WO 03/073274 Al

(12) INTERNATIONAL APPLICATION PUBLISHED UNDER THE PATENT COOPERATION TREATY (PCT)

(19) World Intellectual Property Organization
International Bureau

(43) International Publication Date

(10) International Publication Number

WO 03/073274 Al

4 September 2003 (04.09.2003) PCT
(51) International Patent Classification’: GO6F 9/45 (74)
(21) International Application Number: PCT/US03/04460

(22) International Filing Date: 12 February 2003 (12.02.2003)

(25) Filing Language: English

(26) Publication Language: English
(30) Priority Data:

10/082,795 22 February 2002 (22.02.2002) US

(71) Applicant: BEA SYSTEMS, INC. [US/US]; 2315 North
First Street, San Jose, CA 95131 (US).

(72) Inventors: VASILIK, Kenneth, Eric; 4911 163rd Ave.,
NE, Redmond, WA 98052 (US). BAU, David, III; 415
Howard Road, Gladwyne, PA 19035 (US). CHAVEZ,
Roderick, A.; 325 7th Avenue West, Kirkland, WA 98033
(US).

@n

84)

Agents: KLINDTWORTH, Jason, K. et al.; Schwabe,
Williamson & Wyatt, P.C., Pacwest Center, Suites 1600-
1900, 1211 SW Fifth Avenue, Portland, OR 97204 (US).

Designated States (national): AE, AG, AL, AM, AT, AU,
AZ,BA, BB, BG, BR, BY, BZ, CA, CH, CN, CO, CR, CU,
CZ, DE, DK, DM, DZ, EC, EE, ES, FI, GB, GD, GE, GH,
GM, HR, HU, ID, I, IN, IS, JP, KE, KG, KP, KR, KZ, L.C,
LK, LR, LS, LT, LU, LV, MA, MD, MG, MK, MN, MW,
MX, MZ, NO, NZ, OM, PH, PL, PT, RO, RU, SC, SD, SE,
SG, SK, SL,, TJ, TM, TN, TR, TT, TZ, UA, UG, UZ, VC,
VN, YU, ZA, ZM, ZW.

Designated States (regional): ARIPO patent (GH, GM,
KE, LS, MW, MZ, SD, SL, SZ, TZ, UG, ZM, ZW),
Eurasian patent (AM, AZ, BY, KG, KZ, MD, RU, TJ, TM),
European patent (AT, BE, BG, CH, CY, CZ, DE, DK, EE,
ES, FI, FR, GB, GR, HU, IE, IT, LU, MC, NL, PT, SE, SI,
SK, TR), OAPI patent (BF, BJ, CF, CG, CI, CM, GA, GN,
GQ, GW, ML, MR, NE, SN, TD, TG).

[Continued on next page]

(54) Title: ITERATIVE SOFTWARE DEVELOPMENT ENVIRONMENT WITH PRIORITIZED BUILD RULES

Identify Target File §

r Get Prioritized Rules for Selected Target File il-402

I Select highest priority rule h403

le

Source File Exist
for Building
Target Using
Selected Rule?

Select Next
Target

r

413

Add to First “If_Newer’] Add to Second
List 406 408 “If_Exists” List
Build Target Using 410
Selected Rule 407 Add'l Rules
In List?
Identify Dependencies YES 412
on External Targets 409 o
— Select Next Highest
Priority Rule
411 L
Add'l NO
Target Files
L g Generate
?
Remaining? _ Error: Cannot | La1a
Build Target

(57) Abstract: An iterative software development environ-
ment is provided to perform modified dependency analyses
for use in building a target file and all the files on which it
depends from one or more source files using a set of prior-
itized build rules (402). In one embodiment, the build rules
indicate how different types of target files can be generated
from different source file types. A given target file type may
be associated with several rules (402), each having differ-
ent priority, for building the target from different source file
types. In one embodiment, if more than one source file ex-
ists that can be used to generate a given target file, the rule
with the highest priority is used (403). In one embodiment,
the build environment identifies how to generate a partic-
ular target file by identifying the highest priority rule for
which an associated source file type exists. Moreover, the
development environment identifies the presence of a new
source file types previously used in the generation of the tar-
get file. In one embodiment of the invention, the target file
is rebuilt if such a new source file is identified, or if one or
more source files previously used to build the target file are
determined to have been modified more recently than that
indicated by the build date/time of the target file itself.

w0 03/073274 A1 NI 000 0 OO OO0

Declarations under Rule 4.17: For two-letter codes and other abbreviations, refer to the "Guid-
— as to applicant’s entitlement to apply for and be granted a ance Notes on Codes and Abbreviations" appearing at the begin-
patent (Rule 4.17(ii)) for all designations ning of each regular issue of the PCT Gazette.

