

MEANS AND METHODS FOR CLEANING AND POLISHING AUTOMOBILES Filed May 24. 1952

1

2,699,403

MEANS AND METHODS FOR CLEANING AND POLISHING AUTOMOBILES

Emmett J. Courts, Hollywood, Calif. Application May 24, 1952, Serial No. 289,831 9 Claims. (Cl. 117-47)

This invention relates to means and methods for washing vehicles and more particularly to a method of cleaning, washing and polishing automobiles by bombarding the surface thereof with soft, virtually discrete particles

Prior-proposed means and methods for washing vehicles have included the bombardment of the surface of 20 the vehicle by soft small particles of cotton, cloth, sponge, rubber or other suitable soft, compressible nonabrasive, absorbent materials. Such prior-proposed means included complex, expensive equipment for propelling such particles of absorbent material through duct means and nozzles and for reclaiming and disposing of such material The duct means for conducting flow of such soft absorbent material were not self-cleaning, and as a result, the ducts through which the particles of such marketic and the self-cleaning are self-cleaning are self-cleaning and the self-cleaning are self-cleaning and the self-cleaning are self-c terial passed were subjected to clogging and jamming. Reclaiming of particles of soft material employed with such prior-proposed vehicle washing machines required rewashing and re-treating of the soft particles so that when they were again projected upon the surface of the vehicle, grease, road grime, or other dirt dicked up by the soft particles in their prior use would not streak or mar the surface of a vehicle upon which they were projected. As a result, the reclaiming operation was required to be carefully, thoroughly accomplished and inspected. Such thorough cleaning necessitated expensive reclaiming equipment, and as a result, the prior-proposed machines for washing vehicles in the manner of bombarding the surface with soft particles of absorbent materials were commercially not practical.

This invention contemplates a novel method and means for washing, cleaning and polishing vehicles which obviates the disadvantages of using a soft particle of absorbent compressible material. In this invention, matter which is capable of being changeable in its state or phase such 50 as water, is used in a solid phase so as to provide virtually discrete, flake-like particles which each afford a virtually absorbent slushy non-compressible mass capable of pro-yiding a scrubbing action when impinged against the surface of a vehicle so as to remove dirt and foreign matter 55 therefrom without scratching or marring the surface thereof. The invention contemplates means and methods for furnishing flake-like ice particles and for directing such ice particles in a stream upon a surface of an auto-The invention contemplates introduction of an 60 aqueous low-temperature emulsion containing dispersed or emulsified suitable waxes and appropriate emulsifying surface acting agents into the stream of ice particles for deposit upon the car surface. The deposited wax on the car surface is caused to be further spread upon and driven 65 into bonding contact with the surface of the car by the bombardment of the stream of ice particles, such bombardment serving to provide a smooth, highly polished

clean surface.

The simple effective means and method of this inven- 70 tion presents no reclaiming and disposal problem of the material used to clean and polish the car surface. After fallen upon the adjacent floor area, such particles will change from a solid phase to a liquid phase and the liquid therefrom may be drained away in suitable well-known

The primary object therefore of this invention is to design and provide a novel means and method for effectively cleaning and polishing a finished surface such as on 80 automobiles or the like.

Another object of this invention is to provide a novel method of washing a car surface which utilizes matter capable of transition from a solid to a liquid phase in

normal temperature ranges.

Another object of this invention is to provide a novel method of washing finished surfaces wherein water in its solid state as ice and in flaky form is suspended in a cool air stream for projection upon a finished surface, the mass of the flaky ice particles becoming somewhat slushy upon impingement under pressure against the surface and being capable of scrubbing and wiping foreign matter from the car surface.

Still another object of this invention is to provide a novel method for washing and polishing a car surface wherein suitable aqueous wax emulsions or dispersions are introduced into a stream of flaky ice particles for deposit upon a car surface and for polishing by said flaky

ice particles when deposited upon said surface.

