(12) INTERNATIONAL APPLICATION PUBLISHED UNDER THE PATENT COOPERATION TREATY (PCT)

(19) World Intellectual Property Organization
International Bureau

(43) International Publication Date
8 August 2002 (08.08.2002) P

CT

A 0 00000

(10) International Publication Number

WO 02/061633 A2

(51) International Patent Classification’: GO6F 17/50
(21) International Application Number: PCT/GB02/00384
(22) International Filing Date: 29 January 2002 (29.01.2002)
(25) Filing Language: English
(26) Publication Language: English

(30) Priority Data:
09/772,616 29 January 2001 (29.01.2001) US

(71) Applicant (for all designated States except US): CELOX-
ICA LIMITED [GB/GB]; 7 Milton Park, Abingdon, Ox-
fordshire OX14 4RT (GB).

(72) Inventor; and

(75) Inventor/Applicant (for US only): BOWEN, Matt
[GB/GB]; 47 Surman House, Mandelbrote Drive, Little-
more, Oxford OX4 4XG (GB).

(74) Agents: NICHOLLS, Michael, John et al.; J.A. Kemp &
Co., 14 South Square, Gray’s Inn, London WC1R 5JJ (GB).

@n

()

Designated States (national): AE, AG, AL, AM, AT, AU,
AZ,BA, BB, BG, BR, BY, BZ, CA, CH, CN, CO, CR, CU,
CZ, DE, DK, DM, DZ, EC, EE, ES, FI, GB, GD, GE, GH,
GM, HR, HU, ID, IL,, IN, IS, JP, KE, KG, KP, KR, KZ, L.C,
LK, LR, LS, LT, LU, LV, MA, MD, MG, MK, MN, MW,
MX, MZ, NO, NZ, OM, PH, PL, PT, RO, RU, SD, SE, SG,
SI, SK, SL, TJ, TM, TN, TR, TT, TZ, UA, UG, US, UZ,
VN, YU, ZA, ZM, ZW.

Designated States (regional): ARIPO patent (GH, GM,
KE, LS, MW, MZ, SD, SL, SZ, TZ, UG, ZM, ZW),
Burasian patent (AM, AZ, BY, KG, KZ, MD, RU, TJ, TM),
European patent (AT, BE, CH, CY, DE, DK, ES, FI, FR,
GB, GR, IE, IT, LU, MC, NL, PT, SE, TR), OAPI patent
(BE, BJ, CF, CG, CI, CM, GA, GN, GQ, GW, ML, MR,
NE, SN, TD, TG).

Published:

without international search report and to be republished
upon receipt of that report

For two-letter codes and other abbreviations, refer to the "Guid-
ance Notes on Codes and Abbreviations” appearing at the begin-
ning of each regular issue of the PCT Gazette.

(54) Title: SYSTEM, METHOD AND ARTICLE OF MANUFACTURE FOR SIGNAL CONSTRUCTS IN A PROGRAMMING
LANGUAGE CAPABLE OF PROGRAMMING HARDWARE ARCHITECTURES

110 116 114 i&
] N N

1/0 Communication
CPU ROM RAM Adapter adapter
\
112 118 134
122
124 ~

T Tt User Display
|~ J=[[interface adapter adapter

02/061633 A2

\
136 138
13227 406 128

(57) Abstract: A system, method and article of manufacture are provided for using a dynamic object in a programming language.
O In general, an object is defined with an associated first value and second value. The first value is used in association with the object
during a predetermined clock cycle. The second value is used in association with the object before or after the predetermined clock

cycle.

10

15

20

25

30

WO 02/061633

SYSTEM, METHOD AND ARTICLE OF MANUFACTURE FOR SIGNAL
CONSTRUCTS IN A PROGRAMMING LANGUAGE CAPABLE OF
PROGRAMMING HARDWARE ARCHITECTURES

FIELD OF THE INVENTION

The present invention relates to programmable hardware architectures and more

particularly to programming field programmable gate arrays (FPGA'’s).

BACKGROUND OF THE INVENTION

It is well known that software-controlled machines provide great flexibility in that
they can be adapted to many different desired purposes by the use of suitable
software. As well as being used in the familiar general purpose computers,
software-controlled processors are now used in many products such as cars,
telephones and other domestic products, where they are known as embedded

systems.

