

(12) INTERNATIONAL APPLICATION PUBLISHED UNDER THE PATENT COOPERATION TREATY (PCT)

(19) World Intellectual Property Organization
International Bureau

(43) International Publication Date
29 December 2005 (29.12.2005)

PCT

(10) International Publication Number
WO 2005/123728 A1

(51) International Patent Classification⁷: C07D 451/14,
A61K 31/439, A61P 23/00

MD, MG, MK, MN, MW, MX, MZ, NA, NG, NI, NO, NZ,
OM, PG, PH, PL, PT, RO, RU, SC, SD, SE, SG, SK, SL,
SM, SY, TJ, TM, TN, TR, TT, TZ, UA, UG, US, UZ, VC,
VN, YU, ZA, ZM, ZW.

(21) International Application Number:
PCT/EP2005/052730

(84) Designated States (unless otherwise indicated, for every kind of regional protection available): ARIPO (BW, GH, GM, KE, LS, MW, MZ, NA, SD, SL, SZ, TZ, UG, ZM, ZW), Eurasian (AM, AZ, BY, KG, KZ, MD, RU, TJ, TM), European (AT, BE, BG, CH, CY, CZ, DE, DK, EE, ES, FI, FR, GB, GR, HU, IE, IS, IT, LT, LU, MC, NL, PL, PT, RO, SE, SI, SK, TR), OAPI (BF, BJ, CF, CG, CI, CM, GA, GN, GQ, GW, ML, MR, NE, SN, TD, TG).

(22) International Filing Date: 14 June 2005 (14.06.2005)

(25) Filing Language: English

(26) Publication Language: English

(30) Priority Data:
PA 2004 00962 18 June 2004 (18.06.2004) DK
60/581,361 22 June 2004 (22.06.2004) US

(71) Applicant (for all designated States except US): NEUROSEARCH A/S [DK/DK]; 93 Pederstrupvej, DK-2750 Ballerup (DK).

(72) Inventors; and

(75) Inventors/Applicants (for US only): PETERS, Dan [SE/DK]; c/o NeuroSearch A/S, 93 Pederstrupvej, DK-2750 Ballerup (DK). OLSEN, Gunnar, M. [DK/DK]; c/o NeuroSearch A/S, 93 Pederstrupvej, DK-2750 Ballerup (DK). NIELSEN, Elsebet, Østergaard [DK/DK]; c/o NeuroSearch A/S, 93 Pederstrupvej, DK-2750 Ballerup (DK). SCHEEL-KRÜGER, Jørgen [DK/DK]; c/o NeuroSearch A/S, 93 Pederstrupvej, DK-2750 Ballerup (DK).

(74) Common Representative: NEUROSEARCH A/S; Patent Department, 93 Pederstrupvej, DK-2750 Ballerup (DK).

(81) Designated States (unless otherwise indicated, for every kind of national protection available): AE, AG, AL, AM, AT, AU, AZ, BA, BB, BG, BR, BW, BY, BZ, CA, CH, CN, CO, CR, CU, CZ, DE, DK, DM, DZ, EC, EE, EG, ES, FI, GB, GD, GE, GH, GM, HR, HU, ID, IL, IN, IS, JP, KE, KG, KM, KP, KR, KZ, LC, LK, LR, LS, LT, LU, LV, MA, MD, MG, MK, MN, MW, MX, MZ, NA, NG, NI, NO, NZ, OM, PG, PH, PL, PT, RO, RU, SC, SD, SE, SG, SK, SL, SM, SY, TJ, TM, TN, TR, TT, TZ, UA, UG, UZ, VC, VN, YU, ZA, ZM, ZW, ARIPO patent (BW, GH, GM, KE, LS, MW, MZ, NA, SD, SL, SZ, TZ, UG, ZM, ZW), Eurasian patent (AM, AZ, BY, KG, KZ, MD, RU, TJ, TM), European patent (AT, BE, BG, CH, CY, CZ, DE, DK, EE, ES, FI, FR, GB, GR, HU, IE, IS, IT, LT, LU, MC, NL, PL, PT, RO, SE, SI, SK, TR), OAPI patent (BF, BJ, CF, CG, CI, CM, GA, GN, GQ, GW, ML, MR, NE, SN, TD, TG)

Declaration under Rule 4.17:

— as to applicant's entitlement to apply for and be granted a patent (Rule 4.17(ii)) for the following designations AE, AG, AL, AM, AT, AU, AZ, BA, BB, BG, BR, BW, BY, BZ, CA, CH, CN, CO, CR, CU, CZ, DE, DK, DM, DZ, EC, EE, EG, ES, FI, GB, GD, GE, GH, GM, HR, HU, ID, IL, IN, IS, JP, KE, KG, KM, KP, KR, KZ, LC, LK, LR, LS, LT, LU, LV, MA, MD, MG, MK, MN, MW, MX, MZ, NA, NG, NI, NO, NZ, OM, PG, PH, PL, PT, RO, RU, SC, SD, SE, SG, SK, SL, SM, SY, TJ, TM, TN, TR, TT, TZ, UA, UG, UZ, VC, VN, YU, ZA, ZM, ZW, ARIPO patent (BW, GH, GM, KE, LS, MW, MZ, NA, SD, SL, SZ, TZ, UG, ZM, ZW), Eurasian patent (AM, AZ, BY, KG, KZ, MD, RU, TJ, TM), European patent (AT, BE, BG, CH, CY, CZ, DE, DK, EE, ES, FI, FR, GB, GR, HU, IE, IS, IT, LT, LU, MC, NL, PL, PT, RO, SE, SI, SK, TR), OAPI patent (BF, BJ, CF, CG, CI, CM, GA, GN, GQ, GW, ML, MR, NE, SN, TD, TG)

Published:

— with international search report
— before the expiration of the time limit for amending the claims and to be republished in the event of receipt of amendments

For two-letter codes and other abbreviations, refer to the "Guidance Notes on Codes and Abbreviations" appearing at the beginning of each regular issue of the PCT Gazette.

(54) Title: NOVEL 9-AZA-BICYCLO[3.3.1]NONANE DERIVATIVES AND THEIR USE AS MONOAMINE NEUROTRANSMITTER RE-UPTAKE INHIBITORS

(57) Abstract: This invention relates to novel 9-aza-bicyclo[3.3.1]nonane derivatives useful as monoamine neurotransmitter re-uptake inhibitors. In other aspects the invention relates to the use of these compounds in a method for therapy and to pharmaceutical compositions comprising the compounds of the invention.

WO 2005/123728 A1

NOVEL 9-AZA-BICYCLO[3.3.1]NONANE DERIVATIVES AND THEIR USE AS MONOAMINE NEUROTRANSMITTER RE-UPTAKE INHIBITORS

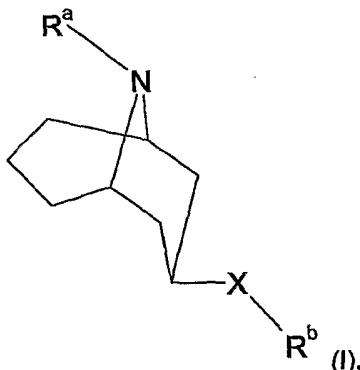
TECHNICAL FIELD

5

This invention relates to novel 9-aza-bicyclo[3.3.1]nonane derivatives useful as monoamine neurotransmitter re-uptake inhibitors.

In other aspects the invention relates to the use of these compounds in a method for therapy and to pharmaceutical compositions comprising the compounds of 10 the invention.

BACKGROUND ART


WO 97/30997 (NeuroSearch A/S) describes tropane derivatives active as 15 neurotransmitter re-uptake inhibitors.

