An abstract for a patent application describes the invention of a drug candidate for treating a medical condition by enhancing expression of p21cipl/wafl. The invention involves identifying a drug candidate by exposing a cell line to a compound and identifying a compound that induces expression of the reporter domain. The compound that induces expression of the reporter domain is claimed to be a drug candidate for treating a medical condition that can be treated by enhancing expression of p21cipl/wafl.
COMPOUNDS FOR ENHANCING p21 EXPRESSION AND METHODS OF USE THEREOF

This application asserts priority to U.S. Provisional Application No. 60/933,366, filed on June 5, 2007, which is hereby incorporated by reference in its entirety.

The invention was also made with funds from New York State Department of Health, contract number CO19772. New York State has certain rights in this invention.

BACKGROUND OF THE INVENTION

p21cip1/waf1, is an important intermediate by which p53 mediates its role as an inhibitor of cellular proliferation in response to DNA damage. p2icip1/waf1 may bind to and inhibit cyclin-dependent kinase activity, preventing the phosphorylation of critical cyclin-dependent kinase substrates and blocking cell cycle progression, and thus proliferation. Induction or overexpression of p21cip1/waf1 leads to cell cycle inhibition and growth suppression in cells.

In many cells, p21cip1/waf1 is increased in response to different types of stress, such as oxidative stress, x-ray radiation, and DNA damage. Oxidative stress is reported to be associated with numerous diseases and conditions, including stroke, hypoxia, ischemia, spinal cord injury and neurodegenerative conditions. Accordingly, compounds that enhance the expression of p21cip1/waf1 and methods of identifying such compounds are
beneficial for treating conditions and diseases that can be treated of p21cipl/waf1 or by inhibiting cell cycle progression.

SUMMARY OF THE INVENTION

In one aspect, the present invention relates to a method for identifying a drug candidate for enhancing expression of p21cipl/waf1 in a human patient suffering from a medical condition that can be treated by enhancing expression of p21cipl/waf1. The method includes (a) providing a cell line comprising a nucleic acid sequence that comprises a p21cipl/waf1 promoter operationally ligated to a reporter domain; (b) exposing the cell line to a compound; and (c) identifying a compound that induces expression of the reporter domain. The compound that induces expression of the reporter domain is a drug candidate for treating a medical condition that can be treated by enhancing expression of p21cipl/waf1.

In another aspect, the invention relates to a method for enhancing expression of p21cipl/waf1 in a human patient suffering from a medical condition that can be treated by enhancing expression of p21cipl/waf1. The method includes administering to the patient an effective amount of one of the following compounds: ciclopirox olamine, dihydrocelastrol, colistimethate sodium, lycorine, diphenylurea, and acetylcysteine, chloroquine diphosphate, and 4'-methoxyflavone (acacetin).
BRIEF DESCRIPTION OF THE FIGURES

Figure 1. GenBank Accession No. U24170. Nucleotide sequence of human \(p_{21^{op1/wafl}} \) gene.

Figure 2. GenBank Accession No. U24171. Nucleotide sequence of \(p_{21^{cil/wafl}} \) gene of Mus musculus.

Figure 3. 60 bp murine \(p_{21^{cil/wafl}} \) promoter sequence from GenBank accession number U24171. The sequence was sub-cloned into pGL3 Luciferase Reporter Vector (Promega Corp. WI). Double underline represents an Sp1 binding site. Single underline represents TATA-box.

Figure 4. 2,400 bp human \(p_{21^{cil/wafl}} \) promoter sequence from GenBank accession number U24170. The sequence was sub-cloned into pGL3 Luciferase Reporter Vector (Promega Corp. WI). Double underline represents an Sp1 binding site. Single underline represents TATA-box.

Figure 5. Realtime PCR results. Cultured rat primary cortical neurons were treated with the respective drug for 12 hours. Neurons were harvested and RNA extracted using TriZolTM reagent (Invitrogen). cDNA was synthesized by standard reverse-transcriptase protocol. Realtime PCR performed using Applied Biosystems Realtime PCR cycler and rat p21-specific TaqMan primer and probe set. Data is displayed as fold induction relative to control (1-fold), which received vehicle only (no drug).
Method for Identifying Drug Candidates

In one aspect of the invention, a method is provided for identifying a drug candidate for enhancing expression of p21\(^{c\text{ipl/wafl}}\) in human patients suffering from a medical condition that can be treated by enhancing expression of p21\(^{c\text{ipl/wafl}}\). The method includes providing a cell line comprising a nucleic acid sequence that comprises a p21\(^{c\text{ipl/wafl}}\) promoter operationally ligated to a reporter domain; exposing (treating) the cells to a chemical compound; and identifying a compound that induces expression of the reporter. The compound that induces expression of the reporter is a drug candidate for treating a medical condition that can be treated by (i.e., benefits from) enhancing expression of p21\(^{c\text{ipl/wafl}}\). Preferably, the compound that induces expression of the reporter is a drug candidate for treating a medical condition that inhibits cell cycle progression.

The p21\(^{\text{cip1/waf1}}\) protein is also known as cyclin-dependent kinase inhibitor 1A (CDKN1A). The p21\(^{\text{c\text{ipl/wafl}}}\) expression can be enhanced in any cell that expresses p21 in the patient, and, most advantageously, in a damaged or injured cell.

As used herein, enhancing expression of p21\(^{c\text{ipl/wafl}}\) refers to increasing a level of measurable p21\(^{c\text{ipl/wafl}}\) in a given assay in the presence of a drug candidate relative to a measurable level of p21\(^{c\text{ipl/wafl}}\) in the absence of the drug candidate, when tested under the same conditions.

Expression of p21\(^{\text{cip1/waf1}}\) is considered enhanced if expression under the same conditions is enhanced at least about 10% greater, preferably at least about 25% greater, more preferably at least about 50% greater, even more preferably at least about 75%
greater, most preferably at least about 90% greater, or more
drug candidate.

Expression of p21^{cipl/wafl} can be enhanced by any mechanism, and the invention is
not limited to any particular mechanism. For example, expression of p21^{cipl/wafl} can be
enhanced by transcriptional induction of the cognate messenger RNA (mRNA) of
p21^{cipl} mRNA, increased stability of p21^{cipl/wafl} mRNA, increased translation of p21^{cipl/wafl}
mRNA into p21^{cipl/wafl}, increased stability of p21^{cipl/wafl}, increased p21^{cipl/wafl} activity (in
the presence or absence of increased protein), increased induction of p21^{cipl/wafl} promoter
activity, or any other mechanism.