However, for a given function, a software-controlled processor is usually slower
than hardware dedicated to that function. A way of overcoming this problem is to
use a special software-controlled processor such as a RISC processor which can be
made to function more quickly for limited purposes by having its parameters (for

instance size, instruction set etc.) tailored to the desired functionality.

Where hardware is used, though, although it increases the speed of operation, it
lacks flexibility and, for instance, although it may be suitable for the task for which

it was designed it may not be suitable for a modified version of that task which is

PCT/GB02/00384

10

WO 02/061633 PCT/GB02/00384

desired later. It is now possible to form the hardware on reconfigurable logic
circuits, such as Field Programmable Gate Arrays (FPGA's) which are logic circuits
which can be repeatedly reconfigured in different ways. Thus they provide the
speed advantages of dedicated hardware, with some degree of flexibility for later

updating or multiple functionality.

In general, though, it can be seen that designers face a problem in finding the right
balance between speed and generality. They can build versatile chips which will be
software controlled and thus perform many different functions relatively slowly, or
they can devise application-specific chips that do only a limited set of tasks but do

them much more quickly.

10

15

20

25

WO 02/061633 PCT/GB02/00384

SUMMARY OF THE INVENTION

A system, method and article of manufacture are provided for using a dynamic
object in a programming language. In general, an object is defined with an
associated first value and second value. The first value is used in association with
the object during a predetermined clock cycle. The second value is used in

association with the object before or after the predetermined clock cycle.

In an aspect of the present invention, the object may be used to split up an
expression into sub-expressions. As an option, the sub-expressions may be reused.
In another aspect, the first value may be assigned to and read from the object during
the predetermined clock cycle. In a further aspect, the programming language may
be adapted for programming a gate array. As an option, the programming language

may include Handel-C.

BRIEF DESCRIPTION OF THE DRAWINGS

The invention will be better understood when consideration is given to the following

detailed description thereof. Such description makes reference to the annexed

- drawings wherein:

Figure 1 is a schematic diagram of a hardware implementation of one embodiment

of the present invention;

Figure 2 illustrates a design flow overview, in accordance with one embodiment of

the present invention;

10

15

WO 02/061633 PCT/GB02/00384

Figures 3A and 3B illustrate a table showing various differences between Handel-C
and the conventional C programming language, in accordance with one embodiment

of the present invention;

Figure 4 illustrates the manner in which branches that complete early are forced to

wait for the slowest branch before continuing;

Figure 5 illustrates the link between parallel branches, in accordance with one

embodiment of the present invention;

Figure 6 illustrates the scope of variables, in accordance with one embodiment of the

present invention

Figure 7 illustrates a method for using a dynamic object in a programming language.

10

15

20

25

30

WO 02/061633 PCT/GB02/00384

DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS

A preferred embodiment of a system in accordance with the present invention is
preferably practiced in the context of a personal computer such as an IBM
compatible personal computer, Apple Macintosh computer or UNIX based
workstation. A representative hardware environment is depicted in Figure 1, which
illustrates a typical hardware configuration of a workstation in accordance with a
preferred embodiment having a central processing unit 110, such as a

microprocessor, and a number of other units interconnected via a system bus 112.

The workstation shown in Figure 1 includes a Random Access Memory (RAM) 114,
Read Only Memory (ROM) 116, an I/O adapter 118 for connecting peripheral
devices such as disk storage units 120 to the bus 112, a user interface adapter 122 for
connecting a keyboard 124, a mouse 126, a speaker 128, a microphone 132, and/or
other user interface devices such as a touch screen (not shown) to the bus 112,
communication adapter 134 for connecting the workstation to a communication
network (e.g., a data processing network) and a display adapter 136‘ for connecting

the bus 112 to a display device 138.

The workstation typically has resident thereon an operating system such as the
Microsoft Windows NT or Windows/95 Operating System (OS), the IBM 0S/2
operating system, the MAC OS, or UNIX operating system. Those skilled in the art
will appreciate that the present invention may also be implemented on platforms and

operating systems other than those mentioned.

In one embodiment, the hardware environment of Figure 1 may include, at least in
part, a field programmable gate array (FPGA) device. For example, the central
processing unit 110 may be replaced or supplemented with an FPGA. Use of such
device provides flexibility in functionality, while maintaining high processing

speeds.

