, the indication of the accuracy based upon a comparison of the one
or more predicted values and one or more actual values generated by the process plant while controlling the

process.

56. The system of any of aspects 50 to 55, wherein the operation of the data analytics module on
the continuous data stream includes performing at least one data analytic function on the continuous data
stream, including at least one of: a descriptive analytic function, a predictive analytic function, or a prescriptive

analytic function.

57. The system of aspect 56, wherein the operation of the data analytics module on the continuous
data stream includes at least one of: a cleaning of the continuous data stream prior to performing the at least
one data analytic function or a manipulation of the contents of continuous data stream prior to performing the at

least one data analytic function.

58. The system of aspect 56 or 57, wherein the at least one data analytic function is performed on
the continuous data stream and on at least one other data stream, wherein the contents of the at least one other
data stream are generated by at least one other data source as a result of the operations to control the process

in the process plant.

59. The system of aspect 58, wherein the data analytics module aligns the continuous data stream

and the at least one other data stream in time.

60. The system of any of aspects 50 to 59, wherein the continuous data stream is a selected data

stream, and wherein the selected data stream is based on a user selection.

122

61. The system of any of aspects 50 to 60, wherein the continuous data stream is generated based

on a query issued by the data analytics module.

62. The system of aspect 61, wherein the query issued by the data analytics module indicates one
or more particular portions of data that is generated in real-time by the data source and that is to be included in

the continuous data stream.

63. The system of any of aspects 50 to 62, wherein the data analytics module is executed by one or

more distributed data engines (DDESs) of a data analytics network of the process plant.

64. The system of any of aspects 50 to 63, wherein the data analytics module is an on-line data
analytics module transformed from an off-line data analytics module that was created by a user via a data

analytics user interface application.

65. The system of aspect 64, wherein:

the on-line data analytics module is a compilation of an on-line data diagram displayed on the user
interface;

the off-line data analytics module is a compilation of an off-line data diagram displayed on the user
interface; and

the on-line data diagram is a transformation of the off-line data diagram.

66. The system of aspect 65, wherein the off-line data diagram comprises a respective set of data

blocks interconnected by a respective set of wires via which data is transferred between data blocks.

67. The system of aspect 66, wherein the data source is an on-line data source, and at least one
wire of the respective set of wires of the off-line data diagram interconnects a respective data block to an off-line

data source.

68. The system of aspect 66 to 67, wherein:

the respective set of data blocks of the off-line data diagram comprises one or more of a data source
data block, a filter data block, a transformers data block, a visualizations data block, a data consumer data block,
or another type of data block; and

each data block of the respective set of data blocks of the off-line data diagram includes an input
connector via which respective input data is received at the data block, and at least one output connector via
which the data block provides respective output data resulting from the data block performing a respective

operation on the received, respective input data.

69. The system of aspect 68, wherein at least one of:

123

the respective operation of the data source data block corresponds to obtaining the received, respective
input data of the data source data block from an off-line data source;

the respective operation of the filter data block comprises a filtering technique;

the respective operation of the transformers data block comprises at least one of. cleaning the received
respective input data of the transformers data block, manipulating contents of the received respective input data
of the transformers data block, aligning the contents of the received respective input data of the transformers
data block, or performing one or more analytic techniques on the received respective input data of the
transformers data block;

the respective operation of the visualizations data block comprises presenting a respective visual
representation of the received respective input data of the visualizations data block on the user interface; or

the respective operation of the data consumer data block comprises performing an action on an output
of the off-line data analytics module, the action corresponding to a consumer of the output of the off-line data

analytics module.

70. The system of any of aspects 66 to 69, wherein:

each data block included in the set of data blocks of the off-line data diagram is a particular instance of a
respective data block definition stored in a data block definition library that is accessible to the data analytics
user interface application, and

each data block of the off-line data diagram includes at least one of; an indication of a respective block
state, an indication of an identity of the particular respective instance of the respective data block definition, or

an indication of a result of an evaluation of the respective data block.

71. The system of aspect 70, wherein:

the evaluation of the respective data block comprises a compilation of the respective data block and an
execution of the compilation of the respective data block,

each data block of the off-line data diagram performs a time alignment of respective received input data
of the each data block, or

the indication of the result of the evaluation of at least one data block of the set of data blocks of the off-

line data diagram comprises one or more graphical visualizations or a respective set of computed statistics.