Gene expression can be assessed by direct detection of protein product. Protein
can be detected by methods known in the art, for example, by protein gel-electrophoresis
or immunological methods. Protein can also be detected by detection of the
corresponding mRNA products of transcription.

A drug candidate refers to a compound that may have activity in enhancing
expression of p21^{Q/wafl} in human patients in need thereof. The drug candidate may be
identified for enhancing expression of p21^{cipl/wafl} in any cell <i>(in vitro)</i> or mammal <i>(in
vivo)</i>.

Examples of cells in which the drug candidate enhances expression of p21^{cipl/wafl}
include neuronal cells (<i>e.g.</i>, neurons, ganglia, Schwann cells, astrocytes,
oligodendrocytes, and microglia), brain cells, spinal cord cells, kidney cells, intestinal
cells, heart and cardiac muscle cells such as myocytes, skin cells, etc. Examples of
mammals in which the drug candidate enhances expression.
laboratory mammals, such as mice, rats, rodents, monkeys, baboons, etc.

A traditional paradigm for drug discovery and development typically involves three phases. During the early stages of drug discovery, large compound libraries of compounds (chemical molecules, biological molecules, small molecules, for example) are screened or tested in vitro for biological activity at a molecular target in order to identify potential new drugs, or lead compounds.

The active compounds, or hits, from this initial screening process are then tested through a series of other in vitro and in vivo tests to further characterize the active compounds. The in vivo tests at this phase may include tests in non-human mammals such as typical laboratory animals, for example, in mice, rats, rodents, monkeys, baboons, etc. If a compound meets the standards for continued development as a drug following in vitro and in vivo tests, the compound is typically selected for testing in humans.

A progressively smaller number of lead compounds at each stage are selected for testing in the next stage. The series of tests eventually leads to one or a few drug candidates being selected to proceed to testing in human clinical trials. The human clinical trials may include studies in a human suffering from a medical condition that can be treated by enhancing expression of p21cip1/Δwaf1.

Many drug candidates, however, fail to gain marketing approval by the U.S. Food and Drug Administration (FDA). Accordingly, the drug candidate as used herein is preferably, but not necessarily, approved by a governmental entity responsible for approving drugs (e.g., U.S. FDA) for use in a pharmaceutical.
Cell line

A step in the method for identifying drug candidates is providing a cell line that includes a nucleic acid sequence that includes ap21cpl/waf1 promoter operationally ligated to a reporter domain.

As used herein, a cell line refers to a population of cells capable of continuous or prolonged growth and division \textit{in vitro}. Potentially any cell line that is capable of expressing a p21cpl/waf1/reporter domain construct could be used for this screen. The cell line preferably has the properties of being immortalized and is capable of being replicated.

The cell line can be derived from any mammal, such as a mouse, rat, or human. Preferably, the cell line is derived from a human. Preferentially, the cell lines are neural. Some specific examples of cell lines include HT22 mouse hippocampal cell line, human cortical neuron cell line HCN-2, human cerebellum cell lines PFSK-I, D283 Med, and D341 Med, rat neuroblastoma cell line B35 and pheochromocytoma cell line PC12.

Preferably, the cell line includes cells that are capable of replicating a vector and expressing a heterologous gene encoded by a sequence in the vector. The vector optionally expresses a nucleic acid sequence that includes a p21cpl/waf1 promoter/reporter domain construct.

A vector as used herein refers to a nucleic acid construct, generated recombinantly or synthetically, with a series of nucleic acid elements that permit
transcription of a particular nucleic acid in a cell that hosts part of a plasmid, virus, or nucleic acid fragment.

Any vector or plasmid DNA may be used as a backbone for carrying the nucleic acid sequence that comprises a p2i cipl/waf1 promoter operationally ligated to a reporter domain. Examples of suitable vectors include pGL3 vector (Promega, Madison, WI), pCAT3 vector (Promega, Madison, WI), and pSEAP2 Vector (Clontech).

Nucleic acid sequence

As stated above, the cell line includes a nucleic acid sequence that includes a p21 cipl/waf1 promoter operationally ligated to a reporter domain. Nucleic acid includes polyribonucleic acid (RNA) and polydeoxyribonucleic acid (DNA), both of which may be single-stranded or double-stranded.

The term operationally ligated refers to a linkage of nucleotide elements in a functional relationship. A nucleic acid sequence is "operationally ligated" when it is placed into a functional relationship with another nucleic acid sequence. For example, a promoter or enhancer is operationally ligated to a coding sequence if it affects the transcription of the coding sequence. The nucleic acid sequences that are operationally ligated are typically contiguous and, where necessary to join two protein coding regions, contiguous and in reading frame.

The term promoter refers to a nucleic acid sequence capable of initiating and controlling expression of a coding sequence or functional RNA. The wild-type p2j cipl/waf1

\[\text{promoter} \]
The sequence of full length wild-type p2j cipi/wafi gene is well-known in the art. See, for example, NCBI GenBank accession number U24170, bp 2141 - 4656, shown in Figure 1. See also Figure 4, which shows a 2,400 bp human p21^{cipi/wafi} \textit{promoter} sequence that was sub-cloned in to pGL3 Luciferase Reporter Vector (Promega Corp. WI).

The wild-type p21^{cipi/wafi} promoter is approximately 2.4 kb in size. It typically contains a TATA box, two p53-binding sites and six conserved GC boxes that are binding sites for the transcription factor SpI. The six conserved binding sites for SpI are known in the art as SpI-1, SpI-2, SpI-3, SpI-4, SpI-5 and SpI-6. The binding sites for SpI-5 and SpI-6 overlap. The promoter may include additional recognition or binding sites for other factors involved in regulation of transcription of the gene.

As used herein, the term p21^{cipi/wafi} promoter refers to the full length wild-type p21^{cipi/wafi} promoter or a truncated p21^{cipi/wafi} promoter. The full length wild-type p21^{cipi/wafi} promoter is described above.

A truncated p21^{cipi/wafi} promoter has contiguous nucleotides removed from the 5' end of the full length wild-type p21^{cipi/wafi} promoter, and must include at least a TATA box element. Truncated p21^{cipi/wafi} promoters are well-known in the art. For example, a truncated p21^{cipi/wafi} promoter may include a nucleic acid sequence of the full length wild-type p21^{cipi/wafi} promoter that lacks contiguous nucleotides from the 5' end up to and including the two p53 binding sites (e.g., up to approximately -124 bp upstream, relative to the TATA box). Other examples include nucleic acid sequences of the full length wild-type p21^{cipi/wafi} promoter that lack contiguous nucleotides from the 5' end up to and
including the SpI-I site (e.g., up to approximately -110 bp
upstream, relative to the TATA box), up to and including the SpI-2 site (e.g., up to approximately -101 bp upstream, relative to the TATA box), up to and including the SpI-3 site (e.g., up to approximately -70 bp upstream, relative to the TATA box), or up to and including the SpI-4 site (e.g., up to approximately -60 bp upstream, relative to the TATA box).