— as to the applicant’s entitlement to claim the priority of the
earlier application (Rule 4.17(iii)) for all designations

Published:
— with international search report

10

15

20

25

30

WO 03/073274 PCT/US03/04460

ITERATIVE SOFTWARE DEVELOPMENT ENVIRONMENT WITH
PRIORITIZED BUILD RULES

BACKGROUND OF THE INVENTION
1. Field of the Invention

The present invention generally relates to the field of software
development environments. More specifically, the present invention relates to an
environment for iterative software development in which targets can be built from
any one of a prioritized list of source files.

2. Background Information

With software companies struggling to beat one another to market with the
"latest and greatest" software products and technologies, the need for reduced
development times has never been greater. During a typical software
development lifecycle, a software development team may go through the steps of
analysis, design, construction, and testing before the resulting software application
may be successfully deployed. Often times, developers are required to perform
numerous iterations of code construction, modification and testing of a design
before the product can be deployed. It is often useful for the developer to view and
test the results of each incremental software change as it is completed before
proceeding to the next change. However, in compiled language environments, the
process of rebuilding, deploying and testing complex software projects can be
tedious and time consuming. When a large number of iterations is required, the
accumulated build and deploy time becomes significant, possibly delaying the
release of the software product in a business where short development times are
necessary in order to remain competitive.

Accordingly, a number of mechanisms have been employed to speed
software generation by reducing development time. For example, integrated
development environments (IDE) provide developers with various software
development tools for tasks such as editing, compiling, debugging, and so forth.
Although IDEs may simplify software development, it is useful to provide iterative

software development capabilities at a lower-level, so they are available both

10

15

20

25

30

WO 03/073274 PCT/US03/04460

inside the IDE and from the command line, where some experienced programmers
prefer to work without the overhead often accompanied with IDEs.

Advanced compilers have also been introduced that automate the analysis
of complex dependencies between source files in a software project, and that
rebuild the minimum subset of the project based on which source files have
changed. However, these compilers only work for a single type of source file (e.g.,
C++ or Java), must be manually activated each time compilation is needed and
don’t have any way to rapidly determine whether rebuild is needed without
performing a dependency analysis.

Therefore, further improvements in the area of iterative software
development are desired.

BRIEF DESCRIPTION OF DRAWINGS
The present invention will be described by way of exemplary

embodiments, but not limitations, illustrated in the accompanying drawings in
which like references denote similar elements, and in which:

Figure 1 is a block diagram illustrating one embodiment of the present
invention;

Figure 2 is a flow diagram illustrating an overview of an application
generation/regeneration process in accordance with one embodiment;

Figure 3 is a flow diagram illustrating a more detailed view of the build
process of Figure 1, in accordance with one embodiment;

Figure 4 illustrates a more detailed view of the modified dependency
analysis process of Figure 3, in accordance with one embodiment;

Figure 5 illustrates one embodiment of the process used to determine
whether a rebuild of the application is needed;

Figure 6 is a block diagram illustrating an alternative embodiment of the
present invention; and

Figure 7 illustrates an example computer system suitable for practicing
the present invention.

DETAILED DESCRIPTION OF THE INVENTION
In the following description, various aspects of the present invention will be

described. However, it will be apparent to those skilled in the art that the present

-2.

10

15

20

25

30

WO 03/073274 PCT/US03/04460

invention may be practiced with only some or all aspects of the present invention.
For purposes of explanation, specific numbers, materials and configurations are
set forth in order to provide a thorough understanding of the present invention.
However, it will also be apparent to one skilled in the art that the present invention
may be practiced without the specific details. In other instances, well-known
features are omitted or simplified in order not to obscure the present invention. -

Parts of the description will be presented in terms of operations performed
by a processor based device, using terms such as receiving, determining,
generating, and the like, consistent with the manner commonly employed by those
skilled in the art to convey the substance of their work to others skilled in the art.
As well understood by those skilled in the art, the quantities take the form of
electrical, magnetic, or optical signals capable of being stored, transferred,
combined, and otherwise manipulated through mechanical and electrical
components of the processor based device; and the term processor include
microprocessors, micro-controllers, digital signal processors, and the like, that are
standalone, adjunct or embedded. '

Various operations will be described as multiple discrete steps in turn, in a
manner that is most helpful in understanding the present invention, however, the
order of description should not be construed as to imply that these operations are
necessarily order dependent. In particular, these operations need not be
performed in the order of presentation. Further, the description repeatedly uses
the phrase “in one embodiment”, which ordinarily does not refer to the same
embodiment, although it may. |