However, there is still a strong need for compounds with an optimised pharmacological profile as regards the activity on reuptake of the monoamine neurotransmitters serotonin, dopamine and noradrenaline, such as the ratio of the serotonin reuptake versus the noradrenaline and dopamine reuptake activity.

20

SUMMARY OF THE INVENTION

In its first aspect, the invention provides a 9-aza-bicyclo[3.3.1]nonane derivative of the Formula I:

25

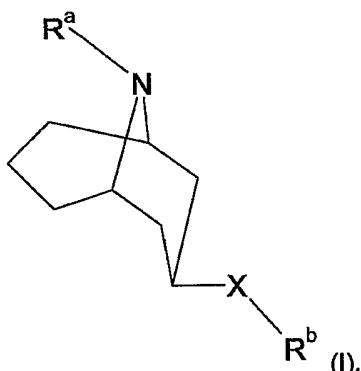
any of its isomers or any mixture of its isomers, or a pharmaceutically acceptable salt thereof,

wherein R^a, R^b and X are as defined below.

In its second aspect, the invention provides a pharmaceutical composition, 30 comprising a therapeutically effective amount of a compound of the invention, any of

its isomers or any mixture of its isomers, or a pharmaceutically acceptable salt thereof, together with at least one pharmaceutically acceptable carrier, excipient or diluent.

In a further aspect, the invention provides the use of a compound of the invention, any of its isomers or any mixture of its isomers, or a pharmaceutically acceptable salt thereof, for the manufacture of a pharmaceutical composition for the treatment, prevention or alleviation of a disease or a disorder or a condition of a mammal, including a human, which disease, disorder or condition is responsive to inhibition of monoamine neurotransmitter re-uptake in the central nervous system.


In a still further aspect, the invention relates to a method for treatment, prevention or alleviation of a disease or a disorder or a condition of a living animal body, including a human, which disorder, disease or condition is responsive to inhibition of monoamine neurotransmitter re-uptake in the central nervous system, which method comprises the step of administering to such a living animal body in need thereof a therapeutically effective amount of a compound of the invention, any of its isomers or any mixture of its isomers, or a pharmaceutically acceptable salt thereof.

Other objects of the invention will be apparent to the person skilled in the art from the following detailed description and examples.

DETAILED DISCLOSURE OF THE INVENTION

9-aza-bicyclo[3.3.1]octane derivatives

In its first aspect the present invention provides 9-aza-bicyclo[3.3.1]nonane derivatives of formula I:

any of its isomers or any mixture of its isomers, or a pharmaceutically acceptable salt thereof, wherein

R^a represents hydrogen or alkyl;

30 which alkyl is optionally substituted with one or more substituents independently selected from the group consisting of:

halo, trifluoromethyl, trifluoromethoxy, cyano, hydroxy, amino, nitro, alkoxy, cycloalkoxy, alkyl, cycloalkyl, cycloalkylalkyl, alkenyl and alkynyl;

X represents $-\text{O}-$, $-\text{S}-$ or $-\text{NR}^{\text{c}}-$;

wherein R^{c} represents hydrogen, alkyl, $-\text{C}(=\text{O})\text{R}^{\text{d}}$ or $-\text{SO}_2\text{R}^{\text{d}}$;

5 wherein R^{d} represents hydrogen or alkyl;

R^{b} represents an aryl or a heteroaryl group,

which aryl or heteroaryl group is optionally substituted with one or more substituents independently selected from the group consisting of:

halo, trifluoromethyl, trifluoromethoxy, cyano, hydroxy, amino, nitro, alkoxy, cycloalkoxy, alkyl, cycloalkyl, cycloalkylalkyl, alkenyl and alkynyl.

10 In one embodiment, R^{a} represents hydrogen or alkyl. In a special embodiment, R^{a} represents hydrogen. In a further embodiment, R^{a} represents alkyl, such as methyl.

In a still further embodiment, R^{b} represents an optionally substituted aryl group, such as an optionally substituted phenyl.

15 In a further embodiment, R^{b} represents a phenyl group, which phenyl group is optionally substituted with one or more substituents independently selected from the group consisting of: halo, trifluoromethyl, trifluoromethoxy, cyano and alkoxy.

20 In a still further embodiment, R^{b} represents a phenyl group, which phenyl group is optionally substituted twice with halo. In a special embodiment, R^{b} represents dichloro-phenyl, such as 3,4-dichloro-phenyl. In a further embodiment, R^{b} represents chloro-fluoro-phenyl, such as 4-chloro-3-fluoro-phenyl.

In a further embodiment, R^{b} represents a pyridyl group, which pyridyl group is optionally substituted with one or more substituents independently selected from the group consisting of: halo, trifluoromethyl, trifluoromethoxy, cyano and alkoxy.

25 In a still further embodiment, R^{b} represents a pyridyl group, which pyridyl group is optionally substituted once with halo or alkoxy. In a special embodiment, R^{b} represents bromo-pyridyl, such as 6-bromo-pyridin-2-yl. In a further embodiment, R^{b} represents alkoxy-pyridyl, such as 6-methoxy-pyridin-2-yl.

In a further embodiment, X represents $-\text{O}-$.

In a special embodiment the chemical compound of the invention is

30 *exo*-3-(3,4-Dichloro-phenoxy)-9-methyl-9-aza-bicyclo[3.3.1]nonane;

exo-3-(4-Chloro-3-fluorophenoxy)-9-methyl-9-aza-bicyclo[3.3.1]nonane;

exo-3-(3,4-Dichloro-phenoxy)-9-H-9-aza-bicyclo[3.3.1]nonane;

exo-3-(6-Bromopyridin-2-yloxy)-9-methyl-9-aza-bicyclo[3.3.1]nonane;

exo-3-(6-Bromopyridin-2-yloxy)-9-H-9-aza-bicyclo[3.3.1]nonane;

35 *exo*-3-(6-Methoxypyridin-2-yloxy)-9-methyl-9-aza-bicyclo[3.3.1]nonane;

or a pharmaceutically acceptable salt thereof.

Any combination of two or more of the embodiments as described above is considered within the scope of the present invention.

Definition of Substituents

5 In the context of this invention halo represents fluoro, chloro, bromo or iodo.

In the context of this invention an alkyl group designates a univalent saturated, straight or branched hydrocarbon chain. The hydrocarbon chain preferably contains of from one to six carbon atoms (C₁₋₆-alkyl), including pentyl, isopentyl, neopentyl, tertiary pentyl, hexyl and isohexyl. In a preferred embodiment alkyl represents a C₁₋₄-alkyl group, including butyl, isobutyl, secondary butyl, and tertiary butyl. In another preferred embodiment of this invention alkyl represents a C₁₋₃-alkyl group, which may in particular be methyl, ethyl, propyl or isopropyl.

In the context of this invention an alkenyl group designates a carbon chain containing one or more double bonds, including di-enes, tri-enes and poly-enes. In a preferred embodiment the alkenyl group of the invention comprises of from two to six carbon atoms (C₂₋₆-alkenyl), including at least one double bond. In a most preferred embodiment the alkenyl group of the invention is ethenyl; 1- or 2-propenyl; 1-, 2- or 3-butenyl, or 1,3-butadienyl; 1-, 2-, 3-, 4- or 5-hexenyl, or 1,3-hexadienyl, or 1,3,5-hexatrienyl.