72. The system of aspect 71, wherein a first portion and a second portion of the off-line data
diagram are asynchronously and separately evaluated, wherein the respective evaluation of each of the first

portion and the second portion comprises a respective compilation and execution.

73. The system of aspect 72, wherein each data block included in the set of data blocks of the off-

line data diagram is asynchronously and separately evaluated.

74. The system of any of aspects 66 to 73, wherein at least one data block of the set of data blocks

of the off-line data diagram is an explore data block that receives a predicted value from a first other data block

124

and receives another value from a second other data block, and performs an operation to generate a

comparison of the predicted value and the another value.

75. The system of aspect 74, wherein the on-line data analytics module excludes the explore data

block of the off-line data analytics module.

76. The system of any of aspects 65 to 75, wherein at least one data block of the off-line data
diagram includes a respective set of properties, wherein at least one property included in the respective set of
properties of the at least one data block includes a default value, and wherein at least one property included in
the respective set of properties of the at least one data block includes a value modified by a user, thereby
configuring the at least one data block as a particular instance of a particular data block definition stored in a

data block definition library that is accessible to the data analytics user interface application.

77. The system of any of aspects 66 to 76, wherein a first data block of the set of data blocks
included in the off-line data diagram is configured based on output data generated by an evaluation of a second
data block of the set of data blocks included in the off-line data diagram, wherein the evaluation of the second
data block comprises a compilation of the second data block and an execution of the compilation of the second
data block.

78. The system of any of aspects 66 to 77, wherein the set of data blocks of the off-line data
diagram includes a data block comprising a particular data block instance that has been configured from a data
block definition, and wherein a respective identity of the particular data block instance is provided during

configuration.

79. The system of any of aspects 65 to 79, wherein the on-line data diagram comprises a respective

set of data blocks interconnected by a respective set of wires via which data is transferred between data blocks.

80. The system of aspect 79, wherein the respective set of data blocks and the respective set of
interconnecting wires of the on-line data diagram is different than a respective set of data blocks and a

respective set of interconnecting wires of the off-line data diagram.

81. The system of aspect 79 or 80, wherein at least one wire of the respective set of wires of the on-
line data diagram associates a respective data block and the data source, so that a compilation of the respective
data block included in the on-line data analytics module causes the respective data block to receive the

continuous data stream having the contents that are generated by the data source.

82. The system of any of aspects 79 to 81, wherein:

125

the respective set of data blocks of the on-line data diagram comprises one or more of a data source
data block, a filter data block, a transformers data block, a visualizations data block, a data consumer data block,
or another type of data block; and

each data block of the respective set of data blocks of the on-line data diagram includes an indication of
an identity of the each data block, an input connector via which the each data block receives respective input
data, and one or more output connectors via which the each data block provides respective output data resulting

from performing a respective operation on the received respective input data.

83. The system of aspect 82, wherein at least one of:

the respective operation of the data source data block corresponds to obtaining the received, respective
input data of the data source data block from the data source;

the respective operation of the filter data block comprises a filtering technique;

the respective operation of the transformers data block on the received respective data of the
transformers data block comprises at least one of: cleaning the received respective input data of the
transformers data block, manipulating contents of the received respective input data of the transformers data
block, aligning the contents of the received respective input data of the transformers data block, or performing
one or more analytic techniques on the received respective input data of the transformers data block;

the respective operation of the visualizations data block interface comprises presenting a respective
visual representation of the respective received input data of the visualizations data block on the user interface;
or

the respective operation of the data consumer data block comprises providing at least some of the

continuous output of the on-line data analytics module to a data consumer.

84. The system of aspect 83, wherein the data consumer comprises a distributed data engine (DDE)

of a plurality of DDEs in a data analytics network of the process plant.

85. The system of any of aspects 79 to 84, wherein each of at least some of the respective set of

data blocks of the on-line data diagram respectively performs a time alignment of respective received input data.

86. The system of any of aspects 65 to 85, wherein the data analytics user interface application
performs at least one of; the compilation of the on-line data diagram into the on-line data analytics module, the
compilation of the off-line data diagram into the off-line data analytics module, or the transformation of the off-

line data diagram into the on-line data diagram.
87. The system of any of aspects 64 to 86, wherein the on-line data analytics module is bound to

the continuous data stream via a distributed data engine (DDE) of a plurality of DDEs in a data analytics network

of the process plant.