Overview

The present invention may be advantageously employed to reduce iterative
software development cycles. In one embodiment of the invention, a build
environment is provided to perform modified dependency analyses for use in
building an application and all the files on which it depends from one or more
source files using a set of prioritized build rules. In one embodiment, the build
rules indicate how different types of target files can be generated from different
source file types (e.g., a “.class” file can be built from a “.java” file using the java
compiler). A given target file type may be associated with several rules, each

-3-

10

15

20

25

30

WO 03/073274 PCT/US03/04460

having a different priority, for building the target from different source file types. In
one embodiment, if more than one source file exists that can be used to generate
a given target file, the rule with the highest priority is used. In one embodiment,
the build environment identifies how to generate a particular target file by
identifying the highest priority rule for which an associated source file type exists.
Moreover, the build environment identifies the presence of a new source file
having a corresponding build rule with a higher priority than that of the source file
type(s) previously used in the generation of the target file. In one embodiment of
the invention, the target file is rebuilt if such a new source file with a higher priority
is identified, or if one or more source files previously used to build the target file
are determined to have been modified more recently than that indicated by the
build date/time of the target file itself.

Figure 1 is a block diagram illustrating one embodiment of the present
invention. In Figure 1 request processor 104 is equipped to receive application
requests provided via request listener 102. Request listener may be e.g., an
interactive command shell, a graphical operating system, an HTTP server, etc.
Request listener 102 verifies that requests are syntactically valid based upon e.g.
the configuration and capabilities of request processor 104. In one embodiment of
the invention, request processor 104 determines whether an application exists
within a designated search path to satisfy the request. In one embodiment of the
invention, if an application corresponding to the received request does not exist
within a designated search path, request processor 104 invokes build environment
106 to automatically generate such an application without further human
interaction. Accordingly, a developer can be freed from having to manually initiate
the build process in response to one or more error conditions that would otherwise
have been returned by the prior art.

To build the r"equested application, request processor 104 invokes build
environment 106 passing the name of the application as the build target. Build
environment 106 represents a build environment advantageously modified with the
teachings of the present invention to perform modified dependency analysis during
the generation of a target file. During the modified dependency analysis process,
build environment 106 finds the source file associated with the target using a

-4 -

10

15

20

25

30

WO 03/073274 PCT/US03/04460

designated source path and examines the external dependencies (e.g., via well-
known variable type analysis techniques) of the source file to identify external
target files on which the source file depends. The source path is used to find
source files to build targets while the search path is used to find requested
applications. In some environments, the source path may be the same as the
search path or it may differ from the search path. In turn, build environment 106
recursively examines the dependencies of each external target file, until all
external dependencies are identified (i.e., the transitive closure of application
dependencies).

In accordance with one embodiment of the invention, as build environment
106 recursively identifies all external dependencies of the original target file, build
environment 106 builds missing target files using prioritized build rules within rule
set 105 and populates two data structures, named rebuildlfNewer and
rebuildIfExists, with meta-data 109, to record the list of dependencies. In one
embodiment, rule set 105 describes a prioritized list of candidate rules, one for
each source file type that can be used to generate the target file. In one
embodiment, the prioritized list of rules is sorted by priority. The rule priorities may
be assigned by a developer depending upon the functionality enabled by each
source file type and the desired functionality for the target file. Of course, the set
of rules can be arranged in any order so long as the relative priority of each rule is
preserved. In one embodiment, build environment 106 iterates through each of the
rules in rule set 105 associated with the current target type in priority order. For
each rule, build environment 106 determines whether the rule can be used to build
the target file by searching the source path for a source file of the type required by
the rule and a name matching that of the target file. If an appropriate source file is
found, the rule is used to build the target, and the source file location (name and
path) is stored within the rebuildifNewer data structure before the rule search ends.
However, if an appropriate source file is not found, the expected source file
location (name and path) is stored within the rebuildIfExists data structure, and the
rule search process continues with the next highest priority rule. This process
continues until a rule has been identified for building each required target file from

the set of available source files. If the build process cannot determine an

-5-

10

15

20

25

30

WO 03/073274 PCT/US03/04460

appropriate rule to build one of the required target files, the build process exits with
an error. Once application 107 is generated, build environment 106 associates
metadata 109, including the rebuildlfNewer and rebuildIfExists data structures
containing dependencies, with application 107 and passes application 107 to
execution engine 110 for execution. In one embodiment, application 107 contains
a reference to the location of metadata 109, whereas in an alternative
embodiment, metadata 109 is itself embedded within application 107. In one
embodiment metadata 109 is stored in persisted data structures. By storing the
metadata in data structures that are persisted, the metadata can be used in
association with subsequent rebuilds of the application without requiring the build
environment to perform additional dependency analyses, thereby expediting the
build process and further decreasing the development time.