10

15

20

25

WO 02/061633 PCT/GB02/00384

Examples of such FPGA devices include the XC2000™ and XC3000™ families of
FPGA devices introduced by Xilinx, Inc. of San Jose, Calif. The architectures of
these devices are exemplified in U.S. Pat. Nos. 4,642,487; 4,706,216; 4,713,557,
and 4,758,985; each of which is originally assigned to Xilinx, Inc. and which are
herein incorporated by reference for all purposes. It should be noted, howe-ver, that

FPGA'’s of any type may be employed in the context of the present invention.

A preferred embodiment is written using Handel-C. Handel-C is a programming
language marketed by Celoxica Limited. Handel-C is a programming language that
enables a software or hardware engineer to target directly FPGAs (Field
Programmable Gate Arrays) in a similar fashion to classical microprocessor cross-
compiler development tools, without recourse to a Hardware Description Language.
This allows the designer to directly realize the raw real-time computing capability of
the FPGA.

Handel-C allows one to use a high-level language to program FPGAs. It makes it as
easy to implement complex algorithms by using a software-based language rather
than a hardware architecture-based langﬁage. One can use all the power of
reconfigurable computing in FPGAs without needing to know the details of the
FPGAs themselves. A program may be written in Handel-C to generate all required
state machines,.while one can specify storage requirements down to the bit level. A
clock and clock speed may be assigned for working with the simple but explicit
model of one clock cycle per assignment. A Handel-C macro library may be used
for bit manipulation and arithmetic operations. The program may be compiled and
then simulated and debugged on a PC similar to that in Figure 1. This may be done

while stepping through single or multiple clock cycles.

10

15

20

25

30

WO 02/061633 PCT/GB02/00384

When one has designed their chip, the code can be compiled directly to a netlist,
ready to be used by manufacturers’ place and route tools for a variety of different

chips.

As such, one can design hardware quickly because he or she can write high-level
code instead of using a hardware description language. Handel-C optimiées code,
and uses efficient algorithms to generate the logic hardware from the program.
Because of the speed of development and the ease of maintaining well-commented

high-level code, it allows one to use reconfigurable computing easily and efficiently.

Handel-C has the tight relationship between code and hardware generation required
by hardware engineers, with the advantages of high-level language abstraction.

Further features include:

e C-like language allows one to program quickly

e Architecture specifiers allow one to define RAMs, ROMs, buses and
interfaces.

e Parallelism allows one to optimize use of the FPGA

¢ Close correspondence between the program and the hardware

e Easy to understand timing model

o Full simulation of owner hardware on the PC

¢ Display the contents of registers every clock cycle during debug

e Rapid prototyping

e Convert existing C programs to hardware

e Works with mariufacturers' existing tools

¢ Rapid reconfiguration

» Logic estimation tool highlights code inefficiencies in colored‘Web. pages

e Device-independent programs

e Generates EDIFand XNF formats (and XBLOX macros)

10

15

20

25

30

WO 02/061633

Handel-C is thus designed to enable the compilation of programs into synchronous
hardware; it is aimed at compiling high level algorithms directly into gate level
hardware. The Handel-C syntax is based on that of conventional C so programmers
familiar with conventional C will recognize almost all the constructs in the Handel-
C language. Sequential programs can be written in Handel-C just as in conventional
C but to gain the most benefit in performance from the target hardware its i@erent
parallelism must be exploited. Handel-C includes parallel constructs that provide the
means for the programmer to exploit this benefit in his applications. The compiler
compiles and optimizes Handel-C source code into a file suitable for simulation or a

net list which can be placed and routed on a real FPGA.

For more information regarding the Handel-C programming language, reference
may be made to “EMBEDDED SOLUTIONS Handel-C Language Reference
Manual: Version 3,” “EMBEDDED SOLUTIONS Handel-C User Manual: Version
3.0,” “EMBEDDED SOLUTIONS Handel-C Interfacing to other language code
blocks: Version 3.0,” and “EMBEDDED SOLUTIONS Handel-C Preprocessor
Reference Manual: Version 2.1,” each authored by Rachel Ganz, and published by
Embédded Solutions Limited, and which are each incorporated herein by reference

in their entirety.
Conventions

A number of conventions are used throughout this document. These conventions are
detailed below. Hexadecimal numbers appear throughout this document. The
convention used is that of prefixing the number with '0x' in common with standard C
syntax.

