This invention has reference to simple means for supporting correspondence trays, shelves, arms, or other devices for displaying articles for sale in shop windows, and similar purposes. The supporting means comprise an upright or pillar and a bracket mounted thereon in such a way that it can be swivelled or moved about the axis of the upright or pillar and can be readily removed from the upright or pillar when desired.

The invention resides in the combination with an upright or pillar provided with an annular shoulder, of a removable bracket provided with an upper part having a pair of fingers adapted to rest on the annular shoulder of said upright and to embrace the said upright above the said annular shoulder, parts on said fingers adapted to bear laterally against the exterior of said upright at the side thereof remote from said bracket, and a lower part on said bracket adapted to bear against the other side of said upright, the said bearing parts on said fingers acting to resist the lateral pull of the bracket upon the said upright and the said lower bearing part acting to resist the lateral thrust of said bracket upon said upright.

In the drawings, Fig. 1 shows in side elevation an upright or pillar support with three revoluble trays mounted thereon, each of these trays being carried by a roller-fitted bracket.

Figs. 2 and 3 are elevations on a larger scale and at right angles to one another showing the roller-fitted bracket and its support.

Fig. 4 is a plan view of Fig. 3.

Fig. 5 is similar to Fig. 2 but shows only one roller at the lower part of the bracket.

Fig. 6 is a plan view of a modification in which the upper rollers of Fig. 2 are replaced by caged balls.

Fig. 7 is a similar view to Fig. 1 showing the device in its application for shop window display purposes.

Fig. 8 is a section corresponding to the line 8, 8 of Fig. 7.

Fig. 9 is a plan of certain parts shown in Fig. 7.

Fig. 10 shows a modified construction of the device in side elevation.

Fig. 11 is a plan of the supporting bracket shown in Fig. 10.

Figs. 12 and 13 show in side elevation and plan respectively, another form of the improved supporting bracket.

Fig. 14 is a detail view hereinafter referred to, and

Fig. 15 is a diagrammatic plan illustrating how a shop window display shelf is supported by a pair of the devices.

Referring to Figs. 1 to 6 inclusive, the trays a are provided with brackets b, each having a pair of horizontal upper fingers c and a pair of lower arms or fingers d. The vertical pillar or upright e is shown cylindrical throughout its height and provided with a clamp f of any suitable kind. This pillar or upright e is annularly grooved at g, having a flat shoulder g', see Figures 5 and 6. The gap between the fork arms or fingers c is such that the fingers can freely embrace the pillar at the annular grooved parts thereof and the fingers are of such a length as to pass beyond the pillar. The horizontal fingers c are provided at their projecting extremities with anti-friction rollers h. The spindles or studs for these rollers h h depend from the fingers c c. The said fingers c rest upon the top of the shoulder g' and the dependent rollers h bear against that side of the pillar or upright e which is remote from the tray a and below the groove g.

The lower fork arms or fingers d extend one each side of the full width of the pillar and they are provided on the upper side with rollers i i which bear against the pillar or upright e on the side nearest the tray. The fingers d are preferably horizontal and obviously they may be shorter than the fingers c c. The rollers i may be arranged upon the fingers d in a manner similar to the upper rollers h h. The lower rollers i i are preferably mounted upon the upper side of the lower fingers d. In this way, the weight of the tray and of its contents exerts a pull on the pillar e by means of the rollers h h and also a thrust on the pillar by means of the rollers i i. Wear of the pillar is thereby avoided and the tray can be easily swivelled around the pillar.
Instead of rollers, fingers $c$ may be provided with retaining pockets or cages $j$ for balls $j'$, as shown in Figure 6, and similarly arranged balls may be employed upon the lower figures $d$ $d$ to make contact with the full width of the pillar.

In all cases the distance apart between the peripheries of the two rollers $h$ $h$ or balls $j'$ $j'$ on the upper pair of fingers $c$ $c$ is preferably such that the said rollers or balls can be passed across the pillar $e$ at the annularly grooved portion $g$, but will then be retained in place when lowered, by the non-grooved portion of the pillar.

The bracket $b$ with the upper fingers $c$ and lower fingers $d$ is shown made in a single piece with the plates or wings $l$. The roller $h$, as shown in Figure 2, may be provided on a vertical stud $m$ having a head $m^1$ and riveted to the finger $c$.