Most preferably, the truncated p2i cipl/wafl promoter contains -60 bp upstream, relative to the TATA box. Such a preferred truncated p2i cipl/wafl promoter lacks the p53 binding sites and SpI-I, SpI-2, SpI-3, and SpI-4 binding sites, but includes the SpI-5 and SpI-6 binding site and TATA box elements. See, for example, NCBI GenBank accession number U24171, bp 4593 - 4812, shown in Figure 2. See also Figure 3 which shows a 60 bp murine p21 cipl/wafl promoter sequence that was sub-cloned into pGL3 luciferase reporter vector (Promega Corp., WI).

The full length wild-type p21 cipl/wafl promoter necessarily encompasses regions of a truncated p21 cipl/wafl promoter, described above. Accordingly, compounds that induce a truncated p21 cipl/wafl promoter also induce the full length wild-type p21 cipl/wafl promoter. However, compounds that induce the full length wild-type p21 cipl/wafl promoter may not induce a truncated p21 cipl/wafl promoter.

Therefore, in one embodiment, the method for identifying drug candidates further includes providing an additional cell line comprising a second nucleic acid sequence that comprises a p21 cipl/wafl promoter operationally ligated to a reporter domain. For example, the method may include providing a first cell line that comprises a nucleic acid sequence that comprises a full length wild-type p21 cipl/wafl promoter operationally ligated
to a reporter domain, and a second cell line that comprises a truncated wild-type p2l cipl/wafl promoter operationally ligated to a reporter domain. By providing more than one nucleic acid construct, a compound may be distinguished based on the mechanism (or binding site on the promoter) with which they induce expression of the reporter.

For purposes of the claimed invention, the p2l cipl/wafl promoter may be derived from any mammal, e.g., a mouse, rat, or human. Preferably, the full length wild-type p2l cipl/wafl promoter and its sequence are derived from a human.

A reporter domain (or reporter) refers to a nucleic acid sequence that encodes a protein that is readily detectable, either by its presence or activity. The reporter domain is typically maintained under control of the promoter. Molecules used as reporters are well-known to one of skill in the art, and expression of a reporter domain in the cell-based reporter-gene assays may be detected by any technique well-known to one of skill in the art. Methods for detecting the expression of a reporter domain will vary with the reporter gene used.

Assays for the various reporter genes are well-known to one of skill in the art. For example, luciferase, beta-galactosidase ("b-gal"), beta-glucoronidase ("GUS"), beta-lactamase, chloramphenicol acetyltransferase ("CAT"), and alkaline phosphatase ("AP") are enzymes that can be analyzed in the presence of a substrate and could be amenable to high throughput screening. For example, the reaction products of luciferase, beta-galactosidase ("b-gal"), and alkaline phosphatase ("AP") are assayed by changes in light imaging (e.g., luciferase), spectrophotometric absorbance (e.g., b-gal), or fluorescence...
Assays for changes in light output, absorbance, are adapted for high throughput screening. For example, b-gal activity can be measured with a microplate reader. Green fluorescent protein ("GFP") activity can be measured by changes in fluorescence. For example, in the case of mutant GFPS that fluoresce at 488 nm, standard fluorescence activated cell sorting ("FACS") equipment can be used to separate cells based upon GFP activity.

Alterations in the expression of a reporter gene may be determined by comparing the level of expression of the reporter gene to a negative control (e.g., PBS or another agent that is known to have no effect on the expression of the reporter gene) and optionally, a positive control (e.g., an agent that is known to have an effect on the expression of the reporter gene, preferably an agent that effects untranslated region-dependent expression). Alternatively, alterations in the expression of a reporter gene may be determined by comparing the level of expression of the reporter gene to a previously determined reference range.

Nucleic acid sequences that include a p21 cipl/waf1 promoter operationally ligated to a reporter domain are prepared by methods well-known in the art. The nucleic acid sequence can be incorporated into a vector or chromosomal DNA in the cells of the cell line.

Exposing the cell to a compound

Another step in the method for identifying drug candidates is exposing (treating) the cell to a compound. The term exposing refers to affecting an interaction or contact between the cell and compound, either directly or indirectly.
The cell can be exposed to a compound by any method known to those in the art. For example, the cell can be exposed to a compound by incubating the cell and compound \textit{in vitro}.

The cell can also be exposed to the compound \textit{in vivo} in a mammal, for example, in a laboratory mammal or in a human as part of clinical trials, as described above. The cell can be exposed to a compound \textit{in vivo} by administering the compound to the mammal by methods known in the art, including the administration methods described below.

\textbf{Identifying a compound that induces expression of the reporter}

Another step in the method for identifying drug candidates is identifying a compound that induces expression of the reporter. A compound that induces expression of a reporter domain refers to a compound that is capable of increasing transcription or expression of a reporter gene.

The transcription or expression is increased relative to some base level of transcription or expression. The base level of transcription or expression is in the absence of the compound. Expression of the reporter is considered induced if the expression is increased by at least about 10\%, preferably at least about 25\%, more preferably at least about 50\%, even more preferably at least about 75\%, and most preferably at least about 90\%, or more relative to some base level of transcription or expression.
A compound that activates a p21^{cip1/Avfl} promoter inhibits cell cycle progression because p21^{cip1/waf1} is a key regulator of cell cycle entry, progression, and withdrawal. Therefore, a compound that induces expression of the reporter is a drug candidate for treating a medical condition that can be treated by (e.g., benefits from) inhibiting cell cycle progression.

The term treating or treated refers to relieving the condition by causing regression of the condition, preventing the condition from occurring in a mammal that may be predisposed to the condition, arresting the development of the condition, or ameliorating the condition or at least one symptom of the condition.

The term inhibiting cell cycle progression refers to slowing or preventing the process of passing through the cell cycle as compared to normal cells.

The term cell cycle progression refers to the process of passing through the different cell cycle phases. The cell cycle refers to the cyclic biochemical and structural events occurring during growth and division of cells. The phases of the cell cycle include G₀ (Gap 0; rest phase), G₁ (Gapl), S phase (DNA synthesis), G₂ (Gap 2), and M phase (mitosis).