The above description is based upon the assumption that the requested
application did not exist within a designated search path. However, in accordance
with one embodiment of the invention, if it is determined that an application
corresponding to the request does exist, request processor 104 makes a
determination based upon one or more criteria, as to whether a rebuild of the
application is needed prior to the application being executed. In one embodiment,
a determination as to whether a rebuild of the application is needed is based upon
whether the source files listed in the rebuildifNewer data structure of meta-data
109 have been modified more recently than the most recent build date/time of the
application. In one embodiment, the build date/time of each source file listed in the
rebuildlfNewer data structure is compared against the most recent application build
date/time, and if any of the corresponding source files have a date/time that is
more recent than the application build date/time, the application is rebuilt.

Similarly, in one embodiment a search of the designated source path is performed
to determine if any source files listed in the rebuildlfExists data structure of meta-
data 109 (i.e. those source files having a higher priority than the source files used
to build the application) now exist in the designated source path. If so, a rebuild of
the application is automatically triggered. ‘

Figure 2 is a flow diagram illustrating an overview of an application
generation/regeneration process in accordance with one embodiment. To begih, a

-6-

10

15

20

25

30

WO 03/073274 PCT/US03/04460

request is received and interpreted e.g. by request listener 102, (block 202). In
accordance with the teachings of the present invention, the request can assume
numerous forms including but not limited to that of a command entered directly by
a user through a command line interface, or that of one or more data packets
received from a remote client via a network connection. Next, a search path and
source path are identified for locating the application and various source files to be
used in generating the application respectively (block 204). In one embodiment,
the request is an HTTP based message identifying a URL that identifies the
location of meta-data used to derive the search and source paths. Next, a
determination is made as to whether an application corresponding to the request
exists within the search path (block 206). If the application is not present within the
search path, the build environment proceeds to build the application (block 208),
which is eventually executed (block 21 0). However, if the application is present
within the search path, a further determination is made regarding whether a rebuild
of the application is needed (block 212). If so, the application is rebuilt (block 214)
and then executed (block 210). If a rebuild of the application is not needed (block
212), the existing application is merely executed (block 210) without being rebuilt.
Figure 3 is a flow diagram illustrating one embodiment of the build process
of Figure 1. To begin, build environment 106 performs a modified dependency
analysis in which dependencies are stored into two data structures, named
rebuildlfNewer and rebuildifExists, that are persisted (302). In one embodiment,
the rebuildlfNewer data structure is a list used to identify which source files were
last used to build the application, whereas the rebuildIfExists data structure is a list
used to identify source files having a greater priority than those source files used to
build the application (i.e. those source files appearing in the rebuildlfNewer array)
(block 304). After the modified dependency analysis has been performed, one or
more source files (as e.g. determined through the dependency analysis) are
compiled to generate the application (block 304). Once the application has been
generated, the dependencies stored in each of the lists are associated with the
application (block 306), such that the dependencies can be recalled at a later time
without requiring build environment 106 to recursively open and analyze the

source files again after the initial dependency analysis. In one embodiment, the

-7-

10

15

20

25

30

WO 03/073274 PCT/US03/04460

dependencies stored in each of the lists are stored as metadata within the
application. At the end of the build process, a system build date/time is stored with
meta-data 109 to reflect the time at which the application was last built (block 308).

Figure 4 illustrates a more detailed view of the modified dependency
analysis process of Figure 3, in accordance with one embodiment. To begin, build
environment 106 identifies the requested target file to be built (block 401). Build
environment 106 then accesses prioritized rule set 105 to retrieve prioritized rules
for building the requested target file based on the target file type (block 402). In
one embodiment, build environment 106 iterates through the list of rules in priority
order to identify the highest priority rule that can be used to build the target file
based on the existence of a source file of the type associated with the rule (block
403). For each rule, build environment 106 determines whether a source file exists
for building the target using that rule (block 404). If so, the source file location
(name and path) is stored into the rebuildlfNewer data structure (block 406), the
target is built using the selected rule (block 407), and dependencies on external
targets are then determined (block 409). If there are additional target files
remaining to be built (block 411), another target is selected (block 413) and the
process repeats. However, if all target files have been built, including the
application, the build process completes successfully.

If the source file required to build the target with the selected rule does not
exist (block 404), the expected location (name and path) of the missing source file
is stored into the rebuildIfExists data structure (block 408). If there are additional
rules remaining in rule set 105 that have not been selected (block 410), the rule
with the next highest relative priority (i.e. the highest priority remaining) is selected
and the process continues (block 412). If no rules are remaining, the build process
terminates and generates an error indicating it was not able to build the requested
target using the rules provided and available source files (block 414). In one
embodiment, this process continues until all external dependencies are identified
and built or the build environment identifies a target that cannot be built.