20 In the context of this invention an alkynyl group designates a carbon chain containing one or more triple bonds, including di-ynes, tri-ynes and poly-ynes. In a preferred embodiment the alkynyl group of the invention comprises of from two to six carbon atoms (C₂₋₆-alkynyl), including at least one triple bond. In its most preferred embodiment the alkynyl group of the invention is ethynyl; 1-, or 2-propynyl; 1-, 2-, or 3-butynyl, or 1,3-butadiynyl; 1-, 2-, 3-, 4-pentynyl, or 1,3-pentadiynyl; 1-, 2-, 3-, 4-, or 5-hexynyl, or 1,3-hexadiynyl or 1,3,5-hexatriynyl.

In the context of this invention a cycloalkyl group designates a cyclic alkyl group, preferably containing of from three to seven carbon atoms (C₃₋₇-cycloalkyl), including cyclopropyl, cyclobutyl, cyclopentyl, cyclohexyl and cycloheptyl.

Alkoxy is O-alkyl, wherein alkyl is as defined above.

30 Cycloalkoxy means O-cycloalkyl, wherein cycloalkyl is as defined above.

Cycloalkylalkyl means cycloalkyl as above and alkyl as above, meaning for example, cyclopropylmethyl.

Amino is NH₂ or NH-alkyl or N-(alkyl)₂, wherein alkyl is as defined above.

In the context of this invention an aryl group designates a carbocyclic aromatic ring system such as phenyl, naphthyl (1-naphthyl or 2-naphthyl) or fluorenyl.

In the context of this invention a heteroaryl group designates an aromatic mono- or 35 bicyclic heterocyclic group, which holds one or more heteroatoms in its ring structure. Preferred heteroatoms include nitrogen (N), oxygen (O), and sulphur (S).

Preferred monocyclic heteroaryl groups of the invention include aromatic 5- and 6-membered heterocyclic monocyclic groups, including for example, but not limited to, oxazolyl (oxazol-2-yl, -4-yl, or -5-yl), isoxazolyl (isoxazol-3-yl, -4-yl, or -5-yl), thiazolyl (thiazol-2-yl, -4-yl, or -5-yl), isothiazolyl (isothiazol-3-yl, -4-yl, or -5-yl), 1,2,4-oxadiazolyl (1,2,4-oxadiazol-3-yl or -5-yl), 1,2,4-thiadiazolyl (1,2,4-thiadiazol-3-yl or -5-yl), 1,2,5-oxadiazolyl (1,2,5-oxadiazol-3-yl or -4-yl), 1,2,5-thiadiazolyl (1,2,5-thiadiazol-3-yl or -4-yl), imidazolyl (2-, 4-, or 5-imidazolyl), pyrrolyl (2- or 3-pyrrolyl), furanyl (2- or 3-furanyl), thienyl (2- or 3-thienyl), pyridyl (2-, 3- or 4-pyridyl), pyrimidyl (2-, 4-, 5- or 6-pyrimidyl), or pyridazinyl (3- or 4-pyridazinyl).

Preferred bicyclic heteroaryl groups of the invention include for example, but not limited to, indolizinyl (2-, 5- or 6-indolizinyl), indolyl (2-, 5- or 6-indolyl), isoindolyl (2-, 5- or 6-isoindolyl), indazolyl (1- or 3-indazolyl), benzofuranyl (2-, 5- or 6-benzofuranyl), benzo[b]thienyl (2-, 5- or 6-benzothienyl), benzimidazolyl (2-, 5- or 6-benzimidazolyl), benzoxazolyl (2-, 5- or 6-benzoxazolyl), benzothiazolyl (2-, 5- or 6-benzothiazolyl), benzo[d]isothiazolyl (1,2-benzo[d]isothiazol-3-yl), purinyl (2- or 8-purinyl), quinolinyl (2-, 3-, 6-, 7- or 8-quinolinyl), isoquinolinyl (1-, 3-, 5-, 6- or 7-isoquinolinyl), cinnolinyl (6- or 7-cinnolinyl), phthalazinyl (6- or 7-phthalazinyl), quinazolinyl (2-, 6- or 7-quinazolinyl), quinoxalinyl (2- or 6-quinoxalinyl), 1,8-naphthyridinyl (1,8-naphthyridin-2-, 3-, 6- or 7-yl), pteridinyl (2-, 6- or 7-pteridinyl), and indenyl (1-, 2-, 3-, 5- or 5-indenyl).

Pharmaceutically Acceptable Salts

The chemical compound of the invention may be provided in any form suitable for the intended administration. Suitable forms include pharmaceutically (i.e. physiologically) acceptable salts, and pre- or prodrug forms of the chemical compound of the invention.

Examples of pharmaceutically acceptable addition salts include, without limitation, the non-toxic inorganic and organic acid addition salts such as the hydrochloride derived from hydrochloric acid, the hydrobromide derived from hydrobromic acid, the nitrate derived from nitric acid, the perchlorate derived from perchloric acid, the phosphate derived from phosphoric acid, the sulphate derived from sulphuric acid, the formate derived from formic acid, the acetate derived from acetic acid, the aconate derived from aconitic acid, the ascorbate derived from ascorbic acid, the benzenesulphonate derived from benzenesulphonic acid, the benzoate derived from benzoic acid, the cinnamate derived from cinnamic acid, the citrate derived from citric acid, the embonate derived from embonic acid, the enantate derived from enanthic acid, the fumarate derived from fumaric acid, the glutamate derived from glutamic acid, the glycolate derived from glycolic acid, the lactate derived from lactic acid, the maleate derived from maleic acid, the malonate derived from malonic acid, the mandelate derived from mandelic acid, the

methanesulphonate derived from methane sulphonic acid, the naphthalene-2-sulphonate derived from naphthalene-2-sulphonic acid, the phthalate derived from phthalic acid, the salicylate derived from salicylic acid, the sorbate derived from sorbic acid, the stearate derived from stearic acid, the succinate derived from succinic acid, the tartrate derived 5 from tartaric acid, the toluene-p-sulphonate derived from p-toluene sulphonic acid, and the like. Such salts may be formed by procedures well known and described in the art.

Other acids such as oxalic acid, which may not be considered pharmaceutically acceptable, may be useful in the preparation of salts useful as intermediates in obtaining a chemical compound of the invention and its pharmaceutically acceptable acid addition 10 salt.

Examples of pharmaceutically acceptable cationic salts of a chemical compound of the invention include, without limitation, the sodium, the potassium, the calcium, the magnesium, the zinc, the aluminium, the lithium, the choline, the lysine, and the ammonium salt, and the like, of a chemical compound of the invention 15 containing an anionic group. Such cationic salts may be formed by procedures well known and described in the art.

In the context of this invention the "onium salts" of N-containing compounds are also contemplated as pharmaceutically acceptable salts. Preferred "onium salts" include the alkyl-onium salts, the cycloalkyl-onium salts, and the cycloalkylalkyl-onium 20 salts.

Examples of pre- or prodrug forms of the chemical compound of the invention include examples of suitable prodrugs of the substances according to the invention include compounds modified at one or more reactive or derivatizable groups of the parent compound. Of particular interest are compounds modified at a carboxyl group, 25 a hydroxyl group, or an amino group. Examples of suitable derivatives are esters or amides.

The chemical compound of the invention may be provided in dissolvable or indissolvable forms together with a pharmaceutically acceptable solvent such as water, ethanol, and the like. Dissolvable forms may also include hydrated forms such as the 30 monohydrate, the dihydrate, the hemihydrate, the trihydrate, the tetrahydrate, and the like. In general, the dissolvable forms are considered equivalent to indissolvable forms for the purposes of this invention.

Steric Isomers

35 It will be appreciated by those skilled in the art that the compounds of the present invention may contain one or more chiral centers, and that such compounds exist in the form of isomers.