A further object of this invention is to design and provide means for accomplishing the above-described methods of washing and polishing a car surface so that the washing and polishing operation may be quickly and conveniently performed in a manner adaptable to com-

mercial practices.

A still further object of this invention is to design and provide means for washing and polishing a car surface wherein means for producing flaky ice particles are associated with compressed air of relatively cool temperature whereby the flaky ice particles are suspended and moved in a cool air stream without melting or approaching a fluid state.

Generally speaking, this invention contemplates novel means and methods for cleaning, washing and polishing finished surfaces on automobiles. The invention comprises an ice-making machine capable of producing ice particles in selected flake size. Compressed air means are associated with the ice-making machine so as to convey said flaky ice particles in a stream for projection upon a car surface through nozzle means. The nozzle means includes dual injection orifices associated with separate passageways for introducing an auxiliary compressed air stream into said stream of ice particles and for also introducing at the same point a low-temperature aqueous wax emulsion or a suitable emulsifying surface-active agent which may be projected upon the car surface in the cleaning thereof, whereby the aqueous wax emulsion is deposited upon such clean surfaces for providing a thin, polishable protective coating for the car surface.

Other objects and advantages of this invention will be readily apparent from the following description of the

drawings.

In the drawings:

Fig. 1 is a diagrammatic view of a system embodying the means and methods of this invention.

Fig. 2 is an enlarged view of a nozzle means employed

in the system shown in Fig. 1.

Fig. 3 is a diagrammatic view of a different system em-

bodying this invention.

This invention contemplates the use of incompressible matter such as water which is utilized primarily in its solid phase or ice. The character of the ice utilized in this invention is in the form of virtually discrete flaky particles which are maintained at temperatures slightly below the melting point of ice. Such ice particles in flaky form are relatively soft and when propelled in a cool air stream against a finished surface and impinged thereagainst under pressure the impact of such an ice particle causes a slight increase in temperature in the particle. This temperature increase upon impact raises the ice particle virtually to its melting point wherein the mass of the flake-like particle begins to undergo transition from a solid phase to a liquid phase and results in a slightly slushy condition of the flake at the surface being treated. This incompressible slightly slushy ice flake is capable of a scrubbing action on the finished surface which will effectively and readily remove foreign matter therefrom without marring or scratching the surface. bing and cleaning action is facilitated by the partial transition of the ice flake particle into the liquid phase, the latter affording some lubrication for the solid mass and

wetting of the surface being cleaned while the solid mass forms a slushy incompressible body to effectively scrub, absorb, and carry off foreign particles from said surface. In Figs. 1 and 2 is illustrated an exemplary system for

providing a means for utilizing the method of this invention. The system generally includes an ice making machine 10, a hopper 11 for temporarily receiving ice flake particles, an agitator 12 in the hopper, an air compressor 13, and duct means generally indicated at 14 leading from the hopper to a suitable nozzle means 15. The duct means 14 in this embodiment is illustrated as being flexible and it is contemplated that a single nozzle means be employed for selective actuation and directional manipulation by an operator to project the ice particles upon the surface of a car generally indicated at 16.

The ice making machine 10 may be of well known manufacture and the particular structure thereof does not form a part of this invention. Such a well known ice machine may comprise a refrigerated rotatable metal drum adapted to be partially immersed in water so that water clinging to the drum forms an ice crust thereupon. At a different point of rotation of the drum, means are provided for removing the ice crust by cutting or shredding the crust into flaky particles of selected size. The ice particles which are cut from the drum are moved by gravity or by other suitable means such as air through an insulated passageway 17 for discharge into a suitable

hopper 11. The funnel-shaped hopper 11 is suitably enclosed and insulated so that the ice particles are not subjected to an appreciable change in temperature. Adjacent the narrow bottom portion of the hopper an agitator 12 is provided for stirring the particles and for maintaining them in virtually discrete relation. The agitator 12 may comprise a shaft 18 having a plurality of suitable agitating blades 19 carried thereon for gently stirring the ice particles. The shaft 18 may be connected to any suitable driving means not shown. While normally the ice particles are used immediately after their formation by the machine 10, in the event the cleaning operation is temperative temperature. porarily stopped, the hopper provides a temporary storage for the normally continuous flow of ice particles from