Medical conditions in which inhibiting cell cycle progression is desired as a treatment include a wide variety of conditions. Examples include various cancers and leukemias, cardiovascular conditions, neurodegenerative diseases of the nervous system (described below), including stroke, spinal cord injury, trauma, insult to the central nervous system, Alzheimer's disease, Parkinson's disease, Huntington's chorea,
amyotrophic lateral sclerosis, etc., and spinocerebellar dege
include medical conditions that can be treated by enhancing expression of p21cpl/wafl.

A human patient suffering from a medical condition refers to a patient that has one or more symptoms of the stated medical condition or has a positive diagnosis based on one or more diagnostic tests.

Method for Enhancing p21cpl/wafl **Expression**

In another aspect, the invention relates to a method for enhancing expression of p21cpl/wafl protein in a human patient in need thereof. A patient in need thereof includes a patient suffering from a medical condition that can be treated by enhancing expression of p21cpl/wafl. The method includes administering to the patient an effective amount of a compound selected from the group consisting of ciclopirox olamine, dihydrocelastrol, colistimethate sodium, lycorine, diphenylurea, and acetylcysteine, chloroquine diphosphate, and 4’-methoxyflavone (acacetin).

In another embodiment, the method includes administering to the patient an effective amount of a compound selected from the group consisting of ciclopirox olamine, dihydrocelastrol, colistimethate sodium, lycorine, diphenylurea, and acetylcysteine.

In yet another embodiment, the method includes administering to the patient an effective amount of a compound selected from the group consisting of chloroquine diphosphate and 4’-methoxyflavone (acacetin).
Method for Enhancing $p_2^{\text{cipl/wafl}}$ Expression in Humans Suffering from Neurodegenerative Disease or Condition

$p_2^{\text{cipl/wafl}}$ can protect cortical neurons from oxidative stress-induced death. $p_2^{\text{j cipl/wafl}}$ can also promote neurite remodeling and axonal regeneration. See, for example, Langley B, et al. Pulse inhibition of HDACs induces complete resistance to oxidative death in cortical neurons without toxicity and reveals a role for cytoplasmic $p_2^{\text{j wafl/cy}}$ independent neuroprotection. J Neuroscience. 28(1): 163-176.

Accordingly, in another aspect, the human patient suffers from a neurodegenerative disease or condition. A neurodegenerative disease or condition typically refers to a disorder characterized by gradual and progressive loss of cells of the central or peripheral nervous system, which may lead to gradual and progressive loss of the corresponding tissue and/or organs. Examples of such cells include neurons, ganglia, Schwann cells, astrocytes, oligodendrocytes and microglia. Examples of corresponding tissue and organs include the brain and spinal cord.

For example, the neurodegenerative disease or condition can be an acute condition. Acute conditions generally occur as a result of trauma to a cell, tissue and/or organ of the nervous system. The trauma can, for example, partially or completely block blood flow to the cell, tissue and/or organ. Examples of acute neurodegenerative conditions include head injury and brain injury.
Alternatively, the neurodegenerative disease or condition. Examples of chronic neurodegenerative diseases and conditions include Parkinson's disease, Alzheimer's disease, Huntington's disease and Amyotrophic Lateral Sclerosis (also known as Lou Gherig's disease).

Method for Enhancing \(p2^\text{C}h^/w'a'n \) Expression in Humans Suffering from Stroke

In a further aspect, the human patient suffers from the consequences of a stroke. Stroke generally involves the interruption of blood flow to and/or within the brain. The interruption of blood flow can be due to, for example, a blockage or rupture of an artery or vessel. The blockage typically occurs from a blood clot. As a result of the interruption of blood flow, the brain does not receive sufficient amounts of blood.

A loss of \(p2^\text{C}h^/w'a'n \) increases the amount of damage that stroke causes to the brain. Accordingly, in one aspect of the invention, a method for enhancing expression of \(p2^\text{C}h^/w'a'n \) in a human patient suffering from stroke is provided.

Method for Enhancing \(p2^\text{C}h^/w'a'n \) Expression in Humans Suffering from Spinal Cord Injury

In still a further aspect, the human patients suffer from spinal cord injury. Spinal cord injury refers to any damage to the spinal cord. The damage typically results in loss of function, such as mobility or feeling. Damage to the spinal cord can occur, for example, as a result or trauma (car accident, gunshot, falls, etc.) or disease (polio, spina bifida, Friedreich's Ataxia, etc).
Any injury to the spinal cord can be treated in accordance with the present invention. For example, the injury can be a complete injury to the spinal cord. Complete injury typically refers to the lack of function (e.g., no sensation and no voluntary movement) below the site of injury. Both sides of the body are usually affected.

Alternatively, the injury may be an incomplete injury to the spinal cord. An incomplete injury generally refers to some function below the site of injury. For instance, a person with an incomplete injury may be able to move one limb more than another, may be able to feel parts of the body that cannot be moved, or may have more functioning on one side of the body than the other, etc.

Compounds

The drug candidate can be any chemical or biological molecule, including a small molecule. The drug candidate can be a salt of any such compounds.

A biological molecule is any molecule which contains a nucleic acid or amino acid sequence and has a molecular weight greater than 450. Examples of a biological molecule include nucleic acid molecules, oligonucleotides, oligopeptides, polypeptides, or proteins including antisense and dominant negative molecules; polypeptides, peptides, and proteins.

Small molecules include organic compounds, organometallic compounds, salts of organic and organometallic compounds, saccharides, amino acids, and nucleotides. Small molecules can further include molecules that would otherwise be considered...
biological molecules, except their molecular weight is not given. Molecules may be lipids, oligosaccharides, oligopeptides, and oligonucleotides, and their derivatives, having a molecular weight of 450 or less.

It is emphasized that small molecules can have any molecular weight. They are merely called small molecules because they typically have molecular weights less than 450. Small molecules include compounds that are found in nature as well as synthetic compounds.

Compounds useful in the methods of the present invention and processes to produce such compounds are known. For example, known compounds useful in the methods of the present invention preferably include ciclopirox olamine, dihydrocelastrol, colistimethate sodium, lycorine, diphenylurea, and acetylcysteine. Some additional compounds include chloroquine diphosphate and 4'-methoxyflavone (acacetin).

The compounds can be in the form of a pharmaceutically acceptable salt. The term "pharmaceutically acceptable salt" refers to a well-tolerated, nontoxic salt prepared from any one of the compounds mentioned above that have a basic and/or an acidic group, and an acid or base, respectively.