126

88. The system of aspect 87, wherein the distributed data engine provides, to the on-line data

analytics module, the continuous data stream having the contents generated in real-time by the data source.

89. The system of aspect 87 or 88, wherein the continuous data stream corresponding to the data
source is received at the on-line data analytics module and corresponds to a subscription of the on-line data

analytics module to data that is generated by the data source and that is published.

90. The system of aspect 89, wherein the data that is generated by the data source and that is

published comprises data that is generated by the data source and that is published by the data source.

91. The system of aspect 89 or 90, wherein the data that is generated by the data source and that is
published comprises data that is generated by the data source and that is published by a distributed data engine

(DDE) corresponding to the data source.

92. The system of any of aspects 64 to 91, wherein the continuous data stream corresponding to
the data source is received at the on-line data analytics module in response to a query issued by the on-line data

analytics module.

93. The system of aspect 92, wherein the query is issued by the on-line data analytics module to

multiple data sources included in the process plant.

94, The system of any of aspects 64 to 93, wherein the data analytics user interface application

performs the transformation of the off-line data analytics module into the on-line data analytics module.

95. The system of any of aspects 64 to 94, wherein the data analytics user interface application
manages the execution of the on-line data analytics module, and wherein the data analytics user interface
application causes the continuous output of the execution of the on-line data analytics module to be displayed on

the user interface.

96. The system of any of aspects 64 to 95, wherein:

the on-line data analytics module is included in a plurality of on-line data analytics modules that are
bound to one or more continuous data streams having contents that are generated by one or more data sources;
and

the user interface displays respective continuous output generated in real-time by each of the plurality of

on-line data analytics modules.

97. The system of any of aspects 50 to 96, wherein the data analytics module is an on-line data

analytics module transformed from a first off-line data analytics module corresponding to a first off-line data

127

diagram, and the user interface further displays an indication of a status of an evaluation of a second off-line

data diagram corresponding to a second off-line data analytics module.

98. The system of aspect 97, wherein the evaluation of the second off-line data diagram comprises

a compilation of the second off-line data diagram.

99. The system of aspect 97 to 98, wherein the evaluation of the second off-line data diagram

comprises an execution of code corresponding to the second off-line data diagram.

100. A performance monitoring and analytics system substantially as herein described with reference

to the accompanying drawings.

101. A system for monitoring operation of a process plant substantially as herein described with

reference to the accompanying drawings.

128

CLAIMS

1. A system for monitoring operation of a process plant having a process control network that is
operating to control a process, the system comprising:

a data analytics module bound to a continuous data stream having contents that are generated (i) in
real-time by a data source included in the process plant while it is operating to control the process, and (ii) as a
result of the operations to control the process, wherein the data analytics module is executed by two or more
distributed data engines (DDEs) in a data analytics network of the process plant, and wherein the data analytics
network is separate from the process control network; and

a user interface displaying a continuous output generated in real-time by the data analytics module
operating in real-time on the continuous data stream, the continuous output including a continuous update of one

or more predicted values.

2. The system of claim 1, wherein the one or more predicted values are indicative of a predicted
performance of at least a portion of the process plant, a predicted fault or failure of at least a portion of the

process plant, or a predicted time interval corresponding to at least a portion of the process plant.

3. The system of claim 1 or 2, wherein the data source is a process control device of the process
control network operating to control the process by receiving an input signal, determining an output signal based
on the received input signal, and transmitting the output signal over the process control network to another

process control device.

4, The system of any preceding claim, wherein the data source is a process control device of the
process control network operating to control the process by receiving an input signal and performing a physical

function corresponding to a flow of the process plant based on the received input signal.

5. The system of any preceding claim, wherein the continuous update of the one or more predicted
values is presented in conjunction with a continuous update of one or more actual values generated by the
process plant while controlling the process in the process plant, the one or more actual values corresponding to

the one or more predicted values.

6. The system of any preceding claim, wherein the user interface further displays an indication of
an accuracy of the data analytics module, the indication of the accuracy based upon a comparison of the one or
more predicted values and one or more actual values generated by the process plant while controlling the

process.