It will be understood that the bracket $b$ is secured to the tray in any suitable manner. In the example illustrated the bracket is of angle shape in plan, see Fig. 4, and is secured to the tray by screws $k$ passing through the plates $l$ of the angle bracket. The pillar $e$ is grooved annularly at various points in its height, dependent on the number of revoluble trays $a$ to be attached to the support.

The pillar $e$ is preferably cylindrical throughout its length but it may be made as a series of cylindrical parts not all of the same diameter, which parts are separated by the grooves $g$. If desired the pillar may have any other approved cross-section besides circular.

Although the pillar shown in Fig. 1 is shown as extending upwardly from a clamp adapted to be removable secured to a desk or table it may, of course, extend upwardly from any appropriate base adapted to rest on a table or other support. Fig. 7 which illustrates an application of the device for shop window display purposes, shows the pillar as extending upwardly from a base $n$ of such weight as to give stability to the structure. In this construction the supporting bracket $b$ is made substantially as hereinafore described, but instead of being connected to a correspondence tray it has fixed to it, as by screws $p$, an arm $q$ formed it may be of wood. The arm $q$, in the example illustrated is fitted at its free end with a plate or tray $r$ upon which an article or articles to be displayed can be placed. Moreover, the said plate or tray is shown as being mounted to rock in all directions on a ball $s$ formed in one with a screwed stem $t$ that is passed through a hole $u$ formed therefor in the free end of the arm $q$ and fixed in place by a wing nut $v$ screwed thereon below the arm. In order to provide sufficient friction to maintain the plate or tray $r$ in any angular position into which it may be tilted as desired to display effectively the article or articles thereon, the socket $w$ that encircles the ball $s$ and is secured to the underside of the plate or tray, contains a helical spring $x$ that bears on the ball $s$ with sufficient pressure to give the desired resistance.

Arms such as $q$ can be employed to support a shelf in which is a suitable headed pin $z$, see Fig. 14, can be fitted in the hole $u$ to prevent the shelf moving outwardly.

An arrangement for supporting a shelf or set of shelves for shop window display purposes comprises conveniently two uprights each fitted with a supporting arm $q$ or a number of such arms, the two uprights being spaced apart at a distance such that the shelf or shelves is or are supported at or near its or their ends by the said arms. It will be understood that by moving the arms $q$ angularly about the axes of the uprights they can be readily adapted to suit shelves of different widths, as by the said movements the distance between the end pins $z$ and the uprights can be varied, see Fig. 15.

In Fig. 10, which shows the improved device as applied to carry an arm on which a hat or the like can be displaced, the bracket $b$ is formed with holes $2$ in $o$ which can be readily fitted the downwardly bent ends of wire supporting arms $3$, the upwardly bent ends of which are fitted with suitable knobs $4$ on which a hat or the like can be supported. The bracket shown in Figs. 10 and 11 is formed with holes for two or more than two supporting arms, but as will be appreciated provision may be made for supporting one only or more than two such supporting arms.

The bracket shown in Figs. 12 and 13 is adapted to embrace between them the end of a supporting arm such as $q$, and formed through said wings are holes for a pin or bolt $6$, Fig. 13, on which the arm $q$ can be so mounted that it can be tilted upwardly or downwardly and held in the desired position by tightening a wing nut $7$ working on the end of the pivot pin or bolt $6$.

The shop window display stands illustrated are referred to by way of example only, and variations in details of construction and design of these and of the devices for supporting correspondence trays and the like may be made without departure from the invention.

What I claim is:

1. A support for an article, comprising an upright provided with a reduced portion which forms a shoulder, a bracket provided at its upper part with fingers which rest on the said shoulder, said bracket having at its lower part means for bearing on the upright, vertical pins projecting downwardly from the free end portions of the said fingers, rollers journaled on the said pins and
bearing on the upright below its shoulder, said rollers being spaced apart so as to pass the reduced portion of the upright and to retain the bracket on the upright, and means for supporting an article connected to the said bracket.

2. A support for an article as set forth in claim 1, the means for bearing on the upright comprising fingers which straddle the upright, pins projecting upwardly from the said fingers, and rollers journaled on the said pins.

In testimony whereof I affix my signature.

JOHN THOMAS JENNENS.