Sections of code or commands that one must type are given in typewriter font as

follows:

“void main();”

PCT/GB02/00384

10

15

20

25

30

WO 02/061633 PCT/GB02/00384

Information about a type of object one must specify is given in italics as follows:
“copy SourceFileName DestinationFileName”
Menu items appear in narrow bold text as follows:

“insert Project into Workspace”

Elements within a menu are separated from the menu name by a > so

Edit>Find means the Find item in the Edit menu.

Introduction

Handel-C is a programming language designed to enable the compilation of
programs into synchronous hardware. The Handel-C compiler and simulator will
now be described. The Handel-C language will be described hereinafter in greater
detail.

Overview

Design flow overview

Figure 2 illustrates a design flow overview 200, in accordance with one embodiment
of the present invention. The dotted lines 202 show the extra steps 204 required if

one wishes to integrate Handel-C with VHDL.

HARDWARE EMBODIMENTS

If one is approaching Handel-C from a hardware background, one should be aware

of these points:

10

15

20

25

30

WO 02/061633 PCT/GB02/00384

e Handel-C is halfway between' RTL and a behavioral HDL. It is a high-level
language that requires one to think in algorithms rather than circuits.

e Handel-C uses a zero-delay model and a synchronous design style.

e Handel-C is implicitly sequential. Parallel processes must be specified.

e All code in Handel-C (apart from the simulator chanin and chanout
commands) can be synthesized. so one must ensure that he or she disables
debug code when he or she compiles to target real hardware.

e Signals in Handel-C are different from signals in VHDL; they are assigned to
immediately, and only hold their value for one clock cycle.

e Handel-C has abstract high-level concepts such as pointers.

Points of difference

Figures 3A and 3B illustrate a table showing various differences 3100 between
Handel-C and the conventional C programming language, in accordance with one

embodiment of the present invention.

1 LANGUAGE REFERENCE

This section deals with some of the basics behind the Handel-C language. Handel-C
uses the syntax of conventional C with the addition of inherent parallelism. One can
write sequential programs in Handel-C, but to gain maximum benefit in performance

from the target hardware one must use its parallel constructs. These may be new to

. SOmMeE users.

If one is familiar with conventional C he or she may recognize nearly all the other
features. Handel-C is designed to allow one to express the algorithm without
worrying about how the underlying computation engine works. This philosophy

makes Handel-C a programming language rather than a hardware description

10

10

15

20

25

30

WO 02/061633 PCT/GB02/00384

language. In some senses, Handel-C is to hardware what a conventional high-level

language is to microprocessor assembly language.

It is important to note that the hardware design that Handel-C produces is generated
directly from the source program. There is no intermediate 'interpreting' layer as
exists in assembly language when targeting general purpose microprocessors. The
logic gates that make up the final Handel-C circuit are the assembly instructions of

the Handel-C system.
Handel-C programs

Since Handel-C is based on the syntax of conventional C, programs written in
Handel-C are implicitly sequential. Writing one command after another indicates

that those instructions should be executed in that exact order.

Just like any other conventional language, Handel-C provides constructs to control
the flow of a program. For example, code can be executed conditionally depending
on the value of some expression, or a block of code can be repeated a number of

times using a loop construct.
Parallel programs

Because the target of the Handel-C compiler is low-level hardware, massive
performance benefits are made possible by the use of parallelism. It is possible (and
indeed essential for writing efficient programs) to instruct the compiler to build
hardware to execute statements in parallel. Handel-C parallelism is true parallelism -

it is not the time-sliced parallelism familiar from general purpose computers.

When instructed to execute two instructions in parallel, those two instructions may

be executed at exactly the same instant in time by two separate pieces of hardware.

11

10

15

20

25

30

WO 02/061633 PCT/GB02/00384

When a parallel block is encountered, execution flow splits at the start of the parallel
block and each branch of the block executes simultaneously. Execution flow then re-
joins at the end of the block when all branches have completed. Figure 4 illustrates
the manner 4900 in which branches that complete early are forced to wait for the

slowest branch before continuing.