7. The system of any preceding claim, wherein the operation of the data analytics module on the

continuous data stream includes performing at least one data analytic function on the continuous data stream,

129

including at least one of; a descriptive analytic function, a predictive analytic function, or a prescriptive analytic

function.

8. The system of claim 7, wherein the operation of the data analytics module on the continuous
data stream includes at least one of: a cleaning of the continuous data stream prior to performing the at least
one data analytic function or a manipulation of the contents of continuous data stream prior to performing the at

least one data analytic function.

9. The system of claim 7, wherein the at least one data analytic function is performed on the
continuous data stream and on at least one other data stream, wherein the contents of the at least one other
data stream are generated by at least one other data source as a result of the operations to control the process

in the process plant.

10. The system of claim 9, wherein the data analytics module aligns the continuous data stream and

the at least one other data stream in time.

11. The system of any preceding claim, wherein the continuous data stream is a selected data

stream, and wherein the selected data stream is based on a user selection.

12. The system of any preceding claim, wherein the continuous data stream is generated based on

a query issued by the data analytics module.

13. The system of claim 12, wherein the query issued by the data analytics module indicates one or
more particular portions of data that is generated in real-time by the data source and that is to be included in the

continuous data stream.

14. The system of any preceding claim, wherein the data analytics module is an on-line data
analytics module transformed from an off-line data analytics module that was created by a user via a data

analytics user interface application.

15. The system of claim 14, wherein:

the on-line data analytics module is a compilation of an on-line data diagram displayed on the user
interface;

the off-line data analytics module is a compilation of an off-line data diagram displayed on the user
interface; and

the on-line data diagram is a transformation of the off-line data diagram.

16. The system of claim 15, wherein the off-line data diagram comprises a respective set of data

blocks interconnected by a respective set of wires via which data is transferred between data blocks.

130

17. The system of claim 16, wherein the data source is an on-line data source, and at least one wire
of the respective set of wires of the off-line data diagram interconnects a respective data block to an off-line data

source.

18. The system of claim 16 or 17, wherein:

the respective set of data blocks of the off-line data diagram comprises one or more of a data source
data block, a filter data block, a transformers data block, a visualizations data block, a data consumer data block,
or another type of data block; and

each data block of the respective set of data blocks of the off-line data diagram includes an input
connector via which respective input data is received at the data block, and at least one output connector via
which the data block provides respective output data resulting from the data block performing a respective

operation on the received, respective input data.

19. The system of claim 18, wherein at least one of:

the respective operation of the data source data block corresponds to obtaining the received, respective
input data of the data source data block from an off-line data source;

the respective operation of the filter data block comprises a filtering technique;

the respective operation of the transformers data block comprises at least one of. cleaning the received
respective input data of the transformers data block, manipulating contents of the received respective input data
of the transformers data block, aligning the contents of the received respective input data of the transformers
data block, or performing one or more analytic techniques on the received respective input data of the
transformers data block;

the respective operation of the visualizations data block comprises presenting a respective visual
representation of the received respective input data of the visualizations data block on the user interface; or

the respective operation of the data consumer data block comprises performing an action on an output
of the off-line data analytics module, the action corresponding to a consumer of the output of the off-line data

analytics module.

20. The system of an of claims 16-19, wherein:

each data block included in the set of data blocks of the off-line data diagram is a particular instance of a
respective data block definition stored in a data block definition library that is accessible to the data analytics
user interface application, and

each data block of the off-line data diagram includes at least one of; an indication of a respective block
state, an indication of an identity of the particular respective instance of the respective data block definition, or

an indication of a result of an evaluation of the respective data block.

21. The system of claim 20, wherein:

131

the evaluation of the respective data block comprises a compilation of the respective data block and an
execution of the compilation of the respective data block,

each data block of the off-line data diagram performs a time alignment of respective received input data
of the each data block, or

the indication of the result of the evaluation of at least one data block of the set of data blocks of the off-

line data diagram comprises one or more graphical visualizations or a respective set of computed statistics.

22. The system of claim 21, wherein a first portion and a second portion of the off-line data diagram
are asynchronously and separately evaluated, wherein the respective evaluation of each of the first portion and

the second portion comprises a respective compilation and execution.

23. The system of claim 22, wherein each data block included in the set of data blocks of the off-line

data diagram is asynchronously and separately evaluated.