For example, the substituent -X-R^b on position 3 of the 9-aza-bicyclo[3.3.1]-octane skeleton of formula I may in particular be in the exo or endo configuration. In

one embodiment of the invention the substituent at position 3 is in the exo configuration. In another embodiment of the invention the substituent at position 3 is in the endo configuration.

5 The invention includes all such isomers and any mixtures thereof including racemic mixtures.

Racemic forms can be resolved into the optical antipodes by known methods and techniques. One way of separating the isomeric salts is by use of an optically active acid, and liberating the optically active amine compound by treatment with a base. Another method for resolving racemates into the optical antipodes is based 10 upon chromatography on an optical active matrix. Racemic compounds of the present invention can thus be resolved into their optical antipodes, e.g., by fractional crystallisation of d- or l- (tartrates, mandelates, or camphorsulphonate) salts for example.

15 The chemical compounds of the present invention may also be resolved by the formation of diastereomeric amides by reaction of the chemical compounds of the present invention with an optically active activated carboxylic acid such as that derived from (+) or (-) phenylalanine, (+) or (-) phenylglycine, (+) or (-) camphanic acid or by the formation of diastereomeric carbamates by reaction of the chemical compound of the present invention with an optically active chloroformate or the like.

20 Additional methods for the resolving the optical isomers are known in the art.

Such methods include those described by *Jaques J, Collet A, & Wilen S* in "Enantiomers, Racemates, and Resolutions", John Wiley and Sons, New York (1981).

Optical active compounds can also be prepared from optical active starting materials.

25

Labelled Compounds

The compounds of the invention may be used in their labelled or unlabelled form. In the context of this invention the labelled compound has one or more atoms replaced by an atom having an atomic mass or mass number different from the atomic 30 mass or mass number usually found in nature. The labelling will allow easy quantitative detection of said compound.

The labelled compounds of the invention may be useful as diagnostic tools, radio tracers, or monitoring agents in various diagnostic methods, and for *in vivo* receptor imaging.

35 The labelled isomer of the invention preferably contains at least one radio-nuclide as a label. Positron emitting radionuclides are all candidates for usage. In the context of this invention the radionuclide is preferably selected from ^2H (deuterium), ^3H (tritium), ^{13}C , ^{14}C , ^{131}I , ^{125}I , ^{123}I , and ^{18}F .

The physical method for detecting the labelled isomer of the present invention may be selected from Position Emission Tomography (PET), Single Photon Imaging Computed Tomography (SPECT), Magnetic Resonance Spectroscopy (MRS), Magnetic Resonance Imaging (MRI), and Computed Axial X-ray Tomography (CAT),
5 or combinations thereof.

Methods of Preparation

The chemical compounds of the invention may be prepared by conventional methods for chemical synthesis, e.g. those described in the working examples. The 10 starting materials for the processes described in the present application are known or may readily be prepared by conventional methods from commercially available chemicals.

Also one compound of the invention can be converted to another compound of the invention using conventional methods.

15 The end products of the reactions described herein may be isolated by conventional techniques, e.g. by extraction, crystallisation, distillation, chromatography, etc.

Biological Activity

20 Compounds of the invention may be tested for their ability to inhibit reuptake of the monoamines dopamine, noradrenaline and serotonin in synaptosomes e.g. such as described in WO 97/30997. Based on the balanced activity observed in these tests the compound of the invention is considered useful for the treatment, prevention or alleviation of a disease or a disorder or a condition of a mammal, including a human, 25 which disease, disorder or condition is responsive to inhibition of monoamine neurotransmitter re-uptake in the central nervous system.

In a special embodiment, the compounds of the invention are considered useful for the treatment, prevention or alleviation of: mood disorder, depression, atypical depression, depression secondary to pain, major depressive disorder, dysthymic 30 disorder, bipolar disorder, bipolar I disorder, bipolar II disorder, cyclothymic disorder, mood disorder due to a general medical condition, substance-induced mood disorder, pseudodementia, Ganser's syndrome, obsessive compulsive disorder, panic disorder, panic disorder without agoraphobia, panic disorder with agoraphobia, agoraphobia without history of panic disorder, panic attack, memory deficits, memory loss, attention 35 deficit hyperactivity disorder, obesity, anxiety, generalized anxiety disorder, eating disorder, Parkinson's disease, parkinsonism, dementia, dementia of ageing, senile dementia, Alzheimer's disease, acquired immunodeficiency syndrome dementia complex, memory dysfunction in ageing, specific phobia, social phobia, post-traumatic stress disorder, acute stress disorder, drug addiction, drug abuse, cocaine abuse,

nicotine abuse, tobacco abuse, alcohol addiction, alcoholism, pain, chronic pain, inflammatory pain, neuropathic pain, migraine pain, tension-type headache, chronic tension-type headache, pain associated with depression, fibromyalgia, arthritis, osteoarthritis, rheumatoid arthritis, back pain, cancer pain, irritable bowel pain, 5 irritable bowel syndrome, post-operative pain, post-mastectomy pain syndrome (PMPS), post-stroke pain, drug-induced neuropathy, diabetic neuropathy, sympathetically-maintained pain, trigeminal neuralgia, dental pain, myofacial pain, phantom-limb pain, bulimia, premenstrual syndrome, late luteal phase syndrome, post-traumatic syndrome, chronic fatigue syndrome, urinary incontinence, stress 10 incontinence, urge incontinence, nocturnal incontinence, sexual dysfunction, premature ejaculation, erectile difficulty, erectile dysfunction, premature female orgasm, restless leg syndrome, eating disorders, anorexia nervosa, sleep disorders, autism, mutism, trichotillomania, narcolepsy, post-stroke depression, stroke-induced brain damage, stroke-induced neuronal damage or Gilles de la Tourettes disease. In a 15 preferred embodiment, the compounds are considered useful for the treatment, prevention or alleviation of depression.

It is at present contemplated that a suitable dosage of the active pharmaceutical ingredient (API) is within the range of from about 0.1 to about 1000 mg API per day, more preferred of from about 10 to about 500 mg API per day, most 20 preferred of from about 30 to about 100 mg API per day, dependent, however, upon the exact mode of administration, the form in which it is administered, the indication considered, the subject and in particular the body weight of the subject involved, and further the preference and experience of the physician or veterinarian in charge.

Preferred compounds of the invention show a biological activity in the sub- 25 micromolar and micromolar range, i.e. of from below 1 to about 100 μ M.

Pharmaceutical Compositions

In another aspect the invention provides novel pharmaceutical compositions comprising a therapeutically effective amount of the chemical compound of the 30 invention.

While a chemical compound of the invention for use in therapy may be administered in the form of the raw chemical compound, it is preferred to introduce the active ingredient, optionally in the form of a physiologically acceptable salt, in a pharmaceutical composition together with one or more adjuvants, excipients, carriers, 35 buffers, diluents, and/or other customary pharmaceutical auxiliaries.

In a preferred embodiment, the invention provides pharmaceutical compositions comprising the chemical compound of the invention, or a pharmaceutically acceptable salt or derivative thereof, together with one or more pharmaceutically acceptable carriers, and, optionally, other therapeutic and/or prophylactic ingredients, known and

used in the art. The carrier(s) must be "acceptable" in the sense of being compatible with the other ingredients of the formulation and not harmful to the recipient thereof.

Pharmaceutical compositions of the invention may be those suitable for oral, rectal, bronchial, nasal, pulmonary, topical (including buccal and sub-lingual), transdermal, vaginal or parenteral (including cutaneous, subcutaneous, intramuscular, intraperitoneal, intravenous, intraarterial, intracerebral, intraocular injection or infusion) administration, or those in a form suitable for administration by inhalation or insufflation, including powders and liquid aerosol administration, or by sustained release systems. Suitable examples of sustained release systems include semipermeable matrices of solid hydrophobic polymers containing the compound of the invention, which matrices may be in form of shaped articles, e.g. films or microcapsules.