the ice machine 10. Particles discharged through the bottom opening 20 of the hopper are conveyed through duct means 14, by means of a cool air stream entering duct means 14 at an inlet port 21 adjacent to the bottom of hopper 11. The cool air stream is provided by a compressor 13 of well known manufacture, the outlet port of the com-pressor being connected by pipe 22 to the interior of the ice machine so as to pass the compressed air stream in suitable coils through the ice machine for cooling thereof. A pipe 23 carries the cooled compressed air stream from the ice machine 10 to inlet port 21 of the duct means. The introduction of the cool air stream at the point adjacent to the bottom of the hopper tends to suck and pull ice particles from the hopper into the duct means and to propel the ice particles through the duct means.

The duct means in this embodiment is preferably a suitable flexible hose covered with lightweight insulation. The duct means 14 may be of any suitable desired length so that the nozzle means 15 may be positioned at various points about a car being washed. The duct means may

be of a selected diameter, as for example 2 to 4 inches.

The nozzle means 15 is illustrated in Fig. 2 and may comprise a nozzle head 25 having a discharge end portion 26 generally fan-shaped and outwardly flaring so as to discharge the ice particles in a relatively thin flat stream of suitable width. The nozzle head is removably attached to the end of the duct means 14 in well-known The nozzle means 15 includes an outer main orifice 26 adapted to eject the stream of ice particles. Within the nozzle head 25 are coaxially aligned dual inner auxiliary nozzle members 27 and 28 providing concentric orifices 29 and 30, respectively, spaced inwardly from orifice 26.

The nozzle member 27 is connected by a suitable flexible tube 31 to the compressor 13 for injecting, as desired, additional compressed air into the stream of ice 80 particles for their final projection upon the car surface. The air nozzle member 27 is provided with a suitable, selectively operable valve means 32 actuatable by a suitable pivoted control lever or trigger 33.

The nozzle member 28 encircles the forward portion 85

of nozzle member 27 and is connected to a flexible hose 34 of suitable length having an open end 35 positioned within an adjacent container or tank 36. The tank 36 may contain a suitable aqueous emulsion or dispersion of suitable wax such as carnauba wax or montan wax. The arrangement of nozzle members 27 and 28 is such that when compressed air is ejected through nozzle member 27, the aqueous wax emulsion in tank 36 is aspirated into the auxiliary stream of air and into the stream of ice particles. Such injection into the ice particle stream causes the wax emulsion to be projected upon the car surface in the form of a relatively fine mist or fog and, at the same time, serves to coat the ice particles in the stream thereof as they are projected against the car surface.

The container 36 may hold in addition to the aqueous wax emulsion appropriate emulsifying surface active agents of the anionic and cationic group as for example water soluble amines, sulphonated oils, sulphonated fatty alcohols and fatty alcohol sulphates and certain hydroxyanxyramine esters such as esters of triethanolamine. These surface active agents assist in the removal of dirt from the car surface and the car surface and may be held in a container separate from tank 36 if desired for selective introduction into the ice particle stream.

In the operation of the apparatus described above, ice machine 10 is normally operated only when ice particles are required for washing a car, such an ice machine having the capacity to rapidly produce a sufficiently desired quantity of ice particles. When the ice machine has been started and the production of ice particles has commenced the operator may spray selected surface areas of the automobile by operation of the nozzle means 15. Preferably the stream of ice particles ejected by the nozzle means is directed against the car surface at a selected angle so that the ice particles will tend to wipe and scrub the surface of the car. The cool air stream together with the insulated duct means 14 prevents any appreciable change of temperature of the individual discrete ice particles. Upon impingement against the car surface the pressure at which the ice particles strike the surface causes the temperature of the individual ice particles to slightly increase so that the ice particles enter the melting point zone or begin the transition from a solid phase to a liquid phase. The result is a soft slushy ice particle acting upon the surface of a car capable of wiping and scrubbing the car surface for absorbing and

carrying away foreign particles on the car surface.