The acids may be inorganic or organic acids of any one of the compounds mentioned above. Examples of inorganic acids include hydrochloric, hydrobromic, nitric hydroiodic, sulfuric, and phosphoric acids. Examples of organic acids include carboxylic and sulfonic acids. The radical of the organic acids may be aliphatic or aromatic. Some examples of organic acids include formic, acetic, phenylacetic, propionic, succinic, glycolic, glucuronic, maleic, furoic, glutamic, benzoic, anthranilic, salicylic,
phenylacetic, mandelic, embonic (pamoic), methanesulfonic benzenesulfonic, stearic, sulfanilic, alginic, tartaric, citric, gluconic, gulonic, arylsulfonic, and galacturonic acids.

Appropriate organic bases may be selected, for example, from N,N-dibenzylethylenediamine, chloroprocaine, choline, diethanolamine, ethylenediamine, meglumine (N-methylglucamine), and procaine.

Administration

The compounds are administered to a human patient suffering from a medical condition that can be treated by enhancing expression of p21cip1/waf1 or by inhibiting cell cycle progression. The compound can be administered by any method known to those skilled in the art. Some examples of suitable modes of administration include systemic administration. Systemic administration can be enteral or parenteral, and preferably is oral administration. Liquid or solid formulations can be employed for systemic administration. Some suitable formulations include tablets, capsules, such as gelatin capsules, pills, troches, elixirs, suspensions, syrups, and wafers. Parenteral administration of the compound includes, for example, intravenous, intramuscular, and subcutaneous injections.

The compound is preferably in a suitable pharmaceutical composition comprising a pharmaceutical carrier. In this specification, a pharmaceutical carrier is considered to be synonymous with a vehicle or an excipient as is understood by practitioners in the art. Examples of carriers include starch, milk, sugar, certain types of clay, gelatin, stearic acid
or salts thereof, magnesium or calcium stearate, talc, vegetal glycols.

The pharmaceutical composition may also comprise one or more of the following: a stabilizer, a surfactant, preferably a nonionic surfactant, and optionally a salt and/or a buffering agent.

The stabilizer may, for example, be an amino acid, such as for instance, glycine; or an oligosaccharide, such as for example, sucrose, tetralose, lactose or a dextran. Alternatively, the stabilizer may be a sugar alcohol, such as for instance, mannitol; or a combination thereof. Preferably the stabilizer or combination of stabilizers constitutes from about 0.1% to about 10% weight for weight of the compound.

The surfactant is preferably a nonionic surfactant, such as a polysorbate. Some examples of suitable surfactants include Tween 20, Tween 80; a polyethylene glycol or a polyoxyethylene polyoxypropylene glycol, such as Pluronic F-68 at from about 0.001% (w/v) to about 10% (w/v).

The salt or buffering agent may be any salt or buffering agent. Suitable salts include, for example, sodium or potassium chloride. Suitable buffers include, for example, mixtures of citric acid and sodium or potassium citrate, and sodium or potassium bicarbonate or biphosphate. Preferably, the buffering agent maintains the pH of the pharmaceutical composition in the range of about 5.5 to about 7.5. The salt and/or buffering agent is also useful to maintain the osmolality at a level suitable for administration to a mammal. Preferably the salt or buffering agent is present at a roughly isotonic concentration of about 150 mM to about 300 mM.
A compound may be administered to a mammal by a method known in the art. Controlled release administration is a method of drug delivery to achieve a certain level of the drug over a particular period of time. Suitable controlled release formulations include delayed, sustained, and immediate (i.e., instantaneous) release. Methods for controlled release of drugs are well known in the art, and are described in, for example, U.S. Patent Nos. 5,567,439; 6,838,094; 6,863,902; and 6,905,708, which are hereby incorporated by reference.

The compound is administered to the patient in an amount effective in achieving its purpose. For example, an effective amount may include an amount exposed to a cell that is sufficient to enhance expression of p21_{cppl/wafl}. The effective amount of the compound to be administered can be readily determined by those skilled in the art during pre-clinical trials and clinical trials by methods familiar to physicians and clinicians. Typical daily doses include approximately 1 mg to 1000 mg.

In one aspect, the compound is considered to be effective in enhancing p21_{cppl/wafl} expression if the expression of p21_{cppl/wafl} is enhanced by at least about 10%, preferably at least about 25%, more preferably at least about 50%, even more preferably at least about 75%, and most preferably at least about 90%. The p21_{cppl/wafl} expression is considered enhanced relative to some base level of expression. The base level of expression is a level of induction that occurs in the absence of the compound.

The pharmaceutical composition may additionally contain one or more conventional additives. Some examples of such additives include a solubilizer such as, for example, glycerol; an antioxidant such as for example, benzalkonium chloride (a
mixture of quaternary ammonium compounds, known as "qt
chloretone or chlorobutanol; anaesthetic agent such as for example a morphine
derivative; or an isotonic agent etc., such as those described above. As a further
precaution against oxidation or other spoilage, the compound may be stored under
nitrogen gas in vials sealed with impermeable stoppers.
Example 1:

A 2000 compound library was tested to identify drug candidates that enhance expression of p21^{C/\text{waf1}}. The library tested was The Spectrum CollectionTM from MicroSource Discovery System, Inc. (Groton, Conn). The 2000 compounds in the library are primarily Food and Drug Administration (FDA)-approved compounds or natural products. An alphabetical list of the compounds is available at the MicroSource Discovery website at www.msdiscovery.com/spect.html, which is incorporated by reference. The compounds are supplied as 10 mM solutions in dimethyl sulfoxide (DMSO).

The library was screened using murine hippocampal HT22 cells transfected with a \text{p21^{C/\text{waf1} promot}}_{\text{erase}} construct. Compounds that induced expression of the reporter at a level approximately 2-fold above the base level were identified.
Example 2

In another analysis, real-time PCR was performed. Cultured rat primary cortical neurons were treated with the respective drug for 12 hours. Neurons were harvested and RNA extracted using TriZol™ reagent (Invitrogen). cDNA was synthesized by standard reverse-transcriptase protocol. Realtime PCR performed using Applied Biosystems Realtime PCR cycler and rat p21-specific TaqMan primer and probe set. Data is displayed as fold induction relative to control (1-fold), which received vehicle only (no drug). See Figure 5.
Example 3

Based on available dosing data, rats were dosed with ciclopirox (intraperitoneal; 3 animals per concentration). Spinal cord, liver and skeletal muscle tissue was harvested 6-hours after drug delivery. Real-time rt-PCR was performed on RNA extracted from tissues to examine the expression of p21wafl/cipl, arginase-1, and VEGF in order to determine what might be the most efficacious dose.