The chemical compound of the invention, together with a conventional adjuvant, carrier, or diluent, may thus be placed into the form of pharmaceutical compositions and unit dosages thereof. Such forms include solids, and in particular tablets, filled capsules, powder and pellet forms, and liquids, in particular aqueous or non-aqueous solutions, suspensions, emulsions, elixirs, and capsules filled with the same, all for oral use, suppositories for rectal administration, and sterile injectable solutions for parenteral use. Such pharmaceutical compositions and unit dosage forms thereof may comprise conventional ingredients in conventional proportions, with or without additional active compounds or principles, and such unit dosage forms may contain any suitable effective amount of the active ingredient commensurate with the intended daily dosage range to be employed.

The chemical compound of the present invention can be administered in a wide variety of oral and parenteral dosage forms. It will be obvious to those skilled in the art that the following dosage forms may comprise, as the active component, either a chemical compound of the invention or a pharmaceutically acceptable salt of a chemical compound of the invention.

For preparing pharmaceutical compositions from a chemical compound of the present invention, pharmaceutically acceptable carriers can be either solid or liquid. Solid form preparations include powders, tablets, pills, capsules, cachets, suppositories, and dispersible granules. A solid carrier can be one or more substances which may also act as diluents, flavouring agents, solubilizers, lubricants, suspending agents, binders, preservatives, tablet disintegrating agents, or an encapsulating material.

In powders, the carrier is a finely divided solid, which is in a mixture with the finely divided active component.

In tablets, the active component is mixed with the carrier having the necessary binding capacity in suitable proportions and compacted in the shape and size desired.

The powders and tablets preferably contain from five or ten to about seventy percent of the active compound. Suitable carriers are magnesium carbonate, magnesium

stearate, talc, sugar, lactose, pectin, dextrin, starch, gelatin, tragacanth, methylcellulose, sodium carboxymethylcellulose, a low melting wax, cocoa butter, and the like. The term "preparation" is intended to include the formulation of the active compound with encapsulating material as carrier providing a capsule in which the active component, with or without carriers, is surrounded by a carrier, which is thus in association with it. Similarly, 5 cachets and lozenges are included. Tablets, powders, capsules, pills, cachets, and lozenges can be used as solid forms suitable for oral administration.

For preparing suppositories, a low melting wax, such as a mixture of fatty acid glyceride or cocoa butter, is first melted and the active component is dispersed 10 homogeneously therein, as by stirring. The molten homogenous mixture is then poured into convenient sized moulds, allowed to cool, and thereby to solidify.

Compositions suitable for vaginal administration may be presented as pessaries, tampons, creams, gels, pastes, foams or sprays containing in addition to the active ingredient such carriers as are known in the art to be appropriate.

15 Liquid preparations include solutions, suspensions, and emulsions, for example, water or water-propylene glycol solutions. For example, parenteral injection liquid preparations can be formulated as solutions in aqueous polyethylene glycol solution.

The chemical compound according to the present invention may thus be formulated for parenteral administration (e.g. by injection, for example bolus injection or continuous 20 infusion) and may be presented in unit dose form in ampoules, pre-filled syringes, small volume infusion or in multi-dose containers with an added preservative. The compositions may take such forms as suspensions, solutions, or emulsions in oily or aqueous vehicles, and may contain formulation agents such as suspending, stabilising and/or dispersing agents. Alternatively, the active ingredient may be in powder form, obtained by aseptic 25 isolation of sterile solid or by lyophilization from solution, for constitution with a suitable vehicle, e.g. sterile, pyrogen-free water, before use.

Aqueous solutions suitable for oral use can be prepared by dissolving the active component in water and adding suitable colorants, flavours, stabilising and thickening agents, as desired.

30 Aqueous suspensions suitable for oral use can be made by dispersing the finely divided active component in water with viscous material, such as natural or synthetic gums, resins, methylcellulose, sodium carboxymethylcellulose, or other well known suspending agents.

Also included are solid form preparations, intended for conversion shortly before 35 use to liquid form preparations for oral administration. Such liquid forms include solutions, suspensions, and emulsions. In addition to the active component such preparations may comprise colorants, flavours, stabilisers, buffers, artificial and natural sweeteners, dispersants, thickeners, solubilizing agents, and the like.

For topical administration to the epidermis the chemical compound of the invention may be formulated as ointments, creams or lotions, or as a transdermal patch. Ointments and creams may, for example, be formulated with an aqueous or oily base with the addition of suitable thickening and/or gelling agents. Lotions may be formulated with an aqueous or oily base and will in general also contain one or more emulsifying agents, stabilising agents, dispersing agents, suspending agents, thickening agents, or colouring agents.

Compositions suitable for topical administration in the mouth include lozenges comprising the active agent in a flavoured base, usually sucrose and acacia or tragacanth; pastilles comprising the active ingredient in an inert base such as gelatin and glycerine or sucrose and acacia; and mouthwashes comprising the active ingredient in a suitable liquid carrier.

Solutions or suspensions are applied directly to the nasal cavity by conventional means, for example with a dropper, pipette or spray. The compositions may be provided in single or multi-dose form.

Administration to the respiratory tract may also be achieved by means of an aerosol formulation in which the active ingredient is provided in a pressurised pack with a suitable propellant such as a chlorofluorocarbon (CFC) for example dichlorodifluoromethane, trichlorofluoromethane, or dichlorotetrafluoroethane, carbon dioxide, or other suitable gas. The aerosol may conveniently also contain a surfactant such as lecithin. The dose of drug may be controlled by provision of a metered valve.

Alternatively the active ingredients may be provided in the form of a dry powder, for example a powder mix of the compound in a suitable powder base such as lactose, starch, starch derivatives such as hydroxypropylmethyl cellulose and polyvinylpyrrolidone (PVP). Conveniently the powder carrier will form a gel in the nasal cavity. The powder composition may be presented in unit dose form for example in capsules or cartridges of, e.g., gelatin, or blister packs from which the powder may be administered by means of an inhaler.

In compositions intended for administration to the respiratory tract, including intranasal compositions, the compound will generally have a small particle size for example of the order of 5 microns or less. Such a particle size may be obtained by means known in the art, for example by micronization.

When desired, compositions adapted to give sustained release of the active ingredient may be employed.

The pharmaceutical preparations are preferably in unit dosage forms. In such form, the preparation is subdivided into unit doses containing appropriate quantities of the active component. The unit dosage form can be a packaged preparation, the package containing discrete quantities of preparation, such as packaged tablets, capsules, and

powders in vials or ampoules. Also, the unit dosage form can be a capsule, tablet, cachet, or lozenge itself, or it can be the appropriate number of any of these in packaged form.

Tablets or capsules for oral administration and liquids for intravenous administration and continuous infusion are preferred compositions.

5 Further details on techniques for formulation and administration may be found in the latest edition of Remington's Pharmaceutical Sciences (Maack Publishing Co., Easton, PA).

A therapeutically effective dose refers to that amount of active ingredient, which ameliorates the symptoms or condition. Therapeutic efficacy and toxicity, e.g. ED₅₀ and 10 LD₅₀, may be determined by standard pharmacological procedures in cell cultures or experimental animals. The dose ratio between therapeutic and toxic effects is the therapeutic index and may be expressed by the ratio LD₅₀/ED₅₀. Pharmaceutical compositions exhibiting large therapeutic indexes are preferred.