Figure 4 illustrates the branching and re-joining of the execution flow. The left hand
branch 4902 and middle branch 4904 must wait to ensure that all branches have

completed before the instruction following the parallel construct can be executed.
Channel communications

Figure 5 illustrates the link 5000 between parallel branches, in accordance with one
embodiment of the present invention. Channels 5001 provide a link between
parallel branches. One parallel branch 5002 outputs data onto the channel and the
other branch 5004 reads data from the channel. Channels also provide
synchronization between parallel branches because the data transfer can only
complete when both parties are ready for it. If the transmitter is not ready for the

communication then the receiver must wait for it to become ready and vice versa.
Here, the channel is shown transferring data from the left branch to the right branch.
If the left branch reaches point a before the right branch reaches point b, the left
branch waits at point a until the right branch reaches point b.

Scope and variable sharing

Figure 6 illustrates the scope 6100 of variables, in accordance with one embodiment
of the present invention. The scope of declarations is, as in conventional C, based

around code blocks. A code block is denoted with {...} brackets. This means that:

e Global variables must be declared outside all code blocks.

12

10

15

20

25

30

WO 02/061633 PCT/GB02/00384

e An identifier is in scope within a code block and any sub-blocks of that
block.

Since parallel constructs are simply code blocks, variables can be in scope in two
paralle] branches of code. This can lead to resource conflicts if the variable is written
to simultaneously by more than one of the branches. Handel-C syntax states that a
single variable must not be written to by more than one parallel branch but may be
read from by several parallel branches. This provides some powerful operations to

be described later.

If one wishes to write to the same variable from several processes, the correct way to
do so is by using channels which are read from in a single process. This process can
use a prialt statement to select which channel is ready to be read from first, and that

channel is the only one which may be allowed to write to the variable

while (1)

prialt

{

case chanl ? y:
break;

case chan2 ? y:
break;

case chan3 ? y:
break;

}
In this case, three separate processes can attempt to change the value of y by sending

data down the channels, chanl, chan2 and chan3. y may be changed by whichever
process sends the data first. A single variable should not be written to by more than
one

parallel branch..

1.1 Alternate Embodiments

13

10

15

20

25

30

WO 02/061633 PCT/GB02/00384

Introduction

This section summarizes some new features in Handel-C version 3 for those familiar
with previous versions. It also details incompatibilities between the current version
and Handel-C version 2.1.

The following constructs have been added or changed. Terms specific to Ha.ndel-C
have been given in bold. All other terms are fully compatible with ISO-C (ISO/IEC
9899:1999) unless otherwise stated. (ISO-C was previously known as ANSI-C.)

Architecture

There is a new type to represent signals. One can have multi-dimensional arrays of
RAMs and dual-ported RAMs. Interfaces have been extended to allow one to
connect to undefined input or output ports. One can also define the sorts of interface

and use them to link to blocks of external code (currently VHDL or EDIF).

Interfaces declarations have changed, and the previous style is deprecated.

2 LANGUAGE BASICS

Introduction

This section of the present description deals with the basics of producing Handel-C

programs
Program structure
Sequential structure

As in a conventional C program, a Handel-C program consists of a series of

statements which execute sequentially. These statements are contained within a

14

10

15

20

25

30 -

WO 02/061633

main() function that tells the compiler where the program begins. The body of the
main function may be split into a number of blocks using {...} brackets to break the

program into readable chunks and restrict the scope of variables and identifiers.

Handel-C also has functions, variables and expressions similar to conventional C.
There are restrictions where operations are not appropriate to hardware
implementation and extensions where hardware implementation allows additional

functionality.
Parallel structure

Unlike conventional C, Handel-C programs can also have statements or functions
that execute in parallel. This feature is crucial when targeting hardware because
parallelism is the main way to increase performance by using hardware. Parallel
processes can communicate using channels. A channel is a one-way point-to-point

link between two processes.
Overall structure

The overall program structure consists of one or more main functions, each
associated with a clock. One would only use more than one main function if he or
she needed 'parts of the program to run at different speeds (and so use different

clocks).. A main function is defined as follows:

Global Declarations
Clock Definition
void main(void)

{

Local Declarations
Body Code

}

15

PCT/GB02/00384

10

15

20

25

30

WO 02/061633 PCT/GB02/00384

The main() function takes no arguments and returns no value. This is in line with a
hardware implementation where there are no command line ‘arguments and no
environment to return values to. The argc, argv and envp parameters and the return
value familiar from conventional C can be replaced with explicit communications

with an external system (e.g. a host microprocessor) within the body of the program.
Using the preprocessor

As with conventional C, the Handel-C source code is passed through a C
preprocessor before compilation. Therefore, the usual #include and #define

constructs may be used to perform textual manipulation on the source code before

compilation.