Figure 5 illustrates one embodiment of the process used to determine
whether a rebuild of the application is needed. In determining whether a rebuild of
the application is necessary, the rebuildlfNewer data structure is iteratively

-8-

10

15

20

25

30

WO 03/073274 PCT/US03/04460

traversed to determine if any of the modification dates/times of the source files
identified in the rebuildlfNewer data structure are more recent than the system
build date/time (block 506). If the answer is “no”, then the rebuildifExists data
structure is iteratively traversed and a determination is made as to whether any of
the source files identified by the rebuildlfExists data structure are present within a
designated source path (block 508). If none of the source files identified by the
rebuildIfExists data structure are present within a designated source path, then a
rebuild is not needed (block 512). However, if any of the modification dates/times
of the source files identified in the rebuildifNewer data structure are more recent
than the system build date/time, or if any of the source files identified by the
rebuildIfExists data structure are present within a designated source path, then a
rebuild is needed (block 510).

Example Application

Figure 6 is a block diagram illystrating one embodiment of the present
invention. In Figure 6, remote client 601 sends HTTP based requests over
network 600 to web server 615, incorporating the teachings of the present
invention. Web server 615 represents a host of one or more Java based web
services that are made publicly accessible to remote clients such as client 601. In
one embodiment, the request provides a URL that indicates a publicly accessible
resource on web server 615. In one embodiment, the URL is used to identify the
name of an application used to implement the web service of the illustrated
embodiment and a deployment descriptor containing a search path and source
path.

In one embodiment, the request is received by servlet container 602 and
processed by serviet 604. In one embodiment, servlet 604 represents a servlet
designed to receive web service requests and parse the requests to identify the
application required to respond to the request. In one embodiment, servlet 604
determines whether an application corresponding to the indicated URL exists
within the search path and dispatches the request according to the result. For
example, if a corresponding application does exist within the search path, servlet
604 first determines whether the application needs to be rebuilt as described
above (see e.g. Figure 5). Ii the application does not need to be rebuilt, serviet

-9-

10

15

20

25

30

WO 03/073274 PCT/US03/04460

604 dispatches the application to execution engine 610 whereupon it is executed.
However, if the application does need to be rebuilt, serviet 604 provides the name
of the application to build environment 606, which then proceeds with the build
process. Likewise, if the application does not exist within the search path, servlet
604 provides the name of the application to build environment 606 to generate an
application, which is then automatically executed.

Example Host Computer System

Figure 7 illustrates an example computer system suitable for hosting the
software development environment of the present invention. As shown,
computer system 700 includes one or more processors 702, and system memory
704. Additionally, computer system 700 includes mass storage devices 706
(such as diskette, hard drive, CDROM and so forth), input/output devices 708
(such as keyboard, cursor control and so forth) and communication interfaces
710 (such as network interface cards, modems and so forth). The elements are
coupled to each other via system bus 712, which represents one or more buses.
In the case of multiple buses, they are bridged by one or more bus bridges (not
shown). Each of these elements performs its conventional functions known in the
art. In particular, system memory 704 and mass storage 706 are employed to
store a working copy and a permanent copy of the programming instructions
implementing the present invention. The permanent copy of the programming
instructions may be loaded into mass storage 706 in the factory, or in the field,
through e.g. a distribution medium (not shown) or through communication
interface 710 (from a distribution server (not shown). The constitution of these
elements 702-712 are known, and accordingly will not be further described

Conclusion and Epilogue

Thus, it can be seen from the above description, an environment for
iterative software development with prioritized build rules has been described.
While the present invention has been described referencing the illustrated and
above enumerated embodiments, the present invention is not limited to these
described embodiments. Numerous modification and alterations may be made,

consistent with the scope of the present invention as set forth in the claims to

-10 -

WO 03/073274 PCT/US03/04460

follow. Thus, the above-described embodiments are merely illustrative, and not

restrictive on the present invention.

-11 -

10

15

20

25

30

WO 03/073274 PCT/US03/04460

CLAIMS

What is claimed is:

1. A method comprising:

receiving a request identifying an application;

determining whether the application corresponding to the request is
present within a designated search path;

generating the application based upon automatic compilation of one or
more source files, if it is determined that the application is not present within the
designated search path;

determining whether regeneration of the application is needed if it is
determined that the application is present within the designated search path; and

regenerating the application based upon automatic compilation of the one

or more source files, if it is determined that regeneration is needed.

2. The method of claim 1, wherein the one or more source files correspond to
one or more prioritized source file types specified in an ordered set of compilation

rules.