Microarray gene analysis was also performed on spinal cord tissue RNA to determine gene expression changes that correlate with treatment and dose in an unbiased manner. These studies revealed that the arylhydrocarbon receptor (AHR) was a dose-dependent ciclopirox-regulated gene, in vivo, and provided confidence that ciclopirox could penetrate the blood brain barrier and could induce transcription in the spinal cord.

Results from these studies show that ciclopirox given as single 30 mg/kg intraperitoneal injection 30 minutes after a contusion injury at the level of T-8, can provide significant protection (reduced lesion volume). The effects of a single injection after injury on behavior showed little functional improvement.
Example 4: High throughput screen for p21 activators:

To identify novel activators of p21, fragments of t promoter were subcloned into the pGL3 basic promoter-reporter construct (see promoter sequence information). The resultant p21-luciferase reporter plasmids were each then stably transfected into a mouse hippocampal cell line, HT22. Several lines were generated and each showed predicted increases in p21-luciferase in response to the known p21 inducer trichostatin A (a HDAC inhibitor). Drugs were added to cells stably expressing p21-luciferase in a 96 well format. The HDAC inhibitor trichostatin A was used as a positive control. After 12 hours of drug treatment, the cells were lysed and luciferase activity was measured using a desktop luminometer. Cell viability was monitored in parallel, so that agents that induce toxicity can quickly be eliminated. Secondary screens including real time PCR or Western blots of p21 were monitored in primary neurons.
Example 5: Survival assays - oxidative stress

Primary cortical neurons from E17 rat embryos were well-established papain dissociation method as described previously (Ratan, R. R., Murphy, T. H., Baraban, J. M. Oxidative stress induces apoptosis in embryonic cortical neurons. J Neurochem, 62, 376-379, (1994)). These neurons were plated on poly-D-lysine (Sigma) coated cell culture plates at a density of 1X106 cells/ml in minimal essential medium (MEM, Gibco BRL) with 5.5 g/l glucose, 10% FCS, 2 mM L-glutamine, 100 µM cysteine. 24 h after plating, neurons were rinsed with warm phosphate buffered saline and incubated with media containing HCA (2.5 or 5 mM).

Control neurons were supplied media without HCA. In parallel, cortical neurons were co-treated with the "compounds / drugs" at the time of HCA exposure to evaluate neuronal protection. A concentration range was used to ensure a therapeutic dose. After incubation with treatment media for 24 h cells were assayed for viability. Calcein-acetoxymethyl ester (AM) / ethidium homodimer-1 staining (live/dead assay) (Molecular Probes, Eugene, OR) under fluorescence microscopy and the MTT assay (3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide) (Promega, Madison, WI) methods were used as measures of cell viability and death. Testing of the compounds was performed in 48-well cell culture plates with 4-6 wells per treatment and repeated four times.

SEQUENCE LISTING

Incorporated herein by reference in its entirety is the attached Sequence Listing, which was created on June 5, 2008.
What is claimed is:

1. A method for identifying a drug candidate for enhancing expression of p21cip1/waf1 in a human patient suffering from a medical condition that can be treated by enhancing expression of p21cip1/waf1, the method comprising:

 (a) providing a cell line comprising a nucleic acid sequence that comprises a p21cip1/waf1 promoter operationally ligated to a reporter domain;

 (b) exposing the cell line to a compound; and

 (c) identifying a compound that induces expression of the reporter domain;

 wherein the compound that induces expression of the reporter domain is a drug candidate for treating a medical condition that can be treated by enhancing expression of p21cip1/waf1.

2. The method according to claim 1, wherein the medical condition can be treated by inhibiting cell cycle progression.

3. The method according to claim 1, wherein the medical condition is spinal cord injury.

4. The method according to claim 1, wherein the medical condition is stroke, trauma, or insult to the central nervous system.

5. The method according to claim 1, wherein the medical condition is a neurodegenerative disease.

6. The method according to claim 1, wherein the cell line is a human hippocampal cell line.

7. The method according to claim 1, wherein the reporter domain expresses luciferase.
8. A method for enhancing expression of \(p21_{c}\pi p/\omega f l \) in a human patient suffering from a medical condition that can be treated by en| p21 \(\Phi \pi /\omega f l \), the method comprising administering to the patient an effective amount of a compound selected from the group consisting of ciclopirox olamine, dihydrocelastrol, colistimethate sodium, lycorine, diphenylurea, and acetylcysteine, chloroquine diphosphate, and 4'-methoxyflavone (acacetin).

9. The method according to claim 8, wherein the compound is selected from the group consisting of ciclopirox olamine, dihydrocelastrol, colistimethate sodium, lycorine, diphenylurea, and acetylcysteine.

10. The method according to claim 8, wherein the compound is selected from the group consisting of chloroquine diphosphate and 4'-methoxyflavone (acacetin).

11. The method according to claim 8, wherein the medical condition is spinal cord injury.

12. The method according to claim 8, wherein the medical condition is stroke, trauma, or insult to the central nervous system.

13. The method according to claim 8, wherein the medical condition is a neurodegenerative disease.

14. The method according to claim 8, wherein the neurodegenerative disease is Parkinson's disease, Alzheimer's disease, Huntington's disease or amyotrophic lateral sclerosis (also known as Lou Gherig's disease).

15. The method according to claim 8, wherein the compound is selected from the group consisting of ciclopirox olamine, dihydrocelastrol, colistimethate sodium, lycorine, diphenylurea, and acetylcysteine.

16. The method according to claim 8, wherein the compound is ciclopirox olamine.

17. The method according to claim 8, wherein the compound is dihydrocelastrol.
18. The method according to claim 8, wherein the compound is chloroquine diphosphate.