At selected intervals the nozzle means 15 may be operated by the lever 33 so that the aqueous emulsion in tank 36 is introduced into the stream of ice particles and ejected from the nozzle means in the form of a fog or mist spray as above described. The impingement of the aqueous surface active agents against the car surface simultaneously with the ice particles tends to facilitate removal of road grime such as oil and grease which may have been deposited upon the car surface. Likewise, the aqueous wax emulsion in the fog spray is deposited upon the surface being cleaned and provides a thin protective polishable coating on the car surface. Action of the cold ice particles upon deposited wax emulsion will not tend to wipe off the wax emulsion but will tend to pound and spread the minute particles of the wax emulsion on the car surface and to cold polish the surface. The virtually simultaneous cleaning and polishing operation on the car surface by the bombardment thereof by the ice particles results in a clean, smoothly finished and polished sur-

In the system illustrated in Fig. 3 substantially the same method is used as described above. In Fig. 3 a suitable frame 50 is provided for supporting a plurality of adjustably mounted nozzle means 51 for projecting ice particles on a car surface as the car 52 is advanced by suitable well known means not shown through the spray area covered by the plurality of nozzles.

In this modification the wax emulsion and surface active agents may be introduced into the stream of ice particles as they pass through the hopper by spraying the virtually discrete ice flakes. The ice particles are thus provided with a thin coat of wax emulsion and/or surface active agents which are active agents which are face active agents which are carried by the ice particle through duct means and projected upon the car surface for simultaneous cleaning and polishing of the car surface.

A container or tank 53 for the wax emulsion and/or

surface-acting agent may be mounted adjacent the hopper 54 and connected thereto by suitable pipe means 56, said pipe means including several spray nozzle means projecting within the hopper to spray with a fine mist the ice flake passing therethrough. A valve means 57 in the pipe means 56 affords selective introduction of the wax emulsion into the stream of ice flakes. The tank may be maintained under pressure so that opening of the valve will cause flow of emulsion. The valve means 57 may be controlled from a point near the car and frame 50 so that 10 an operator may readily control the use of the emulsion.

It is understood that separate containers may be used It is understood that separate containers may be used for the aqueous wax emulsion and the emulsifying surface-active agents. These emulsions may be used simultaneously or may be used sequentially. In the latter 15 method the car surface may first be sprayed with ice particles and surface-acting agents and then sprayed with ice particles and wax emulsion. It is understood that bombarding of a car surface with a stream of ice particles only will serve to efficiently and effectively clean the 20 only will serve to efficiently and effectively clean the 20 surface, the introduction of surface-acting agents facilitating and quickening the cleaning operation.

It is understood that various means may be used to make and convey ice particles of flaky form or other forms to a suitable nozzle means for projection against 25 a car surface. In some circumstances it may be desirable to use pump means for facilitating the conveying of the

All such modifications and changes coming within the scope of the appended claims are embraced thereby.

1. A method of cleaning and polishing finished surfaces which comprises: bombarding a finished surface area with virtually discrete particles of flaky ice at slightly below melting point and suspended and moved in a cool air stream; selectively introducing an aqueous low temperature wax emulsion in said stream for deposit on said surface area; and polishing the deposited wax emulsion by bombardment of said deposited wax with said ice par-

2. A method as claimed in claim 1 which includes the step of introducing an emulsifying surface-active agent in said stream for cooperation with said ice particles for

cleaning said surface area.