Handel-C also supports macros that are more powerful than those handled by the

Preprocessor.
Comments

Handel-C uses the standard /* ... */ delimiters for comments. These comments may

not be nested. For example:

/* Valid comment */

/* This is /* NOT */ valid */

Handel-C also provides the C++ style // comment marker which tells the compiler to

ignore everything up to the next newline. For example:
x =X + 1;// This is a comment

Comments are handled by the preprocessor.

Types

16

10

15

20

25

30

WO 02/061633 PCT/GB02/00384

Handel-C uses two kinds of objects: logic types and architecture types. The logic
types specify variables. The architecture types specify variables that require a
particular sort of hardware architecture (e.g., ROMs, RAMs and channels). Both
kinds are specified by their scope (static or extern), their size and their type.

Architectural types are also specified by the logic type that uses them.

Both typés can be used in derived types (such as structures, arrays or functions) but

there may be some restrictions on the use of architectural types.

Specifiers

The type specifiers signed, unsigned and undefined define whether the variable is
signed and whether it takes a default defined width. One can use the storage class

specifiers extern and static to define the scope of any variable.

Functions can have the storage class inline to show that they are expanded in line,

rather than being shared.
Type qualifiers

Handel-C supports the type qualifiers const and volatile to increase compatibility

with ISO-C. These can be used to further qualify logic types.
Disambiguator

Handel-C supports the extension <. This can be used to clarify complex

declarations of architectural types.

Logic types

17

10

15

20

25

30

WO 02/061633 PCT/GB02/00384

The basic logic type is an int, It may be qualified as signed or unsigned. Integers
can be manually assigned a width by the programmer or the compiler may attempt to
infer a width from use. Enumeration types (enums) allow one to define a specified
set of values that a variable of this type may hold. There are derived types (types that
are derived from the basic types). These are arrays, pointers, structs bit ﬁglds, and
functions. The non-type void enables one to declare empty parameter lists or
functions that do not return a value. The typeof type operator allows one to

reference the type of a variable.

Architectural types

The architectural types are channels (used to communicate between parallel
processes), interfaces (used to connect to pins or provide signals to communicate
with external code), memories (rom , ram , wom and mpram) and signal (declares
a wire). The disambiguator < > has been provided to help clarify the definitions of

memories, channels and signals.
Channels

Handel-C provides channels for communicating between parallel branches of code.
One branch writes to a channel and a second branch reads from it. The
communication only occurs when both tasks are ready for the transfer at which point
one item of data is transferred between the two branches. Channels are declared with

the chan keyword. For example:
chan int 7 link;

As with variablés, the Handel-C compiler can infer the width of a channel

from its usage if it is declared with the undefined keyword. Channels can also be

18

10

15

20

25

30

WO 02/061633 PCT/GB02/00384

declared with no explicit type. The compiler infers the type and width of the channel

from its usage.

Arrays of channels

Handel-C allows arrays of channels to be declared. For example:
chan unsigned int 5 x[6];

This is equivalent to declaring 6 channels each of which is 5 bits wide. It is also

possible to declare multi-dimensional arrays of channels. For example:.

chan unsigned int 6 x[4][5][6];

This declares 4 * 5 * 6 = 120 channels each of which is 6 bits wide
Interfaces
One may use an interface to communicate with an external device or component.
An interface consists of data ports, together with information about each port. A port
definition consists of the data type that uses it (either defined or inferred from its
first use), an optional name and the specification for that port (e.g., input pins for a
bus) if needed. |

Internal RAMs and ROMs

RAMSs and ROMs may be built from the logic provided in the FPGA using the ram

and rom keywords. For example:

ram int 6 a[43];
rom int 16 b[4]; = { 23, 46, 69, 92 };

19

10

15

20

25

30

WO 02/061633 PCT/GB02/00384

This example constructs a RAM consisting of 43 entries each of which is 6 bits wide

and a ROM consisting of 4 entries each of which is 16 bits wide.
Multidimensional arrays

It is possible to create simple multi-dimensional arrays of memory using the ram,
rom and wom keywords. The definitions can be made clearer by using the optional
disambiguator <>.

signal

Figure 7 illustrates a method 7040 for using a dynamic object, i.e. signal, in a
programming language. In general, in operation 7042, an object is defined with an
associated first value and second value. The first value is then used in association
with the object during a predetermined clock cycle. See operation 7044. The
second value is used in association with the object before or after the predetermined

clock cycle, as indicated in operation 7046.