19. The method according to claim 8, wherein the compound is colistimethate sodium.

20. The method according to claim 8, wherein the compound is lycorine.

21. The method according to claim 8, wherein the compound is 4'-methoxyflavone (acacetin).

22. The method according to claim 8, wherein the compound is diphenylurea.

23. The method according to claim 8, wherein the compound is acetylcysteine.
Figure 1

GenBank accession No. U24170

1 ggatcctctg agagatgttc aggtgctgtg gaggccgcgg gtgcctggtc tctataaata
51 cgagatgacat aacagaaataa aagagatgcg tgtctcgttg aacgtctatg gaaactgagga
101 tcagggcagg ggccagagaag ggtcccctgt tggccctgag caagacttgtg catgatggag
151 agccagacg ccagagatgct cggcagcag tggccgcaaa tgcagccttc tgcagccttc
201 ctgcacctg ctgcacctg ggtccgcaaa tgcagccttc tgcagccttc
251 catggacagc gttgctcctg cacccagccg ttggccagata atggacccag tgaggccggag
301 cattgaggagaa gctacaacta tatgctcagc cattgctgct gtgcctacatc caagttgccc
351 cattttacct attgtgtccga aaaaactgcc cacgagcagc gccaacaggc
401 tggaggatgtc gttgagccga gggacagaga gccccatcag gttggttaac cttgacagtcc
451 tcagggcagg atagctgttgg atcgctcttg ttcagctgcaac aactatctgcc gagaagcccc
501 ccacacactaa caagctgtac aagtcagcct ttggggtgcg cttggccgta cttgggcctac
551 ggtctttactc cattacctctc ggttcgtgaggg caagctcccc cttggggcgtga cttggggcgct
601 attctgcgaa ggtatactcgt aatactctca gttggacagac attgtgagc caggtgctcag
651 gaccaacaa gatagcacttgc ccttatctat gaaagaagctg acggcggagg cccacagggc
701 tcctctgctg tgtctgcttg ggtcgtcttg ttcagctgcaac aactatctgcc gagaagcccc
751 tgtctctactc cttggctttaa tggagactgt gaaggttaaaaa gtgttggtaaa gagaagcccc
801 aaatattttt aaaaagacggc atttatattt aaaaatgtag aacacaaggt aatattttatg
851 cactctgtcag cccccagcctg agttgcagctg gctgctgtctc cccccctgcc cccccctgcc
901 cttcttgctgc aacagctcagc cccattcgcagc cccccgcggac cccattcgcagc cccccgcggac
951 accacatcgg cccgctgttttttgatatttttttaaatgagc ggggttcctcctatttgccgc
1001 aggctggttct ccaataacttg gccactgtgta cccccctccc cccccggctgc cccccggctgc
1051 gattcagcgc gtaactctgcttc acgacctggc aatggttgaa ggtgttgaatc gataatttctg
1101 gtaacctgag tttttggtgc tagaaactcg agccaaactg aatattacta ccacccggca
1151 gaccaacataa atccaaacacc tgtctgccaa aaaaaaataa caaatatattg tcgagctggc
1201 tggtgcatgcg cttggggcctt gcgagttctg cccttcttgactt ctgtctttg ctgtctttgactt
1251 acagctcctgg aataaatattt cccctcctctt cccctcctctt cccctcctctt cccctcctctt
1301 cttttcttcttc cttttcttcttc cttttcttcttc cttttcttcttc cttttcttcttc
1351 ttggtatctttt ttggtatctttt ttggtatctttt ttggtatctttt ttggtatctttt
1401 cagctcgcgg agctcttcgcgg acgctcttcgcgg acgctcttcgcgg acgctcttcgcgg
1451 agctcttcgcgg cccctcctctt cccctcctctt cccctcctctt cccctcctctt
1501 cccctcctctt cccctcctctt cccctcctctt cccctcctctt cccctcctctt
1551 cccctcctctt cccctcctctt cccctcctctt cccctcctctt cccctcctctt
1601 gagaacactat gccctcggcc aataatcttgg aataatcttgg aataatcttgg
1651 ctgactctcag cccctcctctt cccctcctctt cccctcctctt cccctcctctt
1701 cccctcctctt cccctcctctt cccctcctctt cccctcctctt cccctcctctt
1751 tggctcggcct tcgtgacgct cccccctcctt cccccctcctt cccccctcctt
1801 acagctcctgg aataaatattt cccctcctctt cccctcctctt cccctcctctt
1851 ctgactctcag cccctcctctt cccctcctctt cccctcctctt cccctcctctt
1901 cccctcctctt cccctcctctt cccctcctctt cccctcctctt cccctcctctt
1951 cccctcctctt cccctcctctt cccctcctctt cccctcctctt cccctcctctt
2001 ctgctcggcct tcgtgacgct cccccctcctt cccccctcctt cccccctcctt
2051 tggctcggcct tcgtgacgct cccccctcctt cccccctcctt cccccctcctt
2101 cccctcctctt cccctcctctt cccctcctctt cccctcctctt cccctcctctt
2151 cccctcctctt cccctcctctt cccctcctctt cccctcctctt cccctcctctt
2201 cccctcctctt cccctcctctt cccctcctctt cccctcctctt cccctcctctt
2251 cccctcctctt cccctcctctt cccctcctctt cccctcctctt cccctcctctt
2301 cccctcctctt cccctcctctt cccctcctctt cccctcctctt cccctcctctt
2351 cccctcctctt cccctcctctt cccctcctctt cccctcctctt cccctcctctt
2401 cccctcctctt cccctcctctt cccctcctctt cccctcctctt cccctcctctt
Figure 2