The dose administered must of course be carefully adjusted to the age, weight and 15 condition of the individual being treated, as well as the route of administration, dosage form and regimen, and the result desired, and the exact dosage should of course be determined by the practitioner.

The actual dosage depends on the nature and severity of the disease being treated, and is within the discretion of the physician, and may be varied by titration of 20 the dosage to the particular circumstances of this invention to produce the desired therapeutic effect. However, it is presently contemplated that pharmaceutical compositions containing of from about 0.1 to about 500 mg of active ingredient per individual dose, preferably of from about 1 to about 100 mg, most preferred of from about 1 to about 10 mg, are suitable for therapeutic treatments.

25 The active ingredient may be administered in one or several doses per day. A satisfactory result can, in certain instances, be obtained at a dosage as low as 0.1 µg/kg i.v. and 1 µg/kg p.o. The upper limit of the dosage range is presently considered to be about 10 mg/kg i.v. and 100 mg/kg p.o. Preferred ranges are from about 0.1 µg/kg to about 10 mg/kg/day i.v., and from about 1 µg/kg to about 100 mg/kg/day p.o.

30

Methods of Therapy

In another aspect the invention provides a method for the treatment, prevention or alleviation of a disease or a disorder or a condition of a living animal body, including a human, which disease, disorder or condition is responsive to inhibition of 35 monoamine neurotransmitter re-uptake in the central nervous system, and which method comprises administering to such a living animal body, including a human, in need thereof an effective amount of a chemical compound of the invention.

It is at present contemplated that suitable dosage ranges are 0.1 to 1000 milligrams daily, 10-500 milligrams daily, and especially 30-100 milligrams daily,

dependent as usual upon the exact mode of administration, form in which administered, the indication toward which the administration is directed, the subject involved and the body weight of the subject involved, and further the preference and experience of the physician or veterinarian in charge.

5

EXAMPLES

The invention is further illustrated with reference to the following examples, which are not intended to be in any way limiting to the scope of the invention as claimed.

10

General: All reactions involving air sensitive reagents or intermediates were performed under nitrogen and in anhydrous solvents. Magnesium sulphate was used as drying agent in the workup-procedures and solvents were evaporated under reduced pressure.

15

endo-9-Methyl-9-azabicyclo[3.3.1]nonan-3-ol

A mixture of 9-methyl-9-azabicyclo[3.3.1]nonan-3-one (pseudopelletierine) (20 g, 130 mmol) and methanol (200 ml) was stirred at 0°C. Sodium borhydride (5.2 g, 144 mmol) was added and the mixture was stirred at 0°C for 1.5 h and was allowed to reach

20 room-temperature during 1.5 h. Water (50 ml) was added and the methanol was evaporated. The mixture was extracted with ethyl acetate (100 ml). Yield 12 g (59 %).

Method A

exo-3-(3,4-Dichloro-phenoxy)-9-methyl-9-aza-bicyclo[3.3.1]nonane free base

25 A mixture of triphenylphosphine (12.6 g, 48 mmol) and dioxane (80 ml) was stirred at 5°C. Diethylazodicarboxylate (7.6 ml, 48 mmol) was added slowly at 5°C. Homotropine (*endo*-9-methyl-9-azabicyclo[3.3.1]nonan-3-ol) and 3,4-dichlorophenol were added and the mixture was allowed to reach room-temperature and was stirred for 15 h. Hydrochloric acid (100 ml, 2 M) and diethyl ether (100 ml) was added and the organic 30 phase was separated.

The aqueous phase was made alkaline by adding concentrated ammonia (30 ml). The mixture was extracted with diethyl ether (2 x 100 ml). Chromatography, of the crude mixture, on silica gel with dichloromethane, methanol and conc. ammonia (89:10:1) gave the title compound as an oil and free base. Yield 4.8 g (50 %).

35

***exo*-3-(4-Chloro-3-fluorophenoxy)-9-methyl-9-aza-bicyclo[3.3.1]nonane fumaric acid salt**

Was prepared according to method A. The corresponding salt was obtained by addition of a diethyl ether and methanol mixture (9:1) saturated with fumaric acid. Mp 5 156.5-157.8°C.

***exo*-3-(4-Nitrobenzoyloxy)-9-methyl-9-aza-bicyclo[3.3.1]nonane**

Was prepared according to method A.

10 ***exo*-9-Methyl-9-azabicyclo[3.3.1]nonan-3-ol**

A mixture of *exo*-3-(4-nitrobenzoyloxy)-9-methyl-9-aza-bicyclo[3.3.1]nonane (20.4 g, 67 mmol), ethanol (300 ml) and potassium hydroxide (7.5 g, 134 mmol) was stirred for 1 h. The mixture was evaporated until 70 ml of ethanol was left. Diethyl ether (250 ml) was added. The mixture was filtered, the precipitate was discarded. The organic 15 phase was evaporated and petroleum ether (100 ml) was added and the product was isolated by filtration. Yield 5.3 g (51 %).

Method B

***exo*-3-(3,4-Dichloro-phenoxy)-9-H-9-aza-bicyclo[3.3.1]nonane fumaric acid salt**

20 A mixture of *exo*-3-(3,4-dichloro-phenoxy)-9-methyl-9-aza-bicyclo[3.3.1]nonane (1.0 g, 3.3 mmol), toluene (20 ml) and 1-chloroethylchloroformate (1.1 ml, 10 mmol) was stirred at room temperature for 1 h. The mixture was stirred at 100°C for 15 h. Water (20 ml) was added and the mixture was stirred at reflux for 15 h. Aqueous sodium 25 hydroxide (20 ml, 4 M) was added to the mixture. The mixture was extracted with dichloromethane (2 x 50 ml). Chromatography on silica gel with methanol, dichloromethane and conc. ammonia (10:89:1) gave the title compound. Yield 0.48 g, (51%).

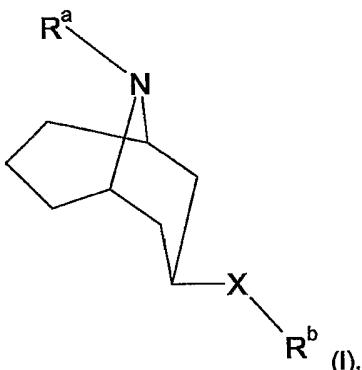
Method C

30 ***exo*-3-(6-Bromopyridin-2-yloxy)-9-methyl-9-aza-bicyclo[3.3.1]nonane free base**

A mixture of *exo*-9-Methyl-9-azabicyclo[3.3.1]nonan-3-ol (1.0 g 6.4 mmol), 2,6-dichloropyridine (1.6 g, 6.7 mmol), THF (20 ml) and KtBuO (2.2 g, 19.2 mmol) was stirred for 1 h at 45°C. Water (40 ml) was added and the mixture was extracted with diethyl ether (2 X 25 ml). The organic phase was washed with water. Yield 1.8 g 35 (90%).

Method D***exo-3-(6-Bromopyridin-2-yloxy)-9-H-9-aza-bicyclo[3.3.1]nonane free base***

A mixture of *exo*-3-(6-Bromopyridyloxy)-9-methyl-9-aza-bicyclo[3.3.1]nonane (0.80 g, 2.6 mmol), toluene (20 ml), diethylazodicarboxylate (1.2 ml, 7.8 mmol) was stirred at 5 reflux for 2 h. Hydrochloric acid (10 ml, 4 M) was added followed by reflux for 2.5 h. The mixture was allowed to cool to room temperature and aqueous sodium hydroxide (20 ml, 4 M) was added and extracted with diethyl ether (2 x 25 ml). Chromatography, of the crude mixture, on silica gel with dichloromethane, methanol and conc. ammonia (89:10:1) gave the title compound as an oil and free base. Yield 100 mg (13%).