3. The method of claim 1, wherein generating the application comprises:

identifying a target file corresponding to the application;

accessing an ordered set of compilation rules associated with the
identified target file, each of the ordered set of compilation rules identifying a
target file type and a corresponding source file type for use in generating the
associated target file;

selecting a compilation rule from the ordered set of compilation rules;

determining whether a source file corresponding to the source file type of
the selected compilation rule exists within a designated source path for building
the identified target file;

building the identified target file based upon the selected compilation rule if
it is determined that the source file exists within the designated source path; and.

updating a build date/time associated with the application.

-12-

10

15

20

25

30

WO 03/073274 PCT/US03/04460

4, The method of 3, wherein if a source file corresponding to the source file
type of the selected compilation rule exists within the designated source path, a
representation of the source file is stored in a first persistent data structure, and
wherein if a source file corresponding to the source file type of the
selected compilation rule does not exist within the designated source path, a

derived source file representation is stored in a second persistent data structure.

5. The method of claim 4, wherein the representation of the source file

comprises a file name and path associated with the corresponding source file.

6. The method of claim 4, wherein determining whether regeneration of the
application is needed comprises determining if any source files corresponding to
members of said first persistent data structure have a date/time more recent than
the build date/timeof the application.

7. The method of claim 6, wherein regenerating the application comprises
automatically compiling source files corresponding to members of said first
persistent data structure that have a date/time that is more recent than the build
date/time of the application .

8. The method of claim 4, wherein determining whether regeneration of the
application is needed comprises determining if any members of said second

persistent data structure are present within said designated source pafh.

9. The method of claim 4, wherein at least one of the first and second

persistent data structures comprises a list.

10. The method of claim 3, wherein the source path and the search path are
equivalent.

11. The method of claim 1, wherein the request is received through a network
connection as one or more data packets.

-13 -

10

15

20

25

30

WO 03/073274 PCT/US03/04460

12. A method comprising:

identifying a target file corresponding to an application identified by a
request;

accessing an ordered set of compilation rules associated with the
identified target file, each of the ordered set of compilation rules identifying a
target file type and a corresponding source file type for use in generating the
associated target file;

selecting a compilation rule from the ordered set of compilation rules; and

determining whether a source file corresponding to the source file type of
the selected compilation rule exists within a designated source path for building
the identified target file, ‘

wherein if a source file corresponding to the source file type of the
selected compilation rule exists within a designated source path, a
representation of the source file is stored in a first persistent data
structure, and \

wherein if a source file corresponding to the source file type of the
selected compilation rule does not exist within the designated source path,
a derived source file representation is stored in a second persistent data

structure.

13. The method of claim 12, further comprising:

receiving a request identifying an application, wherein said application
corresponds to said identified target file;

determining whether the application is present within a designated search
path; and

automatically compiling the application based at least in part upon the
contents of said first and second persistent data structures and in accordance
with said ordered set of compilation rules, if it is determined that the application is

not present within the designated search path.

-14 -

10

15

20

25

30

WO 03/073274 PCT/US03/04460

14. The method of claim 13, wherein the source path and the search path are

equivalent.

15. The method of claim 13, further comprising:

determining if regeneration of the application is needed if it is determined
that the application is present within the designated search path;

regenerating the application if it is determined that regeneration is needed;
and

updating a build date/time associated with the application.

16. The method of claim 15, wherein determining whether regeneration of the
application is needed comprises determining if any source files corresponding to
members of said first persistent data structure have a date/time more recent than

the build date/time of the application.

17. The method of claim 15, wherein determining whether regeneration of the
application is needed comprises determining if any members of said second

persistent data structure are present within said designated source path.

18. The method of 12, wherein at least one of said first and second persistent
data structures comprise a list.

19. An article of manufacture comprising:
a storage medium having stored therein a plurality of programming
instructions, which when executed operate to
receive a request identifying an application;
determine whether the application corresponding to the request is
present within a designated search path;
facilitate generation of the application based upon automatic
compilation of one or more source files, if it is determined that the

application is not present within the designated search path;

-15 -

10

15

20

25

30

WO 03/073274 PCT/US03/04460

determine whether regeneration of the application is needed if it is
determined that the application is present within the designated search
path; and

facilitate regeneration of the application based upon automatic
compilation of the one or more source files, if it is determined that

regeneration is needed.

20. The article of claim 19, wherein the one or more source files correspond to
one or more prioritized source file types specified in an ordered set of compilation

rules.