GenBank accession No. U24171
2701 gcctgtcctag gtcaagtctaa tccgagaggg aagactgggc atgtctgggc aggtatctta
2761 gacatcggag acgacagtc acgaactcaca gctctccca agccaggttat ttgactttta
2821 actaagaag tccagctcaaa ttgactctaact gctctctgcttt aatttttaaa ttatatagttt
2881 tgttgggtttt gagaagagaga ggaattttgg tttcagagctt tcattgtaacat ttgtagttacct
2941 tgtagataatt ttgctcctcttc ttgctgcgtgc ttctcttttc gcggattaca gatgtatgatc
3001 gctatcactc agatgagatct tcattccctgg ggtctctgagat tctagtctctgc gggtggtgctgtc
3061 aacacgtataac atagcccttc aacatcccttt tggagatcatc ggtctcagcag cttagactcta
3121 gcgaagctctt gcagctccat cccactctgc gtcgctgaagtt acgcatcagcc cccctggctc
3181 ctctgctgct gccggagggg agtttaagaa ctggagggcct ctgctgctgct gccgctgttaggagagc
3241 tgtgagagtacat atgctctttt tttatatata ccatcccttt tcgcttgccg cgggctctgtac
3301 acttaacagata ggagctagagag ctggaggggtt acctcttttt aactctttta gctctacagc
3361 acatacgctgg agctctctgctt cccatcccttt tttatttttt tttttttttt tttttttttt tttttttttt
3421 atggagaaggg tgcgctcggg aagtttgggactagctagtct gttcagagagatg ccctttagct
3481 tttgctctgaattgagctcttg ggtgagttgctg cggggagggagc caatcccttt ttttatatttt cccccctggggg
3541 gagagataag ctaagacagctgc ggttggtagtt tttttttttt tttttttttt tttttttttt tttttttttt
3601 tgcggacgctgc cggcggagagac cggagcagcagc ccagttttttt tttttttttt tttttttttt tttttttttt
3661 gcctctctct ttgagagagagac tattttttttt tttttttttt tttttttttt tttttttttt tttttttttt
3721 aggagagagagac tattttttttt tttttttttt tttttttttt tttttttttt tttttttttt tttttttttt
3781 ttggcagcatc ctgctgctgct ccgctgctgct ccgctgctgct ccgctgctgct ccgctgctgct ccgctgctgct
3841 ctctctctctct cattttttttt tttttttttt tttttttttt tttttttttt tttttttttt tttttttttt
3901 ttgggctcagctgc ggttggtagttt ggttggtagttt ggttggtagttt ggttggtagttt ggttggtagttt ggttggtagttt
3961 ttgtcttttt cttggagagtacat atgctctttt tttatatata ccatcccttt tcgcttgccg cgggctctgtac
4021 cttgggctcagctgc ggttggtagttt ggttggtagttt ggttggtagttt ggttggtagttt ggttggtagttt ggttggtagttt
4081 ttttctctct cattttttttt tttttttttt tttttttttt tttttttttt tttttttttt tttttttttt
4141 gggagtactcttc actgtgctgctgc cgggagagagac ctaagagctgc cgggctctgtac ccctttttttt
4201 tcctctctctct cattttttttt tttttttttt tttttttttt tttttttttt tttttttttt tttttttttt
4261 gggagtactcttc actgtgctgctgc cgggagagagac ctaagagctgc cgggctctgtac ccctttttttt
4321 acctctctctct cattttttttt tttttttttt tttttttttt tttttttttt tttttttttt tttttttttt
4381 tttcctcacaagctctctctct cattttttttt tttttttttt tttttttttt tttttttttt tttttttttt tttttttttt
4441 tttttttttt tttttttttt tttttttttt tttttttttt tttttttttt tttttttttt tttttttttt
4501 ggagctgctgctgc cgggagagagac ctaagagctgc cgggctctgtac ccctttttttt tttttttttt tttttttttt
4561 ttgggctcagctgc ggttggtagttt ggttggtagttt ggttggtagttt ggttggtagttt ggttggtagttt ggttggtagttt
4621 ttgggctcagctgc ggttggtagttt ggttggtagttt ggttggtagttt ggttggtagttt ggttggtagttt ggttggtagttt
4681 ttgggctcagctgc ggttggtagttt ggttggtagttt ggttggtagttt ggttggtagttt ggttggtagttt ggttggtagttt
4741 ttgggctcagctgc ggttggtagttt ggttggtagttt ggttggtagttt ggttggtagttt ggttggtagttt ggttggtagttt
4801 ttgggctcagctgc ggttggtagttt ggttggtagttt ggttggtagttt ggttggtagttt ggttggtagttt ggttggtagttt
4861 ttgggctcagctgc ggttggtagttt ggttggtagttt ggttggtagttt ggttggtagttt ggttggtagttt ggttggtagttt
4921 ttgggctcagctgc ggttggtagttt ggttggtagttt ggttggtagttt ggttggtagttt ggttggtagttt ggttggtagttt
4981 ttgggctcagctgc ggttggtagttt ggttggtagttt ggttggtagttt ggttggtagttt ggttggtagttt ggttggtagttt
(SEQ ID NO: 2)
Figure 3

cgggatcg gtgaaggagt ggttgtggtc tgcctctgag ggccggggtg ctggtgccgag ctataaggag gcagctcgac gccaaactgca gcagccgaga ggtgtgagcc gccggtggtgt cagagctctag gggaatggga gtcagggcga gatccacagc gatatccaga cattcagagg tgagagcttc gtggcaggga acaatagttc ttccccgtag ca (SEQ ID NO: 3)
Figure 5

Fold induction p21

- Fold induction p21
INTERNATIONAL SEARCH REPORT

International application No
PCT/US 08/07168

According to International Patent Classification (IPC) or to both national classification and IPC

B. FIELDS SEARCHED

Minimum documentation searched (classification system followed by classification symbols)
USPC: 435/20.1

Documentation searched other than minimum documentation to the extent that such documents are included in the fields searched
USPC: 435/6, 7.23, 330, 344; 436/64, 813; 514/12-15, 17, 44; 530/387.7, 388.8, 389.7 (see search terms below)

Electronic data base consulted during the international search (name of data base and where practicable, search terms used)
PubWest: PGPB, USPT, USOC, EPAB, JPAB; Google Scholar; Google Patents; Text: P21; caf1/wa1; increase; upregulate; screen (-ing); reporter; luciferase; nucleic acid; linked; linkage; patient; spinal cord; neurodegenerative; stroke; ens; central nervous system; hippocampal; cell line; ciclopiroxolamine; dihydrocodeinostol;

C. DOCUMENTS CONSIDERED TO BE RELEVANT

<table>
<thead>
<tr>
<th>Category</th>
<th>Citation of document, with indication, where appropriate, of the relevant passages</th>
<th>Relevant to claim No</th>
</tr>
</thead>
<tbody>
<tr>
<td>Y</td>
<td>WO 1998/004291 A1 (MUKHOPADHYAY et al.) 05 February 1998 (05.02.1998) pg 7, in 21-22; pg 8, in 7-10; pg 47, in 20 to pg 48, in 2; pg 11, in 25-30; pg 7, in 21-30; pg 7, in 11-17; pg 39, in 17-21; pg 39, in 17-21</td>
<td>1-7</td>
</tr>
<tr>
<td>Y</td>
<td>WO 2006/009836 A2 (CARLSON et al.) 26 January 2006 (26.01.2006) pg 103, in 26-29; pg 132, in 27-32; pg 31, in 16-34; pg 120, in 2-3; pg 103, in 26-29</td>
<td>1-7, 11-14, 17-20, 22</td>
</tr>
<tr>
<td>Y</td>
<td>ZHOU et al. HUMAN BRONCHIAL SMOOTH MUSCLE CELL LINES SHOW A HYPERTROPHIC PHENOTYPE TYPICAL OF SEVERE ASTHMA. AJRCMM, 23 December 2003, pp 1-52, pg 3, para 2; pg 4, para 3</td>
<td>6</td>
</tr>
</tbody>
</table>

Further documents are listed in the continuation of Box C.

Date of the actual completion of the international search
14 August 2008 (14 08 2008)

Date of mailing of the international search report
29 AUG 2008

Name and mailing address of the ISA/US
Mail Stop PCT, Attn: ISA/US, Commissioner for Patents
P.O. Box 1450, Alexandria, Virginia 22313-1450
Facsimile No. 571-273-3201

Authorized officer: Lee W Young
PCT Hilfsdok 571-272-4300
PCT DSP 571-272-7774

Form PCT/ISA/210 (second sheet) *April 2007