24, The system of any of claims 16-23, wherein at least one data block of the set of data blocks of
the off-line data diagram is an explore data block that receives a predicted value from a first other data block and
receives another value from a second other data block, and performs an operation to generate a comparison of

the predicted value and the another value.

25. The system of claim 24, wherein the on-line data analytics module excludes the explore data

block of the off-line data analytics module.

26. The system of an of claims 15-25, wherein at least one data block of the off-line data diagram
includes a respective set of properties, wherein at least one property included in the respective set of properties
of the at least one data block includes a default value, and wherein at least one property included in the
respective set of properties of the at least one data block includes a value modified by a user, thereby
configuring the at least one data block as a particular instance of a particular data block definition stored in a

data block definition library that is accessible to the data analytics user interface application.

27. The system of any of claims 16-26, wherein a first data block of the set of data blocks included
in the off-line data diagram is configured based on output data generated by an evaluation of a second data
block of the set of data blocks included in the off-line data diagram, wherein the evaluation of the second data
block comprises a compilation of the second data block and an execution of the compilation of the second data
block.

28. The system of any of claims 16-27, wherein the set of data blocks of the off-line data diagram

includes a data block comprising a particular data block instance that has been configured from a data block

definition, and wherein a respective identity of the particular data block instance is provided during configuration.

132

29. The system of any of claims 15-28, wherein the on-line data diagram comprises a respective set

of data blocks interconnected by a respective set of wires via which data is transferred between data blocks.

30. The system of claim 29, wherein the respective set of data blocks and the respective set of
interconnecting wires of the on-line data diagram is different than a respective set of data blocks and a

respective set of interconnecting wires of the off-line data diagram.

31. The system of claim 29 or 30, wherein at least one wire of the respective set of wires of the on-
line data diagram associates a respective data block and the data source, so that a compilation of the respective
data block included in the on-line data analytics module causes the respective data block to receive the

continuous data stream having the contents that are generated by the data source.

32. The system of any of claims 29-31, wherein:

the respective set of data blocks of the on-line data diagram comprises one or more of a data source
data block, a filter data block, a transformers data block, a visualizations data block, a data consumer data block,
or another type of data block; and

each data block of the respective set of data blocks of the on-line data diagram includes an indication of
an identity of the each data block, an input connector via which the each data block receives respective input
data, and one or more output connectors via which the each data block provides respective output data resulting

from performing a respective operation on the received respective input data.

33. The system of claim 32, wherein at least one of;

the respective operation of the data source data block corresponds to obtaining the received, respective
input data of the data source data block from the data source;

the respective operation of the filter data block comprises a filtering technique;

the respective operation of the transformers data block on the received respective data of the
transformers data block comprises at least one of: cleaning the received respective input data of the
transformers data block, manipulating contents of the received respective input data of the transformers data
block, aligning the contents of the received respective input data of the transformers data block, or performing
one or more analytic techniques on the received respective input data of the transformers data block;

the respective operation of the visualizations data block interface comprises presenting a respective
visual representation of the respective received input data of the visualizations data block on the user interface;
or

the respective operation of the data consumer data block comprises providing at least some of the

continuous output of the on-line data analytics module to a data consumer.

34. The system of claim 33, wherein the data consumer comprises a DDE of the plurality of DDESs in

the data analytics network of the process plant.

133

35. The system of any of claims 29-34, wherein each of at least some of the respective set of data

blocks of the on-line data diagram respectively performs a time alignment of respective received input data.

36. The system of any of claims 15-35, wherein the data analytics user interface application
performs at least one of: the compilation of the on-line data diagram into the on-line data analytics module, the
compilation of the off-line data diagram into the off-line data analytics module, or the transformation of the off-

line data diagram into the on-line data diagram.

37. The system of any of claims 14-36, wherein the on-line data analytics module is bound to the
continuous data stream via a DDE of the plurality of DDEs in the data analytics network of the process plant.
38. The system of claim 37, wherein the distributed data engine provides, to the on-line data

analytics module, the continuous data stream having the contents generated in real-time by the data source.

39. The system of claim 37 or 38, wherein the continuous data stream corresponding to the data
source is received at the on-line data analytics module and corresponds to a subscription of the on-line data

analytics module to data that is generated by the data source and that is published.

40. The system of claim 39, wherein the data that is generated by the data source and that is

published comprises data that is generated by the data source and that is published by the data source.