3. A method of cleaning a surface which comprises 45 forming a supply of small ice particles, mixing said ice particles with a stream of air, discharging said mixed stream of air and ice through a nozzle against an area of the surface, said particles of ice being at virtually the transition zone temperature from a solid phase to a liquid phase, said surface being at a temperature higher than the melting point of the ice particles whereby said ice particles afford a virtually slushy mass upon contact with the surface to be cleaned for scrubbing and wiping said

4. A method of cleaning a surface which comprises controllably directing at a selected angle a stream of particles of ice at virtually the transition zone of said particles of ice from a solid phase to a liquid phase upon a surface area to be cleaned whereby said particles of ice afford a virtually slushy mass upon contact with the surface area to be cleaned for scrubbing and wiping said area, and selectively introducing an emulsifying surface-

active agent in said stream of ice particles.

5. A method of cleaning a surface which comprises 65 directing at a selected angle a stream of particles of ice at virtually the transition zone of said particles of ice from a solid phase to a liquid phase upon a surface area whereby each particle affords a virtually slushy mass for scrubbing and wiping said area, and selectively introducing an aqueous low-temperature wax emulsion into said stream of particles.

6. In an apparatus for cleaning and polishing finished surfaces of automobiles, the combination of: means for

producing virtually discrete ice particles of flaky nature; receptacle means for receiving and holding a selected quantity of ice particles; duct means connected to said receptacle means for directing said ice particles along a selected path; compressed air means in heat exchanging relationship with said ice particle producing means for providing cool compressed air, said compressed air means being connected to said duct means at the receptacle means for propelling said ice particles in a stream along said path; nozzle means at the discharge end of said duct means for selectively directing the stream of ice particles against a surface of the automobile; said nozzle means including a nozzle member for introducing additional compressed air at said nozzle means into the stream of ice particles; means including a supply of low-tempera-ture aqueous emulsion of wax and a second nozzle member adapted to inject said wax emulsion into said stream of ice particles; and valve means for said nozzle means for selectively injecting said wax emulsion into said stream of ice particles for depositing a protective wax coating on said automobile.

7. In an apparatus for cleaning and polishing finished surfaces of automobiles, the combination of: means for producing virtually discrete ice particles of flaky nature; a hopper for receiving ice particles from said producing means; duct means connected to said hopper for directing said ice particles along a selected path; compressed air means in heat exchanging relationship with said ice particles along a selected path; compressed air means in heat exchanging relationship with said ice particles. ticle producing means for providing cool compressed air, said compressed air means being connected to said duct said compressed air means being connected to said duct means at said hopper for propelling said ice particles in a stream along said path; nozzle means at the discharge end of said duct means for selectively directing the stream of ice particles against a surface of the automobile; said nozzle means including a nozzle member for introducing additional compressed air at said nozzle means into the stream of ice particles; and means including a supply of low-temperature aqueous emulsion of wax and a second nozzle member adapted to inject said wax emulsion into said stream of ice particles.

8. In an apparatus for cleaning and polishing finished surfaces, the combination of: means for producing virtually discrete ice particles of flaky nature including a hopper for said particles; duct means connected to said hopper means for directing said ice particles along a selected path; compressed air means in heat exchanging relationship with said ice particle producing means for providing cool compressed air, said compressed air means being connected to said duct means at said hopper for propelling said ice particles in a stream along said path; nozzle means at the discharge end of said duct means for selectively directing the stream of ice particles against a surface to be cleaned; and said nozzle means including a nozzle member for introducing additional compressed air at said nozzle means into the stream of ice particles.

air at said nozzle means into the stream of ice particles.

9. A method of cleaning and polishing a surface area comprising the steps of: conveying particles of flaky ice in a cool air stream; directing said stream at a selected angle against a surface area to be cleaned for bombarding the surface area with said particles; selectively introducing an emulsifying surface-active agent into said stream of particles; then selectively introducing an aqueous low temperature wax emulsion into said stream of particles: temperature wax emulsion into said stream of particles; and then polishing the deposited wax emulsion by bombardment theerof with said ice particles.

References Cited in the file of this patent UNITED STATES PATENTS

1,602,105	Geer Oct. 5, 193	26
1,907,411	Timoney May 2, 19	33
1,934,494	Gillespie Nov. 7, 19	33
2,136,214	Keith Nov. 8, 19	38
2,536,843	Dye Jan. 2. 19	51