21. The article of claim 19, wherein the instructions to facilitate generation the
application comprise instructions to

identify a target file corresponding to the application;

access an ordered set of compilation rules associated with the identified
target file, each of the ordered set of compilation rules identifying a target file type
and a corresponding source file type for use in generating the associated target
file;

select a compilation rule from the ordered set of compilation rules;

determine whether a source file corresponding to the source file type of
the selected compilation rule exists within a designated source path for building
the identified target file;

facilitate building of the identified target file based upon the selected
compilation rule if it is determined that the source file exists within the designated
source path; and

update a build date/time associated with the application.
22. The alrticle of 21, wherein if a source file corresponding to the source file
type of the selected compilation rule exists within the designated source path, a

representation of the source file is stored in a first persistent data structure, and

-16 -

10

15

20

25

30

WO 03/073274 PCT/US03/04460

wherein if a source file corresponding to the source file type of the
selected compilation rule does not exist within the designated source path, a

derived source file representation is stored in a second persistent data structure.

23. The article of claim 22, wherein the representation of the source file

comprises a file name and path associated with the corresponding source file.

24. The article of claim 22, wherein the instructions to determine whether
regeneration of the application is needed comprise instructions to determine if
any source files corresponding to members of said first persistent data structure

have a date/time more recent than the build date/time of the application.

25. The article of claim 24, wherein the instructions to regenerate the
application comprise instructions to facilitate automatic compilation of source files
corresponding to members of said first persistent data structure that have a

date/time that is more recent than the build date/time of the application.
26. The article of claim 22, wherein determining whether regeneration of the
application is needed comprises determining if any members of said second

persistent data structure are present within said designated source path.

27. The article of claim 22, wherein at least one of the first and second

persistent data structures comprises a list.

28. The article of claim 21, wherein the source path and the search path are
equivalent.

29. The article of claim 19, wherein the request is received through a network

connection as one or more data packets.

30. An article of manufacture comprising:

-17 -

10

15

20

25

30

WO 03/073274 PCT/US03/04460

a storage medium having stored therein a plurality of programming
instructions, which when executed operate to

identify a target file corresponding to an application identified by a
request, |

access an ordered set of compilation rules associated with the
identified target file, each of the ordered set of compilation rules identifying
a target file type and a corresponding source file type for use in generating
the associated target file;

select a compilation rule from the ordered set of compilation rules;
and

determine whether a source file corresponding to the source file
type of the selected compilation rule exists within a designated source
path for building the identified target file,

wherein if a source file corresponding to the source file type

of the selected compilation rule exists within a designated source

path, a representation of the source file is stored in a first persistent

data structure, and

wherein if a source file corresponding to the source file type
of the selected compilation rule does not exist within the designated
source path, a derived source file representation is stored in a

second persistent data struciure.

31. The article of claim 30, wherein the instructions further comprise
instructions to

receive a request identifying an application, wherein said application
corresponds to said identified target file;

determine whether the application is present within a designated search
path;

facilitate automatic compilation of the application based at least in part
upon the contents of said first and second persistent data structures and in
accordance with said ordered set of compilation rules, if it is determined that the

application is not present within the designated search path; and

-18 -

10

15

20

25

WO 03/073274 PCT/US03/04460

update a build date/time associated with the application.

32. The article of claim 31, wherein the source path and the search path are
equivalent.

33. The article of claim 31, wherein the instructions further comprise
instructions to

determine if regeneration of the application is needed if it is determined
that the application is present within the designated search path; and

facilitate regeneration of the application if it is determined that regeneration
is needed.

34, The article of claim 33, wherein the instructions to determine whether
regeneration of the application is needed further comprise instructions to
determine if any source files corresponding to members of said first persistent
data structure have a date/time more recent than the build date/time of the
application.

35. The article of claim 33, wherein the instructions to determine whether
regeneration of the application is needed further comprise instructions to
determine if any members of said second persistent data structure are present

within said designated source path.

36. The article of 30, wherein at least one of said first and second persistent

data structures comprise a list.

-19 -

WO 03/073274 PCT/US03/04460

1/7

APPLICATION REQUEST

|

{} REQUEST LISTENER 102
REQUEST PROCESSOR
104

E RULE SETJ
% [

BUILD ENV 106

7 N\
e

107 109

EXECUTION ENGINE 110

FIG. 1

WO 03/073274 PCT/US03/04460

217

Receive & Interpret 1.
Request 202

'

Identify Search & Source Path -

206

Application
Corresponding To
Request Exist?

YES

212

ki Rebuild
Needed?
v v
Build Application Rebuild <
\,)
208 214

3 v

v

Run Executable 121 0

FIG. 2

WO 03/073274

3/7

!

Perform Modified
Dependency Analysis
Storing Results Into
Persistent Data
Structure(s)

PCT/US03/04460

N
[}
[o8]

l

Compile Source File(s) To
Generate Application

l

Associate Dependencies
With Application

h 4

Set Build Date/Time

FIG. 3

WO 03/073274 PCT/US03/04460

a/7

i 302

Identify Target File .
L 401

—

Get Prioritized Rules for Selected Target File

v

Select highest priority rule 7 403

402

Source File Exist
for Building
Target Using
Selected Rule?