In an aspect of the present invention, the object may be used to split up an
expression into sub-expressions. As an option, the sub-expressions may be reused.
In another aspect, the first value may be assigned to and read from the object during
the predetermined clock cycle. In a further aspect, the programming language may
be adapted for programming a gate array. As an option, the programming language

may include Handel-C.

More information regarding the above concept will now be set forth in greater detail.
A signal is an object that takes on the value assigned to it but only for that clock
cycle. The value assigned to it can be read back during the same clock cycle. At all

other times it takes on its initialisation value. The default initialisation value is 0.

The optional disambiguator <> can be used to clarify complex signal definitions.

20

10

15

20

25

30

WO 02/061633 PCT/GB02/00384

Syntax
signal [<type data-width>] signal Name;
Example

int 15 a, b;
signal <int> sig;
a=17,

par

{

sig = a;

b = sig;

}

sig is assigned to and read from in the same clock cycle, so b is assigned the value of
a. Since the signal only holds the value assigned to it for a single clock cycle, if it is

read from just before or just after it is assigned to, one gets its initial value. For

example:
int 15 a, b;
static signal <int> sig = 690;
a=7,
par
{
sig = a,
b = sig;
}
a = sig;

21

10

15

20

25

30

WO 02/061633

PCT/GB02/00384

Here, b is assigned the value of a through the signal, as before. Since there is a clock

tick before the last line, a is finally assigned the signal's initial value of 690.

Using signals to split up complex expressions

One can split up complex expressions. E.g., b = (((a * 2) - 55) << 2) + 100;

could also be written

int17 a, b;

signal sl, s2, s3, s4;

par
{

sl =a;
s2=sl *2;
s3=s2-55;
's4 =83 << 2;
b=s4+100;
}

Breaking up expressions also enables one to re-use sub-expressions:

unsigned 15 a, b;
signal sigl;

par

{

sigl =x +2;
a=sigl * 3;
b=sigl/2;

Type qualifiers

22

WO 02/061633 PCT/GB02/00384

Handel-C supports the type-qualifiers const and volatile to increase compatibility
with ISO-C. These can be used to further qualify logic types.

23

SR KV I VR SR

[« NN, N - VS N\

WO 02/061633 PCT/GB02/00384

CLAIMS

What is claimed is:

1. A method for using a dynamic object in a programming language,
comprising the steps of:

(a) defining an object with an associated first value and second value;

(b) using the first value in association with the object during a predetermined
clock cycle; and

(©) using the second value in association with the object before or after the

predetermined clock cycle.

2. A method as recited in claim 1, wherein the object is used to split up an

expression into sub-expressions.
3. A method as recited in claim 2, wherein the sub-expressions are reused.

4. A method as recited in claim 1, wherein the first value is assigned to and

read from the object during the predetermined clock cycle.

5. A method as recited in claim 1, wherein the programming language is

adapted for programming a gate array.

6. A method as recited in claim 1, wherein the programming language includes
Handel-C.
7. A computer program product for using a dynamic object in a programming

language, comprising: _

(@) computer code for defining an object with an associated first value and
second value;

(b) computer code for using the first value in association with the object during a

predetermined clock cycle; and

24

oo 3

[

NN R W N

WO 02/061633 PCT/GB02/00384

(c) computer code for using the second value in association with the object

before or after the predetermined clock cycle.

8. A computer program product as recited in claim 7, wherein the object is used

to split up an expression into sub-expressions.

9. A computer program product as recited in claim 8, wherein the sub-

expressions are reused.

10. A computer program product as recited in claim 7, wherein the first value is

assigned to and read from the object during the predetermined clock cycle.

11. A computer program product as recited in claim 7, wherein the programming

language is adapted for programming a gate array.

12. A computer program product as recited in claim 7, wherein the programming

language includes Handel-C.