10

Method E***exo-3-(6-Methoxypyridin-2-yloxy)-9-methyl-9-aza-bicyclo[3.3.1]nonane free base***

A mixture of *exo*-3-(6-bromopyridin-2-yloxy)-9-methyl-9-aza-bicyclo[3.3.1]nonane (0.9 g, 3.0 mmol), sodium methoxide (1.6 g, 30 mmol) and DMSO (10 ml) was stirred at 15 120°C for 15 h. Aqueous sodium hydroxide (20 ml, 4 M) was added and extracted with diethyl ether (2 x 25 ml). Chromatography, of the crude mixture, on silica gel with dichloromethane, methanol and conc. ammonia (89:10:1) gave the title compound as an oil and free base. Yield 50 mg (6 %).

CLAIMS

1. A 9-aza-bicyclo[3.3.1]nonane derivative of the Formula I:

5

any of its isomers or any mixture of its isomers,

or a pharmaceutically acceptable salt thereof,

wherein

R^a represents hydrogen or alkyl;

10 which alkyl is optionally substituted with one or more substituents independently selected from the group consisting of:

halo, trifluoromethyl, trifluoromethoxy, cyano, hydroxy, amino, nitro, alkoxy, cycloalkoxy, alkyl, cycloalkyl, cycloalkylalkyl, alkenyl and alkynyl;

15 X represents -O-, -S- or -NR^c-;

wherein R^c represents hydrogen, alkyl, -C(=O)R^d or -SO₂R^d;

wherein R^d represents hydrogen or alkyl;

R^b represents an aryl or a heteroaryl group,

which aryl or heteroaryl group is optionally substituted with one or more substituents independently selected from the group consisting of:

halo, trifluoromethyl, trifluoromethoxy, cyano, hydroxy, amino, nitro, alkoxy, cycloalkoxy, alkyl, cycloalkyl, cycloalkylalkyl, alkenyl and alkynyl.

2. The chemical compound of claim 1, wherein

R^a represents hydrogen or alkyl.

25 3. The chemical compound of claims 1 or 2, wherein

R^b represents a phenyl group,

which phenyl group is optionally substituted with one or more substituents independently selected from the group consisting of:

halo, trifluoromethyl, trifluoromethoxy, cyano and alkoxy.

4. The chemical compound of claims 1 or 2, wherein
 R^b represents a phenyl group,
which phenyl group is optionally substituted twice with halo.
5. The chemical compound of claims 1 or 2, wherein
 R^b represents a pyridyl group,
which pyridyl group is optionally substituted with one or more substituents
independently selected from the group consisting of:
halo, trifluoromethyl, trifluoromethoxy, cyano and alkoxy.
- 10 6. The chemical compound of claims 1 or 2, wherein
 R^b represents a pyridyl group,
which pyridyl group is optionally substituted once with halo or alkoxy.
7. The chemical compound of any one claims 1-6, wherein
 X represents $-O-$.
- 15 8. The chemical compound of claim 1, which is
exo-3-(3,4-Dichloro-phenoxy)-9-methyl-9-aza-bicyclo[3.3.1]nonane;
exo-3-(4-Chloro-3-fluorophenoxy)-9-methyl-9-aza-bicyclo[3.3.1]nonane;
exo-3-(3,4-Dichloro-phenoxy)-9-H-9-aza-bicyclo[3.3.1]nonane;
20 *exo*-3-(6-Bromopyridin-2-yloxy)-9-methyl-9-aza-bicyclo[3.3.1]nonane;
exo-3-(6-Bromopyridin-2-yloxy)-9-H-9-aza-bicyclo[3.3.1]nonane;
exo-3-(6-Methoxypyridin-2-yloxy)-9-methyl-9-aza-bicyclo[3.3.1]nonane;
or a pharmaceutically acceptable salt thereof.
- 25 9. A pharmaceutical composition, comprising a therapeutically effective amount of a compound of any one of claims 1-8, any of its isomers or any mixture of its isomers, or a pharmaceutically acceptable salt thereof, together with at least one pharmaceutically acceptable carrier, excipient or diluent.
- 30 10. Use of the chemical compound of any of claims 1-8, any of its isomers or any mixture of its isomers, or a pharmaceutically acceptable salt thereof, for the manufacture of a medicament.
11. The use according to claim 10, for the manufacture of a pharmaceutical composition for the treatment, prevention or alleviation of a disease or a disorder or a condition of a mammal, including a human, which disease, disorder or condition is responsive to inhibition of monoamine neurotransmitter re-uptake in the central nervous system.

12. The use according to claim 11, wherein the disease, disorder or condition is mood disorder, depression, atypical depression, depression secondary to pain, major depressive disorder, dysthymic disorder, bipolar disorder, bipolar I disorder, bipolar II disorder, cyclothymic disorder, mood disorder due to a general medical condition, substance-induced mood disorder, pseudodementia, Ganser's syndrome, obsessive compulsive disorder, panic disorder, panic disorder without agoraphobia, panic disorder with agoraphobia, agoraphobia without history of panic disorder, panic attack, memory deficits, memory loss, attention deficit hyperactivity disorder, obesity, anxiety, generalized anxiety disorder, eating disorder, Parkinson's disease, parkinsonism, dementia, dementia of ageing, senile dementia, Alzheimer's disease, acquired immunodeficiency syndrome dementia complex, memory dysfunction in ageing, specific phobia, social phobia, post-traumatic stress disorder, acute stress disorder, drug addiction, drug abuse, cocaine abuse, nicotine abuse, tobacco abuse, alcohol addiction, alcoholism, pain, chronic pain, inflammatory pain, neuropathic pain, migraine pain, tension-type headache, chronic tension-type headache, pain associated with depression, fibromyalgia, arthritis, osteoarthritis, rheumatoid arthritis, back pain, cancer pain, irritable bowel pain, irritable bowel syndrome, post-operative pain, post-mastectomy pain syndrome (PMPS), post-stroke pain, drug-induced neuropathy, diabetic neuropathy, sympathetically-maintained pain, trigeminal neuralgia, dental pain, myofacial pain, phantom-limb pain, bulimia, premenstrual syndrome, late luteal phase syndrome, post-traumatic syndrome, chronic fatigue syndrome, urinary incontinence, stress incontinence, urge incontinence, nocturnal incontinence, sexual dysfunction, premature ejaculation, erectile difficulty, erectile dysfunction, premature female orgasm, restless leg syndrome, eating disorders, anorexia nervosa, sleep disorders, autism, mutism, trichotillomania, narcolepsy, post-stroke depression, stroke-induced brain damage, stroke-induced neuronal damage or Gilles de la Tourettes disease.

30

13. A method for treatment, prevention or alleviation of a disease or a disorder or a condition of a living animal body, including a human, which disorder, disease or condition is responsive to inhibition of monoamine neurotransmitter re-uptake in the central nervous system, which method comprises the step of administering to such a living animal body in need thereof a therapeutically effective amount of a compound according to any one of the claims 1-8, any of its isomers or any mixture of its isomers, or a pharmaceutically acceptable salt thereof.