YES

Add to First “If_Newer” | Add to Second
List 'L 406 4085 | 9 Exists List

'

Build Target Using
Selected Rule L 407

'

Add’l Rules
In List?

YES 412
~

Identify Dependencies al
on External Targets 409
Select Next Highest
l Priority Rule

Add’l
Target Files
Remaining?

NO v

Generate
Error: Cannot 141 4

Build Target
Select Next |
Target STOP
\’)

413

WO 03/073274 PCT/US03/04460
57

N
—
N

|

506

lteratively Traverse 1% Data

Structure To Determine If
Any Source Files Have
Date/Time More Recent
than Build Date/Time?

YES

Iteratively Traverse 2nd
Data Structure To
Determine If
Any Source Files Of
Greater Precedence Exist?

\ 4
Rebuild Needed

Rebuild Not
Needed 1—51 2

FIG. 5

WO 03/073274 PCT/US03/04460

6/7

L 'L 601

/ REQUEST ‘
<

WEB SERVER 615

SERVLET CONTAINER 602

SERVLET 604

L RULE SET J

%]

BUILD ENV 606

72
[APPLICATIO: }_{ META J

607 609

EXECUTION ENGINE 610

FIG. 6

PCT/US03/04460

WO 03/073274

717

L 'Old

so|ny pjing
0Lz 807 "AUT] Juswdojena(g
41NI "WINOD S3DIANIA O/ P
904 IOVYHOLS SSVYIN
4YA
so|ny pjing

‘AUz Juswdojeneg

¥0Z
AHOWZIN INFLSAS

g0z
SHOSS3004Hd

INTERNATIONAL SEARCH REPORT International application No.

PCT/US03/04460
A. CLASSIFICATION OF SUBJECT MATTER
IPC(7) 1 GOG6F 9/45
USCL 1 717/136, 140

According to International Patent Classification (IPC) or to both national classification and IPC

B. FIELDS SEARCHED

Minimum documentation searched (classification system followed by classification symbols)
U.S. : 717/136-149

Documentation searched other than minimum documentation to the extent that such documents are included in the fields searched

Electronic data base consulted during the international search (name of data base and, where practicable, search terms used)
WEST, ACM online, IEEE online

C. DOCUMENTS CONSIDERED TO BE RELEVANT

Category * Citation of document, with indication, where appropriate, of the relevant passages Relevant to claim No.
AP US 6,438,745 B1 (KANAMARU et al) 20 August 2002 (20.08.2002). 1-36
AP US 6,370,682 B1 (ECKARDT et al) 09 April 2002 (09.04.2002). 1-36
A US 6,314,559 B1 (SOLLICH) 06 November 2001 (06.11.2001). 1-36
A US 6,286,134 B1 (CLICK Jr. et al) 04 September 2001 (04.09.2001). 1-36
A US 6,035,120 A (RAVICHANDRAN) 07 March 2000 (07.03.2000). 1-36
AE US 6,546,549 B2 (LT) 08 April 2003 (08.04.2003). 1-23
ALE US 6,526,570 B1 (CLICK JR. et al) 25 February 2003 (25.02.2003). 136

|:| Further documents are listed in the continuation of Box C. I:I See patent family annex.

* Special categories of cited documents: “T" sater document published after the international filing date or priority
date and not in conflict with the application but cited to understand the
“A” document defining the general state of the art which is not considered to be principle or theory underlying the invention
of particular relevance
“X» document of particular relevance; the claimed invention cannot be
“E" earlier application or patent published on or after the international filing date considered novel or cannot be considered to involve an inventive step

when the document is taken alone
“L™ document which may throw doubts on priority claim(s) or which is cited to

establish the publication date of another citation or other special reason (as “Yr document of particular relevance; the claimed invention cannot be
specified) considered to involve an inventive step when the document is
combined with one or more other such documents, such combination
“Q" document referring to an oral disclosure, use, exhibition or other means being obvious to a person skilled in the art
“P" document published prior to the international filing date but later than the “&" document member of the same patent family
priority date claimed
Date of the actual completion of the international search Date of mailing of the international search report
16 April 2003 (16.04.2003) 3 0 A PR 2003
Name and mailing address of the ISA/US Authori fﬁicerL_—/\
Commissioner of Patents and Trademarks / -
Box PCT - We#Zhen
Washington, D.C. 20231
Facsimile No. (703)305-3230 /| Telephone No. (703) 305-9600

Form PCT/ISA/210 (second sheet) (July 1998)

	Abstract
	Bibliographic
	Description
	Claims
	Drawings
	Search_Report