41, The system of claim 39 or 40, wherein the data that is generated by the data source and that is
published comprises data that is generated by the data source and that is published by a DDE of the plurality of

DDEs in the data analytics network corresponding to the data source.

42. The system of any of claims 14-41, wherein the continuous data stream corresponding to the
data source is received at the on-line data analytics module in response to a query issued by the on-line data

analytics module.

43. The system of claim 42, wherein the query is issued by the on-line data analytics module to

multiple data sources included in the process plant.

44, The system of any of claims 14-43, wherein the data analytics user interface application

performs the transformation of the off-line data analytics module into the on-line data analytics module.

45, The system of any of claims 14-44, wherein the data analytics user interface application
manages the execution of the on-line data analytics module, and wherein the data analytics user interface
application causes the continuous output of the execution of the on-line data analytics module to be displayed on

the user interface.

134

46. The system of any of claims 14-45, wherein:

the on-line data analytics module is included in a plurality of on-line data analytics modules that are
bound to one or more continuous data streams having contents that are generated by one or more data sources;
and

the user interface displays respective continuous output generated in real-time by each of the plurality of

on-line data analytics modules.

47. The system of any preceding claim, wherein the data analytics module is an on-line data
analytics module transformed from a first off-line data analytics module corresponding to a first off-line data
diagram, and the user interface further displays an indication of a status of an evaluation of a second off-line

data diagram corresponding to a second off-line data analytics module.

48. The system of claim 47, wherein the evaluation of the second off-line data diagram comprises a

compilation of the second off-line data diagram.

49, The system of claim 47 or 48, wherein the evaluation of the second off-line data diagram

comprises an execution of code corresponding to the second off-line data diagram.

50. The system of any preceding claim, wherein the data analytics network is a logical network

within the process plant.

51. The system of any preceding claim, wherein the data analytics network is an overlay network on

top of the process control network.