13. A system for using a dynamic object in a programming language,
comprising:
(@) logic for defining an object with an associated first value and second value;
(b) logic for using the first value in association with the object during a
| predetermined clock cycle; and
(c) logic for using the second value in association with the object before or after

the predetermined clock cycle.

14. A system as recited in claim 13, wherein the object is used to split up an

expression into sub-expressions.

15. A system as recited in claim 14, wherein the sub-expressions are reused.

25

WO 02/061633 PCT/GB02/00384

16. A system as recited in claim 13, wherein the first value is assigned to and

read from the object during the predetermined clock cycle.

17. A system as recited in claim 13, wherein the programming language is

adapted for programming a gate array.

18. A system as recited in claim 13, wherein the programming language includes
Handel-C.

26

WO 02/061633

1/6

PCT/GB02/00384

Fig.1.
Network (135)
1208
110 116 114 K‘k
) N N el —
ommunication
CPU ROM RAM Adapter adapter
4 \
112 118 134
122
12{1 ~
T _ User Display
n n = interface adapter adapter
\
136 138
13277 196 128

SUBSTITUTE SHEET (RULE 26)

WO 02/061633

Port algorithm to
Handel-C

2/6

Fig.2.

PCT/GB02/00384

200

VHDL

I

Compile program for
debug

Modify/debug
program

:

Use simulator to
evaluate and debug

Y

Handel-C simulator
invokes VHDL
simulator if required

y

Add interfaces to
external hardware

]

Compile Handel-C to
target hardware netlist

VHDL

lEDW

Use FPGA tools to
place and route netlist

l

Program FPGA with
result of place and
route

Synthesise compiled
Handel-C and VHDL

(204

SUBSTITUTE SHEET (RULE 26)

202

WO 02/061633 PCT/GB02/00384
3/6

Fig.3A. i}oo

Strong typing Handel-C has variables which can be defined to be of
any width.

Casting can't change width.

There are no automatic conversions between signed
and unsigned values. Instead, values must be 'cast'
between types to ensure that the programmer is aware
that a conversion is occurring that may alter the
meaning of a value.

Pointers can only be cast to void and back, between
signed and unsigned and between similar structs.
You cannot cast pointers to any other type.

True parallelism | You can have multiple main functions in a project. Each
Handel-C main function must be associated with a
clock.

Although implicity sequential, Handel-C has parallel
constructs which allow you to speed up your code.

Width of Handel-C has variables which can be defined to be of
variables any width.

In ISO-C, bit fields are made up of words, and only the
specified bits are accessed, the rest are padded. Since
there are no words in Handel-C, no form of packing can
be assumed.

If you have an array[4] and you use its index as a
counter, the index width will be assumed by the Handel-C
compiler to be two bits wide (to hold the values 0-3).

It will not be able to hold the value 4.

No side-effects | Instead of writing complex single statements, it is more
allowed efficient in Handel-C to write multiple single statements
and run them in parallel.

You cannot perform two assignments in one statement.

Auto variables cannot be initialised, as that means that
hidden clock cycles are required, Instead, they must be
explicity assigned to in a separate statement.

SUBSTITUTE SHEET (RULE 26)

WO 02/061633

PCT/GB02/00384
4/6

Fig.3B. 3100
°)

You cannot have empty loops in Handel-C.

Constrained
functions

Functions may not be recursive.

Variable length parameter lists are not supported.

0Old-style function declarations are not supported.

Fig.4.

4900
Statement /
4903_
v v
Parallel
7 block
4904

SUBSTITUTE SHEET (RULE 26)

WO 02/061633 PCT/GB02/00384

5/6

5002 ¢ 5004
]] Statement
q—» Cha?nel > «—b

5001
'

Fig.6.

6100
int w: A
}/oid main(void)
int x: A
{
inty Iy W
...... X
}
{ intz I
} ! vy

SUBSTITUTE SHEET (RULE 26)

WO 02/061633 PCT/GB02/00384
6/6

Fig.7.

7040 - . : . . 7042
~a | Defining an object with an associated first value and |—

second value

!

Using the first value in association with the object
during a predetermined clock cycle

!

Using the second value in association with the object | 7046
before or after the predetermined clock cycle

7044

SUBSTITUTE SHEET (RULE 26)

	Abstract
	Bibliographic
	Description
	Claims
	Drawings