35

INTERNATIONAL SEARCH REPORT

International Application No
PCT/EP2005/052730

A. CLASSIFICATION OF SUBJECT MATTER
IPC 7 C07D451/14 A61K31/439 A61P23/00

According to International Patent Classification (IPC) or to both national classification and IPC

B. FIELDS SEARCHED

Minimum documentation searched (classification system followed by classification symbols)
IPC 7 C07D

Documentation searched other than minimum documentation to the extent that such documents are included in the fields searched

Electronic data base consulted during the international search (name of data base and, where practical, search terms used)

EPO-Internal, CHEM ABS Data, PAJ, WPI Data, BEILSTEIN Data

C. DOCUMENTS CONSIDERED TO BE RELEVANT

Category	Citation of document, with indication, where appropriate, of the relevant passages	Relevant to claim No.
X	WO 03/062235 A1 (ELI LILLY AND COMPANY, USA) 31 July 2003 (2003-07-31) see examples 20 and 71 and their use as medicaments -----	1-3, 9, 10, 12
X	EP 1 403 255 A1 (SUMITOMO PHARMACEUTICALS COMPANY, LIMITED, JAPAN) 31 March 2004 (2004-03-31) see example 538 and its use as medicament -----	1, 2, 9, 10, 12
X	JP 04 208267 A (MITSUI PETROCHEMICAL INDUSTRIES, LTD., JAPAN; MITSUI PHARMACEUTICALS,) 29 July 1992 (1992-07-29) see compounds 1169 and 1170 on p. 450 and its use as medicaments ----- -/-	1, 2, 9, 10, 12

Further documents are listed in the continuation of box C.

Patent family members are listed in annex.

* Special categories of cited documents :

- "A" document defining the general state of the art which is not considered to be of particular relevance
- "E" earlier document but published on or after the international filing date
- "L" document which may throw doubts on priority claim(s) or which is cited to establish the publication date of another citation or other special reason (as specified)
- "O" document referring to an oral disclosure, use, exhibition or other means
- "P" document published prior to the international filing date but later than the priority date claimed

- "T" later document published after the international filing date or priority date and not in conflict with the application but cited to understand the principle or theory underlying the invention
- "X" document of particular relevance; the claimed invention cannot be considered novel or cannot be considered to involve an inventive step when the document is taken alone
- "Y" document of particular relevance; the claimed invention cannot be considered to involve an inventive step when the document is combined with one or more other such documents, such combination being obvious to a person skilled in the art.
- "&" document member of the same patent family

Date of the actual completion of the international search

21 October 2005

Date of mailing of the international search report

11/11/2005

Name and mailing address of the ISA

European Patent Office, P.B. 5818 Patentlaan 2
NL - 2280 HV Rijswijk
Tel. (+31-70) 340-2040, Tx. 31 651 epo nl,
Fax: (+31-70) 340-3016

Authorized officer

Traegler-Goeldel, M

INTERNATIONAL SEARCH REPORT

International Application No
PCT/EP2005/052730

C.(Continuation) DOCUMENTS CONSIDERED TO BE RELEVANT

Category °	Citation of document, with indication, where appropriate, of the relevant passages	Relevant to claim No.
X	US 4 244 954 A (SCHULENBERG, JOHN W.) 13 January 1981 (1981-01-13) see examples 31, 34, 63 and 64, claims 1 to 7 and the use as medicament -----	1,2,7,9, 10,12
X	KRAISS, G. ET AL: "Chemistry of tropan-3-yl ethers. I. Synthesis of tropan-3-yl ethers" JOURNAL OF THE CHEMICAL SOCIETY 'SECTION! B: PHYSICAL ORGANIC , (11), 2145-9 CODEN: JCSPAC; ISSN: 0045-6470, 1971, XP009055570 see granatan-3-beta-yl phenylether, compound II wherein n=2 on p. 2148, right column -----	1-3,7
A	WO 97/30997 A (NEUROSEARCH A/S; SCHEEL-KRUEGER, JOERGEN; MOLDT, PETER; WAETJEN, FRANK) 28 August 1997 (1997-08-28) cited in the application see whole application -----	1-13
Y	JP 04 089489 A (NISSHIN FLOUR MILLING CO LTD) 23 March 1992 (1992-03-23) see granatane derivatives as selective HT3 antagonists -----	1-13
Y	US 4 797 406 A (RICHARDSON ET AL) 10 January 1989 (1989-01-10) see e.g. example 1 and the compounds of the tables on column 9 to 11 wherein D is a group (e) with n being 3 as serotonin antagonists at the 5HT M receptor -----	1-13

INTERNATIONAL SEARCH REPORT

International application No.
PCT/EP2005/052730

Box II Observations where certain claims were found unsearchable (Continuation of item 2 of first sheet)

This International Search Report has not been established in respect of certain claims under Article 17(2)(a) for the following reasons:

1. Claims Nos.: because they relate to subject matter not required to be searched by this Authority, namely:
Although claim 13 is directed to a method of treatment of the human/animal body, the search has been carried out and based on the alleged effects of the compound/composition.
2. Claims Nos.: because they relate to parts of the International Application that do not comply with the prescribed requirements to such an extent that no meaningful International Search can be carried out, specifically:
3. Claims Nos.: because they are dependent claims and are not drafted in accordance with the second and third sentences of Rule 6.4(a).

Box III Observations where unity of invention is lacking (Continuation of item 3 of first sheet)

This International Searching Authority found multiple inventions in this international application, as follows:

1. As all required additional search fees were timely paid by the applicant, this International Search Report covers all searchable claims.
2. As all searchable claims could be searched without effort justifying an additional fee, this Authority did not invite payment of any additional fee.
3. As only some of the required additional search fees were timely paid by the applicant, this International Search Report covers only those claims for which fees were paid, specifically claims Nos.:
4. No required additional search fees were timely paid by the applicant. Consequently, this International Search Report is restricted to the invention first mentioned in the claims; it is covered by claims Nos.:

Remark on Protest

The additional search fees were accompanied by the applicant's protest.

No protest accompanied the payment of additional search fees.

INTERNATIONAL SEARCH REPORT

Information on patent family members

International Application No

PCT/EP2005/052730

Patent document cited in search report		Publication date		Patent family member(s)	Publication date
WO 03062235	A1	31-07-2003	EP	1472248 A1	03-11-2004
EP 1403255	A1	31-03-2004	WO US	02100833 A1 2004138286 A1	19-12-2002 15-07-2004
JP 4208267	A	29-07-1992	JP	3087763 B2	11-09-2000
US 4244954	A	13-01-1981		NONE	
WO 9730997	A	28-08-1997	AT AU AU BG BG BR CA CN CZ DE DE EE EP GR HK HU IL JP JP NO NZ PL PT RU SG SK TR US ZA	203023 T 720358 B2 1794097 A 63945 B1 102637 A 9707636 A 2244773 A1 1211982 A 9802520 A3 69705608 D1 69705608 T2 9800254 A 0885220 A1 3036829 T3 1018957 A1 9901199 A2 125146 A 3238414 B2 2000504739 T 983877 A 330886 A 328503 A1 885220 T 2167876 C2 99853 A1 92998 A3 9801641 T2 6288079 B1 9701525 A	15-07-2001 01-06-2000 10-09-1997 31-07-2003 30-06-1999 27-07-1999 28-08-1997 24-03-1999 11-11-1998 16-08-2001 16-05-2002 15-02-1999 23-12-1998 31-01-2002 27-09-2002 30-08-1999 10-03-2002 17-12-2001 18-04-2000 21-08-1998 25-02-1999 01-02-1999 30-11-2001 27-05-2001 27-11-2003 04-11-1998 23-11-1998 11-09-2001 21-10-1997
JP 4089489	A	23-03-1992		NONE	
US 4797406	A	10-01-1989	BE CH WO DE FR GB IT	900425 A1 664567 A5 8501048 A1 3429830 A1 2551064 A1 2145416 A 1175629 B	25-02-1985 15-03-1988 14-03-1985 07-03-1985 01-03-1985 27-03-1985 15-07-1987