135

	Page 1 - BIBLIOGRAPHY
	Page 2 - DRAWINGS
	Page 3 - DRAWINGS
	Page 4 - DRAWINGS
	Page 5 - DRAWINGS
	Page 6 - DRAWINGS
	Page 7 - DRAWINGS
	Page 8 - DRAWINGS
	Page 9 - DRAWINGS
	Page 10 - DRAWINGS
	Page 11 - DRAWINGS
	Page 12 - DRAWINGS
	Page 13 - DRAWINGS
	Page 14 - DRAWINGS
	Page 15 - DRAWINGS
	Page 16 - DRAWINGS
	Page 17 - DRAWINGS
	Page 18 - DRAWINGS
	Page 19 - DRAWINGS
	Page 20 - DRAWINGS
	Page 21 - DRAWINGS
	Page 22 - DRAWINGS
	Page 23 - DRAWINGS
	Page 24 - DRAWINGS
	Page 25 - DRAWINGS
	Page 26 - DRAWINGS
	Page 27 - DRAWINGS
	Page 28 - DRAWINGS
	Page 29 - DRAWINGS
	Page 30 - DRAWINGS
	Page 31 - DRAWINGS
	Page 32 - DRAWINGS
	Page 33 - DRAWINGS
	Page 34 - DRAWINGS
	Page 35 - DRAWINGS
	Page 36 - DRAWINGS
	Page 37 - DESCRIPTION
	Page 38 - DESCRIPTION
	Page 39 - DESCRIPTION
	Page 40 - DESCRIPTION
	Page 41 - DESCRIPTION
	Page 42 - DESCRIPTION
	Page 43 - DESCRIPTION
	Page 44 - DESCRIPTION
	Page 45 - DESCRIPTION
	Page 46 - DESCRIPTION
	Page 47 - DESCRIPTION
	Page 48 - DESCRIPTION
	Page 49 - DESCRIPTION
	Page 50 - DESCRIPTION
	Page 51 - DESCRIPTION
	Page 52 - DESCRIPTION
	Page 53 - DESCRIPTION
	Page 54 - DESCRIPTION
	Page 55 - DESCRIPTION
	Page 56 - DESCRIPTION
	Page 57 - DESCRIPTION
	Page 58 - DESCRIPTION
	Page 59 - DESCRIPTION
	Page 60 - DESCRIPTION
	Page 61 - DESCRIPTION
	Page 62 - DESCRIPTION
	Page 63 - DESCRIPTION
	Page 64 - DESCRIPTION
	Page 65 - DESCRIPTION
	Page 66 - DESCRIPTION
	Page 67 - DESCRIPTION
	Page 68 - DESCRIPTION
	Page 69 - DESCRIPTION
	Page 70 - DESCRIPTION
	Page 71 - DESCRIPTION
	Page 72 - DESCRIPTION
	Page 73 - DESCRIPTION
	Page 74 - DESCRIPTION
	Page 75 - DESCRIPTION
	Page 76 - DESCRIPTION
	Page 77 - DESCRIPTION
	Page 78 - DESCRIPTION
	Page 79 - DESCRIPTION
	Page 80 - DESCRIPTION
	Page 81 - DESCRIPTION
	Page 82 - DESCRIPTION
	Page 83 - DESCRIPTION
	Page 84 - DESCRIPTION
	Page 85 - DESCRIPTION
	Page 86 - DESCRIPTION
	Page 87 - DESCRIPTION
	Page 88 - DESCRIPTION
	Page 89 - DESCRIPTION
	Page 90 - DESCRIPTION
	Page 91 - DESCRIPTION
	Page 92 - DESCRIPTION
	Page 93 - DESCRIPTION
	Page 94 - DESCRIPTION
	Page 95 - DESCRIPTION
	Page 96 - DESCRIPTION
	Page 97 - DESCRIPTION
	Page 98 - DESCRIPTION
	Page 99 - DESCRIPTION
	Page 100 - DESCRIPTION
	Page 101 - DESCRIPTION
	Page 102 - DESCRIPTION
	Page 103 - DESCRIPTION
	Page 104 - DESCRIPTION
	Page 105 - DESCRIPTION
	Page 106 - DESCRIPTION
	Page 107 - DESCRIPTION
	Page 108 - DESCRIPTION
	Page 109 - DESCRIPTION
	Page 110 - DESCRIPTION
	Page 111 - DESCRIPTION
	Page 112 - DESCRIPTION
	Page 113 - DESCRIPTION
	Page 114 - DESCRIPTION
	Page 115 - DESCRIPTION
	Page 116 - DESCRIPTION
	Page 117 - DESCRIPTION
	Page 118 - DESCRIPTION
	Page 119 - DESCRIPTION
	Page 120 - DESCRIPTION
	Page 121 - DESCRIPTION
	Page 122 - DESCRIPTION
	Page 123 - DESCRIPTION
	Page 124 - DESCRIPTION
	Page 125 - DESCRIPTION
	Page 126 - DESCRIPTION
	Page 127 - DESCRIPTION
	Page 128 - DESCRIPTION
	Page 129 - DESCRIPTION
	Page 130 - DESCRIPTION
	Page 131 - DESCRIPTION
	Page 132 - DESCRIPTION
	Page 133 - DESCRIPTION
	Page 134 - DESCRIPTION
	Page 135 - DESCRIPTION
	Page 136 - DESCRIPTION
	Page 137 - DESCRIPTION
	Page 138 - DESCRIPTION
	Page 139 - DESCRIPTION
	Page 140 - DESCRIPTION
	Page 141 - DESCRIPTION
	Page 142 - DESCRIPTION
	Page 143 - DESCRIPTION
	Page 144 - DESCRIPTION
	Page 145 - DESCRIPTION
	Page 146 - DESCRIPTION
	Page 147 - DESCRIPTION
	Page 148 - DESCRIPTION
	Page 149 - DESCRIPTION
	Page 150 - DESCRIPTION
	Page 151 - DESCRIPTION
	Page 152 - DESCRIPTION
	Page 153 - DESCRIPTION
	Page 154 - DESCRIPTION
	Page 155 - DESCRIPTION
	Page 156 - DESCRIPTION
	Page 157 - DESCRIPTION
	Page 158 - DESCRIPTION
	Page 159 - DESCRIPTION
	Page 160 - DESCRIPTION
	Page 161 - DESCRIPTION
	Page 162 - DESCRIPTION
	Page 163 - DESCRIPTION
	Page 164 - DESCRIPTION
	Page 165 - CLAIMS
	Page 166 - CLAIMS
	Page 167 - CLAIMS
	Page 168 - CLAIMS
	Page 169 - CLAIMS
	Page 170 - CLAIMS
	Page 171 - CLAIMS

